## STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF LEA MIDSTREAM, LLC FOR AUTHORIZATION TO INJECT, LEA COUNTY, NEW MEXICO.

### **APPLICATION**

Lea Midstream, LLC (OGRID No. 333151), through its undersigned counsel, files this application with the Oil Conservation Division (the "Division") pursuant to the provisions of NMSA 1978, § 70-2-12(B)(15) and 19.15.26 NMAC for an order authorizing injection of treated acid gas ("TAG") from its Lea Midstream treating facility for purposes of disposal into the proposed White Russian AGI #1 well to be located in Section 17, Township 19 South, Range 35 East, Lea County, New Mexico. In support, Lea Midstream states the following:

- 1. Attached as **Exhibit A** is a complete C-108 application for approval to drill, complete, and operate the proposed White Russian AGI #1 well, which is subject to the Underground Injection Control Class II requirements of 19.15.26 NMAC.
- 2. The proposed White Russian AGI #1 well will be drilled as a deviated well with a surface location of approximately 1,607 feet from the south line (FSL) and approximately 1,991 feet from the west line (FWL) of Section 17, to a bottom hole location at approximately 2,338 from the north line (FNL) and 188 feet FWL in said Section 17, within Township 19 South, Range 35 East, Lea County, New Mexico.
- 3. Lea Midstream seeks approval to inject up to 12 million standard cubic feet of TAG per day (MMSCFD). The proposed maximum allowable operating pressure ("MAOP") requested is approximately 4,593 psig.

- 4. The proposed injection zone for the White Russian AGI #1 well will target the Siluro-Devonian formations, including the Devonian, Wristen, and Fusselman formations, between depths of approximately 14,615 to 16,029 feet.
- 5. The injection stream will consist of TAG comprised of approximately 70 percent carbon dioxide and 30 percent hydrogen sulfide from oil and gas wells in the area.
- 6. When operating at full capacity, the White Russian AGI #1 well will permanently sequester approximately 487 tons of carbon dioxide and approximately 162 tons of hydrogen sulfide daily.
- 7. Approving this application will avoid the drilling of unnecessary wells, prevent waste, and protect correlative rights.

WHEREFORE, Lea Midstream, LLC requests that this application be set for a hearing before the Oil Conservation Division on July 10, 2025, and, after notice and hearing as required by law, the Division enter an order approving this application.

Respectfully submitted,

**HOLLAND & HART LLP** 

By:

Michael H. Feldewert
Adam G. Rankin
Paula M. Vance
Post Office Box 2208
Santa Fe, New Mexico 87504-2208
(505) 988-4421
(505) 983-6043 Facsimile
mfeldewert@hollandhart.com
agrankin@hollandhart.com
pmvance@hollandhart.com

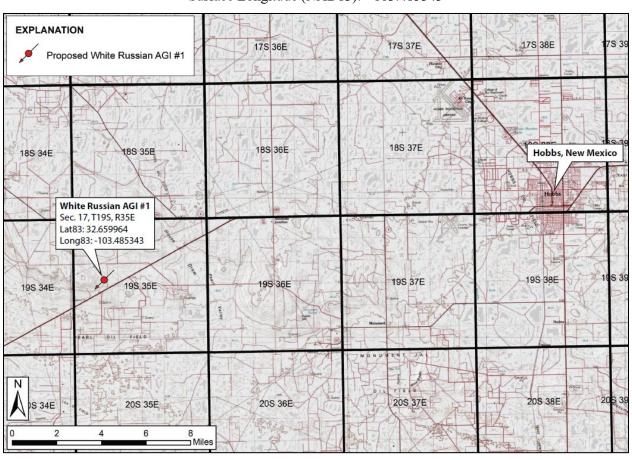
ATTORNEYS FOR LEA MIDSTREAM, LLC

CASE :

Application of Lea Midstream, LLC for Authorization to Inject, Lea County, New Mexico. Applicant in the above-styled cause seeks an order authorizing injection of treated acid gas ("TAG") from its Lea Midstream treating facility for purposes of disposal into the proposed White Russian AGI #1 well to be located in Section 17, Township 19 South, Range 35 East, Lea County, New Mexico. The well is proposed be drilled as a deviated well with a surface location of approximately 1,607 feet from the south line (FSL) and approximately 1,991 feet from the west line (FWL) of Section 17, to a bottom hole location at approximately 2,338 from the north line (FNL) and 188 feet FWL in said Section 17, within Township 19 South, Range 35 East, Lea County, New Mexico. The injection stream will consist of TAG comprised of approximately 70 percent carbon dioxide and 30 percent hydrogen sulfide from oil and gas wells in the area. Lea Midstream seeks approval to inject up to 12 MMSCFD of TAG. The proposed maximum allowable operating pressure requested is approximately 4,593 psig. The injection will target the Siluro-Devonian formations, including the Devonian, Wristen, and Fusselman formations, between depths approximately 14,615 to 16,029 feet. The subject well will be located approximately 20 miles southwest of Hobbs, N.M.

# **EXHIBIT A**






# APPLICATION FOR UIC CLASS II AGI WELL

# LEA MIDSTREAM, LLC -- (OGRID 333151)

PROPOSED WHITE RUSSIAN AGI # 1 Section 17, Township 19 South, Range 35 East

Surface Latitude (NAD83): 32.659964 Surface Longitude (NAD83): -103.485343



MARCH 2025

## Prepared for:

Lea Midstream, LLC 3500 Maple Ave, Suite 700 Dallas, TX 75219 (214) 238-5740

## Prepared by:

Geolex, Inc.® 500 Marquette Ave NW, Suite 1350 Albuquerque, New Mexico 87102 (505) 842-8000

# **TABLE OF CONTENTS:**

| 1.0 | EXECUTIVE SUMMARY                                                                                                           | . 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----|
| 2.0 | INTRODUCTION AND ORGANIZATION OF THE C-108 APPLICATION                                                                      | . 5 |
| 3.0 | PROPOSED CONSTRUCTION AND OPERATION OF WHITE RUSSIAN AGI #1                                                                 | 6   |
| 3   | 3.1 PROPOSED DESIGN OF WHITE RUSSIAN AGI #1                                                                                 | . 6 |
| 3   | 3.2 GEOPHYSICAL LOGGING                                                                                                     | .9  |
| 3   | 3.3 RESERVOIR STIMULATION, TESTING, AND PRESSURE MONITORING                                                                 | . 9 |
|     | 3.4 INJECTION STREAM CHARACTERISTICS AND MAXIMUM ALLOWABLE OPERATING PRESSURE                                               |     |
|     | REGIONAL AND LOCAL GEOLOGY AND HYDROGEOLOGY, RESERVOIR IARACTERIZATION AND INJECTION SIMULATION                             | 14  |
| 4   | 4.1 GENERAL GEOLOGIC SETTING AND SURFICIAL GEOLOGY                                                                          | 14  |
| 2   | 4.2 BEDROCK GEOLOGY                                                                                                         | 14  |
|     | 4.3 LITHOLOGIC AND RESERVOIR CHARACTERISTICS OF THE SILURO-DEVONIAN FORMATIONS                                              | 15  |
| 2   | 4.4 CHEMISTRY OF SILURO-DEVONIAN RESERVOIR FLUIDS                                                                           | 17  |
| 2   | 4.5 GROUNDWATER HYDROLOGY IN THE VICINITY OF THE PROPOSED AGI WELL                                                          | 18  |
|     | 4.6 RESERVOIR CHARACTERIZATION TO SUPPORT GEO-MODELING AND INJECTION SIMULATION ASSESSMENT                                  | 19  |
| 2   | 4.7 ACID GAS INJECTION MODELING AND SIMULATION                                                                              | 20  |
|     | 4.8 POTENTIAL FOR VERTICAL MIGRATION OF ACID GAS TO OVERLYING PRODUCTIVE ZONES                                              |     |
| 2   | 4.9 INDUCED-SEISMICITY RISK ASSESSMENT                                                                                      | 22  |
| 5.0 | OIL AND GAS WELLS IN THE AGI #1 AREA OF REVIEW AND PROJECT AREA                                                             | 27  |
| 4   | 5.1 OIL AND GAS WELLS IN THE AGI #1 AREA OF REVIEW                                                                          | 27  |
|     | IDENTIFICATION AND REQUIRED NOTIFICATION OF OPERATORS, SUBSURFACE SSEES, AND SURFACE OWNERS WITHIN THE AREA OF REVIEW       | 30  |
|     | AFFIRMATIVE STATEMENT OF LACK OF HYDRAULIC CONNECTION BETWEEN THE OPOSED INJECTION ZONE AND KNOWN SOURCES OF DRINKING WATER | 31  |

#### **LIST OF FIGURES:**

Figure 1: General location map of the proposed White Russian AGI #1 well in Section 17 (T19S, R35E) approximately 20 miles southwest of Hobbs, New Mexico Figure 2: Aerial photographic location map showing the proposed White Russian AGI #1 surfaceand bottom-hole locations and surface lands where the Lea Midstream Facility is being constructed Figure 3: General schematic of surface facilities and associated AGI wells Figure 4: Proposed White Russian AGI #1 well schematic Figure 5: Structural setting and general lithology of the Permian Basin Figure 6: General stratigraphy and producing zones in the area of the White Russian AGI #1 Figure 7: Interpreted type log from nearby index well showing anticipated geologic formation tops for the proposed White Russian AGI #1 Figure 8: Structure contour map showing the top of the Siluro-Devonian target reservoir Figure 9: Structural cross section A-A' illustrating the proposed White Russian AGI #1 injection storage complex (i.e., confining strata, reservoir interval) and overlying geologic units Figure 10: Stratigraphic cross section A-A' showing target injection reservoirs of the Siluro-Devonian and continuous primary caprock interval Figure 11: Preliminary fracture gradient analysis developed from analog offset well geophysical log and sidewall core data Figure 12: Water wells within one mile of the proposed White Russian AGI #1 Figure 13: Subsurface fault features interpreted from well data, geologic mapping, and published literature in the area of the proposed White Russian AGI #1 well Figure 14: Distribution of porosity and permeability for all Petrel geo-model layers Figure 15: Summary of Eclipse simulation results for Case 1 (faults transmissive of fluids) showing gas saturation contours after 30 years of injection Figure 16: Summary of Eclipse simulation results for Case 2 (faults non-transmissive of fluids) showing gas saturation contours after 30 years of injection Figure 17: Mapped extent of present-day overpressure in the Delaware Basin and example log response illustrating stratigraphic onset of over-pressured intervals and associated drilling fluid densities (modified from Rittenhouse et al., 2016)

Injection wells and subsurface features in the vicinity of the proposed AGI #1

Figure 18:

- Figure 19: Summary of FSP model-predicted pressure front effects in the year 2055, resulting from injection activities of nearby and local wells that are actively injecting into the Siluro-Devonian
- Figure 20: Fault Slip Scenario 1: Model-predicted fault slip potential after 30 years of injection operations at maximum daily injection volume conditions
- Figure 21: Fault Slip Scenario 2: Model-predicted fault slip potential after 30 years of injection operation at maximum daily injection volume conditions without White Russian AGI #1 injection
- Figure 22: All wells located within one mile of the proposed White Russian AGI #1

#### LIST OF TABLES:

- Table 1: White Russian #1 proposed casing schedule
- Table 2: White Russian AGI #1 proposed cementing program
- Table 3: Anticipated TAG stream characteristics at wellhead, bottom of well, and in reservoir at equilibrium conditions
- Table 4: Anticipated formation tops at the proposed White Russian AGI #1 location
- Table 5: Summary of produced water analyses from nearby wells (U.S. Geological Survey National Produced Water Geochemical Database, v. 2.3)
- Table 6: Water wells or points of diversion within one mile of the White Russian AGI #1 surfaceand bottom-hole locations (Retrieved from the New Mexico Office of the State Engineer's Files 2025)
- Table 7: Chemical analysis results of samples collected from water wells in the area of the proposed White Russian AGI #1 (Nicholson and Clebsch, 1961. *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*)
- Table 8: Summary of geologic model zone thickness and porosity and permeability attributes
- Table 9: Input parameters and source material for FSP simulation
- Table 10: Location and operating parameters of injection wells modeled in FSP assessment
- Table 11: Summary of model simulation results showing the required pressure change to induce fault slip, actual pressure change as predicted by the FSP model, and probability of fault slip at the end of the 30-year injection scenario.
- Table 12: Wells located within one mile of proposed White Russian AGI #1
- Table 13: Wells located within two miles of the White Russian AGI #1 well that penetrate the proposed injection interval

### **LIST OF APPENDICES, ASSOCIATED FIGURES, AND TABLES:**

**Appendix A:** Information on oil and gas wells within two miles of the proposed White Russian AGI #1 well and relevant plugging documents for wells penetrating injection zone

Figure A-1: All wells located within two miles of the proposed White Russian AGI #1

Table A-1: Tabulated summary of all wells within two miles of the proposed White Russian AGI #1

Attachment A: Plugging documents from NMOCD online database for wells within two miles that penetrate the injection zone

**Appendix B:** Identification of operators, lessees, surface owners, and other interested parties within one mile, sample notice letter to interested parties, and sample public notice of hearing

Figure B-1: Surface owners and active operators within one mile of the proposed White Russian AGI #1 well

Figure B-2: All leaseholders within one mile of the proposed White Russian AGI #1

Table B-1: Summary list of all persons to be notified of the NMOCC public hearing to consider the White Russian AGI #1 application

Attachment 1: Sample notice letter to be delivered to interested parties

Attachment 2: Sample public notice of NMOCC hearing

**Appendix C:** Request to Sample and Analyze Groundwater from Existing Water Well

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

### Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

# APPLICATION FOR AUTHORIZATION TO INJECT

|             | ATTLICATION FOR AUTHORIZATION TO INJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.          | PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes X No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| II.         | OPERATOR: Lea Midstream, LLC [OGRID #333151]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ADDRESS: 3500 Maple Avenue, Suite 700; Dallas, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | CONTACT PARTY: Steven Smith, Joseph Styer PHONE: (806) 663-7735 PHONE: (405) 315-1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| III.        | WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection.  Additional sheets may be attached if necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IV.         | Is this an expansion of an existing project? Yes Yes X No  If yes, give the Division order number authorizing the project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V.          | Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.  Section 5; Appendix A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI.<br>VII. | Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.  Section 5; Appendix A  Attach data on the proposed operation, including:                                                                                                                                                                                                                                                                                                                          |
|             | <ol> <li>Proposed average and maximum daily rate and volume of fluids to be injected; Sections 1, 2, 3</li> <li>Whether the system is open or closed; Sections 1, 2, 4</li> <li>Proposed average and maximum injection pressure; Sections 1 &amp; 3</li> <li>Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, Sections 3 &amp; 4</li> <li>If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).</li> </ol> |
| *VIII       | Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.  Section 4                                                                                                                                                                                                                                                                    |
| IX.         | Describe the proposed stimulation program, if any.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *X.         | Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *XI.        | Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.  Section 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| XII.        | Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.  Section 7                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| XIII.       | Applicants must complete the "Proof of Notice" section on the reverse side of this form.  Appendix B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XIV.        | Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | NAME: David A. White, P.G. TITLE: Consultant to Lea Midstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | SIGNATURE: DATE: March 19, 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | E-MAIL ADDRESS: dwhite@geolex.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *           | If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### 1.0 EXECUTIVE SUMMARY

On behalf of Lea Midstream Partners, LLC (Lea Midstream; OGRID #333151), Geolex, Inc.® (Geolex) has prepared and is hereby submitting a complete C-108 application for approval to drill, complete, and operate an acid gas (CO<sub>2</sub> and H<sub>2</sub>S) injection well in Section 17, Township 19 South, Range 3 East, approximately 20 miles southwest of the city of Hobbs, in Lea County New Mexico (Figure 1). The proposed well, White Russian AGI #1, will provide Lea Midstream the ability to safely dispose of acid gas in a manner proven to improve operational stability and minimize the potential for exposure to facility personnel.

The proposed White Russian AGI #1 well is designed to address the anticipated sour gas disposal needs of the Lea Midstream treating facility. In submitting this application, Lea Midstream seeks approval to dispose of up to twelve (12) million standard cubic feet (MMSCFD) per day (approximately 4,962 barrels per day) of treated acid gas (TAG) into the Siluro-Devonian formations for a period of at least 30 years. The TAG stream is anticipated to consist of approximately 70% carbon dioxide (CO<sub>2</sub>) and approximately 30% hydrogen sulfide (H<sub>2</sub>S), with trace concentrations (less than 1%) of hydrocarbons (C<sub>1</sub>-C<sub>7</sub>). When operating at full capacity, the White Russian AGI #1 well will permanently sequester approximately 487 tons of CO<sub>2</sub> and approximately 162 tons of H<sub>2</sub>S daily.

To minimize surface and sub-surface interference and ensure access to quality reservoir, White Russian AGI #1 will be drilled as a deviated injection well. The approximate geographic coordinates for the surface location are 32.657656, -103.481600 (NAD83), within Section 17 of Township 19 South, Range 35 East, and the AGI well will be directionally drilled to a bottom-hole location at approximately 32.661345, -103.487457 (NAD83) with the same section. To ensure adequate isolation of groundwater resources, producing intervals, and potential high-pressure depth intervals, the White Russian AGI #1 well will be constructed utilizing a five-string casing design and all casing strings will be cemented to the surface. The integrity of cementing operations will be verified via visual inspection, as well as the collection of radial cement bond logs for all casing strings underlying the surface casing. The production casing and injection tubing will utilize approximately 300 feet of corrosion resistant alloy (CRA) materials in order to protect the well and lower well components from potentially corrosive conditions.

The proposed open-hole injection zone will target geologic formations of the Siluro-Devonian, including the Devonian, Wristen, and Fusselman formations, between depths of approximately 14,615 to 16,029 feet. Analyses of these geologic units confirm that they act as excellent closed-system reservoirs that will accommodate the anticipated and future needs of Lea Midstream for the disposal of acid gas and sequestration of CO<sub>2</sub> from the future gas-treatment facility.

In the area of the proposed AGI #1 well, the Siluro-Devonian injection interval is overlain by the Woodford Shale, which serves as the primary upper confining layer, and is observed to be greater than 169 feet in thickness. Additionally, more than 945 feet of tight shale and carbonates of the Barnett and Osage formations, respectively, overlie the Woodford Shale and provide a significant interval of secondary confining strata. Combined with the low-permeability Woodford Shale, these units will provide more than 1,114 feet of confining strata that will sufficiently contain and prevent the upward migration of TAG. Within the project area, the closest overlying pay zone, the Bone Spring Formation, lies approximately 3,974 feet above the Siluro-Devonian. The vertical separation from active producing zones, as well as the significantly thick primary and secondary caprock intervals ensure overlying production activities will be isolated and unaffected by TAG injection within the Siluro-Devonian.

Underlying the Siluro-Devonian injection zone, low porosity and low permeability carbonates and shales of the Montoya Formation and Simpson Group provide excellent lower confinement for the injection zones. These confining strata, and geologic intervals underlying them (i.e., Ellenburger Formation), have no current or historical production in this area.

The proposed maximum allowable operating pressure (MAOP) requested for the White Russian AGI #1 is approximately 4,593 psig, which was determined by utilizing appropriate NMOCD-approved calculation methods that consider the specific gravity of the acid gas injection stream. At the anticipated bottom-hole conditions of 220°F and 7,309 psi, each MMSCF of TAG will occupy a reservoir volume of approximately 382 barrels.

As it is critical to verify that the proposed Siluro-Devonian injection reservoir can accommodate the requested 12 MMSCFD of TAG, within reasonable operating pressure limitations, a detailed geologic analysis of the project area has been completed. This analysis, which leverages geophysical logs and petrophysical analysis, is the basis for which geologic reservoir modeling and injection simulation investigations have been completed. Analysis of these data has allowed for a detailed characterization of subsurface structure in the project area, and through geophysical log analytical and mapping methods and regional, sidewall core data, characterization of the proposed Siluro-Devonian injection reservoir, with respect to porosity development and the interconnectivity of porous strata, has been completed. Subsequent injection simulations completed to support this C-108 application clearly demonstrate that the proposed injection reservoir is fully capable of accommodating TAG injection, as proposed by Lea Midstream.

In accordance with the results of detailed geologic analyses, reservoir modeling and injection simulations have been completed to better understand and forecast plume characteristics and the migration of the resultant TAG plume after 30 years of injection operations. Following operation of the White Russian AGI #1, the resultant TAG plume is anticipated to occupy a maximum area of approximately 3.24 square miles and would extend a maximum of approximately 1.47 miles northeast from the AGI #1 bottom-hole location. Gas saturation values are anticipated to range from approximately 0 to 0.48% with diffuse concentrations (i.e., less than 10%) characterizing the plume margins. Comparison of these results to the locations of existing wells penetrating the Siluro-Devonian demonstrates that the migrating plume is not anticipated to encounter any nearby open wellbores, and thus, these wells are not anticipated to be impacted by the proposed operations of the White Russian AGI #1 well.

To evaluate the potential for induced seismicity in response to injection operations, at the proposed rate of up to 12 MMSCFD, an induced seismicity risk assessment was completed. The analysis was completed utilizing the Stanford Center for Induced and Triggered Seismicity's Fault Slip Potential (FSP) modeling platform. While analysis of Geolex structural mapping and published fault data (Horne et al. 2021), has produced a detailed characterization of faults within the project area, it should be noted that no faults exhibit offset sufficient to compromise the injection reservoir confining strata within the maximal area of the TAG plume. Results of the FSP analysis, which considers operation of the White Russian AGI wells, as well as additional offset saltwater disposal (SWD) wells, demonstrates that operation of the deep AGI wells (i.e., White Russian AGI 1), as proposed, will not result in an elevated risk for injection-induced fault slip in the area.

Within the one-mile area of review (AOR) there are 28 wells, which most commonly were completed to produce Queen, Bone Spring, and Wolfcamp Formation plays, and one salt water disposal well is injecting within Siluro-Devonian reservoirs. It should be noted that for the proposed White Russian AGI #1, the one-mile area of review (AOR) has been extended to include a one-mile buffer area comprising the surface location, bottom-hole location, and around the deviated well path. Of these 28 wells, 6 are

active, 7 are permitted, and 15 are plugged. Within a two-mile radius of the modified White Russian AGI #1 AOR, there is one (1) plugged well which penetrate the proposed Siluro-Devonian injection zone. This well has been properly plugged and is not anticipated to be impacted by operation of the proposed AGI #1 well, nor will it serve as a conduit for fluids to escape the proposed injection zone. All relevant plugging reports and documents for these wells have been reviewed and are included in Appendix A.

The area surrounding the proposed injection site is arid and there are no natural bodies of water within several miles of the Lea Midstream Facility and proposed White Russian AGI #1 well. A search of the New Mexico Office of the State Engineer's files shows 58 water wells or points of diversion within two miles of the proposed AGI surface- and bottom-hole locations. The closest water well is located approximately 0.6 miles away from the White Russian AGI #1 surface location and has been plugged. All water wells within a two-mile radius are shallow and will be protected via the proposed White Russian AGI #1 casing design, which includes installation of surface casing from the surface to an approximately depth of 1,865 feet, which will isolate and protect all shallow groundwater resources.

In preparing this C-108 application, Geolex conducted a detailed examination of all the elements required to be evaluated in order to prepare and obtain approval for this application for Class II injection. The elements of the evaluation include:

- Identification and characterization of all hydrocarbon-producing zones of wells that surround and are present on the plant's site
- The depths of perforated pay intervals in those wells relative to the depth of the target injection zone (Siluro-Devonian interval)
- The past and current uses of the proposed injection interval
- The stratigraphic and structural setting of the targeted zones relative to any nearby active or plugged wells, and other wells penetrating the interval
- The identification of and sample notification letter that will be sent to all surface owners, lessees, and operators within a one-mile radius of the proposed injection well
- Identification and characterization of all plugged and operating wells penetrating the proposed injection zone within a one- and two-mile radius of the proposed injection well
- The details of the proposed injection operation, including general well design and average maximum daily rates of injection and injection pressures
- An analysis of the potential for induced seismicity based on geologic review and mapping
- Reservoir injection simulations to evaluate the resultant effects of injection operations in the area after 30 years at the maximum daily injection rate and predict the resultant acid gas dispersion area and saturation characteristics
- Sources of injection fluid and compatibility with the formation fluid of the injection zone
- Location and identification of any freshwater-bearing zones in the area; the depth and quality of available groundwater in the vicinity of the proposed well, including a determination that there are no structures which could possibly communicate the disposal zone with any known sources of drinking water

Based upon this detailed evaluation, Lea Midstream has determined that the proposed White Russian AGI #1 well is a safe and environmentally sound project for the disposal of TAG. Furthermore, our analyses demonstrate that the proposed injection well will not negatively affect any waters of the State, nor have any actual or potential impacts on production in the area. This application is fully protective of correlative rights.

#### 2.0 INTRODUCTION AND ORGANIZATION OF THE C-108 APPLICATION

The completed NMOCD Form C-108 is included before the Table of Contents of this document and references appropriate sections where data required to be submitted are included.

This application organizes and details all of the information required by NMOCD and NMOCC to evaluate and approve the submitted Form C-108 – Application for Authorization to Inject. This information is presented in the following categories:

- A detailed description of the location, construction, and operation of the proposed White Russian AGI #1 well (Section 3.0)
- An overview of the acid gas characteristics and modeling simulation results to predict the resultant acid gas plume and reservoir pressure effects from injection operations in the area of the proposed AGI well (Section 4.0)
- A summary of the regional and local geology, hydrogeology, and the location of drinking water wells within the area of review (Section 4.0)
- An analysis of susceptibility to formation breakdown during injection operations (Section 4.9)
- The identification, location, status, producing zones, and other relevant information on oil and gas wells within the area of review (Section 5.0)
- The identification and required notification for operators and surface landowners that are located within the area of review (Section 6.0)
- An affirmative statement, based on the analysis of geological conditions at the site that there is no hydraulic connection between the proposed injection zone and any known sources of drinking water (Section 7.0)

In addition, this application includes the following supporting information:

- **Appendix A:** Data tables showing all active, temporarily abandoned, abandoned, and plugged oil and gas wells within a two-mile radius and within the one-mile area of review, as well as associated plugging documents for relevant wells within two miles.
- **Appendix B:** Tables summarizing the operators, lessees, and surface owners in the one-mile radius area of review, an example of the notification letter that will be provided no less than 20 days prior to the NMOCC hearing, and a draft public notice.
- **Appendix C:** Request letter for permission to sample and analyze groundwater and proof of mailing documents (USPS Certified Mail).

### 3.0 PROPOSED CONSTRUCTION AND OPERATION OF WHITE RUSSIAN AGI #1

White Russian AGI #1 is intended to service Lea Midstream's Treatment Facility and will be constructed on the facility property in Section 17 of Township 19 South, Range 35 East, approximately 20 miles from the city of Hobbs in Lea County, New Mexico (Figure 1). The well will be drilled as a deviated well from the approximate surface geographic coordinates of 32.657656, -103.481600 (NAD83) to a bottomhole location approximately 2,222 feet to the northwest at 32.661345, -103.487457 (NAD83), as shown in Figure 2.

TAG to be injected via White Russian AGI #1 will be routed from the adjacent Lea Midstream Treating Facility to on-site compression facilities that will compress and dehydrate the acid gas. The compressed TAG will then be transmitted to the AGI #1 injection tree via high-pressure, NACE-compliant piping for injection. Design details for the proposed AGI well are provided in the following Sections 3.1 and 3.2.

## 3.1 PROPOSED DESIGN OF WHITE RUSSIAN AGI#1

The location of the proposed White Russian AGI #1 well is shown in Figure 2, and a general schematic of the injection system is shown in Figure 3. The White Russian AGI #1 well will be drilled to a total depth of approximately 16,124 ft MD (measured depth) within the lower Fusselman Formation. The injection interval (approximately 14,710 to 16,124 ft MD) will be completed as an open-hole injection interval that includes the Devonian, Wristen, and Fusselman formations.

The AGI facilities and well will be integrated components of the Lea Midstream Treating Facility design and the proposed AGI #1 well will be the primary sour gas disposal method for the facility. The proposed well schematic for the White Russian AGI #1 is illustrated in Figure 4 and is designed to accommodate the injection of up to 12 MMSCFD per day of TAG for a design life of at least 30 years.

White Russian AGI #1 will utilize a five-string casing design to ensure the protection and isolation of shallow groundwater resources, potentially elevated hydrogen sulfide within reservoir waters (e.g. San Andres), oil and gas producing intervals, potential intervals of high-pressure conditions, and potential intervals of lost circulation. The surface casing (24-inch) will be set at approximately 1,865 feet, within the Rustler Formation to isolate shallow groundwater resources of the Dockum Group and Ogallala Aquifer. The first intermediate casing string (20-inch) will be set at approximately 3,290 feet, to cement and isolate anhydrite- and salt-bearing units (i.e., Rustler Fm. and Salado) overlying the Artesia Group and the San Andres Formation The second intermediate casing string (13 5/8-inch) will provide isolation of lateral, back-reef stratigraphic equivalents of the Capitan Reef, a known and confirmed interval of lost circulation, and the San Andres Formation, a potential hazard for hydrogen sulfide. The base of this second intermediate section will be set at approximately 6,285 ft, overlying strata of the Delaware Mountain Group. The third intermediate casing string will be 9 5/8-inches and will be set within the Wolfcamp Formation at approximately 10,712 ft. MD to aid in the isolation of the lower pressured Delaware Mountain Group and Bone Spring Formation from the underlying, higher-pressure zones of the Wolfcamp, Strawn, Atoka, and Morrow formations. The production casing will utilize 7-inch casing and will be set in a competent geologic unit within the Devonian at an approximate depth of 14,710 ft. The injection interval will be drilled as a 5 7/8-inch open hole interval to a depth of approximately 16,029 ft. in the lower Fusselman Formation.

As shown in Figures 3 and 4, the White Russian AGI #1 well design will include a subsurface safety valve (SSSV) on the production tubing to ensure that injected fluids are prevented from flowing back out of the well in the event of a failure of injection equipment. Additionally, the annular space between the production tubing and the wellbore will be filled with an inert fluid (i.e., corrosion-inhibited diesel fuel with biocide additives) as a further safety measure. These practices are consistent with injection well

designs previously supported by NMOCD and approved by the NMOCC for acid gas injection and conform to industry best practices for AGI well design.

Design and material considerations for White Russian AGI #1 include: (1) Placement of a corrosion-resistant subsurface safety valve to provide down-hole isolation and a CRA permanent injection packer; (2) installation of multiple casing strings to isolate and protect shallow groundwater resources (Ogallala and Santa Rosa groundwater, Rustler Formation saline groundwater); (3) characterization of the zone of injection; and (4) a total depth ensuring accurate identification of the injection reservoir.

In constructing the proposed White Russian AGI #1 well, a suitable drilling rig will be selected for the job that will include an appropriately sized blowout preventer and choke-manifold system for any unforeseen pressures encountered, and drilling operations will utilize a closed-loop system to manage drilling fluids. Visual inspection of cement returns to the surface will be documented in cementing operations of all casing strings, and casing and cement integrity will be demonstrated by pressure testing and 360-degree cement bond logs recorded for each cement operation below the surface casing. A schematic of the proposed well is shown in Figure 4 and the White Russian AGI #1 casing plan is summarized in Table 1.

Table 1. White Russian AGI #1 proposed casing schedule

| Casing                       | Hole<br>Size | Csg.<br>Size (in.) | Pounds<br>Per Foot | Grade      | Thread         | Top (ft.) | Bottom (ft.) |
|------------------------------|--------------|--------------------|--------------------|------------|----------------|-----------|--------------|
|                              | (in.)        |                    |                    |            |                |           |              |
| Proposed Casing Sch          | hedule       |                    |                    |            |                |           |              |
| Conductor                    | 36           | 30                 | 118                | -          | Welded         | 0         | 120'         |
| Surface                      | 2            | 24                 | 186.4              | X-65       | FJ             | 0         | 1865'        |
| 1 <sup>st</sup> Intermediate | 22           | 20                 | 169                | L-80       | BTC            | 0         | 3,290'       |
| 2 <sup>nd</sup> Intermediate | 17.5         | 13.625             | 88.2               | HCL-80     | Mod. BTC       | 0         | 6285'        |
| 3 <sup>rd</sup> Intermediate | 12.25        | 9.625              | 53.5               | HCL-80     | Mod. BTC       | 0         | 10,712'      |
| Production                   | 8.5          | 7                  | 32                 | SS95       | VA<br>Superior | 0         | 14,410'      |
| Production (CRA)             | 8.5          | 7                  | 32                 | G3 (CRA)   | VAMTOP*        | 14,410'   | 14,710'      |
| Proposed Injection T         | ubing        |                    |                    |            | •              | •         |              |
| Tubing                       | N/A          | 3.5                | 10.2               | SS-95/T-95 | VAMTOP*        | 0         | 14,360'      |
| Tubing (CRA)                 | N/A          | 3.5                | 10.2               | G3 (CRA)   | VAM*           | 14,360'   | 14,660'      |

<sup>\*</sup>Or equivalent gas-tight, premium thread connections

All casing strings will be cemented to the surface using appropriate conventional cement methods. The adequacy of cementing operations will be confirmed through pressure testing of the casing and 360-degree cement bond logs will be recorded after the required amount of time has passed for cement to set. Once the integrity of cementing operations has been verified, drilling of the next casing interval will commence.

In accordance with AGI well best construction practices, acid resistant cement slurries and/or CRA casing will be utilized along key depth intervals in which corrosive conditions may potentially be present. For the proposed White Russian AGI #1 well, this includes the strategic use of acid resistant cement (e.g., Halliburton WellLock Resin, LockCem, or equivalent) across the San Andres Formation, to ensure well integrity across potential hydrogen sulfide-bearing formation fluids. Additionally, CRA casing, tubing, and acid-resistant cement will be utilized at the base of the 7-inch production casing to protect lower well components and ensure long-term well integrity. Depth intervals which incorporate acid-resistant cement slurries will utilize cement diverter tools (DVT) and external casing packers (ECP) to ensure successful

placement and bonding of acid-resistant cement, where required. Table 2 summarizes the preliminary cementing program for all White Russian AGI #1 casing strings.

Table 2. White Russian AGI #1 proposed cementing program

| Casing String Stage #        |   | Cement Type                          | No. of Sacks             | Density<br>(#/gal)       | Coverage<br>Interval |
|------------------------------|---|--------------------------------------|--------------------------|--------------------------|----------------------|
| Conductor                    | 1 | Redimix                              | -                        | -                        | 0'-120'              |
| Surface                      | 1 | Lead: Extend Cem C<br>Tail: HalCem   | Lead:1050<br>Tail: 414   | Lead: 13.5<br>Tail: 14.8 | 0' - 1,865'          |
| 1 <sup>st</sup> Intermediate | 1 | Lead: NeoCem<br>Tail: Versa Cem      | Lead: 605<br>Tail: 580   | Lead: 11.5<br>Tail: 13.5 | 0' – 3,290'          |
| 2 <sup>nd</sup> Intermediate | 1 | CorrosaCem                           | Lead: 395                | 13.5                     | 0'-6,285'            |
|                              | 2 | Lead: NeoCem<br>Tail: HalCem         | Lead: 1410<br>Tail: 1200 | Lead: 12.0<br>Tail: 13.5 | 0 -0,283             |
| 3 <sup>rd</sup> Intermediate | 1 | Lead: NeoCem<br>Tail: VersaCem       | Lead: 1640<br>Tail: 245  | Lead: 11.5<br>Tail: 13.5 | 0' - 10,712'         |
| Production                   | 1 | Lead: WellLock Resin (or equivalent) | Lead: 15.0*              | 12.5                     |                      |
| 2                            |   | Lead: HalCem<br>Tail: CorrosaCem     | Lead: 175<br>Tail: 110   | Lead: 12.5<br>Tail: 13.5 | 0' – 14,710'         |
|                              | 3 | Lead: NeoCem<br>Tail: VersaCem       | Lead: 695<br>Tail: 55    | Lead: 11.5<br>Tail: 13.5 |                      |

<sup>\*</sup>Denotes amount of cement in barrels

For the purposes of monitoring down-hole injection conditions and long-term evolution of the Siluro-Devonian injection reservoir, White Russian AGI #1 will be completed with permanent down-hole pressure and temperature sensors installed on a mandrel immediately overlying the packer assembly. The associated sensor communication lines will be clamped to the injection tubing, within the annulus, and will be routed through termination blocks on the injection tree to a surface control panel, which will directly transmit data to the facility control room for observation, analysis, and recording.

The SSSV will be installed on the 3 ½-inch injection tubing at a depth of approximately 150 feet and connected to the surface wellhead via a ¼-inch Inconel 925 hydraulic line. From the surface, the line is run to a surface control panel through stainless steel line. The SSSV surface control panel will be integrated into the facility control system, such that the SSSV can be activated on-site, from the control room, or through an automated emergency shutdown (ESD) process. While additional isolation equipment will be incorporated into the White Russian AGI #1 design (e.g., manual and automatic valves on injection tree), the SSSV is critical as it provides a subsurface isolation point, in the event physical damage to the wellhead or surface isolation points occurs.

The National Association of Corrosion Engineers (NACE) issues guidelines for metals exposed to various corrosive gases, such as those anticipated for this AGI well. For an H<sub>2</sub>S-CO<sub>2</sub> stream of acid gas that is dewatered at the surface via successive stages of compression, down-hole components, such as the SSSV and packer should be constructed of Inconel 925 (or equivalent) grade materials. The CRA joints utilized in the White Russian AGI #1 well will be constructed of a similar alloy, such as Sumitomo SM2550 (with 50% nickel content), G3, or other suitable material grade. Additionally, the gates, bonnets, and valve stems within the injection tree will also be nickel coated, in accordance with the requirements of a dry acid gas injection tree.

The remainder of the injection tree will be constructed of standard carbon steel components and outfitted with annular pressure gauges that report operating pressure conditions in real time to a gas-control center located remotely from the wellhead. In the case of abnormal pressures or any other situation requiring immediate action, the acid gas injection process can be stopped at the compressor, and the wellhead can be shut in using a pneumatically operated wing valve on the injection tree. The SSSV provides a redundant safety feature to shut in the well in case the wing valve does not close properly. After the AGI well is drilled and tested to assure that it will be capable of accepting the proposed volume of injection fluid (without using acid gas), it will be completed with the approved injection equipment for the acid gas stream.

#### 3.2 GEOPHYSICAL LOGGING

Prior to running the intermediate (1st, 2nd, and 3rd) and production casing strings, open-hole geophysical logging will be performed for the interval underlying the surface casing from approximately 1,865 to 16,029 feet. The proposed open-hole logging suite will consist of the following: Gamma ray, formation density, resistivity, neutron porosity, sonic porosity, and 360-degree caliper measurements with integrated borehole volume. Additionally, Fullbore Formation MicroImager (FMI) logs will be recorded along the proposed Siluro-Devonian injection interval, as well as the overlying caprock (i.e., Woodford Shale) to verify the integrity and confirm the capability of overlying strata to properly confine and permanently sequester the injected TAG. Porosity and permeability characteristics of the proposed injection zone and overlying caprock strata will be further verified through collection and analysis of sidewall cores.

#### 3.3 RESERVOIR STIMULATION, TESTING, AND PRESSURE MONITORING

Upon the completion of geophysical logging for drilling, casing/cementing, and geophysical logging activities, reservoir stimulation and testing operations will be completed. These operations will include a spot-acid treatment to clean out the wellbore prior to reservoir testing, step-rate injection testing (SRT), followed by acid stimulation. In accordance with accepted stimulation procedures for AGI wells, the step-rate injection test will be conducted prior to acid stimulation activities, with the exception of low-volume, spot acid treatment to clean out and prepare the well for testing.

Prior to step-rate injection testing, a spot acid treatment will be performed in which approximately 3,000 gallons of 15% hydrochloric acid (HCl) will be displaced along the open-hole injection interval for approximately 24 hours, for the purposes of cleaning the wellbore of drilling fluids potentially invading porous intervals. Utilizing a temporary string comprised of a retrievable test packer and workstring tubing, a step-rate injection test will be performed to confirm the adequacy of injection pressure limitations and approved injection volume, and to ensure that the formation parting pressure (i.e., fracture pressure) is not reached during future TAG injection operations. Once the reservoir has been tested and safe operational conditions have been confirmed, the injection reservoir response to injection activities will be characterized through completion of a pressure fall-off test, in which the return to static pressure conditions is monitored via down-hole pressure gauges. Depending on actual reservoir porosity and permeability attributes, it is anticipated that fall-off testing activities will require approximately 3-10 days of down-hole monitoring.

Following the completion of reservoir testing activities (SRT and pressure fall-off monitoring), a complete acid stimulation of the open-hole interval will be completed. Approximately 40,000 gallons of 15% HCl and approximately 8,000 gallons of gelled 15% HCl acid will be injected into the reservoir to open potential reservoir-bound fractures, secondary porosity zones, and dissolve any natural carbonate cement within the pore spaces of the Siluro-Devonian injection zone. As needed, diverter materials (e.g., rock salt) will be utilized to divert acid volumes away from high-porosity intervals and ensure complete stimulation of the open-hole interval.

Upon the completion of reservoir testing and stimulation activities, the final tubing string and permanent injection packer will be run and set at an approximate depth of 14,710 feet. For long-term monitoring of down-hole conditions, White Russian AGI #1 will be equipped with bottom-hole pressure and temperature instrumentation designed to provide real-time monitoring of reservoir conditions, as it is installed immediately above the permanent injection packer. While this equipment is useful in gathering data that will ultimately be used to evaluate reservoir and well performance, it is only a portion of the overall data collection and analysis program to evaluate the reservoir over time and to compare the predicted reservoir performance (discussed in Sections 4.6 and 4.7) with actual performance in future reporting periods.

The collection and analysis of injection and annular pressure data has a two-fold purpose. First, to provide an early warning of any mechanical well integrity issues that may arise, and the second to provide data for reservoir performance evaluation. While the initial purpose of monitoring the mechanical integrity of the well only requires the surface injection pressure, temperature, rate, and annular pressure monitoring, the bottom-hole data provides the ability to analyze and evaluate the performance of the Siluro-Devonian injection reservoir.

Surface pressure/temperature/annular pressure monitoring equipment has extremely high reliability, whereas our experience with bottom-hole pressure/temperature monitoring equipment has shown that this equipment is more complex and may suffer from periodic data collection and transmission issues. As such, we have developed a process to ensure that necessary data are collected in the event of bottom-hole sensor failure. The simultaneous collection of the surface- and bottom-hole data allows for the development of empirical relationships with actual observed data that, in conjunction with the use of established models (such as, AQUAlibrium<sup>TM</sup>, NIST REFPROP, or equivalent) will allow data gaps to be filled when bottom-hole data loss occurs. This approach will allow us to provide NMOCD with reliable monitoring data and interpretations that provide the basis for reservoir evaluation performed periodically during the life of the White Russian AGI #1 well.

Below is a summary of the overall data collection and analysis program proposed for this well and injection reservoir:

- 1. Obtain measurements of initial bottom-hole pressure and temperature after drilling (during logging)
- 2. Perform detailed step-rate injection test and pressure fall-off test to provide baseline reservoir conditions prior to the commencement of TAG injection activities
- 3. Monitor surface parameters (injection pressure, temperature, injection rate, and annular pressure) to provide an early warning system for any potential mechanical integrity issues in the well
- 4. Monitor bottom-hole pressure and temperature with permanent sensors to provide real-time reservoir conditions for analysis of reservoir performance
- 5. Use bottom-hole reservoir and surface pressure and temperature data to develop a well-specific empirical relationship between observed surface- and bottom-hole conditions
- 6. Use TAG/wellbore model to predict bottom-hole conditions based on surface data and test with empirical relationships observed in #5 above to calibrate models
- 7. Use surface data along with protocols described above to fill in missing bottom-hole data when data gaps or sensor failure occurs

- 8. In the event of an extended period of bottom-hole pressure/temperature sensor failure, perform periodic bottom-hole pressure monitoring using slickline pressure gauges when data from such temporary device is necessary to fill in data for relevant reservoir analysis
- 9. After approximately ten (10) years of operation, perform another detailed step-rate injection test and fall-off test to compare with baseline conditions prior to the commencement of TAG injection

# 3.4 INJECTION STREAM CHARACTERISTICS AND MAXIMUM ALLOWABLE OPERATING PRESSURE

The proposed White Russian AGI #1 well has been designed and will be constructed such that it can be safely operated as an acid gas injection well to dispose of a mixed stream of TAG containing H<sub>2</sub>S and CO<sub>2</sub>. Based on current gas-treatment forecasting, the TAG stream is anticipated to be comprised of the following constituents:

Carbon Dioxide (CO<sub>2</sub>) 70%
Hydrogen Sulfide (H<sub>2</sub>S) 30%

- Trace Nitrogen and hydrocarbons (C<sub>1</sub>-C<sub>7</sub>) Less than 1%

The maximum total volume of TAG to be injected daily will be approximately 12 MMSCF per day. Pressure reduction valves and controls will be incorporated to ensure that the maximum surface injection pressure allowed by NMOCD will not be exceeded.

The specific gravity of TAG is dependent on the temperature and pressure conditions and the composition of the TAG mixture. It is most accurately calculated using a modification of the Peng-Robinson (PR) equation of state (EOS) model (Boyle and Carroll, 2002). We have calculated the specific gravity of the supercritical TAG phase for the proposed White Russian AGI #1 well using the AQUAlibrium<sup>TM</sup> 3.1 software, which employs the modified PR EOS model (Table 3).

We have modeled the proposed maximum daily injection rate of 12 MMSCF per day composed of 70% CO<sub>2</sub> and 30% H<sub>2</sub>S. Specific gravities of TAG were determined for the conditions at the wellhead (2,500 psi, 120 °F), the total depth of the well (7,309 psi, 220°F), and under average reservoir conditions (see Table 3).

To determine the proposed maximum surface injection pressure, we utilize the following NMOCD-approved method, which is based on the final specific gravity of the injection stream. Utilizing this method, we propose a maximum allowable operating pressure (MAOP) of approximately 4,593 psig, as determined by the following calculations:

### MAXIMUM ALLOWABLE OPERATING PRESSURE (MAOP) DETERMINATION

$$IP_{Max} = PG(D_{Top})$$

WHERE:  $IP_{Max} = Maximum Surface Injection Pressure (psi)$ 

PG = Pressure Gradient of Injection Fluid (psi/ft.)

 $D_{Top}$  = Depth at top of perforated interval of injection zone (ft.)

**AND** 

$$PG = 0.2 + 0.433 (1.04 - SG_{Tag})$$

WHERE:  $SG_{Tag} = Average specific gravity of treated acid gas in the tubing$ 

(SG<sub>Tag</sub> at top = 0.75, and SG<sub>Tag</sub> at bottom = 0.81; see Table 3)

For the maximum requested injection volume case, it is assumed that:

$$SG_{Tag} = 0.7762$$
  
 $D_{Top} = 14,615 feet$ 

THEREFORE:

$$PG = 0.2 + 0.433 (1.04 - 0.7762)$$

$$PG = 0.314$$

**AND** 

$$IP_{Max} = 0.314 \frac{psi}{ft} \times 14615 ft$$

$$IP_{Max} = 4,593 psi$$

Based on this determination, Lea requests approval for a surface injection MAOP of 4593 psig for the proposed White Russian AGI #1 well.

Table 3. Anticipated TAG stream characteristics at wellhead, bottom of well, and in reservoir at equilibrium conditions

Proposed Injection Stream Characteristics

| TAG                  | $H_2S$ | $CO_2$ | $H_2S$         | $CO_2$         | TAG            |
|----------------------|--------|--------|----------------|----------------|----------------|
| Gas Volume           | Conc.  | Conc.  | Injection Rate | Injection Rate | Injection Rate |
| MMSCFD <sup>-1</sup> | Mol %  | Mol %  | lbs/day        | lbs/day        | lbs/day        |
| 12.0                 | 30     | 70     | 323297         | 974126         | 1297422        |

Conditions at Wellhead

| Wellhead |          |                        |                                   |             | TAG               |      |         |                 |        |
|----------|----------|------------------------|-----------------------------------|-------------|-------------------|------|---------|-----------------|--------|
| Temp     | Pressure | Gas Vol                | Comp                              | Inject Rate | Density           | SG   | Density | Volume          | Volume |
| F        | psi      | (MMSCFD) <sup>-1</sup> | CO <sub>2</sub> :H <sub>2</sub> S | lbs/day     | kg/m <sup>3</sup> |      | lbs/gal | ft <sup>3</sup> | bbl    |
| 120.0    | 2500     | 12.0                   | 70:30                             | 1297422     | 745.7             | 0.75 | 6.23    | 27857           | 4962   |

Conditions at Bottom of Well

| T         | D               |                                                                       |                         |              | TAG                          |      |                    |                           |               |
|-----------|-----------------|-----------------------------------------------------------------------|-------------------------|--------------|------------------------------|------|--------------------|---------------------------|---------------|
| Temp<br>F | Pressure<br>psi | $\begin{array}{c} \text{Depth}_{\text{Top}} \\ \text{ft} \end{array}$ | Depth <sub>Bot</sub> ft | Thickness ft | Density<br>kg/m <sup>3</sup> | SG   | Density<br>lbs/gal | Volume<br>ft <sup>3</sup> | Volume<br>bbl |
| 220.1     | 7309            | 14615                                                                 | 16029                   | 1414         | 806.67                       | 0.81 | 6.74               | 25751                     | 4586          |

Conditions in Reservoir at Equilibrium

| Reservoir Mid |              | •                |                              | TA   | AG                 |                           |               |
|---------------|--------------|------------------|------------------------------|------|--------------------|---------------------------|---------------|
| Temp<br>F     | Pressure psi | Avg.<br>Porosity | Density<br>kg/m <sup>3</sup> | SG   | Density<br>lbs/gal | Volume<br>ft <sup>3</sup> | Volume<br>bbl |
| 213.3         | 6989         | 5.0              | 808.66                       | 0.81 | 6.75               | 25751                     | 4586          |

# 4.0 REGIONAL AND LOCAL GEOLOGY AND HYDROGEOLOGY, RESERVOIR CHARACTERIZATION AND INJECTION SIMULATION

#### 4.1 GENERAL GEOLOGIC SETTING AND SURFICIAL GEOLOGY

The proposed White Russian AGI #1 well location (S17, T19S, R35E, as shown in Figure 1)lies on the northeastern margin of the Central Basin Platform (Figure 5). Generally, the area is covered predominantly by stable or semi-stable sand dunes overlying Quaternary alluvium and, in some areas, a hard caliche surface where the sand forms topographic highs. The surface area is highly irregular with few drainage features except at the outer boundaries of playas further to the west of the area of interest. The area to the north and northwest contains shallow depressions and small sand dune reliefs to flat, treeless plains with extensive short prairie grass coverage. The proposed well site is underlain by recent Quaternary sediments. The thick sequences of Permian rocks that underly these deposits are generally described below.

#### 4.2 BEDROCK GEOLOGY

The Lea Midstream Treatment Facility and the proposed White Russian AGI #1 well are located along the northwestern margin of the Central Basin Platform, an uplifted sequence portion of geologic strata in the larger, encompassing Permian Basin (Figure 5), which covers a large area of southeastern New Mexico and west Texas. The Permian as we know today began to take form during the Middle to Late Mississippian, with various segments (Delaware Basin, Midland Basin, Central Basin Platform, and North Platform) arising from the ancestral Tabosa Basin. The Delaware Basin was subsequently deepened by periodic deformation during the Hercynian Orogeny of the Pennsylvanian through Early Permian. Following the orogeny, the Delaware Basin was structurally stable and was gradually filled by large quantities of clastic sediments while carbonates were deposited on the surrounding shelves and was further deepened via basin subsidence.

Figure 6 illustrates a generalized Permian Basin stratigraphic column showing the anticipated formations and lithologies that underly the proposed wellsite. The entire Lower Paleozoic interval (Ellenburger through Devonian) was periodically subjected to subaerial exposure and prolonged periods of karsting (i.e., dissolution of existing rock), most especially in the Fusselman, Wristen, and Devonian intervals. The result of this exposure was the development of systems of karst-related secondary porosity, which included solution-enlargement of fractures and vugs, and the development of small cavities and caves. Particularly in the Fusselman, solution features from temporally distinct karst events became interconnected with each successive episode of subaerial exposure, so there is the potential for vertical continuity in parts of the Fusselman that could lead to enhanced vertical and horizontal permeability. Within the local area of the White Russian AGI #1, carbonate buildups within the Wristen formation have been identified which are in turn, enhanced by the same karst-related secondary porosity mechanisms of the Fusselman and Devonian intervals.

The sub-Woodford Shale Paleozoic rocks extend down to the Ordovician Ellenburger Formation, which is separated from underlying basement rock by a limited interval of Early Ordovician sandstones and granite wash. The Ellenburger is comprised of dolomites and limestones and can be several hundred feet thick. It is overlain by approximately 880 feet of Ordovician Simpson Group sandstones, shale, and tight limestones, as well as approximately 480 feet of basal Montoya cherty carbonates. Tight carbonates and abundant interbedded shale deposits within the Montoya and Simpson group serve as the underlying confining strata for the proposed Siluro-Devonian injection reservoir.

The Silurian Fusselman, Wristen, and Devonian Thirtyone formations overly the Montoya Formation and are comprised of interbedded dolomites and dolomitic limestones that are capped by the Woodford Shale.

The Woodford Shale is overlain by several hundred feet of tight Osagean limestone and nearly one hundred feet of shale and basinal limestones of the Upper Mississippian Barnett Formation. The overlying Pennsylvanian Morrow, Atoka, and Strawn formations complete the pre-Permian section. Within this entire sequence, wells have historically produced gas from the Strawn, however, gas production from Strawn in the area is limited to only one nearby producing well. Active oil and gas production within the area of review of the proposed AGI well is found predominantly in the Tansill-Yates-Seven Rivers pools and horizontal plays (active and permitted) within the Bone Spring and Wolfcamp formations. The deepest currently producing formation, the Strawn Formation, is approximately 3,300 feet above the proposed injection zone.

# 4.3 LITHOLOGIC AND RESERVOIR CHARACTERISTICS OF THE SILURO-DEVONIAN FORMATIONS

The proposed injection interval for the White Russian AGI #1 well includes the Devonian Thirtyone and Silurian Wristen and Fusselman formations (collectively referred to as Siluro-Devonian). These strata are comprised of carbonates with high permeability such as porous limestones or dolostones with moderate porosity that are well-demonstrated as capable injection reservoirs by numerous SWD and AGI wells in the basin. In evaluating the proposed White Russian AGI #1 location, Geolex determined that the Devonian and Silurian injection reservoirs exhibited sufficient porosity potential to accommodate the disposal needs of the Lea Midstream Treatment Facility. Additional discussion regarding the evaluation of Siluro-Devonian reservoir characterization is included in Section 4.6.

Based on the geologic analysis of the subsurface, acid gas injection and CO<sub>2</sub> sequestration is recommended between the depths of approximately 14,615 feet to 16,029 feet. The proposed injection zone consists of approximately 1,414 feet of Siluro-Devonian strata, comprised predominantly of porous carbonates (resulting from numerous subaerial exposure events) that would readily accept TAG for permanent sequestration. Figure 7 includes an interpreted type log, showing the lithology of the subsurface formations and anticipated formation-top depths are included in Table 4.

The primary caprock for the Siluro-Devonian injection reservoir is the Woodford Shale, approximately 180 feet thick in this area. The Woodford Shale is overlain, in turn, by approximately 780 feet of tight shales and carbonates of the Barnett and Osage formations. These units provide an excellent geologic seal above the porous carbonates of the injection zone, ensuring that overlying pay intervals and shallow groundwater resources are adequately isolated from the proposed injection zone.

Figure 8 shows a structural contour map covering the area of the proposed White Russian AGI #1 well and Figure 9 includes a structural cross section (A-A') which highlights the lateral extent of available Siluro-Devonian porosity and regional coverage of the overlying Woodford Shale caprock. The proposed AGI well location is on the southwestern-dipping slope and there is no indication of faulting that offsets the lateral continuity of injection reservoir confining strata. Geophysical logs from included wells indicate several intervals within the proposed injection zone exhibiting significant porosity development and the anticipated low-porosity and low-permeability caprock is shown to be laterally continuous within the greater project area.

| Formation        | Depth (MD) | Formation         | Depth (MD) |
|------------------|------------|-------------------|------------|
| Dockum Group     | 751        | Wolfcamp          | 10,693     |
| Ochoa-Dewey Lake | 1,420      | Strawn            | 12,086     |
| Rustler          | 1,860      | Atoka             | 12,433     |
| Salado           | 2,148      | Morrow            | 12,992     |
| Tansill          | 3,286      |                   |            |
| Yates            | 3,471      | Barnett           | 13,747     |
| Seven Rivers     | 3,986      | Osage (Miss Lime) | 13,875     |
| Grayburg         | 5,242      | Woodford          | 14529      |
| San Andres       | 5,621      | Devonian          | 14,700     |
| Cherry Canyon    | 6,284      | Wristen           | 14,999     |
| Bone Spring      | 8,090      | Fusselman         | 15,511     |

Table 4. Anticipated formation tops at the proposed White Russian AGI #1 location

#### 4.3.1 INJECTION RESERVOIR FRACTURE PRESSURE DETERMINATION

For previous AGI wells, New Mexico Oil Conservation Division (NMOCD) has requested analysis to empirically determine that permitted maximum surface injection pressures do not exceed formation breakdown pressure during AGI operations. The preferred empirical analysis by NMOCD follows methodology presented within Eaton,1969 (*Eaton, B.A., 1969 Fracture gradient prediction and its application in oilfield operations*). For this empirical analysis (Eaton Method), the full suite of geophysical log, including sonic dipole, made available within the analog well of Zia AGI D #2 (API: 30-025-42207) has been utilized to calculate breakdown pressures within analogous (and proximal) reservoir of the Siluro-Devonian.

The Zia AGI D #2 is located approximately 18.9 miles to the west of the proposed White Russian AGI #1 and is characterized by similar Siluro-Devonian injection zone characteristics, including pressure conditions, lithology, and porosity and permeability attributes. Critically, the Zia AGI D #2 well data also include a sonic dipole log which allows the calculation of Poisson's ratio, a critical parameter of the calculation of fracture gradient within Eaton's methodology. Poisson's ratio ( $\nu$ ) is calculated as follows:

$$v = \frac{\left[\left(\frac{Vp}{Vs}\right)^2 - 2\right]}{\left(2 \cdot \left[\left(\frac{Vp}{Vs}\right)^2 - 1\right]\right)}$$

Where:

 $V_p = Compressional velocity (1,000,000/DTC)$ 

DTC = Compressional sonic log

 $V_s$  = Shear Velocity (1,000,000/DTS)

DTS = Shear sonic log

Assumptions for overburden pressure, pore pressure along with the calculated Poisson's ratio are utilized as parameters within Eaton's method and equation presented below:

Fracture Gradient = 
$$(OBG - PPG) \times \left(\frac{v}{(1-v)}\right) + PPG$$

Where:

OBG = Overburden Stress Gradient (assumed as 1.05 psi/ft)
PPG = Pore Pressure Gradient (assumed as 0.456 psi/ft based upon offset wells)
V = Poisson's Ratio (calculated from the Zia D AGI #2 Sonic Dipole)

Resultant Fracture Gradient calculations of the Siluro-Devonian injection reservoir are presented within Figure 11. Formation average fracture gradients range from a minimum of 0.668 psi/ft to a maximum of 0.706 psi/ft for an overall Siluro-Devonian average of 0.683 psi/ft. Based upon the proposed surface MAOP of 4,593 PSI, pressures at bottom hole (16,029' TVD) will have an absolute maximum 0.610 psi/ft at bottom hole pressure of 9,809 PSI. Under worst case operating conditions, injection pressures will not exceed breakdown pressure of the injected reservoir.

Currently, estimated fracture gradients and breakdown pressures are based upon geophysical logs of the Zia D AGI#2 and are anticipated to be reasonable estimates of breakdown pressures of the targeted reservoirs. However, after drilling of the proposed White Russian AGI #1, a full suite of geophysical logs, including sonic dipole, will be logged allowing a more precise calculation of breakdown pressure for the local area of White Russian AGI #1. In addition, following drilling and completion of the White Russian AGI #1, step-rate injection tests will evaluate and attempt to confirm that bottomhole pressures at MAOP will not exceed breakdown pressures of 0.683 psi/ft.

#### 4.4 CHEMISTRY OF SILURO-DEVONIAN RESERVOIR FLUIDS

A review of formation waters from the U.S. Geological Survey National Produced Water Geochemical Database, v.2.3 identified 24 wells with analyses from drill stem test fluids collected from the Devonian-Lower Devonian interval in wells within approximately 10 miles of the proposed White Russian AGI #1 Table 5 below summarizes the measured formation fluid characteristics.

Table 5. Summary of produced water analyses from nearby wells (U.S. Geological Survey National Produced Water Geochemical Database, v.2.3)

| A DI         |       | C                | oncentration | ı (parts per ı | million) |       |                 |
|--------------|-------|------------------|--------------|----------------|----------|-------|-----------------|
| API          | TDS   | HCO <sub>3</sub> | Ca           | Cl             | Mg       | Na    | SO <sub>4</sub> |
| 30-025-21647 | 25199 | 415              | 1210         | 14200          | 171      | 7903  | 1050            |
| 30-025-01661 | 21444 | 881              | 5090         | 11400          | 93       | N/A   | 1537            |
| 30-025-01735 | 28696 | 808.4            | 1044         | 15135          | 189.07   | 9327  | 1926            |
| 30-025-20329 | 66549 | 159              | 13000        | 42600          | 3330     | N/A   | 700             |
| 30-025-02424 | 29436 | 634              | 1550         | 16720          | 496      | N/A   | 1142            |
| 30-025-20080 | 32222 | 855              | 1608         | 17810          | 244      | N/A   | 1425            |
| 30-025-20382 | 31610 | 335              | 1810         | 17600          | 555      | N/A   | 2000            |
| 30-025-20115 | 71593 | 155              | 15860        | 46430          | 4526     | N/A   | 852             |
| 30-025-02431 | 33414 | 227              | 1775         | 18570          | 151      | N/A   | 1961            |
| 30-025-02247 | 31145 | 183              | 1520         | 18200          | 292      | N/A   | 950             |
| 30-025-03156 | 25800 | 830              | 1170         | 14100          | 134      | 8410  | 1120            |
| 30-025-20378 | 39874 | 545              | 1529         | 22440          | 258      | 13092 | 1529            |
| 30-025-20377 | 44825 | 761              | 2590         | 27970          | 2424     | N/A   | N/A             |
| 30-025-03137 | 28173 | 168              | 1408         | 15500          | 245      | N/A   | 1856            |
| 30-025-03136 | 31047 | 722              | 1843         | 17610          | 304      | N/A   | 1065            |
| 30-025-03130 | 28417 | 560              | 1306         | 15910          | 248      | N/A   | 1244            |
| 30-025-03151 | 27740 | 247              | 1720         | 16180          | 442      | N/A   | 926             |
| 30-025-03118 | 27719 | 392              | 1274         | 14870          | 148      | N/A   | 1956            |
| 30-025-03114 | 28813 | 1207             | 1501         | 16520          | 432      | N/A   | 362             |
| 30-025-03113 | 30255 | 562              | 1100         | 16500          | 73       | N/A   | 1820            |
| 30-025-03978 | 20882 | 645              | 809          | 11190          | 185      | N/A   | 1232            |
| 30-025-03977 | 30527 | 330.4            | 1826         | 18060          | 415.5    | 9234  | 661             |
| 30-025-04270 | 48300 | 1150             | 2080         | 26700          | 486      | 15600 | 2340            |
|              |       |                  |              |                |          |       |                 |

These analyses show Total Dissolved Solids (TDS) in the area of the proposed AGI well ranging from 20,882 to 71,593 parts per million (PPM) with an average of 34,073 PPM. The primary constituent in the sampled formation waters is the chloride ion, with an average concentration of 19,662 PPM.

Based on these data, the Siluro-Devonian reservoir fluids are anticipated to be completely compatible with the acid gas injectate, however, an attempt will be made to sample formation fluids during drilling and completion of the proposed White Russian AGI #1 to provide more site-specific fluid properties and verify our assessment of fluid compatibility.

#### 4.5 GROUNDWATER HYDROLOGY IN THE VICINITY OF THE PROPOSED AGI WELL

Based on the New Mexico Water Rights Database from the New Mexico Office of the State Engineer, there are five (5) water wells or points of diversion located within a one-mile radius of the Lea AOI surface location. Of these wells, the closest is located approximately 0.61 miles to the south of the White Russian AGI #1 surface-hole location (Figure 10; Table 6). All wells within the two-mile radius are relatively shallow, with depths ranging from approximately 100 feet to 1,000 feet in alluvium and Triassic

redbeds. Shallow groundwater resources will be fully protected by multiple strings of telescoping casing, all of which will be cemented back to surface. As illustrated in Figure 4, design considerations for the White Russian AGI #1 well include a five-string casing design, including a surface casing interval that extends to approximately 2,120 feet within the Rustler Formation, effectively isolating shallow groundwater resources.

The area surrounding the proposed injection well is arid and there are no bodies of surface water within a two-mile radius.

Table 6. Water wells or points of diversion within one mile of the White Russian AGI #1 surface- and bottom-hole locations (Retrieved from the New Mexico Office of the State Engineer's Files on February 11, 2025)

| POD     | USE        | Owner              | Well Depth | Water Depth | Latitude  | Longitude   |
|---------|------------|--------------------|------------|-------------|-----------|-------------|
|         |            |                    | (ft)       | (ft)        | (NAD83)   | (NAD83)     |
| L 08234 | Commercial | Snyder Ranches Inc | 120        | 90          | 32.659631 | -103.480596 |
| L 08234 | Commercial | Snyder Ranches Inc | 106        | 60          | 32.661439 | -103.497823 |
| S       |            |                    |            |             |           |             |
| L 08234 | Commercial | Snyder Ranches Inc | 126        | 80          | 32.656775 | -103.483832 |
| S2      |            |                    |            |             |           |             |
| L 09569 | Dol        | Klein Ranch        | 80         | 30          | 32.655014 | -103.481643 |
| L 14208 | Exp        | Snyder Ranches Inc | 78         | 0           | 32.667816 | -103.489066 |
| POD 1   |            |                    |            |             |           |             |

In lieu of recent groundwater sample collection and chemical analysis, Geolex conducted a review of *Geology and Ground-Water Conditions in Southern Lea County, New Mexico* (Nicholson and Clebsch, 1961) to identify published groundwater data representative of nearby water wells in the area (within less than 10 miles) of the proposed White Russian AGI #1 well. Table 7 summarizes the four wells identified in this review and the results of those chemical analyses.

Table 7. Chemical analysis results of samples collected from water wells in the area of the proposed White Russian AGI #1 (Nicholson and Clebsch, 1961. *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*)

| Historical  | Location   | Depth | Ca   | Na+K | HCO <sub>3</sub> | SO <sub>4</sub> | Cl   | $NO_3$ | Hardness | рН  |
|-------------|------------|-------|------|------|------------------|-----------------|------|--------|----------|-----|
| Owner       | (T-R-S)    | (ft)  | (eq) |      |                  |                 |      |        |          |     |
| Scharbauer  | 19S-34E-9  | 33    | 430  | 675  | 189              | 1680            | 560  | 139    | 1340     | 7.1 |
| Cattle Co.  |            |       |      |      |                  |                 |      |        |          |     |
| Tom Green   | 19S-36E-35 | 43    | -    | -    | -                | 212             | 31   | -      | -        | -   |
| S.P. Jordan | 19S-36E-32 | 32    | 84   | 158  | 261              | 225             | 79   | 6.8    | 222      | -   |
| H.S. Record | 20S-36E-15 | 50    | -    | -    | 304              | 1840            | 1080 | -      | -        | -   |

Our analysis confirms that the proposed well poses no risk of contaminating groundwater in the area as (1) the proposed well design includes material considerations to protect shallow groundwater resources and multiple casing strings that provide redundant physical barriers isolating groundwater, and (2) there are no identified conduits that would facilitate migration of injected fluids to freshwater-bearing depth intervals.

# 4.6 RESERVOIR CHARACTERIZATION TO SUPPORT GEO-MODELING AND INJECTION SIMULATION ASSESSMENT

As it is critical to verify that the proposed Siluro-Devonian injection reservoir can accommodate the requested 12 MMSCFD of TAG, within anticipated surface operating pressure limitations, Geolex has

completed detailed reservoir characterization, reservoir modeling, and injection simulation evaluations, which leverage all available, local Siluro-Devonian well logs, including raster logs and LAS data. Analysis of these data has allowed for the development of a reservoir characterization model, structural mapping, and fault interpretations. Furthermore, through petrophysical analysis calibrated to an internal Geolex proprietary rock database, a detailed characterization of Siluro-Devonian porosity development and the interconnectivity of porous strata has been completed. Subsequent injection simulations clearly demonstrate the proposed Siluro-Devonian injection reservoir is capable of accommodating TAG injection up to 12 MMSCFD.

From petrophysical, stratigraphic, and reservoir analysis, significant porosity development produced from karst dissolution processes is apparent and is highly interconnected across the greater project area. Porosity development is most significant in the depth intervals of the upper Devonian, lower Wristen, and Fusselman formations strata. Based on mapped average effective porosity and net effective reservoir, Siluro-Devonian porosity attributes were determined to range from less than 1% to approximately 15%, with an average porosity of 5.0% within two miles of the White Russian AGI 1 location. Siluro-Devonian petrophysical models for offset logs and subsequent mapping were calibrated to an internal rock database and lithologies observed in mudlogs.

Figure 11 includes a map of fault features interpreted through the analysis of Lea Midstream AGI well project area. Generally, faults within the project area trend northwest to southeast, or less frequently, approximately northeast to southwest. In total, eight (8) faults are interpreted, which have been further subdivided into 31 fault segments, for the purpose of evaluating induced seismicity risk (discussed in Section 4.9). For all interpreted faults, the magnitude of offset (or fault throw) is less than the thickness of the Woodford Shale confining strata, and thus, does not compromise the ability to contain TAG within the proposed Siluro-Devonian injection reservoir.

From our review and analysis of all available geologic data, a reservoir characterization model was developed to be utilized for injection simulation investigations that assess the feasibility of TAG injection up to 12 MMSCFD. The results of these case simulations are discussed further in Section 4.7 and confirm the capability of the Siluro-Devonian injection reservoir in accommodating TAG injection volumes, as proposed and requested by Lea Midstream.

#### 4.7 ACID GAS INJECTION MODELING AND SIMULATION

To simulate the proposed injection scenario and characterize the resultant TAG injection plume, after 30 years of operation at the maximum daily injection rate of 12 MMSCFD, Geolex collaborated with Sproule to develop a reservoir characterization model and complete injection plume forecasts, informed by and incorporating the geologic and petrophysical analysis and resultant mapped porosity of the proposed injection reservoir. This modeling evaluation was completed utilizing Schlumberger Petrel to construct a geologic simulation grid informed by available well log data and derived petrophysical analysis, and rock data from analog wells, whereas, Schlumberger's Eclipse platform was then utilized to complete injection simulations representative of the injection scenario proposed for the White Russian AGI #1.

The reservoir characterization model is comprised of 171 simulation layers characterizing seven discrete depth intervals identified within the Siluro-Devonian reservoir. In total, the model grid is comprised of 4,099,896 cells. Based upon available and accessible data, faults are not interpreted or publicly reported within the immediate area of the White Russian AGI #1 (e.g. within the 2-mile radius of review). Within the greater project area, the reservoir characterization model includes subsurface fault features interpreted with well logs and literature, located 4.5 miles or greater from the White Russian AGI #1 (i.e., Horne et

al. 2021 Basement-Rooted Faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and Southeastern New Mexico).

As described previously in Section 4.0, utilizing this method, Siluro-Devonian reservoir porosity was determined to range from less than 1% to approximately 15%, with an average porosity of 5.0%. The distribution of porosity within the reservoir model is shown in Figure 12.

In defining permeability attributes, multiple data sources were utilized to identify baseline relationships between porosity and permeability, including injection reservoir test data, DST, injection well operating data, sidewall core porosity and permeability data, and published core-analysis data (e.g., Lucia et al., 1995). Permeability within the reservoir model, averaged by zone, ranges from 0.02 to 17.88 millidarcies (mD), with an average model permeability of 8.7 mD. The total model (all zones) permeability distribution is shown in Figure 12 and Table 8 below summarizes geologic model zones defined, zone thickness, and average model porosity and permeability, by zone.

Table 8. Summary of geologic model zone thickness and model porosity and permeability attributes

| Zone #                     | Thickness | Average Porosity (%) | Avg. Permeability |
|----------------------------|-----------|----------------------|-------------------|
|                            |           |                      | (mD)              |
| 1 - upper Devonian         | 230       | 3.7                  | 7.7               |
| 2 - lower Devonian         | 96        | 1.5                  | 5.8               |
| 3 - upper Wristen          | 200       | 3.0                  | 7.1               |
| 4 - lower Wristen          | 187       | 6.7                  | 21.9              |
| 5 - Wristen-Fusselman Seal | 151       | 1.9                  | 0.02              |
| 6 - upper Fusselman        | 319       | 4.2                  | 0.59              |
| 7 - lower Fusselman        | 255       | 4.8                  | 17.88             |

With the constructed geologic model, injection operations for the proposed White Russian AGI #1 wells were simulated (i.e., dynamic modeling) utilizing the Schlumberger Eclipse platform. Dynamic modeling was utilized to simulate injection of a mixed acid gas stream containing approximately 30% H<sub>2</sub>S and 70% CO<sub>2</sub> at a constant rate of 12 MMSCFD. Reservoir pressure conditions initially reflect a normally pressured system (0.456 psi/ft.) and to ensure a conservative estimate of plume size, the injection simulations do not consider acid gas dissolution into existing formations.

In support of this C-108 application, two dynamic model simulations are presented, which estimate the size and characteristics of the resultant TAG injection plume, following operations of the White Russian AGI #1 well at a shared daily injection volume of up to 12 MMSCFD. Case 1 reflects injection well operations in a subsurface environment in which faults are fully transmissive of fluids, while Case 2 considers faults to be non-transmissive of fluids. From these simulation end members, conservative estimates of plume size and migration directions are identified.

The results of Case 1 and Case 2 injection simulations are illustrated in Figures 13 and 14, for transmissive and non-transmissive faults, respectively. Following the 30-year injection period, the resultant TAG plume is anticipated to occupy an area of approximately 3.24 square miles generally extending up to 1.4 miles from the Lea Midstream Treatment Facility. For all case simulations, results indicate that injection operations, up to 12.MMSCFD, can be maintained for the complete simulation period. Furthermore, injection activities at the proposed daily rates are sustained within anticipated and currently approved surface injection pressure limitations.

# 4.8 POTENTIAL FOR VERTICAL MIGRATION OF ACID GAS TO OVERLYING PRODUCTIVE ZONES

Results of the injection system simulations predict that no fraction of acid gas injectate will exhibit a dispersion pattern such that gas reaches local fault features to the northeast. In the unlikely event that acid gas injectate could migrate to the northeastern, prominent fault system, an existing Devonian oil field (greater than 4.4 miles from the proposed AGI well location) shows structural trapping with a three-way closure geometry. Three-way closure necessitates either sealing faults or laterally adjacent sealing lithologies. Therefore, migrating fluids will not encounter vertical conduits beyond the caprock into overlying strata. Based on this analysis, we determined these sealed faults could not result in an escape of TAG from the injection zone.

In the local area of the White Russian AGI #1 well, wells and associated drilling fluid density data are sparse within Barnett to deeper strata. With the offset Siluro-Devonian SWD well, the Wildrye #1 SWD #1, mud weights utilized range from 9.0 to 12.3 pounds per gallon (ppg) above the proposed Siluro-Devonian injection reservoir. For those wells identified that penetrate the proposed injection reservoir, available fluid records (i.e., mudlogs, well headers, and scout tickets) indicate utilization of less dense fluids (commonly at 8.3 ppg) while drilling the Siluro-Devonian section. These records support the interpretation that overlying Wolfcamp to Woodford zones in this area are generally over-pressured with respect to the normally pressured target injection reservoir.

Over-pressured reservoir conditions within the Lower Bone Springs to Woodford formation strata have been recognized in many areas of the eastern Delaware Basin (Luo et al., 1994). Rittenhouse et al. (2016) generated a regional pore-pressure model of the Delaware Basin informed by over 23,700 drilling fluid recordings and more than 4,000 drill-stem and fracture injection tests. As shown in Figure 15, these compiled fluid records and testing operations indicate increased pore-pressure gradients from Lower Bone Springs to Woodford Formation strata expressed in the utilization of heavier drilling fluids. Normal pressure conditions are observed to return underlying the Woodford Shale.

Based on the record of local drilling fluids utilized and extensive records compiled by Rittenhouse et al. (2016), the proposed Siluro-Devonian injection reservoir at this location is anticipated to be underpressured with respect to overlying strata. Under these conditions, there is no potential for the vertical migration of acid gas out of the target reservoir as the pressure differential between the over- and underpressured intervals will act as a barrier impeding vertical migration, even along potential conduits.

## 4.9 INDUCED-SEISMICITY RISK ASSESSMENT

To evaluate the potential for seismic events in response to injected fluids, an induced-seismicity risk assessment was conducted in the area of the proposed White Russian AGI #1 well. This estimate (1) identifies all known Siluro-Devonian fault systems within approximately 8 miles of the White Russian AGI #1 BHL, (2) models the impact of eight injection wells over a 30-year injection period during proposed AGI operations and includes prior historical SWD injections, and (3) estimates the fault slip probability associated with the eight-well injection scenario. The analysis was completed utilizing the Stanford Center for Induced and Triggered Seismicity's (SCITS) Fault Slip Potential (FSP) modeling platform.

Based on the detailed review of internal work (described previously in Section 4.6), Geolex identified eight (8) faults, located within approximately eight (8) miles of the White Russian AGI #1, and generally striking northwest to southeast, and northeast to southwest (Figure 11). Due to the low number of injection wells in close proximity to these features, substantial distance to known faults (greater than four

miles), and considering the relatively small injection volume proposed for the White Russian AGI #1 well (equivalent to approximately 4,962 barrels per day ), operation of the White Russian AGI #1 well, is not anticipated to contribute significantly to the risk for injection-induced fault slip. To verify these structures would not be adversely affected by operation of the AGI wells, as proposed, a model simulation was performed.

To calculate the fault slip probability for this injection scenario, input parameters characterizing the local stress field, reservoir characteristics, subsurface features, and injected fluids are required. Parameters utilized and their sources for this study are included in Table 9 below. Additionally, Table 10 and Figure 17 detail the injection volume characteristics and geographic locations of injection wells included in this assessment.

For this study, limitations of the FSP model require a conservative approach be taken in determining the fault slip probability of the eight-well injection scenario. Specifically, the FSP model is only capable of considering a single set of fluid characteristics and this study aims to model a scenario that includes saltwater disposal (SWD) wells and acid gas injection wells. To ensure a conservative fault slip probability estimate, the proposed AGI well was modeled utilizing the fluid characteristics of produced water. This approach yields a more conservative model prediction as produced water displays greater density, dynamic viscosity, and is significantly less compressible than acid gas. Characteristics of acid gas at anticipated reservoir conditions, as modeled by AQUAlibrium<sup>TM</sup>, are shown in Table 9.

Table 9. Input parameters and source material for FSP simulation

| Modeled Parameter                             | Input<br>Value          | Variability (+/-) | UOM                  | Source                                                                     |
|-----------------------------------------------|-------------------------|-------------------|----------------------|----------------------------------------------------------------------------|
| Stress                                        |                         |                   |                      |                                                                            |
| Vertical Stress Gradient                      | 1.05                    | 0.105             | psi ft <sup>-1</sup> | Nearby well estimate                                                       |
| Max Horizontal Stress Direction               | N70E                    | 0                 | Deg.                 | Lund Snee & Zoback, 2018                                                   |
| Reference Depth                               | 11,500                  | 0                 | ft                   | Nearby well evaluation                                                     |
| Initial Res. Pressure Gradient                | 0.456                   | 0.0456            | psi ft <sup>-1</sup> | Nearby Well Evaluation                                                     |
| $A_{\Phi}$ Parameter                          | 0.65                    | 0.065             | -                    | Lund Snee & Zoback, 2018                                                   |
| Reference Friction Coefficient (µ)            | 0.6                     | 0.06              | -                    | Standard Value                                                             |
| Hydrologic Aquifer Thickness Porosity Average | 1,414                   | 155               | ft %                 | Nearby well evaluation  Nearby well evaluation                             |
| Permeability Average                          | 0.2                     | 0.0               | mD                   | Petrophysical analysis of nearby well data, calibrated to analog core data |
| Material properties                           |                         |                   |                      |                                                                            |
| Density (Water)                               | 1,050                   | 20                | kg m <sup>-3</sup>   | Adjusted to reported salinities                                            |
| Dynamic Viscosity (Water)                     | 0.0008                  | 0.0001            | Pa.s                 | Standard Value                                                             |
| Fluid Compressibility (water)                 | 3.6 x 10 <sup>-10</sup> | 0                 | Pa <sup>-1</sup>     | Standard Value                                                             |

| Rock Compressibility         | 1.08 x 10 <sup>-9</sup> | 0 | Pa <sup>-1</sup>   | Standard Value            |
|------------------------------|-------------------------|---|--------------------|---------------------------|
| Asid (2) 212 0F (006         |                         |   |                    |                           |
| Acid gas @ 213 °F, 6,986 psi |                         |   |                    |                           |
| Density                      | 806.80                  | - | kg m <sup>-3</sup> | AQUAlibrium <sup>TM</sup> |
| Dynamic Viscosity            | 0.0000804               | - | Pa.s               | AQUAlibrium <sup>TM</sup> |

Daily maximum injection volumes utilized in the FSP model range from 916 to 25,000 bpd (Table 10). In submission of this application, Lea is requesting approval to operate the proposed White Russian AGI #1 well for a period of at least 30 years. This simulation includes a history matching period of thirty-one additional years to ensure the simulation results also consider the historical impact of injection wells that have been operating since 1994. Figure 19 shows the resultant pressure front, single well radial solutions, and the predicted pressure change at the fault segment midpoints; Figure 20 (scenario 1) shows the model-predicted fault slip potential for all wells operating at maximum capacity, including the White Russian AGI #1. Figure 21 (scenario 2) shows the model-predicted fault slip potential with historical and active SWD wells only and excludes the proposed AGI well to evaluate any additional potential risk created by the proposed White Russian AGI #1 injection operations. For both scenarios 1 and 2, the predicted pressure change along each fault segment, model-derived pressure change required to induce slip, and model-predicted actual pressure change are summarized in Table 10 below. Scenario 1 and 2 generated identical results for all results of fault slip potential, demonstrating the negligible impact operation of the proposed AGI well has on total induced-seismicity risk.

Table 10. Location and operating parameters of injection wells modeled in FSP assessment

| # | API          | Well Name           | Latitude     | Longitude    | Volume     | Start | End  |
|---|--------------|---------------------|--------------|--------------|------------|-------|------|
| # | AII          | WEILINAILLE         |              |              |            |       |      |
|   |              |                     | (NAD83)      | (NAD83)      | (bbls/day) | Year  | Year |
| 1 | TBD          | White Russian AGI   | 32.033013    | -103.278384  | 4592       | 2025  | 2055 |
|   |              | #1                  |              |              |            |       |      |
| 2 | 30-025-51764 | Wildrye Fee SWD     | 32.652154    | -103.471636  | 25,000     | 2025  | 2055 |
|   |              | #1                  |              |              |            |       |      |
| 3 | 30-025-42461 | Wild Cobra 1 State  | 32.695237179 | -103.517073  | 3634       | 2015  | 2055 |
|   |              | #2                  |              |              |            |       |      |
| 4 | 30-025-03137 | Reeves 26 #4        | 32.7157784   | -103.431290  | 2490       | 2008  | 2023 |
| 5 | 30-025-03142 | State Section 27 #2 | 32.7203751   | -103.438820  | 9225       | 1994  | 2024 |
| 6 | 30-025-03150 | South Vacuum Unit   | 32.7057762   | -103.425850  | 4449       | 2005  | 2055 |
|   |              | #351                |              |              |            |       |      |
| 7 | 30-025-29021 | Arco State SWD #2   | 32.7415695   | -103.459976  | 916        | 1994  | 2024 |
| 8 | 30-025-37122 | South Vacuum #274   | 32.7138824   | -103.4389191 | 4878       | 2014  | 2055 |

Table 11. Summary of model simulation results showing the required pressure change to induce fault slip, actual pressure changes as predicted by the FSP model, and probability of fault slip at the end of the

30-year injection scenario. Results for Scenario 1 and Scenario 2 are identical in model results.

| $\Delta$ Pressure necessary | Actual Δ Pressure at fault                                                                                                                                                 | Fault Slip Potential at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |                                                                                                                                                                            | year 2055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             | ·                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3465                        | 37                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4102                        | 301                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3054                        | 1146                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1498                        | 1094                                                                                                                                                                       | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4336                        | 1052                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2757                        | 568                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3072                        | 2                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4454                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4160                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2681                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2437                        |                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3535                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1292                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3060                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4115                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3980                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1624                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1116                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1177                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1117                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4520                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3920                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3939                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4514                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2322                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4420                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1015                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4490                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4525                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 4391                        | 0                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                             | to induce fault slip 2179 3465 4102 3054 1498 4336 2757 3072 4454 4160 2681 2437 3535 1292 3060 4115 3980 1624 1116 1177 1117 4520 3920 3939 4514 2322 4420 1015 4490 4525 | to induce fault slip         midpoint at year 2055           2179         7           3465         37           4102         301           3054         1146           1498         1094           4336         1052           2757         568           3072         2           4454         0           4160         0           2681         0           2437         0           3535         0           1292         0           3060         0           4115         0           3980         0           1624         0           1116         0           1177         0           1117         0           4520         0           3939         0           4514         0           2322         0           4420         0           1015         0           4490         0           4525         0 |  |  |

Generally, faults considered in this assessment are predicted by the FSP model to have very low to one moderate potential probability for injection-induced slip and the proposed White Russian AGI #1 operations are not predicted to contribute significantly to the total resultant pressure front and resultant fault slip probabilities. As per a recently released report on February 11th of 2025 by New Mexico Oil Conservation Division, limited seismic activity was observed near the South Vacuum fault system approximately 5.8 to 8 miles to the northeast in respect to the proposed White Russian AGI #1 BHL. This reported seismic activity was of limited magnitude, typically less than 2.5 to a maximum of 3.3 and of a very limited, discrete time window of June 27th to June 30th of 2020. No prior or additional seismic

events for the South Vacuum fault system or within the area of the proposed AGI well have been reported by USGS or the New Mexico Seismological Network.

Within both modeled scenarios, there is minor potential for fault slip near an interpreted, mapped fault bend (i.e., fault segments 4 and 5) immediately adjacent to active SWD wells. The northeastern basement faults, including interpreted fault bends or potential fault en-echelon 'steps' (i.e., fault segments 4, 5, and 6 of the South Vacuum fault), are based upon well control only. No 2D or 3D seismic data has been made available to evaluate the precise fault geometries of the northeastern South Vacuum basement fault system, however, when comparing scenarios 1 and 2 (Figures 19 and 20), the model results clearly demonstrate that proposed volumes and duration of White Russian AGI #1 are inconsequential to any risk for slip probability through the 30-year scenario. Furthermore, radial pressure solutions calculated for each injection well illustrate that the operation of the proposed White Russian AGI #1 well will have little impact to pressure conditions near any identified or interpreted faults. Therefore, there is no foreseen risk for seismic activity both for the limited, historical activity nor any other known faults within the region of the proposed White Russian AGI #1.

# 5.0 OIL AND GAS WELLS IN THE WHITE RUSSIAN AGI #1 AREA OF REVIEW AND PROJECT AREA

In support of this application, Geolex conducted, on behalf of Lea Midstream, a detailed review of the area within one-mile and two-miles of the proposed White Russian AGI #1 location. This review is necessary to ensure all oil and gas operators, and all interested parties have been identified, such that they can be provided notice of the NMOCC hearing to consider this matter and be provided complete copies of the C-108 application and request.

For the purposes of evaluating and identifying oil and gas activities, operators, and other interested parties within the project area, the one-mile Area of Review (AOR) is displayed as a one-mile buffer area around the surface- and bottom-hole location of the White Russian AGI #1 well, and along the deviated wellbore path of White Russian AGI #1.

#### 5.1 OIL AND GAS WELLS IN THE WHITE RUSSIAN AGI #1 AREA OF REVIEW

Appendix A summarizes in detail all NMOCD recorded wells within a one- and two-mile radius of the proposed deviated White Russian AGI #1. These wells are shown in Figure A-1 and include active, plugged, and permitted well locations. Table A-1 summarizes all wells within two miles of the proposed AGI well and wells located within one mile of the proposed AGI well are included in Table 14 below.

In total, there are 37 wells within a one-mile radius of the proposed White Russian AGI #1 surface- and bottom-hole locations. Specific information relating to active, new, and plugged wells is summarized in Appendix A and Table 12, and their geographic locations are shown in Figure 20. Of these wells, 13 are active and 14 have been plugged. Additionally, there are no locations permitted that have not yet been drilled or completed. Specific information relating to active and plugged wells is summarized. Active wells are primarily producing from the Tansill-Yates-Seven Rivers shallow depth intervals, as well as the Lower Bone Spring and Wolfcamp pools, all of which, overly and are isolated from the proposed injection zone.

Table 12. Wells located within one mile of proposed White Russian AGI #1

| API        | Well Name                             | Associated Pools           | Well<br>Type | Well<br>Status | Lat<br>(NAD83) | Long<br>(NAD83 | Depth (ft) |
|------------|---------------------------------------|----------------------------|--------------|----------------|----------------|----------------|------------|
| 3002541152 | Airstrip Fee Com #001H                | Bone Spring                | Oil          | Active         | 32.6684        | -103.4897      | 10586      |
| 3002551344 | Beefalo 7 6 ST COM #401H              | Bone Spring;<br>Wolfcamp   | Oil          | New            | 32.6668        | -103.4959      | 0          |
| 3002551345 | Beefalo 7 6 ST COM #404H              | Bone Spring                | Oil          | New            | 32.6668        | -103.4957      | 0          |
| 3002551346 | Beefalo 7 6 ST COM #408H              | Bone Spring                | Oil          | New            | 32.6668        | -103.4956      | 0          |
| 3002551347 | Beefalo 7 6 ST COM #713H              | Bone Spring;<br>Wolfcamp   | Oil          | New            | 32.6668        | -103.4958      | 0          |
| 3002551348 | Beefalo 7 6 ST COM #716H              | Bone Spring                | Oil          | New            | 32.6668        | -103.4957      | 0          |
| 3002542751 | Cuatro Hijos Fee #002C                | Bone Spring                | Oil          | Cancelled      | 32.654         | -103.4773      | 0          |
| 3002542276 | Cuatro Hijos Fee #003H                | Bone Spring                | Oil          | Active         | 32.6538        | -103.4817      | 10797      |
| 3002541752 | Cuatro Hijos Fee #004H                | Bone Spring                | Oil          | Active         | 32.6539        | -103.4865      | 10833      |
| 3002542468 | Cuatro Hijos Fee #008H                | Bone Spring                | Oil          | Active         | 32.6538        | -103.4849      | 9785       |
| 3002545332 | Hereford 20 29 B2AH ST<br>COM #001H   | Bone Spring                | Oil          | New            | 32.6525        | -103.4756      | 10972      |
| 3002550170 | Mariner E2w2 07 06 W1 ST COM #001H    | Wolfcamp                   | Oil          | Cancelled      | 32.6668        | -103.4957      | 0          |
| 3002550171 | Mariner W2e2 07 06 W1 ST<br>COM #001H | Wolfcamp                   | Oil          | Cancelled      | 32.6668        | -103.4956      | 0          |
| 3002526735 | Mescalero Ridge #001                  | Bone Spring                | Oil          | P&A            | 32.6587        | -103.4817      | 13420      |
| 3002528507 | Mescalero Ridge #002                  | Bone Spring                | Misc.        | P&A            | 32.6661        | -103.483       | 11200      |
| 3002528526 | Mescalero Ridge #008                  | Bone Spring                | Oil          | P&A            | 32.6551        | -103.486       | 10267      |
| 3002529945 | Amoco "E" Fee                         | Queen                      | Oil          | P&A            | 32.6582        | -103.4903      | 10370      |
| 3002523030 | Hooper "A" #1                         | Bone Spring                | Oil          | P&A            | 32.6737        | -103.4908      | 10148      |
| 3002529145 | Richardson #1                         | Bone Spring                | Oil          | P&A            | 32.6519        | -103.4812      | 10170      |
| 3002528945 | Mescalero Ridge C #1                  | Bone Spring                | Oil          | P&A            | 32.6555        | -103.4813      | 10142      |
| 3002503167 | Gulf Roberts #1-J                     | No Data                    | Oil          | P&A            | 32.6587        | -103.4774      | 5350       |
| 3002529894 | Mobile Mescalero Ridge #1             | Wolfcamp                   | Oil          | P&A            | 32.6621        | -103.4777      | 11097      |
| 3002528677 | Mescalero Ridge B Com #1              | Bone Spring                | Oil          | P&A            | 32.6555        | -103.4769      | 10100      |
| 3002529136 | Bell State #1                         | Bone Spring                | Oil          | P&A            | 32.6556        | -103.4728      | 10200      |
| 3002528561 | Mescalero Ridge A Com#1               | Bone Spring                | Oil          | P&A            | 32.6587        | -103.4731      | 11191      |
| 3002528623 | Mescalero Ridge Unit A #3             | No Data                    | Oil          | Cancelled      | 32.666         | -103.4731      | 0          |
| 3002528676 | Mescalero Ridge #4                    | No Data                    | Oil          | Cancelled      | 32.6624        | -103.4774      | 0          |
| 3002528640 | Mescalero Ridge #9                    | No Data                    | Oil          | Cancelled      | 32.6514        | -103.4736      | 0          |
| 3002521149 | Reddy Gulf State #001                 | Queen                      | Oil          | P&A            | 32.6661        | -103.5032      | 10950      |
| 3002529041 | Reddy Gulf State #002                 | Queen                      | Oil          | Active         | 32.6661        | -103.4989      | 10270      |
| 3002529568 | Reddy Gulf State #003                 | Queen; Grayburg            | Oil          | Active         | 32.6634        | -103.5042      | 5950       |
| 3002551764 | Wildrye Fee SWD #001                  | Devonian-<br>Silurian      | SWD          | New            | 32.6522        | -103.4716      | 0          |
| 3002525804 | Scharb Com #001                       | Queen; Bone<br>Spring      | Oil          | P&A            | 32.6733        | -103.4946      | 10220      |
| 3002528616 | Lea UA State #2 Unit K                | No Data                    | Oil          | Cancelled      | 32.6592        | -103.4644      | 0          |
| 3002529626 | Serendipity State #1-N                | No Data                    | Oil          | Cancelled      | 32.6697        | -103.4983      | 0          |
| 3002535054 | Toro 16 State #001                    | Bone Spring; San<br>Andres | Oil          | Cancelled      | 32.6554        | -103.4683      | 11200      |

Within two miles of the White Russian AGI #1 well, there are 169 wells (Appendix A, Figure A-1, Table A-1). Of these wells, there are 26 active wells, 67 permitted locations, and 76 wells that have been plugged and abandoned. Similar to the one-mile AOR, wells primarily produce from shallow geologic interval (i.e., Tansill-Yates-Seven Rivers), as well as the Bone Spring and Wolfcamp formations. In addition to this, there is one active gas well, within two miles, producing from the Strawn Formation.

There are two wells within two miles of the White Russian AGI #1 that penetrate the proposed Siluro-Devonian injection interval (Table 13). These wells are located greater than one mile from the proposed White Russian AGI #1 bottom-hole location and include the Toro 21 State Com #001Y (API: 30-025-34492) and the Wildrye Fee SWD #001 (API: 30-025-51764). Although the Toro 21 State well was drilled such that it penetrated the proposed injection zone, the well was plugged back to shallower depth intervals before being plugged and abandoned. The Toro 21 State well was properly cemented through the injection zone and is not anticipated to be negatively affected by the operation of the White Russian AGI #1 well. The Wildrye Fee SWD #1 is located greater than 1.1 miles to the southeast in reference to the proposed White Russian AGI #1 bottom hole and based upon injection modeling, is not expected to inhibit or complicate White Russian AGI #1 operations. All relevant plugging reports have been included in Appendix A.

Table 13. Wells located within two miles of the White Russian AGI #1 well that penetrate the proposed

injection interval

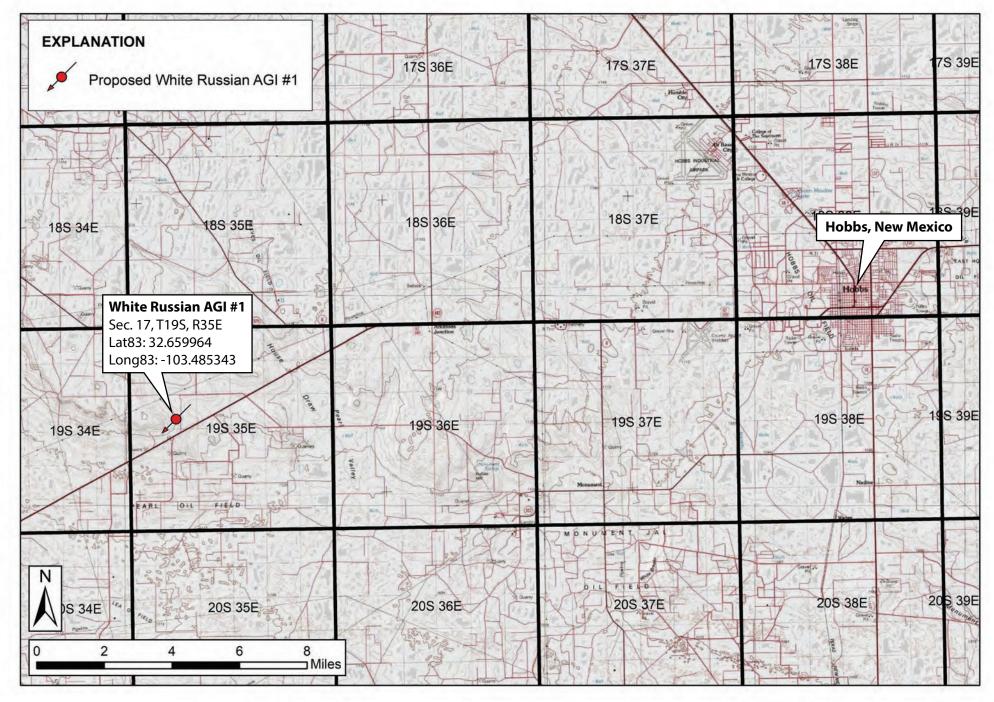
| API        | Well Name            | Pool                  | Status  | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Total<br>Depth<br>(ft) | Mi.<br>from<br>BHL |
|------------|----------------------|-----------------------|---------|----------------------|-----------------------|------------------------|--------------------|
| 3002534492 | Toro 21 ST COM #001Y | Wolfcamp,<br>Devonian | Plugged | 32.6469              | -103.4561             | 13960                  | 2.05               |
| 3002551764 | Wildrye Fee SWD #001 | Devonian-<br>Silurian | Active  | 32.6522              | -103.4716             | 0                      | 1.12               |

# 6.0 IDENTIFICATION AND REQUIRED NOTIFICATION OF OPERATORS, SUBSURFACE LESSEES, AND SURFACE OWNERS WITHIN THE AREA OF REVIEW

In developing this C-108 application, a detailed review of Lea County land records was completed to obtain a listing of all operators, oil and gas mineral leases, and surface owners within a one-mile radius of the proposed AGI well. Appendix B includes the results from that review.

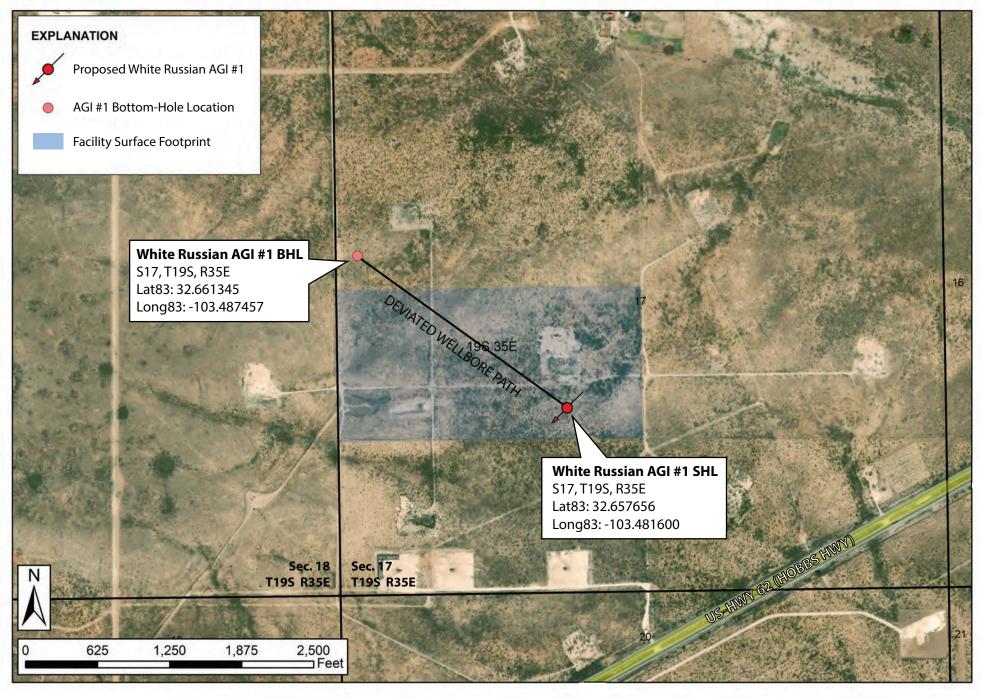
Table B-1 summarizes the surface owners, operators, and lessees in the one-mile area of review. The table is inclusive of all persons that will be provided notice and a complete copy of the C-108 application. Figure B-1 shows the location of the surface owners and active operators, and Figure B-2 shows leaseholders and mineral ownership within one mile of the proposed White Russian AGI #1 location.

Upon issuance of an NMOCC hearing date to consider the matter of Lea Midstream's application, all interested parties identified will be provided with written notice of the associated NMOCC hearing and will be provided complete copies of the Form C-108 application. Appendix B includes an example notification letter that will be provided to interested parties, as well as an example public notice that may be utilized by Commission staff or published in local newspapers, as necessary.


# 7.0 AFFIRMATIVE STATEMENT OF LACK OF HYDRAULIC CONNECTION BETWEEN THE PROPOSED INJECTION ZONE AND KNOWN SOURCES OF DRINKING WATER

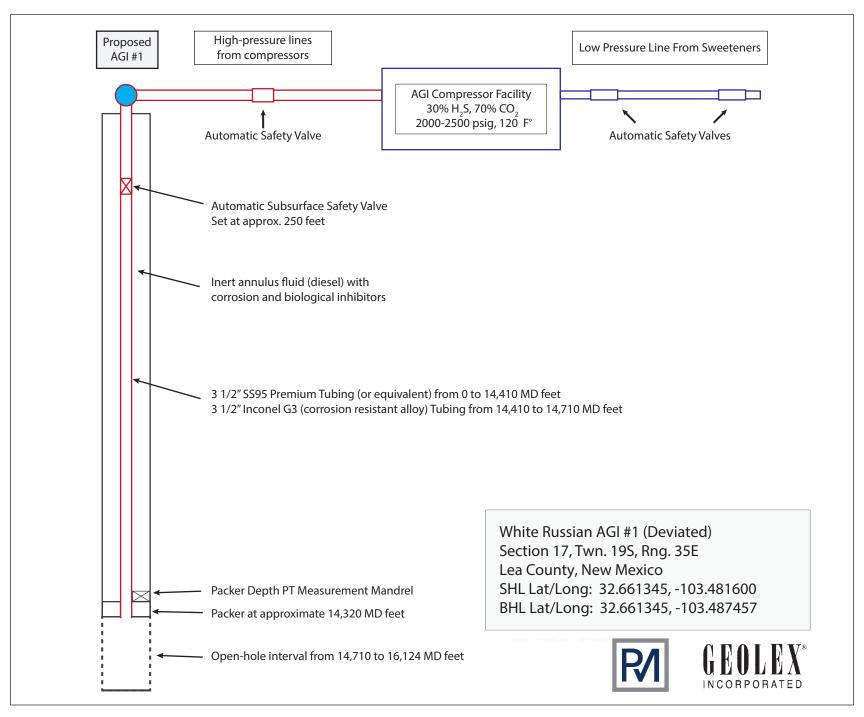
As part of the work performed to support this application, a detailed investigation of the structure, stratigraphy, and hydrogeology of the area surrounding the proposed White Russian AGI #1 well has been performed. The investigation included the analysis of available geologic data and hydrogeologic data from wells and literature identified in Section 3.0, 4.0, and 5.0 above, including related appendices. Based on this investigation and the analysis of these data, it is clear that there are no open fractures, faults, or other structures which could potentially result in the communication of fluids between the proposed injection zone and any known sources of drinking water or oil/gas production in the vicinity, as described above in Section 4.0 and 5.0 of this application.

I have reviewed this information and affirm that it is correct to the best of my knowledge.


David A. White, P.G. Vice President – Geolex, Inc.® Consultant to Lea Midstream, LLC

31




**Figure 1.** General location map of the proposed White Russian AGI #1 well in Section 17 (T19S, R35E), approximately 20 miles west of Hobbs, NM





**Figure 2.** Detailed location map showing the proposed White Russian AGI #1 well and the surface area in which the Lea Midstream Facility is being constructed





**Figure 3.** General schematic of surface facilities and proposed White Russian AGI #1 well. Note all geographic coordinates are reported as NAD83

Released to Imaging: 5/25/2025 12:11:23 P. reported as NAD83



#### White Russian AGI #1 Lea Midstream -- S17, T19S, R3E



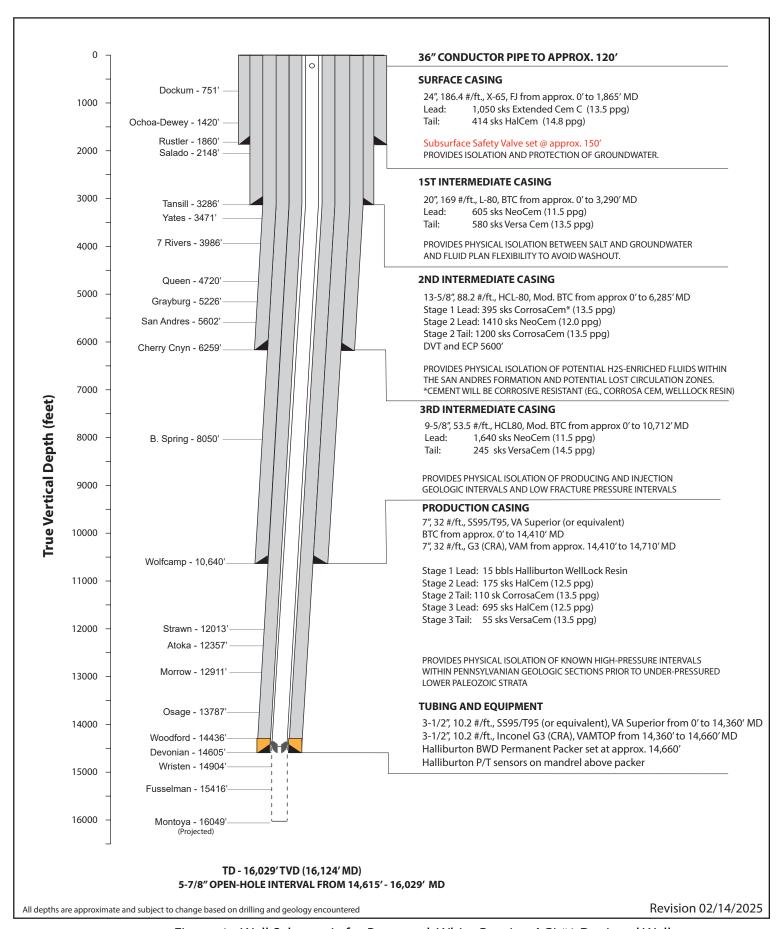
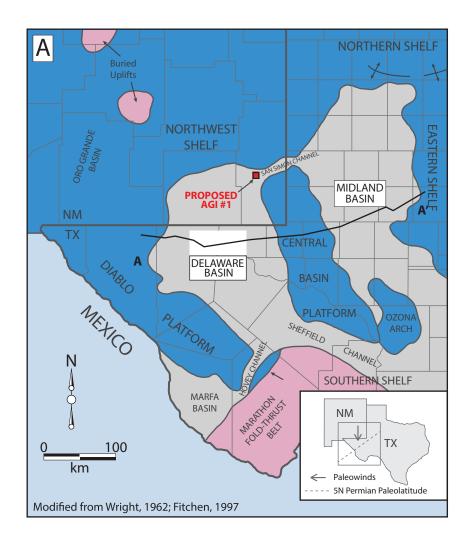




Figure 4. Well Schematic for Proposed White Russian AGI #1 Deviated Well.







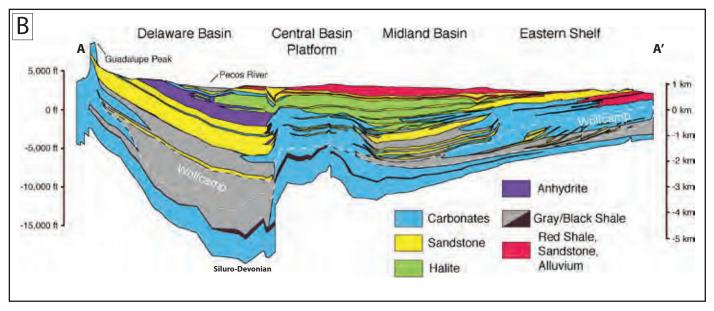



Figure 5. Structural setting (Panel A) and general lithology and schematic (Panel B) of the Perian Basin





## Generalized stratigraphic correlation chart for the Permian Basin region

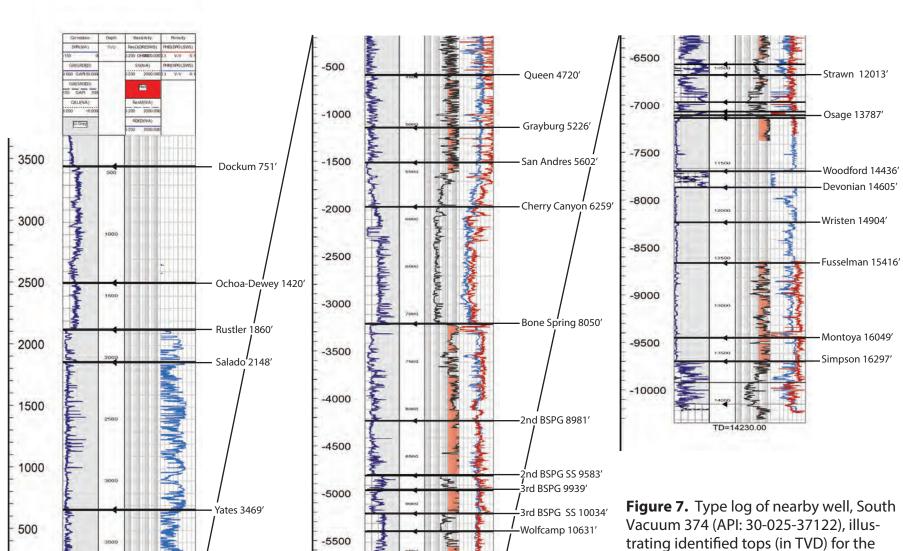

| SYSTEM        | SERIES/<br>STAGE                    | NORTHWEST<br>SHELF                                            | CENTRAL BASIN<br>PLATFORM                                     | MIDLAND BASIN & EASTERN SHELF                                   | DELAWARE<br>BASIN                                                   | VAL VERDE<br>BASIN                                                  |
|---------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
|               | OCHOAN                              | DEWEY LAKE<br>RUSTLER<br>SALADO                               | DEWEY LAKE<br>RUSTLER<br>SALADO                               | DEWEY LAKE<br>RUSTLER<br>SALADO                                 | DEWEY LAKE<br>RUSTLER<br>SALADO<br>CASTILE                          | RUSTLER<br>SALADO                                                   |
| PERMIAN       | GUADALUPIAN                         | TANSILL YATES SEVEN RIVERS QUEEN GRAYBURG SAN ANDRES GLORIETA | TANSILL YATES SEVEN RIVERS QUEEN GRAYBURG SAN ANDRES GLORIETA | TANSILL YATES SEVEN RIVERS QUEEN GRAYBURG SAN ANDRES SAN ANGELO | DELAWARE MT. GROUP<br>BELL CANYON<br>CHERRY CANYON<br>BRUSHY CANYON | TANSILL<br>YATES<br>SEVEN RIVERS<br>QUEEN<br>GRAYBURG<br>SAN ANDRES |
|               | LEONARDIAN                          | CLEARFORK<br>YESO<br>WICHITA<br>ABO                           | CLEARFORK<br>WICHITA                                          | LEONARD<br>SPRABERRY, DEAN                                      | ★ BONE SPRING                                                       | LEONARD                                                             |
|               | WOLFCAMPIAN                         | WOLFCAMP                                                      | WOLFCAMP                                                      | WOLFCAMP                                                        | ★WOLFCAMP                                                           | WOLFCAMP                                                            |
|               | VIRGILIAN                           | CISCO                                                         | CISCO                                                         | CISCO                                                           | CISCO                                                               | CISCO                                                               |
|               | MISSOURIAN                          | CANYON                                                        | CANYON                                                        | CANYON                                                          | CANYON                                                              | CANYON                                                              |
| PENNSYLVANIAN | DESMOINESIAN                        | STRAWN                                                        | STRAWN                                                        | STRAWN                                                          | <b>★</b> STRAWN                                                     | STRAWN                                                              |
|               | ATOKAN                              | ATOKA BEND —                                                  | ATOKA BEND —                                                  | ATOKA BEND                                                      | ★ATOKA BEND                                                         | (ABSENT)                                                            |
|               | MORROWAN                            | MORROW                                                        | (ABSENT)                                                      | (ABSENT ?)                                                      | <b>★</b> MORROW                                                     | (ABSENT)                                                            |
| MISSISSIPPIAN | CHESTERIAN<br>MERAMECIAN<br>OSAGEAN | CHESTER<br>MERAMEC<br>OSAGE                                   | CHESTER BARNETTY                                              | CHESTER BARNETTY                                                | CHESTER *BARNETT*                                                   | MERAMEC "BARNETT"                                                   |
|               | KINDERHOOKIAN                       | KINDERHOOK                                                    | KINDERHOOK                                                    | KINDERHOOK                                                      | KINDERHOOK                                                          | KINDERHOOK                                                          |
| DEVONIAN      |                                     | WOODFORD<br>DEVONIAN                                          | WOODFORD ———<br>DEVONIAN                                      | WOODFORD ———<br>DEVONIAN                                        | WOODFORD ———<br>DEVONIAN                                            | WOODFORD<br>DEVONIAN                                                |
| SILURIAN      |                                     | SILURIAN<br>(UNDIFFERENTIATED)                                | SILURIAN SHALE<br>FUSSELMAN                                   | SILURIAN SHALE<br>FUSSELMAN                                     | MIDDLE SILURIAN<br>FUSSELMAN                                        | MIDDLE SILURIAN<br>FUSSELMAN                                        |
| 00000/4/5/47  | UPPER                               | MONTOYA                                                       | MONTOYA                                                       | SYLVAN<br>MONTOYA                                               | SYLVAN<br>MONTOYA                                                   | SYLVAN<br>MONTOYA                                                   |
| ORDOVICIAN    | MIDDLE                              | SIMPSON                                                       | SIMPSON                                                       | SIMPSON                                                         | SIMPSON                                                             | SIMPSON                                                             |
|               | LOWER                               | ELLENBURGER                                                   | ELLENBURGER                                                   | ELLENBURGER                                                     | ELLENBURGER                                                         | ELLENBURGER                                                         |
| CAMBRIAN      | UPPER                               | CAMBRIAN                                                      | CAMBRIAN                                                      | CAMBRIAN                                                        | CAMBRIAN                                                            | CAMBRIAN                                                            |
| PRECAMBRIAN   |                                     |                                                               |                                                               |                                                                 |                                                                     |                                                                     |

Figure 6. General stratigraphy and producing zones (red stars) in the immediate area of the proposed White Russian AGI #1 well (Yang and Dorobek, 1995)





## Type Log of White Russian AGI #1



**Figure 7.** Type log of nearby well, South Vacuum 374 (API: 30-025-37122), illustrating identified tops (in TVD) for the White Russian AGI #1. Estimated tops for the proposed AGI well are included in Table 4.

0

7 Rivers 3980'

-6000





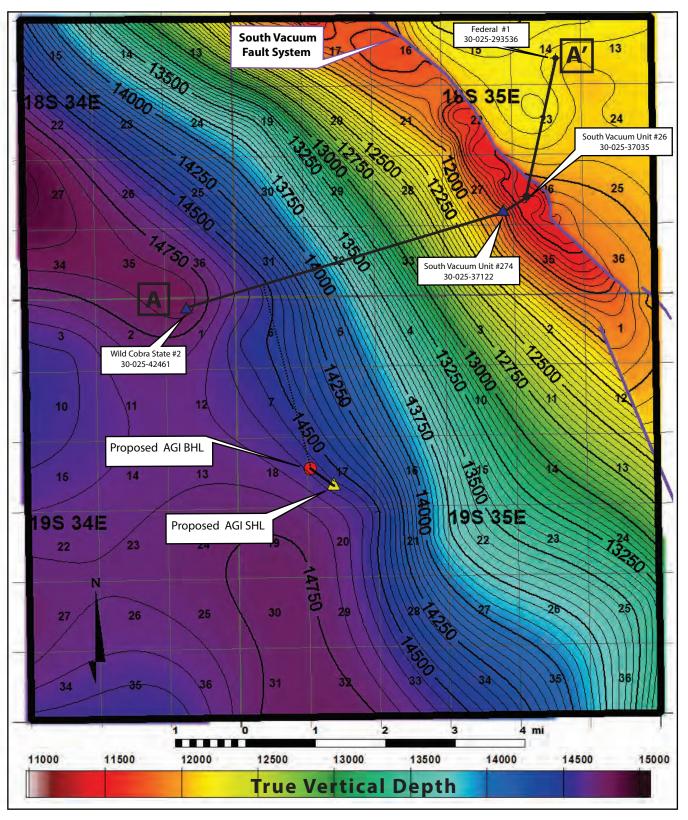
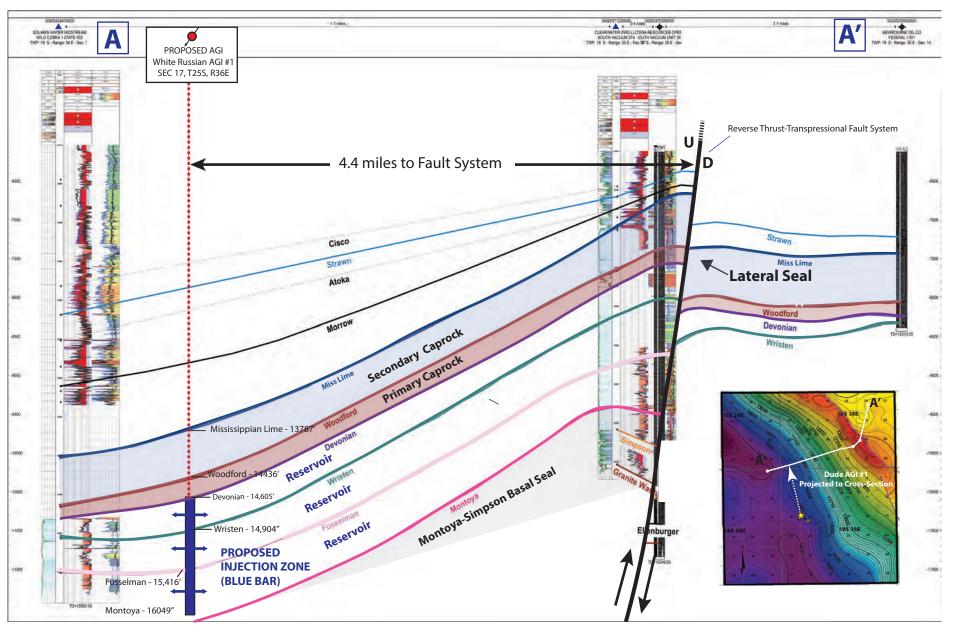
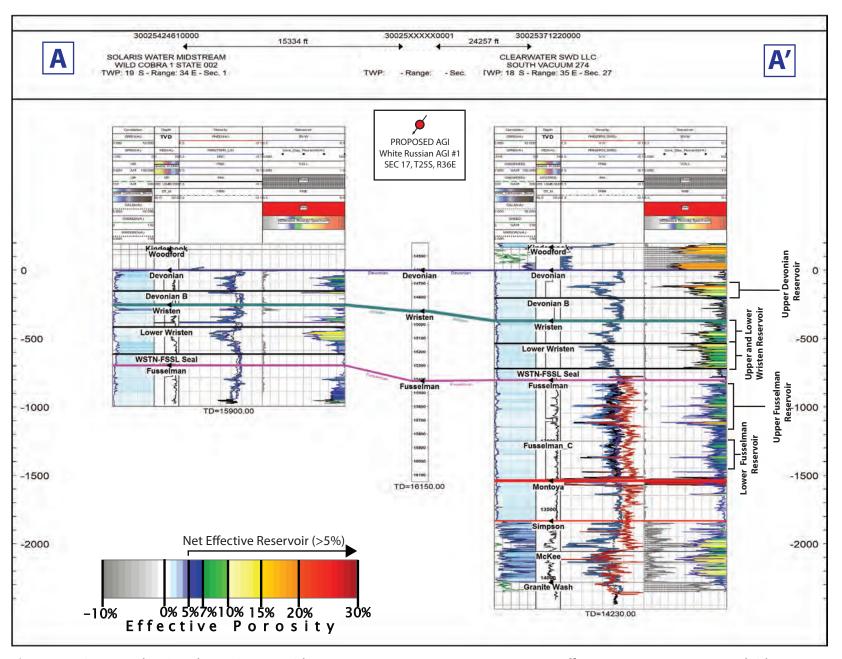




Figure 8. Local Devonian structure contour map (TVD) of the White Russian AGI #1 showing the top of the Siluro-Devonian target injection reservoir. Cross section A-A' is shown in Figure 9. Note contour intervals (CI) are equal to 50 ft.








**Figure 9.** Structural Cross Section - Demonstration of TAG Injection Geologic System. A - A' showing regional structural profile and distance to well control and northeastern reverse thrust fault system (approximately 4.4 miles updip to northeast). White Russian AGI #1 is projected into cross-section as shown in inset map (B).







**Figure 10.** Stratigraphic Correlation Section - Siluro-Devonian Target Injection Reservoirs. Effective reservoirs are notated. Siluro-Devonian petrophysical model for effective porosity are shown on logs, and effective reservoir is observed within upper Devonian, lower and upper Wristen, and lower and upper Fusselman. Net effective reservoir is defined as greater than or equal to 5% effective porosity.





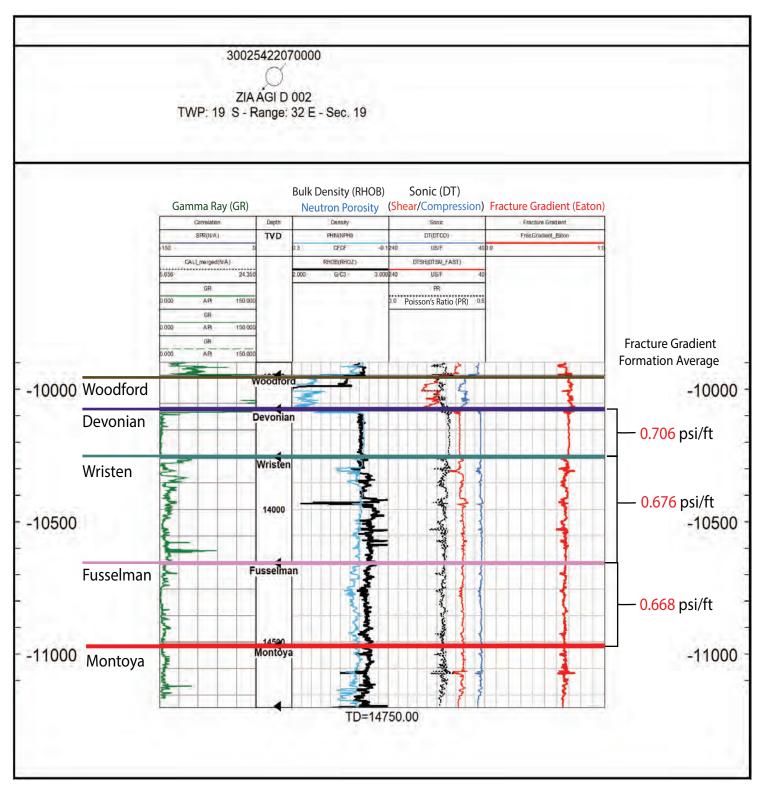



Figure 11. Fracture pressure gradient calculated from the Zia AGI D #2 (red trace). Average fracture gradient estimates range from 0.676 to 0.706 psi/ft. for Devonian through Montoya geologic strata.





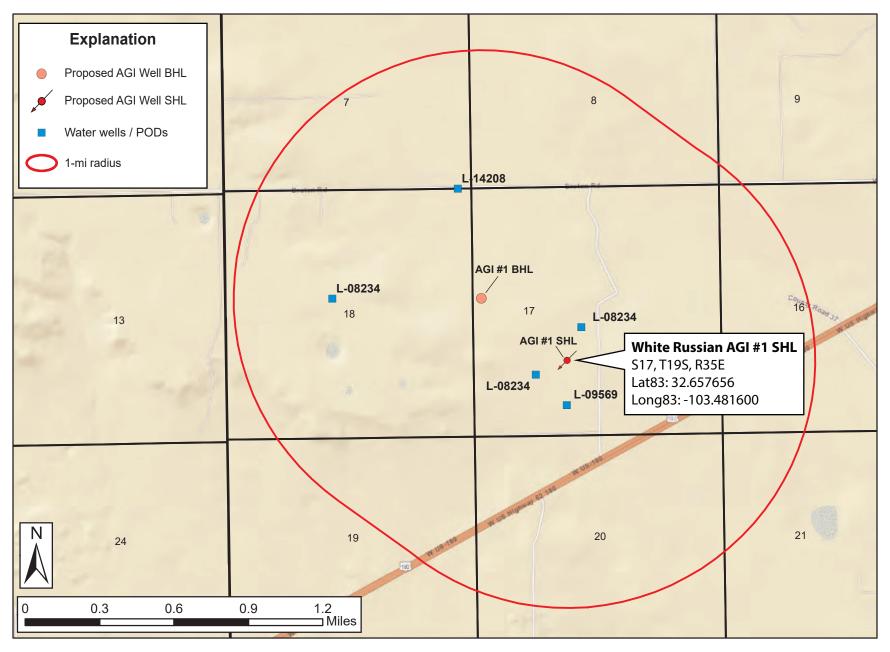



Figure 12. Water wells and points of diversion within one-mile of the proposed White Russian AGI #1 well. Note that the AGI one-mile area of review has been modified to reflect a combined one-mile buffer zone around the AGI surface and bottom-hole locations, and the anticipated deviation path of the well.





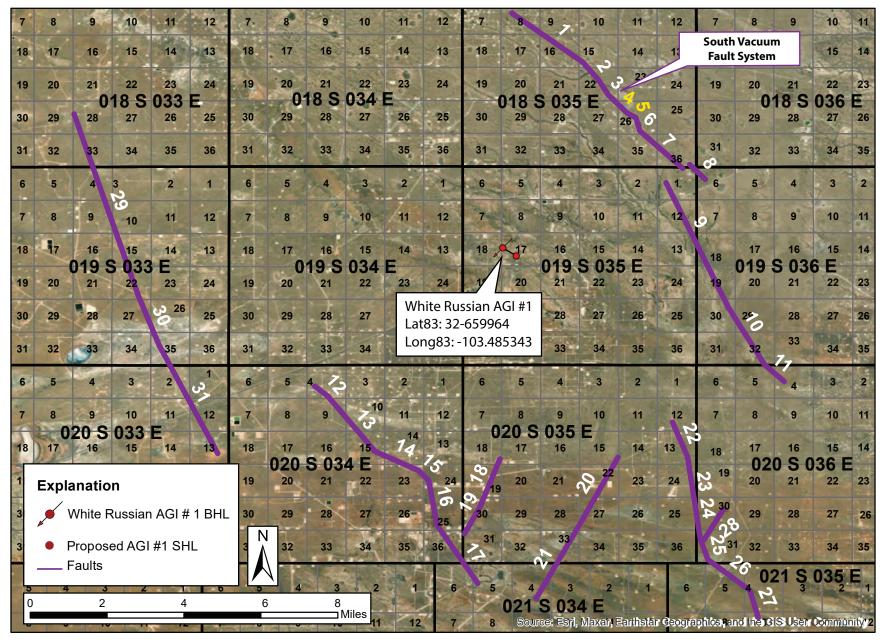
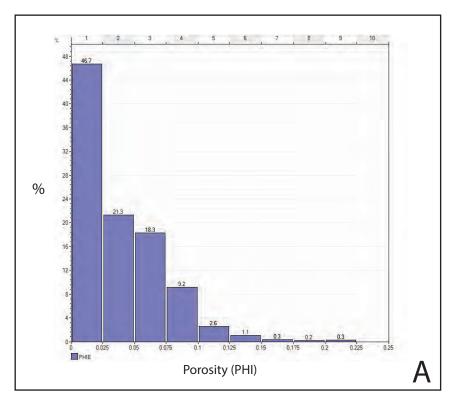




Figure 13. Subsurface fault features interpreted from well control and published literature in the vicinity of the proposed White Russian AGI #1. Fault segments are annotated for reference in FSP simulation results regarding induced seismicity risk. Fault segments anticipated to have risk for slip are annotated in yellow.





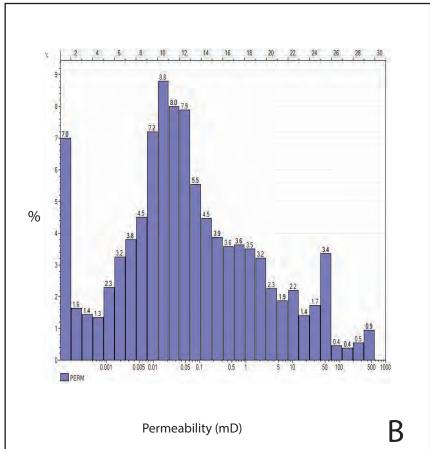



Figure 14. Distribution of porosity (panel A) and permeability (panel B) for all geo-model layers.





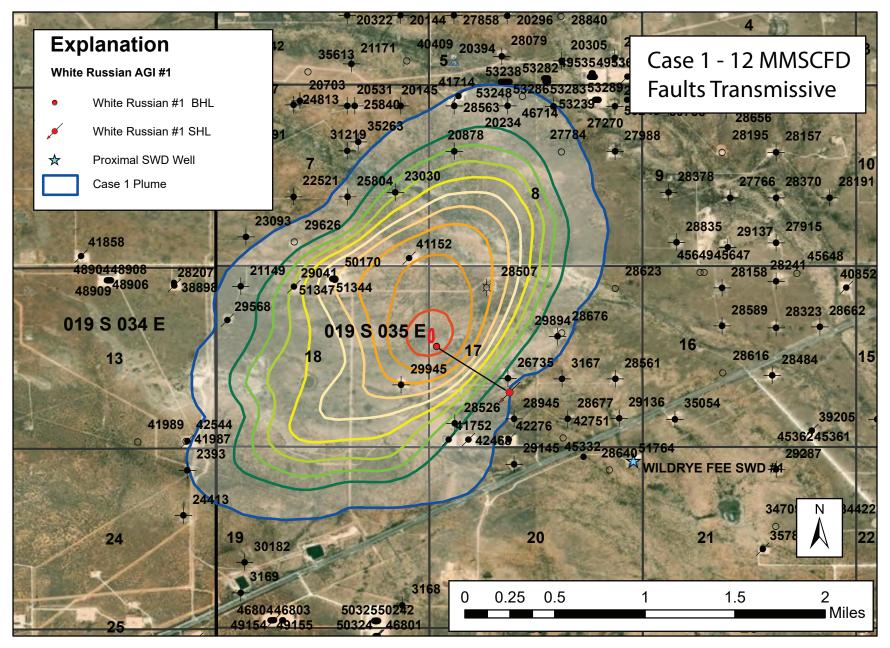



Figure 15. Summary of Eclipse simulation results for Case 1. This map displays the simulated plume of 30 years of injection. Contours of gas saturation are depicted ranging from 0 to 48% Released to Imaging: 5/23/2025 12:11:23 PM





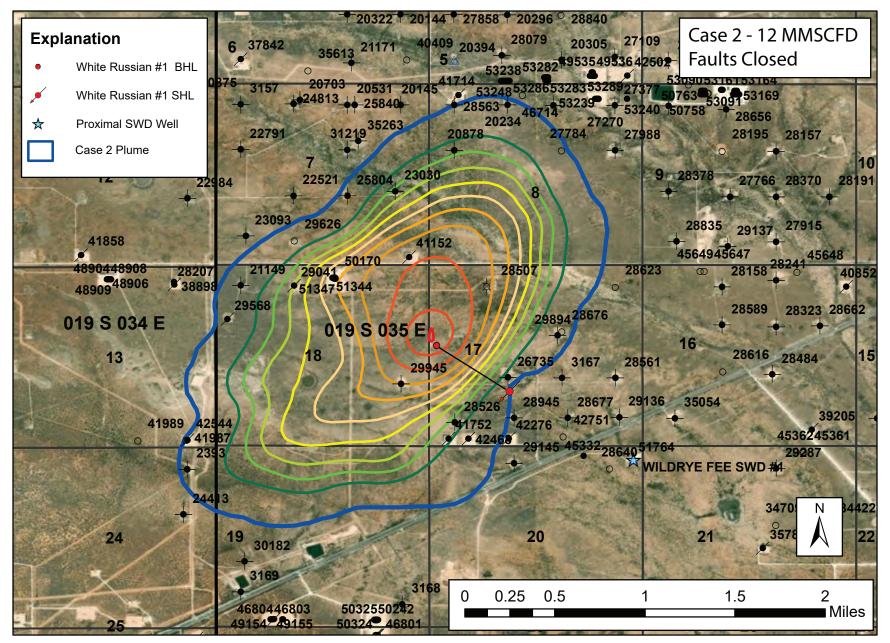
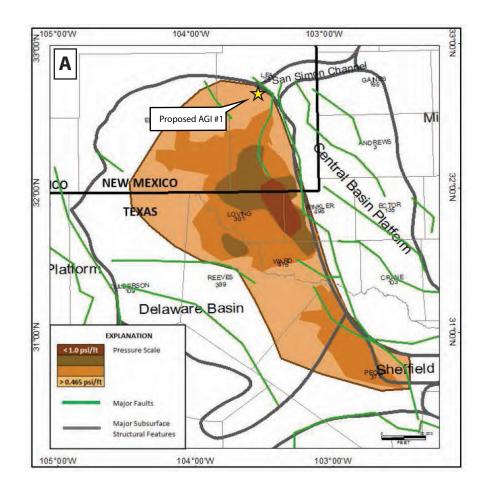




Figure 16. Summary of Eclipse simulation results for Case 2. This map displays the simulated acid gas plume following 30 years of injection at the maximum proposed rate. Contours of gas saturation are depicted ranging from 0 to 48%. Offset wells are identified by last five digits of their respective API numbers.







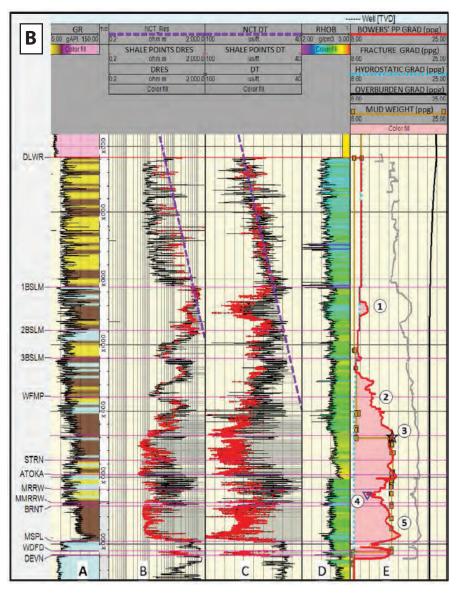
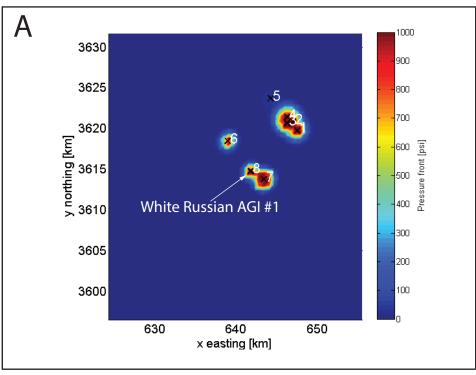
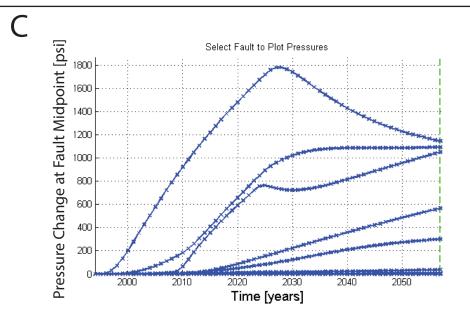
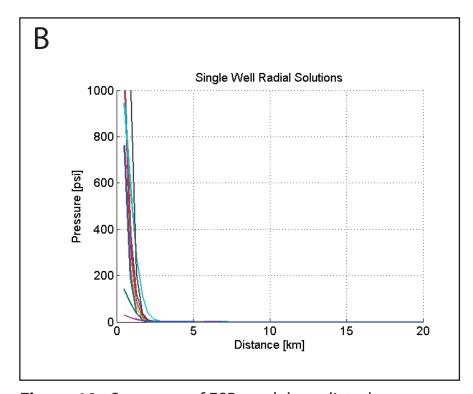



Figure 17. Mapped extent of present day overpressure in the Delaware Basin (Panel A) and example log response (Panel B) illustrating stratigraphic onset of over-pressured intervals and associated drilling fluid densities (modified from Rittenhouse et al., 2016)





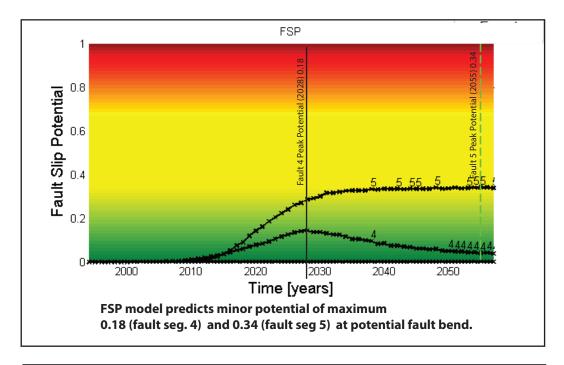


Figure 18. Injection wells and subsurface features in the vicinity of the proposed White Russian AGI #1 well












**Figure 19.** Summary of FSP model-predicted pressure front effects in the year 2055, resulting from injection activities of nearby wells that are actively injecting within the Siluro-Devonian formations.

Released to Imaging: 5/23/2025 12:11:23 PM







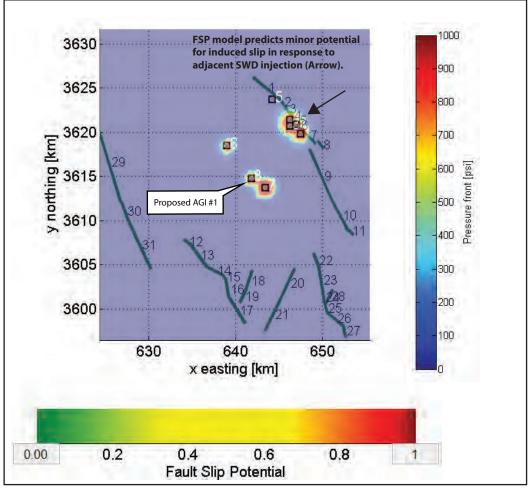
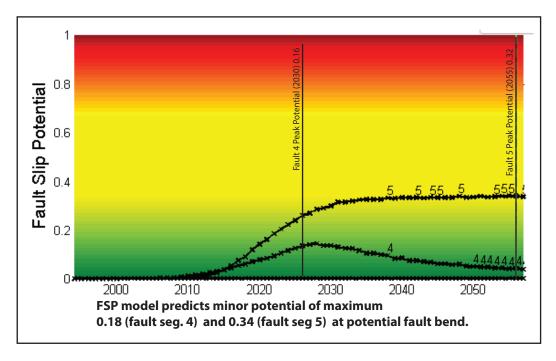




Figure 20. Scenario 1: Model-predicted fault slip potential after 30 years (Panel A) of maximum injection by proposed AGI and offset SWD activities. Minor fault slip potential is observed at interpreted fault segments 4 and 5, due to the proximity to Siluro-Devonian SWD wells.





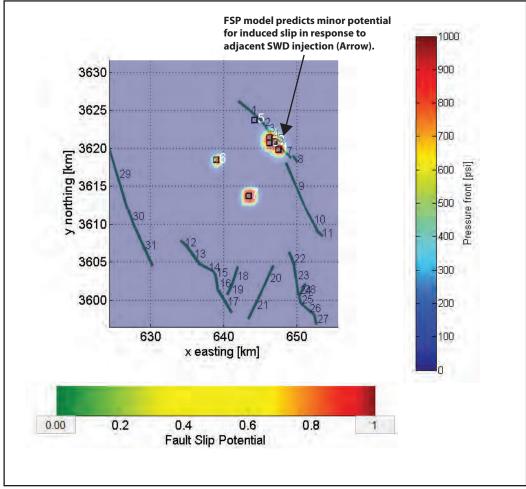



Figure 21. Scenario 2: Model-predicted fault-slip potential after 30 years (Panel A) for injection operations only reflective of nearby SWD wells. This scenario exludes the proposed White Russian AGI #1 well and demonstrates that the proposed activities for the AGI #1 well are inconsequential with respect to the risk for fault slip.





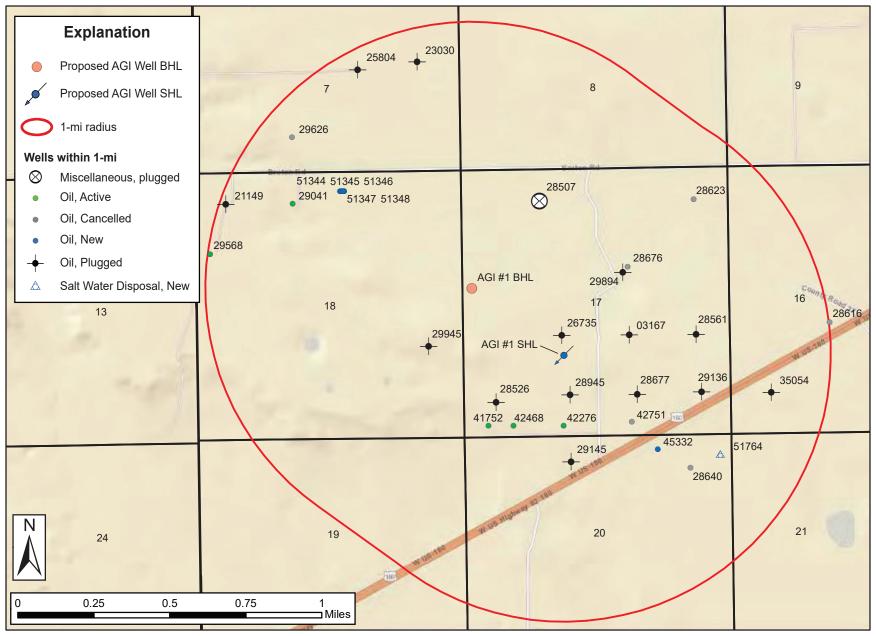



Figure 22. All wells of record within one-mile of the proposed White Russian AGI #1 well. Note that the one-mile radius area of review has been modified to include a buffer zone around the AGI #1 surface-hole and bottom-hole locations, and along the anticipated well deviation path.

### **APPENDIX A**

# INFORMATION ON ALL WELLS WITHIN TWO MILES OF THE PROPOSED WHITE RUSSIAN AGI #1 WELL

Figure A-1: All wells located within two miles of the proposed AGI #1

Table A-1: Tabulated summary of all wells within two miles of the

proposed White Russian AGI #1 well

Attachment A: Plugging Documents from NMOCD online database for wells

within two miles that penetrate the injection zone

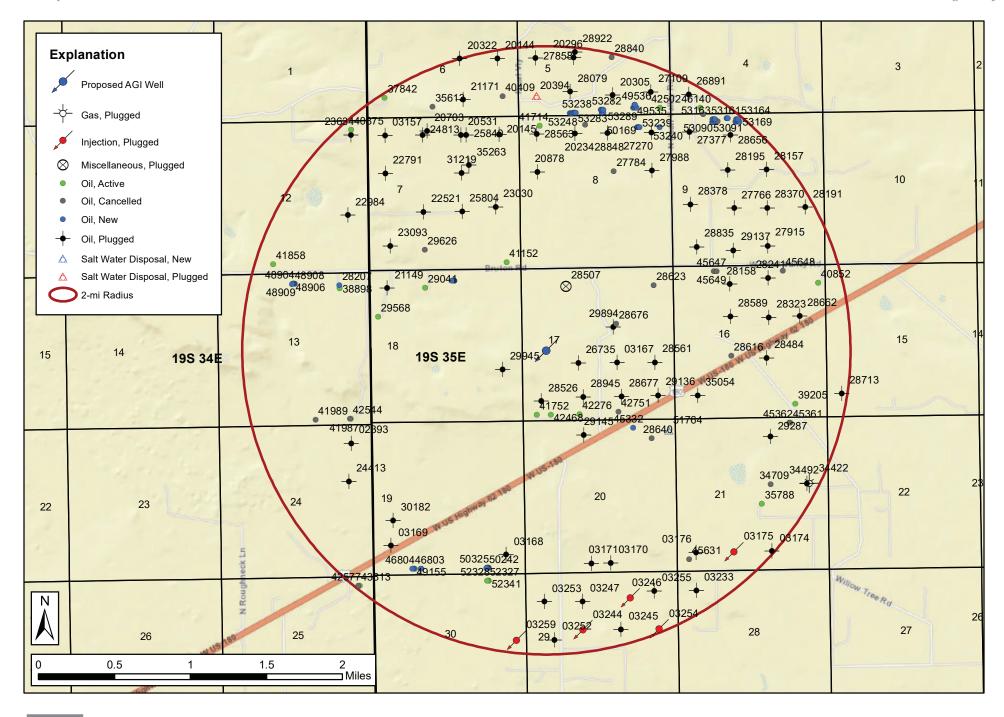





Figure A-1. All wells within two miles of the proposed AGI well, labeled according to the last five digits of their API number (30-025-XXXXX).



Table A1 -- All wells within two-miles of the proposed White Russian AGI #1 well. Area of review includes the AGI surface and bottom-hole location and anticipated deviated well path

|              |                        |               |               |                                 | Latitude | Longitude  |                          | Measured   | Vertical   |            |           |
|--------------|------------------------|---------------|---------------|---------------------------------|----------|------------|--------------------------|------------|------------|------------|-----------|
| API          | Well Name              | Well Type     | Well Status   | Operator Name                   | (NAD83)  | (NAD83)    | Associated Pools         | Depth (ft) | Depth (ft) | Plug Date  | SPUD Date |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-26735 | MESCALERO RIDGE #001   | Oil           | released)     | SOUTHWEST ROYALTIES INC         | 32.65875 | -103.48172 | SPRING                   | 13,420     | 13,420     | 4/11/2002  | -         |
|              |                        |               | Plugged (site |                                 |          |            |                          |            |            |            |           |
| 30-025-29945 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.65824 | -103.4903  | [50450] QUAIL, QUEEN     | 0          | 10,370     |            |           |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-28526 | MESCALERO RIDGE #008   | Oil           | released)     | FOREST OIL CORPORATION          | 32.65514 | -103.486   | SPRING                   | 10,267     | 10,267     | 11/21/2005 |           |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-28945 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.6555  | -103.48125 | SPRING                   | 0          | 10,142     |            |           |
|              |                        |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-42468 | CUATRO HIJOS FEE #008H | Oil           | Active        | MATADOR PRODUCTION COMPANY      | 32.65384 | -103.48491 | SPRING                   | 13,667     | 9,785      | -          | 4/2/2015  |
|              |                        |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-41752 | CUATRO HIJOS FEE #004H | Oil           | Active        | MATADOR PRODUCTION COMPANY      | 32.65385 | -103.48652 | SPRING                   | 15,268     | 10,833     | -          | 6/21/2014 |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-28507 | MESCALERO RIDGE #002   | Miscellaneous | released)     | FOREST OIL CORPORATION          | 32.66606 | -103.48303 | SPRING                   | 11,200     | 11,200     | 12/5/2005  |           |
|              |                        |               | Plugged (site |                                 |          |            |                          |            |            |            |           |
| 30-025-29894 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.66213 | -103.47774 |                          | 0          | 11,097     |            |           |
|              |                        |               | Plugged (site |                                 |          |            |                          |            |            |            |           |
| 30-025-03167 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.65872 | -103.47738 |                          | 0          | 5,353      |            |           |
|              |                        |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-42276 | CUATRO HIJOS FEE #003H | Oil           | Active        | MATADOR PRODUCTION COMPANY      | 32.65382 | -103.48168 | SPRING                   | 15,390     | 10,797     | -          | 1/10/2015 |
| 30-025-28676 | PRE-ONGARD WELL #004   | Oil           | Cancelled     | PRE-ONGARD WELL OPERATOR        | 32.66242 | -103.47742 |                          | 0          | 0          | -          | -         |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-28677 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.65548 | -103.47691 | SPRING                   | 0          | 10,100     |            |           |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-29145 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.65187 | -103.48124 | SPRING                   | 0          | 10,170     |            |           |
|              |                        |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-41152 | AIRSTRIP FEE COM #001H | Oil           | Active        | MATADOR PRODUCTION COMPANY      | 32.66841 | -103.48967 |                          | 17,759     | 10,586     | -          | 6/14/2014 |
| 30-025-42751 | CUATRO HIJOS FEE #002C | Oil           | Cancelled     | COG OPERATING LLC               | 32.654   | -103.4773  | [55610] SCHARB, BONE     | 0          | 0          | -          | -         |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-28561 | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.6587  | -103.47309 | SPRING                   | 0          | 11,191     |            |           |
|              | BEEFALO 7 6 STATE COM  |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-51346 | #408H                  | Oil           | New           | MEWBOURNE OIL CO                | 32.66675 | -103.4956  | SPRING                   | 0          | 0          | -          | -         |
|              | MARINER W2E2 07 06 W1  |               |               |                                 |          |            |                          |            |            |            |           |
| 30-025-50171 | STATE COM #001H        | Oil           | Cancelled     | Franklin Mountain Energy 3, LLC | 32.66675 | -103.49561 | [55640] SCHARB, WOLFCAMP | 0          | 0          | -          | -         |
|              | BEEFALO 7 6 STATE COM  |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-51348 |                        | Oil           | New           | MEWBOURNE OIL CO                | 32.66675 | -103.49566 | SPRING                   | 0          | 0          | -          | -         |
|              | MARINER E2W2 07 06 W1  |               |               |                                 |          |            |                          |            |            |            |           |
| 30-025-50170 | STATE COM #001H        | Oil           | Cancelled     | Franklin Mountain Energy 3, LLC | 32.66675 | -103.49567 | [55640] SCHARB, WOLFCAMP | 0          | 0          | -          | -         |
|              | BEEFALO 7 6 STATE COM  |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-51345 |                        | Oil           | New           | MEWBOURNE OIL CO                | 32.66675 | -103.49572 |                          | 0          | 0          | -          | 7/9/2023  |
|              | BEEFALO 7 6 STATE COM  |               |               |                                 |          |            | SPRING; [55640] SCHARB,  |            |            |            |           |
| 30-025-51347 |                        | Oil           | New           | MEWBOURNE OIL CO                | 32.66675 | -103.49579 | WOLFCAMP                 | 0          | 0          | -          | -         |
|              | BEEFALO 7 6 STATE COM  |               |               |                                 |          |            | SPRING; [55640] SCHARB,  |            |            |            |           |
| 30-025-51344 |                        | Oil           | New           | MEWBOURNE OIL CO                | 32.66675 | -103.49585 | WOLFCAMP                 | 0          | 0          | -          | 6/14/2023 |
|              | HEREFORD 20 29 B2AH    |               |               |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
| 30-025-45332 | STATE COM #001H        | Oil           | New           | MEWBOURNE OIL CO                | 32.65246 | -103.47565 |                          | 21,385     | 10,972     | -          | 2/16/2019 |
|              |                        |               | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |            |            |            |           |
|              | PRE-ONGARD WELL #001   | Oil           | released)     | PRE-ONGARD WELL OPERATOR        | 32.65555 | -103.47279 | SPRING                   | 0          | 10,200     |            | <b></b>   |
| 30-025-28623 | PRE-ONGARD WELL #003   | Oil           | Cancelled     | PRE-ONGARD WELL OPERATOR        | 32.66604 | -103.47312 |                          | 0          | 0          | -          | -         |

|              |                           |            |               |                                    |          |            | [37585] LEA, SAN ANDRES;   |        |        |             |             |
|--------------|---------------------------|------------|---------------|------------------------------------|----------|------------|----------------------------|--------|--------|-------------|-------------|
| 30-025-29041 | REDDY GULF STATE #002     | Oil        | Active        | YATES ENERGY CORP                  | 32.66611 | -103 49892 | [50450] QUAIL, QUEEN       | 10,270 | 10,270 | _           | 11/30/1984  |
| 30-025-28640 | PRE-ONGARD WELL #009      | Oil        | Cancelled     | PRE-ONGARD WELL OPERATOR           | 32.65144 | -103.47358 | [00400] QOAIL, QOLLIV      | 0      | 10,270 | -           | -           |
| 00 020 20040 | THE ONOAND WELL #003      | Salt Water | Ouncelled     | THE ONORID WELL OF ENATOR          | 02.00144 | 100.47000  | [97869] SWD, DEVONIAN-     | -      |        |             |             |
| 30-025-51764 | WILDRYE FEE SWD #001      | Disposal   | New           | Permian Oilfield Partners, LLC     | 32.65215 | -103.47164 |                            | 0      | 0      | _           | 9/4/2024    |
| 00 020 01704 | WILDRIET LE OWD #001      | Бізрозат   | Plugged (site | T Cirillan Olincia i artifers, EEO | 02.00210 | 100.47104  | [55610] SCHARB, BONE       | •      |        |             | 3/4/2024    |
| 30-025-23030 | PRE-ONGARD WELL #001      | Oil        | released)     | PRE-ONGARD WELL OPERATOR           | 32.67373 | -103.49078 | · · ·                      | 0      | 10,148 |             |             |
|              | PRE-ONGARD WELL #001      | Oil        | Cancelled     | PRE-ONGARD WELL OPERATOR           | 32.66974 | -103.49889 |                            | 0      | 0      | -           | _           |
| 30-023-23020 | TIL-ONOAND WELL #001      | Oit        | Cancelled     | THE-ONGARD WELL OF ENATOR          | 32.00974 | -103.49009 | [55610] SCHARB, BONE       | 0      |        | <u> </u>    | -           |
|              |                           |            | Plugged (site |                                    |          |            | SPRING; [96666] PEARL, SAN |        |        |             |             |
| 20 025 25054 | TORO 16 STATE #001        | Oil        | released)     | MARSHALL & WINSTON INC             | 32.65547 | 102 46021  | ANDRES, NORTH              | 11,200 | 11,200 | 5/26/2017   | 6/27/2000   |
| 30-023-33034 | 1010 10 31A1L #001        | Oit        | Plugged (site | MANSTALL & WINSTON INC             | 32.03347 | -103.40031 | [55610] SCHARB, BONE       | 11,200 | 11,200 | 3/20/2017   | 0/2//2000   |
| 30-025-25804 | SCHARB COM #001           | Oil        | released)     | READ & STEVENS INC                 | 32.67335 | -103.49461 | -                          | 10,220 | 10,220 | 1/31/2022   | 1/20/1978   |
| 30-023-23804 | SCHARD COM #001           | Oil        | Plugged (site | READ & STEVENS INC                 | 32.07333 | -103.49401 | SFRING                     | 10,220 | 10,220 | 1/31/2022   | 1/20/19/6   |
| 20 025 21140 | REDDY GULF STATE #001     | Oil        | released)     | YATES ENERGY CORP                  | 32.66613 | 102 5022   | [50450] QUAIL, QUEEN       | 10,950 | 10,950 | 2/10/2004   |             |
| 30-023-21149 | REDDI GOLF STATE #001     | Oil        | reteaseu)     | TATES ENERGY CORF                  | 32.00013 | -103.5032  | [50445] QUAIL, GRAYBURG;   | 10,950 | 10,950 | 2/10/2004   | -           |
| 30-025-29568 | REDDY GULF STATE #003     | Oil        | Active        | YATES ENERGY CORP                  | 32.66341 | 102 50427  | [50445] QUAIL, QUEEN       | 5,950  | 5,950  |             |             |
| 30-025-29566 | REDUT GULF STATE #003     | Oit        | Plugged (site | TATES ENERGY CORP                  | 32.00341 | -103.50427 | [55610] SCHARB, BONE       | 5,950  | 5,950  | -           | -           |
| 20 025 20070 | DDE ONCADD WELL #001      | Oil        | released)     | DDE ONCADO WELL ODERATOR           | 32.67701 | -103.48604 | · · ·                      | 0      | 10 210 |             |             |
| 30-025-20878 | PRE-ONGARD WELL #001      | Oit        |               | PRE-ONGARD WELL OPERATOR           | 32.6//01 | -103.48604 |                            | U      | 10,310 |             |             |
| 20 005 00005 | COLIADD O #00E            | Oil        | Plugged (site | DALLAS PRODUCTION                  | 22.0007  | 100 10010  | [55610] SCHARB, BONE       | 0.000  | 0.000  | 7/26/1996   | 9/7/1984    |
| 30-025-28835 | SCHARB 9 #005             | Oil        | released)     | DALLAS PRODUCTION                  | 32.66967 | -103.46818 |                            | 9,900  | 9,900  | //26/1996   | 9///1984    |
| 00 005 00504 | OLIVIJOODED OOM HOOA      | 0.11       | Plugged (site | DEAD & OTEVENIONNO                 | 00 07007 | 400 40005  | [55610] SCHARB, BONE       | 0      | 40.000 | 0.40.40000  | 4/40/4000   |
| 30-025-22521 | GUY HOOPER COM #001       | Oil        | released)     | READ & STEVENS INC                 | 32.67337 | -103.49895 |                            | 0      | 10,223 | 2/8/2022    | 4/12/1968   |
| 30-025-28616 | PRE-ONGARD WELL #002      | Oil        | Cancelled     | PRE-ONGARD WELL OPERATOR           | 32.65924 | -103.46448 |                            | 0      | 0      | -           | -           |
| 00 005 45040 | BELCHER 19 35 9 STATE     | 0.11       | 0             | 0-1                                | 00 00704 | 400 4000   | ISSO 401 001 IARR WOLFOAMR | 0      | 0      |             |             |
| 30-025-45649 | #001C                     | Oil        | Cancelled     | Catena Resources Operating, LLC    | 32.66731 | -103.4663  | [55640] SCHARB, WOLFCAMP   | 0      | 0      | -           | -           |
|              | 1100PED D #004            | 0.1        | Plugged (site | DE LO A OTEVENO INO                | 00 07044 | 400 50070  |                            |        | 40.005 | 0/40/4000   |             |
| 30-025-23093 | HOOPER B #001             | Oil        | released)     | READ & STEVENS INC                 | 32.67014 | -103.50278 | [50450] QUAIL, QUEEN       | 99,999 | 10,235 | 8/19/1992   | -           |
| 00 005 00500 | DDE ONOADD WELL HOOA      | 0.11       | Plugged (site | DDE ONGARD WELL OPERATOR           | 00 00000 | 400 40450  | [55610] SCHARB, BONE       | 0      | 40.040 |             |             |
| 30-025-28589 | PRE-ONGARD WELL #004      | Oil        | released)     | PRE-ONGARD WELL OPERATOR           | 32.66296 | -103.46452 |                            | 0      | 10,940 |             |             |
| 00 005 45047 | CABLE 19 35 16 STATE      | 0.11       | 0             | 0-1                                | 00 00704 | 400 40500  | [55650] SCHARB,            | 0      | 0      |             |             |
| 30-025-45647 | #001C                     | Oil        | Cancelled     | Catena Resources Operating, LLC    | 32.66731 |            | WOLFCAMP, SOUTHEAST        | 0      | 0      | -           | -           |
| 30-025-27784 | PRE-ONGARD WELL #001      | Oil        | Cancelled     | PRE-ONGARD WELL OPERATOR           | 32.67698 | -103.47744 |                            | 0      | 0      | -           | -           |
| 00 005 00450 | DDE ONOADD WELL HOOA      | 0.1        | Plugged (site | DDE ONGADO MEN ODEDATOD            |          | 100 10150  | [55610] SCHARB, BONE       |        |        |             |             |
| 30-025-28158 | PRE-ONGARD WELL #001      | Oil        | released)     | PRE-ONGARD WELL OPERATOR           | 32.66603 | -103.46453 | 1                          | 0      | 9,900  |             |             |
| 00 005 04040 | 150 7 555 11004           | 0.1        | Plugged (site |                                    | 00 07704 | 400 40400  | [55610] SCHARB, BONE       |        | 40.000 | 0/04/4000   | E (00 (4004 |
| 30-025-31219 | JFG 7 FEE #001            | Oil        | released)     | HARVEY E YATES CO                  | 32.67704 | -103.49462 |                            | 99,999 | 10,209 | 2/21/1992   | 5/29/1991   |
|              | 0114 81 50 0 41 1/50 #005 | 0.1        | Plugged (site | LALOV ENERGY GORD                  |          | 100 10077  | [55610] SCHARB, BONE       | 10.005 | 40.005 | 0.100.10000 | 40/40/0000  |
| 30-025-35263 | CHARLES S ALVES #005      | Oil        | released)     | MACK ENERGY CORP                   | 32.67775 | -103.49377 | SPRING                     | 10,305 | 10,305 | 3/26/2002   | 12/19/2000  |
| 00 005 0005  | OOLIARR O HOCC            | 0.11       | Plugged (site | DALLAG BRODLIGTICS                 | 00.0707  | 400 40055  | [55610] SCHARB, BONE       | 2 222  | 2 25 - | 7/00/1005   | 40/0/4005   |
| 30-025-28378 | SCHARB 9 #003             | Oil        | released)     | DALLAS PRODUCTION                  | 32.67371 | -103.46883 |                            | 9,920  | 9,920  | 7/22/1996   | 10/3/1983   |
| 00 005 4400= | SUPER COBRA STATE COM     | 0.1        | A - Air       | MATADOD BRODUSTION COME            | 00.0507: | 400 507 :- | [55610] SCHARB, BONE       | 45.005 | 40 76- |             | 44/4/224:   |
| 30-025-41987 | #001H                     | Oil        | Active        | MATADOR PRODUCTION COMPANY         | 32.65371 | -103.50748 |                            | 15,298 | 10,738 | -           | 11/4/2014   |
|              | SUPER COBRA STATE COM     |            |               | 000 005047040440                   | 00.050=- | 400 50555  | [55610] SCHARB, BONE       |        | _      |             |             |
| 30-025-42544 | #002C                     | Oil        | Cancelled     | COG OPERATING LLC                  | 32.65372 | -103.50759 | SPRING                     | 0      | 0      | -           | -           |
|              |                           | L          | Plugged (site |                                    |          |            |                            |        |        |             |             |
| 30-025-27988 | SNYDER RANCHES #001       | Oil        | released)     | ELK OIL CO                         | 32.67698 | -103.47312 | [55640] SCHARB, WOLFCAMP   | 10,750 | 10,750 | 4/23/2003   | -           |
|              |                           |            | Plugged (site |                                    |          |            |                            |        |        |             |             |
| 30-025-03168 | PRE-ONGARD WELL #001      | Oil        | released)     | PRE-ONGARD WELL OPERATOR           | 32.64054 | -103.49021 |                            | 0      | 5,185  |             |             |
|              |                           |            | Plugged (site |                                    |          |            | [55610] SCHARB, BONE       |        |        |             |             |
| 30-025-29137 | ELKAN #004                | Oil        | released)     | ELK OIL CO                         | 32.66928 | -103.46407 | SPRING                     | 0      | 10,000 |             |             |

| 30-025-38898 | GO STATE #002                    | Oil | Active        | PRIDE ENERGY COMPANY             | 32.66621 | -103.50855 | [50445] QUAIL, GRAYBURG | 5,800    | 5,800  | -          | 11/9/2008  |
|--------------|----------------------------------|-----|---------------|----------------------------------|----------|------------|-------------------------|----------|--------|------------|------------|
|              |                                  |     | Plugged (site |                                  |          |            |                         |          |        |            |            |
| 30-025-02393 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.65138 | -103.50748 |                         | 0        | 6,200  |            |            |
|              |                                  |     | Plugged (site |                                  |          |            |                         |          |        |            |            |
| 30-025-28563 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.68064 | -103.48605 |                         | 0        | 11,015 |            |            |
| 30-025-28207 | GO STATE #001                    | Oil | New           | PRIDE ENERGY COMPANY             | 32.66644 | -103.50857 | [50450] QUAIL, QUEEN    | 5,800    | 5,800  | -          | 5/6/1983   |
|              |                                  |     | Plugged (site |                                  |          |            | [55610] SCHARB, BONE    |          |        |            |            |
| 30-025-20234 | ORA JACKSON A #002               | Oil | released)     | BIG 6 DRILLING CO                | 32.68063 | -103.48176 | SPRING                  | 0        | 10,255 |            |            |
|              |                                  |     | Plugged (site |                                  |          |            |                         |          |        |            |            |
| 30-025-03171 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.63961 | -103.48056 |                         | 0        | 5,100  |            |            |
|              | DDE ONOADD WELL HOOA             | 0.1 | Plugged (site | DDE CALCADO MELA COEDATOR        | 00 00005 | 400 40000  | [55610] SCHARB, BONE    |          | 40.005 |            |            |
| 30-025-20145 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.68065 | -103.49033 |                         | 0        | 10,225 |            |            |
|              |                                  | 0.1 | Plugged (site | MARKS AND GARNER PRODUCTION      | 00.05000 | 100 100 10 | [55650] SCHARB,         | 10.004   | 40.004 | 7/4/0000   | 444744000  |
| 30-025-28484 | LEA UA STATE #001                | Oil | released)     | LTD CO                           | 32.65898 | -103.46048 | WOLFCAMP, SOUTHEAST     | 10,864   | 10,864 | 7/1/2009   | 11/17/1983 |
|              | WEST PEARL QUEEN UNIT            | 0.1 | Plugged (site | VEDIO OIL 0 040 0000             |          | 100 170 10 |                         | 5.054    | 5.054  | 0.10.10000 |            |
| 30-025-03170 | #101                             | Oil | released)     | XERIC OIL & GAS CORP             | 32.6396  | -103.47842 | [49780] PEARL, QUEEN    | 5,051    | 5,051  | 9/8/2003   | -          |
|              |                                  |     |               |                                  |          |            | [55610] SCHARB, BONE    |          |        |            |            |
| 30-025-41714 | TOMCAT FEE #001H                 | Oil | Active        | MATADOR PRODUCTION COMPANY       | 32.68143 | -103.48572 |                         | 15,160   | 10,794 | -          | 7/30/2014  |
|              |                                  |     | Plugged (site |                                  |          |            | [55610] SCHARB, BONE    |          |        |            |            |
| 30-025-28848 | SCHARB 8 #002                    | Oil | released)     | DALLAS PRODUCTION                | 32.68062 | -103.47807 |                         | 10,200   | 10,200 | 8/1/1996   | 9/18/1984  |
|              | DDE ONOADD WELL HOOG             | 0.1 | Plugged (site | DDE CALCADO MELA COEDATOR        |          | 100 10010  | [55610] SCHARB, BONE    |          |        |            |            |
| 30-025-28323 |                                  | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.66282 | -103.46018 |                         | 0        | 9,800  |            |            |
|              | SANTA VACA 19 18 B2PA FEE        | 0.1 |               | MEMBOURNEOU                      |          | 100 10017  | [55610] SCHARB, BONE    |          | •      |            | 7/0/0000   |
| 30-025-50241 | #001H                            | Oil | New           | MEWBOURNE OIL CO                 | 32.6393  | -103.49217 |                         | 0        | 0      | -          | 7/3/2022   |
| 00 005 50000 | SANTA VACA 19 18 B3PA FEE        | 0.1 | Na            | MEIMPOLIPME OIL OO               | 00 0000  | 400 40000  | [49553] PALMILLO, BONE  |          | 0      |            | 0.15.10000 |
| 30-025-50326 |                                  | Oil | New           | MEWBOURNE OIL CO                 | 32.6393  | -103.49226 | SPRING, EAST            | 0        | 0      | -          | 8/5/2022   |
| 00 005 40000 | HOLSTEIN 19 18 B3PA FEE          | 0.1 | 0             | MEIMPOLIPME OIL OO               | 00 0000  | 400 40000  | [55610] SCHARB, BONE    | 0        | 0      |            |            |
| 30-025-46802 | #001C                            | Oil | Cancelled     | MEWBOURNE OIL CO                 | 32.6393  | -103.49226 |                         | 0        | 0      | -          | -          |
| 00 005 50004 | SANTA VACA 19 18 B10B FEE        | 0.1 | Na            | MEIMPOLIPME OIL OO               | 00 0000  | 400 40000  | [49553] PALMILLO, BONE  |          | 0      |            | 0.05.0000  |
| 30-025-50324 | #001H<br>HOLSTEIN 19 18 B3OB FEE | Oil | New           | MEWBOURNE OIL CO                 | 32.6393  | -103.49233 | SPRING, EAST            | 0        | 0      | -          | 8/25/2022  |
| 20 005 40004 | #001C                            | Oil | Navas Deillad | MENUROLIBNIE OIL CO              | 32.6393  | 100 10000  | [55610] SCHARB, BONE    | 0        | 0      |            |            |
| 30-025-46801 | SANTA VACA 19 18 B2OB FEE        | Oil | Never Drilled | MEWBOURNE OIL CO                 | 32.6393  | -103.49236 | [55610] SCHARB, BONE    | U        | 0      |            | -          |
| 30-025-50325 | #001H                            | Oil | New           | MEWBOURNE OIL CO                 | 32.6393  | -103.49239 | -                       | 0        | 0      |            | 9/19/2022  |
| 30-025-50325 | SANTA VACA 19 18 B3OB FEE        | Oil | inew          | MEWBOOKNE OIL CO                 | 32.0393  | -103.49239 | [55610] SCHARB, BONE    | U        | U      |            | 9/19/2022  |
| 30-025-50242 | #001H                            | Oil | New           | MEWBOURNE OIL CO                 | 32.6393  | -103.49246 |                         | 0        | 0      |            | 10/21/2022 |
| 30-023-30242 | FOXTAIL 193505 STATE COM         | Oit | ivew          | PIEWBOOKINE OIL CO               | 32.0393  | -103.49240 | [55610] SCHARB, BONE    | 0        | U      |            | 10/21/2022 |
| 30-025-46714 |                                  | Oil | Cancelled     | Catena Resources Operating, LLC  | 32.68145 | -103.48058 | -                       | 0        | 0      |            | _          |
| 30-023-40714 | #0010                            | Oit | Plugged (site | Cateria nesources Operating, ELC | 32.00143 | -103.46036 | 31 KiNG                 | 0        | 0      | <u> </u>   | _          |
| 30-025-30182 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.64397 | -103.50288 |                         | 0        | 60     |            |            |
| 30-023-30102 | THE-ONOAND WELL #001             | Oit | Plugged (site | THE-ONGARD WELL OF ERATOR        | 32.04337 | -103.30200 | [55610] SCHARB, BONE    | 0        | 00     |            |            |
| 30-025-25840 | CHARLES S ALVES #004             | Oil | released)     | MACK ENERGY CORP                 | 32.68067 | -103.49404 |                         | 10,230   | 10,230 | 3/29/2002  | 3/3/1978   |
| 00-023-23640 | OFFAILLO O ALVEO #004            | Oit | Plugged (site | PIAGR ENERGY GORF                | 52.0000/ | -100.43404 | [55610] SCHARB, BONE    | 10,230   | 10,230 | 312312002  | 3/3/13/6   |
| 30-025-20531 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.68067 | -103.49463 |                         | 0        | 10,206 |            |            |
| 30-023-20331 | I INC-ONGAND WELL #001           | Oil | Plugged (site | THE-ONGARD WELL OF ERATOR        | 32.00007 | -103.43403 | [55610] SCHARB, BONE    | <u> </u> | 10,200 |            |            |
| 30-025-28241 | PRE-ONGARD WELL #002             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.66658 | -103.46018 |                         | 0        | 9,795  |            |            |
| 50-023-20241 | I INCTONOMIND WELL #002          | Oil | Plugged (site | THE ONOAID WELL OF ENATOR        | 32.00038 | -100.40010 | [55610] SCHARB, BONE    |          | 3,733  |            |            |
| 30-025-27766 | ELKAN #001                       | Oil | released)     | ELK OIL CO                       | 32.67329 | -103.46389 | -                       | 10,421   | 10,421 | 6/26/1996  | 3/27/1982  |
| 50-023-27700 | LLIVAIN #UUI                     | Oil | Plugged (site | EER OIL GO                       | 52.07329 | -100.40309 | OI MINU                 | 10,421   | 10,421 | 012011330  | 3/2//1302  |
| 30-025-24413 | PRE-ONGARD WELL #001             | Oil | released)     | PRE-ONGARD WELL OPERATOR         | 32.64775 | -103.5078  |                         | 0        | 10,350 |            |            |
| 00 020-24410 | THE ONORRO WELL WOUL             | 10n | Totouscu)     | THE OHORNO WELL OF LIMION        | 02.04770 | 100.0076   | <u>I</u>                | ١        | 10,550 |            | 1          |

|                  |                            |       |                      |                                                               |          |            | [55610] SCHARB, BONE      |        |        |                |              |
|------------------|----------------------------|-------|----------------------|---------------------------------------------------------------|----------|------------|---------------------------|--------|--------|----------------|--------------|
| 30-025-53241 F   | FOXTAIL STATE COM #501H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.48229 |                           | 0      | 0      | _              | _            |
| 30 023 30241 11  | TOXIALE STATE GOTT#301TT   | Oit   | INCW                 | Trankan Ploantain Energy 3, EE3                               | 02.00200 | 100.40223  | [55610] SCHARB, BONE      |        |        |                | <del></del>  |
| 30-025-53242 F   | FOXTAIL STATE COM #502H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.4822  |                           | 0      | 0      | _              | _            |
| 00 020 00242 11  | OXITALE OF THE OCT THOUSEN | OIL . | 11011                | Trankin Floatian Energy 6, 226                                | 02.00200 | 100.4022   | [55610] SCHARB, BONE      |        |        |                |              |
| 30-025-53237 F   | FOXTAIL STATE COM #301H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.4821  |                           | 0      | 0      | _              | _            |
| 00 020 00207     |                            | - Cit |                      |                                                               | 02.00200 | 1001.021   | [55610] SCHARB, BONE      |        |        |                |              |
| 30-025-53245 F   | FOXTAIL STATE COM #601H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.482   |                           | 0      | 0      | _              | _            |
|                  | HEFEWEIZEN STATE COM       |       |                      | 3, 3,                                                         |          |            |                           |        |        |                |              |
|                  | #302H                      | Oil   | Active               | MARATHON OIL PERMIAN LLC                                      | 32.63806 | -103.49218 | [37570] LEA, BONE SPRING  | 20,603 | 9,714  | -              | 1/3/2024     |
|                  | MARATHON STATE COM         |       | Plugged (site        |                                                               |          |            | [55610] SCHARB, BONE      |        |        |                |              |
| 30-025-22791 #6  | #001                       | Oil   | released)            | READ & STEVENS INC                                            | 32.67708 | -103.5032  |                           | 10,200 | 10,200 | 6/7/1993       | -            |
|                  |                            |       |                      |                                                               |          |            |                           |        |        |                |              |
| 30-025-53249 F   | FOXTAIL STATE COM #801H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.4819  | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -              | -            |
| Н                | HEFEWEIZEN STATE COM       |       |                      |                                                               |          |            | [97983] WC-025 G-08       |        |        |                |              |
| 30-025-52328 #3  | #301H                      | Oil   | Active               | MARATHON OIL PERMIAN LLC                                      | 32.63806 | -103.49227 | S203506D, BONE SPRING     | 20,779 | 9,770  | -              | 1/1/2024     |
|                  |                            |       |                      |                                                               |          |            |                           |        |        |                |              |
| 30-025-53247 F   | FOXTAIL STATE COM #701H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.48181 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -              | -            |
|                  |                            |       |                      |                                                               |          |            |                           |        |        |                |              |
| 30-025-53248 F   | FOXTAIL STATE COM #702H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.48171 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -              | -            |
| G                | GONG WORTHY STATE COM      |       |                      |                                                               |          |            | [55650] SCHARB,           | 1      | i      |                |              |
| 30-025-52327 #6  | #601H                      | Oil   | Active               | MARATHON OIL PERMIAN LLC                                      | 32.63806 | -103.49237 | WOLFCAMP, SOUTHEAST       | 22,501 | 10,900 | -              | 12/31/2023   |
|                  |                            |       |                      |                                                               |          |            | [55610] SCHARB, BONE      | 1      | 1      |                |              |
| 30-025-53238 F   | FOXTAIL STATE COM #302H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68258 | -103.48161 | SPRING                    | 0      | 0      | -              | -            |
|                  |                            |       | Plugged (site        |                                                               |          |            | [55610] SCHARB, BONE      | 1      | i      |                |              |
| 30-025-22984 B   | BUSH STATE #001            | Oil   | released)            | MANZANO OIL CORP                                              | 32.67315 | -103.50749 | SPRING                    | 10,290 | 10,290 | 8/10/1995      | 2/1/1969     |
|                  |                            |       |                      |                                                               |          |            |                           | 1      | 1      |                |              |
|                  | FOXTAIL STATE COM #803H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68113 | -103.47473 | [55640] SCHARB, WOLFCAMP  | 0      | 0      |                | -            |
|                  | SUPER COBRA STATE COM      |       |                      |                                                               |          |            | [55610] SCHARB, BONE      | 1      | 1      |                |              |
| 30-025-41989 #6  | #002C                      | Oil   | Cancelled            | COG OPERATING LLC                                             | 32.6537  | -103.51147 | SPRING                    | 0      | 0      |                | -            |
| -                |                            |       |                      |                                                               |          |            |                           |        |        |                |              |
|                  | FOXTAIL STATE COM #804H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68113 | -103.47463 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | <del></del>    | -            |
|                  | FOXTAIL E2 05 32 W1 STATE  | 0.11  | N                    | Franklin Massatsin France 0 110                               | 00 00440 | 400 47457  | ITTO 403 COLLADO MOLTOANO |        |        |                | 7/05/0000    |
| 30-025-50168 C   | COM #001H                  | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68113 | -103.47457 | [55640] SCHARB, WOLFCAMP  | 0      | 0      |                | 7/25/2022    |
| 20 025 52244 5   | FOXTAIL STATE COM #504H    | Oil   | Now                  | Franklin Mountain Energy 2, LLC                               | 32.68113 | 102 47454  | [55610] SCHARB, BONE      | 0      | 0      |                |              |
| 30-025-53244 F   | FUNTAIL STATE COM #504FI   | Oil   | New<br>Plugged (site | Franklin Mountain Energy 3, LLC DOMINION OKLAHOMA TEXAS EXPL. | 32.06113 | -103.47454 | [55650] SCHARB,           | - 0    |        | <del>-</del> - | <del>-</del> |
| 30-025-29287 M   | MCINITOSH #001             | Oil   | released)            | & PROD INC                                                    | 32.65145 | 102 46010  | WOLFCAMP, SOUTHEAST       | 11,500 | 11 500 | 10/23/2002     | 6/15/1985    |
|                  | FOXTAIL E2 05 32 W1 STATE  | Oit   | reteaseu)            | & FROD INC                                                    | 32.03143 | -103.40019 | WOLFCAMF, SOUTHEAST       | 11,500 | 11,500 | 10/23/2002     | 0/13/1983    |
| 30-025-50169 C   |                            | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68113 | -103 4745  | [55640] SCHARB, WOLFCAMP  | 0      | 0      | _              | 7/23/2022    |
| 30-023-30103 C   | GOI1 #00211                | Oit   | INCW                 | Trankuii Piouritaiii Eriergy 3, EEC                           | 32.00113 | -103.4743  | [55610] SCHARB, BONE      |        |        | <del>-</del>   | 772372022    |
| 30-025-53239 F   | FOXTAIL STATE COM #303H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68113 | -103.47444 |                           | 0      | 0      | _              | _            |
| 00 020 00200 11  | OXITALE CONTROCONT         | O.K   | Plugged (site        | Trankin Floatian Energy 6, EE6                                | 02.00110 | 100.47444  | [55610] SCHARB, BONE      |        |        |                |              |
| 30-025-27270 S   | SCHARB 8 #001              | Oil   | released)            | DALLAS PRODUCTION                                             | 32.68061 | -103.47313 |                           | 10,800 | 10,800 | 7/9/1996       | 3/7/1981     |
| 1 2 2 2 2 2 3 0  |                            |       |                      |                                                               |          |            | [55610] SCHARB, BONE      | 10,000 | 20,000 |                |              |
| 30-025-53246 F   | FOXTAIL STATE COM #602H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68259 | -103.47871 |                           | 0      | 0      | -              | -            |
|                  |                            |       |                      |                                                               |          |            |                           |        |        |                |              |
| 20 025 52410 5   | FOXTAIL STATE COM #802H    | Oil   | New                  | Franklin Mountain Energy 3, LLC                               | 32.68259 | -103.47861 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -              | -            |
| 130-023-33410 IF |                            |       |                      |                                                               |          |            | 1                         |        |        |                |              |
| 30-025-55410 F   |                            |       |                      |                                                               |          |            | [55610] SCHARB, BONE      | 1      |        | ļ              |              |

|              | T                       |            | Division of Coltan | 1                                 | I I                  |            | ITEGANIAN DONE             | I      |        | 1            |              |
|--------------|-------------------------|------------|--------------------|-----------------------------------|----------------------|------------|----------------------------|--------|--------|--------------|--------------|
| 20 005 07045 | EL KAN #000             | Oil        | Plugged (site      | ELK OIL CO                        | 22 00000             | -103.46018 | [55610] SCHARB, BONE       |        | 10.900 |              |              |
| 30-025-27915 | RAMBO FEE COM #302H     | Oil        | released)<br>New   | Franklin Mountain Energy 3, LLC   | 32.66966<br>32.68286 | -103.46018 |                            | 0      | 10,900 |              | _            |
|              |                         | Oil        | New                | Franklin Mountain Energy 3, LLC   | 32.68286             | -103.47871 | •                          | 0      | 0      |              | -            |
|              | RAMBO FEE COM #802H     | Oil        | New                | Franklin Mountain Energy 3, LLC   | 32.68286             | -103.47871 |                            | 0      | 0      |              | <del>-</del> |
|              | RAMBO FEE COM #602H     | Oil        | New                | Franklin Mountain Energy 3, LLC   | 32.68286             | -103.47852 | •                          | 0      | 0      |              |              |
| 30-025-53262 | RAMBO FEE COM #602F     | Oit        |                    | Franklin Mountain Energy 3, LLC   | 32.00200             | -103.47652 | [55610] SCHARB, BONE       | U      | U      |              | -            |
| 20 025 24042 | CHARLES CALVES #000     | Oil        | Plugged (site      | MACK ENERGY CORR                  | 20.00072             | -103.49895 |                            | 10 105 | 10 105 | 4/20/2002    | 0/0/1074     |
| 30-025-24813 | CHARLES S ALVES #003    | Oil        | released)          | MACK ENERGY CORP                  | 32.68073             | -103.49895 | [55610] SCHARB, BONE       | 10,195 | 10,195 | 4/30/2002    | 8/8/1974     |
| 20 025 20702 | DDE ONOADD WELL #000    | Oil        | Plugged (site      | DDE ONGADO WELL OPERATOR          | 22 60107             | 100 40044  |                            | 0      | 10.005 | İ            |              |
| 30-025-20703 | PRE-ONGARD WELL #002    | Oit        | released)          | PRE-ONGARD WELL OPERATOR          | 32.68107             | -103.49844 | SPRING                     | U      | 10,205 |              |              |
| 20 025 02400 | DDE ONGADO WELL #001    | Oil        | Plugged (site      | DDE ONGADO WELL OPERATOR          | 32.64154             | -103.50318 |                            | 0      | 10.007 |              |              |
| 30-025-03169 | PRE-ONGARD WELL #001    | Oit        | released)          | PRE-ONGARD WELL OPERATOR          | 32.64154             | -103.50318 |                            | U      | 10,367 |              |              |
| 00 005 45040 | CABLE 19 35 16 STATE    | 0.1        | 0                  | Ontario Branco Organization III O | 00 00704             | 400 4505   | SPRING; [55610] SCHARB,    |        |        | İ            |              |
| 30-025-45648 | #002C                   | Oil        | Cancelled          | Catena Resources Operating, LLC   | 32.66724             | -103.4585  | BONE SPRING                | 0      | 0      | <del>-</del> | -            |
|              |                         |            |                    |                                   |                      |            | [55610] SCHARB, BONE       | _      | _      | İ            |              |
|              | FOXTAIL STATE COM #304H | Oil        | New                | Franklin Mountain Energy 3, LLC   | 32.68113             | -103.47217 |                            | 0      | 0      | -            | -            |
|              | SANTA VACA 19 18 B1NC   |            |                    |                                   |                      |            | [55610] SCHARB, BONE       |        |        | İ            |              |
|              | STATE COM #001H         | Oil        | New                | MEWBOURNE OIL CO                  | 32.63931             | -103.4998  |                            | 0      | 0      | -            | 10/29/2022   |
|              | WEST PEARL QUEEN UNIT   |            | Plugged (site      |                                   |                      |            | [49820] PEARL, SAN ANDRES, |        |        | İ            |              |
|              | #102                    | Oil        | released)          | GULF OIL CORP                     | 32.63599             | -103.48593 |                            | 0      | 5,128  |              |              |
|              | SANTA VACA 19 18 B1MD   |            |                    |                                   |                      |            | [55610] SCHARB, BONE       |        |        | İ            |              |
| 30-025-50368 | STATE COM #001H         | Oil        | New                | MEWBOURNE OIL CO                  | 32.63931             | -103.49986 | SPRING                     | 0      | 0      | -            | 9/29/2022    |
|              | WEST PEARL QUEEN UNIT   |            | Plugged (site      |                                   |                      |            |                            |        |        | İ            |              |
| 30-025-03176 | #100                    | Oil        | released)          | GULF OIL CORP                     | 32.6405              | -103.46877 | [49780] PEARL, QUEEN       | 0      | 4,990  |              |              |
|              |                         | Salt Water | Plugged (site      |                                   |                      |            |                            |        |        |              |              |
| 30-025-20394 | ORA JACKSON A #001      | Disposal   | released)          | BIG 6 DRILLING CO                 | 32.68427             | -103.48605 | • • •                      | 10,166 | 10,166 | 8/1/1989     | 10/4/1963    |
|              | ANCHOR 193528 STATE     |            |                    |                                   |                      |            | [96989] KLEIN RANCH,       |        |        | İ            |              |
| 30-025-45631 | COM #001C               | Oil        | Cancelled          | Catena Resources Operating, LLC   | 32.63983             | -103.46955 | WOLFCAMP                   | 0      | 0      | -            | -            |
|              | CHAROLAIS 28 21 B2OB    |            |                    |                                   |                      |            |                            |        |        | İ            |              |
| 30-025-45362 | STATE COM #001C         | Oil        | Cancelled          | MEWBOURNE OIL CO                  | 32.65274             | -103.45804 | [49680] PEARL, BONE SPRING | 0      | 0      | -            | -            |
|              | WEST PEARL QUEEN UNIT   |            | Plugged (site      |                                   |                      |            |                            |        |        | İ            |              |
| 30-025-03247 | #103                    | Oil        | released)          | XERIC OIL & GAS CORP              | 32.63598             | -103.48164 | [49780] PEARL, QUEEN       | 5,039  | 5,039  | 3/13/2013    | -            |
|              | CHAROLAIS 28 21 B2PA    |            |                    |                                   |                      |            |                            |        |        |              |              |
| 30-025-45361 | STATE COM #001C         | Oil        | Cancelled          | MEWBOURNE OIL CO                  | 32.65274             | -103.45794 | [49680] PEARL, BONE SPRING | 0      | 0      | -            | -            |
|              | SANTA VACA 19 18 B2NC   |            |                    |                                   |                      |            | [55610] SCHARB, BONE       |        |        |              |              |
| 30-025-49154 | STATE COM #001H         | Oil        | Active             | MEWBOURNE OIL CO                  | 32.63931             | -103.50051 | SPRING                     | 20,836 | 10,206 | -            | 10/22/2021   |
|              |                         |            |                    |                                   |                      |            | [55650] SCHARB,            |        |        |              |              |
| 30-025-39205 | KLEIN 16 STATE #001     | Oil        | Active             | Franklin Mountain Energy 3, LLC   | 32.65455             | -103.45733 | WOLFCAMP, SOUTHEAST        | 11,019 | 11,019 | -            | 7/28/2009    |
|              | SANTA VACA 19 18 B3NC   |            |                    |                                   |                      |            | [55610] SCHARB, BONE       |        |        |              |              |
| 30-025-49155 | STATE COM #001H         | Oil        | New                | MEWBOURNE OIL CO                  | 32.63931             | -103.50061 | SPRING                     | 0      | 0      | -            | 10/7/2021    |
|              |                         |            | Plugged (not       |                                   |                      |            | [55610] SCHARB, BONE       |        |        |              |              |
| 30-025-28195 | SCHARB 9 #002           | Oil        | released)          | BXP Operating, LLC                | 32.67695             | -103.46454 | SPRING                     | 9,850  | 9,850  | 2/7/2023     | 4/28/1983    |
|              | SANTA VACA 19 18 B2MD   |            |                    |                                   |                      |            | [55610] SCHARB, BONE       |        |        |              |              |
| 30-025-46804 | STATE COM #001H         | Oil        | New                | MEWBOURNE OIL CO                  | 32.63931             | -103.50071 | SPRING                     | 0      | 0      | -            | 9/22/2021    |
|              |                         |            | Plugged (site      |                                   |                      | -          | [55650] SCHARB,            |        |        |              | İ            |
| 30-025-28662 | PRE-ONGARD WELL #005    | Oil        | released)          | PRE-ONGARD WELL OPERATOR          | 32.66292             | -103.45667 |                            | 0      | 10,920 |              |              |
|              | SANTA VACA 19 18 B3MD   | 1 - 1 -    |                    |                                   |                      |            | [55610] SCHARB, BONE       | Ť      | 10,020 |              |              |
|              |                         | Oil        | New                | MEWBOURNE OIL CO                  | 32.63931             | -103.5008  |                            | 0      | 0      | _            | 8/23/2021    |
| 55 020 40000 | AIRSTRIP 6 STATE COM    |            |                    |                                   | 02.00001             | 100.0000   | [55610] SCHARB, BONE       | · ·    | -      |              | 5,20,2021    |
| 30-025-40409 | #003C                   | Oil        | Cancelled          | COG OPERATING LLC                 | 32.68428             | -103.48985 |                            | 0      | 0      | _            | _            |
|              |                         |            |                    |                                   |                      |            | 0111110                    |        |        |              |              |

| 30-025-53285 | RAMBO STATE COM #304H      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.683   | -103.47505 | [55610] SCHARB, BONE     | 0      | 0      | -          | -          |
|--------------|----------------------------|-----------|---------------|---------------------------------|----------|------------|--------------------------|--------|--------|------------|------------|
| 30-025-53287 | RAMBO STATE COM #504H      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.683   |            | [55610] SCHARB, BONE     | 0      | 0      | -          | -          |
| 30-025-53288 | RAMBO STATE COM #803H      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.683   |            | [55640] SCHARB, WOLFCAMP | 0      | 0      | -          | _          |
| 30-025-53289 | RAMBO STATE COM #804H      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.683   |            | [55640] SCHARB, WOLFCAMP | 0      | 0      | -          | -          |
|              |                            |           | Plugged (site | 32                              |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-28079 | ORA JACKSON #002           | Oil       | released)     | O'NEIL PROPERTIES LTD           | 32.68464 | -103.48222 | SPRING                   | 10,171 | 10,171 | 3/13/1992  | 12/17/1982 |
| 30-025-48907 | GO STATE COM #204H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66666 | -103.5136  | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/15/2021  |
| 30-025-48905 | GO STATE COM #102H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66666 | -103.51367 | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/18/2021  |
|              | RAMBO E2 08 17 STATE COM   |           |               |                                 |          |            |                          |        |        |            |            |
| 30-025-49535 | #001H                      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68327 | -103.47498 | [55640] SCHARB, WOLFCAMP | 0      | 0      | -          | 11/17/2021 |
| 30-025-48909 | GO STATE COM #306H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66666 | -103.51373 | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/21/2021  |
|              | RAMBO E2 08 17 STATE COM   |           |               |                                 |          |            |                          |        |        |            |            |
| 30-025-49536 | #002H                      | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68327 | -103.47492 | [55640] SCHARB, WOLFCAMP | 0      | 0      | -          | 11/15/2021 |
|              |                            |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-27377 | SCHARB 9 #001              | Oil       | released)     | DALLAS PRODUCTION               | 32.68059 | -103.46883 | SPRING                   | 10,841 | 10,841 | 8/9/1996   | 7/20/1981  |
| 30-025-48906 | GO STATE COM #203H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66666 | -103.5138  | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/24/2021  |
| 30-025-48904 | GO STATE COM #101H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66666 | -103.51386 | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/27/2021  |
| 30-025-48908 | GO STATE COM #305H         | Oil       | New           | PRIDE ENERGY COMPANY            | 32.66665 | -103.51393 | [55610] SCHARB, BONE     | 0      | 0      | -          | 6/30/2021  |
|              | WEST PEARL QUEEN UNIT      |           | Plugged (site |                                 |          |            |                          |        |        |            |            |
| 30-025-03246 | #104                       | Injection | released)     | XERIC OIL & GAS CORP            | 32.63625 | -103.47628 | [49780] PEARL, QUEEN     | 99,999 | 99,999 | 7/27/2000  | -          |
|              |                            |           |               | DOMINION OKLAHOMA TEXAS EXPL.   |          |            |                          |        |        |            |            |
| 30-025-34709 | TORO 21 #002               | Oil       | Cancelled     | & PROD INC                      | 32.64691 | -103.46022 |                          | 0      | 0      | -          | -          |
|              |                            |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-28370 | ELKAN #003                 | Oil       | released)     | ELK OIL CO                      | 32.67329 | -103.46019 | SPRING                   | 11,000 | 11,000 | 6/28/1996  | 9/15/1983  |
|              |                            |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-20305 | SMITH 5 #002               | Oil       | released)     | SOUTHLAND ROYALTY CO            | 32.68425 | -103.47742 | SPRING                   | 10,179 | 10,179 | 11/18/1993 | 4/1/1984   |
|              |                            |           | Plugged (site |                                 |          |            |                          |        |        |            |            |
| 30-025-21171 | MAGNUM STATE #001          | Oil       | released)     | PRIMERO OPERATING INC           | 32.68402 | -103.49431 |                          | 10,207 | 10,207 | 11/7/1995  | 3/7/1964   |
|              | WEST PEARL QUEEN UNIT      |           | Plugged (site |                                 |          |            |                          |        |        |            |            |
| 30-025-03255 | #105                       | Oil       | released)     | GULF OIL CORP                   | 32.63687 | -103.47355 | [49780] PEARL, QUEEN     | 0      | 5,117  |            |            |
|              |                            |           |               |                                 |          |            | [49680] PEARL, BONE      |        |        |            |            |
|              |                            |           |               |                                 |          |            | SPRING; [55650] SCHARB,  |        |        |            |            |
| 30-025-35788 | TORO 21 #002               | Oil       | Active        | North Fork Operating, LP        | 32.64504 | -103.46126 | WOLFCAMP, SOUTHEAST      | 11,200 | 11,200 | -          | 12/26/2001 |
|              | HIBISCUS 08 19 35 RN STATE |           |               |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-42502 | COM #124H                  | Oil       | Active        | MATADOR PRODUCTION COMPANY      | 32.68296 | -103.47213 | SPRING                   | 15,187 | 10,185 | -          | 10/7/2015  |
|              |                            |           | Plugged (site |                                 |          |            |                          |        |        |            |            |
| 30-025-03157 | PRE-ONGARD WELL #001       | Oil       | released)     | PRE-ONGARD WELL OPERATOR        | 32.68071 | -103.50319 |                          | 0      | 6,510  |            |            |
| 30-025-35613 |                            | Oil       | Cancelled     | MACK ENERGY CORP                | 32.6834  | -103.49779 |                          | 0      | 0      | -          | -          |
|              | EAST PEARL QUEEN UNIT      |           | Plugged (not  |                                 |          |            |                          |        |        |            |            |
| 30-025-03175 | #011                       | Injection | released)     | XERIC OIL & GAS CORP            | 32.6405  | -103.46449 | [49780] PEARL, QUEEN     | 4,960  | 4,960  | 10/8/2013  | 3/22/1958  |
|              |                            |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
|              | SMITH 5 #001               | Oil       | released)     | DALLAS PRODUCTION               | 32.68451 | -103.47314 |                          | 10,806 | 10,806 | 6/25/1996  | 1/9/1981   |
| 30-025-40852 |                            | Oil       | Active        | Franklin Mountain Energy 3, LLC | 32.66603 |            | [55610] SCHARB, BONE     | 13,940 | 9,517  | -          | 12/4/2012  |
| 30-025-53165 |                            | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68152 |            | [55610] SCHARB, BONE     | 0      | 0      | -          | -          |
| 30-025-53167 |                            | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68152 | -103.46615 | [55640] SCHARB, WOLFCAMP | 0      | 0      | -          | -          |
|              | WEST PEARL QUEEN UNIT      | 1         | Plugged (site |                                 |          |            |                          |        |        |            |            |
| 30-025-03244 |                            | Injection | released)     | XERIC OIL & GAS CORP            | 32.63326 | -103.48166 | [49780] PEARL, QUEEN     | 5,030  | 5,030  | 4/17/2014  | -          |
| 1            | CABLE 19 35 9 STATE COM    |           |               |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-46139 | #002C                      | Oil       | Cancelled     | Catena Resources Operating, LLC | 32.68229 | -103.46723 |                          | 0      | 0      | -          | -          |
| 1            |                            | L         | Plugged (site |                                 |          |            | [55610] SCHARB, BONE     |        |        |            |            |
| 30-025-28656 | SCHARB 9 #004              | Oil       | released)     | DALLAS PRODUCTION               | 32.68029 | -103.4642  | SPRING                   | 9,900  | 9,900  | 7/16/1996  | 4/6/1984   |

| 30-025-53166 | ALPHA STATE COM #601H   | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68152 | -103.46596 | [55610] SCHARB, BONE      | 0      | 0      | -          | -         |
|--------------|-------------------------|-----------|---------------|---------------------------------|----------|------------|---------------------------|--------|--------|------------|-----------|
|              |                         | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68152 | -103.46586 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -          | -         |
|              | WEST PEARL QUEEN UNIT   |           | Plugged (site | 5.                              |          |            |                           |        |        |            |           |
| 30-025-03233 | #106                    | Oil       | released)     | GULF OIL CORP                   | 32.63687 | -103.46877 | [49780] PEARL, QUEEN      | 0      | 5,000  |            |           |
| 30-025-53162 | CABLE STATE COM #501H   | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68179 | -103.4662  | [55610] SCHARB, BONE      | 0      | 0      | -          | -         |
| 30-025-53163 | CABLE STATE COM #502H   | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68179 | -103.46611 | [55610] SCHARB, BONE      | 0      | 0      | -          | -         |
|              |                         |           | Plugged (site | LYNX PETROLEUM CONSULTANTS      |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-28157 | GOVERNMENT 9 #001       | Oil       | released)     | INC                             | 32.67694 | -103.46019 | SPRING                    | 10,000 | 10,000 | 8/23/1996  | 2/21/1983 |
| 30-025-53089 | CABLE STATE COM #301H   | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68179 | -103.46601 | [55610] SCHARB, BONE      | 0      | 0      | -          | -         |
|              | ALPHA W2W2 04 33 W1     |           |               |                                 |          |            |                           |        |        |            |           |
| 30-025-50763 | STATE COM #001H         | Oil       | Cancelled     | Franklin Mountain Energy 3, LLC | 32.68159 | -103.46569 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -          | -         |
| 30-025-41858 | TEAL 12 STATE COM #002H | Oil       | Active        | CIMAREX ENERGY CO.              | 32.66858 | -103.51603 | [55610] SCHARB, BONE      | 15,292 | 10,750 | -          | 8/7/2014  |
|              | ALPHA E2W2 04 33 W1     |           |               |                                 |          |            |                           |        |        |            |           |
| 30-025-50758 | STATE COM #001H         | Oil       | Cancelled     | Franklin Mountain Energy 3, LLC | 32.68159 | -103.46563 | [55640] SCHARB, WOLFCAMP  | 0      | 0      | -          | -         |
|              |                         |           |               |                                 |          |            | WOLFCAMP; [55650]         |        |        |            |           |
|              |                         |           |               |                                 |          |            | SCHARB, WOLFCAMP,         |        |        |            |           |
| 30-025-53090 | CABLE STATE COM #801H   | Oil       | New           | Franklin Mountain Energy 3, LLC | 32.68179 | -103.46591 | SOUTHEAST                 | 0      | 0      | -          | -         |
|              | CABLE 19 35 9 STATE COM |           |               |                                 |          |            |                           |        |        |            |           |
| 30-025-46140 | #001H                   | Oil       | Active        | Franklin Mountain Energy 3, LLC | 32.68294 | -103.46756 | [55640] SCHARB, WOLFCAMP  | 21,383 | 11,072 | -          | 7/16/2019 |
|              | WEST PEARL QUEEN UNIT   |           | Plugged (site |                                 |          |            |                           |        |        |            |           |
| 30-025-03245 | #111                    | Oil       | released)     | XERIC OIL & GAS CORP            | 32.63325 | -103.47736 | [49780] PEARL, QUEEN      | 5,028  | 5,028  | 9/8/2003   | -         |
|              |                         |           | Plugged (site |                                 |          |            |                           |        |        |            |           |
| 30-025-23634 | PRE-ONGARD WELL #001    | Oil       | released)     | PRE-ONGARD WELL OPERATOR        | 32.6808  | -103.50703 |                           | 0      | 10,257 |            |           |
|              | WEST PEARL QUEEN UNIT   |           | Plugged (site |                                 |          |            |                           |        |        |            |           |
| 30-025-03252 | #113                    | Oil       | released)     | GULF OIL CORP                   | 32.63236 | -103.48488 | [49780] PEARL, QUEEN      | 0      | 5,126  |            |           |
|              |                         |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-27858 | ORA JACKSON #001        | Oil       | released)     | O'NEIL PROPERTIES LTD           | 32.6879  | -103.48607 | SPRING                    | 10,902 | 10,902 | 1/19/1996  | 7/4/1982  |
|              | WEST PEARL QUEEN UNIT   |           | Plugged (site |                                 |          |            |                           |        |        |            |           |
| 30-025-03259 | #114                    | Injection | released)     | PYRAMID ENERGY INC              | 32.63237 | -103.48917 | [49780] PEARL, QUEEN      | 4,805  | 4,805  | 7/28/1994  | -         |
|              |                         |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-26891 | SCHARB 4 #001           | Oil       | released)     | LINN OPERATING, LLC.            | 32.68422 | -103.46884 |                           | 10,706 | 10,706 | 10/17/2012 | 7/18/1980 |
|              |                         |           | Plugged (site |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-20296 | PRE-ONGARD WELL #001    | Oil       | released)     | PRE-ONGARD WELL OPERATOR        | 32.68789 | -103.48177 |                           | 0      | 10,200 |            |           |
|              |                         |           |               |                                 |          |            | WOLFCAMP, SOUTHEAST;      |        |        |            |           |
|              |                         |           | Plugged (not  |                                 |          |            | [96874] WC G-10 S193521H, |        |        |            |           |
| 30-025-34492 | TORO 21 STATE COM #001Y | Oil       | released)     | WPX Energy Permian, LLC         | 32.64692 | -103.45615 | DEVONIAN                  | 13,960 | 13,960 | 8/31/2020  | 8/27/1998 |
|              | MEAT PIE 9 STATE COM    |           |               |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-52724 | #501H                   | Oil       | New           | MARSHALL & WINSTON INC          | 32.68187 | -103.46461 |                           | 0      | 0      | -          | -         |
|              |                         |           |               |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-40875 | AIRCOBRA 12 STATE #001H | Oil       | Active        | MATADOR PRODUCTION COMPANY      | 32.68132 | -103.507   |                           | 15,130 | 10,755 | -          | 4/28/2013 |
|              | MEAT PIE 9 STATE COM    |           |               |                                 |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-52723 | #301H                   | Oil       | New           | MARSHALL & WINSTON INC          | 32.68187 | -103.46455 |                           | 0      | 0      | -          | -         |
| 1            |                         |           |               |                                 |          |            | WOLFCAMP; [55650]         |        |        |            |           |
|              | MEAT PIE 9 STATE COM    |           |               |                                 |          |            | SCHARB, WOLFCAMP,         |        |        |            |           |
| 30-025-52897 | #701H                   | Oil       | New           | MARSHALL & WINSTON INC          | 32.68187 | -103.46448 | SOUTHEAST                 | 0      | 0      | -          | -         |
|              |                         |           | Plugged (site | LYNX PETROLEUM CONSULTANTS      |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-20144 | GENE DALMONT #001       | Oil       | released)     | INC                             | 32.68791 | -103.49036 |                           | 10,050 | 10,050 | 8/3/1994   | 8/6/1963  |
|              |                         |           | Plugged (site | DOMINION OKLAHOMA TEXAS EXPL.   |          |            | [96838] DRY AND           |        |        |            |           |
| 30-025-34422 | TORO 21 STATE COM #001  | Gas       | released)     | & PROD INC                      | 32.64692 | -103.4559  | ABANDONED                 | 4,276  | 4,276  | 8/21/1998  | 8/3/1998  |
|              |                         |           | Plugged (site | LYNX PETROLEUM CONSULTANTS      |          |            | [55610] SCHARB, BONE      |        |        |            |           |
| 30-025-28191 | GOVERNMENT 9 #002       | Oil       | released)     | INC                             | 32.67329 | -103.45589 | SPRING                    | 9,860  | 9,860  | 6/9/1992   | -         |

| in Energy 3, LLC 32.68151<br>in Energy 3, LLC 32.68151<br>in Energy 3, LLC 32.68151<br>in Energy 3, LLC 32.68151 | -103.46352<br>-103.46342                                                                                                                                                                                                                                                               | [55610] SCHARB, BONE<br>[55610] SCHARB, BONE<br>[55640] SCHARB, WOLFCAMP                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| n Energy 3, LLC 32.68151                                                                                         | -103.46342                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
| 0, .                                                                                                             |                                                                                                                                                                                                                                                                                        | [55640] SCHARB, WOLFCAMP                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| in Energy 3, LLC 32.68151                                                                                        |                                                                                                                                                                                                                                                                                        | [000 :0] 00: "                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|                                                                                                                  | -103.46333                                                                                                                                                                                                                                                                             | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
| in Energy 3, LLC 32.68151                                                                                        | -103.46323                                                                                                                                                                                                                                                                             | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| TES LTD 32.68842                                                                                                 | -103.48161                                                                                                                                                                                                                                                                             | SPRING                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/3/1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | WOLFCAMP; [55650]                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | SCHARB, WOLFCAMP,                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| in Energy 3, LLC 32.68179                                                                                        | -103.46352                                                                                                                                                                                                                                                                             | SOUTHEAST                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
| in Energy 3, LLC 32.68151                                                                                        | -103.46313                                                                                                                                                                                                                                                                             | [55640] SCHARB, WOLFCAMP                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| UCTION COMPANY 32.68433                                                                                          | -103.50318                                                                                                                                                                                                                                                                             | SPRING                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/25/2006                                                                              |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| ORP 32.65547                                                                                                     | -103.45206                                                                                                                                                                                                                                                                             | [49780] PEARL, QUEEN                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/8/1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/30/1984                                                                              |
| in Energy 3, LLC 32.68179                                                                                        | -103.46342                                                                                                                                                                                                                                                                             | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
| ELL OPERATOR 32.68787                                                                                            | -103.47747                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
| in Energy 3, LLC 32.68179                                                                                        | -103.46333                                                                                                                                                                                                                                                                             | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| C 32.63778                                                                                                       | -103.50676                                                                                                                                                                                                                                                                             | [37570] LEA, BONE SPRING                                                                                                                                                                                                                                                                                                                                                                                                              | 16,064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/12/2015                                                                              |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| C 32.63779                                                                                                       | -103.50693                                                                                                                                                                                                                                                                             | [37570] LEA, BONE SPRING                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| CORP 32.63324                                                                                                    | -103.47307                                                                                                                                                                                                                                                                             | [49780] PEARL, QUEEN                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/13/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                      |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| CORP 32.64051                                                                                                    | -103.46019                                                                                                                                                                                                                                                                             | [49780] PEARL, QUEEN                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/3/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/2/1959                                                                              |
|                                                                                                                  |                                                                                                                                                                                                                                                                                        | [55610] SCHARB, BONE                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| ELL OPERATOR 32.68793                                                                                            | -103.49464                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| ai Di Cai ai N                                                                                                   | ain Energy 3, LLC 32.68151  TIES LTD 32.68842  ain Energy 3, LLC 32.68179  ain Energy 3, LLC 32.68151  DUCTION COMPANY 32.68433  CORP 32.68547  ain Energy 3, LLC 32.68179  VELL OPERATOR 32.68179  VELL OPERATOR 32.68179  NC 32.63778  NC 32.63779  S CORP 32.63324  S CORP 32.64051 | ain Energy 3, LLC 32.68151 -103.46323 TIES LTD 32.68842 -103.48161  ain Energy 3, LLC 32.68179 -103.46352 ain Energy 3, LLC 32.68151 -103.46313  DUCTION COMPANY 32.68433 -103.50318  CORP 32.65547 -103.45206 ain Energy 3, LLC 32.68179 -103.46343  VELL OPERATOR 32.68787 -103.47747 ain Energy 3, LLC 32.68179 -103.46333  NC 32.63778 -103.50676  NC 32.63779 -103.50693  S CORP 32.6324 -103.47307  S CORP 32.634051 -103.46019 | AIR Energy 3, LLC 32.68151 -103.46323 [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, WOLFCAMP, WOLFCAMP, SCHARB, WOLFCAMP, SCHARB, WOLFCAMP, SCHARB, WOLFCAMP, SCHARB, WOLFCAMP [55610] SCHARB, WOLFCAMP [55610] SCHARB, WOLFCAMP [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55610] SCHARB, BONE [55 | Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Sc | Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Science   Secoral Sc | A SCORP 32.63324 -103.46319 [55610] SCHARB, BONE 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

## **Attachment A**

All relevant plugging documents for wells that penetrate the Siluro-Devonian interval within two miles of the proposed White Russian AGI #1 well

Toro 21 State Com #001 (30-025-34492)

| Received by OCD: 5/13/2025 1:54:43 Office                                                                   | State of New Me                            |                              |                              | Form C-103 bf 85                  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|-----------------------------------|
| <u>District I</u> – (575) 393-6161<br>1625 N. French Dr., Hobbs, NM 88240                                   | Energy, Minerals and Natu                  | ıral Resources               | WELL API NO. 30              | Revised July 18, 2013 0-025-34492 |
| <u>District II</u> – (575) 748-1283<br>811 S. First St., Artesia, NM 88210<br>District III – (505) 334-6178 | OIL CONSERVATION<br>1220 South St. Fra     |                              | 5. Indicate Type of I        | Lease                             |
| 1000 Rio Brazos Rd., Aztec, NM 87410<br><u>District IV</u> – (505) 476-3460                                 | Santa Fe, NM 8'                            |                              | STATE 6. State Oil & Gas L   | FEEease No.                       |
| 1220 S. St. Francis Dr., Santa Fe, NM<br>87505                                                              |                                            |                              |                              | 3293                              |
| SUNDRY NOTI (DO NOT USE THIS FORM FOR PROPOSITION OF THE SERVOIR. USE "APPLICATION OF THE SERVOIR.")        |                                            | UG BACK TO A                 |                              | STATE COM                         |
| 1. Type of Well: Oil Well                                                                                   | Gas Well  Other                            |                              | Well Number     OGRID Number | 001Y                              |
|                                                                                                             | WPX Energy Permian,                        | LLC                          |                              | 246289                            |
| 3. Address of Operator <sub>3500 ONE WI</sub> TULSA, OK 7-                                                  | LLIAMS CENTER MD 35<br>4172                |                              | 10. Pool name or Wi          | Ideat<br>AMP, SOUTHEAST           |
| 4. Well Location Unit Letter                                                                                | 2310 feet from the NOR                     | TH line and                  | 735 feet from the            | ne EAST line                      |
| Section 21                                                                                                  |                                            | ange 35E                     |                              | ounty                             |
|                                                                                                             | 11. Elevation (Show whether DR 3,752       |                              |                              |                                   |
| 12. Check A                                                                                                 | Appropriate Box to Indicate N              | fature of Notice,            | Report or Other Da           | uta                               |
| NOTICE OF IN                                                                                                | TENTION TO:                                |                              | SEQUENT REPO                 | ORT OF:                           |
| PERFORM REMEDIAL WORK  TEMPORARILY ABANDON                                                                  | PLUG AND ABANDON  CHANGE PLANS             | REMEDIAL WOR                 | <del></del>                  | TERING CASING  AND A PNR          |
| PULL OR ALTER CASING                                                                                        | MULTIPLE COMPL                             | CASING/CEMEN                 |                              | PNR                               |
| DOWNHOLE COMMINGLE CLOSED-LOOP SYSTEM                                                                       |                                            |                              |                              |                                   |
|                                                                                                             | leted operations. (Clearly state all 1     |                              |                              |                                   |
| of starting any proposed wo proposed completion or rec                                                      | ork). SEE RULE 19.15.7.14 NMAGO ompletion. | C. For Multiple Cor          | mpletions: Attach well       | bore diagram of                   |
| 08/24/20 MIRU plugging equipr 08/25/20 Stripped rods and tbg                                                |                                            | o 1500 psi. Bled             | off pressure. POH            | with rods, rods parted.           |
| 08/26/20 RIH w/ 7" CIBP and so                                                                              | et @ 10560'. Circulate 400 k               |                              |                              |                                   |
| off. Spotted 25 sx C;ass H @ 1 08/27/20 Perf'd @ 5050'.Pressi                                               |                                            |                              |                              |                                   |
| to 3100. WOC. Tagged plug @                                                                                 | 4845'. Perf'd & Sqz'd 65 sx                | class C @ 3250               | -3050. WOC.                  |                                   |
| 08/28/20 Tagged plug @ 3000' @ 150 to surface. RDMO.                                                        | . Perf'd & Sqz'd 65 sx @ 720               | )-520. WOC. Ia               | gged plug @ 495'.            | Perr'd & Sqz'd 50 sx              |
| 08/31/20 Moved in backhoe ar                                                                                | •                                          |                              | elded on "Below G            | Fround Dry Hole                   |
| Marker". Removed anchors. Cle                                                                               | eaned location and moved of                | Т.                           |                              |                                   |
| Spud Date: 08/27/1                                                                                          | 998 Rig Release Da                         | ate: 02/2                    | 28/1999                      |                                   |
| 1 00/21/1                                                                                                   |                                            | 02/1                         |                              |                                   |
| I hereby certify that the information                                                                       | above is true and complete to the b        | est of my knowledg           | e and belief.                |                                   |
| SIGNATURE Little Caitlin O'H                                                                                | TITLE Reg                                  | ulatory Spec                 | cialist <sub>DATE</sub>      | 09/02/2020                        |
| 71 1                                                                                                        | Hair E-mail address                        | caitlin.ohair@w <sub>l</sub> | oxenergy.com PHON            | 09/02/2020<br>TE: 539-573-3527    |
| For State Use Only                                                                                          | 1.4.                                       | l' 0.65                      |                              | 4/04/04                           |
| APPROVED BY: Conditions of Approval (if any):                                                               | TITLE Com                                  | pliance Officer A            | DATE                         | 1/21/21                           |

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 13511

#### **CONDITIONS OF APPROVAL**

| Operator:               |                          |                | OGRID: | Action Number: | Action Type: |
|-------------------------|--------------------------|----------------|--------|----------------|--------------|
| WPX ENERGY PERMIAN, LLC | 3500 One Williams Center | Tulsa, OK74172 | 246289 | 13511          | C-103P       |

| OCD Reviewer | Condition |
|--------------|-----------|
| plmartinez   | None      |

(This space for State Use)

| Submit 3 Copies to Appropriate                                                             | State of New Mexico Energy, Minerals and Natural Resources Department                                                                                                                                                                | Form C-103<br>Revised 1-1-89                                                                                                                     |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| District Office  DISTRICT I P.O. Box 1980, Hobbs, NM 88240                                 | OIL CONSERVATION DIVISION P.O. Box 2088                                                                                                                                                                                              | WELL API NO.<br>30-025-34492                                                                                                                     |
| DISTRICT II P.O. Drawer DD, Artesia, NM 88210                                              | Santa Fe, New Mexico 87504-2088                                                                                                                                                                                                      | 5. Indicate Type of Lease  STATE  FEE X                                                                                                          |
| DISTRICT III<br>1000 Rio Brazos Rd., Aztec, NM 87410                                       |                                                                                                                                                                                                                                      | 6. State Oil & Gas Lease No.                                                                                                                     |
| ( DO NOT USE THIS FORM FOR PRO<br>DIFFERENT RESEI<br>(FORM C                               | ICES AND REPORTS ON WELLS OPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A RVOIR, USE "APPLICATION FOR PERMIT" 5-101) FOR SUCH PROPOSALS.)                                                                                            | 7. Lease Name or Unit Agreement Name  Toro 21 State Com.                                                                                         |
| 1. Type of Well: Oil. GAS WELL X                                                           | OTHER                                                                                                                                                                                                                                | 8. Well No.                                                                                                                                      |
| 2. Name of Operator LOUIS DREYFUS NATURA                                                   | L GAS CORP.                                                                                                                                                                                                                          | 9. Pool name or Wildcat                                                                                                                          |
|                                                                                            | Parkway, #600, Oklahoma City, OK 7313                                                                                                                                                                                                | 4 Wildcat Morrow                                                                                                                                 |
| 4. Well Location  Unit Letter H · 2                                                        | 310 Feet From TheNorthLine and7                                                                                                                                                                                                      | 7:35 45 Feet From The East Line                                                                                                                  |
| NOTICE OF INTERPORT REMEDIAL WORK  TEMPORARILY ABANDON  PULL OR ALTER CASING  OTHER:       | PLUG AND ABANDON REMEDIAL WORK  CHANGE PLANS COMMENCE DRILLIN  CASING TEST AND COMMENCE Plug-                                                                                                                                        | ALTERING CASING  RG OPNS. PLUG AND ABANDONMENT  DEMENT JOB  Back                                                                                 |
| Work commenced 1/19/99 40' of cement on plug, Swabbed well. Perf Up CIBP @ 12,628' over Lo | . Set CIBP @ 13,750'. Tested csg. & new PBTD 13,710'. Perf Lower Morrow perf Morrow f/12,606'-12,598' and 12,5 ower Morrow perfs. Dump baled 5' of coperfs w/3000 gal 10% acetic acid (25% pall sealers. Well shut in for evaluation | cIBP to 3000 psi. Dump baled f f/12,638'-12,648 w/61 shots. 42'-12,538' w/4 spf. Set 7" ement on CIBP. Swabbed well. 5 methanol used to dilute), |
| I hereby certify that the information above is                                             | true and complete to the best of my knowledge and belief.                                                                                                                                                                            | Technician DATE 2/23/99                                                                                                                          |
| SIGNATURE MYSS (M.                                                                         | Bylink me Regulatory                                                                                                                                                                                                                 | TELEPHONE NO. (405)<br>749-52                                                                                                                    |

Released to Imaging: 5/23/2025 12:11:23 PM
CONDITIONS OF APPROVAL, E ANY:

2 A Wildra Devonian C/9/30/99

--- MILLIAMS

14.5

## **APPENDIX B**

IDENTIFICATION OF OPERATORS, LESSEES, SURFACE OWNERS, AND OTHER INTERESTED PARTIES WITHIN ONE (1) MILE, SAMPLE NOTICE LETTER TO INTERESTED PARTIES, AND SAMPLE PUBLIC NOTICE OF HEARING

Figure B-1: Map of surface ownership within one mile of AGI #1

Figure B-2: Map of lessees and active operators within one mile of AGI #1

Table B-1: Summary list of all persons and interested parties to be notified

of the C-108 Application

Attachment 1: Sample notice letter to be delivered to interested parties

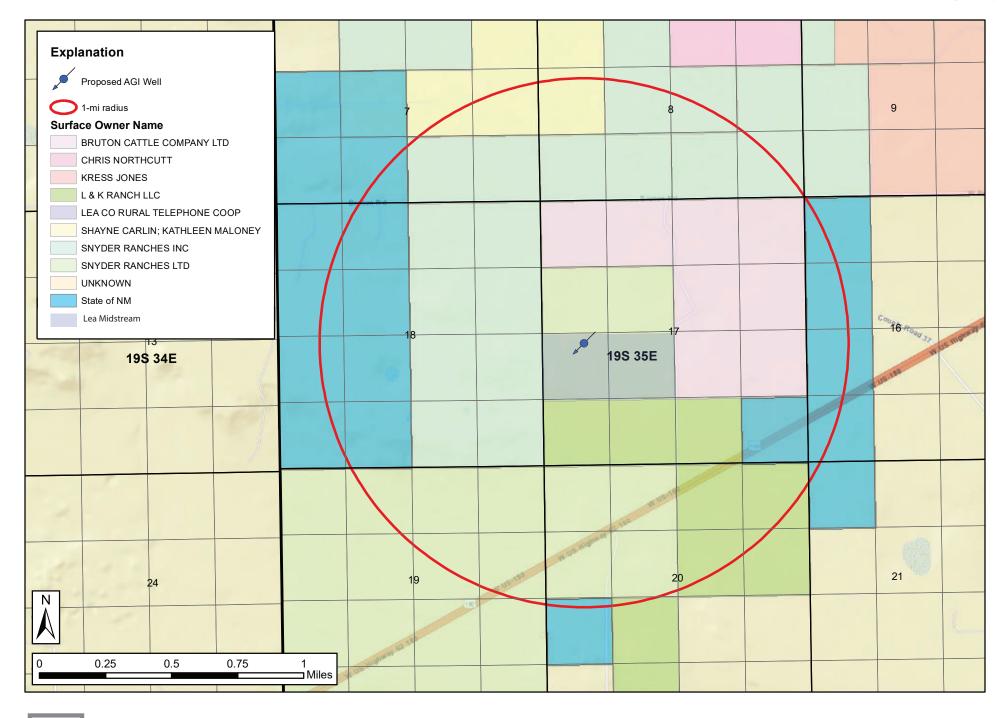



Figure B-1. Surface owners within one mile of the proposed White Russian AGI #1 well.



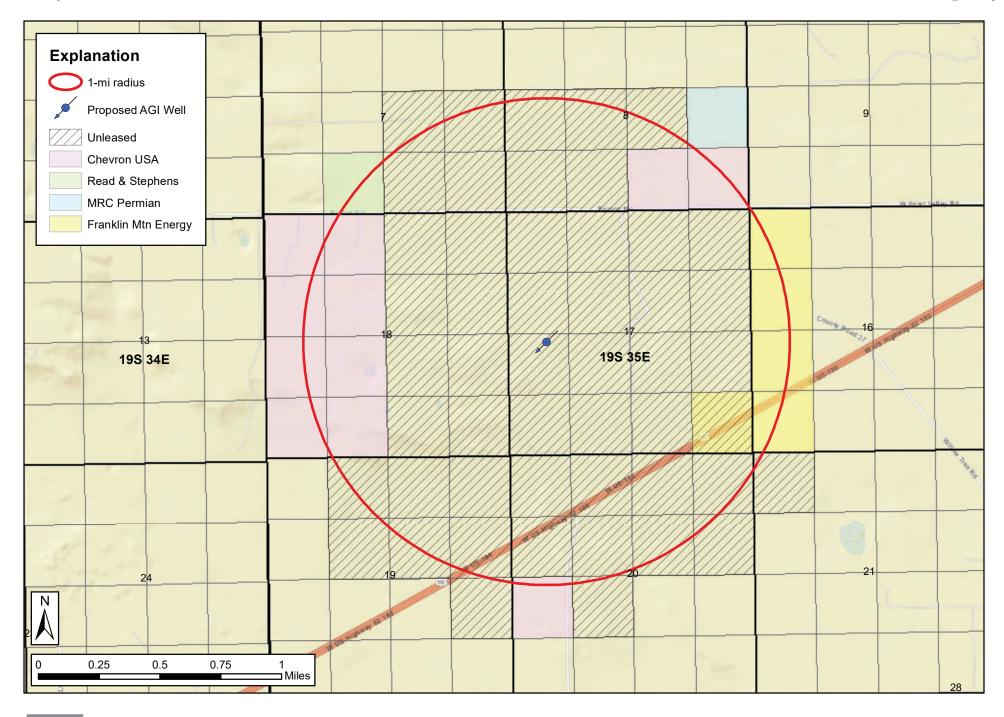



Figure B-2. All leaseholders within one mile of the proposed White Russian AGI #1 well.



#### TABLE B-1: INTERESTED PARTIES TO BE NOTIFIED OF C-108 APPLICATION

#### **Surface Owners:**

STATE OF NEW MEXICO P.O. Box 1148 Santa Fe, NM 87504 (505) 827-5760

Bruton Cattle Company LTD Chris Northcutt

Kress Jones LK Ranch LLC

Lea Co. Rural Telephone Coop Shane Carlin; Kathleen Maloney

Snyder Ranches Inc. Snyder Ranches LTD

#### **Active Operators & Additional Leaseholders**

Yates Energy Corp P.O. BOX 2323 Roswell, NM 88202 575-623-4935 Matador Production Company One Lincoln Centre 5400 LBJ Freeway, Suite 1500 Dallas, TX 75240 972-371-5200

#### **Lessees & Mineral Rights Owners**

Chevron USA Inc. 6301 Deauville Blvd Midland, TX 79706 (423) 687-7328

Franklin Mountain Energy 3, LLC 44 Cook St, Suite 1000 Denver, CO 80206 (720) 414-7868

Nathan Pekar MRC Permian Company 5400 LBJ Freeway, Suite 1500 Dallas, TX 75240 (972) 371-5220 ALLISON MARKS New Mexico State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87504

Read & Stevens Inc. 1001 17<sup>th</sup> Street, Suite 1800 Denver, CO 80202 (720) 499-1454

#### ATTACHMENT 1 – SAMPLE NOTICE LETTER

March XX, 2025

Example Notice Letter Party to be notified Address VIA CERTIFIED MAIL RETURN RECEIPT REQUESTED

RE: LEA MIDSTREAM, LLC PROPOSED WHITE RUSSIAN AGI #1 (CASE NO. XXXXX)

This letter is to advise you that Lea Midstream, LLC (Lea Midstream) filed the enclosed C-108 application (Application for Authorization to Inject) on XX/XX/XXXX with the New Mexico Oil Conservation Division (NMOCD) seeking authorization to drill and operate an acid gas injection (AGI) well, the White Russian AGI #1, at their gas treatment facility in Lea County, New Mexico. The proposed AGI #1 is intended to be the primary method for disposing of sour gases associated with oil and gas treatment activities at the facility.

The proposed well will be drilled from a surface location of approximately XXX feet from the north line (FSL) and XXX feet from the west line (FWL), with a deviated wellbore and bottom-hole location approximately XXX feet northwest of the surface location in Section 17, Township 19 South, Range 35 East, in Lea County, New Mexico. As proposed, the White Russian AGI #1 well will inject waste carbon dioxide and hydrogen sulfide into the Devonian through Fusselman geologic formations from approximately XXX to XXX feet. The maximum allowable surface pressure will not exceed XXX psig with a maximum daily injection volume of 12.0 million standard cubic feet (MMSCF)

This application (Case Number XXXXX) has been set for hearing before the New Mexico Oil Conservation Commission at 9:00 a.m. on XX/XX/XXXX, in the Wendell Chino Building at the NMOCD Santa Fe office located at 1220 South St. Francis Drive; Santa Fe, NM 87505. You are not required to attend this hearing, but as an interested party that may be affected by Lea Midstream's application, you may appear and present testimony. Failure to appear at that time and become a party of record will preclude you from challenging the application at a later date.

A party appearing at the hearing is required by Division Rule 19.15.4.13 NMAC to file a Pre-Hearing Statement at least four (4) days in advance of the scheduled hearing, but in no event later than 5:00 p.m. Mountain Time on Thursday preceding the scheduled hearing date. This statement must be filed at the Division's Santa Fe office at the above-specified address and should include the names of the parties and their attorneys; a concise statement of the case; the names of all witnesses the party will call to testify at the hearing; the approximate time the party will need to present its case; and an identification of any procedural matters that need to be resolved prior to the hearing.

If you have any questions concerning this application, you may contact me at Geolex, Inc.®; 500 Marquette Avenue NW, Suite 1350; Albuquerque, New Mexico 87102; (505) 842-8000.

Sincerely, Geolex, Inc.®

David A. White, P.G. Vice President Consultant to Lea Midstream

Enclosure: C-108 Application for Authority to Inject

# **APPENDIX C**

REQUEST TO SAMPLE AND ANALYZE GROUNDWATER FROM EXITING WATER WELL



David A. White, P.G.

March 19, 2025

Klein Ranch Attn: Faye Klein PO Box 1503 Hobbs, NM 88240 VIA CERTIFIED MAIL

email: dwhite@geolex.com

RE:

WATER WELL (L-09569) STATUS INQUIRY AND REQUEST FOR

**GROUNDWATER SAMPLE** 

To Whom it May Concern:

On behalf of Lea Midstream, LLC (Lea Midstream), we (Geolex, Inc.®) are contacting you in the hopes that you may provide us with information regarding the current operational status of a water well in which you are documented as the owner of record. If the current state of the well permits, we respectfully request permission to collect and analyze a groundwater sample from this well.

As recorded in the files of the New Mexico Office of the State Engineer, the well file number is L-09569 and the well has a recorded location within the SE/4 of the SW/4 of Section 17, Township 19 South, Range 35 East. The approximate geographic coordinates are 32.655, -103.4817 (NAD83).

Lea Midstream is requesting permission to sample and analyze groundwater from this well in order to provide the New Mexico Oil Conservation Division with required groundwater data in the area of their proposed Class II injection well, the White Russian AGI #1. The proposed well is to be located in the NE/4 of the SW/4 in Section 17 of Township 19 South, Range 35 East.

If you have any questions concerning this inquiry or would like to further discuss our request, you may contact me at (505) 842-8000 at Geolex, Inc.®; 500 Marquette Avenue NW, Suite 1350; Albuquerque, New Mexico 87102.

Sincerely, Geolex, Inc.®

David A. White, P.G.

Vice President - Consultant to Lea Midstream

P:\24-022 Producers Midstream\C-108 Application\Appendices\Appendix C\GW\_Sample\_Request.docx

phone: 505-842-8000 • 500 Marquette Avenue NW, Suite 1350 Albuquerque, New Mexico 87102

web: www.geolex.com





GALLERIA 40 FIRST PLAZA CTR NW STE 240 ALBUQUERQUE, NM 87102-9711 (800)275-8777

| 03/19/2025                                                                                                              | (0007273                                         | 0///          | 02:28 PM                   |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|----------------------------|
| Product                                                                                                                 | Qty                                              | Unit<br>Price | Price                      |
| First-Class Mail@<br>Letter<br>Hobbs, NM 882<br>Weight: O lb<br>Estimated Del<br>Sat 03/22                              | 241<br>0.50 oz<br>ivery Da                       | te            | \$0.73                     |
| Certified Mai<br>Tracking                                                                                               | 10                                               | 8808753       | \$4.85                     |
| Return Receip<br>Tracking                                                                                               | t<br>#:                                          | 7 3310 42     | \$4.10<br>246 11<br>\$9.68 |
|                                                                                                                         |                                                  |               | φ3.00                      |
| Grand Total:                                                                                                            |                                                  |               | \$9.68                     |
| Credit Card Remit<br>Card Name: Ma<br>Account #: XX<br>Approval #: 8<br>Transaction #<br>AID: A0000000<br>AL: MASTERCAR | sterCard<br>XXXXXXXX<br>7783Z<br>: 448<br>041010 | XX6829        | \$9.68                     |

Text your tracking number to 28777 (2USPS) to get the latest status. Standard Message and Data rates may apply. You may also visit www.usps.com USPS Tracking or call 1-800-222-1811.

Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device,



or call 1-800-410-7420.

UFN: 340135-0129

Receipt #: 840-58700333-2-3517249-2

Clerk: 7