STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION FOR DOWNHOLE COMMINGLINGSUBMITTED BY HILCORP OPERATING COMPANYORDER NO. DHC-5489

<u>ORDER</u>

The Director of the New Mexico Oil Conservation Division ("OCD"), having considered the application and the recommendation of the Engineering Bureau, issues the following Order.

FINDINGS OF FACT

- 1. Hilcorp Energy Company submitted a complete application ("Application") to downhole commingle the pools described in Exhibit A ("the Pools") within the well bore of the well identified in Exhibit A ("the Well").
- 2. Applicant proposed a method to allocate the oil and gas production from the Well to each of the Pools that is satisfactory to the OCD and protective of correlative rights.
- 3. Applicant has certified that all produced fluids from all the Pools are compatible with each other.
- 4. Applicant has certified that downhole commingling the Pools will not decrease the value of the oil and gas production.
- 5. To the extent that ownership is identical, Applicant submitted a certification by a licensed attorney or qualified petroleum landman that ownership in the Pools is identical as defined by 19.15.12.7(B) NMAC.
- 6. Applicant provided notice of the Application to the Bureau of Land Management ("BLM") or New Mexico State Land Office ("NMSLO"), as applicable.

CONCLUSIONS OF LAW

- 7. OCD has jurisdiction to issue this Order pursuant to the Oil and Gas Act, NMSA 1978, Sections 70-2-6, 70-2-11, 70-2-12, 70-2-16, 70-2-17, and 19.15.12 NMAC.
- 8. The downhole commingling of the Pools is common, or Applicant has provided evidence that the fluids are compatible and will not damage the Pools in accordance with 19.15.12.11(A)(1) NMAC.
- 9. The bottom perforation of the lower zone is within one hundred fifty percent (150%) of the depth of the top perforation in the upper zone or Applicant has provided evidence that the proposed commingling of the Pools shall not result in shut-in or flowing well bore pressure in excess of the commingled pool's fracture parting pressure in accordance with 19.15.12.11(A)(3) NMAC.

Order No. DHC-5489

- 10. Applicant's proposed method of allocation, as modified herein, complies with 19.15.12.11(A)(8) NMAC.
- 11. By granting the Application with the conditions specified below, this Order prevents waste and protects correlative rights, public health, and the environment.

<u>ORDER</u>

- 1. Applicant is authorized to downhole commingle the Pools described in Exhibit A within the well bore of the well identified in Exhibit A.
- 2. Applicant shall allocate a fixed percentage of the oil production from the Well to each of the Pools until a different plan to allocate oil production is approved by OCD. Of the oil production from the Well:
 - a. zero percent (0.0%) shall be allocated to the Basin Fruitland Coal pool (pool ID: 71629); and
 - b. one hundred percent (100%) shall be allocated to the Blanco Mesaverde pool (pool ID: 72319).

Applicant shall allocate gas production to the new pool(s) equal to the total gas production from the Well minus the projected gas production from the current pool(s) until a different plan to allocate gas production is approved by OCD. The new pool(s) are:

a. the Basin Fruitland Coal pool (pool ID: 71629)

The current pool(s) are:

a. the Blanco Mesaverde pool (pool ID: 72319)

Applicant shall calculate the oil and gas production average during the fourth year after the commencement of commingling, which shall be used to establish a fixed percentage of the total oil and gas production that shall be allocated to each of the Pools ("fixed percentage allocation plan"). No later than ninety (90) days after the fourth year, Applicant shall submit a Form C-103 to the OCD Engineering Bureau that includes the fixed percentage allocation plan and all data used to determine it. If Applicant fails to do so, this Order shall terminate on the following day. If OCD denies the fixed percentage allocation plan, this Order shall terminate or without modifications, then the approved percentage allocation plan shall be used to determine oil and gas allocation starting on the date of such action until the Well is plugged and abandoned.

- 3. If an alteration is made to the Well or a condition within the Well changes which may cause the allocation of production to the Pools as approved within this Order to become inaccurate, then no later than sixty (60) days after that event, Applicant shall submit Form C-103 to the OCD Engineering Bureau describing the event and include a revised allocation plan. If OCD denies the revised allocation plan, this Order shall terminate on the date of such action.
- 4. If any of the pools being commingled is prorated, or the Well's production has been restricted by an OCD order in any manner, the allocated production from each producing pool in the

commingled well bore shall not exceed the top oil or gas allowable rate for a well in that pool or rate restriction applicable to the well.

- 5. If the Well is deepened, then no later than forty-five (45) days after the Well is deepened, Applicant shall conduct and provide logs to OCD that are sufficient for OCD to determine which pool(s) each new completed interval of the Well will produce from.
- 6. If the downhole commingling of the Pools reduces the value of the oil and gas production to less than if it had remained segregated, no later than sixty (60) days after the decrease in value has occurred Applicant shall submit a new downhole commingling application to OCD to amend this Order to remove the pool that caused the decrease in value. If Applicant fails to submit a new application, this Order shall terminate on the following day, and if OCD denies the application, this Order shall terminate on the date of such action.
- 7. If a completed interval of the Well is altered from what is submitted within the Application as identified in Exhibit A, then no later than sixty (60) days after the alteration, Applicant shall submit Form C-103 to the OCD Engineering Bureau detailing the alteration and completed interval.
- 8. If OCD determines that Applicant has failed to comply with any provision of this Order, OCD may take any action authorized by the Oil and Gas Act or the New Mexico Administrative Code (NMAC).
- 9. OCD retains jurisdiction of this matter and reserves the right to modify or revoke this Order as it deems necessary.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

DATE: 5/7/2025

GERASIMOS RAZATOS DIRECTOR (ACTING)

State of New Mexico Energy, Minerals and Natural Resources Department

	Exhibit A		
	Order: DHC - 5489		
	Operator: Hilcorp Operating	g Company	
	Well Name: Howell A Well No	b. 1	
	Well API: 30-045-13298		
	Pool Name: Basin Fruitland C	oal	
Linnar Zona	Pool ID: 71629	Current:	New: X
Upper Zone	Allocation: Subtraction	Oil: 0.0%	Gas: SUB1
		Top: 2,820	Bottom: 3,168
	Pool Name:		
Intermediate Zone	Pool ID:	Current:	New:
	Allocation:	Oil:	Gas:
		Тор:	Bottom:
Bottom of Inter	val within 150% of Upper Zone's T	op of Interval:	
	Pool Name: Blanco-Mesavero	le	
Lower Zone	Pool ID: 72319	Current: X	New:
	Allocation: Subtraction	Oil: 100.0%	Gas: SUB1
		Top: 4,890	Bottom: 5,550
Bottom of Inter	val within 150% of Upper Zone's T	op of Interval: NO	
Top of Q	ueen Formation:		

RECEIVED:	REVIEWER:	TYPE:	APP NO:
	- Geologica	ABOVE THIS TABLE FOR OCD DIVISION L D OIL CONSERVATIO al & Engineering Bu ncis Drive, Santa Fe	DN DIVISION
TH	ADMINISTRA S CHECKLIST IS MANDATORY FOR ALL	ATIVE APPLICATION	CHECKLIST S FOR EXCEPTIONS TO DIVISION RULES AND
Applicant: <u>Hilc</u> Well Name: <u>Hov</u> Pool: Basin Fruitla			OGRID Number: <u>372171</u> API: <u>30-045-13298</u> Pool Code: <u>71629</u>
	RATE AND COMPLETE INFO	DRMATION REQUIRED	TO PROCESS THE TYPE OF APPLICATION
A. Locatio	LICATION: Check those w n – Spacing Unit – Simulta]NSL 🛛 NSP(PRO.		
[1] Coi	one only for [1] or [11] mmingling – Storage – Me DHC CTB PLC ection – Disposal – Pressur WFX PMX SW	C	OLM ed Oil Recovery PPR <u>FOR OCD ONLY</u>
A. Offse B. Roya C. App D. Noti E. Noti F. Surfa G. For a	ON REQUIRED TO: Check the et operators or lease hold alty, overriding royalty ow lication requires published fication and/or concurrer fication and/or concurrer ace owner all of the above, proof of motice required	ers ners, revenue owners d notice nt approval by SLO nt approval by BLM	Notice Complete
administrativ	e approval is accurate a	nd complete to the k	tted with this application for best of my knowledge. I also n until the required information and

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Amanda Walker

Print or Type Name

1/7/2025 Date

346-237-2177

Phone Number

mwalker@hilcorp.com e-mail Address

Signature

Released to Imaging: 5/8/2025 8:31:48 AM

notifications are submitted to the Division.

Received by OCD: 1/7/2025 9:09:10 AM

District I 1625 N. French Drive, Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410

District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION TYPE Single Well

Form C-107A

Revised August 1, 2011

APPLICATION FOR DOWNHOLE COMMINGLING

Establish Pre-Approved Pools EXISTING WELLBORE X Yes No

Hilcorp Energy Company		382 Road 3100, Aztec, NM 87410	
Operator		Address	
TT 11 A	1	C C AR TONN DARW	

-1			
_Howell A	1	G, Sec. 08, T30N, R08W	San Juan
Lease	Well No.	Unit Letter-Section-Township-Range	County

OGRID No. 372171 Property Code 318562 API No. 30-045-13298 Lease Type: x Federal State Fee

DATA ELEMENT	U	PPER ZONE		INTEF	RMEDIATE	ZONE	LOW	ER ZONE	
Pool Name	Bas	sin Fruitland Coal					Blanco	Mesaverde	
Pool Code		71629						72319	
Top and Bottom of Pay Section (Perforated or Open-Hole Interval)	E	st 2820' – 3168'					4890	0' - 5550'	
Method of Production (Flowing or Artificial Lift)		Artificial Lift					Arti	ficial Lift	
Bottomhole Pressure (Note: Pressure data will not be required if the bottom perforation in the lower zone is within 150% of the depth of the top perforation in the upper zone)		35 psi					2	43 psi	
Oil Gravity or Gas BTU (Degree API or Gas BTU)		914 BTU					11	72 BTU	
Producing, Shut-In or New Zone		New Zone					Pro	oducing	
Date and Oil/Gas/Water Rates of Last Production. (Note: For new zones with no production history, applicant shall be required to attach production estimates and supporting data.)	Date: Rates: Oil: Gas: Water:			Date: Rates: Oil: Gas: Water:			Date: 10/1/20 Rates: Oil: 0 bbl Gas: 2400 mo Water: 0 bbl		
Fixed Allocation Percentage (Note: If allocation is based upon something other than current or past production, supporting data or explanation will be required.)	Oil	Gas %	%	Oil	Gas %	%	Oil %	Gas	%

ADDITIONAL DATA

Are all working, royalty and overriding royalty interests identical in all commingled zones? If not, have all working, royalty and overriding royalty interest owners been notified by certified mail?	Yes Yes	No No_N/A
Are all produced fluids from all commingled zones compatible with each other?	Yes_X	No
Will commingling decrease the value of production?	Yes	NoX
If this well is on, or communitized with, state or federal lands, has either the Commissioner of Public Lands or the United States Bureau of Land Management been notified in writing of this application?	Yes_X	No
NMOCD Reference Case No. applicable to this well:		

Attachments:

C-102 for each zone to be commingled showing its spacing unit and acreage dedication.

Production curve for each zone for at least one year. (If not available, attach explanation.)

For zones with no production history, estimated production rates and supporting data.

Data to support allocation method or formula.

Notification list of working, royalty and overriding royalty interests for uncommon interest cases.

Any additional statements, data or documents required to support commingling.

PRE-APPROVED POOLS

If application is to establish Pre-Approved Pools, the following additional information will be required:

List of other orders approving downhole commingling within the proposed Pre-Approved Pools

List of all operators within the proposed Pre-Approved Pools

Proof that all operators within the proposed Pre-Approved Pools were provided notice of this application. Bottomhole pressure data.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE AUdate

_TITLE_Operations/Regulatory Technician Sr._DATE 1/7/2025

TYPE OR PRINT NAME Amanda Walker

TELEPHONE NO. (346)237-2177

E-MAIL ADDRESS <u>mwalker@hilcorp.com</u>

COMPANYEL PASO NATURAL GAS COMPANY	
Well Name & No. HOWELL # 4-K Lease No. SF-078-578	
Location 1600' FROM THE NORTH LINE AND 940' FROM THE EAST LINE.	
Being in NW SE NE	
Sec. 17, T 30 N., R 8 W., N.M.P.M., SAN JUAN COUNTY, NEW MEXICO	
Ground Elevation 5857.0 UNGRADED RECEIVED	
AUG 2 5 1955 U. S. GEOLOGICAL SURVE	V
FARMINGTON, NEW MEXI	00
0-940-	
17 1	
Scale 4 inches equals 1 mile	

1,

Surveyed.

24 JUNE

_, 19 55

This is to certify that the above plat was prepared from field notes of actual surveys made by me or under my supervision and that the same are true and correct to the best of my knowledge and belief.

Seal:

20 0 JAMES P. LEESE

REGISTERED LAND SURVEYOR N. MEX. REG. NO. 1463

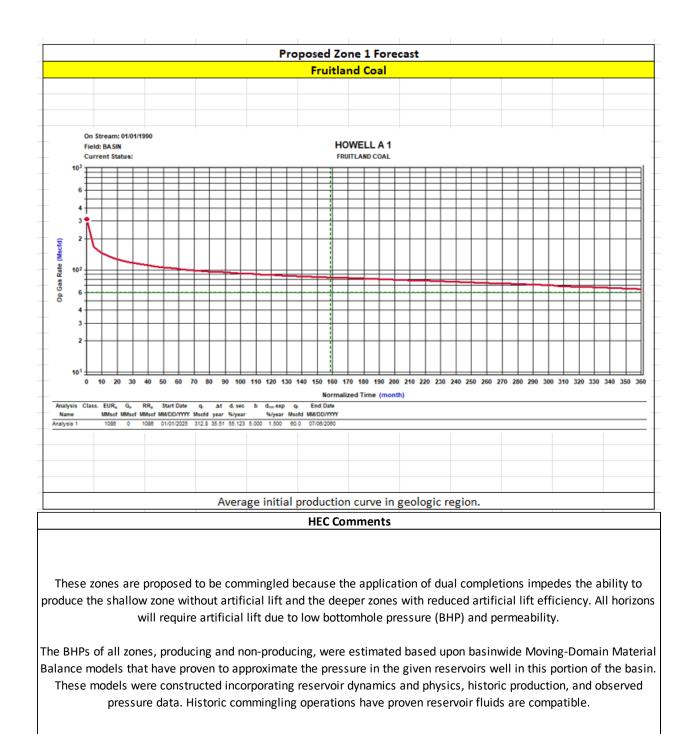
Farmington, New Mexico

320 ACRES, N/2 SECTION (PLAT)

CEG/

Page 7 of 30

The near wellbore shut-in bottom hole pressures of the above reservoirs are much lower than the calculated far-field stabilized reservoir pressured due to the low permeability of the reservoirs. Based on pressure transient analysis performed in the San Juan Basin, it would take 7-25 years for shut-in bottom hole pressures to build up to the calculated far-field reservoir pressure. Our observation is that even for areas of high static reservoir pressures, the low permeability of the reservoir rock results in rapid depletion of the near-fracture region, quickly enough that the wells are unable to produce without the aid of a plunger. Given low permeabilities and low wellbore flowing pressures in the above reservoirs, loss of reserves due to cross-flow is not an issue during producing or shut-in periods. Given low shut-in bottom hole pressures in excess of any commingled pool's fracture parting pressure. The pressures provided in the C-107A are based on shut-in bottom hole pressures of offset standalone wells which match expected near-wellbore shut-in bottom hole pressures of this proposed commingled completion.

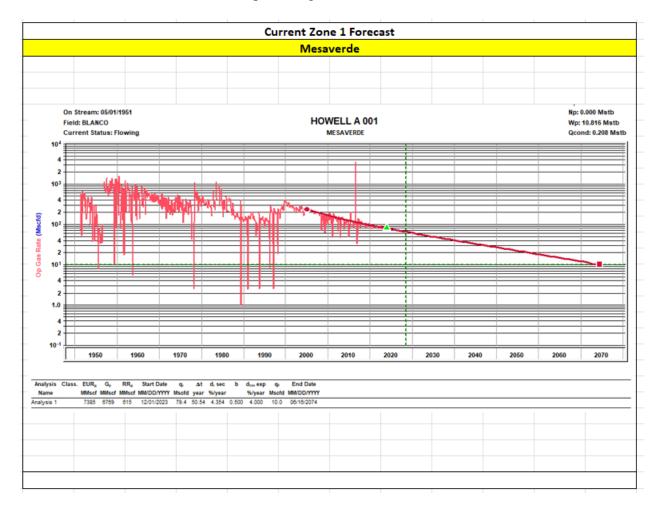

Shut in pressures were calculated for operated offset standalone wells in each of the zones being commingled in the well in question via the following process:

Wells were shut in for 24 hours
 Echometer was used to obtain a fluid level
 Shut in BHP was calculated for the proposed commingled completion

List of wells used to calculate BHPs for the Project:			
3004527071	DELHI COM 300	FRC	
3004521963	DELHI COM 1A	MV	

I believe each of the reservoirs to be continuous and in a similar state of depletion at this well and at each of the wells from which the pressures are being derived.

> Note: BTU Data taken from standalone completions in the zone of interest within a 2 mile radius of the well. A farther radius is used if there is not enough data for a proper statistical analysis.

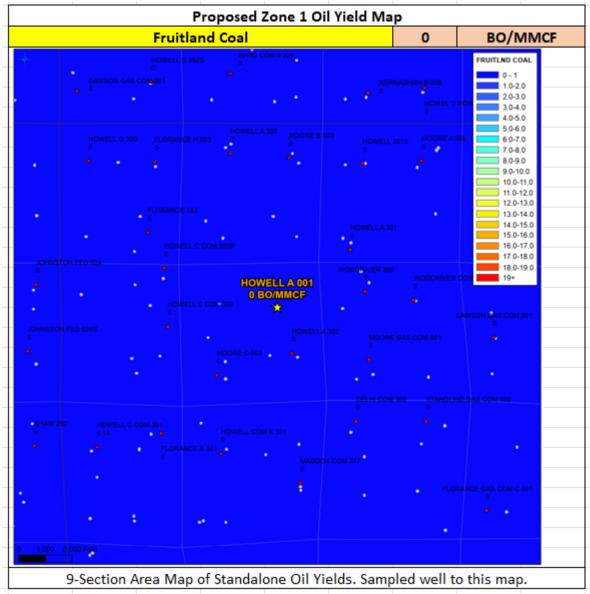


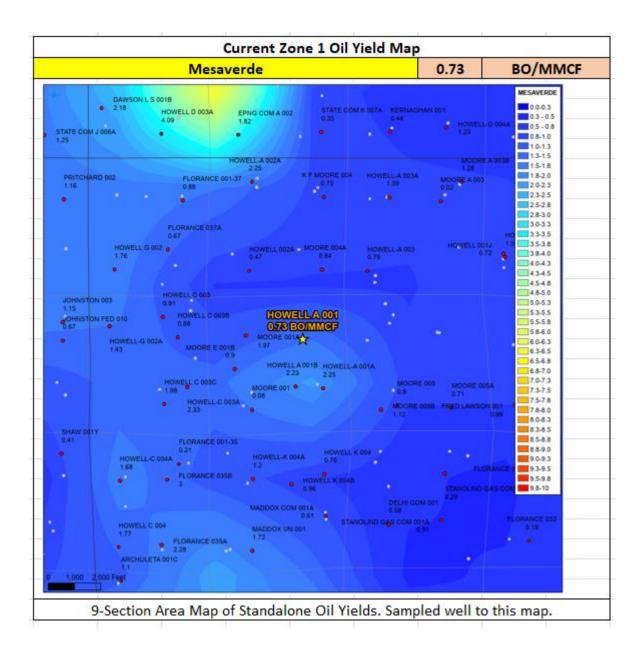
Production Allocation Method - Subtraction

Gas Allocation:

Production for the downhole commingle will be allocated using the subtraction method in agreement with local agencies. The base formation is the Mesaverde and the added formation to be commingled is the Fruitland Coal. The subtraction method applies an average monthly production forecast to the base formation using historic production. All production from this well exceeding the forecast will be allocated to the new formation.

After 3 years production will stabilize. A production average will be gathered during the 4th year and will be utilized to create a fixed percentage based allocation.


Oil Allocation:


Oil production will be allocated based on average formation yields from offset wells and will be a fixed rate for 4 years.

After 4 years oil will be reevaluated and adjust as needed based on average formation yields and new fixed gas allocation.

Formation	Yield (bbl/MM)	Remaining Reserves (MMcf)	% Oil Allocation
MV	0.73	615	100%
FRC	0	1086	0%
			100%

All documentation will be submitted to NMOCD.

Water Compatibility in the San Juan Basin

The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations

with no observed damage from clay swelling due to differing formation waters.

- The samples below all show fresh water with low TDS.

3004513298		
	•	
5 Miles)	MV Offset (0.3	
3004526930		3004534737 HOWELL A 1B
HOWELL A 301		HOWELL A IB
		0
		1.7
		10.1
		0.85
	3	0.00
	,	0.1
		0
		2033.9
36.01	CationSilica	
0.12	CationZinc	
	CationLithium	
T	CationNickel	
	CationCobalt	
	CationChromium	
16.83	CationSilicon	
	CationMolybdenum	
1694	AnionChloride	2900
	AnionCarbonate	0
3160	AnionBicarbonate	414.8
	AnionBromide	
	AnionFluoride	
	AnionHydroxyl	
		115
		20
8	1	8.06
		5.82
-999		
98.06	OtherFieldAlkalinity	2395.12
		1.01
/549.27		5134
		3599.96
		210
		310
0		2
		8
		0
+		0
1.04		+
	-	+
		+
	_	+
	-	
	-	
-		
	-	
	_	1
		1
	11.6 4.28 21.69 450.56 6.91 6.69 0.6 24.74 6.09 2126.37 36.01 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.6 CationBarium 4.28 CationBoron 21.69 CationCalcium 450.56 CationCalcium 450.56 CationIron 6.69 CationMagnesium 6.69 CationPhosphorus 24.74 CationPotassium 6.09 CationStontium 2126.37 CationStontium 30.01 CationStontium 0.12 CationStontium 0 CationCopper 0 CationCopper 0 CationNickel CationNickel CationCobalt CationSilicon CationChromium 16.83 CationSilicon CationChromium 16.83 16.69 AnionChloride AnionChloride AnionCarbonate 3160 AnionBicarbonate AnionFluoride AnionFluoride

Gas Compatibility in the San Juan Basin

- The San Juan basin has productive siliciclastic reservoirs (Pictured Cliffs, Blanco Mesaverde, Basin Dakota, etc.) and a productive coalbed methane reservoir (Basin Fruitland Coal).

 These siliciclastic and coalbed methane reservoirs are commingled extensively throughout the basin in many different combinations with no observed damage from clay swelling due to differing formation waters or gas composition.

- The samples below all show offset gas analysis varibality by formation is low.

Well Name	HOWELL A 1
API	3004513298

FRC Offset	(0.65 Miles)	MV Offset ((0.35 Miles)
AssetCode	3004526930	AssetCode	3004534737
AssetName	HOWELL A 301	AssetName	HOWELL A 1B
CO2	0.18	CO2	0.01
N2	0	N2	0
C1	0.77	C1	0.84
C2	0.03	C2	0.08
C3	0.01	C3	0.03
ISOC4	0	ISOC4	0.01
NC4	0	NC4	0.01
ISOC5	0	ISOC5	0
NC5	0	NC5	0
NEOC5		NEOC5	
C6	0	C6	
C6_PLUS		C6_PLUS	0.01
C7		С7	
C8		C8	
С9		С9	
C10		C10	
AR		AR	
CO		СО	
H2		H2	
02		02	
H20		H20	
H2S	0	H2S	0
HE		HE	
C_O_S		C_O_S	
CH3SH		CH3SH	
C2H5SH		C2H5SH	
CH2S3_2CH3S		CH2S3_2CH3S	
CH2S		CH2S	
C6HV		C6HV	
CO2GPM		CO2GPM	0
N2GPM		N2GPM	0
C1GPM		C1GPM	0
C2GPM		C2GPM	2.1
C3GPM		C3GPM	0.93
ISOC4GPM		ISOC4GPM	0.21
NC4GPM		NC4GPM	0.3
ISOC5GPM		ISOC5GPM	0.13
NC5GPM		NC5GPM	0.1
C6_PLUSGPM		C6_PLUSGPM	0.31

eceived by OCD: 1/7/2025-9:09:10:AM M U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Presents of 05/15/2024
Well Name: HOWELL A	Well Location: T30N / R8W / SEC 8 / SWNE / 36.82809 / -107.69469	County or Parish/State: SAN JUAN / NM
Well Number: 1	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
Lease Number: NMSF078580	Unit or CA Name:	Unit or CA Number:
US Well Number: 3004513298	Operator: HILCORP ENERGY COMPANY	

Notice of Intent

Sundry ID: 2790403

Type of Submission: Notice of Intent

Date Sundry Submitted: 05/15/2024

Date proposed operation will begin: 07/01/2024

Type of Action: Recompletion Time Sundry Submitted: 05:22

Procedure Description: Hilcorp Energy Company requests to REVISE the previously approved recomplete NOI to adjust the perforations. Please see the attached revised procedure, current and proposed wellbore diagram, plat and natural gas management plan. A closed loop system will be used. Hilcorp will contact the FFO Surface group within 90 days after the well has been recompleted, before any interim reclamation work, to conduct the onsite. A reclamation plan will be submitted after the onsite.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

Howell_A_1_REVISED_RC_NOI_20240515052220.pdf

Received by OCD: 1/7/2025-9:09:510:AMM	Well Location: T30N / R8W / SEC 8 / SWNE / 36.82809 / -107.69469	County or Parish/State: Page 16 of 3 JUAN / NM
Well Number: 1	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
Lease Number: NMSF078580	Unit or CA Name:	Unit or CA Number:
US Well Number: 3004513298	Operator: HILCORP ENERGY COMPANY	

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMANDA WALKER

Name: HILCORP ENERGY COMPANY

Title: Operations/Regulatory Technician

Street Address: 1111 TRAVIS ST

City: HOUSTON

State: TX

Phone: (346) 237-2177

Email address: MWALKER@HILCORP.COM

Field

Representative Name: Street Address: City: State: Phone: Email address:

BLM Point of Contact

BLM POC Name: MATTHEW H KADE BLM POC Phone: 5055647736 Disposition: Approved Signature: Matthew Kade BLM POC Title: Petroleum Engineer BLM POC Email Address: MKADE@BLM.GOV

Zip:

Signed on: MAY 15, 2024 05:22 AM

Disposition Date: 05/15/2024

HILCORP ENERGY COMPANY HOWELL A 1 FRUITLAND COAL RECOMPLETION SUNDRY

Prepared by:	Scott Anderson
Preparation Date:	May 14, 2024

	WELL	INFORMATION	
Well Name:	HOWELL A 1	State:	NM
API #:	3004513298	County:	SAN JUAN
Area:	4	Location:	1650' FNL & 1650' FEL - Unit G - Section 8 - T 030N - R 008W
Route:	0407	Latitude:	36.82809 N
Spud Date:	3/1/1951	Longitude:	-107.69469 W

PROJECT DESCRIPTION

Isolate the Mesaverde, perforate and stimulate the Fruitland Coal in 1-2 stages via a frac string. Commingle the Fruitland Coal production with the existing Mesa Verde production. Strip facilities if necessary; repair production eqmt as needed, upgrade automation

CONTACTS						
Title	Name	Office Phone #	Cell Phone #			
Engineer	Scott Anderson		248-761-3965			
Area Foreman	Colter Faverino		326-9758			
Lead	Ramon Florez		599-3479			
Artificial Lift Tech	Jesse McDowell		386-8062			
Operator	Michael Archuleta		716-0118			

HILCORP ENERGY COMPANY HOWELL A 1 FRUITLAND COAL RECOMPLETION SUNDRY

	JOB PROCEDURES
7 7	NMOCDContact OCD 24 hrs prior to MIRU. Record and document all casing pressures daily, including BH, IC (if present) andBLMPC. Comply with all NMOCD, BLM, and HEC safety and environmental regulations.
1.	MIRU service rig and associated equipment. Pull insert pump and rods
2.	Nipple down wellhead, nipple up and test BOPs per HEC, State, and Federal guidelines.
3.	TOOH with 2-3/8" tubing
4.	Set a 5-1/2" bridge plug @ 3,982' to isolate the Mesa Verde formation.
5.	Load wellbore with fluid. RU wireline and run a CBL from the BP at 3,982' to surface
6.	RU pressure test truck. Perform a Mechanical Integrity Test on the wellbore above the plug at 3,982'. Chart record the MIT test (Notify BLM and NMOCD +24hr before actual test).
7.	Set a 5-1/2" Base of Frac plug ~50' below the bottom perforation
8.	RU E-line crew. Perforate the Fruitland Coal. (Top perforation @ 2,820', Bottom perforation @ 3,168'). NOTE: perforation interval subject to change based on the results of the CBL run above. All changes will be communicated to the Regulatory Agencies prior to perforating.
9.	Hydrotest frac string to frac pressure. RIH w/ 2-7/8" frac string and packer, land packer ~50' above the top perf.
10.	N/D BOP, N/U 10K frac tree and test frac stack to frac pressure.
11.	RU stimulation crew. Frac the Fruitland Coal in one or two stages.
12.	Bleed off pressure. Kill well with water, if necessary
13.	MIRU service rig. Nipple down frac stack, nipple up BOP and test.
14.	POOH w/ frac string and packer
15.	Drill out the Base of Frac and Mesaverde Isolation plug. Clean out to PBTD at 5,455'
16.	TIH and land 2-3/8" production tubing.
17.	Flowback well thru flowback separator and sand trap. Get a commingled Fruitland Coal / Mesa Verde flow rate.

HILCORP ENERGY COMPANY HOWELL A 1 FRUITLAND COAL RECOMPLETION SUNDRY

	nergy Company HOWELL A #1	Current S	chematic - Vo	ersion 3			
WI I513298	Surface Legal Location 008-030N-008W-G	Field Name BLANCO MESAVERDE		Route 0407	StateProvince NEW ME		Well Configuration Type
d Elevation (ft)	Original KB/RT Elevation (ft)	RKB to 0		KB-Casing Flange D		KB-Tubing Hange	r Distance (ft)
0.00	6,340.00	10.00					
		0	riginal Hole				
D TVD B) (ftKB)			Vertical schema	tic (actual)			
e	and distanticities and a method associated at the	- tanhaa iloomahii faatiy	eset in the state of a	والموالية والألوان والمتعام	Surface C	asing Cement	, Casing, 3/1/1951
							ED TO SURFACE
k1							5/8 in; 8.92 in; 10.00
0.0					ftKB; 309.0	00 ftKB	
2.1							eze, 9/11/1956 00:00; -11: SQUEEZE WITH
0.0	OJO ALAMO (OJO ALAMO	(final))			100 SX TC	SURFACE	, -
5.1							ment, Casing, 00-3,314.00; 1951-03-
5.1	2 3/8in, TUBING; 2 3/8 in; 4	.70 lb/ft; J-55; 10.00 ftKB; 5,356.88 ftKB					SX TOC DETERMINED
49	PICTURED CLIFFS (PICTUR				BY TEMP		
49	LEWIS (LEWIS (final))	co conto (mai)/					ent, Casing, 4/18/1978 978-04-18; CEMENT TIE
	LEVVIS (LEVVIS (IIIal))					H 444 CU FT (CIRCULATED TO
20					SURFACE	iate Casing Ce	ment Casing
4.0				2			00-4,785.00; 1951-03-
.1				8 88	/		SX TOC DETERMINED
2.2					BY TEMP		2/26/2003 08:00 (PERF
1.9			鐵首	日際 25			0; 2003-02-26 08:00
8.1						tion2, 4,658.00 ; 4,658.00 ftKB	OftKB; 5 1/2 in; 4.95 in;
2.0					10.00 100	, 4,030.00 ILKB	,
41					3: Interme	diate1 4785	.00ftKB; 7 in; 6.37 in;
5.1						4,785.00 ftKB	
3.0					Cement S	queeze, Sque	eze, 9/30/1956 00:00;
7.0 5.9	CLIFFHOUSE (CLIFFHOUSE	(final))			4,658.00-5 TOP WITH		-09-30; SQUEEZE LINER
4.1					40840.4	74.08VP on 1	0/3/1956 00:00 (PERF
a.a e.a				·			4,974.00; 1956-10-03
9.8	MENEFEE (MENEFEE (final))————					
0.1							ent, Casing, 9/29/1956 ; 1956-09-29; CEMENT
69	2 3/8in, PUP JOINT; 2 3/	8 in; 4.70 lb/ft; J-55; 8 ftKB: 5.359.00 ftKB			WITH 120		RMINED BY TEMP
7.0	2 3/8in, TUBING; 2 3/		3		SURVEY		
89 9.8		0 ftKB; 5,389.94 ftKB					0/3/1956 00:00 (PERF
0.1	2 3/8in, SEATING NIPPLE; 2 55: 5 389.9	4 ftKB; 5,391.04 ftKB			POINT LO 03	OKOUT); 5,337	7.00-5,429.00; 1956-10-
1.1	2 3/8in, EXPENDABLE C		2 -	8	05		
	lb/ft; J-55; 5,391.0	4 ftKB; 5,391.90 ftKB					
8.1	POINT LOOKOUT (POINT L	OOKOUT (final))					ent, Casing, 9/29/1956 463.00; 1956-09-29;
9.1			8		CEMENT	WITH 120 SX 1	TOC DETERMINED BY
.1		p> (PBTD); 5,455.00		and and a second se	TEMP SUP		
						tion1, 5,463.00 tKB; 5,463.00 f	OftKB; 5 1/2 in; 4.95 in; tKB
29			1		Cement P	lug, Plug, 9/30	0/1956 00:00; 5,463.00-
0.0					5,560.00;	1956-09-30	
.peloton.co	om		Page 1/1			R	eport Printed: 1/8/2024

HILCORP ENERGY COMPANY HOWELL A 1 FRUITLAND COAL RECOMPLETION SUNDRY

		p Energy Company		WBD Proposed F	ormations 1			
API/UWI		: HOWELL A #1	al Location	Field Name Ucense	N0.	State/Pr		Well Configuration Type
3004513 Ground Elev	ration (ft)		N-008W-G ge Elevation (ft)	BLANCO MESAVERDE (PRORAT #0078 RKB to GL (ft) KB-Cas	sing Flange Distance (ft)	Original	MEXICO Spud Date	Rig Release Date
6,330.00 Most Re				10.00		3/1/19	951 00:00	3/7/2003 00:00
Job Categor FACILIT	y y		ary Job Type	Secondary Job Type	Actual Star	Date	End D	ate
FACILIT					10/7/20	06		
10. 3,	500.0			Original Ho	1			
			1		le			
MD (ftKB)	TVD (ftK B)	Formation Tops	MD		Vertical sche	ematic (p	roposed)	
9.8								
308.1								
309.1								
1,310.0								
1,432.1								
1,713.9		OJO ALAMO	1,714.0				1 (S)	
1,898.0		KIRTLAND	1,898.0					
2,730.0	- ·	FRUITLAND	2,730.0		8		88	
2,819.9	÷ .			2,820.0-3,168.0ftKB on 3/2/	2024		新設 M 1. Hydrau	ulic Frac; 2024-03-05; FRC
3,168.0		PICTURED CLIFFS	3,168.0	00:00 (PERF - FRUITLAND C 2,820.00-3,168.00; 2024-0	DAL);		1, Hydrai Frac	
3,312.0							8	
3,314.0	÷ .				881 <u>8</u>			
3,446.9	÷ .	LEWIS	3,447.0					
3,930.1	· ·						8 w	
4,032.2	- ·				885 8 		2 20 V	
4,151.9	- ·				288 B		8 188 V	
4,208.0	÷ .	CHACRA	4,208.0		· · · · · · · · · · · · · · · · · · ·		メ版 実験	
4,658.1	· ·				N 88 2		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4,679.1	· ·	CLIFFHOUSE	4,679.0					
4,752.0 -	· ·							
4,784.1	÷ .							
4,785.1								
4,793.0 - 4,965.9 -								
5,003.9								
5,005.9		MENEFEE	5,017.0					
5,120.1							8	
5,336.9								
5,357.0					3		8	
5,358.9						·	8	
5,369.1		POINT LOOKOUT	5,369.0				8	
5,390.1						-	2	
5,391.1						H :	ġ	
5,392.1					3			
5,429.1							2	
5,455.1				<typ> (PBTD); 5,49</typ>	5.00			
5,461.9								
5,462.9						*****		
5,560.0					***	~~~~~	8	

Received by OCD: 1/7/2025 9:09:510 5AMM

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

OCD Permitting

Page 21 of 30

Form C-102 August 1, 2011 Permit 359791

WELL LOCATION AND ACREAGE DEDICATION PLAT

1. API Number		2. Pool Code				3. Po	ol Nam	ne				
30-045-132	298	716	29				E	BASIN F	RUITLA	ND COAL ((GAS)	
4. Property Code	è	5. Property Nam	e			6. We	el No.					
3185	562	HO\	VELLA				C	001				
7. OGRID No.		8. Operator Nam	ie			9. Ele	evation					
3721	171	HILO	CORP ENERGY	COMPAN	ΙΥ		6	5330				
				10. 5	Surface Locatio	n						
UL - Lot Se	ection	Township	Range	Lot Idn	Feet From	N/S Line	e	Feet Fro	m	E/W Line	County	
G	8	30N	۳80 آ		1650		N		1650	E		SAN JUAN
			11. Botto	n Hole Lo	cation If Differe	nt Fron	m Sur	face				
UL - Lot	Section	Township	Range	Lot Idn	Feet From	N	I/S Line	•	Feet From	n E/WL	ine	County
12. Dedicated Ac	cres	•	13. Joint or Ir	nfill	14. Conso	lidation C	Code			15. Or	der No.	•
320.0	00											
NO ALLO	WABLE W	ILL BE ASSIG			ION UNTIL ALL BEEN APPROVI					CONSOLID	ATED O	R A NON-
· · · · · ·												
										ICATION		
					hereby certify that t nowledge and belie							

 knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location(s) or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. E-Signed By. Title: Operations Regulatory Tech Sr. Date: 2/15/2024
SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief. Surveyed By: James Leese
Date of Survey: 6/24/1955
Certificate Number: 1463

Received by OCD: 1/7/2025 9:09:10 AM	ov OCD: 1/7/2025-9:095105AMA	И
--------------------------------------	------------------------------	---

Submit Electronically

Via E-permitting

State of New Mexico Energy, Minerals and Natural Resources Department

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Hilcorp Energy Company

OGRID: <u>372171</u> Date: 02/15/2024

II. Type: \square Original \square Amendment due to \square 19.15.27.9.D(6)(a) NMAC \square 19.15.27.9.D(6)(b) NMAC \square Other.

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Howell A 1	30-045-13298	G-08-30N-08W	1650 FNL & 1650 FEL	0	200	1

IV. Central Delivery Point Name: Chaco Blanco Processing Plant [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
Howell A 1	<u>30-045-13298</u>					

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🖂 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \boxtimes Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Amanda Walker
Title: Operation Regulatory Tech Sr.
E-mail Address: <u>mwalker@hilcorp.com</u>
Date: 2/15/2024
Phone: 346-237-2177
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Approved By: Title:
Title:
Title: Approval Date:
Title: Approval Date:
Title: Approval Date:

VI. Separation Equipment:

Hilcorp Energy Company (HEC or Operator) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our recomplete project. HEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the recomplete to optimize gas capture and send gas to sales or flare based on analytical composition. HEC operates facilities that are typically one-well facilities. Production separation equipment is upgraded prior to well being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the recomplete operations.

VII. Operational Practices:

- 1. Subsection (A) Venting and Flaring of Natural Gas
 - HEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations
 - o This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion
 - Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - HEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D) 1 4.
- 5. Subsection (E) Performance standards
 - All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas
 - Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. Operator has adequate storage and takeaway capacity for wells it chooses to recomplete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. Operator will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. Operator combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. Operator will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	344687
	Action Type:
	[C-103] NOL Recompletion (C-103E)

CONDITIONS

Constituente		
Created By	Condition	Condition Date
dmcclure	Notify NMOCD 24 Hours Prior to beginning operations.	5/20/2024
dmcclure	DHC required	5/20/2024
dmcclure	All conducted logs shall be submitted to the Division as a [UF-WL] EP Well Log Submission (WellLog).	5/20/2024
dmcclure	The appropriate compliance officer supervisor shall be consulted and remedial action conducted as directed if the cement sheath around the casing is not adequate to protect the casing and isolate strata from: (a) the uppermost perforation in each added pool to at least 150 feet above that perforation; and (b) the lowermost perforation in each added pool to at least 100 feet below that perforation.	5/20/2024

Page 28 of 30

Action 344687

November 18, 2024

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Re: Application for Downhole Commingling Well: HOWELL A #001 API: 3004513298 T30N - R8W - Section 8, Unit Letter: G San Juan County, NM

Ladies and Gentlemen:

Concerning Hilcorp Energy Company's application to downhole commingle production in the subject well, this letter serves to confirm the following:

• All working, royalty and overriding royalty interests are <u>identical</u> between the **Blanco Mesaverde (72319)** and **Basin Fruitland Coal (71629)** as such relates to the prescribed spacing unit(s) being the **E/320** and **E/320**, respectively.

Pursuant to Subsection C.(1)(c) of 19.15.12.11, if the spacing unit(s) contains state, federal or tribal lands, Hilcorp will have provided notice via mail or sundry to the State Land Office and/or BLM as of the date of this letter.

If you have any questions or concerns regarding this matter, please do not hesitate to contact me at the email or number provided below.

Regards,

Hilcorp Energy Company

Killer

Robert T. Carlson Sr. Landman (832) 839-4596 rcarlson@hilcorp.com

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	417777
	Action Type:
	[C-107] Down Hole Commingle (C-107A)

CONDITIONS

Created By	Condition	Condition Date
llowe	None	5/6/2025

Page 30 of 30