Additional Information

Mack Energy Glacier SWD-2617

List of Deficiencies, Proof of Notice, & Induced Seismicity
Request
Received 9-17-2024

From: <u>Deana Weaver</u>

To: <u>Harris, Anthony, EMNRD</u>; <u>Jerry Sherrell</u>

Cc: Goetze, Phillip, EMNRD; Gebremichael, Million, EMNRD; Sandoval, Stacy, EMNRD; Chavez, Carl, EMNRD

Subject: [EXTERNAL] RE: Mack Energy Glacier SWD#1 - List of deficiencies and clarification required.

Date: Tuesday, September 17, 2024 9:42:24 AM

Attachments: additional Information.pdf

Some people who received this message don't often get email from dweaver@mec.com. <u>Learn why this is important</u>

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Anthony- Attached is the additional information requested below. A deep injection seismicity report will be forwarded once completed.

Thank you

Deana Weaver Regulatory Technician II Mack Energy Corporation 575-748-1288

From: Harris, Anthony, EMNRD < Anthony. Harris@emnrd.nm.gov>

Sent: Friday, August 30, 2024 1:26 PM **To:** Jerry Sherrell <jerrys@mec.com>

Cc: Deana Weaver <dweaver@mec.com>; Goetze, Phillip, EMNRD <phillip.goetze@emnrd.nm.gov>; Gebremichael, Million, EMNRD <Million.Gebremichael@emnrd.nm.gov>; Sandoval, Stacy, EMNRD <Stacy.Sandoval@emnrd.nm.gov>; Chavez, Carl, EMNRD <Carlj.Chavez@emnrd.nm.gov>

Subject: Mack Energy Glacier SWD#1 - List of deficiencies and clarification required.

Importance: High

EXTERNAL EMAIL - Verify the sender and use caution before opening attachments or clicking links

Good Day, Jerry

Below are the list of deficiencies and or items requiring clarification before the application can be reviewed. If possible, I would like to take 30 mins to review some of these items with you before I send this to Mack.

- 1. Page 3/61 C-108 Section VII
 - a. Please provide chemical analysis for the disposal zone formation water (Item VII.5)
- 2. Page 3/61 C-108 Section VIII

- a. Provide the geologic name, and depth to bottom of all USDW <u>overlying</u> the proposed injection zone as per C-108 Section VIII
- b. Provide the geologic name, and depth to bottom of all USDW <u>underlying</u> the proposed injection zone as per C-108 Section VIII
- 3. Page 7/61 Section VII.4
 - a. Please specify the Source of the Produced Water San Andres? Other?
- 4. Page 18/61- "Before" Wellbore diagram for proposed Glacier SWD#1 well
 - a. No plugging details included on wellbore diagram. Please provide plugging details if available.
- 5. Page 22/61 No Label / Titles included on the Map. AOR is less than 1 mile
 - a. 1-Mile AOR not shown on this map.
 - i. Refer to attached map labelled "*Page 22.. AOR deficiencies*" illustrating the unit letters (denoted by X's) that need to be included to encompass the 1-mile AOR
 - 1. Please update the map on Page 22 to include a circle clearly showing the 1-mile AOR.
 - Please update "proof of notice" requirement to verify that the surface owner and lease operators (ie. including the 30 Unit letters denoted by an "X" in the attached map) have been notified (Refer to item 5b below)
 - 3. Please provide a separate map (with label / Title) that clearly identifies the <u>Surface Owner</u> upon which the proposed well is located
 - 4. Please provide a separate map (with label / Title) that clearly identifies the <u>Leasehold Operators</u> within 1 mile radius of the proposed well.
 - b. Refer to Eastern portion of map that identifies Grizzly Operating as an owner
 - Ownership of well 30-015-30667 was <u>transferred from Grizzly to</u>
 <u>Contango effective 1-29-2021</u> (ie. prior to Mack Energy Glacier Application being submitted)
 - 1. Please submit "proof of notice" requirements to verify that Contango has been notified.
- 6. Refer to Page 52/61 Water Analysis Report
 - a. No Label / Title include on this Water Sample
 - i. Is this a Fresh Water Sample?
 - b. Report lists the sample point as "Glacier SWD#1- Wellhead Sample"

- i. If the sample was collected from the Glacier well, please clarify how the sample was collected along with details of the zone that was sampled.
- ii. If this is a fresh water sample, please clarify (with appropriate Label / Title) the <u>location</u> of the well and <u>date</u> the sample was collected (Refer to C-108 Item XI)

7. General notes:

- a. Proposed cement volume for Production casing (885 sks) is not sufficient to reach surface
 - i. If there is a DV tool(s) planned for cement job, please clarify and update the wellbore diagram?
- b. CBL will be required for the Surface casing (set and cemented in 2001)
 - i. Note that well is in high Karst area, and surface casing cement quality has to be confirmed by CBL.
- c. Please provide a brief description of the planned workover operations to convert this well
- d. Provide a technical narrative and geologic assessment to demonstrate how the injected fluids will be contained within the Devonian

Induced Seismicity Potential (Minimum requirements)

The well is proposed for disposal into the Devonian and is located near, and along the trend line of, the Dagger Draw SRA (refer to attached image). Considering the ongoing seismic activity in the southern region of New Mexico, OCD requests an assessment of the Induced Seismicity potential. Below is an outline of the minimum requirements to assess the risks of Induced Seismicity for wells in close proximity to a known Seismic Response Area.

Minimum Requirements (for shallow injection wells)

- 1. General Information / overview:
 - a. Operator to provide a brief narrative on the location of the proposed SWD well (Section, township, range, County etc)
 - b. Geologic description (ie. Interbedded carbonate, limestones, siltstones, sandstones etc) of the proposed injection interval
 - c. Proposed formation and the depth of the injection interval
 - d. Statement on potential for communication with the Precambrian via faulting or other geologic features
 - e. Statement on potential for communication with USDW.
- 2. Seismic Risk assessment based on USGS data
 - a. Statement on the Historical seismicity in the area of the proposed SWD
 - i. Number of earthquakes above 2.5 magnitude within 10 miles of the proposed well
 - ii. Location and depth of nearest earthquake and the distance to the

proposed well.

- b. Subsurface Conditions / Faulting
 - i. Distance and depth to the nearest basement-penetrating fault(s)
 - ii. Narrative on the maximum stress direction, the stress regime and potential for communication with basement-penetrating faults.

Deep Injection – Minimum requirements Provide all items listed for Shallow injection, in addition to the following:

- 1. 1-mile AOR required for all Devonian-Silurian injection wells
- 2. Include a structural contour map of the Precambrian basement
 - a. Highlight basement-penetrating faults on the map as applicable
 - b. Include a 2 Mile radius around the proposed well showing proximity to basementpenetrating faults if applicable
- 3. If basement penetrating faults are identified, include an analysis of Fault Slip Potential utilizing Stanford-Zoback model which should include the following:
 - a. Construction of a hydrologic model to simulate the impact of injection from the proposed well (and nearby injection wells) over a 30 year period to estimate the Fault-slip potential associated with injection.
 - i. Simulate injection scenarios based on maximum proposed injection rate for the well, and offset wells if applicable
 - ii. An example of parameters to be utilized in the model are included in Table 8,9 & 10 below
 - b. Identification of subsurface faults and a description of the faults (strike direction, type of fault normal, extensional, etc)
 - Include a record of all USGS documented seismic events of magnitude 2.5 or greater within a 10 mile radius, including details on the depth (focus) and epicenter
 - d. A narrative on whether injection in the vicinity the faults will result in an elevated risk for injection-induced fault slip

Modeled Parameter	Input Value	Variability (+/-)	UOM	Source
Stress				
Vertical Stress Gradient	1.05	0.105	psi ft-1	Nearby well estimate
Max Horizontal Stress Direction	N75E	5	Deg.	Lund Snee & Zoback, 2018
Reference Depth	7,000	100	ft	Nearby well evaluation
Initial Res. Pressure Gradient	0.43	0.043	psi ft ⁻¹	Lund Snee & Zoback, 2018
A+ Parameter	0.6	0.06	-	Lund Snee & Zoback, 2018
Reference Friction Coefficient (µ)	0.6	0.06	9	Standard Value
Hydrologic				
Aquifer Thickness	1170	100	ft	Nearby well evaluation
Porosity	4	0.5	%	Nearby well evaluation
Permeability	25	2.5	mD	Nearby well evaluation
Material properties				
Density (Water)	1040	20	kg m ⁻³	Standard Value
Dynamic Viscosity (Water)	0.0008	0.0001	Pa.s	Standard Value
Fluid Compressibility (water)	3.6 x 10 ⁻¹⁰	0	Pa-1	Standard Value
Rock Compressibility	1.08 x 10 ⁻⁹	0	Pa-1	Standard Value

Well #	API	Well Name	Lat. (NAD83)	Long. (NAD83)	Vol. (bbls/day)	Start	End
1	30-025-	#012	-	-103	7,000	2022	2052
2	30-025-1-02	#026		-103.1	5,000	2022	2052
3	30-025-3 1929	#002	-	-103.	20,000	2022	2052
4	N/A	SWD #1	79000)	-103.	15,000	2022	2052

Table 10. Summary of model simulation results showing the required pore pressure change to
induced fault slip, actual change in pressure (as predicted by the FSP model), and probability of
fault slip at the end of the simulated injection scenario.

Fault Segment #	ΔPressure Necessary to Induce Fault Slip	Actual ΔPressure at fault midpoint in 2052	Fault Slip Potential in 2052	
1	2842	156	0.00	
2	1956	157	0.00	
3	2859	156	0.00	
4	1764	151	0.00	
5	531	166	0.02	
6	832	152	0.00	
7	496	137	0.03	
8	446	116	0.03	
9	1840	141	0.00	
10	2515	152	0.00	
11	894	166	0.00	
12	1769	180	0.00	

Conclusion – Induced Seismicity potential:

Operator representative(s), with skills and competencies suitable to assess the risk of induced seismicity, to provide an affirmative statement / summary on the potential for Induced seismicity based upon the parameter listed above. <u>Example</u> wording included below

 "After examination of publicly available / Operator's geologic and engineering data, there (is / is not) evidence of open faults or other hydrologic connections between the proposed disposal zone and any USDW.

- 2. "After examination of publicly available / Operator data, it is concluded that there is (low/high) risk for induced seismicity based upon the following parameters":
 - i. Vertical separation between the proposedinjection zone and the pre-cambrian
 - ii. Narrative on the existance of basement-penetrating faults in the area of the proposed SWD
 - iii. Distance from proposed well to the nearest known basementpenetrating fault(s)
 - iv. Distance from the closest historic earthquake
 - v. Summary of Fault Slip potential based on Stanford-Zoback model.
 - vi. Other items as applicable..

Regards
Tony Harris
Petroleum Specialist
Anthony.harris@emnrd.nm.gov
505 549 8131.

RECEIVED:	REVIEWER:	TYPE:	APP NO:	
		ABOVE THIS TABLE FOR OCCIO O OIL CONSERV Cal & Engineerin ancis Drive, San	/ATION DIVIS g Bureau –	
		ATIVE APPLICAT		
THIS	S CHECKLIST IS MANDATORY FOR AL REGULATIONS WHICH RE	L ADMINISTRATIVE APPLIC QUIRE PROCESSING AT TH		
Applicant:			C	OGRID Number:
Well Name:				API:
Pool:			P	ool Code:
SUBMIT ACCUI	RATE AND COMPLETE INF			CESS THE TYPE OF APPLICATION
		INDICATED BEL	OW	
A. Locatio	LICATION: Check those on a Spacing Unit – Simult NSP R	aneous Dedication		\Box SD
[1] Cor [one only for [1] or [11] mmingling – Storage – M DHC	_C □PC □(ire Increase – Enh	OLS	covery
A. Offse B. Roya C. Appl D. Notif E. Notif F. Surfa G. For a	et operators or lease hole alty, overriding royalty overriding royalty over ication requires published ication and/or concurred ication and/or concurred ace owner all of the above, proof of the otice required	ders wners, revenue oved notice ent approval by S ent approval by B	wners LO LM	Notice Complete Application Content Complete
administrativ understand t	ON: I hereby certify that the approval is accurate and hat no action will be take are submitted to the Div	and complete to ken on this applic	the best of m	• •
1	Note: Statement must be comple	ted by an individual wit	h managerial and/	or supervisory capacity.
			Date	
Print or Type Name	2			
			Phone Nui	mher
	7		i none nui	IIDO
Signature	Deana Weaver		e-mail Add	dress
Jyriature			G-mail Auc	AT COO

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

	ATTECATION FOR AUTHORIZATION TO INJECT
I.	PURPOSE:Secondary RecoveryPressure MaintenanceXDisposalStorage Application qualifies for administrative approval?YesNo
II.	OPERATOR: Mack Energy Corporation
	ADDRESS: P.O. Box 960 Artesia, NM 88210
	CONTACT PARTY: Deana Weaver PHONE: 575-748-1288
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project?YesXNo If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Deana Weaver
	SIGNATURE:DATE:DATE:
*	E-MAIL ADDRESS:dweaver@mec.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 1

INJECTION WELL DATA SHEET

OPERATOR:	Mack Energy Corporation	

WELL NAME & NUMBER: __Glacier SWD #1

WELL LOCATION: 1979 FSL 1981 FWL K 36 16S 27E

FOOTAGE LOCATION

UNIT LETTER

SECTION

TOWNSHIP

9780'

feet to

(Perforated or Open Hole; indicate which)

Perforated

RANGE

WELLBORE SCHEMATIC

30-015-31436			Glacier	SWD #1	After				
				or: Mack			ion		
				n: Sec. 3		R27E			
				L 1981 F					
				ve: SWD		an 96101	ı		
			GL Elev	ation: 33	391.6"				
Depth	Hole/Cag Size & Cement								Plug/Perf Detail
	a Cellient								
	12 1/4" hole								
	8 5/8" 32# K-55				l .				
	Set in 3/28/01				l .				
	950sx CMT				l .				
					l .				
1381'	Circ to Surface				l .				
1301	_				l .				
	7 7/8" hole	l							l
		l			ı			1	l
	5 1/2" 20# L-80 1445sx Cmt	l							
	Circ to Surface	l			ı			1	l
	Carc to Surface	l							l
9,880					l .				
3,000					l .				
					l .				
					l .				
					l .				
					l .				
					l .				
					l .				
					l .				Tubing
					l .				27/8* 6.5 J-55 EUE IPC
	_				l .				27/0 0.33-00 EUE IPC
					l .				
					l .				Arrow Set 10K
					l .				(5 1/2x 2 7/8") Nickel
					l .				Plated Packer w/2.81
					l .				R Profile Nipple @ 9,285
		l							is risine nippie (g 9,200
		l							
		l			ı				l
		l							l
		l							l
		l							l
		l							Perfs @
		l			ı			1	9385-9780
		l							300-3100
		l			ı				l
		l							
		l							
		l							
		l							
		l	XXXX				XXXXXX		
		l	^~~	Щ,	TD- 9,88	r			l
					n- 2,00				

WELL CONSTRUCTION DATA Surface Casing

Hole Size:12	1/4		Casing Size: 8 5/8" (existing 3/28/0)
Cemented with: _	950	sx.	<i>or</i> ft
Top of Cement: _	0		Method Determined: Circ
		Intermediate	e Casing
Hole Size:			Casing Size:
Cemented with: _		SX.	<i>or</i> ft
Top of Cement: _			Method Determined:
		Production	Casing
Hole Size:	7 7/8"		Casing Size: 5 1/2"
Cemented with: _	1445	sx.	<i>or</i> ft
Top of Cement: _	0		Method Determined: Circ
Total Depth:	9,880'		
		Injection I	<u>nterval</u>

9385'

30-015-31436			Glacier SWD #1- Before		
20 010 01400			Operator: Mack Energy C	orporat	ion
			Location: Sec. 32 T16S R		
			1979 FSL 1981 FWL		
			Objective: SWD; Devonia	an 96101	
	11-1-70 - 61	Ī	GL Elevation: 3391.6'	I	
Depth	Hole/Csg Size & Cement				Plug/Perf Detail
	G COMON				
	12 1/4" hole				
	8 5/8"				NO P&A Information
	Set in 3/28/01				Available On OCD
	950sx CMT				
40041	Circ to Surface				
1381'					
	1				
			TD- 8800' (per OCD)		

The Well file in the OCD online system is incomplete.

Should this re-entry be unsuccessful Mack Energy will P&A per OCD regulations

30-015-31436		Glacier SWD #1- After							
			or: Mack n: Sec. 3			ion			
		1979 FS	L 1981 F	WL					
		Objective: SWD; Devonian 96101 GL Elevation: 3391.6'							
Depth	Hole/Csg Size & Cement							Plug/Perf Detail	
	a cement								
	12 1/4" hole 8 5/8" 32# K-55								
	Set in 3/28/01								
	950sx CMT								
1381'	Circ to Surface								
	7.7/011.1								
	7 7/8" hole 5 1/2" 20# L-80								
	1445sx Cmt								
	Circ to Surface								
9,880'									
								Tubing	
								2 7/8" 6.5 J-55 EUE IPC	
								Arrow Set 10K	
								(5 1/2x 2 7/8") Nickel Plated Packer w/2.81	
								R Profile Nipple @ 9,285'	
								Perfs @	
								9385-9780'	
		XXXX				XXXXX			
				ΓD- 9,880)'				

MACK ENERGY CORPORATION Glacier SWD #1 (Re-Entry) Sec 32-T16s-R27e API #30-015-31436

Well Information

Original Well Information.

Operator: Concho Resources Inc. Well Name: Dorsey "32" State #1

TD: 8,800'

P&A: 04/14/2001

Existing Casing:

	<u> </u>					
Hole	MD (ft)	Casing	Weight	Grade	Coupling	Comments
25"	0'- 40'	20"				Conductor
12 1/4"	0'- 1,350'	8 5/8"	32#	J-55	STC	Pumped 400 sacks + 200 sacks. Circulated 150 sacks
7 7/8"	8,800'	N/A				

New Production Casing

		···· 3				
<u>Hole</u>	MD (ft)	Casing	Weight	<u>Grade</u>	Coupling	Comments
7 7/8"	0'-9,800'	5 1/2"	20#	L-80	LT&C	

Production Casing: OD - 5 1/2" 20#- L-80 ID: 4.892" Drift: 4.653 Burst: 9,190 psi

Procedure

Objective: Drill out cement plugs to casing in/out plug and test casing to insure the casing test good, run CBL. If casing/cement is good, move in drill rig, finish drilling out cement plugs, Deepen well from 8,800'-9,880', log well, run $5\frac{1}{2}$ " casing to bottom.

- Remove Dry Hole Marker. Dig out old Cellar. Find 8 5/8" casing stub. Inspect casing for pits and holes. Install 8 5/8"x11"x 5K Wellhead and test.
- 2. MIRU PU.
- 3. Nipple up BOPE and test.
- **4.** PU 7 7/8" bit, DC's w/2 7/8" L-80 work string.
- **5.** Drill out cement plugs. Plug #1 surface plug from 0' to 60', Test casing to 500 psi for 15 minutes. Tag plug at 1,300' Test casing to 500 psi for 15 minutes.
- **6.** TOH and lay down 2 7/8" tubing and drill collars.
- 7. RU Wireline truck and Run CBL with 1000psi
- 8. Nipple down BOPE.
- 9. Install B-1 adaptor with valve and gauge.
- 10. Rig Down Pulling Unit. Wait on Drilling Rig.
- 11. Rig Up Drilling Rig.

MACK ENERGY CORPORATION Glacier SWD #1 (Re-Entry) Sec 32-T16s-R27e API #30-015-31436

- 12. NU BOPE & Test
- 13. Finish Drilling out cement plugs.
- **14.** Deepen well from 8,800'-9,980'
- **15**. TOH
- **16.** RU Wireline Truck and log well
- **17.** Run 5 ½" casing to bottom & Cement to surface. A Packer stage tool will be used if losses are encountered. Cement volumes will change after caliper log is ran.

EM 9/6/2024

PROPETRO® CEMENT DEPT

MACK ENERGY

GLACIER SWD #1

PRODUCTION CASING

ROBINSON #3

COUNTY

API: TBD

PREPARED BY: CARLOS CASAREZ

DATE: 9/06/2024

NOTICE:

THIS PROPOSAL IS GOOD FOR A PERIOD OF 30 DAYS FROM THE DATE OF ISSUE. THE INFORMATION INCLUDED IN THIS PROPOSAL IS PRESENTED IN GOOD FAITH, AND PRICES QUOTED ARE ESTIMATES ONLY BASED ON THE FACTS PROVIDED BY OTHERS. NO WARRANTY IS MADE CONCERNING THE ACCURACY OR COMPLETENESS OF DATA, INFORMATION PRESENTED, EFFECTIVENESS OF MATERIAL, PRODUCTS OR SUPPLIES, RECOMMENDATIONS MADE, OR THE RESULTS OF THE SERVICES PROVIDED. CERTAIN ITEMS ARE ESTIMATES ONLY, AND WILL VARY DEPENDING UPON THE DISTANCE TRAVELED, TIME, EQUIPMENT, AND MATERIAL, ULTIMATELY REQUIRED TO PERFORM THESE SERVICES. THESE ITEMS THAT ARE SUBJECT TO VARY WILL BE BILLED BASED ON THE ACTUAL AMOUNTS INCURRED (i.e. MILEAGE, INCREASE IN MATERIALS). FREEDOM FROM INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS IS NOT TO BE INFERRED WITH RESPECT TO ANY MATERIAL INCLUDED IN THIS PROPOSAL AND NO INTELLECTUAL PROPERTY RIGHTS ARE GRANTED HEREBY.

MACK ENERGY
GLACIER SWD #1
ROBINSON #3
PRODUCTION CASING

	WELL IN	FORMATION		
PRODUCTION CASING	5 1/2	20.0#	Set @	9880 ft
PREVIOUS CASING	8 5/8	32.0#	Set @	1350 ft
HOLE SIZE	77/	8	Set @	TD
FLUID NAME	DENSITY (LB/GAL)	VOLUME (BBL)	EXCESS (%)	TOP OF FLUID (
MUD WASH	8.3	20	0%	0
GEL SPACER	8.3	0%	0	
SCAVENGER	11.0	25	0%	0
LEAD SLURRY	11.5	108.0	35%	0
TAIL SLURRY	14.2	293.5	35%	2883
DISPLACEMENT	8.33	218	0%	0
LEAD SLURRY	215 SACKS	11.5 PPG	2.82 CU/FT/SK	16.42 GAL/S
	PRO	D-ECO H		
	109	∕₀ P-201		
	5%	6 P-402		
	0.50	% P-202		
	3 LBS PE	R SACK P-305		
	0.4 LBS PI	ER SACK P-724		
	0.125 LBS I	PER SACK P-309		
TAIL SLURRY	1230 SACKS	14.2 PPG	1.34 CU/FT/SK	6.09 GAL/Sk
TAIL SLURRY	PRO	D-ECO H	1.34 CU/FT/SK	6.09 GAL/SK
TAIL SLURRY	PR(5%	D-ECO H 6 P-402	1.34 CU/FT/SK	6.09 GAL/SK
TAIL SLURRY	PR(5% 2%	D-ECO H o P-402 o P-201	1.34 CU/FT/SK	6.09 GAL/SK
TAIL SLURRY	PR0 5% 2% 0.29	D-ECO H 6 P-402 6 P-201 6 P-103	1.34 CU/FT/SK	6.09 GAL/SK
TAIL SLURRY	PR0 5% 2% 0.2° 0.2	O-ECO H 6 P-402 6 P-201 % P-103 % P-18	1.34 CU/FT/SK	6.09 GAL/Sk
TAIL SLURRY	PR0 5% 2% 0.2° 0.2 0.1°	P-ECO H P-402 P-201 P-103 P-18 P-720	1.34 CU/FT/SK	6.09 GAL/Sk
TAIL SLURRY	PR0 5% 2% 0.2° 0.2 0.1°	O-ECO H 6 P-402 6 P-201 % P-103 % P-18	1.34 CU/FT/SK	6.09 GAL/SK
TAIL SLURRY	PR0 5% 2% 0.2° 0.2 0.1°	P-ECO H P-402 P-201 P-103 P-18 P-720	1.34 CU/FT/SK	6.09 GAL/Sk
TAIL SLURRY	PR0 5% 2% 0.2° 0.2 0.1° 0.4 GALS P	D-ECO H D-ECO		
TAIL SLURRY FLUID NAME	PR0 5% 2% 0.2° 0.2 0.1° 0.4 GALS P	D-ECO H D-ECO		6.09 GAL/SK
	PR0 5% 2% 0.2° 0.2 0.1° 0.4 GALS P	D-ECO H D-ECO	ESTIMATED **	
FLUID NAME	PR0 59/ 29/ 0.29 0.29 0.19 0.4 GALS P	D-ECO H D-ECO	ESTIMATED 0	TIME (HH:MM)
FLUID NAME MUD WASH	PR0 59/ 20/ 0.29 0.29 0.19 0.4 GALS P PUMP PUMP RATE (E	D-ECO H D-ECO	ESTIMATED 0	TIME (HH:MM)
FLUID NAME MUD WASH GEL SPACER	PRO 5% 20% 0.2% 0.2% 0.1% 0.4 GALS P PUMP PUMP RATE (E 5 6	D-ECO H D-ECO	ESTIMATED 0	TIME (HH:MM) 0:00 0:10
FLUID NAME MUD WASH GEL SPACER SCAVENGER	PRO 5% 20% 0.29 0.29 0.19 0.4 GALS P PUMP PUMP RATE (E 5 6 6	D-ECO H D-ECO	ESTIMATED O	TIME (HH:MM) ::00 ::10
FLUID NAME MUD WASH GEL SPACER SCAVENGER LEAD SLURRY TAIL SLURRY DISPLACEMENT	PRO 59/20/20/20/20/20/20/20/20/20/20/20/20/20/	D-ECO H 6 P-402 6 P-201 7 P-103 7 P-18 7 P-720 ER SACK P-724 SCHEDULE BBLS/MIN)	ESTIMATED 0 0 0 0 0 0	TIME (HH:MM) 2:00 2:10 2:10 2:20

MACK ENERGY
GLACIER SWD #1
ROBINSON #3
PRODUCTION CASING

DECRIPTION	QTY	UNIT	RATE	DISCOUNT	AMOUNT
PUMP TRUCK MILEAGE	60	MILES	\$7.84	13%	\$409.2
CREW TRUCK MILEAGE	60	MILES	\$4.41	13%	\$230.2
PUMP CHARGE	9880	FT	\$0.71	13%	\$6,102.8
DATA ACQUISITION	1	1 EACH	\$385.00	13%	\$334.9
BLENDING CHARGE	1454	FT3	\$1.23	13%	\$1,556.0
DELIVERY CHARGE	1984	TM	\$0.88	13%	\$1,519.2
EMENT SERVICE SUPERVISOR - PRODUCTION	1	1 EACH	\$1,975.00	13%	\$1,718.2
CEMENT CREW PERSONNEL - PRODUCTION	1	1 CREW	\$3,150.00	13%	\$2,740.
EMENT LOGISTICAL SUPPORT - PRODUCTION	1	1 EACH	\$2,650.00	13%	\$2,305.
LAB & TECHNICAL SUPPORT	1	1 EACH	\$415.00	13%	\$361.
IRON CERTIFICATION	1	1 EACH	\$625.00	13%	\$543.
FUEL SURCHARGE	100	GAL	\$4.45	13%	\$388.
5 1/2 RUBBER PLUG	1	1 EACH	\$99.00	13%	\$86.
ADDITIONAL HOURS		HOURS	\$1,150.00	13%	\$0.
LEAD CE	MENT W/	ADDITIVES	,	<u> </u>	
PRO-ECO H	215	SKS	\$17.06	17%	\$3,044.
P-201	1860	LBS	\$0.17	17%	\$262.
P-402	1471	LBS	\$0.20	17%	\$244.
P-202	93	LBS	\$2.50	17%	\$192.
P-305	645	LBS	\$1.02	17%	\$546.
P-724	86	LBS	\$1.26	17%	\$89.
P-309	27	LBS	\$2.58	17%	\$57.
TAIL CE	MENT W/	ADDITIVES	Ļ	ļļ.	
PRO-ECO H	1230	SKS	\$17.06	17%	\$17,416.
P-402	3118	LBS	\$0.20	17%	\$517.
P-201	2067	LBS	\$0.17	17%	\$291.
P-103	207	LBS	\$3.46	17%	\$594.
P-18	207	LBS	\$11.90	17%	\$2,044.
P-720	104	LBS	\$8.89	17%	\$767.
P-724	492	LBS	\$1.26	17%	\$514.
1 /24	772		Ψ1.20	17 /0	4314.
	MISC.				
SUGAR	200	LBS	\$1.80	17%	\$298.
P-623	110	LBS	\$4.05	17%	\$369.
P-618	30	GAL	\$33.86	17%	\$309. \$843.
PRO-ECO C	50	SKS	\$17.44	17%	\$723.
P-201		LBS		17%	
P-201 P-402	420 342	LBS	\$0.17	17%	\$59.
		LBS	\$0.20		\$56. \$42
P-202	21	LBS	\$2.50	17%	\$43.
P-302	150		\$0.46	17%	\$57.
P-724	20	LBS	\$1.26	17%	\$20.
P-309	7	LBS	\$2.58	17%	\$14.
		-	OTAL ESTIMA	TED 22 5	\$47,369.0

INJECTION WELL DATA SHEET

Tub	sing Size:2 7/8"Lining Material:IPC
Тур	be of Packer: Arrow Set 10K (5 1/2" x 2 7/8") Nickel Plated Packer with a 2.81 R Profile Nipple set @ 9285'
Pac	ker Setting Depth:9285'
Oth	er Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection? Yes X No
	If no, for what purpose was the well originally drilled? Gas Well
2.	Name of the Injection Formation:
3.	Name of Field or Pool (if applicable):SWD; Devonian
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
	Nothing Listed on OCD Website. Should this re-entry be unsuccessful Mack Energy will
	P&A per OCD regulations.
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed
	U. Miss 8805', L. Miss 9002', Devonian 9685', Montoya 9780', Simpson 10,074' injection zone in this area:
	The Glacier SWD #1 injected fluid will be contained within the Devonian formation. Above the
	Devonian, the Woodford Shale and Mississippian Lime Formations are low porosity and low
	permeability and are in excess of 100 feet combined. Below the Devonian, the top 50 feet of the
	Montoya Formation is low porosity and low permeability and will be the bottom seal and contain the

Water Analysis Report

Customer:	Mack Energy	Corporation	Sample #:	228768
Area:	Artesia		Analysis ID #:	177464
Lease:	Glacier		BOPD:	
Location:	SWD #1		BWPD:	
Sample Point:	Wellhead	POD # RA-01078-ST	 fresh water sample was taken a	at surface on 1/11/2023. (32.900685°, -104.347437°

Sampling date:	1/11/2023	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis date:	1/19/2023	Chloride:	2292.6	64.65	Sodium:	1099.0	47.80
Analysis:	Catalyst	Bicarbonate:	195.2	3.20	Magnesium:	194.9	16.03
TDS (mg/l or g/m2):	5570	Carbonate:		0.00	Calcium:	578.4	28.86
TDS (mg/l or g/m3):	1.006	Sulfate:	1200.0	24.96	Potassium:	6.6	0.17
Density (g/cm3):	1.006	Borate:	2.6	0.02	Strontium:	0.4	0.01
Hydrogen Sulfide:	7.14	Phosphorus:		0.00	Barium:	0.2	0.00
Carbon Dioxide:	115				Iron:	0.1	0.00
Comments:		pH at time of sam		7.55	Manganese:	0.1	0.00
		pH used in Calcul	ation:	7.55	Conductivity (micro	o-ohms/cm):	8171
		Temperature @ la	ab conditions(F):	75	Resistivity (ohm m	eter):	1.2238

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl									
Temp	1	Calcite Gypsum Anhydrite Celestite CaCO3 CaSo4*2H2O CaSO4 SrSO4							arite SO4		
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	
80	0.66	11.15	-0.30	0.00	-0.37	0.00	-1.76	0.00	1.07	0.00	
100	0.76	13.94	-0.31	0.00	-0.31	0.00	-1.75	0.00	0.92	0.00	
120	0.86	17.08	-0.30	0.00	-0.22	0.00	-1.72	0.00	0.80	0.00	
140	0.97	20.57	-0.28	0.00	-0.12	0.00	-1.69	0.00	0.70	0.00	
160	1.08	24.05	-0.26	0.00	0.01	8.71	-1.65	0.00	0.63	0.00	
180	1.20	27.89	-0.23	0.00	0.15	125.48	-1.61	0.00	0.57	0.00	
200	1.32	31.72	-0.20	0.00	0.30	225.52	-1.56	0.00	0.53	0.00	
220	1.45	35.21	-0.17	0.00	0.47	308.48	-1.51	0.00	0.51	0.00	

The Glacier SWD #1 injected fluid will be contained within the Devonian formation. Above the Devonian, the Woodford Shale and Mississippian Lime Formations are low porosity and low permeability and are in excess of 100 feet combined. Below the Devonian, the top 50 feet of the Montoya Formation is low porosity and low permeability and will be the bottom seal and contain the Devonian injected fluid.

VII. DATA SHEET: PROPOSED OPERATIONS

1. Proposed average and maximum daily rate and volume of fluids to be injected;

Respectively, 15,000 BWPD and 20,000 BWPD

2. The system is closed or open;

Closed

3. Proposed average and maximum injection pressure;

0-4,489#

4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than re-injected produced water;

We will be re-injecting produced water

- 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water; N/A-- There is not a Devonian well in the area to get a sample. Can we provide the sample during completion. We can perf and swab the well to provide a sample.
 - 6. List of Aquifers- Overlying- Artesian 1,120', Underlying- N/A
 - 7. Well Procedures- See Attached
 - 8. Seismic- Attached

VIII. GEOLOGICAL DATA

- 1. Lithologic Detail; Dolomite
- 2. Geological Name; Devonian
- 3. Thickness; 395'
- 4. Depth; 9880'TD (9385-9780' Perforated)

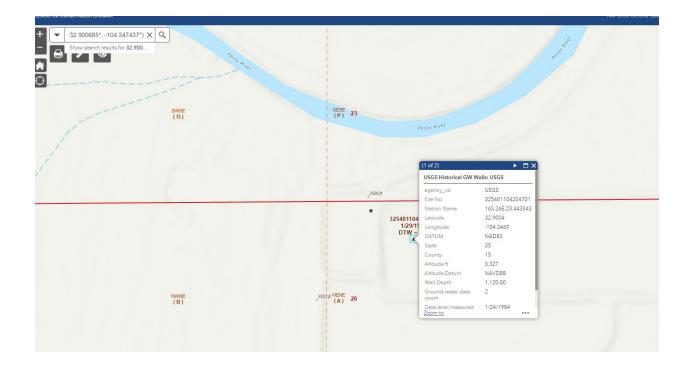
IX. PROPOSED STIMULATION PROGRAM

1. To be treated with 10000 gallons 15% acid

X. LOGS AND TEST DATA

1. Well data will be filed with the OCD.

XI. ANALYSIS OF FRESHWATER WELLS


See attached Additional Information

Waters Injected: San Andres

USDW

POD # RA-01078-ST fresh water sample was taken at surface on 1/11/2023. (32.900685°, -104.347437°)

Overlying Geologic Name- Artesian Overlying Depth- 1,120' Underlying Geologic Name- N/A Underlying Depth- N/A

XII. AFFIRMATIVE STATEMENT

RE: Glacier SWD #1

We have examined the available geologic and engineering data and find no evidence of open faults or any other hydraulic connection between the disposal zone and any underground source of drinking water.

Mack Energy Corporation

Date: 10/3/22

Charles Sadler, Geologist

Glacier SWD #1 1980 FSL 1980 FWL Sec. 32 T16S R27E Formation Tops

Quaternary	Surface
Seven Rivers	30'
Queen	520′
Grayburg	850'
San Andres	1220'
Glorieta	2650'
Tubb	3931'
Abo	4645'
Wolfcamp	5900'
Cisco	7014'
Strawn	7920′
Atoka	8299'
Morrow	8519'
U. Miss	8805'
L. Miss	9002'
Devonian	9385'
Montoya	9780'
Simpson	10,074

Water Analysis Report

Customer:

Mack Energy Corporation

Sample #:

81463

Area:

Artesia

Analysis ID #:

80383

Lease:

Prince Rupert

Location:

Fed #4H

0

Sample Point:

Wellhead

San Andres

Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/22/2019	Chloride:	89383.7	2521.19	Sodium:	53970.0	2347.56
Analyst:	Catalyst	Bicarbonate:	175.7	2.88	Magnesium:	1013.0	83.33
TDS (mg/l or g/m3):	150968.6	Carbonate:			Calcium:	2725.0	135.98
Density (g/cm3):	1.102	Sulfate:	2800.0	58.3	Potassium:	644.4	16.48
Density (g/cins).	1.102	Borate*:	190.4	1.2	Strontium:	55.6	1.27
		Phosphate*			Barium:	0.9	0.01
Hydrogen Sulfide:	5	=: :			Iron:	9.0	0.32
Carbon Dioxide:	97		ased on measured on and phosphore	-	Manganese:	0.857	0.03
0		pH at time of samp	ling:	6.65	81		
Comments:		pH at time of analy	sis:		*		
		pH used in Calcul	ation:	6.65	Conductivity (mi	cro-ohme/cm):	200079
		Temperature @ la	b conditions (F):	75	Resistivity (ohm		.0500
					, ,		

	Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl										
Temp	Calcite CaCO ₃				Anhydri e CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄		
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	
80	0.05	0.91	-0.13	0.00	-0.13	0.00	-0.11	0.00	1.22	0.60	
100	0.13	2.72	-0.20	0.00	-0.13	0.00	-0.13	0.00	1.02	0.30	
120	0.22	4.84	-0.26	0.00	-0.11	0.00	-0.15	0.00	0.84	0.30	
140	0.30	7.26	-0.30	0.00	-0.06	0.00	-0.15	0.00	0.69	0.30	
160	0.37	9.68	-0.34	0.00	0.00	6.96	-0.15	0.00	0.56	0.30	
180	0.45	12.70	-0.37	0.00	0.08	166.07	-0.14	0.00	0.45	0.30	
200	0.52	15.73	-0.40	0.00	0.18	328.81	-0.13	0.00	0.36	0.30	
220	0.60	18.75	-0.42	0.00	0.28	485.19	-0.11	0.00	0.28	0.30	

Water Analysis Report

Sample #:

Analysis ID #:

78595

76096

Customer:	Mack Energy Corporation					
Area:	Artesia					
Lease:	Chilliwack					
Location:	Fed Com 1H	0				
Sample Point:	Wellhead	San Andres				

Sampling Date:	11/28/2018	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	12/3/2018	Chloride:	104292.8	2941.72	Sodium:	63550.0	2764.27
Analyst:	Catalyst	Bicarbonate:	131.8	2.16	Magnesium:	1027.0	84.49
TDS (mg/l or g/m3):	175963.5	Carbonate:			Calcium:	2882.0	143.81
Density (g/cm3):	1.118	Sulfate:	3200.0	66.62	Potassium:	707.0	18.08
Denoity (gronie).		Borate*:	108.1	0.68	Strontium:	63.7	1.45
		Phosphate*			Barium:	0.8	0.01
Hydrogen Sulfide:	4				Iron:	0.1	0.
Carbon Dioxide:	108	-,	ased on measured on and phosphore		Manganese:	0.189	0.01
		pH at time of samp	ling:	6.95	=		
Comments:		pH at time of analy	sis:				
		pH used in Calcul	ation:	6.95			
		Temperature @ la	b conditions (F):	75	Conductivity (mi- Resistivity (ohm		.0499

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl												
Temp °F		Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄				
	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.28	2.95	-0.07	0.00	-0.05	0.00	-0.04	0.00	1.17	0.30				
100	0.32	3.84	-0.14	0.00	-0.06	0.00	-0.07	0.00	0.97	0.30				
120	0.36	5.02	-0.21	0.00	-0.05	0.00	-0.09	0.00	0.79	0.30				
140	0.39	6.20	-0.26	0.00	-0.01	0.00	-0.10	0.00	0.63	0.30				
160	0.43	7.38	-0.31	0.00	0.05	111.64	-0.10	0.00	0.50	0.30				
180	0.46	9.16	-0.34	0.00	0.12	261.08	-0.09	0.00	0.38	0.30				
200	0.50	10.93	-0.38	0.00	0.21	418.50	-0.08	0.00	0.29	0.30				
220	0.55	12.99	-0.41	0.00	0.31	573.26	-0.07	0.00	0.21	0.30				

Water Analysis Report

Customer:

Mack Energy Corporation

Sample #:

81533

Area:

Artesia

Analysis ID #:

80615

Lease:

Saskatoon

Location:

Fed Com 1H

0

Sample Point:

Wellhead

San Andres

Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/23/2019	Chloride:	91681.1	2585.99	Sodium:	54050.0	2351.04
Analyst:	Catalyst	Bicarbonate:	153.7	2.52	Magnesium:	1173.0	96.5
TDS (mg/l or g/m3):	151377.2	Carbonate:			Calcium:	2767.0	138.07
Density (g/cm3):	1.105	Sulfate:	700.0	14.57	Potassium:	647.0	16.55
Density (g/cilis).	1.105	Borate*:	144.3	0.91	Strontium:	60.1	1.37
		Phosphate*			Barium:	0.6	0.01
Hydrogen Sulfide:	4				Iron:	0.0	0.
Carbon Dioxide:	90	*Calculated base elemental boron	ed on measured and phosphoru	s.	Manganese:	0.416	0.02
0		pH at time of samplin	g:	7.23	11		
Comments:		pH at time of analysis	: :	2			
		pH used in Calculat	ion:	7.23	0		407040
2		Temperature @ lab	conditions (F):	75	Conductivity (mic Resistivity (ohm		197210 .0507

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl												
Temp	Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄					
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.57	6.35	-0.72	0.00	-0.71	0.00	-0.66	0.00	0.45	0.30				
100	0.57	7.26	-0.79	0.00	-0.72	0.00	-0.69	0.00	0.25	0.00				
120	0.58	8.77	-0.84	0.00	-0.69	0.00	-0.70	0.00	0.07	0.00				
140	0.59	10.28	-0.89	0.00	-0.65	0.00	-0.71	0.00	-0.08	0.00				
160	0.60	12.10	-0.93	0.00	-0.59	0.00	-0.70	0.00	-0.21	0.00				
180	0.63	13.91	-0.96	0.00	-0.51	0.00	-0.70	0.00	-0.32	0.00				
200	0.66	16.03	-0.99	0.00	-0.41	0.00	-0.69	0.00	-0.42	0.00				
220	0.71	18.45	-1.01	0.00	-0.31	0.00	-0.67	0.00	-0.49	0.00				

Water Analysis Report

Customer:

Mack Energy Corporation

Sample #:

118208

Area:

Artesia

Analysis ID #:

107555

Lease:

Montreal

Location:

1H

0

Sample Point:

Wellhead

San Andres

Sampling Date:	2/13/2020	Anions	mg/l	meq/I	Cations	mg/l	meq/l
Analysis Date:	3/4/2020	Chloride:	101615.8	2866.21	Sodium:	62440.0	2715.99
Analyst:	Catalyst	Bicarbonate:	197.6	3.24	Magnesium:	965.3	79.41
TDC (() (2):	172020.9	Carbonate:			Calcium:	2569.0	128.19
TDS (mg/l or g/m3):	1.116	Sulfate:	3400.0	70.79	Potassium:	660.8	16.9
Density (g/cm3):	1.110	Borate*:	110.4	0.7	Strontium:	57.8	1.32
		Phosphate*			Barium:	3.4	0.05
Hydrogen Sulfide:	7.4				Iron:	0.2	0.01
Carbon Dioxide:	102		ased on measured on and phosphore		Manganese:	0.550	0.02
		pH at time of samp	ling:	7.14			
Comments:		pH at time of analy	sis:				
		pH used in Calcul	ation:	7.14			
		Temperature @ la	b conditions (F):	75	Conductivity (mic Resistivity (ohm		199270 .0502

Temp		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl												
	Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄					
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.58	8.60	-0.09	0.00	-0.08	0.00	-0.05	0.00	1.83	1.78				
100	0.59	10.08	-0.16	0.00	-0.08	0.00	-0.08	0.00	1.63	1.78				
120	0.60	11.86	-0.23	0.00	-0.07	0.00	-0.10	0.00	1.45	1.78				
140	0.61	13.93	-0.28	0.00	-0.03	0.00	-0.10	0.00	1.30	1.78				
160	0.63	16.01	-0.32	0.00	0.03	69.97	-0.10	0.00	1.16	1.78				
180	0.65	18.38	-0.36	0.00	0.11	226.51	-0.10	0.00	1.05	1.78				
200	0.68	21.05	-0.39	0.00	0.19	391.65	-0.09	0.00	0.95	1.48				
220	0.73	24.01	-0.42	0.00	0.29	555.31	-0.08	0.00	0.87	1.48				

Lease:

Catalyst Oilfield Services 11999 E Hwy 158 Gardendale, TX 79758 (432) 563-0727 Fax: (432) 224-1038

Water Analysis Report

Customer: Mack Energy Corporation Sample #: 100487

Area: Drilling Analysis ID #: 94751

Location: Fed #1 0

Maple Ridge

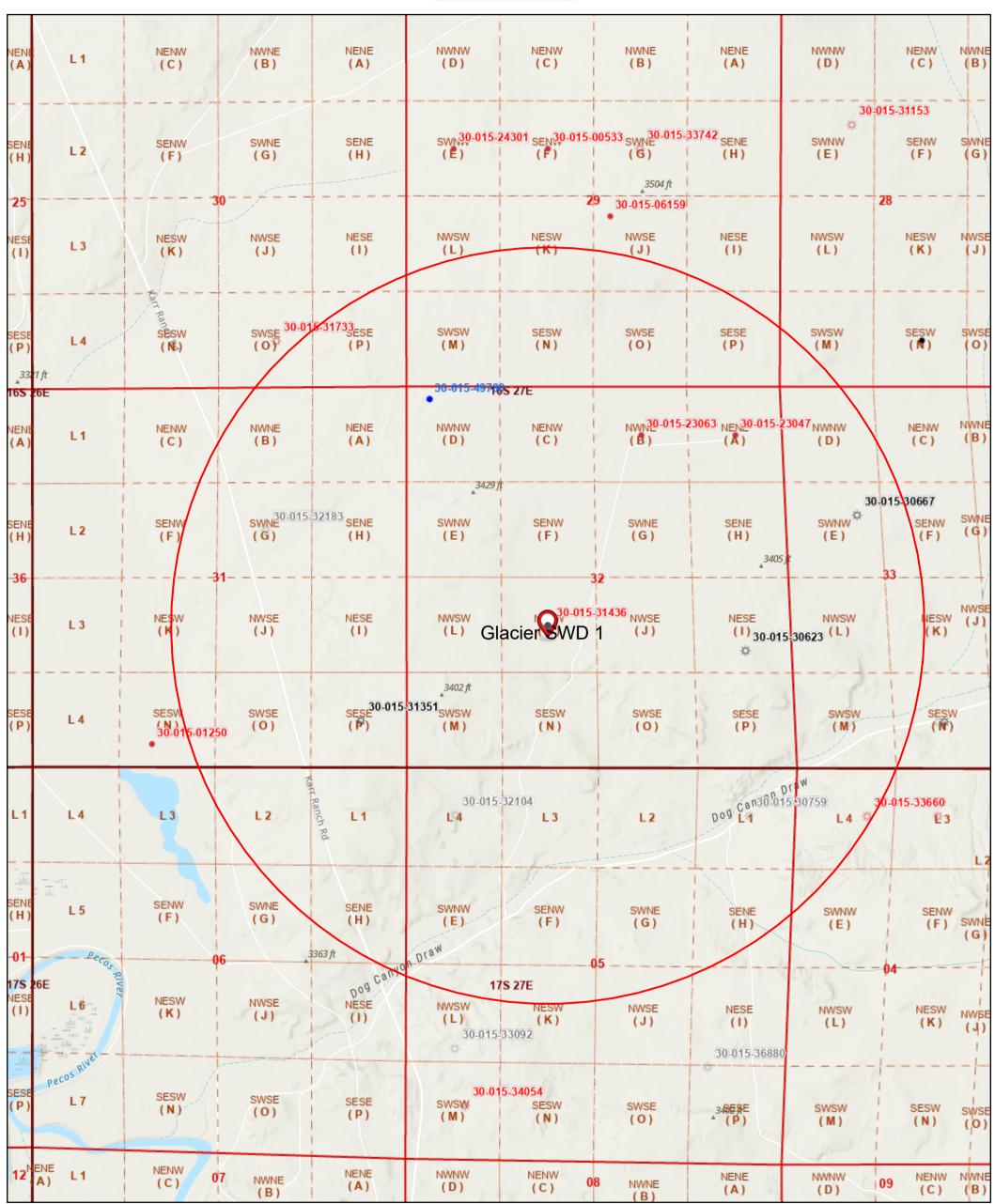
Sample Point: Wellhead San Andres

Sampling Date:	7/29/2019	Anions	mg/l	meq/I	Cations	mg/l	meq/l
Analysis Date:	8/8/2019	Chloride:	84902.3	2394.79	Sodium:	51250.0	2229.25
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	1177.0	96.82
TDC (///2):	144232	Carbonate:			Calcium:	2566.0	128.04
TDS (mg/l or g/m3):	1.097	Sulfate:	3300.0	68.71	Potassium:	564.2	14.43
Density (g/cm3):	1.097	Borate*:	173.9	1.1	Strontium:	53.5	1.22
		Phosphate*			Barium:	1.5	0.02
Hydrogen Sulfide:	14				Iron:	1.5	0.05
			sed on measure	Section of the Control of the Contro	Manganese:	0.460	0.02
Carbon Dioxide:	162.8	elemental boro	on and phosphor	us.			
		pH at time of sample	ling:	6.41			
Comments:		pH at time of analys	sis:				
		pH used in Calcula	ation:	6.41			
		Temperature @ lat	b conditions (F):	75	Conductivity (min		194536 .0514

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl												
Temp °F	Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄					
	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	-0.09	0.00	-0.09	0.00	-0.09	0.00	-0.04	0.00	1.52	0.91				
100	0.01	0.30	-0.15	0.00	-0.08	0.00	-0.06	0.00	1.33	0.91				
120	0.10	3.96	-0.20	0.00	-0.06	0.00	-0.08	0.00	1.15	0.61				
140	0.21	8.22	-0.25	0.00	-0.01	0.00	-0.08	0.00	1.00	0.61				
160	0.31	12.48	-0.28	0.00	0.06	131.82	-0.08	0.00	0.87	0.61				
180	0.41	17.35	-0.31	0.00	0.14	299.86	-0.07	0.00	0.76	0.61				
200	0.51	21.92	-0.33	0.00	0.24	471.86	-0.06	0.00	0.67	0.61				
220	0.61	26.79	-0.35	0.00	0.35	637.46	-0.04	0.00	0.60	0.61				

Water Analysis Report

Sample #: Analysis ID #: 55880


53988

Customer:	Mack Energy Corp	poration
Area:	Artesia	
Lease:	White Rock	
Location:	Federal #1H	0
Sample Point:	Wellhead	San Andres

Sampling Date:	12/21/2017	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/6/2018	Chloride:	93901.4	2648.62	Sodium:	58100.0	2527.21
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	969.6	79.76
TDS (mg/l or g/m3):	161820.5	Carbonate:			Calcium:	2737.0	136.58
Density (g/cm3):	1,107	Sulfate:	5000.0	104.1	Potassium:	571.6	14.62
Delisity (grains).	1.107	Borate*:	229.5	1.45	Strontium:	66.0	1.51
and the same of th	-	Phosphate*			Barium:	0.0	0.
Hydrogen Sulfide:	11				Iron:	3.8	0.14
	3.3	Section of the Control of the Contro	ased on measured		Manganese:	0.000	0.
Carbon Dioxide:	242	elemental bor	on and phosphor	us.			
		pH at time of samp	ling:	6.9			
Comments:		pH at time of analys	sis:				
		pH used in Calcul	ation:	6.9			1212
		Temperature @ la	b conditions (F):	75	Conductivity (min		176042 .0568

		Values Calculated at the Given Conditions - Amounts of Scale in lb/1000 bbl												
Temp	Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄			rite aSO ₄				
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.43	9.88	0.10	359.72	0.11	305.55	0.18	14.96	0.00	0.00				
100	0.49	12.27	0.03	111.03	0.10	296.88	0.16	13.17	0.00	0.00				
120	0.55	14.96	-0.03	0.00	0.13	355.53	0.14	11.97	0.00	0.00				
140	0.60	17.96	-0.08	0.00	0.17	467.16	0.13	11.67	0.00	0.00				
160	0.64	20.95	-0.12	0.00	0.23	615.30	0.14	11.67	0.00	0.00				
180	0.69	24.54	-0.15	0.00	0.31	784.69	0.14	12.27	0.00	0.00				
200	0.75	28.13	-0.18	0.00	0.40	962.15	0.15	12.87	0.00	0.00				
220	0.80	31.72	-0.20	0.00	0.51	1137.23	0.17	13.77	0.00	0.00				

1 Mile Map

9/4/2024, 8:48:38 AM

Wells - Large Scale

₩ Gas, Active

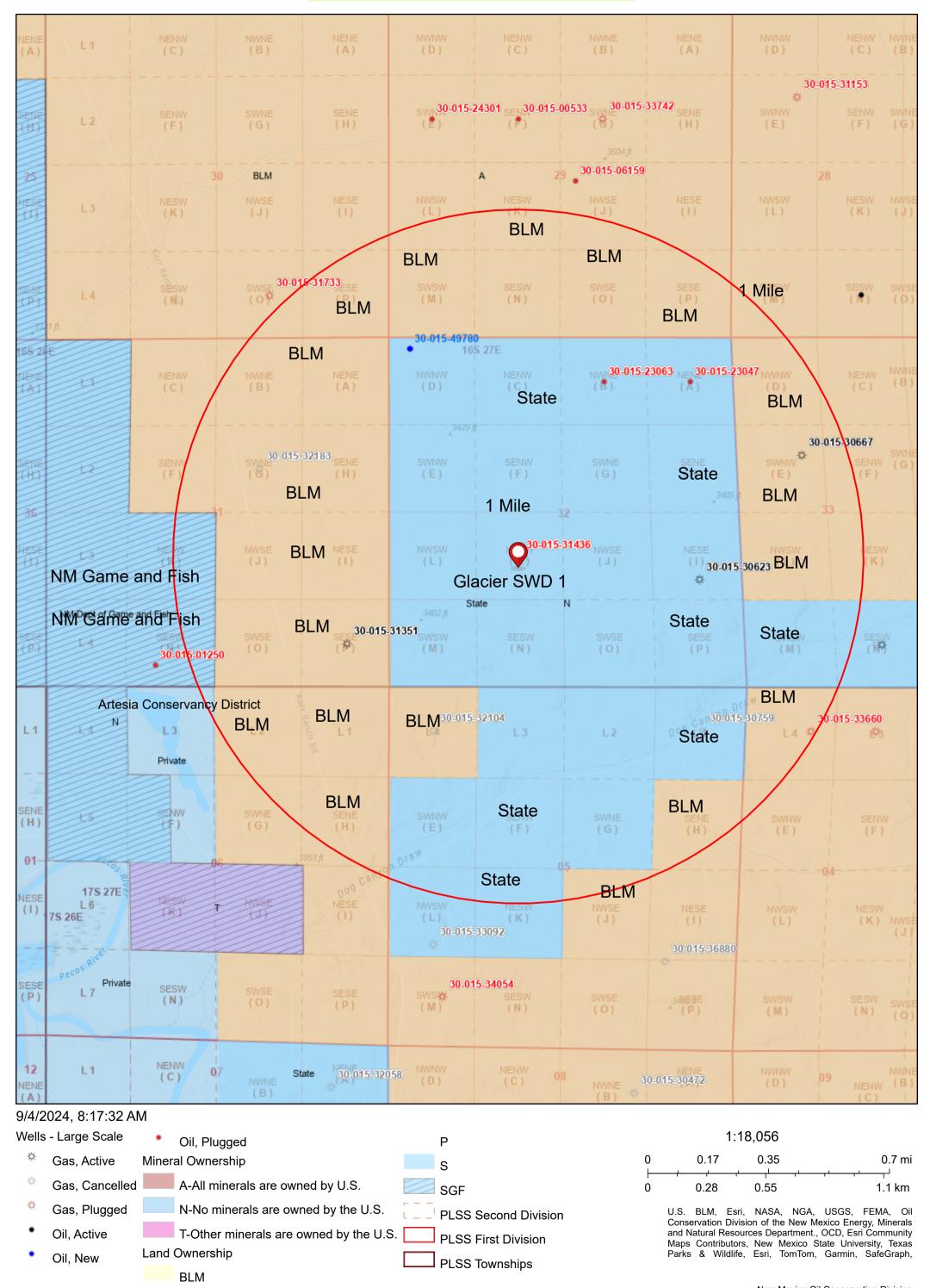
Gas, Cancelled

Oil, Active

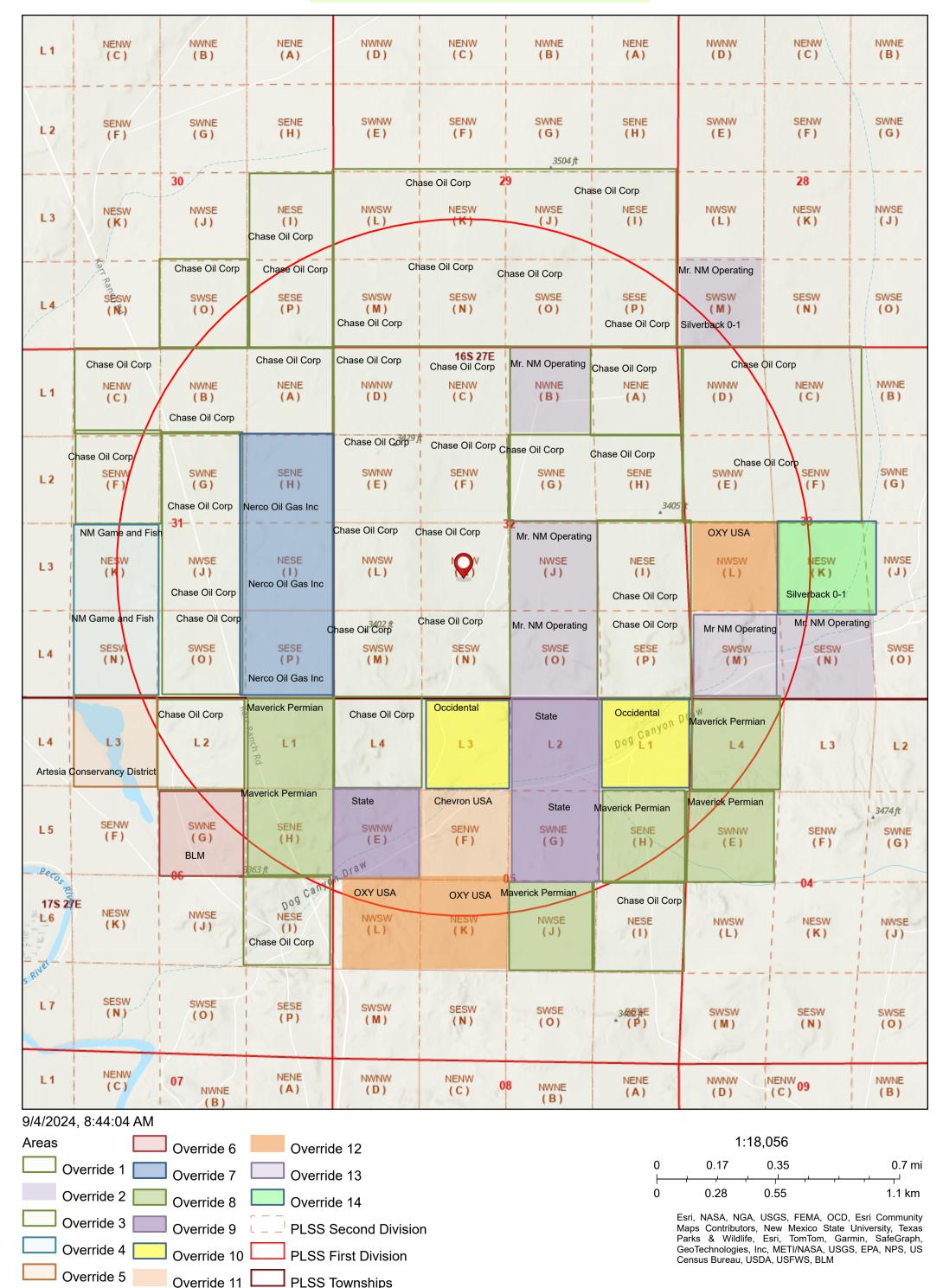
Oil, Plugged

PLSS Second Division

PLSS Townships


Oil, New **PLSS First Division**

Gas, Plugged


1:18,056 0 0.17 0.35 0.7 mi 0 0.28 0.55 1.1 km

Esri, NASA, NGA, USGS, FEMA, Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources Department., OCD, Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/

1 mile Surface Owner Map

1 Mile Leasehold Operators

Name	Address	City	State	Zip	Certified Mail Id
Chase Oil Corporation	11352 Lovington HWY	Artesia	NM	88210	
Mack Energy Corportion	P.O. Box 960	Artesia	NM	88210	
Merit Energy Company LLC	13727 Noel Rd Ste 1200	Dallas	TX	75240-7362	7021 1970 0000 5914 6178
Mr. NM Operating LLC	5950 Berkshire Lane Suite 1000	Dallas	TX	75225	7021 1970 0000 5914 6161
Grizzly Operating LLC	5847 San Felipe St Ste 3000	Houston	TX	77098	7021 1970 0000 5914 6154
Nerco Oil & Gas Inc	P.O. Box 9931	Vancouver	WA	98668	7021 1970 0000 5914 6147
Oxy USA Inc	6 Desta Dr.	Midland	TX	79705-5520	7021 1970 0000 5914 6130
Occidental Permian LTD	P.O. Box 4294	Houston	TX	77210-4294	7021 1970 0000 5914 6123
Chevron USA Inc	6301 Deauville Blvd	Midland	TX	79706	7021 1970 0000 5914 6116
Commissioner of Public Lands					
New Mexico State Land Office	P.O. Box 1148	Santa Fe	NM	87504-1148	7018 1130 0002 2208 6771
Bureau of Land Management	620 E. Greene St	Carlsbad	NM	88220-6292	7021 1970 0000 5914 6185
Silverback 0-1 LLc	19707 IH 10 West Suite 201	San Antonio	TX	78257	9589 0710 5270 0175 5638 64
NM Game & Fish Dept.	1 Wildlife Way	Santa Fe	NM	87507	9589 0710 5270 0175 5636 28
Maverick Permian Agent Corp	1111 Bagby St. Ste 1600	Houston	TX	77002	9589 0710 5270 0175 5636 35
Oxy USA WTP Limited Partnership	P.O. Box 4294	Houston	TX	77210-4294	9589 0710 5270 0175 5634 75
Contango Resources Inc	3230 Camp Bowie Blvd Suite 810	Fort Worth	TX	76107	9589 0710 5270 0175 5634 82
Riley Permian Operating Company LLC	29 E. Reno Ave Suite 500	Oklahoma City	OK	73104	9589 0710 5270 0175 5634 99
Artesia Conservancy District c/o Pecos Valley Artesian Conservancy	P.O. Box 1346	Roswell	NM	88202-1346	9589 0710 5270 0175 5635 05

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5636 35 Return Receipt Requested

Maverick Permian Agent Corp 1111 Bagby St. Ste 1600 Houston, TX 77002

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

lana Weaver

Deana Weaver

Regulatory Technician II

DW/

Attachments

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5634 75 Return Receipt Requested

Oxy USA WTP Limited Partnership P.O. 4294 Houston, TX 77010-4294

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5634 82 Return Receipt Requested

Contango Resources Inc 3230 Camp Bowie Blvd Suite 810 Fort Worth, TX 76107

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5634 99 Return Receipt Requested

Riley Permian Operating Company LLC 29 E. Reno Ave Suite 500 Oklahoma City, OK 73104

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

September 4, 2024

Via Certified Mail 9589 0710 5270 0175 5635 05 Return Receipt Requested

Artesia Conservancy District c/o Pecos Valley Artesian Conservancy P.O. Box 1346 Roswell, NM 88202-1346

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Plana Weller

Deana Weaver

Regulatory Technician II

DW/

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5638 64 Return Receipt Requested

Silverback 0-1 LLC 19707 IH 10 West Suite 201 San Antonio, TX 78257

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

pana Weaver

Deana Weaver

Regulatory Technician II

DW/

September 4, 2024

<u>Via Certified Mail</u> 9589 0710 5270 0175 5636 28 Return Receipt Requested

NM Game & Fish Department 1 Wildlife Way Santa Fe, NM 87507

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 9,385-9,780'. The Glacier SWD #1 located 1979 FSL & 1981 FWL, Sec. 32 T16S R27E, Eddy County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

Deana Weaver

Regulatory Technician II

DW/

March 5, 2024

PN 1904.SEIS.00

Mr. Phillip Goetze, P.G. NM EMNRD – Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Subject: Mack Energy Corporation

Glacier SWD #1 - Seismic Potential Letter

Dear Mr. Goetze,

At the request of Mack Energy Corporation (Mack Energy), ALL Consulting, LLC (ALL) has assessed the potential injection-induced seismicity risks in the vicinity of Mack Energy's Glacier SWD #1 (Subject SWD), a proposed saltwater disposal (SWD) facility in Eddy County, New Mexico, and summarized the findings in this letter. This assessment used publicly available data to identify the proximity and characteristics of seismic events and known faults to evaluate the potential for the operation of the Glacier SWD #1 to contribute to seismic activity in the area.

Geologic Evaluation

The Subject SWD is requesting a permit to inject into the Devonian Formation at a depth of 9,385-9,780 feet below ground surface (bgs). The Devonian Formation consists of cherty limestone and dolomites and is overlain by approximately 80 feet of low porosity and permeability Woodford Shale, which would prevent the upward migration of injection fluid and serve as the upper confining layer (see **Attachment 1**). Additionally, the Devonian Formation is underlain by various low porosity and permeability zones within the Silurian and Montoya Groups, both of which consist of limestones, dolomites, and interbedded shale zones. No geophysical logs penetrating the Silurian and Montoya Groups were available within 10 miles of the Subject SWD. A stratigraphic chart depicting the geologic setting is included as **Figure 1**.1

Seismic Events and Fault Data

A review of United States Geological Survey (USGS) and New Mexico Tech Seismological Observatory (NMTSO) earthquake catalogues determined that zero (0) seismic events have been recorded within a 100 square mile area [9.08-kilometer (km) radius] around the Subject SWD.

¹ Yang, K.-M., & Dorobek, S. L. (1995). The Permian Basin of west Texas and New Mexico: Tectonic history of a "composite" Foreland Basin and its effects on stratigraphic development. *Stratigraphic Evolution of Foreland Basins*, 149–174. https://doi.org/10.2110/pec.95.52.0149

The closest recorded seismic event was a M1.78 that occurred on May 25, 2021, and was located approximately 6.22 miles south of the Subject SWD (see **Attachment 2**).

Fault data from United States Geological Survey (USGS) and the Texas Bureau of Economic Geology (BEG)² indicates that the closest known fault is located approximately 14.71 miles south/southeast of the Subject Well (see **Attachment 2**). This identified fault is within the Precambrian basement, which is approximately 3,220 feet below the proposed injection interval.³ A map of the seismic events and faults within 9.08 km of the Subject SWD is included as **Attachment 2**.

Seismic Potential Evaluation

Experience in evaluating induced seismic events indicates that most injection-induced seismicity throughout the U.S. (e.g., Oklahoma, Ohio, Texas, New Mexico, and Colorado) occurs as a result of injection into Precambrian basement rock, into overlying formations that are in hydraulic communication with the Precambrian basement rock, or as a result of injection near

Figure 1 – Delaware Basin Stratigraphic Chart (Adapted from Yang and Dorobek 1995)

_					
SYSTEM	SERIES/ STAGE	CENTRAL BASIN PLATFORM		DELAWARE BASIN	
	OCHOAN	DEWEY LAKE RUSTLER SALADO		DEWEY LAKE RUSTLER SALADO CASTILE	
PERMIAN	GUADALUPIAN	TANSILL YATES SEVEN RIVERS QUEEN GRAYBURG SAN ANDRES GLORIETA		DELAWARE MT GROUP BELL CANYON CHERRY CANYON BRUSHY CANYON	
	LEONARDIAN	CLEAR FORK WICHITA		BONE SPRING	
	WOLFCAMPIAN	WOLFCAMP		WOLFCAMP	
	VIRGILIAN	CISCO		CISCO	
	MISSOURIAN	CANYON		CANYON	
PENNSYLVANIAN	DESMOINESIAN	STRAWN		STRAWN	
	ATOKAN	ATOKA	—BEND —	ATOKA	—BEND-
	MORROWAN	(ABSENT)		MORROW	
MISSISSIPPIAN	CHESTERIAN MERAMECIAN OSAGEAN	CHESTER MERAMEC OSAGE	BARNETT	CHESTER MERAMEC OSAGE	BARNETT.
	KINDERHOOKIAN	KINDERHOOK		KINDERHOOK	
DEVONIAN		WOODFORD DEVONIAN		WOODFORD	
SILURIAN		SILURIAN SHALE MIDDLE SILURIAN FUSSELMAN			
ORDOVICIAN	UPPER	MONTOYA		SYLVAN MONTOYA	
	MIDDLE	SIMPSON		SIMPSON	
	LOWER	ELLENBURGER		ELLENBURGER	
CAMBRIAN	UPPER	CAMBRIAN		CAMBRIAN	
PRECAMBRIAN					

critically stressed and optimally oriented faults. Seismicity at basement depths occurs because critically stressed faults generally originate in crystalline basement rock and may also extend into overlying sedimentary formations. ⁴

Injection into either the Precambrian basement rock or its overlying formations that are hydraulically connected to the basement rock through faulting or fracture networks can increase the pore pressure and may lead to the fault slipping, resulting in a seismic event.⁴ As such, the vertical distance between the injection formation and Precambrian basement rock and the presence or lack of faulting within the injection interval are major considerations when determining the risk of injection-induced seismicity.

² Horne E. A. Hennings P. H., and Zahm C. K. 2021. Basement structure of the Delaware Basin, in The Geologic Basement of Texas: A Volume in Honor of Peter Flawn, Callahan O. A., and Eichubl P., The University of Texas at Austin, Bureau of Economic Geology.

³ G. Randy Keller, J. M. Hills &; Rabah Djeddi, A regional geological and geophysical study of the Delaware Basin, New Mexico and West Texas, Trans Pecos Region (West Texas) (1980).

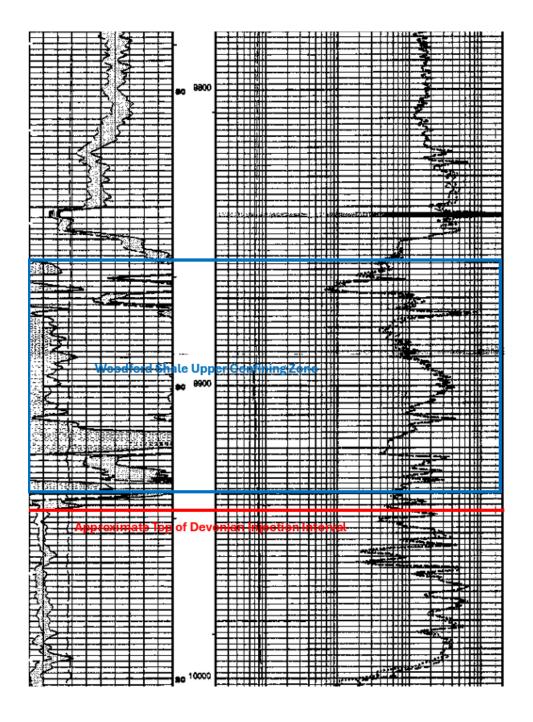
⁴ Ground Water Protection Council and Interstate Oil and Gas Compact Commission.

Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and Regulatory Considerations Informing Risk Management and Mitigation. 2015. 141 pages.

Geophysical data from nearby well records, aeromagnetic surveys, and gravity surveys indicates the top of the Precambrian Basement to be approximately 13,000 feet bgs at the Subject SWD, or approximately 3,220 feet below the proposed injection interval.³ In addition, publicly available fault data does not indicate any transmissive faulting is present above the Precambrian basement around the Subject SWD.

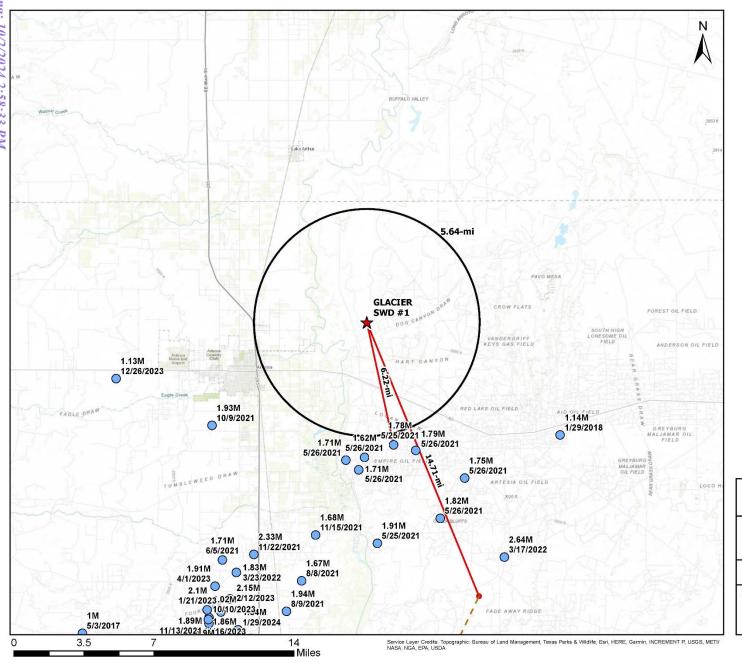
Class II SWDs in New Mexico are administratively permitted with a maximum pressure gradient of 0.2 psi/ft. Review of New Mexico Oil Conservation Division (OCD) Order IP-537 from the Mack Energy Round Tank SWD #1, which is located approximately 16 miles east/northeast of the Subject SWD, determined the fracture gradient of the Devonian Formation in the region is 0.41 psi/ft from an approved step-rate test. Typical SWD permitting standards in New Mexico would indicate that formation parting pressure would not be exceeded by the Subject SWD.

Conclusion


As an expert on the issue of induced seismicity, seismic monitoring, and mitigation, it is my opinion that the potential for the Subject SWD to cause injection-induced seismicity is expected to be minimal, at best. This conclusion assumes the Subject SWD will be operated below formation parting pressure and is based on (1) the presence of numerous confining layers above and below the injection interval, (2) the significant vertical distance between the injection zone and Precambrian basement rock in which the nearest fault has been identified, and (3) the lack of historic seismicity or mapped faults in the vicinity of the Subject SWD.

Sincerely, ALL Consulting

Reed Davis Geophysicist


> Attachment 1 Woodford Shale Upper Confining Zone

Woodford Shale Upper Confining Zone from API No. 015-32444

> Attachment 2 Seismic Event Map

Glacier SWD #1 Nearby Seismic Events and Faults

Legend

Proposed SWD (1)

NMTSO Seismic Events - 2/16/24 (28)

Deep Faults (1)

Seismic Analysis Map

GLACIER SWD #1

EDDY COUNTY, NEW MEXICO

Oliver Seekins

February 19, 2024

Mapped by: Ben Bockelmann

Received by OCD: 10/2/2024 2:57:23 PM

District III

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 389387

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	389387
	Action Type:
	[IM-SD] Admin Order Support Doc (ENG) (IM-AAO)

CONDITIONS

Created By	Condition	Condition Date
anthony.harris	None	10/2/2024