STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION FOR DOWNHOLE COMMINGLINGSUBMITTED BY HILCORP ENERGY COMPANYORDER NO. DHC-5485

<u>ORDER</u>

The Director of the New Mexico Oil Conservation Division ("OCD"), having considered the application and the recommendation of the Engineering Bureau, issues the following Order.

FINDINGS OF FACT

- 1. Hilcorp Energy Company submitted a complete application ("Application") to downhole commingle the pools described in Exhibit A ("the Pools") within the well bore of the well identified in Exhibit A ("the Well").
- 2. Applicant proposed a method to allocate the oil and gas production from the Well to each of the Pools that is satisfactory to the OCD and protective of correlative rights.
- 3. Applicant has certified that all produced fluids from all the Pools are compatible with each other.
- 4. Applicant has certified that downhole commingling the Pools will not decrease the value of the oil and gas production.
- 5. To the extent that ownership is diverse, Applicant identified all owners of interest in the Pools, provided evidence a copy of the Application was given to each person, and those persons either submitted a written waiver or did not file an objection to the Application.
- 6. Applicant provided notice of the Application to the Bureau of Land Management ("BLM") or New Mexico State Land Office ("NMSLO"), as applicable.

CONCLUSIONS OF LAW

- 7. OCD has jurisdiction to issue this Order pursuant to the Oil and Gas Act, NMSA 1978, Sections 70-2-6, 70-2-11, 70-2-12, 70-2-16, 70-2-17, and 19.15.12 NMAC.
- 8. The downhole commingling of the Pools is common, or Applicant has provided evidence that the fluids are compatible and will not damage the Pools in accordance with 19.15.12.11(A)(1) NMAC.
- 9. The bottom perforation of the lower zone is within one hundred fifty percent (150%) of the depth of the top perforation in the upper zone or Applicant has provided evidence that the proposed commingling of the Pools shall not result in shut-in or flowing well bore pressure in excess of the commingled pool's fracture parting pressure in accordance with 19.15.12.11(A)(3) NMAC.

Order No. DHC-5485

- 10. Applicant's proposed method of allocation, as modified herein, complies with 19.15.12.11(A)(8) NMAC.
- 11. To the extent that ownership is diverse, Applicant identified all owners of interest in the Pools and provided evidence the application was given to those persons in accordance with 19.15.12.11(C)(1)(b) NMAC.
- 12. By granting the Application with the conditions specified below, this Order prevents waste and protects correlative rights, public health, and the environment.

<u>ORDER</u>

- 1. Applicant is authorized to downhole commingle the Pools described in Exhibit A within the well bore of the well identified in Exhibit A.
- 2. Applicant shall allocate a fixed percentage of the oil and gas production from the Well to each of the Pools as described in Exhibit A.

Applicant shall allocate oil and gas production to the new pool(s) equal to the total oil and gas production from the Well minus the projected oil and gas production from the current pool(s) as described in Exhibit A until a different plan to allocate oil and gas production is approved by OCD.

Applicant shall calculate the oil and gas production average during the fourth year after the commencement of commingling, which shall be used to establish a fixed percentage of the total oil and gas production that shall be allocated to each of the Pools ("fixed percentage allocation plan"). No later than ninety (90) days after the fourth year, Applicant shall submit a Form C-103 to the OCD Engineering Bureau that includes the fixed percentage allocation plan and all data used to determine it. If Applicant fails to do so, this Order shall terminate on the following day. If OCD denies the fixed percentage allocation plan, this Order shall terminate or without modifications, then the approved percentage allocation plan shall be used to determine oil and gas allocation starting on the date of such action until the Well is plugged and abandoned.

Applicant shall allocate a fixed percentage of the oil production from the Well to each of the Pools until a different plan to allocate oil production is approved by OCD. Of the oil production from the Well:

- a. thirty nine percent (39%) shall be allocated to the Basin Fruitland Coal pool (pool ID: 71629);
- b. zero percent (0%) shall be allocated to the Blanco Pictured Cliffs pool (pool ID: 72359); and
- c. sixty one percent (61%) shall be allocated to the Blanco Mesaverde pool (pool ID: 72319).

Order No. DHC-5485

Applicant shall allocate gas production to the new pool(s) equal to the total gas production from the Well minus the projected gas production from the current pool(s) until a different plan to allocate gas production is approved by OCD. The new pool(s) are:

- a. the Basin Fruitland Coal (Gas) pool (pool ID: 71629); and
- b. the Blanco Pictured Cliffs (Gas) pool (pool ID: 72359).

The current pool(s) are:

- a. the Blanco Mesaverde (Prorated Gas) pool (pool ID: 72319)
- 3. If an alteration is made to the Well or a condition within the Well changes which may cause the allocation of production to the Pools as approved within this Order to become inaccurate, then no later than sixty (60) days after that event, Applicant shall submit Form C-103 to the OCD Engineering Bureau describing the event and include a revised allocation plan. If OCD denies the revised allocation plan, this Order shall terminate on the date of such action.
- 4. If any of the pools being commingled is prorated, or the Well's production has been restricted by an OCD order in any manner, the allocated production from each producing pool in the commingled well bore shall not exceed the top oil or gas allowable rate for a well in that pool or rate restriction applicable to the well.
- 5. If the Well is deepened, then no later than forty-five (45) days after the Well is deepened, Applicant shall conduct and provide logs to OCD that are sufficient for OCD to determine which pool(s) each new completed interval of the Well will produce from.
- 6. If the downhole commingling of the Pools reduces the value of the oil and gas production to less than if it had remained segregated, no later than sixty (60) days after the decrease in value has occurred Applicant shall submit a new downhole commingling application to OCD to amend this Order to remove the pool that caused the decrease in value. If Applicant fails to submit a new application, this Order shall terminate on the following day, and if OCD denies the application, this Order shall terminate on the date of such action.
- 7. If a completed interval of the Well is altered from what is submitted within the Application as identified in Exhibit A, then no later than sixty (60) days after the alteration, Applicant shall submit Form C-103 to the OCD Engineering Bureau detailing the alteration and completed interval.
- 8. If OCD determines that Applicant has failed to comply with any provision of this Order, OCD may take any action authorized by the Oil and Gas Act or the New Mexico Administrative Code (NMAC).
- 9. OCD retains jurisdiction of this matter and reserves the right to modify or revoke this Order as it deems necessary.

Order No. DHC-5485

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

fraca

GERASIMOS RAZATOS DIRECTOR (ACTING) DATE: 4/23/2025

.

	Exhibit A			
	Order: DHC-5485			
	Operator: Hilcorp Energy C	ompany		
	Well Name: Moore LS Well N	lo. 7A		
	Well API: 30-045-22826			
	Pool Name: Basin Fruitland C	Coal (GAS)		
Linner Zone	Pool ID: 71629	Current:	New: X	
Upper Zone	Allocation:	Oil: 39.0%	Gas: 74.0%	
		Top: 2,743	Bottom: 3,067	
	Pool Name: Blanco Pictured	Cliffs (GAS)		
	Pool ID: 72359	Current:	New: X	
	Allocation:	Oil: 0.0%	Gas: 26.0%	
		Top: 3,068	Bottom: 3,214	
Bottom of Inter	val within 150% of Upper Zone's 1	op of Interval: YES		
	Pool Name: Blanco Mesavero	de (PRORATED GAS)		
	Pool ID: 72319	Current: X	New:	
Lower Zone	Allocation: Subtraction	Oil: 61.0%	Gas: SUBT	
		Top: 5,173	Bottom: 5,704	
Bottom of Inter	val within 150% of Upper Zone's 1	op of Interval: NO		
Top of Qu	Jeen Formation:			

Rea

ceive	d by OCD:	11/20/2024 8:4	0:35 AM				Page 6
Ι	D NO. 40	5019		DHC -	5485		Revised March 23, 2017
	RECEIVED:	1/20/24	REVIEWER:	יד	YPE:	APP NO:	
				ABOVE THI	S TABLE FOR OCD DIVISION	USE ONLY	
		1.	NEW MEX - Geolo 220 South St	XICO OIL C ogical & Eng . Francis Dri [,]	DNSERVATI gineering Bu ve, Santa F	ON DIVISIO ureau – e, NM 8750!	N 5
			ADMINI	STRATIVE AF	PPLICATION	CHECKLIST	
		THIS CHECKLIST F	IS MANDATORY FC REGULATIONS WHIC	or all administra Th require proce	SSING AT THE DIVIS	SION LEVEL IN SAN	is to division rules and Ita fe
Ap	plicant:	Hilcorp Energy	Company			OG	RID Number: 372171
We	II Name:	Moore LS 7A				API	30-045-22826
Poc	ol: Basin F	ruitland Coal / I	Blanco Pictured	Cliffs / Blanco M	lesaverde	Роо	Code : <u>71629</u> , 72359, 72319
1)	TYPE OF A. Loc	APPLICATIO	N: Check tho cing Unit – Sin	INDICA ose which ap nultaneous D	TED BELOW ply for [A] pedication	-	
	B. Ch [1]	eck one onl Comminglir DHC Injection –	y for [I] or [II ng – Storage CTB Disposal – Pre PMX	→ (PROJECT AREA) → Measureme → PLC → P → PLC → PLC → PLC → PLC → PLC → PLC → PL	ent C OLS se – Enhanc PI EOR	ORAHON UNH)	very
2)	NOTIFIC A B C D E F G H	ATION REQU Offset opera Royalty, ove Application Notification Notification Surface owr For all of the No notice re	IRED TO: Che tors or lease rriding royalt requires pub and/or conc and/or conc er above, proc	eck those whi holders y owners, rev lished notice urrent appro urrent appro	ch apply. 'enue owne val by SLO val by BLM ion or public	rs cation is atta	Image: POR OCD ONLY Image: Notice Complete Application Content Complete
3)	CERTIFIC administ understa notificat	CATION: I her trative appro and that no a ions are sub	eby certify th oval is accura action will be mitted to the	at the inform I te and com taken on thi Division.	nation subm plete to the s applicatio	itted with this best of my k n until the re	s application for nowledge. I also quired information and
		Note: State	ment must be cor	mpleted by an inc	dividual with mai	nagerial and/or s	supervisory capacity.

Cherylene Weston

Print or Type Name

11/20/2024

Date

713-289-2614

Phone Number

Cherylene Weston

Signature

cweston@hilcorp.com e-mail Address

Received by OCD: 11/20/2024 8:40:35 AM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 7 of 41

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 APPLICATION TYPE __Single Well __Establish Pre-Approved Pools EXISTING WELLBORE __X_Yes ___No

APPLICATION FOR DOWNHOLE COMMINGLING

Hilcorp Energy Company	
Operator	-

382 Road 3100, Aztec, NM 87410 Address

MOORE LS7AF-25-T32N-R12WSAN JUAN, NMLeaseWell No.Unit Letter-Section-Township-RangeCounty

OGRID No. 372171 Property Code 318819 API No. 30-045-22826 Lease Type: X Federal State Fee

DATA ELEMENT	UPPER ZONE		INTERMEDIATE ZONE			LOWER ZONE			
Pool Name	Basin Fru	iitland Coal		Bl	anco Pictured C	liffs	Blar	ico Mesaverde	
Pool Code	71	629			72359			72319	
Top and Bottom of Pay Section (Perforated or Open-Hole Interval)	2743' - 3067'			3068' - 3214'			5173' - 5704'		
Method of Production (Flowing or Artificial Lift)	Artificial Lift Artificial Lift				Ar	tificial Lift			
Bottomhole Pressure (Note: Pressure data will not be required if the bottom perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone)	97 psi		108 psi		115 psi				
Oil Gravity or Gas BTU (Degree API or Gas BTU)	1159 BTU		1180 BTU		1209 BTU				
Producing, Shut-In or New Zone	NEW ZONE		NEW ZONE		Producing				
Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, applicant shall be required to attach production estimates and supporting data.)	Date: Rates:			Date: Rates:			Date: Rates: Oi Ga W	8/1/2024 I - 0 bbl as - 1,532 mcf ater - 0 bbl	
Fixed Allocation Percentage (Note: If allocation is based upon something other than current or past production, supporting data or explanation will be required.)	Oil 9	Gas 6	%	Oil	Gas %	%	Oil	Gas %	%

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes Yes	X	No <u>X</u> No
Are all produced fluids from all commingled zones compatible with each other?	Yes	Х	No
Will commingling decrease the value of production?	Yes		No_X
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes	<u>X</u>	No
NMOOD Defenses Coop Network to this well.			

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication. Production curve for each zone for at least one year. (If not available, attach explanation.) For zones with no production history, estimated production rates and supporting data. Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylen	e Weston	TITLE Operations/Regulatory Tech-Sr.	DATE	11/5/2024
TYPE OR PRINT NAME (Chervlene Weston	TELEPHONE NO (713)	289-2615

E-MAIL ADDRESS _____ cweston@hilcorp.com

Received by OCD: 11/20/2024 8:40:35 AM

NEW MEXICO OIL CONSERVATION COMMISSION

Page 8 of 41

WELL LOCATION AND ACERAGE DEDICATION PLAT

All distances must be from the outer boundaries of the Section

An distances inusi be from the outer boundaries of the Section									
Operator				Lease				Well No.	
EL 1	PASO NATURAL	GAS CC	MPANY	1	MOORE	(SF-078	8147)	7-A	
Unit Letter	Section	Township		Range	Co	unty			
F	25	32	NORTH	12	WEST	SAN	JUAN		
Actual Footage	Location of Well:								
1850) feet from the	NORTH	line and	1500	fœt fro	om the	WEST	line	
Ground Level E	lev. Producing I	Formation		Pool				Dedicated Avereage:	
6524	1	MESA VER	DE	BI	ANCO MESA	VERDE	/	320.00	Acres

1. Outline the acerage dedicated to the subject well by colored pencil or hachure marks on the plat below.

2. If more than one lease is dedicated to the well, outline each and identify the ownership thereof (both as to working interest and royalty),

3. If more than one lease of different ownership is dedicated to the well, have the interests of all owners been consolidated by communitization, unitization, force-pooling, etc?

If answer is "no," list the owners and tract descriptions which have actually consolidated. (Use reverse side of this form if necessary.)

No allowable will be assigned to the well until all interests have been consolidated (by communitization, unitization, forcedpooling, or otherwise) or until a non standard unit, eliminating such interests, has been approved by the Commission.

O FEE

CERTIFICATION

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief.

Laco Nome

Drilling Clerk Position

El Paso Natural Gas Co. Cempony December 8, 1977 Dete

SA

I		-	AL ALLER AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
			L ENGINELA CON
. I. [.]	. 1	1	TE OAT herder certify that the well location shown on
- ` +-` ` `	·+ - + -	+	NGurieys made by me or under my supervision, and
1	1	I	14the) the same is true and correct to the best of my
			WEW MILLEY 25
1			Miles P. Very 9 Novembers 1977
+	+-+-	+ - + - +	1 China B. Leave
1			and/or Land Surveyor Transport D
L		<u>_</u>	James P. Lees

SCALE-4 INCHES EQUALS 1 MILE

 $(\mathbf{\hat{n}})$

SF

SAN JUAN ENGINEERING COMPANY,

FARMINGTON, N. M.

Certificate No. 1463

Moore LS 7A Production Allocation

These zones are proposed to be commingled because the application of dual completions impedes the ability to produce the shallow zone without artificial lift and the deeper zones with reduced artificial lift efficiency. All horizons will require artificial lift due to low bottomhole pressure (BHP) and permeability.

The BHPs of all zones, producing and non-producing, were estimated based upon basin wide Moving-Domain Material Balance models that have proven to approximate the pressure in the given reservoirs well in this portion of the basin, in conjunction with shut-in pressure build-ups. These models were constructed incorporating reservoir dynamics, physics, historic production and observed pressure data. Historic commingling operations have proven reservoir fluids are compatible.

Production Allocation Method – Subtraction

Gas Allocation:

Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formation is the **Mesaverde** and the added formation to be commingled is the **Fruitland Coal/Pictured Cliffs**. The subtraction method applies an average monthly production forecast to the base formation using historic production. All production from this well exceeding the base formations forecast will be allocated to the new formation.

New zones will be allocated using a fixed allocation. Forecasted rates for FRC/PC are based on offsets type curve. The maps show the standalone offsets that were used for type-curves. The split between FRC/PC is based on the ratio of forecasted reserves as shown in the table below.

Formation	Remaining Reserves (MMcf)	% Gas Allocation
Fruitland Coal	415	74%
Pictured Cliffs	148	26%

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage-based allocation.

Oil Allocation:

Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years. After 4 years oil will be reevaluated and adjusted as needed based on average formation yields and new fixed gas allocation.

Formation	Yield	Remaining Reserves	% Oil Allocation
MV	1.96	226	61%
FRC	0.67	415	39%
PC	0	148	0%

Proposed Zone 1 Oil Yield Map							
	Pictured	Cliffs			B	O/MMCF	
	•	•	MOORE 0	209	0.02	PICTURED CLIFFS 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0	
•		•.	٠	•. •		4.0-5.0 5.0-8.0 6.0-7.0 H 7.0-8.0 0 8.0-9.0 9.0-10.0 • 10.0-11.0	
,	· . ·	DECKE	2 8.005			11.0-12.0 12.0-13.0 13.0-14.0 14.0-15.0 15.0-10.0 16.0-17.0 17.0-18.0	
		0 • •	MOORE 007A 0 BO/MMCF			19.0-20.0 20.0-21.0 22.0-22.0 22.0-23.0 23.0-24.0 24.0-25.0 25.0-26.0 26.0-27.0	
•	1. No. 1.	•	÷ .			27.0-28.0 28.0-29.0 29.0-30.0 30.0-31.0 31.0-32.0 32.0-33.0	
4 		MOORE 002 0	•••	•		33.0-34.0 34.0-35.0 35.0-36.0 36.0-37.0 37.0-38.0 38.0-39.0 39+	
NewBaRRy 01 0		:		•			
0 1,000 2,000 Feet							
9-Section	n Area Map of	Standa	lone Oil Yie	ds. Sampl	ed well to	this map.	

Supplemental Information:

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

- 1) Wells were shut in for 24 hours
- 2) Echometer was used to obtain a fluid level
- 3) Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:

3004533806	CULPEPPER MARTIN 108S	FRC
3004522320	DECKER 3A	MV
3004560084	STATE COM S 15	PC

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

The near wellbore shut-in bottom hole pressures of the above reservoirs are much lower than the calculated far-field stabilized reservoir pressured due to the low permeability of the reservoirs. Based on pressure transient analysis performed in the San Juan Basin, it would take 7-25 years for shut-in bottom hole pressures to build up to the calculated far-field reservoir pressure. Our observation is that even for areas of high static reservoir pressures, the low permeability of the reservoir rock results in rapid depletion of the near-fracture region, quickly enough that the wells are unable to produce without the aid of a plunger. Given low permeabilities and low wellbore flowing pressures in the above reservoirs, loss of reserves due to cross-flow is not an issue during producing or shut-in periods. Given low shut-in bottom hole pressures, commingling the above reservoirs in this well will not result in shut-in or flowing wellbore pressures in excess of any commingled pool's fracture parting pressure. The pressures provided in the C-107A are based on shut-in bottom hole pressures of offset standalone wells which match expected near-wellbore shut-in bottom hole pressures of this proposed commingled completion.

Note: BTU Data taken from standalone completions in the zone of interest within a 2 mile radius of the well. A farther radius is used if there is not enough data for a proper statistical analysis.

Water Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no

observed damage from clay swelling due to differing formation waters.

- The samples below all show fresh water with low TDS.

- Data taken from standalone completions in the zone of interest within a 2 Mile raduis of the well. A farther radius is used if there is not enough data for a proper statistical analysis.

Well Name	API				
MOORE LS 007A	3004522826				
ERC Offset (0	51 miles)	MV Offset (0.52 m	iles)	PC Offset (2.1 m	iles)
	2004527494	1010 Offset (0.52 ff	3004560072	FC Oliset (2.1 III	2004522250
			MOOPE 7		DAI SANT 2
Avg(CationBarium)	0.7	Avg(CationBarium)		Ava(CationBarium)	0
Avg(CationBoron)	0.7	Avg(CationBoron)	0	Avg(CationBoron)	0
Avg(CationDeron)	18.42		3.46		2.57
	26.67		5.40	Avg(CationIcalcium)	2.57
Avg(CationMagnosium)	5.17	Avg(CationMagnosium)	2 27	Avg(CationMagnosium)	0.93
Avg(CationMapgaposo)	5.17	Avg(CationManganoso)	2.37	Avg(CationManganoso)	0.2
Avg(CationPhosphorus)	5.17	Avg(CationPhosphorus)	1.37	Avg(CationPhosphorus)	0.2
Avg(CationPotassium)	0	Avg(CationPotassium)	0	Avg(CationPotassium)	0
	0		0.14		0
Avg(CationScionition)	1/00 62		1/55.99	Avg(CationSedium)	702 55
	1477.02		1455.00	Avg(CationSolidin)	192.33
Avg(CationZinc)	0	Avg(CationSinca)	0	Avg(CationZinc)	0
Avg(CationAluminum)	0	Avg(CationAluminum)	0		0
	0		0		0
Avg(CationCopper)	0	Avg(CationCopper)	0	Avg(CationCopper)	0
Avg(CationLead)	0	Avg(CationLithium)	0	Avg(CationLead)	0
	0		0		0
Avg(CationCobalt)	0	Avg(CationCobalt)	0	Avg(CationCobalt)	0
Avg(CationCobalt)	0	Avg(CationCobalt)	0	Avg(CationCobalt)	0
Avg(CationChionnum)	0		0	Avg(CationCilicon)	0
Avg(CationMolybdopum)	0	Avg(CationSilcon)	0		0
Avg(CationWolyDdenum)	1424 57	Avg(Cationiviorybdenum)	475.52		61.07
Avg(AnionCarbonato)	1424.37	Avg(AnionCritoride)	475.55	Avg(AnionCarbonata)	01.07
Avg(AnionCarbonate)	200.41	Avg(AnionCalbonate)	720.09	Avg(AnionCal Donate)	E12.24
Avg(AnionBromido)	200.41	Avg(AnionBical Dollate)	720.90	Avg(AnionBromido)	013.24
Avg(AnionEluorido)	0		0	Avg(AnionBluorido)	0
	0		0		0
	0		0	Avg(AnionHydroxyr)	0
Avg(AnionPhosphato)	0	Avg(AnionPhosphato)	5.2	Avg(AnionNitrate)	0
Avg(AnionFriospilate)	550	Avg(AnionFriospilate)	1400	Avg(AnionFilospilate)	0
Avg(Allolisulate)	550	Avg(Allolisulate)	7 12	Avg(Allolisulate)	0 16
Avg(phried)	7.09	Avg(phField)	7.13	Avg(phrieiu)	0.10
Avg(pricalculated)	0	Avg(pricalculated)	0	Avg(pricalculated)	0
Avg(TempLab)	0	Avg(TempLeb)	0	Avg(TempLeb)	0
Avg(OthorEioldAlkalinity)	0	Avg(TempLab)	0	Avg(TempLab)	0
Avg(OtherSpecificGravity)	0	Avg(OtherneuArkalinity)	0	Avg(OtherSpecificGravity)	0
Avg(OtherSpecificGravity)	4022.20	Avg(OtherSpecificGravity)	4401.0	Avg(OtherSpecificGravity)	1010.0
Avg(OtherTD3)	4023.37	Avg(Other 103)	4401.0	Avg(Other103)	1710.7
Avg(OtherConductivity)	0	Avg(OtherCacO3)	0	Avg(OtherConductivity)	0
	205		135		540
Avg(DissolvedCO2)	275	Avg(DissolvedC2)	133	Avg(DissolvedCO2)	0,40
Avg(DissolvedO2)	0	Avg(DissolvedO2)	0	Avg(DissolvedO2)	0
Avg(Dissolvedil23)	0	Avg(Dissolveurizs)	0	Avg(Dissolveurizs)	0
Avg(Gas(O2)	25	Avg(Gas(O2)	15	Avg(Gas(CO2)	6
Avg(CasCO2PP)	2.5	Avg(GasCO2D)	1.5	Avg(CasCO2P)	0
Avg(GasH2S)	0	Avg(GastO211)	0	Avg(GasCO211)	0
Avg(GasH2S)	0	Avg(GasH2S)	0	Avg(GasH23) Avg(GasH2SPP)	0
Avg(Odd(2312311)) $Avg(PitzerCaCO3, 70)$	0	Avg(Odd123112311) Avg(PitzerCaCO3, 70)	0	Avg(Odsh25h1)	0
	0	Avg($PitzerRaSO4 = 70$)	0	Ava(PitzerRa $\Omega 4$ 70)	0
Avg(PitzerCaSO4_70)		Avg(PitzerCaSO4_70)	0		0
$\Delta v_{0}(PitzerSrSO4_70)$	0	$\Delta va(PitzerSrSO4_70)$	0	$\Delta v_{0}(PitzerSrSO4_70)$	0
$\frac{1}{2} \frac{1}{2} \frac{1}$		Ava($PitzerEeCO2, 70$)		$\Delta v_{0}(\text{PitzerEeCO2}, 70)$	0
Avg(FitzerCaCO3_70)		Avg(FitzerCaCO3_70)		Avg(FilzerCaCO3_70)	0
$\Delta v_{0}(PitzerBaSOA 220)$	0	$\Delta v_{0}(\text{PitzerBasO4} 220)$	0	$\Delta v_{0}(PitzerBaSOA 220)$	0
$\frac{Avg(FILZCIDa3O4_220)}{Avg(DitzorCaSO4_220)}$		Avg($FIIZEIDa304_220$)		$\Delta vg(FIL2CIDa3O4_220)$	0
$\frac{Avg(FIL2GICa3O4_220)}{Avg(PitzerSrSOA_220)}$		Avg($FIIZEI = 0.0304_220$) Avg($PitzerSrSO(4_220)$		$\Delta vg(F(12C) \cup a = 0.004 - 220)$	0
Avg($FI(2CISISO4_220)$ Avg($PitzerEeCO2_220$)		Avg(FILZEI 31304_220) Avg(DitzerEe($\Omega_2 220$)		$\Delta vg(F(12C(3)304_220))$	0
Avy(FILZEITECU3_220)	0	Avy(FILZEITE003_220)	1 0	Trig(FILZELLEUU3_22U)	0

Gas Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

- These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters or gas composition.

- The samples below all show offset gas analysis varibality by formation is low.

- Data taken from standalone completions in the zone of interest within a 2 nile raduis of the well. A farther radius is used if there is not enough data for a proper statistical analysis.

Well Name	API
MOORE LS 007A	3004522826

FRC Offset (2 miles)		MV Offset	(0.8 miles)	PC Offset (2 miles)		
	3004527550		3004523290		3004560084	
	FC STATE COM 14		MOORE LS 4A		STATE COM S 15	
N2	0.16	N2	9.29	N2	0.09	
CO2	1.33	CO2	1.05	CO2	1.55	
C1	78.17	C1	74.61	C1	86.46	
C2	10.39	C2	7.62	C2	6.85	
C3	5.34	C3	3.99	С3	2.5	
IC4	1.02	IC4	0.62	IC4	0.53	
NC4	1.59	NC4	1.17	NC4	0.7	
IC5	0.65	IC5	0.33	IC5	0.31	
NC5	0.47	NC5	0.33	NC5	0.23	
C6_PLUS	0	C6_PLUS	0.01	C6_PLUS	0	
C7	0	C7	0	C7	0	
C8	0	C8	0	C8	0	
C9	0	C9	0	C9	0	
C10	0	C10	0	C10	0	
AR	0	AR	0	AR	0	
CO	0	CO	0	CO	0	
H2	0	H2	0	H2	0	
02	0	02	0	02	0	
H2O	0	H2O	0	H2O	0	
H2S	0	H2S	0	H2S	0	
HE	0	HE	0	HE	0	
C_O_S	0	C_O_S	0	C_O_S	0	
CH3SH	0	CH3SH	0	CH3SH	0	
C2H5SH	0	C2H5SH	0	C2H5SH	0	
CH2S3_2CH3S	0	CH2S3_2CH3S	0	CH2S3_2CH3S	0	
CH2S	0	CH2S	0	CH2S	0	
C6HV	0	C6HV	0	C6HV	0	
CO2GPM	0	CO2GPM	0	CO2GPM	0	
N2GPM	0	N2GPM	0	N2GPM	0	
C1GPM	0	C1GPM	0	C1GPM	0	
C2GPM	0	C2GPM	2.04	C2GPM	0	
C3GPM	0	C3GPM	1.1	C3GPM	0	
ISOC4GPM	0	ISOC4GPM	0.2	ISOC4GPM	0	
NC4GPM	0	NC4GPM	0.37	NC4GPM	0	
ISOC5GPM	0	ISOC5GPM	0.12	ISOC5GPM	0	
NC5GPM	0	NC5GPM	0.12	NC5GPM	0	
C6_PLUSGPM	0	C6_PLUSGPM	0.44	C6_PLUSGPM	0	

U.S. Department of the Interior		Sundry Print Report 11/04/2024
BUREAU OF LAND MANAGEMENT		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
Well Name: MOORE LS	Well Location: T32N / R12W / SEC 25 / SENW / 36.95882 / -108.05019	County or Parish/State: SAN JUAN / NM
Well Number: 7A	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
Lease Number: NMSF078147	Unit or CA Name: MOORE LS	Unit or CA Number: NMNM73322
US Well Number: 3004522826	Operator: HILCORP ENERGY COMPANY	

Notice of Intent

Sundry ID: 2820689

Type of Submission: Notice of Intent

Date Sundry Submitted: 11/04/2024

Date proposed operation will begin: 11/15/2024

Type of Action: Recompletion Time Sundry Submitted: 02:18

Procedure Description: Hilcorp Energy Company requests permission to recomplete the subject well in the Fruitland Coal/Pictured Cliffs formations and downhole commingle with the existing Mesaverde formation. Please see the attached procedure, current and proposed wellbore diagram, plats and natural gas management plan. A closed loop system will be used. Hilcorp will contact the FFO Surface group within 90 days after the well has been recompleted, before any interim reclamation work, to conduct the onsite. A reclamation plan will be submitted after the onsite.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

MOORE_LS_7A_RC_NOI_20241104141755.pdf

(Well Name: MOORE LS	Well Location: T32N / R12W / SEC 25 / SENW / 36.95882 / -108.05019	County or Parish/State: SAN JUAN / NM
	Well Number: 7A	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
	Lease Number: NMSF078147	Unit or CA Name: MOORE LS	Unit or CA Number: NMNM73322
	US Well Number: 3004522826	Operator: HILCORP ENERGY COMPANY	

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHERYLENE WESTON

Name: HILCORP ENERGY COMPANY

Title: Operations/Regulatory Tech - Sr

Street Address: 1111 TRAVIS STREET

City: HOUSTON

State: TX

Phone: (713) 289-2615

Email address: CWESTON@HILCORP.COM

Field

Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

BLM Point of Contact

BLM POC Name: KENNETH G RENNICK BLM POC Phone: 5055647742 Disposition: Approved Signature: Kenneth Rennick BLM POC Title: Petroleum Engineer BLM POC Email Address: krennick@blm.gov Disposition Date: 11/04/2024

Signed on: NOV 04, 2024 02:18 PM

HILCORP ENERGY COMPANY MOORE LS 007A PICTURED CLIFFS/FRUITLAND COAL RECOMPLETE SUNDRY API 3004522826

JOB PROCEDURES 1. MIRU workover rig and associated equipment; NU and test BOP. 2. TOOH with tubing. 3. Set a plug within 50' of the top Mesaverde perforation (5,173') for zonal isolation. 4. Load hole with fluid. RU WL and run CBL to verify TOC. Review results with operations engineer and regulatory agencies. 5. Perform MIT on casing with NMOCD witness (notify NMOCD 24+ hours before test) and submit results to regulatory group. 6. If frac'ing down casing: pressure test casing to frac pressure. 7. RU WL. Perforate the Pictured Cliffs. Top perforation @3,068', bottom perforation @ 3,214'. 8. If frac'ing down frac string: RIH w/ frac string and packer. 9. ND BOP, NU frac stack. Pressure test frac stack to frac pressure. Pressure test frac string (if applicable) to frac pressure. RDMO. 10. RU stimulation crew. Frac the Pictured Cliffs in one or more stages. Set plugs in between stages, if necessary. 11. Perforate the Fruitland Coal. Top perforation @ 2,743', bottom perforation @ 3,067'. 12. Frac the Fruitland Coal in one or more stages. Set plugs in between stages, if necessary. 13. MIRU workover rig and associated equipment; NU and test BOP. 14. If frac was performed down frac string: POOH w/ frac string and packer. 15. TIH with mill and clean out to isolation plug. 16. Mill out isolation plug. Cleanout to PBTD. TOOH with cleanout assembly.

17. TIH and land production tubing. Flowback the well. Return well to production as a Fruitland Coal/Pictured Cliffs/Mesaverde producer

.

HILCORP ENERGY COMPANY MOORE LS 007A PICTURED CLIFFS/FRUITLAND COAL RECOMPLETE SUNDRY

Hilcor	p Energy Company	S	chematic - C	urrent		
PI/UWI 3004522826	Surface Legal Location 025-032N-012W-F	Field Name MV	License N	NO.	State/Province NEW MEXICO	Well Configuration Type Vertical
viginal KB/RT Elev 6,536.00	ation (ft) RKB to GL (ft) 12.00	Original Spud Date 6/5/1978 00:00	Rig Rele	ase Date	PBTD (All)	Total Depth All (TVD)
Most Recent .	Job Primary Job Type	Seco	ndary Job Type	Actual Start D	ala	End Date
D: 5 792 0				6/16/199	9	
MD (#KR)			Original Hole [Ver	tical]		
MD (ILKB)			vertical sche	matic (actual)		
12.1	n tha tha tha dhi birk a fact an ann fan ta tao dao an tao an	hala dika sekati Kashi ka			Casing, 9.63in, 12.0	0-220.00: 208.00: 1-1: 9.63:
220.1					8.92	
1,299.9						
1276.0		0				
1,570.0	- OJO ALAIVIO (OJO ALAIVIO (TINAI)				Casing 7in 12/0	452.00-3.440.00-2.1-7-6.40
1,789.0	— KIRTLAND (KIRTLAND (final)) —				casing, /in; 12.00-:	,>2.00; 3,440.00; 2-1; 7; 0.46 _
2,679.1	FRUITLAND COAL (FRUITLAND	COAL (final)) ———			2 3/8in, Tubing; 12	00-5,674.00; 5,662.00; 1-1; 2
3,067.9	PICTURED CLIFFS (PICTURED CI	.IFFS (final))			3/8; 2.00	
3,280.8						
3,452.1						
4 184 1						
4,104.1						
4,480.0					Casing, 4 1/2in; 3,2	81.00-5,792.00; 2,511.00; 3-1;
4,607.9))			4 1/2, 4:05	
5,172.9						
5,314.0	-POINT LOOKOUT (POINT LOOKO	OUT (final))				
5,493.1					5173-5704ftKB on 5,173.00-5,704.00; 1	7/7/1978 00:00 (Perforated); 1978-07-07
5 494 1						
3,434.1						
5,495.1						
5,498.0						
5,673.9					2 3/8in. Seating Ni	ople: 5.674.00-5.675.00: 1.00: 1
5,674.9					-2; 2 3/8; 1.78	75 00 5 705 00 30 00 1 2 3
5,704.1					2 3/6m, Tubing; 5,6 3/8; 2.00	, 5,00-5, r 05,00, 50,00; 1-5; 2
5,705.1						
5,1001						
- 5,775.9						
5,792.0						
www.peloto	n.com		Page 1/1			Report Printed: 9/25/2024

•

HILCORP ENERGY COMPANY MOORE LS 007A PICTURED CLIFFS/FRUITLAND COAL RECOMPLETE SUNDRY

Hilcor	p Energy Compa	my 70		PROPOS	EDSCHE	MATIC			
004522826	Surface 025-0	Legal Location 032N-012W-F	Field Name MV Original Soud	Date	License No.		State/Province NEW MEXICO	Well Configuration Typ Vertical Total Deeth All (TVD)	×
536.00 ost Recent .	12.00 Job		6/5/1978 (0:00	-				
Category	F	Primary Job Type		Secondary Job Type		Actual Start Da 6/16/1999	te	End Date	
D: 5,792.0				Original H	ole [Vertical]				
MD (ftKB)				Verti	cal schematic	(actual)			
12.1	an a fact and failed and a start and an	and and a film of a lattice of a static	alan di la manan mini di su	والالاعوار الإدرازي وسلمتك	والمراجعة والمروا والمراجع	فوالبرا البرانية فالموالية	in the second state of the		a il i i i i i a i i a i i a i i a i i a i
220.1							Casing, 9.63in; 1 8.92	2.00-220.00; 208.00; 1-1;	9.63;
220.1							PROPOSE	D FRUITLAND CO	DAL
1,299.9							PERFORAT	TIONS: 2,743 - 3,0)67
1,376.0 -	— OJO ALAMO (O.	JO ALAMO (final))							
1,789.0 -	KIRTLAND (KIRT	TLAND (final)) —					Casing, 7in; 12.0	0-3,452.00; 3,440.00; 2-1;	7; 6.46 _
2,679.1	-FRUITLAND CO	AL (FRUITLAND C	DAL (final)) —				2 3/8in, Tubing;	12.00-5,674.00; 5,662.00;	1-1; 2
3,067.9	PICTURED CLIF	FS (PICTURED CLI	FFS (final))—				3/8; 2.00		
3,280.8									
3,452.1	PROPOS	SED PICTURI RATIONS: 3.0	ED CLIFF8 68 – 3.214						
4 184 1		TPA (final))							
4,104.1		cke (inidi))							
4,480.0 -						<u>.</u>	Casing, 4 1/2in; 4 1/2: 4.05	3,281.00-5,792.00; 2,511.0	00; 3-1;
4,607.9	-MESAVERDE (M	(final))							
5,172.9									
5,314.0	-POINT LOOKOU	IT (POINT LOOKOU	IT (final)) —				5173-5704#KB c	on 7/7/1978 00:00 (Perfor	rated):
5,493.1 -							5,173.00-5,704.0	0; 1978-07-07	arca),
5,494.1									
5,495.1									
5,498.0 -									
5 673.9									
5,674.0				-			2 3/8in, Seating -2; 2 3/8; 1.78	Nipple; 5,674.00-5,675.0	0; 1.00; 1
3,074.9				-			2 3/8in, Tubing; 3/8: 2.00	5,675.00-5,705.00; 30.00;	1-3; 2
5,704.1									
5,705.1 -									
5,775.9 -									
5,792.0 -									
www.peloto	n.com			De	ige 1/1			Report Printed	9/25/202
-								Report Finded.	

Santa Fe Main Office Phone: (505) 476-3441 Fax: (55) 476-3462 General Information Phone: (505) 629-6116 Online Phone Directory Vicit:		Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION			C-10/ Revised July 9, 2024 Submit Electronically via OCD Permitting	
tps://www.emnrd.nm.gov/ocd/contac	t-us/				Initial Submittal	
				Submittal Type:	□ Amended Report	
				T JPO.	□ As Drilled	
		WELL LOCA	TION INFORMATION			
API Number	Pool Code		Pool Name			
30-045-22826	71629		Basin Fruitland Coal			
Property Code	Property Name				Well Number	
318819	Moore LS				7A	
OGRID No. Operator Name					Ground Level Elevation	
372171	Hilcorp Energy Com	pany			6524	

_	Surface Location												
	UL F	Section 25	Township 32N	Range 12W	Lot	Ft. from N/S 1850' N	Ft. from E/W 1500' W	Latitude 36.958917		Longitude -108.05013	County San Juan		
_	Bottom Hole Location												
	UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County		
_													
Dedicated Acres Infill or Defining Well		Defining Well API		Overlapping Spacing Unit (Y/N) Con		Consoli	dation Code						

Order Numbers.				Well setbacks are under Common	Ownership: □Yes □No
	320.00 - N/2	Infill		No	N/A
	Dedicated Acres	Infill or Defining Well	Defining Well API	Overlapping Spacing Unit (Y/N)	Consolidation Code

	Kick Off Point (KOP)												
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County				
	First Take Point (FTP)												
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County				
	Last Take Point (LTP)												
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County				

Unitized Area or Area of Uniform Interest	Spacing Unit Type 🗆 Horizontal 🗵 Vertical	Ground Floor Elevation:
		6524'

OPERATOR CERTIFICATIONS	SURVEYOR CERTIFICATIONS		
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.	I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.		
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.			
Cherylene Weston 9/16/2024	James P. Leese		
Signature Date	Signature and Seal of Professional Surveyor		
Cherylene Weston, Operations/Regulatory Tech-Sr. Printed Name	Certificate Number Date of Survey 1463 11/9/1977		
cweston@hilcorp.com			
Email Address			

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 4/24/2025 1:20:57 PM

Received by OCD: 11/20/2024 8:40:35 AM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

Santa Fé Main Office Phone: (505) 476-3441 Fax: (55) 476-3462 General Information Phone: (505) 629-6116 Online Phone Directory Visit: https://www.emnrd.nm.gov/ocd/contact-us/		State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION		C-102 Revised July 9, 2024 Submit Electronically via OCD Permitting	
					□ Initial Submittal
				Submittal Type:	□ Amended Report
				Type.	□ As Drilled
		WELL LOCA	FION INFORMATION		
API Number	Pool Code		Pool Name		
30-045-22826	72359		Blanco Pictured Cliffs		
Property Code	Property Name				Well Number
318819	Moore LS				7A
OGRID No. Operator Name					Ground Level Elevation
372171 Hilcorp Energy Company					6411

	Surface Location										
	UL F	Section 25	Township 32N	Range 12W	Lot	Ft. from N/S 1850' N	Ft. from E/W 1500' W	Latitude 36.958917		Longitude -108.05013	County San Juan
	Bottom Hole Location										
	UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County
ſ	Dedicate	ed Acres	Infill or Defin	ning Well	Defining	Well API	Overlapping Spacing	Unit (Y/N)	Consolie	dation Code	

Order Numbers.			Well setbacks are under Common	I Ownership: □Yes □No
Dedicated Acres	Infill or Defining Well	Defining Well API	Overlapping Spacing Unit (Y/N)	Consolidation Code
160.00 NW/4	Infill		No	N/A

Kick Off Point (KOP)										
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County	
First Take Point (FTP)										
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County	
Last Take Point (LTP)										
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County	

Unitized Area or Area of Uniform Interest	Spacing Unit Type 🗆 Horizontal 🗵 Vertical	Ground Floor Elevation:
		6386'

OPERATOR CERTIFICATIONS	SURVEYOR CERTIFICATIONS		
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.	I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.		
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.			
Cherylene Weston 11/4/2024	James P. Leese		
Signature Date	Signature and Seal of Professional Surveyor		
Cherylene Weston, Operations/Regulatory Tech-Sr. Printed Name	Certificate Number Date of Survey 1463 11/9/1977		
cweston@hilcorp.com			
Email Address			

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 4/24/2025 1:20:57 PM

Received by OCD: 11/20/2024 8:40:35 AM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

Re	ceived	by	OCD:	11/20/2024	8:40:35 AM
----	--------	----	------	------------	------------

Submit Electronically

Via E-permitting

State of New Mexico Energy, Minerals and Natural Resources Department

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Hilcorp Energy Company

OGRID: <u>372171</u> Date: 9/16/2024

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Moore LS 7A	30-045-22826	F-25-32N-12W	1850 FNL 1500 FWL	0	95	0

IV. Central Delivery Point Name: Chaco-Blanco [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Moore LS 7A	30-045-22826					

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🛛 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \boxtimes Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Amanda Walker
Title: Operations Regulatory Tech Sr.
E-mail Address: <u>mwalker@hilcorp.com</u>
Date: 9/16/2024
Phone: 346.237.2177
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Appioved by:
Title:
Title: Approval Date:
Title: Approval Date: Conditions of Approval:

VI. Separation Equipment:

Hilcorp Energy Company (HEC or Operator) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our recomplete project. HEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the recomplete to optimize gas capture and send gas to sales or flare based on analytical composition. HEC operates facilities that are typically one-well facilities. Production separation equipment is upgraded prior to well being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the recomplete operations.

VII. Operational Practices:

- 1. Subsection (A) Venting and Flaring of Natural Gas
 - HEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations
 - This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion
 - Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - HEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D) 1 4.
- 5. Subsection (E) Performance standards
 - All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas
 - Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. Operator has adequate storage and takeaway capacity for wells it chooses to recomplete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. Operator will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. Operator combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. Operator will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.

November 19, 2024

Mailed Certified with Electronic Return Receipt

To: All Interest Owners

RE: Application to Downhole Commingle Production Well: Moore LS 007A API: 30-045-22826 Section 25, Township 32 North, Range 12 West San Juan County, New Mexico

Ladies and Gentlemen:

Hilcorp Energy Company ("Hilcorp"), as Operator of the subject well, has filed application with the New Mexico Oil Conservation Division ("NMOCD") for approval to downhole commingle production from the **Blanco Mesaverde**, a formation Hilcorp soon intends to perforate, with existing production from the **Basin Fruitland Coal** and **Blanco Pictured Cliffs** formations. This letter and the application copy enclosed serve to provide you, an owner in one or more of the aforementioned formations, with written notice as prescribed by Subsection C of 19.15.12.11 New Mexico Administrative Code.

No action is required by you <u>unless</u> you wish to pursue a formal protest.

Any objections or requests for hearing must be submitted to the NMOCD's Santa Fe office, in writing, within twenty (20) days from the date the NMOCD receives the subject application.

Sincerely,

Carson Parker Rice Landman 713.757.7108 carice@hilcorp.com

CPR:dpk Enclosures

Received by OCD: 11/20/2024 8:40:35 AM

District I 1625 N. French Drive, Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

MOORE LS

Lease

State of New Mexico Energy, Minerals and Natural Resources Department Form C-107A Revised August 1, 2011

Page 32 of 41

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 APPLICATION TYPE __Single Well __Establish Pre-Approved Pools EXISTING WELLBORE __X_Yes ___No

APPLICATION FOR DOWNHOLE COMMINGLING

382 Road 3100, Aztec, NM 87410

Hilcorp Energy Comp	bany
Operator	

7A

Well No.

Address F-25-T32N-R12W

Unit Letter-Section-Township-Range

SAN JUAN, NM County

OGRID No. 372171 Property Code 318819 API No. 30-045-22826 Lease Type: X Federal State Fee

DATA ELEMENT	UPPER ZONE		INTERMEDIATE ZONE		LOW	LOWER ZONE		
Pool Name	Basin Fruitland Coal		Blanco Pictured Cliffs		Blanco Mesaverde			
Pool Code	71629			72359		72:	319	
Top and Bottom of Pay Section (Perforated or Open-Hole Interval)	2743' - 3067'		306	98' - 3214'		5173'	- 5704'	
Method of Production (Flowing or Artificial Lift)	Artificial Lift	Artificial Lift			Artific	cial Lift		
Bottomhole Pressure (Note: Pressure data will not be required if the bottom perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone)	97 psi		108 psi			115 psi		
Oil Gravity or Gas BTU (Degree API or Gas BTU)	1159 BTU		1180 BTU		120	9 BTU		
Producing, Shut-In or New Zone	NEW ZONE	EW ZONE		NEW ZONE		Proc	ducing	
Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, applicant shall be required to attach production estimates and supporting data.)	Date: Rates:		Date: Rates:			Date: 8/1 Rates: Oil - 0 Gas - Wate	/2024) bbl 1,532 mcf r - 0 bbl	
Fixed Allocation Percentage (Note: If allocation is based upon something other than current or past production, supporting data or explanation will be required.)	Oil Gas %	%	Oil	Gas %	%	Oil 9	Gas 6	%

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes YesX	No <u>X</u> No
Are all produced fluids from all commingled zones compatible with each other?	Yes X	No
Will commingling decrease the value of production?	Yes	No_ X
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes_X	No

NMOCD Reference Case No. applicable to this well:

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication.Production curve for each zone for at least one year. (If not available, attach explanation.)For zones with no production history, estimated production rates and supporting data.Data to support allocation method or formula.Notification list of working, royalty and overriding royalty interests for uncommon interest cases.Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools List of all operators within the proposed Pre-Approved Pools Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE Cherylene Weston		
TYPE OR PRINT NAME Cherylene Weston	TELEPHONE NO (713) 289-2615	

E-MAIL ADDRESS _____ cweston@hilcorp.com

Received by OCD: 11/20/2024 8:40:35 AM

NEW MEXICO OIL CONSERVATION COMMISSION

WELL LOCATION AND ACERAGE DEDICATION PLAT

All distances must be from the outer boundaries of the Section

An distances inusi be from the outer boundaries of the Section									
Operator				Lease				Well No.	
EL PAS	O NATURAL	GAS CC	MPANY		MOORE	(SF-078	8147)	7-A	
Unit Letter	Section	Township		Range	Co	unty			
F	25	32	NORTH	12	WEST	SAN	JUAN		
Actual Footage Loc	ation of Well:								
1850	feet from the	NORTH	line and	1500	fœt fro	om the	WEST	line	
Ground Level Elev. 6524	Producing 1	Formation MESA VER	DE	Pool BL	ANCO MESA	VERDE	/	Dedicated Avereage: 320.00	Acres

1. Outline the acerage dedicated to the subject well by colored pencil or hachure marks on the plat below.

2. If more than one lease is dedicated to the well, outline each and identify the ownership thereof (both as to working interest and royalty),

3. If more than one lease of different ownership is dedicated to the well, have the interests of all owners been consolidated by communitization, unitization, force-pooling. etc?

If answer is "no," list the owners and tract descriptions which have actually consolidated. (Use reverse side of this form if necessary.)

No allowable will be assigned to the well until all interests have been consolidated (by communitization, unitization, forcedpooling, or otherwise) or until a non standard unit, eliminating such interests, has been approved by the Commission.

O FEE

CERTIFICATION

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief.

LIQCO Nome

Drilling Clerk Position

El Paso Natural Gas Co. Cempony December 8, 1977 Dete

			TE OFI hereby certify that the well location shown on this plat was plotted from field notes of actual NGurreys made by me or under my supervision, and 14thes the same is true and correct to the best of my knowledge and belief.
	+ +	- <u>+</u> - <u>+</u>	AMES P. H. 9 Novembers 1977 AMES P. H. 9 Novembers 1977 Contered Professional Engineer and/or Land Surveyor James P. Leese
hee	FOUNDS A NUE		

SCALE-4 INCHES EQUALS 1 MILE

SAN JUAN ENGINEERING COMPANY,

SF

FARMINGTON, N. M.

Certificate No. 1463

Moore LS 7A Production Allocation

These zones are proposed to be commingled because the application of dual completions impedes the ability to produce the shallow zone without artificial lift and the deeper zones with reduced artificial lift efficiency. All horizons will require artificial lift due to low bottomhole pressure (BHP) and permeability.

The BHPs of all zones, producing and non-producing, were estimated based upon basin wide Moving-Domain Material Balance models that have proven to approximate the pressure in the given reservoirs well in this portion of the basin, in conjunction with shut-in pressure build-ups. These models were constructed incorporating reservoir dynamics, physics, historic production and observed pressure data. Historic commingling operations have proven reservoir fluids are compatible.

Production Allocation Method – Subtraction

Gas Allocation:

Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formation is the **Mesaverde** and the added formation to be commingled is the **Fruitland Coal/Pictured Cliffs**. The subtraction method applies an average monthly production forecast to the base formation using historic production. All production from this well exceeding the base formations forecast will be allocated to the new formation.

New zones will be allocated using a fixed allocation. Forecasted rates for FRC/PC are based on offsets type curve. The maps show the standalone offsets that were used for type-curves. The split between FRC/PC is based on the ratio of forecasted reserves as shown in the table below.

Formation	Remaining Reserves (MMcf)	% Gas Allocation
Fruitland Coal	415	74%
Pictured Cliffs	148	26%

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage-based allocation.

Oil Allocation:

Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years. After 4 years oil will be reevaluated and adjusted as needed based on average formation yields and new fixed gas allocation.

Formation	Yield	Remaining Reserves	% Oil Allocation
MV	1.96	226	61%
FRC	0.67	415	39%
PC	0	148	0%

Proposed Zone 1 Oil Yield Map							
	Pictured	Cliffs			B	O/MMCF	
	•	•	MOORE 0	209	0.02	PICTURED CLIFFS 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0	
•		•.	٠	•. •		4.0-5.0 5.0-8.0 6.0-7.0 H 7.0-8.0 0 8.0-9.0 9.0-10.0 • 10.0-11.0	
,	· . ·	DECKE	2 8.005			11.0-12.0 12.0-13.0 13.0-14.0 14.0-15.0 15.0-10.0 16.0-17.0 17.0-18.0	
		0 • •	MOORE 007A 0 BO/MMCF			19.0-20.0 20.0-21.0 22.0-22.0 22.0-23.0 23.0-24.0 24.0-25.0 25.0-26.0 26.0-27.0	
•	1. No. 1.	•	÷ .			27.0-28.0 28.0-29.0 29.0-30.0 30.0-31.0 31.0-32.0 32.0-33.0	
4 		MOORE 002 0	•••	•		33.0-34.0 34.0-35.0 35.0-36.0 36.0-37.0 37.0-38.0 38.0-39.0 39+	
NewBaRRy 01 0		:		•			
0 1,000 2,000 Feet							
9-Section	n Area Map of	Standa	lone Oil Yie	ds. Sampl	ed well to	this map.	

Supplemental Information:

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

- 1) Wells were shut in for 24 hours
- 2) Echometer was used to obtain a fluid level
- 3) Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:

3004533806	CULPEPPER MARTIN 108S	FRC
3004522320	DECKER 3A	MV
3004560084	STATE COM S 15	PC

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

•

Certified Number	Sender	Recipient	Date Mailed	Delivery Status
92148969009997901841453502	Dani Kuzma	, XTO ENERGY INC, , DALLAS, TX, 75284-0791 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453519	Dani Kuzma	, OFFICE OF NATURAL RESOURCES REVENUE, LAKEWOOD ACCTG CENT ONSHORE, DENVER, CO, 80225-0627 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453526	Dani Kuzma	, CROSS TIMBERS ENERGY LLC, C/O DRILLINGINFO MAIL, FORT WORTH, TX, 76102 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453533	Dani Kuzma	, MITZI ANN HENDERSON EASLEY, , AUSTIN, TX, 78727 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453540	Dani Kuzma	, SUSAN H RITTER, , AUSTIN, TX, 78746 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453557	Dani Kuzma	, BETSY H BRYANT, , GEORGETOWN, TX, 78628 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453564	Dani Kuzma	, WARREN AMERICAN OIL COMPANY, , TULSA, OK, 74147-0372 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453571	Dani Kuzma	, TERRY BOOKY, , CHEYENNE, WY, 82001-8632 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453588	Dani Kuzma	, DARREL BROWN, , ARTESIA, NM, 88211 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453595	Dani Kuzma	, WAYNE and JO ANNE MOORE CHARITABLE, FOUNDATION, MIDLAND, TX, 79701 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453601	Dani Kuzma	, PERRY OIL and GAS LLC, , ASPEN, CO, 81612 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453618	Dani Kuzma	, RITA M ADKINS, , ALBUQUERQUE, NM, 87154- 1268 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453625	Dani Kuzma	, FRANCES R CUSACK, , AUSTIN, TX, 78732 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453632	Dani Kuzma	, SYLVESTER FRANCIS CUSACK II, , DALLAS, TX, 75382-2984 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453649	Dani Kuzma	, RAYMOND JOHN CUSACK JR, , DALLAS, TX, 75382 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453656	Dani Kuzma	, HELEN L MILLER EST, , WEST DES MOINES, IA, 50265 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453663	Dani Kuzma	, DOYLE D PARGIN JR, , ALBUQUERQUE, NM, 87122 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453670	Dani Kuzma	, ROBIN and ROD TURNER LLC, , DURANGO, CO, 81302 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453687	Dani Kuzma	, ROBERT T HUBBARD JR, , GLENDALE, AZ, 85308 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453694	Dani Kuzma	, GARY R JOHNSON, , THE WOODLANDS, TX, 77387-7507 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453700	Dani Kuzma	, JAMES T BUCHENAU LIV TR UNDER REVOC, TRUST AGMT 9 13 1994, PLANO, TX, 75025-2810 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending

•

92148969009997901841453717	Dani Kuzma	, JEAN M CRADDOCK TRUST, JEAN M CRADDOCK TRUSTEE, TUSCOLA, IL, 61953 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453724	Dani Kuzma	, CRISP FAMILY TRUST, HEATHER WINTERS BULL, FAMILIES ADVO, PHOENIX, AZ, 85068 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453731	Dani Kuzma	, GRIFFITH and STONE ROYALTY, A TEXAS PARTNERSHIP, BELLAIRE, TX, 77401-3712 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453748	Dani Kuzma	, PIPER LIVING TRUST, CLAUDETTE PIPER TRUSTEE, MILWAUKEE, WI, 53212-2222 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453755	Dani Kuzma	, SDH 2009 INVESTMENTS LP, , DALLAS, TX, 75225 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453762	Dani Kuzma	, LEE G WEINLAND III TRUST, JEAN M CRADDOCK TRUSTEE, TUSCOLA, IL, 61953 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453779	Dani Kuzma	, KIM SMITH, , CANYON CITY, OR, 97820 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453786	Dani Kuzma	, OTTERBELT LLC, , AZTEC, NM, 87410 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453793	Dani Kuzma	, RICHARD W TURNER III REV TR 10 2005, RICHARD W TURNER III TRUSTEE, DURANGO, CO, 81302 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453809	Dani Kuzma	, VICTORIA ZIMMERMAN REV LIV TR DTD, 6 1 2011 and VICTORIA ZIMMERMAN TTEE, PLANO, TX, 75025-2829 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453816	Dani Kuzma	, MARY BROWN, , WHITEFACE, TX, 79379 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453823	Dani Kuzma	, GLADYS WATFORD TRUST, ANNE V POGSON TRUSTEE, DALLAS, TX, 75230 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453830	Dani Kuzma	, ENDURING RESOURCES IV, LLC, , CENTENNIAL, CO, 80111 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453847	Dani Kuzma	, GRIFFITH PROPERTIES LLC, C/O ROBERT C GRIFFITH MNG MMBR, DURANGO, CO, 81301 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453854	Dani Kuzma	, ROBERT WALTER LUNDELL, , HOUSTON, TX, 77063-2318 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453861	Dani Kuzma	, LINDA JEANNE LUNDELL LINDSEY, , NACOGDOCHES, TX, 75963 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453878	Dani Kuzma	, CLAUDIA MARCIA LUNDELL GILMER, , GEORGETOWN, TX, 78628 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453885	Dani Kuzma	, GB SAFEWAY PROPERTY LTD, , KERRVILLE, TX, 78028 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453892	Dani Kuzma	, HENRIETTA SCHULTZ INHERITANCE, PARTNERSHIP LP, DALLAS, TX, 75229 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453908	Dani Kuzma	, MOULDS FAMILY TRUST, MARGARET LEAH MOULDS VITTITOW TTEE, ALBUQUERQUE, NM, 87114 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453915	Dani Kuzma	, SCHAEFER MINERALS LLC, , DURANGO, CO, 81301 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending

92148969009997901841453960	Dani Kuzma	, LUCINDA B KERR, , LORDSBURG, NM, 88045 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453953	Dani Kuzma	, LESLIE FRANK BROWN, , YUCCA, AZ, 86438 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453946	Dani Kuzma	, LAVINE TERESA TENORIO, , FARMINGTON, NM, 87401 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453939	Dani Kuzma	, J PAUL BROWN, , IGNACIO, CO, 81137 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending
92148969009997901841453922	Dani Kuzma	, DAVID K BROWN, , AZTEC, NM, 87410 Code: MOORE LS 7A DHC	11/19/2024	Signature Pending

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	405019
	Action Type:
	[C-107] Down Hole Commingle (C-107A)

CONDITIONS

Created By	Condition	Condition Date
llowe	None	4/18/2025

Page 41 of 41

Action 405019