V S Replication, Transcript, Smill Exhibits, Etc.

BEFORE THE OIL CONSERVATION CONNISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE NEW MEXICO OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 98

ORDER NO. 712

THE APPLICATION OF THE OIL CONSERVATION COMMISSION UPON ITS OWN MOTION FOR AN ORDER COVERNING GAS OIL MATIOS FOR LEA, EDDY AND CHAVES COUNTIES.

ORDER OF THE COMMISSION

BY THE CONDIISSION:

This cause came on for hearing at 10:00 A.M. on April 15, 1947 at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico hereina ter referred to as the "Commission".

NOW, on this $\frac{1}{12}$ day of 1947, the Commission having before it for consideration the testimony adduced at the hearing of said case and being fully advised in the premises;

FINDS:

1. That the Commission has jurisdiction in the matter.

2. That the order herein is reasonable and necessary in the material curtailment of avoidable underground and surface forms of waste affording the owner of each property in a pool in the respective counties, the opportunity to produce his just and equitable share of the oil and gas by using his just and equitable share of the pool within the meaning of the gas and oil conservation law in Chapter 72, Laws of New Mexico, 1935, taking into consideration all pertinent factors applicable to the various fields; such as age, state of depletion, character of producing formations, water and gas drive, application of gas to beneficial use, and the returning of gas to the formations for storage, repressuring and pressure maintenance projects.

IT IS THEREFORE ORDERED:

That the Order herein shall be applicable to the pools in Lea, Eddy and Chaves Counties, New Mexico and shall be known as the:

LMA-EDDY-CHAVES COUNTIES NEW MEXICO GAS-ONL MATIC ONDER

1. (a) The provation unit shall be the unit of provation as defined by the State-wide Provation Order (with deep-pool adaptation).

(b) A warginal unit is; for pools having no special promation plan, a promation unit that will not produce the top unit allowable as in the Statewide Promation Order (with deep-pool adaptation); and for pools having such plans, a promation unit that will not produce the acreage factor allowable thereunder-both during the Cas-Cil Matio Test.

(c) A non-marginal whit is: for pools having no special provation plans, a provation unit that will produce the top unit allowable as in the State-wide Provation Order (with deep-pool adaptation); and for pools having such plans, a provation unit that will produce the acreage factor allowable both during the Gas-Gil matio test.

(d) The top unit allowable shall be as in the State-sude provision (with deep pool adapted on).

(c) The gas-oil ratio of a proration unit shall be the total net formation gas produced with the oil from such unit divided by the total net barrels of oil so produced during the Gas-Oil Ratio Test.

1.2

(f) The limiting gas-oil ratios for the various pools shall be as in Section 2 hereinbelow.

(g) A high gas-oil ratio unit shall be a proration unit that exceeds the limiting gas-oil ratio prescribed for the pool in which such unit is located.

(h) A low gas-oil ratio unit shall be a proration unit that does not exceed the limiting gas-oil ratio prescribed for the pool in which it is locatcd.

(i) The gas-oil ratio adjustment shall be as in Section 3 hereinbelow.

(j) The unadjusted allowable shall be the allowable a proration unit would receive before the gas-oil ratio adjustment is applied.

(k) The adjusted allowable shall be the allowable a proration unit receives after the gas-oil ratio adjustment is applied.

(1) The Official Gas-Oil Ratio Test applicable shall be such fest designated by the Commission, made by such method and means, in such manner, and at such periods as the Commission in its discretion may prescribe from time to time. That a definite schedule be worked out by the Commission for conducting and submitting such tests of wells in each pool within the counties aforesaid and the making and the filing with the Commission the report of such official gas oil ratio tests shall be construed a part of such tests. The Commission will drop from the proration schedule any proration unit for failure to make such test as hereinabove described until such time as a satisfactory test has been made or full or proper explanation given.

2. (a) The limiting gas-oil ratios in cubic feet per barrel for the following pools shall be to wit:

PCOL	GAS OIL RATIO LINIT	COUNTY
Anderson	2000	Eddy
Arrowhead	3500	Lea
Artesia	2000	Eddy
Atoka	2000	Eddy
Barber	2000	Eddy
Benson	2000	Eddy
Blinebry	2000	Lea
Brunson	2000	Lea
Burton	2000	Eddy
Caprock	2000	Chaves & Lea
Cass	2000	Lea
Conauche	2000	Chaves
Corbin	2000	Lea
Gulwin	2000	Eddy
Daugherty	2000	Eddy
Dayton	2000	$Ede_{\mathcal{T}}$
Dayton, Mast	2000	Eady
Drinkard	2000	Loa
Dublin	2000	Lea
Javes	2000	Lea
Sighty-four Draw	2000	Lea
Bapire	2000	Eddy
Eunice-gonusent:		
Eunice portion	6000	Lea
Monument portion	3000	
Eunice, West	2000	Lea
Penton	2000	Liddy
Forest	2000	Eddy
Fren	2000	Rady
 Qo%6y	2000	see al
Grayourg-Jackson	6000	Dady .
Halfway	2000	Lea

FOOL	GAS OIL FATIO LIMIT	COUNTY
Harrison	2000	Lea
Henshaw	2000	Eddy
High-Lonesome	2000	Eddy
High-Lonesome South	2000	Eddy
Hobbs	3500	Lea
Jones	2000	Lea
Lea	2000	Lea
Leo	2000	Eddy
Loco Hills	3000	Eddy
Lovington	2000	Lea
Lovington, West	2000	Lea
Lusk, East	2000	Lea
Lusk	2000	Eddy & Lea
Lusk, West	2000	Eddy
Lynch	2000	Lea
Lynch, North	2000	Lea
Maljamar	3000	Eddy & Lea
Maljamar, North	2000	Lea
Maljamar, South	2000	Lea
McMillan	2000	Eddy
Paddock	2000	Lea
PCA	2000	Eddy
Pearsall	2000	Lea
Premier	2000	Eddy
Red Lake	2000	Eddy
Roberts	2000	Lea
Roberts, West	2000	Lea
Robinson	2000	Eddy & Lea
Russell	2000	Eddy
Salt Lake	2000	Lea
San Simon	2000	īea
Shugart	2000	Eddy
Shugart, North	2000	Eddy
Skaggs	2000	Lea
Square Lake	2000	Eddy
Tonto	2000	Lea
Turkey Track	2000	Eddy
Young	2000	Lea
Vacuum	2500	Lea
Watk ins	2000	Lea
Weir	2000	
New & undesignated pools	2000	

(b) No limiting gas-oil-ratio shall be applied in Hardy, Fenrose-Skelly, Langlie-Mattix, Rhodes Oil Pool, Cooper-Jal, and South Eunice pools in Lea County, (See order 633) and Scanlon in Eddy County, now primarily gas reservoirs. Provided that the oil produced with the gas shall not be in excess of the current top unit allowable; and provided further that the gas produced from said pools shall be put to beneficial use so as not to constitute waste, except as to provation units in said pools for which there are not facilities for the marketing or application to beneficial use of the gas produced therefrom. As to such provation units the limiting gas-oil ratio in effect immediately prior to the effective date of the order herein shall apply. As to said pools, gas-oil ratio tests shall be required only when the Commission within its discretion may from time to time indicate.

3. The system of gas-oil ratio control shall be that of volumetric control, whereby the current oil allowable for a proration unit, under the provisions of the State-wide Promation Order (with deep-pool adaptation), is adjusted by reason of exceeding the corresponding limiting ratio hereinabove described, in accordance with the following formula: (a) Any promation unit which, on the basis on the latest official gas oil ratio test has a gas oil ratio in access of the limiting gas oil ratio for the pool in which it is located shall be permitted to produce daily that number of barrels of oil which shall be determined by multiplying the current top unit allowable by a fraction, the numerator of which fraction shall be the limiting gas oil ratio for the pool and the denominator of which fraction shall be the gas oil ratio of said promation unit as determined by the latest official gas oil ratio test.

(b) A marginal unit shall be permitted to produce the same total volume of gas which it would be permitted to produce if it were a non-marginal unit.

(c) From the pool allocation shall be deducted the amount of oil allocated to marginal units and high gas-oil ration units, then the remaining oil shall be distributed to the low gas-oil ratio units, within the same pool in accordance with the pool proration plan.

(d) All gas produced with the current oil allowable determined in accordance with this order shall be deemed to have been lawfully produced.

4. No proration units within a repressuring or pressure maintenance project area, where 65% available residue of the total gas withdrawal is returned to the formation shall be affected by the limiting ratios of this order. Such areas shall be those set out by the Commission by Order upon hearing as provided by law.

5. All provation units to which gas-oil ratio adjustments are applied shall be so indicated in the Provation Schedule with adjusted allowables stated.

6. The order herein supersedes Orders 237, 250, 545 and 650. This order shall become effective on the first day of the proration month next succeeding the month in which said Order is adopted.

7. That jurisdiction of this case is hereby retained by the Commission to approve schedules of time and manner of taking and reporting gas oil ratios for wells in the separate pools of Lea, Eddy, and Chaves Counties and for other purposes connected therewith.

DONE it Santa Fe, New Mexico, on the day and year hereinabove designated.

OIL CONSERVATION COMMISSION CHALBERTAN Line to Mules ITHIBER C. C. Spussier ECREPARY

LEA COUNTY OPERATORS COMMITTEE DRAWER I HOBBS, NEW MEXICO

May 23, 1947

file Case 98

Mr. R. R. Spurrier Oil Conservation Commission Santa Fe, New Mexico

Dear Mr. Spurrier:

Attached you will find Proposed Gas-Oil Ratio Schedule,

as a part of the evidence submitted at the Hearing in

Santa Fe, April 15, 1947.

Yours truly, Glenn Staley

GS:gi Enc. 1

PROPOSED GAS-OIL RATIO SCHEDULF, 4-29-47

272154	COR												1
FIELDS	LEIIT	JAN.	FEB	MAR.	APR.	MAY	_ <u>10ke</u>	JULN	AUG.	SEPT.	OCT:	NØV.	DEC.
ARROWHEAD	3500	<u> </u>	<u></u>										
BLINEBRY	2000			¥									·
DOWERS	2000					<u></u>	<u> </u>	x					
BRUNSON	2000								X	x	<u>x</u>		
CAPROCK	2000						<u>x</u>	<u>x</u>					
CASS	2000						x						
DRINKARD	2000				x_	x	x						
EAVES	4000			x		 				 			
EUNICE	6000									x	x	_ <u>x</u>	
HOBBS	3500		[[x	x.	<u>_x</u>			ļ		
LOVINGTON	2000		i i		x	x	 		 	 			
LYNCH	2000		! 					x	Ì	! 	ļ		
N. LYNCH	2000			 		L		x					ļ
MONUMENT	4000					ļ	 	x	x	x	<u> </u>		
PADDOCK	2000	 		ļ 	x	x			 	Ì			1
SKAGGS	5000					ļ	x						
S. EUNICE	6000			ļ			Ì				x	x	
W. EUNICE	2000		<u> </u>		ļ	x	x			ļ	<u> </u>		
W. LOVINGTON	2500	 +	 	; 	x	×	ļ			<u> </u>			
W. ROBERTS	2000		 	↓ ↓) 	 	x	<u> </u>			
VACUUM	2500	x	x	x_		 	<u> </u>	ļ					
WEIR	2000			<u> </u>			<u> </u>		x_			}	

j.

LEA COUNTY OPERATORS CO.MITTEE MAY 13, 1947 HOBBS, NEW MEXICO

. .

1

, . .

 \sim

GAS AVAILABLE TO KUNIGE PLANT IN THE KUNIGE AND SOUTH KUNICE AREAS During the Years 1945, 1944, 1945, 1946 and 1947

n N

,

	0et, 45 	Sept. 44	Sept, 45 NCF	April, 46 NOF	700, 47 NCF
Daily Metered Gas Volume to Plant	71,146	86,319	96,896	96,000	92,219
Ges Venting to Air on Connected Leases	57,386	36,171	23,676	24,546	21,448
rotal Gas Available on Connected Leases	128,532	182 ,490	119,978	120,546	113,667
Gas Available on Unconneted Leases	9,940	13,484	8,840	9,634	5,972
Total Ges Available on Connected and Unconnected Leases	138,472	135,974	128,812	129,180	119,639
Gas Available in South Bunice Field on Unconnected Leases				4,029	15,772
Gas Metered from Trinity Sells to Onrhom Black Plant				4,500	4,012
GRAND TOTAL				137,709	139,423

Odessa, Texas March 18, 1947

> Producing Gas-Oil Ratios - Eunice Field

Lea County Operating Committee Hobbs, New Mexico

Gentlemen:

As suggested by members of your Committee, we are attaching a table of producing gas-oil ratios recently determined in the Eunice Field. These results were obtained by spot measurements of the gas as compared with the current daily oil production in cases where the gas from a well or lease is not presently connected; and in cases where all of the gas is currently taken into a pipeline system, the actual monthly gas measurement and the reported oil runs were used.

At present, we are connected to leases producing 113,667 MCF per day, and we are able to take 92,219 MCF into the plant. We are now making plant enlargements and field line extensions to process all the gas available in the Eunice Field, plus 20 million from the South Eunice Field. There is 5,972 MCF per day available on unconnected leases in Eunice, making the present total gas in the field at 119,639 MCF. This total field gas volume as compared with the total monthly reported oil runs for the field gives an average producing ratio of 8,765 cubic feet per barrel.

When anticipated increased deliveries to El Paso commence this coming September or October, we expect to have a total demand from our Eunice Gasoline Plant of 123 million cubic feet of residue gas. If we are operating under a limited ratio of 6,000 as the field new has, we shall be unable to deliver the above volume of gas.

We are, therefore, asking your support in appearing before the Commission on April 15 and asking that the limiting 6,000 gasoil ratio in Eunice be lifted insofar as is necessary to supply the gas markets; this to be effective then increased market is available. With oil producing schedules which will give us an even flow of gas to our gasoline plant, there should never be any gas vented at the Eunice Flant after the increased delivery to El Paso begins this fall. There is and will be approximately 200 MCF per day of gas on outlying leases which will not be connected.

The 20 million cubic feet which we expect to take from South Eunice is located in Sections 6 and 7, Township 22 South, Range 36 East. We expect to ask the Commission for gas-oil ratio exemption on this gas. We feel that these requests are in the direction of gas conservation and to the advantage of producers and shall appreciate your support at the April 15th hearing.

- 2 -

Yours very truly,

HRlliarkle

H. R. Markley District Superintendent Gasoline Department

Attachment

• • •

- ۲

<u> Aatio Brecket</u>	13.45# P. B. Gas Volume NCF	Per Cent of Total	Oil Production BBls.	Per Cont of Totel
0 - 1,000	348	.29	482	3.53
1 - 2,000	1,909	1.60	1,385	10.15
2 - 3,000	2,896	2.42	1,165	8.54
3 4,000	2,057	1.72	598	4.38
4 - 5,000	8,767	7.33	2,030	14.87
5 - 6,000	5,631	4.71	1,006	7.37
6 - 7,000	2,672	2.23	402	2.95
7 - 8,000	9,382	7.85	1,235	9.05
8 9,000	8,336	6.96	976	7.15
9 - 10,000	8,630	7.22	909	6.66
10 - 15,000	23,897	19.98	2,150	15,75
15 20 , 000	5,122	4.28	312	2.29
20 - 25,000	8,258	6.91	374	2.74
25 - 50,000	14,297	11.95	421	3.08
50 - 75,000	5,891	4.93	103	•75
75 -109,000	2,977	2.48	33	•2 <i>L</i>
100 -125,000	5,071	4.23	45	•33
125 150,000	579	.48	4	.03
150 -175,000	2,919	2.43	19	14
TOTAL	119,639	100,00	13,649	100.00

EUNICE FIELD

GAS-OIL RATIO BREAKDOWN OF ALL GAS AVAILABLE

• •

Ċ

ļ

. ·

1

9652/M 206,404/M 3736 100 00 2000 2000 200 200 200 200 200 20	PILLD ARROWHRAD BLINEDRY BOMERS BILINSON CAPROCE	WEIGHTED AVG. GOR 0BSERVED PLANT 4582/1 4054/1 28724/1 516/1 1146/1	VOL. & OF GAS GASOLII LEASE USE 2352/1 315/1	VOL. & DISPOSITION OF GAS NOT SOLD TO GASOLINE FLANT MCF LEASE USE VENTED 2352/M 33822/M 315/M 43079/M	AVG. G.P.M. .677 .779		R & PRESS SAT. PRESS.	URE DATA AVG. B. 11. P. (1)1917 PSI	VOLUME PLANT FUEL 322,447/M 11,236/M	LEAST FUEL Sold Sold	T to	SPCSITION OF SE SOLD V 1 to Gasoline 1 to Gasoline	to to
7/M .5.30 408. Cu Ft/Bbl 1372 PSI 2,12 0. 1/D 1.10 456 Cu Ft/Bbl 1143 PSI 1143 PSI 2,12 2.30 510 Cu Ft/Bbl 11795 P6I 1143 PSI 1143 PSI 2,12 4/M 1.50 400 Cu Ft/Bbl 1795 P6I 15, 0/M 1.60 510 Cu Ft/Bbl 1795 P6I 15, 6/M .60 510 Cu Ft/Bbl 15, 6/M .60 510 Cu Ft/Bbl 5, 6/M .60 5, 6	166/1 1757/1 1003/1		952/M	32.2/D 206.404/M 561/D	•736	196 Cu Ft/Bb1	437 PSI	(1)3267 PSI (1)1300 PSI	43 , 324/M	So	ld to G	ld to Gaseline	43,324/M Sold to Gaseline Plant No Disposition
1/D 1.10 456 Cu Ft/Bbl 1143 PSI 1143 PSI 2.30 510 Cu Ft/Bbl 1795 P6I 4/M 1.50 400 Cu Ft/Bbl 800 P6I 15, 6/M .60 1.00 6/M .60 4/M .60	428 30		ы С	126,017/M Balance	•5 30	भ्र ्र	1372 PSI		2,126,370 Sold		5	te Gaselire	5
4/W 1.50 400 Cu Ft/Bbl 800 PSI 15, 6/W -60 4/W -60 9/D	5	103/1 1185/ 213/1 347/1 sufficient ga	1 1024/D 236/M 8 vol ume to	521/D measu re	1.10 2.30	Cu Ft/Bbl Cu Ft/Bbl		1143 PSI	56190		6936	35 G	
		144/1 *865/1 *452/1	16/M 15_000/N 231/M	44/M 99,150/M	1. 50 .60	400 Cu Ft/Bbl		800 PSI	15,000/h		(60,000/ Rt2 t	₩ Rec}	(60,000/M 15000/M Rti to Res)
		350/1 #574/1	142/M 1,200/M	3436/M	1.00 .60								
120.9/D 1021/1 1318/M 9194/M		1000/1 846/1 Insufficient ga	N/86	1074/11 5 ,440/11 measure									
1021/1 1318/M 9194/M		150/1 3485/1		120-9/D									
284/D		, ha ha ha		9194 /1 284/D	. 1			(I)2580 PSI	87:	M/6	879/M 343/M	263/W	

۰

.

TONTO VACUUM WATKINS WEIR YOUNG	PEARSALL PEARSALL OBERTS, WEST SALT LAKE SALY SIMON SKAGGS	Dir K K	HUNICE, WEST HALFWAY HARRISON HOBBS LOVINGTON WEST	RIGHTY-FOUR DRAW NICE MONUMENT	CASS DRINKARD RAVES	FIELD ARROWHELD BLINEBRY BOWERS BRUNSON
217 1 4	й Н 4 и е е ц и	ATH 9 9 175 NORTH 175 SOUTH 1 2	30 109 20	DRAW	20 20 20	0-1000 11 5
5 A	Ň	39	87 23	78	23 23	0-1000 1000-2000 2000-3000 11 20 18 5 2 4 12
28		10	5	48	თ	2000-3000 18
15	Ч	თ	8 8 8 8	38	н फ	3000-4000 18
10 1		0	ЧЧ	3 8	ы	4000-5000 3
Q		ω	Ч	27	N	5000-6000 3
7			Ч	22	5 in e	6000-7000 1
			Р	14	in excess of 6000	1 1 1 0000-1
ы		Р		13	00	0005 - 0000
				Ø		9000-10000 4
w		لسط		0ver 10000		2 00042-0000T
بېر				0000 - 100		00 0007 25000 4 2
८ । इन्द्र संदेश र र र र	$(a_{1}) \leq \rho_{1} \rho_{2} q_{2}$	63 64 17 0 64 17 65 55	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 - 1 2 - ()	60 m 60 m	

- }

CLASSIFICATION OF WELLS

• •

WE IGHTED	GAS	OIL	RAT IO'S	-	FROM	С 🛏	116

ARRO'HEAD	1945 119 Wells - 2885/1	$\frac{1946}{120 \text{ Wells} - 3203/1}$
BRUHSON	,	13 Wells - 1174/1
CASS	2 Wells - 146/1	2 Wells - 166/1
DRINKARD	6 Wells - 1351/1	60 Wells - 2208/1
EAVES	14 Wells - 1328/1	14 Wells - 1361/1
EUNICE	464 Wells - 3620/1	463 Wells - 4280/1
S. EUNICE	81 Wells - 14,919/1	86 Wells - 17,855/1
W. BUNICE	14 Wells - 348/1	17 Wells - 366/1
H OB BS	254 Wells - 1039/1	249 Wells - 1097/1
LEA	1 Well - 360/1	
Lov inst on	47 Wells - 1187/1	53 Wells - 1189/1
WEST LOVINGTON	34 Wells - 555/1	41 Wells - 574/1
LYNCH	2 Wells - 12/1	
NORTH LYNCH		1 Well - 144/1
M ONUME NT	397 Wells - 2614/1	480 Wells 2429/1
PADDOCK	6 Wells - 662/1	49 Wells - 845/1
SALT LAKE		Insuf. Gas
SKAGGS	2 Wells - 3066/1	2 Wells - 3436/1
MUUDAV	343 Wells - 1026/1	329 Wells - 1056/1

Glenn Staley

ς,

LEA COUNEY OPERATORS COUNTITEE MARCH 25, 1947 HOBES, NEW NEXICO

,

¢

. . .

N

<u>ا آ ا</u>

.

HUMBLE OIL & REFINING COMPANY

J. W. HOUSE

Mr. W. T. Jordan Amerada Petroleum Company P. O. Box 312 Midland, Texas

Mr. R. W. Ely Cities Service Oil Company Drawer G Hobbs, New Maxice

Mr. Paul Evans Gulf Oil Corporation P. O. Box 1667 Hobbs, New Maxico

Mr. G. R. Zachry Humble Oil & Refg Co Hobbs, New Mexico

Mr. Harve H. Mayfield Magnolia Petroleum Company P. O. Box 727 Kermit, Texas

Mr. Ralph Gray Stanolind Oil & Gas Co Drawer F Hobbs, New Mexico

Gentlemen;

MIDLAND, TEXAS

March 18, 1947

ĩ

File: 6-1 Promation and Conservation Jun-Re: New Mexico

Production Department Nid-Continent Petroleum Corp Midland, Texas

Mr. R. E. McMillen Ohio Oil Cempany P.O. Box 552 Midland, Texas

Mr. Charles P. Miller Hobbs, New Mexice

Mr. G. H. Gray Sinclair-Prairie Oil Co Midland, Texas

Mr. W. R. Bollinger Shell Oil Co Hobbs, New Mexico

Mr. A. F. Holland Shell Oil Company Drawer "D" Hobbs, New Mexico

Mr. Roy Durst Rowan Drilling Co Midland, Texas

Attached herete is a tabulation of the gas-oil ratio data on the Paddock field. This data has been compiled from information obtained by personal solicitation at your office or from letters addressed to us. In order to place the data on a comparable basis, the month of December 1946 was used. To convert the information supplied to us to apply to December 1946 required an interpretation of some of the material given to us; and an assumption that wells completed subsequent to that time would have had the reported allowable and gas-oil ratio. Kindly check the data on the attached tabulation for your properties to determine any errors in computation, the assumptions made, and for additional information which you may care to supply. Any changes which you may care to suggest will be incorporated into a final tabulation for submittal to the Conservation Commission of New Mexico at the hearing April 15, 1946.

J, W. HOUSE By: R, S. Dewey

RSD:wrh

• •

1

#2.

Magnolia	Humble	Gulf	Cities Service	Company Ame rada
S. E. Long 1 2 3 4 Total 3 wells	(Note Eaves 4, not Whitaker & Perkins : N. Mex. State 3-1 2 3 4 5 6 7 7 8 9 10 11 10 11 10	Eaves 3 Hugh 1 Paddock 1 2 Total 5 Wells	e Brunson "C" 1 2 Owen 4 5 Total 4 Wells	Lease Well Baker 2
F 7-20-46 F 10-10-46 P 12-21-46 F 1-9-46	9 1 F 10-22-46 F 10-22-46 F 10-24-46 F 3-5-46 F 3-5-46 F 10-26-46 F 10-27-46 F 7-22-46 F 9-12-46 F 9-12-46 F 10-27-46			Pump or Date Flow Tested
6 294 781 230 1,674 492 6 821 782 642 1,674 1,374 6 Insufficient gas to measure 5 521 448 233 864 450 545 2,011 1,105 4,212 2,316		7 1,314 1,289 965 1,674 1,254 1,357 1,694 2,299 1,674 2,272 1,314 1,778 2,336 1,674 2,272 1,979 1,774 3,511 1,674 3,313 93 1,789 166 1,674 3,313 1,116 8,324 9,277 8,370 9,195	1,674x .874 1,674 1,674x .874 1,674 1,674x 1,252 1,674 1,674x 1,219 1,674 1,674x .745 1,674 6,696x 4,090 6,696	PADDOCK FIELD Dec. Computed Dec. Computed Runs Gas Allowable Gas G.O.R. Barrels M.C.F. Barrels M.C.F. 3,360 1,697 5,702 1,674 5,625
74 Water 31% Water 6.4% NoF used on Lease;Balance ventcd.	100% vented 100%	54 100% vented Avg. G.P.M. 1,055 in Jan. Skelly Gasoline Plant took 81% of gas volume computed from G.O.R. In Jan. Skelly Gasoline Plant took 4,251 MCF which includes 1,526 MCF used for gas lift giving net 2,725 MCF from formation. This is 42.5% of gas volume computed from G.O.R.		Avg F. G.O.R. 25 3.360 100% vented

ì

Repollo		N, G. Penrose		Ohio	Mid-Continent	Company
Rogers 1 2 Total 2 wells	Hinton 1-A 6 7 8 Penrose 2 Rogers 1 Total 8 Wells (Hinton 2 & 3 not re	Total 11 Well Elliott B-12	るしょうくたい	Lynch 1 2 3 Wortham 1	Xmas 1 Lynch 1 2 3 Total 4 Wells	Lease Well (Note Total Dec. Prod.)
נדי שי	reported)					Pump or <u>Flow</u>
9-16-46 9-18-46	8-14-46 8-17-46 8-15-46 12-9-46 1-29-47 1-29-47	8-16-46	5-28-46 6-4-46 7-10-46 8-26-46 9-11-46 2-22-47	5-27-46 5-22-46 5-22-46 5-26-46	6-6-46 6-4-46 6-5-46 6-5-46	Date Tested
808 118 128	791 861 861 745	1,239 730	876 675 1,777 5,010	6954 6954 6954 6954	1,489 501 794	G.O.R.
1,398 2,005 3,403	1,718 1,271 1,271 1,271 1,271 1,271 1,684 1,270 1,674 1,678 12,248	16,724 1,682	1,469 1,469 1,469 1,469 1,469 1,460 1,400	1,683 1,683 1,469 1,469	1,661 1,664 1,664 1,664	Dec. Runs Barrels
1,302 1,440 2,742	1,359 1,460 1,460 1,391 1,391 1,391 1,391	20,732 1,228	1,287 992 9448 2,610 788 7,714	1,676 1,565 1,29 1,402		Computed Gas M:C.F.
1,674 1,674 3,348	1,674 1,674 1,674 1,674 1,674 1,674 1,674	18,414 1,674	1,674 1,674 1,674 1,674 1,674 1,674	1,674 1,674 1,674 1,674	1,674 1,674 1,674 1,674 6,696	l Dec. Allowable Barrels
1,558 1,202 2,760	1,324 1,138 1,451 1,143 1,141 1,391 1,391 1,391 1,391	23,488 1,222	1,466 1,130 2,975 2,975 9,224	1,667 1,557 1,597 1,163	835 1,147 2,493 839 5,314	Computed Gas M.C.F.
824	722	1,276			794	AVE G.O.R.
Water 13.4% Sale to Skelly Gasoline Fiant 567	G.P.M. 1.16 G.P.M. 1.16 G.P.M. 1.16 XAssigned allowable as well shut in while drilling offset Vented 100%	Assumed 100% vented.			100% to Skelly Gasoline Plant	Remarks

ì

Stanolind	Rowan Drlg Co	Skelly	Shell	Company
Grizzell B-2 Grand Total 56 Wells	Elliott B-2-15 B-2-9 Walden 5 Total 1 Well	Baker "B" 4 5 Total 2 Wells	Thomas Long 1 2 3 Total 2 Wells	Lease Well
(a	ų		Well	Punp or Flow
	1246		being wor	Date Tested
3,795 1,014	Workover Pump no 981	1,680 705 1,197	678 rked over 1 672 676	G•0•R•
1,310 82,261	Workover Pump no GOR available 981 1,674x 1	1,680 1,684 705 1,684 1,197 3,358	935 to reduce 449 1,384	Dec. Runs Barrels
3,795 1,310 4,971 1,014 82,261 83,409	able 1,642	4 2,839 4 1,180 8 4,019	678 935 634 Well being worked over to reduce gas-oil ratio 672 449 302 676 1,384 936	Computed Gas M.C.F.
1,674 6,353 3,795 92,124 93,181 1,011	1,674	1,674 1,674 3,348		Dec. Allowable Barrels
6,353 93,181	1,674 1,642	2;812 1;180 3,992 1,192	1,674 1,135 864 1,125 2,538 2,260	Computed Gas M.C.F.
3,795 1,011	981	1,192	068	Avg G.O.R
100% to Skelly Gasoline Plant 3HP 1732	xl ez allowable assigned 100% vented	100% vented	100% vented	Remarks

ì

.

			Total 56	1	0	N	0~	46	Number of Wells	
Lease use MCF Sold to Skelly Gasoline Plant Vented				5000 - 6000	4000 - 5000	3000 - 4000	2000 - 2000	0001 - 56	Range of G.O.R.	
0.1 25.6 74.3	🛠 on Runs		1,014	5,510	{	3,549	 U#C,1	213	Average G.O.R.	
99 21,314 62,006	Runs Volume M.C.F.		82,261	1,400	ł	3,007	ш,ую	66,348	Dec. Runs Barrels	
89 21; <i>31</i> 4 71,778	All: Volu	DISPOSITION OF GAS	83,409	7,714	} '	10,673	17,721 21.2 11.718	47,301	Computed Gas M.C.F.	
89 778 778	Allowable Volume MCF	V OF GAS	100.00	9.2	ł	12.8	21.2	56.8	ភ្លេ ភូមិ ទ	
0.1 22.9 77.0	% on Al		92,124	1.,674	1	3,348	11.,718 	75,384	Desc. Allowable Barrels	
430	% on Allowable		93,181	9,224		11,978	17,977	54,002	Computed Gas	
			1,011 100.0	5,510		3, 5 78	1,534	716		
			100.0	9.9		12_8	19.3	58.0	8.54 8.54 8.54	

Total

100.0

83,409

93,181

100.0

•

-

•

٦)

Ľ

Ş

SUMMARY

.

, .

HUMBLE OIL & REFINING COMPANY

MIDLAND, TEXAS

March 18, 1947

File: 6-1 Protation and ConserVation

Mr. G. R. Zachry Humble Oil & Refg Co Hobbs, New Maxico

Mr. H. Mayfield Magnolia Petroleum Company P. O. Box 727 Kermit, Texas

Mr. D. A. Willer Phillips Petroleum Company Midland, Texas

Mr. Ralph Gray Stanolind Oil & Gas Company Drawer F Hobbs, New Mexico Re: New Mexico Mr. Dean Murray The Texas Company Midland, Texas

> Mr. William N. Little Tidewater Associated Oil Company Midland, Texas

Mr. Fred Turner, Jr. Midland, Texas

Mr. L. H. Wentz Ponca City, Oklahoma

Gentlemen:

Attached herewith is a tabulation of the gas-oil ratio data on the West Lovington Field. In order to place the data on a comparable basis, the month of December 1946 was used. To convert the information supplied to us to apply to December 1946 required an interpretation of the material given to us.

Kindly check the data on the attached tabulation for your properties to determine any errors in computation, the assumption made, and for additional information which you may care to supply. Any changes which you may care to suggest will be incorporated into a final tabulation for submittal to the Conservation Commission of New Mexico at the hearing April 15, 1946.

J. W. HOUSE By: R. S. Dewey

RSD:wrh

Texas	Stanolind	Phillips	Magnolia	Humble	Compary
N. Mex. State "AH"	N.Mex State E Tr. 20 11 12 13 14 N.Mex. State R-1 Total 5 Wells	Mexo 1 2 Total 1 Well	N. Mex. State Q-3 R-5 6 7 8 9 Total 5 Wells	Federal Crosby 1 N. Mex. State P-1 2 N. Mex. State Q-1 2 2 Totál 7 Wells	Lease Well
しんろようの な	טי טי טי טי טי טי		∩ب ئىم ئىم ئىم ئىم	טי טי טי טי טי טי	
5-27-46 5-28-46 5-28-46 5-28-46 5-29-46 5-29-46		4-12-46 4-5-46	5-21-46 5-21-46 5-29-46 5-21-46 5-17-46 5-16-46	12-2-46 12-3-46 12-4-46 12-10-46 12-11-46 12-11-46 12-12-46	Date Tested
455 751 263 263	1,667 600 910 1,691 1,003	439 	1,232 680 764 731	485 428 428 428	G-O-R.
1,242 1,242 1,238 1,238 1,239 1,239 1,239 1,239 1,249	1,240 1,240 1,240 1,240 325 1,249 5,294	8 79 879	1,246 908 1,246 1,247 1,247 1,247 1,247 5,894	1,244 1,263 1,263 1,240 1,240 1,240 1,240 1,252 1,252 8,719	Dec. Runs Barrels
565 516 516 516 516 516 516 516	2,068 744 1,128 550 8:8 5,308	264 264		6 03 536 572 503 477 477	Computed Gas M.C.F.
Water % 2.91 1.48 1.58 1.97 9.1 1.68	Echometer BHP 1188 1106 1285 1465 1188 Assumed 100% vented	Insufficient gas to measure Assumed 100% vented	Insufficient gas to measure Water 6% 100% vented	100% vented	Remarks

,

7 }

-1

-

WEST LOVINGTON FIELD

.

			L. H. Wentz	Fred Turner Jr.	Tidewater	<u>Company</u> Texas	
Lease use MCF Vented	Number of Wells Ran 38 133 3 1000 Total 41	Total Field 41 wells	N. Mex State B-1 2 3 4 5 Total 5 Wells	N. Mex State B-1 2 N. Mex State C-1 2 3 4 5 N. Mex State D-4 Total 8 Wells	N. Mex State "O" 1 2 Total 2 Wells	Lease <u>Well</u> N. Mex State "AJ" l Total 8 Wells	
	Range G.O.R. 133-1000 1000-1691		נה וה ח, וה ח,	רטי טי טי טי טי טי טי		ъ	
	. Ave GOR 496 1,511 547		6-16-46 6-17-46 6-18-46 6-19-46 6-20-46	9-11-46		Date Tested 5-30-46	
% 4.2 100.0	R Dec. Runs Barrels 5 45,847 1 2,473 7 48,320	547	468 503 491 586 133 481	412 256 256 583 475 475	428 428 428	G.O.R. 443 445 445	
Disposition of Gas Volume MCF 1,109 25,346 26,455	Summary Ges MCF 22,718 3,737 26,455	48,320	1,242 1,242 1,242 1,242 1,242 436 5,404	1,240 1,240 1,240 1,240 1,240 1,240 1,245 1,244 1,244 1,244 1,246 1,260	1,240 1,216 2,456	Dec. Runs Barrels 1,264 9,939 10,005	J .
Įω	% Gas 85.9 14.1 100%	26,455	581 625 728 78 78 2,602	511 561 317 1,154 250 726 653 4,745	531 520 1,051	Comput,ed Gas <u>M.C.F.</u> 560 4,426 4,426 4,456	
			Assumed 100% vented	100% vented.	DeLandod vented Lease fuel 1.79 Mcf/month;Balance vented.		

OIL CONTREPORTION (OTMISSION SAUTA FE, NET PEXICO.

Glenn Staley Hobbs, New Mexico.

Dear Sir:

Enclosed you will find copy of "Sample Gas-Oil Ratio Order." This order has been written to be used as a basis for comment, discussion and criticism by all concerned in order that a suitable Gas-Oil Ratio Order may be promulgated, following open hearing as provided by law.

This copy is intended to provoke criticism either constructive or destructive.

Because of the present inadequate order; the pools indicated by asterisk do not have limiting ratios, or have 2000 by virtue of being new pools.

The plan is to study the order to be prepared for hearing April 15, 1947. Please furnish each operator copy of this proposed order.

Very truly yours

(Signed)

R. R. Spurrier

 $\sim 10^{-10}$

SAMPLE GASAOH. RAT IO ORDER

The Order herein shall be applicable to the pools in Lea, Eddy, and Chavos Counties and shall be import as the:

LEA-EDDY-CHAVES COUNT LES GAS-OIL RATIO ORDER

1. (a) The promation unit shall be the unit of promation as defined by the State-wide Promation Order (with deep-pool adaptation).

(b) A marginal unit is; for pools having no special promation plan, a promation unit that will not produce the top unit allowable as in the State-wide Promation Order (with deep-pool adaptation); and for pools having such plans, a promation unit that will not produce the acreage factor allowable thereunderboth during the Gas-Oil Ratio Test.

(c) A non-marginal unit is: for pools having no special promation plans, a promation unit that will produce the top unit allowable as in the State-wide Promation Order (with deep-pool adaptation); and for pools having such plans, a promation unit that will produce the acreage factor allowable--both during the Gas-Oil Ratio Test.

(d) The top unit allowable shall be as in the State-wide Provation Ordor (with deep poel adaptation).

(c) The gas-oil ratio of a provation unit shall be the total net formation gas produced with the oil from such unit divided by the total not barrels of cil se produced during the Gas-Oil Ratio Test.

(f) The limiting gas-oil ratios for the various poels shall be as in Section 2 horoinbolow.

(g) A high gas-oil ratio unit shall be a proration unit that exceeds the limiting gas-oil ratio prescribed for the pool in which such unit is located.

(h) A low gas-oil ratio unit shall be a promotion unit that does not exceed the limiting gas-oil ratio prescribes for the pool is which it is located.

(1) The general ratio adjustment shall be ϵ in Section 3 hereinbolow.

(j) The unadjusted allowable shall be the allowable a proration unit would receive before the gas-oil ratio adjustment is applied.

(b) The adjusted allowable shall be the allowable a proration unit received after the gas-oil ratio adjustment is applied.

(1) The Gas-Oil Ratio Test applicable shall be such Test designated by the Commission, made by such method and means, in such manner, and at such periods as the Commission in its discretion may prescribe from time to time. The making and the filing with the Commission the report of gas-oil ratio test shall be construed as a part of such test. The Commission will drop from the Proration Schedule any provation unit for failure to make such test as indicated, until a satisfactory test has been made, or explanation given.

2. (a) The limiting gas-oil ratios in cubic feet per barrel for the following pools shall be, to wit:

PCCL	GAS	OIL RATIO LIMIT	COUNTY	
Anderson		2000	Eddy	
Arrowhoad		3500	Lea	
Artesia		2000	Eddy	
Atoka*		2000	Eddy	
Barbor		2000	Eddy	
Benson*		2000	Eddy	
Blinobry		2000	Loa	
Brunson		2000	Lea	
Burton*		2000	Eddy	
Caproclt*		2000	Chavosê Loa	
Cass		2000	Lea	
Somancho *		2000	Chavos	
Gerbin		2000	Lea	
Culvin *		2000	Eddy	

-2-

	FOOL	GIS-OL RATIOLIM	COUMIY
	Daugherty*	2000	Eddy
	Dayton	2000	Eddy
	Dayton, Bast*	2000 14 98 (annec	Eddy
	Drinhard	(2000) 3500 2000	Lea
	Dublin	2000	Lea
	Eaves	(4000) 200000	Loa
•	Eighty-four Drav	2000	Lea
	Empiro*	2000	Eddy
flow	EUnice-Monument > Eunice portion > Nonument portion	6000 Superine 3000	Lea Warren 35 mil Inallijos 90 mil Lea 125/day
ć	Eunice, West	2000	Loa 125/day
Ed)	Fenton*	2 000	Eddy
	Forest*	2 000	Eddy
~~~	Fren	2000	Eddy
	Getty	2000	E ldy
	Grayburg-Jackson	4000	Eddy
	Halfway	<b>2</b> 000	Lea
	Harrison	2000	Lea
	Honshav*	2000	Eddy
	High <b>→Lo</b> nesome	2000	Eddy
	High-Lonesons South*	2000	Eddy
	Hobbs	3500	Ica
· · · · ·	JOno s	2000	Loa
;	Justis	2000	Lea
	Iea	2000	Lea
	*c ol	0003	Eddy
	Loco Hills (Emergency Order)	3000	Eddy
	Levingten	2000	Lea

24 mil/ say of

٦ آ

• •

J

A

~3~

			-
			L
1	Ľ,	• • •	L
1			-

}

POOL	GAS OIL RATIOLEN.	PCOL
Lovington, West	2000	Lea
Lusk, East	2000	Lea
Lusk*	2000	Eddy* & Lea
Lusk, Nest*	2000	Eddy
Lynch	2000	Loa
Lynch, North	2000	Loa
Kaljamar*	3000	Eddy*& Lea
Maljamar, North	2000	Loa
Maljamar, South	2000	Lea
McMillan	2000	Eddy
Paddook	2000	Loa
PCA*	2000	Eddy
Pearsall	2000	Lea
Premier	2000	Eddy
Red Lake	2000	Eddy
Roberts	2000	Lea
Roberts, West	2000	Loa
Robinson*	2000	Eddy & Lea
Russell*	2000	Eddy
Salt Lake	2000	lea
San Simon	<b>2</b> 000	Lea
Shugart	2000	Eddy
Shugert, North	2000	Eddy
Shaggs	5000 - 2 5 00	Laa
Squere Lake*	2000	Eddy
Ton <b>to</b>	<b>20</b> 00	Loa
Turkty Track +	2000	Eddy
Young	2000	Loa
Vacuum *No ratio (actual	2500 Lly)	Lea
	a. (2.44)	

POOL	GAS OIL BATIO LITT	COUNTY
Watkins	2000	Lea
Weir	2000	Lea
New and undesignated pools	2000	

(b) No limiting gas-oil- ratio shall be applied in Mardy, Penrose-Skelly, Langlie-Mattix, Bhodes Cil Pool, Cooper-Jal, and South Eunice pools in Lea County, (See order 633) and Scanlon in Eddy County, now primarily gas reservoirs; Provided that the oil produced with the gas shall not be in excess of the current top unit allowable; and provided further that the gas produced from said pools shall be put to beneficial use so as not to constitute waste, except as to proration units in said pools for which there are not facilities for the marketing or application to beneficial use of the gas produced therefrom. As to such proration units the limiting gas-oil ratio in effect immediately prior to the effective date of the order herein shall apply. As to said pools, ses-oil ration tests shall be required only when the Commission within its discretion may from time to the indicate.

3. The system of gas-oil ratio control shall be that of volumetric control, whereby the current oil allowable for a proration unit, under the provisions of the State-wide Promation Order (with deep-pool adaptation), is adjusted by reason of exceeding the corresponding limiting ratio hereinabove described, in accordance with the following formula:

(a) Any promation unit with a gas-oil ratio in excess of the limiting ratio for the pool in which it is located shall be permitted to produce daily that total volume of oil, which when multiplied by the gas-oil ratio of that unit will result in a total gas volume that does not exceed the current top unit allowable timesthe limiting gas-oil ratio for such pool;

(b) A marginal unit shall be permitted to produce the same total volume of gas which it would be permitted to produce if it were a non-marginal unit.

(c) From the pool allocation shall be deducted the amount of oil allocated to entriesh units and high ges-oil ration units, then the remaining oil

د. ز...

shall be distributed to the low gas-oil ratio units, thin the same pool in accordance with the pool promation plan.

4. No promition units within a repressuring or pressure maintenance project area, where 65% available residue of the total gas withdrawal is returned to the formation shall be affected by the limiting ratios of this order. Such areas shall be those set out by the Commission by Order upon hearing as provided by law.

5. All provation units to which gas-oil ratio adjustments are applied shall be so indicated in the Provation Schedule with adjusted allowables stated.

6. The order herein supersedes Orders 237, 250, 545 and 650.

This order shall become effective on the first day of the proration month next succeeding the month in which said Order is adopted.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

DISTRIBUTED BY LEA COUNTY OPERATORS COMMITTEE JANUARY 23, 1947 HOBES, NEW JEXICO

(A) Themas ( page 30) What is medera to what preventer and accordingly. the modultion of course out grow individual wellow reparate tankage for each well. This may be considered uneconvenies under existing conditions in the undustry. The nearest approach to This ultimate of recording well productivity is a periodic test into a reparate tank of each individual well normally connected to tankage concernan to two on more wellow It is suggested that consideration be given by the Commission to the issuance of an order requiring a 24 hour test of each individual oil well in Lea, Kidy and Chave counties, not less often than Three months periods, to determine and record a daily capacity at least ignal to the current-top whit oil allowable and of the daily capacity is les, then such top unit allowable, to determine and record the actual production of sach in weil there data are cover at for experient equivilian Cases and for project in monthal works. Maipen applie a here the principle of souther bust will test. all of the second second " g present out and wayer on the Arough the weeks and to to increase the current top well allow ables and to constrained I to be the second to be second to be the second to be a second to

# GRAYBURG OIL COMPANY OF NEW MEXICO

ARTESIA, NEW MEXICO

April 12, 1947

New Mexico Oil Conservation Commission

Santa Fe, New Mexico

Gentlemen:

Reference is made to your "Sample Gas Oil Ratio Order" which, as you have stated, was circulated in order to invoke discussion and oriticism.

In this "Sample Order" the Grayburg-Jackson Pool of Eddy County was set up tentatively with a limiting Gas-Oil Ratio of 2,000 cubic feet per barrel.

The undersigned company, operator of some 72 producing wells in the above mentioned pool, feels that a limiting Gas Oil Ratio of 2,000 cubic feet per barrel would be restrictive and not conducive to conservation of oil and/or gas.

The producing reservoir of the Grayburg-Jackson Pool is of a solution gas drive type and in common with other such reservoirs has a characteristically steady increase in gas oil ratio through the early life of production until a peak is reached. At this point, with the depletion of gas reserves, there is a correspondingly rapid decrease in gas oil ratio and it becomes necessary to resort to some method of artificial lift.

Attached hereto is a Composite Curve showing Bottom Hole Pressures and Gas Oil Ratios of wells at various phases in the producing history of the reservoir.

Although no data are available on the entire producing history of any one well, The Grayburg Oil Company considers the above curve as a true graphic representation of Typical Well Performance within this pool. Our records of Bottom Hole Pressure and Gas-Oil Matio Measurements are, of course, open to the inspection of the Commission or it's agents at any time. Page 2

Also attached is a recapitulation of latest Gas-Oil Ratios and Production of Oil and Gas during March, 1947. for our wells within the Grayburg Unit Area. You will note that while the average Gas-Oil Ratio for the Unit Area is 1,610 cubic feet per barrel many of our oldest wells are far in excess of the 2,000 cubic feet per barrel ratio.

The Grayburg Oil Company of New Mexico believes that a limiting Gas Oil Ratio of 5,000 cubic feet per barrel would not be excessive for the Grayburg-Jackson Pool and respectfully petitions the Commission to consider this figure before writing the Official Gas-Oil Ratio Order.

The undersigned company has in the past and will continue to pursue sound production policies which result in the conservation of oil and/or gas.

Respectfully yours,

Grayburg Unit Association Operator Grayburg Oil Company of New Mexico

teord, J. Heard.

Vice Fresident

RJH/nw

1

P. S. I hereby request that this letter and the inclosed figures, calculations, graphs and other material be considered a part of the record in Case No. 93 to be heard before the Oil Conservation Commission at Santa Fe at 10:00 A.N., April 15, 1947.

J. HEARD,

Vice President

# GRAYBURG UNIT AREA

.

EDDY COUNTY, NEW MEXICO

Page 1

-}

Ý

1.

l

-	Date of Last	GOR	March Oil Froduction	March Gas Production
Lease and Well No.	GOR	Cu. Ft. per Bbl.	Barrels	MCF
Burch 🛦 2	12-30-46	44 <b>7</b> 6	531	23 <b>77</b>
3	8- 8-46	4026	403	1622
	8-20-46	4728	1179	55 <b>7</b> 4
4 5 6	8- 4-46	4905	1226	6014
6	4-20-46	1352	464	627
7	8-18-46	4556	551	2510
8 Input	•	- CC+		
9	Estimated	3000	157	471
10	3-21-47	350	114	40
11	11- 9-46	2530	373	944
12	8- 5-46	7454	792	5904
13	11- 8-46	1697	1021	1733
14	11- 8-46	2332	463	1080
Burch A Total	11 0 40	-55-	7274	28896
Burch A Average GOF	t <b>-</b> 39 <b>7</b> 3		1-14	20070
Burch B 1	11- 1-46	1056	96	101
2	3-30-47	1861	503	<b>9</b> 36
	12-27-46	2 <b>0</b> 52	35 <b>2</b>	722
		2052	502	1030
	Well	1855	1141	2117
	∦ell 12-27-46	1855 3036	1141 53 <b>7</b>	2117 1630
3 4 Input 5 6 7 8	Nell 12-27-46 10-18-46	1855 3036 1770	1141 537 537	2117 1630 950
	Nell 12-27-46 10-18-46 8-17-46	1855 3036 1770 954	1141 537 537 1229	2117 1630 950 1172
3 4 Input 5 6 7 8	Nell 12-27-46 10-18-46 8-17-46 8-14-46	1855 3036 1770 954 639	1141 537 537 1229 949	2117 1630 950 1172 606
3 4 Input 5 6 7 8 9	Xell 12-27-46 10-18-46 8-17-46 8-14-46 10-13-46	1855 3036 1770 954	1141 537 537 1229	2117 1630 950 1172 606 7 <u>84</u>
3 4 Input 5 6 7 8 9 10	Xell 12-27-46 10-18-46 8-17-46 8-14-46 10-13-46 10-15-46	1855 3036 1770 954 639 624 539	1141 537 537 1229 949 1257 409	2117 1630 950 1172 606 784 220
3 4 Input 5 6 7 8 9 10 11	Xell 12-27-46 10-18-46 8-17-46 8-14-46 10-13-46 10-15-46 9-29-46	1855 3036 1770 954 639 524	1141 537 537 1229 949 1257	2117 1630 950 1172 606 7 <u>84</u>
3 4 Input 5 6 7 8 9 10 11 12 13	Nell 12-27-46 10-18-46 8-17-46 8-14-46 10-13-46 10-15-46 9-29-46 12-30-46	1855 3036 1770 954 639 624 539	1141 537 537 1229 949 1257 409	2117 1630 950 1172 606 784 220
3 4 Input 5 6 7 8 9 10 11 12	Xell 12-27-46 10-18-46 8-17-46 8-14-46 10-13-46 10-15-46 9-29-46 12-30-46 2-12-47	1855 3036 1770 954 639 624 539	1141 537 537 1229 949 1257 409 869	2117 1630 950 1172 606 7 <u>84</u> 220 515

Page 2

- 1

1

· • · . .

Lease and Well No.	Date of Last GOR	GOR Cu. Ft. per Bbl.	March 011 Production Barrels	March Gas Production MCF
Keely & 2	10-31-46	3813	300	1144
-	10-31-46	3813	298	1136
	10-31-46		299	1140
3 4 5 Input	#ell	3813	277	1140
5 Inpac	4611			
6	10 <b>-</b> 31 <b>-</b> 46	2195	841	1846
7	1-24-47	3038	1244	3 <b>7</b> 79
8	11- 3-46	352 <b>9</b>	1241	43 <b>79</b>
9	10-12-46	1960	875	1715
11	3-29-47	4364	1201	5241
Keely 🛦 Total			6299	20380
Keely A Average GC	R - 3236			
Keely B 1	10-10-46	1422	865	1230
2	10-11-46	1018	1241	1263
	10-12-46	1940	449	871
ر ۱	10-12-40	1116	858	958
4			1428	1912
3 4 5 6	11-20-46	1339	1428	1621
0	11-12-46	1135 1210		1690
7	11-11-46		1397	1056
8	9-29-46	<b>7</b> <i>5</i> 3	1402	1050
	; Well	300	11.06	1018
10	9-19-46	709	1436	1703
11	3-28-47	1182	1441	
12	9-22-46	797	1442	1149
Keely B Total			13387	144 <b>71</b>
Keely B Average G	DR - 1081			
Burch C 1	10-25-46	225 <b>7</b>	231	521
2	10-25-46	2257	233	526
3 Input	Jell			
li	12-29-46	2517	328	826
5	10-21-46	577	561	324
4 5 6	12-29-46	2517	638	1.606
7	12-29-46	2517	328	826
8	12-29-46	2517	329	828
9	2- 5-47	2274	264	600
,	J 77		•	6057

Burch C Average GOR - 2080

Page 3

**``**}

27

. .

Lease and Well No.	Date of Last GOR	GOR Cu. Ft. per Bbl.	March Oil Production Barrels	March Gas Production MCF
Keely C 1	12-27-46	2239	53 <b>1</b>	1189
4	8-25-46	1378	1321	1820
Ś	8-21-46	1047	1328	1390
5 6	8-13-46	1517	1243	1886
7	10-16-46	1192	1308	1559
7 8	10-13-46	758	1307	991
9	12-31-46	590	711	419
10	9-13-46	766	1307	1001
11	8- 7-46	671	1307	877
12 Input W	lell			
13	11-23-46	1017	1303	1325
14	3-28-47	835	1340	1119
15	11-17-46	392	1340	525
15 16	11-10-46	664	1340	890
17	8- 8-46	400	1308	523
18	4-30-46	932	1312	1223
19	11-22-46	612	1308	800
21	8-15-46	519	1340	695
22	9-27-46	<b>37</b> 3	1342	501
23	10-25-46	<b>7</b> 28	1337	973
24	10-28-46	68 <b>7</b>	1314	903
Keely C Total Keely C Average GOR	- 834		24947	2 <b>0609</b>
Unit Area Total	-		63 <b>7</b> 53	102 <b>47</b> 4



《法》是《法律者》:《法书理论》:"你们,我们的是《法》:"你们,我们们就是《法》:"你们,我们不是不是"。 [1]

алаас талада балка **10. 136-1203.** Аластар Мандба,

.



- 1

Caso # 98 Extilit * 1

### NEW MEXICO OIL CONSERVATION COMMISSION

# GAS OIL RATIO ORDER

1 # 17

# Addition for Rule 1 (1) providing for definite Schedule for conducting Official Gas Oil Ratio Tests.

With respect to Rule 1 (1) of the proposed Gas Oil Ratio Order of the Commission, pertaining to the time prescribed for conducting the Official Gas Oil Ratio Tests, it is recommended that a definite schedule be adopted for conducting and submitting such tests on wells in each pool. Since there is a tentative schedule now being followed, it is further recommended that Mr. Glenn Staley's office submit a definite schedule for review and adoption by the Commission. Casa#98 Exhibit # 2

## NEW MEXICO OIL CONSERVATION COMMISSION

6 8-20

### GAS-OIL RATIO ORDER

## Substitution for Rule 3 (a) of Suggested Order:

Any proration unit which on the basis of the latest Official Gas-Oil Ratio Test has a gas-oil ratio in excess of the limiting gas-oil ratio for the pool in which it is located shall be permitted to produce daily that number of barrels of oil which shall be determined by multiplying the current top unit allowable by a fraction, the numerator of which fraction shall be the limiting gas-oil ratio for the pool and the denominator of which fraction shall be the gas-oil ratio of said proration unit as determined on the latest Official Gas-Oil Ratio Test.

# Addition to Suggested Order - Rule 3 (d):

All gas produced with the current oil allowable determined in accordance with this order shall be deemed to be lawfully produced.

Care # 98 Expident # 3

NEW MEXICO OIL CONSERVATION COMMISSION

43-3

# GAS-OIL RATIO ORDER

# Amendment for Rule 1 (1) of Suggested Order:

(1) The <u>Official</u> Gas-Oil Ratio Test applicable shall be such Test designated by the Commission, made by such method and means, in such manner, and at such periods as the Commission in its discretion may prescribe from time to time. The making and the filing with the Commission the report of gas-oil ratio test shall be construed as a part of such test. The Commission will drop from the Proration Schedule any proration unit for failure to make such test as indicated, until a satisfactory test has been made, or explanation given. A MACH BURG TOATION BUATH FENIN METICO SHE CHICHMAN DA COMMISSION

The oil Conservation Commission, as provided by law, hereby gives notice of the following hearings to be held at Santa Fe, New Mexico, at 10:00 A.M. April 15, 1947:

### Case 97

in the matter of the application of the Oil Conservation Commission upon its own motion for an order regarding tank batteries for separate pools and whether one tank battery shall serve one pool only or whether separate tank batteries shall be employed for separate pools.

### Case 98

In the matter of the application of the Gil Conservation Commission for an order governing gas-oil ratios for Lea, Eddy, and Chaveg counties, New Mexico.

### Gase 92

In the matter of the Application of Galf Gil Corporation for issuance of a Special Order permitting the production of more than one horizon or pool through a single well bore in the Hobbs Pool, Les County, New Maxico.

#### Case 93

In the matter of the Application of Gulf Gil Corporation for the issuance of a Special Order permitting the production of more than one horison or pool through a single well bore in the Faddock, Drinkard, Brunson, Jones and Blinbry Pools, Les County, New Mexico.

#### Case 94

in the matter of the Application of Gulf Cil Corporation for the promulgation of a General Order permitting and controlling production from more than one horizon or pool through a single well bore.

Note: Gases 92, 93 and 94 were in part heard January 10, 1947 and are continued to April 15th as indicated above.

Given under the soal of said to mission at Canta Da, Naw March 24, 1947.

THE SECOND PROPERTY OF THE SECOND

By: /s/ b. s. the self H. Servelary

6 A.,