Volume 1 C-147 Registration Package for Buffalo 12 Containment & Recycling Facility Section 30, T26-S, R32-E, Lea County

- Transmittal Letter
- C-147
- Survey and Driving Directions
- AST Operations and Closure Plans
- Siting Criteria Demonstration
- Appendices

Prepared for: Chisholm Energy Operating, LLC Ft. Worth, Texas

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW, Ste F-142 Albuquerque, New Mexico 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

April 7, 2021

Mr. Mike Bratcher	Ms. Victoria Venegas
NMOCD - District 2, Supervisor811 S.	NMOCD - District 2 811 S.
First St.	First St.
Artesia, NM 88210Via E-Mail	Artesia, NM 88210Via E-Mail

RE: 1RF-464, Chisholm Energy Operating, LLC, Buffalo 12 AST Containment Section 30, T26-S, R32-E, Lea County, C-147 Volume 1 and Volume 2

Dear Mr. Bratcher and Ms. Venegas:

On behalf of Chisholm Energy Operating, LLC, R.T. Hicks Consultants is pleased submit a permit for the above-referenced project that consists of one (1) AST Containment. We appreciate your timely review and have modified the original submission to meet your comments and answer your questions. Both documents will be transmitted to OCD via the OCD.Online portal.

Volume 1 contains:

- C-147 form signed by the operator,
- Survey showing the location of the AST Containment pad and driving directions,
- AST Operations and Closure Plans (verbatim from the approved Zia Hills AST Containments),
- Siting Criteria Demonstration.

Hicks Consultants affirms that:

- The location meets all siting criteria in the Rule and the location meets thespecified setback criteria,
- An auger boring to 80 feet for a conductor pipe of an oil well on the same pad asthe proposed containment was a dry hole,
- We conducted a foot survey to check that all setback criteria are met,
- The Operation and Maintenance Plan and Closure Plan are consistent with theRule and previously approved by OCD.

Volume 2 contains information specific to the design and construction of the proposed AST and variance requests to cause the AST to conform to Rule 34. Specifically, you will find:

- Engineering drawings for the proposed 40,000 bbl. AST Containment (RockwaterTank) are fully consistent with plans previously approved by OCD,
- The Design/Construction Plan verbatim from the approved Zia Hills ASTContainment
- The manual for AST set up from Select Energy Services
- Variances for AST Storage Containments all of which have been approved by OCD previously.

In compliance with 19.15.34.10 of the Rule, the original submission was copied to BLM

April 7, 2021 Page 2

Carlsbad who is the representative of the owner of the surface upon which the containments will be constructed (i.e., the United States). In order to avoid clogging the BLM email, we will alert Mr. Robert Gomez of BLM that the document and communications with OCD will be available on line.

If you have any questions or concerns regarding this registration or the attached C-147, please contact me. As always, we appreciate your work ethic and attention to detail.

Sincerely, R.T. Hicks Consultants

Randall T. Hicks PGPrincipal

Copy: Chisholm Energy Operating, LLC

•

C-147

Received by OCD: 4/8/2021 2:37:59 PM		Page 5 of 110
District I 1625 N. French Dr., Hobbs, NM 88240 District II	State of New Mexico Energy Minerals and Natural Resources Department	Form C-147 Revised April 3, 2017
811 S. First St., Artesia, NM 88210 District III	Oil Conservation Division	
1000 Rio Brazos Road, Aztec, NM 87410 District IV	1220 South St. Francis Dr.	
1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87505	
Recycling	Facility and/or Recycling Contain	nment
Type of Facility	y: Recycling Facility Recycling Contain	nment*
Type of action: 🖂 Permi	t Registration	
	fication Extension	
	re Other (explain)	
* At the time C-147 is submitted to the dr	vision for a Recycling Containment, a copy shall be provided t	o the surface owner.
Be advised that approval of this request does not rel Nor does approval relieve the operator of its response	sibility to comply with any other applicable governmental authority's rules, re	ater, ground water or the environment. gulations or ordinances.
1. Chisholm Energy Oper	ating LLC ochup # 272127	
Operator: : Chisholin Energy Oper		
Address: 801 Cherry St Suite 7	1200 Unit 20 Fort Worth TX, 76102	Containment
Pacifity of well name (include API# if associa	(Ten new for illess the constitution will be accircle and	
OCD Permit Number:	(For new facilities the permit number will be assigned by the c	
U/L or Qtr/QtrO Section	Township Range 33E County:	
Surface Owner: Federal State P	rivate Tribal Trust or Indian Allotment	
2. <u> Recycling Facility</u> :		
Location of (if applicable): Latitude 32.6	66860 Longitude -103.612516 NAD83 (Approximate)	
Proposed Use: 🕅 Drilling* 🖾 Completion*	[™] Production* ⊠ Plugging *	
*The re-use of produced water may NOT be	used until fresh water zones are cased and cemented	
Other, requires permit for other uses. Des	cribe use, process, testing, volume of produced water and ensure there	will be no adverse impact on
groundwater or surface water.		
⊠ Fluid Storage		
Above ground tanks 🛛 Recyc	ling containment 🗌 Activity permitted under 19.15.17 NMAC explain t	уре
Activity permitted under 19.15.	36 NMAC explain type: Other exp	lain
For multiple or additional recyc	ling containments, attach design and location information of each contain	nment
Closure Report (required within 60 days	s of closure completion): Recycling Facility Closure Completion Da	ıte:
3		
<u>Recycling Containment</u> :		
Annual Extension after initial 5 years (atta	ch summary of monthly leak detection inspections for previous year)	
Center of Recycling See Attachment (adjace	ent): (if applicable) Latitude <u>32.66860</u> Longitude <u>103.612516</u>	NAD83 (Approximate)
For multiple or additional recycl	ing containments, attach design and location information of each contain	ment:
Lined Liner type: Thickness See At	ttachment: <u>HDPE</u> 🛛 LLDPE 🗌 HDPE 🗌 PVC 🗌 Other	
Primary liner <u>2 x 30 mil LLDPE</u> ; Seconda	ary liner <u>40 mil LLDPE</u> . <u>SEE DESIGN DRAWINGS</u> String-Re	einforced
Liner Seams: Welded Factory Oth	ner _ Volume: <u>SEE DESIGN DRAWINGS</u> bbl Dimensions: (Inside o	dimensions) <u>SEE DESIGN</u>
Recycling Containment Closure Completion	on Date:	<i>,</i>

.

Bonding:

4.

Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells owned or

operated by the owners of the containment.)

Bonding in accordance with 19.15.34.15(A)(1). Amount of bond <u></u>(work on these facilities cannot commence until bonding

amounts are approved)

Attach closure cost estimate and documentation on how the closure cost was calculated.

5. Fencing:

Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify____

6. <u>Signs</u>:

12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

7. Variances:

Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, human health, and the environment.

Check the below box only if a variance is requested:

 \square Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested, include the variance information on a separate page and attach it to the C-147 as part of the application.

If a Variance is requested, it must be approved prior to implementation. See Volume 2

8. Siting Criteria for Recycling Containment

Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application. Potential examples of the siting attachment source material are provided below under each criteria

General siting		
Ground water is less than 50 feet below the bottom of the Recycling Containment. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells FIGURES 1-2		
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; written approval obtained from the municipality FIGURE 3 	☐ Yes ⊠ No ☐ NA	
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division FIGURE 4 	🗌 Yes 🛛 No	
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map FIGURES 5a-e 	🗌 Yes 🛛 No	
Within a 100-year floodplain. FEMA map FIGURE 6	🗌 Yes 🛛 No	
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; visual inspection (certification) of the proposed site FIGURE 7 	🗌 Yes 🛛 No	
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; aerial photo; satellite image FIGURE 8 	🗌 Yes 🛛 No	
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. FIGURES 1 and 7 - NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site	🗌 Yes 🛛 No	
 Within 500 feet of a wetland. FIGURE 9 US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No	

Recycling Facility and/or Containment Checklist:

Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.

Design Plan - based upon the appropriate requirements.
 Operating and Maintenance Plan - based upon the approximation
 Closure Plan - based upon the appropriate

Operating and Maintenance Plan - based upon the appropriate requirements.

Closure Plan - based upon the appropriate requirements.

Site Specific Groundwater Data -

Siting Criteria Compliance Demonstrations –

Certify that notice of the C-147 (only) has been sent to the surface owner(s)

Operator Application Certification:

10.

I hereby certify that the information and attachments submitted with this application are true, accurate and complete to the best of my knowledge and belief.

Name (Print):Jennifer Elrod	Title: Regulatory	
Signature: Gennifer Elrod	Date: _04/07/2021	
e-mail address jelrod@chisholmenergy.com	Telephone:817 953 3728	
11. OCD Representative Signature:	Approval Date:	
Title:	OCD Permit Number:	

Additional OCD Conditions on Attachment

Leak Detection Systems

Select Energy employs a proprietary leak detection system between the two 30-mil LLDPE that comprise the primary liner. This system monitors seepage from the uppermost 30mil LLDPE liner.

The leak detection system that complies with Rule 34 is the 200-mil geogrid drainage layer placed beneath the primary liner system and avbove the 40-mil LLDPE secondary liner. Any seepage from the primary liner will flow beneath the AST steel frame via the drainage layer to daylight where site workers can observe the flow then repair the primary liner.

.

SURVEY FOR CONTAINMENT AND RECYCLING FACILITY

Received by OCD: 4/8/2021 2:37:59 PM

Received by OCD: 4/8/2021 2:37:59 PM

•

AST OPERATIONS AND CLOSURE PLANS

General Specifications

This plan provides additional protocols to cause the proposed recycling containments (AST Containments) to conform to NMOCD Rules.

The operator will maintain and operate the recycling containments and facility in accordance with the following plan to contain liquids and maintain the integrity of the liner to prevent contamination of fresh water and protect public health and the environment.

- The operator will use the treated produced water in the containments for drilling, completion (stimulation), producing or processing oil or gas or both. If other uses are planned, the operator will notify the OCD though the submission of a modified C-147.
- For all exploration and production operations that use produced water, the operator will conduct these activities in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.
- The operator will address all releases from the recycling and re-use of produced water in accordance with 19.15.29 NMAC.
- The operator will not discharge into or store any hazardous waste in the recycling containments, but they may hold fluids such was freshwater, brackish water, recycled and treated water, water generated by oil or gas processing facilities, or other waters that are gathered for well drilling or completion. The recycling facility will not be used for the disposal of produced water. The operator will maintain the containments free of miscellaneous solid waste or debris.
- The operator will verify that no oil is on the surface of the contained fluid. If oil is observed, the oil shall be removed using an absorbent boom or other device and properly disposed at an approved facility. An absorbent boom or other device will be maintained on site.
- The operator will install and use a header and diverter described in the design/construction plan in

19.15.34.10 B

Recycling containments may hold produced water for use in connection with drilling, completion, producing or processing oil or gas or both.

19.15.34.8 A

(5) All operations in which produced water is used shall be conducted in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.

19.15.34.8 A

(6) All releases from the recycling and re-use of produced water shall be handled in accordance with 19.15.29 NMAC.

19.15.34.10 B

Recycling containments may hold produced water for use in connection with drilling, completion, producing or processing oil or gas or both. Such fluids may include fresh water, brackish water, recycled and treated water, fluids added to water to facilitate well drilling or completion, water produced with oil and gas, flowback from operations, water generated by an oil or gas processing facility or other waters that are gathered for well drilling or completion but may not include any hazardous waste.

19.15.34.9 G

Recycling facilities may not be used for the disposal of produced water.

19.15.34.13 B

(1) The operator shall remove any visible layer of oil from the surface of the recycling containment
(7) The operator shall install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents

order to prevent damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes during injection or withdrawal of liquids.

- *Pursuant to a variance*, the operator will maintain at least 2-feet of freeboard in each AST containment. Under extenuating circumstances, which will be noted on the inspection log as described below, the operator may temporarily exceed the freeboard mandate.
- If the liner develops a leak or if any penetration of the liner occurs above the liquid's surface, then the operator will repair the damage or initiate replacement of the liner within 48 hours of discovery (and immediately notify BLM) or will seek a variance from the division district office within this time period.
- If visible inspection suggests that the liner developed a leak or if any penetration of the liner occurs below the liquid's surface, then the operator will remove all liquid above the damage or leak line within 48 hours of discovery. The operator will also notify the district division office within this same 48 hours (and immediately notify BLM) of the discovery and repair the damage or replace the liner.
- In the event of a leak due to a hole in the liner, the following steps will be followed:
 - 1. If the source of the fluid is uncertain, comparative field tests may need to be performed on both the water in the containment and that which may have been released (e.g. pH, conductance, and chloride).
 - 2. If the fluid is found to be coming from the containment, determine the location from which the leak is originating.
 - 3. Mark the point where the water is coming out of the tank.
 - 4. Locate the puncture or hole in the liner.
 - 5. Empty the containment to the point of damage in liner.
 - 6. Clean area of liner that needs to be repaired.

damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

19.15.34.13 B (2) The operator shall maintain at least three feet of freeboard at each containment.

19.5.34.13 B

(4) If the containment's primary liner is compromised above the fluid's surface, the operator shall repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension of time from the division district office.

(5) If the primary liner is compromised below the fluid's surface, the operator shall remove all fluid above the damage or leak within 48 hours of discovery, notify the division district office and repair the damage or replace the primary liner.

- 7. Cut out piece of material (patch or tape) to overlay liner.
- 8. Either weld the patch to the injured area in the liner or apply tape over the rupture.
- 9. Make sure rupture is completely covered.
- 10. Monitor as needed.

Water should NEVER go below 12 inches at the lowest level of the tank to prevent impact from high winds.

If the tank is drained, it should be secured from wind impacts and the liner inspected and reposition (to provide sufficient slack during filling) prior to refilling, per direction of SOP.

The operator will report releases of fluid in a manner consistent with NMAC 19.15.29, as well as immediately notify BLM.

The operator will inspect and remove, as necessary, surface water run-on accumulated in the secondary containment

Monitoring, Inspections, and Reporting Inspections are to routinely be performed, as well as when the ASTs are emptied and prior to refilling. An "Inspection Form" meeting requirements according to NMAC 19.15.34, as well as BLM COA, is to be filled out during these routine inspections and is included at the end of this section.

Weekly inspections consist of

- reading and recording the fluid height of staff gauges, freeboard
- recording any evidence that the AST Containment surface shows visible oil,
- visually inspecting the containment's exposed liners
- checking the leak detection system for any evidence of a loss of integrity of the primary liner.
- inspect any diversion ditches and berms around the containment to check for erosion and collection of surface water run-on.

- inspect the leak detection system for evidence of damage or malfunction and monitor for leakage.
- Inspect the containment for dead migratory birds and other wildlife. Within 30 days of discovery (24 hours if federally protected), report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

As stated above, if a liner's integrity is compromised, or if any penetration of the liner occurs, then the operator will take appropriate action within 48 hours as noted above, including immediate notification of BLM.

Monthly, the operator will:

- Report to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.
- Record sources and disposition of all recycled water.

Additional monitoring to identify hazards that may have developed, changes in site conditions, tank use and to enable early detection of structural issues such as uneven tank panel settlement, soil settlement, liner damage, insufficient liner slack, or leaks. If changes are noted, they should be communicated to the AST contractor (WWS Manager/Field Supervisor)

The operator will maintain a log of all inspections and make the log available for the appropriate Division district office's review upon request.

Cessation of Operations

If less than 20% of the total fluid capacity is utilized

19.15.34.12 E

Netting. The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

© 2020 R.T. HICKS CONSULTANTS, LTD.

every six months, beginning from the first withdraw, operation of the facility has ceased and the division district office will be notified. The division district may grant an extension not to exceed six months to determine the cessation of operations and the operator may request a variance from this mandate to close for good cause and has been included in Volume 3.

The operator will remove all fluids from the recycling facility within 60 days of cessation of operations. An extension, not to exceed 2 months, may be granted by the district division for the removal of fluids from the facility.

The breakdown of the containments follows the reverse order of the setup steps presented in the set-up manual

19.15.34.13 C

A recycling containment shall be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six months following the first withdrawal of produced water for use. The operator must report cessation of operations to the appropriate division district office. The appropriate division district office may grant an extension to this determination of cessation of operations not to exceed six months.

19.15.34.14 A

Once the operator has ceased operations, the operator shall remove all fluids within 60 days and close the containment within six months from the date the operator ceases operations from the containment for use. The division district office may grant an extension for the removal of all fluids not to exceed two months.

© 2020 R.T. HICKS CONSULTANTS, LTD.

Date:_____

Tank ID:

Inspection Form

Chisholm Energy Buffalo 12 AST Containment

Weekly inspection/Fluid level must be maintained > 1 foot

Fluid Level:			Tank contents:
Inspection Task	Res	sults	Remarks, Observations, and/or Remedial Actions
Visible Oil on Surface	None Observed	Yes, Describe Action	
		An absorbent bo surface.	om or similar device is located on site to remove visible oil from
At least 2 ft of freeboard	Yes	No, Measure Freeboard	
Evidence of surface water run-on	None Observed	Yes, Describe	
		Check for excess	sive erosion of perimeter berms.
Birds or wildlife in net or screen	None Observed	Yes, Describe	
	Wit wile	thin 30 days of disc dlife to the appropr	overy (immediately if federally protected species, report dead birds or riate agency (USFWS, NMDGF) and to NMOCD district division office.
Damage to netting or screen	None Observed	Yes, Describe	
Rupture of Liner	None Observed	Yes, Describe	
	lf rupture 48 hours	e is above fluid leve , notify NMOCD dis	el, repair within 48 hours. If below fluid level, remove fluid above within trict division office, and repair. Immediately notify BLM of any leak
Clips or clamps properly securing liner	Yes	No, Describe	
If low level, enough liner slack on panel wall	Yes	No, Describe	
Uneven gaps between panels	None Observed	Yes, Describe	
Signs of tank	None Observed	Yes,	

settlement

Observed

Describe

•

Erosion of soil surrounding tank (10 ft radius)	None Observed	Yes, Describe	
Running water on the ground	□ None Observed	Yes, Describe	
Unusual ponding of fluid inside berm	None Observed	Yes, Describe	
Field test (pH, Cl-, conductance, etc.) ponded fluid and compare to fluid in tank. If tank is determined as the source, locate and repair rupture within 48 hours. Notify NMOCD district division office and repair. Immediately notify BI M.			
Rust or corrosion on panels, stairs, or hardware	None Observed	Yes, Describe	
Damage to any hardware	None Observed	Yes, Describe	
Additional Observations or Actions:			
Inspected by:			

Closure Plan Above Ground Tank Containment (AST)

Closure Plan

After operations cease, the operator will remove all fluids and commence reclamation efforts immediately. Final reclamation to be completed within 3 months from the date the operator ceases operations from the containment for use.

The surface owner will impose a closure design that conforms to their needs for the site. The operator understands that a variance will be submitted to OCD to allow for any alternative closure protocol (BLM requirements will supersede OCD rules if equal or better for protection of freshwater, human health and the environment).

The containments are expected to contain a small volume of solids, the majority of which will be windblown sand and dust with some mineral precipitates from the water.

The operator will notify the division district and BLM (phone or email) before initiating closure of the containments and/or facility.

Excavation and Removal Closure Plan – Protocols and Procedures

- 1. Residual fluids in the containments will be sent to disposal at a division-approved facility.
- The operator will remove all solid contents and transfer those materials to the following division-approved facility: Disposal Facility Name: R360 Permit Number NM 01-0006
- 3. If possible, geomembrane textiles and liners that exhibit good integrity may be recycled for use as an under liner of tank batteries or other use as approved by OCD.
- 4. Disassemble the recycling containment infrastructure according to manufacturer's recommendations
- 5. After the disassemble of the containments and removal of the contents and liners, soils beneath the tanks will be tested as follows
 - a. Collect a five-point (minimum) composite from beneath the liner to include any obviously stained or wet soils, or any other evidence of impact from the containments for laboratory analyses for the constituents listed in Table I of 19.15.34.14 NMAC.
 - b. If any concentration is higher than the parameters listed in Table I, additional delineation may be required, and closure activities will not proceed without Division

19.15.34.14 B

The operator shall close a recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.

19.15.34.14 C

The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below. (1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must

Closure Plan Above Ground Tank Containment (AST)

approval.

c. If all constituents' concentrations are less than or equal to the parameters listed in Table I, then the operator will backfill the facility as necessary using non-waste containing, uncontaminated, earthen material and proceed to reclaim the surface to pre-existing conditions.

Reclamation and Re-vegetation

The operator will reclaim the surface to safe and stable pre-existing conditions that blends with the surrounding undisturbed area. "Pre-existing conditions" may include a caliche well pad that existed prior to the construction of the recycling containment and that supports active oil and gas operations.

Areas not reclaimed as described herein due to their use in production or drilling operations will be stabilized and maintained to minimize dust and erosion.

For all areas disturbed by the closure process that will not be used for production operations or future drilling:

- <u>a.</u> The operator will reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area.
- <u>b.</u> Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.
- <u>c.</u> The disturbed area shall then be reseeded with BLM defined seed mixture within the first 3 months following closure of a recycling containment in accordance with BLM requirements.

Federal, state trust land, or tribal lands may impose alternate reclamation and re-vegetation obligations that provide equal or better protection of fresh water, human health, and the environment. Re-vegetation and reclamation plans imposed by the surface owner will be outlined in communications with the OCD.

The operator will notify the division when the site meets the surface owner's requirements or exhibits a uniform vegetative cover that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy receive approval before proceeding with closure.

(2) If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator can proceed to backfill with non-waste containing, uncontaminated, earthen material.

19.15.34.14 E

Once the operator has closed the recycling containment, the operator shall reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment. The operator shall substantially restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

19.15.34.14 G

The re-vegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

19.15.34.14 F

Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established

Closure Plan Above Ground Tank Containment (AST)

percent (70%) of pre-disturbance levels, excluding noxious weeds. (As surface owner, BLM will determine satisfactory completion of reclamation).

Closure Documentation

Within 60 days of closure completion, the operator will submit a closure report (Form C-147) to the District Division, with necessary attachments to document all closure activities are complete, including sampling results and details regarding backfilling and capping as necessary.

In the closure report, the operator will certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in the closure plan. that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

19.15.34.14 D

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

© 2020 R.T. HICKS CONSULTANTS, LTD.

.

SITING CRITERIA DEMONSTRATION

Discussion Figures

Distance to Groundwater

Figure 1a, 1b and 2, their associated legends, and the discussion presented below demonstrate that groundwater (fresh water, as defined by NMOCD Rules) at the location is greater than the required 50 feet below the proposed Buffalo 12 Above-Ground Storage Tank Containment (Buffalo 12 AST). Specifically, the estimated depth to water is greater than 80 feet.

Geology of Buffalo 12 AST Containment

The proposed site for the Buffalo 12 AST is located approximately 29 miles due west of Hobbs, New Mexico and 5 miles north of 62/180. The area near the proposed AST containment is relatively flat with a surface covering of low sand dunes stabilized with vegetation consisting of native grasses, mesquite, and yucca. According to the New Mexico State Geologic Map (Figures 1 and 2), the Buffalo 12 AST is in an area where the surface unit is Quaternary age piedmont deposits overlain by Quaternary age eolian deposits (Qe/Qp).

The Ogallala Formation is present northeast of the AST location and erosion has either removed or reworked the Ogallala from beneath the site. The USGS reports that wells nearest to the AST location are completed in Alluvium/Bolson deposits (i.e., piedmont) or the underlying Chinle/Santa Rosa Sandstone, according to their database. In the southwest corner of Figures 1a and 1b is a small outcrop of the upper Chinle Formation (T(r)cu).

According to Ground Water Report #6¹, the elevation of the contact between the alluvial deposits and underlying Chinle (red beds) at the AST site is approximately 3660 feet ASL, as shown in Figure 1b. Because the elevation of the AST site is 3729 feet ASL, the base of the alluvial deposits would be about 70 feet below surface. We examined well log data from the NM OSE database for wells near the location, and identified two well logs of interest:

- CP-1672, about 6 miles southeast, which indicates the red bed/alluvial contact is 68 feet below the surface (3715 ASL) resulting in an elevation of the contact of 3647 and
- CP-677, about 8 miles northwest, suggesting the red bed/alluvium contact is about 116 feet below surface (3770 feet AST surface), which calculates to an elevation of the top of the red beds of 3654.

Figure 1b shows the elevation of the red bed contact at Well CP-1672 as 3675 ft ASL and at CP-677, the elevation of the contact is about 3650. The 1961 report is obviously not perfect, but it remains an excellent source of reasonable data. In addition to the two referenced OSE well logs, Ready Drill provided us with data from the 80-foot auger boring from an oil well at the location that suggests alluvial material is at least 80-feet deep at the location.

¹ <u>https://geoinfo.nmt.edu/publications/water/gw/6/GW6.pdf</u>

Depth to Water Data and Nearby Wells

Figure 1 is a topographic map overlain by transparent geologic map of the state of New Mexico and associated legends that displays the following:

- A green circle with a call out showing the location of the Buffalo 12 AST.
- Water wells from the USGS database as green, cyan, and purple triangles. The colors indicate the principal water-bearing unit for each well: Alluvium/Bolsom, Ogallala, and Chinle, respectively. The well number as defined in the database, recorded depth to water value, and the date the water level measurement was recorded is displayed next to the corresponding well point.
- Miscellaneous water wells from public and non-public databases were identified by field inspection or other published documents are represented by yellow, cyan, and green squares with black dots in the center. The colors correspond to the depth to water and date the depth to water value was recorded are also displayed.
- Water wells from the Office of the State Engineer WATERS database as light blue, green, dark blue, and beige circles with colored triangles in the center. These symbols indicate the depth to water measured in the well. Well ID and documented in the OSE Waters database, depth to water value, and the date the value was recorded is displayed next to the corresponding well point.

Depth to groundwater in wells nearest to the Buffalo 12 AST in wells that were measured by professionals during static condition range from 177 to 231 feet in Chinle wells (northwest and southeast along the elevation contour) and about 90 feet in alluvial wells located about 4 miles south (and downhill). The on-site auger boring was a dry hole, thus depth to water at the site is at least 80 feet below surface.

Figure 2 is a topographic map overlain by a transparent geologic map of the state of New Mexico and associated legend the displays the following:

- The Buffalo 12 Site is represented by the green circle and call out.
- Water wells from the USGS database as green, cyan, and purple triangles. The colors indicate the principal water-bearing unit for each well: Alluvium/Bolsom, Ogallala, and Chinle, respectively. The well number as defined in the database, recorded depth to water value, and the date the groundwater elevation was recorded is displayed next to the corresponding well point.
- Miscellaneous water wells from public and non-public databases were identified by field inspection or other published documents are represented by yellow, cyan, and green squares with black dots in the center. The colors correspond to the depth to water and date the depth to water value was recorded are also displayed.

In the area of the Buffalo 12 AST, two groundwater zones are present. Wells completed in the alluvial deposits occur about 4 miles south of the location and wells that draw groundwater from the underlying Chinle or Santa Rosa occur throughout the mapped area, exclusive of the northeastern quadrant (Ogallala Aquifer). Mixing data from these two groundwater units results in a somewhat puzzling map. Therefore, we elected to avoid

2021 R.T. Hicks Consultants, Ltd

drawing a potentiometric surface. With a high degree of certainty, based upon the data, we conclude:

- Depth to groundwater is at least 80 feet based upon the site-specific drilling record.
- The elevation of the groundwater surface of the Chinle/Santa Rosa zone is about 3530 feet ASL, plus or minus 50 feet.
- Data from well logs and Ground Water Report #6 (Figure 1b) demonstrate the contact between the alluvial material and underlying red beds (Chinle) is about 3660.
- The alluvial material beneath the Buffalo 12 AST is dry
- The depth to the shallowest groundwater zone (Chinle) is about (3729-3530=) 199 feet, plus or minus 50 feet.

Distance to Municipal Boundaries and Freshwater Fields

Figure 3 demonstrates that the area of interest is not within incorporated municipal boundaries or within defined municipal freshwater well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.

- The nearest freshwater well field is 12.1 miles to the northwest and is owned by the Continental Oil (L-2770) and probably supplies one or more natural gas processing plants.
- The nearest municipality is the City of Hobbs, which is about 25 miles due east.

Distance to Subsurface Mines

Figure 4 and our general reconnaissance of the area demonstrate the absence of subsurface mines in the area.

- The Buffalo 12 site is not in an area where subsurface mines exist.
- The nearest surface mines identified in the MILS database are 0.9 miles to the northeast and southeast.

Distance to High or Critical Karst Areas

Figure 5 illustrates the Buffalo 12 site absence of mapped areas of high or critical karst potential.

- The Buffalo 12 site is not located within high or critical karst potential areas.
- Our field investigation saw no evidence of karst features such as sinkholes.

Distance to 100-Year Floodplain

Figure 6 demonstrates the absence of 100-year flood plains with respect to the proposed location for the Buffalo 12 AST site.

- The nearest 100- year flood plain is in and around the City of Hobbs.
- Our field investigation found no evidence of flooding potential.

Distance to Surface Water

Figure 7 and the site visit demonstrate the that the Buffalo 12 AST site is outside of the setback distances for a continuously flowing watercourse or the next lower order tributary, lakebed, sinkhole, playa lake (measured from the ordinary high-water mark) or spring.

- The nearest surface water feature is Laguna Tonto, a lake/pond about 2.39 miles to the southeast.
- No watercourses or springs were mapped or observed near the site.

Distance to Permanent Residences or Structures

Figure 8 demonstrates that the proposed site for the Buffalo 12 AST is not within the setback distances of an occupied permanent residence, school, hospital, institution, church, or other structure at the time of the initial application.

- The only structures near the proposed site are the well pads and pipelines.
- The site foot survey identified new oilfield structures not shown on Figure 8.

Distance to Non-Public Water Supply

Figures 1 and 7 demonstrate the Buffalo 12 location is not within the setback distances of a spring or freshwater well used for domestic or stock watering purposes, in existence at the time of initial application.

- Figure 1 shows the location of all area water wells. The nearest well, C-02313, is located approximately 1.37 miles to the west of the proposed site.
- No domestic water wells are located within 1,000 feet of the recycling area.
- No springs were identified in the area.
- The facility is not within 500 feet of a spring or freshwater well used for domestic or stock watering purposes, in existence at the time of initial application.

Distance to Wetlands

Figure 9 demonstrates that the proposed site of the Buffalo 12 site is not within the 300-foot setback distance of a wetland.

- The nearest mapped wetland is Laguna Tonto, freshwater pond that is about 5 miles to the southwest.
- The site foot survey found no evidence of wetlands.

Received by OCD: 4/8/2021 2:37:59 PM

Page 32 of 110

Z:\Shared\Documents\Projects\Chisholm Energy\Buffalo12-1Fed4HAST\Buffalow12LookSee.aprx

M:\Chisholm Energy\Buffalo12-1Fed4HAST\Buffalow12LookSee.aprx

Received by OCD: 4/8/2021 2:37:59 PM

Page 34 of 110

Z:\Shared\Documents\Projects\Chisholm Energy\Buffalo12-1Fed4HAST\Buffalow12LookSee.aprx

Released to Imaging: 4/9/2021 10:07:19 AM

M:\Chisholm Energy\Buffalo12-1Fed4HAST\Buffalow12LookSee.aprx

Received by OCD: 4/8/2021 2:37:59 PM

Page 36 of 110

Z:\Shared\Documents\Projects\Chisholm Energy\Buffalo12-1Fed4HAST\Buffalow12LookSee.aprx

Other	Misc. Water Wells (GW Elev, Date)	NM Geology
GS Gauging Station (GW Elev, Date)	Well Depth (ft)	Qe/Qp, Quaternary-Eolian Piedmont Deposits
 Alluvium/Bolsom 110AVMB, Nearby site that taps the same aquifer was being pumped. Alluviu/Bolsom, Site was being pumped. Ogallala Ogallala Ogalalla, Obstruction was encountered in the well (no water level was recorded). 	 No Data <= 150 151 - 350 	Qoa, Quaternary-Older Alluvial Deposits,Qoa, Quaternary-Older Alluvial Deposits Qp, Quaternary-Piedmont Alluvial Deposits,Qp, Quaternary-Piedmont Alluvial Deposits Qpl, Quaternary-Lacustrine and Playa Deposits,Qpl, Quaternary- Lacustrine and Playa Deposits T(r)cu,Triassic-Upper Chinle Group,T(r)cu,Triassic-Upper Chinle
 Chinle Santa Rosa Rustler Not Defined <null>, Site was being pumped.</null> 		Group To, Tertiary-Ogallala Formation,To, Tertiary-Ogallala Formation

R.T. Hicks Consultants, Ltd	Buffalo 12 AST Containment Groundwater Elevation Legend	Figure 2
Albuquerque, NM 87104 Ph: 505.266.5004	Chisholm Energy Operating LLC	March 2021

Received by OCD: 4/8/2021 2:37:59 PM

Released to Imaging: 4/9/2021 10:07:19 AM

Received by OCD: 4/8/2021 2:37:59 PM

Released to Imaging: 4/9/2021 10:07:19 AM

Received by OCD: 4/8/2021 2:37:59 PM

Released to Imaging: 4/9/2021 10:07:19 AM

Released to Imaging: 4/9/2021 10:07:19 AM

•

APPENDIX WELL LOGS

r@rthicksconsult.com

Released to Imaging: 4/9/2021 10:07:19 AM

From:	Jerid Hight <jhight@byrdoilfield.com></jhight@byrdoilfield.com>
Sent:	Thursday, March 11, 2021 8:48 AM
Го:	Randall Hicks; Chad
Cc:	readydrill_chad@hotmail.com; 'Joel Hall'
Subject:	RE: Chisum - Buffalo 4h and 5H - Lea Co NM - need some data if you have it

The Buffalo 4h and 5h was a sand and clay mix. The hole was dry all the down to 80ft and no mud was used on this drill.

Let me know if anything else is needed

Thanks JERID HIGHT BYRD OILFIELD SERVICES OPERATIONS MANAGER JHIGHT@BYRDOILFIELD.COM (325) 669-4480 CELL (432) 385-7635 OFFICE

From: Randall Hicks <r@rthicksconsult.com>
Sent: Thursday, March 11, 2021 7:10 AM
To: Jerid Hight <jhight@byrdoilfield.com>; Chad <chad@readydrill.com>
Cc: readydrill_chad@hotmail.com; 'Joel Hall' <JHall@chisholmenergy.com>
Subject: Chisum - Buffalo 4h and 5H - Lea Co NM - need some data if you have it

Chad

Chisholm told me that Byrd drilled the 2 ratholes at the location shown in the attached maps – and I hope you may have had a hand in that project.

We are seeking some data that would help us determine that the depth to groundwater at/near this location is greater than 50 feet. I am hoping that a work ticket, invoice, penetration rate log, driller's notes or something else may help us in this effort.

Released to Imaging: 4/9/2021 10:07:19 AM

In the past, we were able to use a work ticket that showed the depth of the boring and that drilling mud was not used in the rathole. The work ticket combined with an email from Ready Drill that said "we did not encounter water during the drilling of the rathole" may be all that we need.

Call me with any questions and thanks in advance.

I hope you are well and please stay safe.

Randall T. Hicks PG R.T.Hicks Consultants LTD 901 Rio Grande Blvd. NW F-142 Albuquerque, NM 87104

505-238-9515 (mobile and best contact) 505-266-5004 (office land line)

Page 47 of 110

PAGE 1 OF 2

WELL TAG ID NO. 7

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

2017 SEP -6 附 4:05

WELL OWN	ER NAME(S)		1				PHONE (OPTI	ONAL)			
Trainer Pa	rtners LTE	D c/o Atkins Engine	eering Assoc								
WELL OWNI 2904 W. 21	er Mailling nd Street	ADDRESS					CITY Roswell		state NM	88201	Z
WELL	HELING PROVIDENT	D	EGREES 32	MINUTES 37	seconds 7.8				THOFASS		HY DAV
LOCATIO (FROM GP	N LAT	TITUDE	103	31	16.2	N W	* DATUM RE	CURACY REQUIRED: ONE TENTH OF A SECOND			
DESCRIPTIC	ON RELATIN	G WELL LOCATION TO) STREET ADDRES	SS AND COMMON L/	NDMARKS	– PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAIL	ABLE	5185 H K K
LICENSE NO		NAME OF LICENSED	DRILLER		Andrei - Arbeine - Sta			NAME OF WELL DR	ILLING COM	/PANY	al said
124	19		Jac	ckie D. Atkins				Atkins E	Ingineering	Associates	5
DRILLING ST 8/29/2	farted 2017	DRILLING ENDED 8/29/2017	DEPTH OF COMI	PLETED WELL (FT) N/A	BOR	e hoi 1(le depth (FT) 00.80	DEPTH WATER FIR	st encoun D r y	TERED (FT)	
COMPLETE) WELL IS:	ARTESIAN	🗹 DRY HOLE	SHALLOW (UNCONFINI	ED)		STATIC WATER LEVEL IN COMPLETED WI Dry			ELL (I
DRILLING FI	LUID:	✓ AIR	MUD	ADDITIVES	- SPECIFY:		5	Switched to Air Rotary at 44 ft bgs			
DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE TOO	L 🔽	OTHE	R – SPECIFY:	Hollow Stem Au	ger (HSA) and Air	Rot
DEPTH FROM	(fect bgl) TO	BORE HOLE DIAM	CASING M	ATERIAL AND/O GRADE ch casing string, an	R d C	CA CONN T	ASING VECTION VPF	CASING INSIDE DIAM.	CASIN	G WALL KNESS	S S Gi
		(inclies)	note sec	tions of screen)	(add	(add coupling diameter)		N/A		//	
		+ 0.00	<u> </u>			N/A					-
					_						-
											-
			-								-
DEPTH (TH (feet bg!) BORE HOLE LIST ANNULAR SEAL MATERIAL AND		IST ANNULAR SEAL MATERIAL AND		AMOUNT		METHO	DO			
FROM	ТО	DIAM. (inches)	GRAVE	GRAVEL PACK SIZE-RANGE BY INTERVAL			RVAL	(cubic feet)		PLACEM	1EN
- 10	10	±6.00		Baroid Hole Plug/I	Bentonite C	nips		±2.1		from sur	rface
44	100.80	±3.125		Native	Fill	·		±0.7 ±3.6		from sur	rface
					<u></u>						
											

195.34E.36.13

LOCATION

.

and a state of the										
	DEPTH (1 FROM	DEPTH (feet bgl) THICKNESS FROM TO COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)						WAT BEAR (YES /	TER ING? ' NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
100 00 1	0	9		Sand, medi	ium to coarse grain sand, fine	roots, brown, dry		Y	🗸 N	
	9	19		Sand	ly loam, fine grain sand, light	brown, dry		Y	√ N	
	19	20		Sand, very fir	ine to fine grain sand, caliche	streaks, brown, dry		Y	✓ N	
CENSUS Controlse	20	20.5			Caliche, tan, dry			Y	√ N	
	20.5	24		Sand, very fi	ine to fine grain sand, caliche	streaks, brown, dry		Y	✓ N	
	24	29		Sandy loan	m, fine to medium grain sand	, light brown, dry	-	Y	✓ N	
	29	34		Sandy clay, f	fine grain sand, caliche streak	s, brown, hard, dry		Y	✓ N	
	34	44		Lear	in clay, brown, some black me	ottling, dry		Y	√ N	
	44	48			Clay, brown to red, hard,	dry		Y	√ N	
	48	68		Sandy clay, coarse gra	ain sand, 5-10mm rounded gr	avel, brown to red, har	d, dry	Y	✓ N	
	68	100.80		Clay, red to brow	wn, hard, dry/*@ 88-93 ft bg	s: some caliche streaks		Y	√ N	
					<u></u>			Y	N	
								Y	N	
								Y	Ν	
								Y	N	
								Y	Ν	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	Ν	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	IG STRATA:		TOTA	L ESTIM	ATED	
2. 2. 5 5 5 5	PUM I		R LIFT	BAILER OT	THER – SPECIFY:		WELI	_ YIELD	(gpm):	0.00
	WELL TES'	T TEST I STARI	RESULTS - ATT. 17 TIME, END TH ORMATION: Dr Se	ACH A COPY OF DAT AE, AND A TABLE SF y. Borehole was not e attached Plugging F	TA COLLECTED DURING THOWING DISCHARGE AN HOWING DISCHARGE AN of converted to a monitorin Record for details.	WELL TESTING, ING D DRAWDOWN OVI g well.	CLUDIN ER THE	G DISCH TESTIN		
	PRINT NAM	E(S) OF DR	ILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPER VIS	SION OF WELL CON	STRUC	TION OT	HER TH	N LICENSEE
	Guadalupe L	.eyba								
	THE UNDER CORRECT R AND THE PI	RSIGNED H ECORD OF ERMIT HOL	EREBY CERTIF THE ABOVE D DER WITHIN 2	ES THAT, TO THE BJ ESCRIBED HOLE AN DAYS AFTER COM	BEST OF HIS OR HER KNO' ND THAT HE OR SHE WILL IPLETION OF WELL DRILL	WLEDGE AND BELI FILE THIS WELL R JING:	EF, THE ECORD	FOREGO WITH T	OING IS . HE STAT	A TRUE AN E ENGINEER
e ster		Jun	LD.	Jac Jac	ckie D. Atkins			09/06/	2017	
962 44 (20.97) 		SIGNATU	JRE OF DRILLE	R / PRINT SIGNEE I	NAME				DATE	
FOR	OSE INTERN	JAL USF				WR-20 WFI	LRFC	ORD & T	OG (Ver	sion 06/30/2017)
FILI	E NO.	PIN	072		POD NO.	TRN NO.	1010	XO	7	
LOC	CATION	•		95.34E.30	6.131	WELL TAG ID NO.			,	PAGE 2 OF 2

Released to Imaging: 4/9/2021 10:07:19 AM

$\Lambda e c e i v e u v V \cup D; 4/0/2021 2; 5/:57 F M = -$	Received	by OCD:	4/8/2021	2:37:59	PM
---	----------	---------	----------	---------	----

STATE ENGINEER OFFICE

Page 50 of 110 Revised June 1972

4

WELL RECORD

• •			STA	TE ENGIN	EER O	FFICE		,	2. A. 7. 6
, f				WELL R	ECOR	D			$\{(1), (1), (1), (1), (1), (1), (1), (1), $
			Section	. GENERA	L INF	ORMATION			
(A) Owner of	wellT	X O Prod	1	-Wstor	- Wal -	1 0	Owne	r's Well No	+ 1 1 1 1 1 1 1 1
Street or	Post Office Ad	_{dress} <u>c/o G</u> Box 692 T	atum.	New Me:	xico	<u>+ Servi</u> 88267	ce, inc.	<u></u>	
City and	State	(D	(00		·		<u></u>		
Well was drilled	l under Permit	NoCP=	6//		aı	nd is located	in the:	· ·	,
a	_ ¼ <u>W1</u> ¼	<u>NW ¼ N</u>	W ¼ of S	ection_26	- <u></u>	Township <u>1</u>	<u>8–S.</u> Rar	ige <u>32-</u> E	<u>C</u> ●N.M.P.M.
b. Tract	No	of Map No		of	the	<u>.</u>		<u>.</u>	
c. Lot N Subdiv	0 vision, recorded	of Block No 1 in		of	f the Cour	nty.			21
d X=		feet V=		fee	+ N M	Coordinate	System	•	Zone in
u. X				100					Grant.
(B) Drilling C	Contractor <u>G1</u>	enn's Wat	er Wel	<u>l Serv</u>	<u>ice</u>		License No	WD 421	C ₂₂
Address BO	х 692 Т	atum. New	Mexic	o 8826	7				
Audress	<u> </u>			/0/85	·		Dotony		977/8
Drilling Began .	21 41 07	Compl	eted	1 7/ 02	Т	ype tools	novary	Size of l	$10le \underline{(())}$
Elevation of lar	nd surface or _			at	well is		ft. Total depth	of well 70	<u>)0</u> ft.
Completed well	lis 🕱 sł	nallow 🗀 ar	tesian.		De	pth to water	upon completion	of well	ft.
· .		Secti	on 2. PRIN	ICIPAL WA	TER-B	EARING ST	RATA		
Depth	in Feet	Thickness		Description	of Wat	ter-Rearing F	ormàtion	Estim	ated Yield
From	То	in Feet						(gallons	per minute)
	<u> </u>	<u>ш</u>		· ··					
		03	I	ry Hol	e		·	· · ·	the same of
		10 H	·		۰.			•	
	Ed.,			• .			····		
		L		······		<u> </u>		<u>l</u>	· · · · · · · · · · · · · · · · · · ·
Diameter	Pounds	Threads	Section Depth	in Feet	RDOF	CASING	· · · · · · · · · · · · · · · · · · ·		Perforations
(inches)	per foot	per in.	Тор	Bottor	n /	(feet)	Type of Sho	e Fre	om To
	6	တ				transfer a			
· , · · ,									10-2
			·		. ,	•.			
		<u> </u>		1	<u>_</u>	· · · · · · · · ·	· · ·		
Donth	in Foot	Sectio	n 4. RECC	RD OF MU	DDIN	G AND CEM	ENTING		
From	То	Diameter	of M	lud	of C	c Feet ement	Metho	od of Placém	ent
	well wa	s pluged	with s	and an	d mu	d	and the state of t		
	<u>"011 "M</u>	P==00-			<u> </u>			<u></u>	
· · · · · · · · · · · · · · · · · · ·		- (s					<u>na na seconda na s</u>		
	l	<u>]</u>			·	· · · · · ·		<u> </u>	
			Secti	on 5, PLUC	GING	RECORD			
Plugging Contr	actor	<u></u>	<u>.</u>			· ·		· · · ·	، معروب می و د. اور و می از معروب می اور معروب معروب می
Address Plugging Metho	od			;		No.	Depth in	Feet Bottom	Cubic Feet of Cement
Date Well Plug	ged						······································		
ing appro	•cu Uy ,					$-\frac{2}{3}$	<u></u>	· · · · · · · · · · · · · · · · · · ·	
· · ·	: 	State Engi	neer Repre	sentative		4			
		1095	FOR USE	E OF STAT	E ÈŃG	INEER ONI	,Υ	· · · · · · · · · · · · · · · · · · ·	
Date Received	May 15,	1303		Ç	Quad		FWL _	، را مربو <u>1 - م</u> رجو مربو	FSL
Eile Ma	CP-677	. • • •	· : .	ÌI	OWD	· · · ·	Loostin M	1 ວິ່ວ່ວ ດໍ່	6 11149
r 11e NO	· · · · · · · · · · · · · · · · · · ·			Use		· <u></u>	Location No.	10.36.2	JALL45

Released to Imaging: 4/9/2021 10:07:19 AM

Received by OCD: 4/8/2021 2:37:59 PM

- 33

:ট্রান্ট্রন

¥4 29

٠,

1.0

• • •

Dept	th'in Feet	Thickness	Color and Type of Material Encountered
From	To	in reet	
0	12	12	sand-loose
12	24		<u>clay</u>
24	47	23	caleche
47	58	11	sand
58	84	26	sandy_clay
84	102	18	red clay sticky
102	116	14	sand and gravel
116	42	26	red clay sticky
142	315	173	brown clay
		10	purple_clay
	378	53	red_clay
378	408		pink_red_clay
408	440	32	brown shale and blue streaks
440	500	60	brown shale-grainey
500	530		sand rock -fine
530	545	15	brown shale
-545	605	60	sand rock-medium
605	616		brown shale
616	675	- 59	sand rock
675	700	25	red_shale
- <u> </u>			
		· · · · · · · · · · · · · · · · · · ·	
			E PP

Section 7. REMARKS AND ADDITIONAL INFORMATION

HAN 15 8 28 AH 05

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

2 Griller

.

APPENDIX SITE PHOTOGRAPHS

Figure 1- View east from NW corner of pad showing 1-4 foot high stabilized dunes. North side of pad is in the "cut".

Figure 2- View south from NW corner of pad. Rig is drilling a Stetson well on south side of pad.

Figure 3 - View south to SW corner of pad showing lease road and in background stabilized dunes and buried pipeline. South side of pad is built in "fill".

Figure 4 - View northeast from SW corner of pad with lease road in foreground and built-up pad. Rig is drilling one of the Stetson wells on the south side of the pad.

Figure 5- View south near SW corner of pad showing stabilized low dunes. Buried pipeline shown in Figure 2 is in upper right corner of image.

March 2021

Volume 2 C-147 Registration Package for Buffalo 12 Containment & Recycling Facility Section 30, T26-S, R32-E, Lea County

Engineering Drawings and Liner Specifications Design/Construction Plan Select Energy Services Manual Variances for AST Storage Containments Applicability of Engineering Variances to Variety of Site Conditions in Permian Basin

Aerial view showing in-ground containments designed by Magrym Consulting and permitted by Hicks Consultants. Also shown are two 60,000 bbl above-ground storage tank containments permitted by Hicks Consultants. Photograph by permission from Magrym Consulting.

Prepared for: Chisholm Energy Operating, LLC Ft. Worth, Texas

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW, Ste F-142 Albuquerque, New Mexico 87104

Leak Detection Systems

Select Energy employs a proprietary leak detection system between the two 30-mil LLDPE that comprise the primary liner. This system monitors seepage from the uppermost 30mil LLDPE liner.

The leak detection system that complies with Rule 34 is the 200-mil geogrid drainage layer placed beneath the primary liner system and avbove the 40-mil LLDPE secondary liner. Any seepage from the primary liner will flow beneath the AST steel frame via the drainage layer to daylight where site

Received by OCD: 4/8/2021 2:37:59 PM

RTHC Note:

LLDPE spec is for Solmax LLDPE 30 mil see also https://www.solmax.com/uploads/pdfs/c872c09979bde15306f50919d96f815a.pdf

REPAIN A DATASHEE

Property	Test Method	Frequency (A)	Unit Metric	Solmax 130-2000
Thickness (min. avg.)	ASTM D 5199	Even rell		
Thickness (min.)	ASTM D 5199	Every roll	mm	0.75
Resin Density	ASTM D 1505		mm	0.68
Melt index-190/2 16(max)	ASTM D 1303	1/Batch	g/cc	<0.926
Sheet Density (C)	ASTIVI D1238	1/Batch	g/10min	1.0
Carbon Black Content (D)	ASIM D1505	Every 2 rolls	g/cc	<0.939
Carbon Black Content (D)	ASTM D 4218	Every 2 rolls	%	2.0 - 3.0
	ASTM D 5596	Every 6 rolls	Category	Cat. 1 / Cat. 2
Oxidative induction Time (min. avg)	ASTM D3895	1/Batch	min 🚦	100
ensile Properties (min. avg)(B)	ASTM D 6693	Every 2 rolls		
Strength as Break			kN/m	20
Elongation at Break			%	750
2% Modulus (max.)	ASTM D 5323	PerFormulation	kN/m	315
Tear Resistance (min. avg.)	ASTM D 1004	Every 6 rolls	N	70
Puncture Resistance (min. avg.)	ASTM D 4833	Every 6 rolls	N	200
Dimensional Stability	ASTM D 1204	Every 6 rolls	U/2	200
Multi-Axial Tensile (min.)	ASTM D 5617	PerFormulation	%	T/: 2
Oven Aging-% retained after 90 days	ASTM D 5721	PerFormulation	/4	50
STD OIT (min. avg.)	ASTM D 3895	e ch officialación	<u>م</u>	25
HP OIT (min. avg.)	ASTM D 5885		70	35
JV Resistance-% retained after 1600			70	60
1r	GRI-GM-11	PerFormulation		
HP-OIT (min ave.)				
	CODE 0 2002		%	35

Note;

(A) Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar)

(B) Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction

(C) Correlation table is available for ASTM D792 vs. ASTM D1505 Both methods give the same results. (D) Correlation table is available for ASTM D1603 vs ASTM D4218 Both methods give the same results

*All values are nominal test results, except when specified as minimum of maximum

* The information contained herein is provided for reference purposes only and is not intended as warranty of guarantee. Final determination of suitability for use contemplated is the sole responsibility of the user Solmax along with Inland Tarp & Liner assumes no liability in connection with the use of this information.

SKAPS Industries 571 Industrial Parkway Commerce, GA 30529 (U.S.A.) Phone (706) 336-7000 Fax (706) 336-7007 e-mail: info@skaps.com

SKAPS TRANSNET™ (TN) HDPE GEOCOMPOSITE 220

SKAPS TRANSNET[™] geocomposite consists of SKAPS GeoNet made from HDPE resin with non-woven polypropylene geotextile fabric heat bonded on both sides of the the geonet.

Property	Test Method	Unit	Required Value			Qualifier
			With 6 oz.	With 8 oz.	With 10 oz.	
Geonet						
Thickness	ASTM D 5199	mil.	220±20	220±20	220±20	Range
Carbon Black	ASTM D 4218	%	2 to 3	2 to 3	2 to 3	Range
Tensile Strength	ASTM D 5035	lb/in	45	45	45	Minimum
Melt Flow	ASTM D 12383	g/10 min.	1	1	1	Minimum
Density	ASTM D 1505	g/cm ³	0.94	0.94	0.94	Minimum
Transmissivity ¹	ASTM D 4716	m ² /sec.	2x10 ⁻³	2x10 ⁻³	2x10 ⁻³	MARV ²
Composite						
Ply Adhesion (Minimum)	ASTM D7005	lb/in	0.5	0.5	0.5	MARV
Ply Adhesion (Average)	ASTM D7005	lb/in	1	1	1	MARV
Transmissivity ¹	ASTM D 4716	m ² /sec	1x10 ⁻⁴	1x10 ⁻⁴	9x10 ⁻⁵	MARV
Geotextile						
Fabric Weight	ASTM D 5261	oz/yd²	6	8	10	MARV
Grab Strength	ASTM D 4632	lbs	160	225	270	MARV
Grab Elongation	ASTM D 4632	%	50	50	50	MARV
Tear Strength	ASTM D 4533	lbs	65	90	100	MARV
Puncture Resistance	ASTM D 4833	lbs	95	130	165	MARV
CBR Puncture	ASTM D 6241	lbs	475	650	825	MARV
Water Flow Rate	ASTM D 4491	gpm/ft ²	125	100	75	MARV
Permittivity	ASTM D 4491	Sec ⁻¹	1.63	1.26	0.94	MARV
Permeability	ASTM D 4491	cm/sec	0.3	0.3	0.3	MARV
AOS	ASTM D 4751	US Sieve	70	80	100	MARV

Notes:

 Transmissivity measured using water at 21 ± 2°C (70 ± 4°F) with a gradient of 0.1 and a confining pressure of 10000 psf between stainless steel plates after 15 minutes. Values may vary between individual labs.

2. MARV is statistically defined as mean minus two standard deviations and it is the value which is exceeded by 97.5% of all the test data.

3. Condition 190/2.16

This information is provided for reference purposes only and is not intended as a warranty or guarantee. SKAPS assumes no liability in connection with the use of this information.

Visit our Web site at www.skaps.com

Premium Quality - Built To Last

www.inlandtarp.com

Geotextile Product Description Sheet 8oz ONG Nonwoven Geotextile

8oz ONG is a needle-punched nonwoven geotextile made of 50% polypropylene and 50% polyester staple fibers, which are formed into a random network for dimensional stability.

PROPERTY TEST METHOD UNIT

Weight (Typical) ASTM D 5261 oz/yd2 (g/m2)	7.75 (220)
Thickness ASTM D 4491 mils (mm)	87 (2.21)
Grab Tensile ASTM D 4632 lbs (kN)	151 (0.673)
Grab Elongation ASTM D 4632	80%
Trapezoid Tear Strength ASTM D 4533 lbs (kN)	65 (0.287)
CBR Puncture Resistance ASTM D 6241 lbs (kN)	351 (1.56)
Permittivity* ASTM D 4491 sec-1	1.57
AOS* ASTM D 4751 US Sleve (mm)	140 (0.102)
UV Resistance ASTM D 4355 %/hrs	70/500

PACKAGING

Roll Dimensions (W x L) – ft 15 x 300 Square Yards Per Roll 500 Estimated Roll Weight - Ibs 250 * At the time of manufacturing. Handling may change these properties. This information is provided for reference purposes only and is not intended as a warranty or guarantee. SKAPS assumes no ilability in connection with the use of this information.

U.S. Fabrication & Distribution Centers

Moses Lake, Washington . . . 4172 North Frontage Road E, Moses Lake, WA 98837 • 800.346.7744 • Fax 509.766.0414 Fostoria, Ohio . . . 1600 North Main Street, Fostoria, OH 44830 • 888.377.5640 • Fax 419.436.6007 Odessa, Texas . . . 8784 W. Interstate 20, Odessa, TX 79763 • 432.272.9413

•

Select SOP

Released to Imaging: 4/9/2021 10:07:19 AM

CES BEST MANAGEMENT PRACTICES

AST System

BEST MANAGEMENT PRACTICES FOR ABOVE GROUND STORAGE TANKS

Select Energy Services 1820 N I-35 Gainesville TX 76240

Select AST BMP

Page 1 of 14

AST BMP MARCH 2019

Released to Imaging: 4/9/2021 10:07:19 AM

BEST MANAGEMENT PRACTICE FOR ABOVE GROUND STORAGE TANKS

TABLE OF CONTENTS

TOPIC	PAGE
Section 1.0 Introduction and Summary	3
1.1 Introduction and Purpose	3
1.2 Background	3
1.3 Intended Use	3
1.4 Customer Environmental Health and Safety Programs	3
1.5 Summary	3
Section 2.0 Planning for AST Rig-Up	5
2.1 AST Order Information	5
2.2 Customer Meeting	5
2.3 Site Soil Preparation	6
2.4 Pre-Mobilization Onsite Meeting	7
2.5 Notifications	7
2.6 AST Material Deliveries	7
Section 3.0 AST Setup	8
3.1 Job Safety Analysis	8
3.2 Check Soil Conditions	8
3.3 Tank Layout	8
3.4 Equipment	9
3.5 Hand Tools Recommended	9
3.6 AST Tank Setup Process Steps	9
Section 4.0 AST Operation and Monitoring	14
4.1 Inspections and Monitoring	14
4.2 Initial Leak Detection and Liner Repair	14
Section 5.0 AST Breakdown	14

Attachment

1. AST Reference Chart

.

Section 1.0 Introduction and Summary

1.1 Introduction and Purpose

Select Energy Services, LLC (and all its affiliated and subsidiary companies, hereinafter collectively referred to as "Select") is committed to providing its employees a safe working environment and avoiding injury to our contractors, customers, and neighbors. As part of our overall commitment to safety, Select seeks to prevent acts or conditions that could result in injury and/or illness to any employee, customer, contractor, neighbor, and/or the environment.

In an effort to prevent potentially harmful acts or conditions, Select has developed this *Best Management Practice* (BMP) that focuses on above ground storage tank (AST) systems including planning, set up, operations, and take down. This BMP will discuss steps to be taken to promote a safe process, as well as a list of potential hazards that should be identified and remediated prior to beginning this procedure.

1.2 Background

AST is the industry term for an above ground storage tank. At Select, AST's are used for a variety of field applications within the fluids management operations. AST's can be used in place of traditional tank farms and in-ground water impoundments, and are suitable for fresh water as well as production water. At Select, AST's are available in several standard sizes, ranging from 4,500 barrel (bbl) capacity to 62,000 bbl capacities. Select currently uses three basic styles of AST's. One is referred to as a "pin" tank that uses large diameter steel pins to attach tank panels together. The second type of AST is a "plate" tank. Steel panels of a plate tank are attached using steel plates. Lastly, the "bolt" tank that connects using one-inch diameter bolts.

1.3 Intended Use

This BMP will be part of training provided to all affected employees when they begin their employment with Select and any time the plan is changed. This BMP will also be reviewed with an employee if his/her responsibilities change under the plan. A written copy of this plan will remain in the regional Safety Office, and will be available for employee review. The Vice-President of Health Safety and Environment, or his agents, may be contacted by any employee if he/she needs additional information about this BMP.

This BMP has been developed to assist affected employees with the operational steps that may be used to complete the task safely. It must be noted, however, that the experience and background of a trained containment employee is essential to the success of any project or task.

Nothing contained in this BMP is a substitute for each employee's individual judgment in any given situation. In the event that any employee believes that any task outlined in any BMP cannot be completed safely, then that employee should immediately halt the performance of such task and notify their direct supervisor.

This BMP may also be used to inform customers about Select's typical equipment and procedures for setting up an AST system. This BMP will be reviewed and revised on an ongoing basis to keep pace with best oilfield practices and applicable OSHA regulations.

1.4 Customer Environmental Health and Safety Programs

This BMP recognizes that oil and gas operating companies have developed their own health, safety, and environmental (HSE) programs that contractors who work at customer's sites like Select, must comply with. In addition to this BMP, Select personnel will strictly observe the policies and procedures of each operating company.

1.5 Summary

This BMP is divided into four separate phases, each organized in chronological order. First is the planning phase that includes a customer-Select meeting and close coordination to be sure Select complies with all of customer's

Health, safety, and environmental requirements and that **the site is ready for the AST setup**. This BMP then presents the specific tasks and safety requirements during the second phase - the AST setup phase. The third phase is the AST operation during which periodic checks of the tank are made per customer's requirements. The fourth phase addresses AST takedown during which all materials are removed from the site.

Section 2.0 Planning for AST Rig-Up

The planning phase for AST systems includes several important activities that can impact the safety and success of an AST project. Step by step procedures are presented below for each of the following activities during the planning phase of an AST project:

AST order information Customer meeting Site soil and pad preparation (by customer) Pre-mobilization on-site meeting Notifications Job Safety Analysis(JHA) AST material deliveries

2.1 AST Order Information

Select AST Manager/Account Representative will record general AST order information including the customer's site location information (911 Address, NOT only coordinates), specific tank requirements (size, number, liner type, candy canes, etc), desired schedule, customer's order reference number, and site specific customer contact information. The AST Manager/Account Representative provides this information, along with customer's contractual and safety requirements, to the appropriate personnel.

2.2 Customer Meeting

Prior to finalizing the delivery schedule, a meeting or conference call is held with Select and customer representatives including the customer's purchase agent and the customer's health, safety, and environmental (HSE) representative.

This meeting is best done in person, but must at least be covered in a phone call, followed up by a brief email confirming the AST order details, delivery schedule, and noting special conditions, safety requirements, **verification of pad preparation**, etc.

The following key topics will typically be discussed.

Select site specific staff/roles

Review AST intended use and customer safety requirements.

Review AST scope of work, what is normally included, what is not.

Permitting for AST (as needed)

Site access and truck route requirements

Time line for AST to be operational

Confirm AST size(s) to be used

AST layout on pad

NOTE: It is preferable to maintain a 30' clear work area around the perimeter of the tank to provide access for equipment. Regardless of manufacturer, the minimum footprint should be a circle with a radius of at least 24' greater that the radius of the tank.

Current site conditions, status/schedule for site preparation, and soil preparation requirements.

Responsibility for filling the tank, to a minimum of 2 feet deep, immediately after it is set up to protect from wind.

Responsibility for AST inspections during AST operation, any time tank is fully emptied, and the frequency of inspections.

Conditions that could result in standby time charges or additional charges, and what prior customer approvals are required.

Confirm customer is responsible for the used liner, residual solids left in the tank, and site reclamation.

Understand customer's OSHA Process Safety Management – Contractor safety and notification requirements for all activities on customer controlled sites.

Note any special PPE or safety requirements at site.

Notifications: Establish a list of notifications/communications that Select will be responsible for and timing for each. Select standard procedure is to notify owners of buried utilities in the AST site area using state-wide or Canadian Province "one-call" services at least one week in advance of AST setup. Identify any other notifications that Select will need to make (e.g. Truck routes, neighbors, etc). Also identify customer's procedures for notifying them if conditions arise that could impact scope, schedule, cost) and get email addresses as needed.

Other Topics

Any additional site preparation to be completed by customer prior to setup Underground material needs to be taken into account for site preparation. Other Activities: Discuss AST site activities that will be ongoing during the AST set up. Select personnel will be aware and courteous of simultaneous operations at all times. **However, Select prefers very limited, if any, simultaneous operations near AST during set-up phase.**

Follow Up

After customer meeting, Select will document any changes to the AST scope of work, as needed, for the specific AST site and customer requirements in a brief email.

2.3 Site Soil Preparation

Preparation of the soils on site is required to form a dependable base for the AST. **Preparation of the tank pad is solely the responsibility of the customer/operating company.** The key requirements are:

Select requires a minimum soil compaction of 95% compaction. Soil testing results shall be shared with Select. In order to meet industry standards, site preparation requirements must be deemed satisfactory by a Select representative.

Select recommends soil compaction testing to be conducted via Standard Proctor Test (American Society for Testing and Materials {ASTM} Standard D698) or Modified Proctor Test (ASTM Standard D1557).

Compaction test results must be provided to Select prior to the commencement of AST construction.

A proof roll test may be used if observed and documented by qualified Select personnel.

Grade AST footprint and 30 ft work area to 0.25 % or 3" drop per 100 feet, toward sump location.

Site shall be graveled and rolled prior to tank installation, utilizing gravel size 2B or smaller. (3/4" road grade preferred, or coarse sand with minimum thickness of 4 inches).

Do not use crushed rock as sharp edges could puncture the tank liner.

After completion of these steps the tank setup can be approved.

2.4 Pre-Mobilization Onsite Meeting

Select's AST team and customer will conduct a pre-mobilization onsite meeting that documents the customer requirements for the specific pad location and AST system.

2.5 Notifications

Even though the customer or their subcontractor may have already called for utility locates for the sump hole, the AST Manager/Assistant should call the local or state underground utility location service again at least one week in advance before construction/digging begins. Select AST Manager/Assistant should document the ticket or reference number provided by the one-call service.

The following web site has contacts for all the states and provinces. http://www.call811.com/state-specific.aspx. The website link below is provided for smart phones:

Call 811 in United States

2.6 AST Material Deliveries

Once the delivery route and schedule are established and the pre-project onsite inspection is completed, the AST materials can be delivered. Notifications will be made as agreed to during the customer meeting. Select delivery personnel should unload all materials safely and taking care to avoid damage to liners, plates, and all other AST components. They will also stay out of the way of ongoing site activities, and notify the AST Manager/Assistant if site conditions are not suitable for delivery.

Section 3.0 AST Setup

The Crew Leader will fill out the "AST Post Inspection Checklist" during and after the set up of the AST system. The checklist can be found in iScout under forms.

3.1 Job Hazard Analysis (JHA)

A job hazard analysis must be completed on site prior to beginning work. The JHA will be completed following Select approved procedures. Customer's safety requirements will also be communicated during the JHA. All Select personnel, 3rd party contractors, and customer representatives are expected to participate and sign the JHA when the JHA is completed. Please refer to iScout for the digital JHA.

3.2 Check Soil Condition

Preparation of the tank pad is solely the responsibility of the customer. However, weather and rain/snow events can change the soil conditions quickly. Therefore, Select will check soil compaction prior to setting up the AST.

3.3 Tank Layout

- □ Check proposed AST site to confirm a 30' clear work area around the perimeter of the tank is possible to provide access for equipment and laydown area for AST materials and erection equipment.
- Check that the minimum distances to existing wells, power lines, etc. are met.
- □ Regardless of manufacturer, the minimum footprint should be a circle of at least 24' or greater than that of the radius of the tank.
- □ Establish final location for the suction tube(s) and stairs.

3.4 Equipment (Select provided)

All equipment is subject to daily inspection. (Check condition, rigging, oil, water, fuel and cleanliness.) Here is a list of the recommended equipment needed to set a tank. Actual equipment used will vary among region and specific projects.

- □ Two 40' and/or 60' extending straight boom man-lifts.
- □ 10,000 lb or greater capacity, rough terrain forklift (telehandler).
- \Box 17,000 pound or greater excavator with bucket and thumb attachment.
□ Skid steer

3.5 Hand Tools Recommended

All hand tools are subject to daily inspection.

- □ Two 16' ladders
- \Box Four 4 lb. sledgehammers
- \Box 100' or 200' tape measure
- \Box 1 case of marking paint minimum
- \Box Set of wrenches $\frac{1}{4}$ " 1 $\frac{1}{2}$ "
- \Box Set of sockets $\frac{1}{4}$ " 1 $\frac{1}{2}$ "
- □ Two 36" pry bars
- \square 8' rock bar (digging bar)
- □ Five safety harnesses with retractable tethers (Select owned)
- □ Five retractable lanyards
- □ 100' of 3/8" rope
- □ Duct tape
- □ Covered hook bladed knife
- □ Three 40' lifting straps (minimum of 5,000 lb capacity)
- □ Three 20' 3/8" chains (must have visible certification tags)
- \Box Two rolling head pry bars
- □ 150' strap
- □ Two ½" impact guns
- \Box Two sets of rigging chains
- Patch tape
- □ Rubbing alcohol
- Patch roller
- □ Leather gloves
- □ Wire brush or wheel with 4" angle grinder
- Generator
- □ Steel toed rubber boots
- □ Fire retardant clothing (FRs)

3.6 AST Tank Setup Steps

There must be a Select company representative on site the day prior to setup in order to approve everything for setup.

Tank Layout

- Determine center of tank and mark with paint. Place a non-abrasive item on the center point; preferably a sandbag. This will be used to find the center of tank after liners have been placed.
- □ Measure and double check minimum distance from tank center to existing wells.
- □ Measure and paint a line to mark the circumference of tank for panel placement.
- Also mark the circumference of the liner laid out flat to ensure the liner is properly placed.

Suction Pit

 \Box Determine where tank suction is to be placed.

- Dig at least 6' wide x 6' long x 24" deep sump hole for the suction tube to set in and taper the edges so there are no sharp corners of the excavation.
- o Remove any sharp stones and add at least one layer of geotextile.
- If multiple suction manifolds are required, the sumps should have a minimum of 8' of separation.

Attention!

Barricade any sump pit with appropriate cones, tape, equipment, and/or have a hole watch if left open.

- All tank set-ups will require the use of a Select approved underlayment and liner. Depending on situational factors, 10oz or 16oz geotextile and 30 mil or 40 mil liner will be used. Additionally, multiple layers of each may be installed in both freshwater and produced water situations.
- □ Check customer specifications and regulatory permit liner and containment requirements for ASTs that may hold produced water.
- □ The crew walks the entire tank base area to pick up any sharp stones or other sharp debris that could damage the liner.
- \Box Lay out the geo pad prior to the liner.
- □ Perform a visual inspection of the liner repair any defects as necessary.
- □ Place the liner and align to the center of the tank and painted line for the tank walls. The preferred 30 ft area around tank allows the liner to be laid out flat so that fold back can be uniform.
- \Box Secure liner from wind using sand bags.
- □ Fold the liner toward inside the painted tank edge line to allow placement tank panel walls.

Tank Wall Erection

- □ Ensure all tank parts and pieces are accounted for.
- □ Crew Leader will complete a visual inspection of each panel as it is prepared to be placed.
- Stand the first tank panel in place and secure it with the excavator bucket with thumb attachment. Keep connected to the excavator until the last panel is being set.
- □ Monitor equipment and first panel closely to ensure they remain stable, especially during higher wind situations.
- □ Begin placing the remaining panels in place.

Personnel secured on man lift or using a ladder (depending on customer policies) then secure the panels in place with 4 pins each (for pin tanks) or (for plate tanks) with the connecting plates and lug busses, secured with chained cotter pins. Bolt tanks are connected using 1" diameter bolts.

ATTENTION: Proper hand and foot placement is crucial when connecting AST panels. Keep hands and feet a safe distance from pinch points. Discuss where these pinch points are located when reviewing the JHA. Proper ergonomics is required. Keep the joints in mid-range; i.e. palms are located between waist and shoulders. Create an awareness that never goes away and designate one individual to enforce the awareness when setting panels.

- □ Roll up excess geo pad into minimum 6" diameter cylinders around the inside of the tank ring to help support the liner at the base of the tank wall as the tank is being filled.
- □ Prior to lifting liner into place against inside panel, add geo strips over all panel gaps for plate and bolt type tanks.
- □ Prior to covering sump with the geo pad or liner, confirm sump excavation has smooth sides and corners, and that no sharp stones are present.

Liner Placement and Securing Top with Clamps

- After 4 or 5 panels are set, and all liner protection as described above is in place, unfold the liner in sections, toward the base of each panel, making sure the rolled up geo pad will provide padding at the base of the inside of each panel.
- □ Crew of 2 inside the tank wall unfolds and pulls the liner toward each panel (final connection of last panel will not be made until all liner to that point is pulled and secured to avoid confined space, all personnel must be out of tank before walls are closed). Working in small liner sections, this inside crew works with a crew of 2 on a man lift located outside and above each tank panel to pull the liner edge up and over the top of each panel. The man lift crew lifts the liner edge using ropes/straps gently lowered and attached (by the inside crew). The man lift explicitly a small liner section to the top of the panel and folds it over the top of the panel, being sure there is enough slack in the liner inside the panel wall.

ATTENTION: Never place hands on the railing of the man basket that faces the AST panel. Proper hand placement would be the side or back rail.

- Once a section of liner is positioned properly (with liner slack inside the tank) and over the top of each panel wall, the man lift crew secures the top of the liner with clamps. (Tools in basket secured with tool lanyards) NOTE: A minimum of 5 clamps or more are required at the top of each tank panel to secure the liner. Add additional clamps as needed to secure liner.
- □ Both inside and man lift crews continue this process, working around the tank, one or two panels at a time, until the entire liner is in place.
- □ NOTE: The crew must allow sufficient slack in the liner at the wall to allow for liner movement during filling and draining.

Stairs, Fill Tubes, and Suction Tubes

□ Install safety stair system, fill tubes, and suction tubes. Ensure that stair system and tubes are appropriately secured to the tank walls with 2" ratchet straps or 3/8" chains and ratchet binders.

Final Steps, Filling, and Inspection

- □ Close final panel and secure with pins, plates, or bolts as needed.
- Trim liner and allow approximately 3' of liner to hang over edge of tank.
- □ Secure liner with sufficient clamps and be sure a 2" seatbelt strap (supplied with liner) is installed around the cut

Select AST BMP

Page 11 of 14

edge of liner on the outside of tank. Pull tight with a ratchet.

.

- □ Inspect all connections and equipment, confirming at least 5 liner clamps (or more as needed) are in place on top of each panel.
- □ Have a minimum of 24 inches of water put in the tank to hold liner in place.
- \Box Fill tank and monitor.
- Perform periodic inspections of the tank to ensure everything is in proper working order.
- o Every time a tank is fully emptied and refilled, an inspection must be performed.
- Visibly inspect all tank panels and stairs for cracking, dents, burrs on the inside of the panels, chipping paint on welds or sharp edges on panels.
- Look for any cracked or broken valves, damage on pipes and tubes, missing D-Rings, damage to chains or ratchets, and bent clips.
- Pay close attention to hinge plates for chipping paint and cracking.
- o Water should not go below 12 inches at the LOWEST level in the tank. (Mark liner as a caution).

Section 4.0 AST Operation

4.1 Inspections and Monitoring

AST Operation Phase includes periodic AST monitoring, leak detection, and identifying potential hazards that may have developed, change on-site conditions or tank use. If the tank is drained, it should be secured from wind impacts and the liner inspected and re-positioned (to provide sufficient slack during filling) prior to refilling. Specifically, it may be necessary to rearrange the liner folds at the walls prior to refilling if the wind has shifted the liner folds when the tank was empty.

If changes are noted, they should be communicated to the Select AST Manager/Assistant Manager.

CAUTION – If conditions are observed that could indicate an imminent tank failure, clear the area immediately. Advise others in the vicinity to do so also and contact the customer to drain the tank.

4.2 Initial Leak Detection and Liner Repair

In the event of a leak in the tank due to a hole in the liner, the following steps should be followed.

- □ If there is a question that it is in fact a leak from the AST, a dye test or a pH balance test may need to be performed on both the water in the tank and on the ground using approved dye or a properly calibrated pH meter. Third party test results are recommended.
- □ If the leak is found to be coming from the tank, narrow down from which panel the leak is originating.
- Use a strap or rope to mark the point where the water is coming out of the tank.
- Determine if the water is coming out high or low on the tank.
- \Box Locate the puncture or hole in the liner.
- □ Empty the tank to the point of damage in liner if necessary.
- \Box Clean area of liner that needs to be repaired.
- □ Cut out piece of material (patch or tape) to overlay liner.
- Either weld the patch to the injured area in the liner or stick the tape (2 types dry or underwater) over the leak.
- □ Make sure puncture is completely covered.
- \Box Monitor as needed.

Section 5.0 AST Breakdown

The AST breakdown follows the reverse order of the setup steps presented in Section 3.0 above. The sump will be filled in with the same material taken out during excavation.

The customer is responsible for draining and disposing of all liquids and residual solids that have accumulated in the tank. Additionally, the customer is responsible for proper off site management or recycling of the liner and geo pad materials, and final grading and/or reclamation of AST site.

The Crew Leader will perform a visual inspection of AST panels and accessories for defects.

Attachment 1

Above-Ground Storage Tank (AST) Reference Chart

Pin Style Panels

	Panels	D (ft)	R(ft)	Trim Line (R+18')	Top of Wall (R+13')	Total V (bbls)	2' FB (bbls)	bbls/in	bbls/ft	Liner Size	Geo Size
9600k 20.08' Width 12'4" Height 5040lbs	12	76.7'	38.35'	56.35'	51.35'	10151.32	8505.16	68.59	823.08	118' x 118'	98' x 98'
	13	83.09'	41.55'	59.55'	54.55'	11915.83	9983.24	80.51	966.12	124' x 124'	104' x 104'
	14	89.48'	44.74'	62.74'	57.74'	13819.07	11577.88	93.37	1120.44	130' x 130'	110' x 110'
24k 18.77' Width 12' 4" Height 5040lbs	20	119.5'	59.75'	77.75'	72.75'	24646.95	20649.72	166.53	1998.36	160' x 160'	140' x 140'
	22	131.45'	65.76'	83.76'	78.76'	29822.81	24986	201.5	2418	172' x 172'	152' x 152'
	23	137.43'	68.72'	86.72'	81.76'	32597.98	27312.24	220.26	2643.12	178' x 178'	158' x 158'
	24	143.4'	71.7'	89.7'	84.7'	35491.62	29736.44	239.81	2877.72	184' x 184'	164' x 164'
40k 17.46' Width 12' 4" Height 5040lbs	24	153'	76.5'	94.5'	89.5'	40402.69	33850.9	272.99	3275.88	193' x 193'	173' x 173'
	28	178'	89'	107'	102'	54316.00	45508.00	367.99	4415.93	218' x 218'	198' x 198'
	30	193'	96.5'	114.5'	109.5'	62000.00	50270.27	418.91	5027.02	233' x 233'	200' x 200'

Plate Style Panels

	Panels	D (ft)	R(ft)	Trim Line (R+18')	Top of Wall (R+13')	Total V (bbls)	2' FB (bbls)	bbls/in	bbls/ft	Liner Size	Geo Size
9k (T) 32.72' Width 12'2" Height 5480lbs	7 8	73' 84'	36.5' 42'	54.5' 60'	49.5' 55'	9056.00 11843.55	7457 9869.62	62.9 82.2	754.7 986.96	113' x 113' 124' x 124'	93' x 93' 104' x 104'
18k (P) 32.72' Width 12' 2" Height 5310lbs	9 10 11	94.58' 105' 115.6'	47.29' 52.5' 57.8'	65.29' 70.5' 75.8'	60.29' 65.5' 70.8'	15014.88 18427.0 22430.0	12512.4 15356.0 18692.08	104.27 128 155.77	1251.24 1535.6 1869.21	135' x 135' 145' x 145' 156' x 156'	115' x 115' 125' x 125' 136' x 136'
26.5k-41k (A) 32.72' Width 12' 2" Height 6500lbs	12 13 14 15 16 18	126' 136.62' 147.13' 157' 168.15' 188.6'	63' 68.31' 73.565' 78.5' 84.075' 94.3'	81' 86.31' 91.565' 96.5' 102.075' 112.3'	76' 81.31' 86.565' 91.5' 97.075' 107.3'	26660.57 31329.39 36340.00 41382.0 47464.49 59721.00	22216.8 26107.83 30283.33 34485.0 39553.74 49774.00	185.14 217.57 252.36 287.40 329.61 415.08	2221.67 2610.78 3028.33 3448.5 3955.37 4976.75	166' x 166' 177' x 177' 188' x 188' 197' x 197' 209' x 209' 229' x 229'	146' x 146' 157' x 157' 168' x 168' 177' x 177' 189' x 189' 209' x 209'

General

Examination of the engineering drawings and the SOP for set-up (Engineering Drawings, Liner Specifications, Set Up) plus the history of solid performance of these AST Containments demonstrates that the AST Containment is designed and will be assembled to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall. As the AST Containments are generally less than 190 feet in diameter, wave action is not a meaningful consideration.

These AST Containments are constructed of 12-foot high steel panels, are netted (netting no larger than 1.5 inch per square per BLM COA) and employ the Mega Blaster Pro avian deterrent system to prevent ingress of migratory birds. AST Containments will be enclosed by a 4-strand barbed wire fence or better. Thus, complies with the Rule to fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair.

The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in conspicuous places surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following infom1ation: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

Site Preparation

Foundation for AST Containment

Preparation of the soils on site is required to form a dependable base for the AST Containment in accordance with NMAC 19.15.34 and the SOP and is the responsibility of the operating company. If the location of the AST Containment is on an existing pad, the operator has_stripped and stockpiled the topsoil for use as the final cover or fill at the time of closure. If the pad is new construction, the operator will strip and stockpile the soil for reclamation upon cessation of site activities.

19.15.34.12 A

(1) The operator shall design and construct a recycling containment to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall.

19.15.34.12 D

(1) The operator shall fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

19.15.34.12 C

Signs. The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in a conspicuous place on the fence surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

19.15.34.12 B

Stockpiling of topsoil. Prior to constructing containment, the operator shall strip and stockpile the topsoil for use as the final cover or fill at the time of closure.

The foundation soils must be roller compacted Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698 or modified Proctor Test (ASTM Standard D1557).

Examination of the SOP shows that the AST Containment contractor will conform to the following mandates of the Rule:

- the AST Containment will have a properly constructed compacted earth foundation and interior slopes (vertical steel) consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear.
- Geotextile will be placed under the liner where needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity.
- If the AST containment is within a levee, the inside grade is no steeper than two horizontal feet to one vertical foot (2H: 1V) and the outside grade no steeper than three horizontal feet to one vertical foot (3H: IV). The vertical steel walls of the AST Containment are the subject of *a variance included in Volume 3* of this submission. OCD.

The Operator will ensure that at a point of discharge into or suction from the recycling containment, the liner is protected from excessive hydrostatic force or mechanical damage and external discharge or suction lines shall not penetrate the liner.

Liner and Leak Detection Materials

The liner and geotextile specifications show that all primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be *an equivalent liner [to that stated in Rule 34] and are pursuant to a requested variance.* The liner system is presented in an earlier section of this submission.

All secondary liners shall be an equivalent liner [to that stated in Rule 34] approved by OCD pursuant to a

19.15.34.12 A

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.

19.15.34.12 A

(6) At a point of discharge into or suction from the recycling containment, the operator shall insure that the liner is protected from excessive hydrostatic force or mechanical damage. External discharge or suction lines shall not penetrate the liner.

19.15.34.12 A

(4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a

variance. The liner system is presented in an earlier section of this submission.

Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

Variance request for liner system (two 40 mil LLDPE for primary and secondary liners) included in Volume 3.

The AST Containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage.

Install Secondary Liner, Leak Detection System and Secondary Containment

All AST containments holding produced water will have a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The rule states that the edges of all secondary liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep. The lack of an anchor trench with an AST Containment *is pursuant to a requested variance.*

The AST Containment Contractor will cause the recycling containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection (see attached drawing).

The presence of the secondary containment levee or pre-fabricated secondary containment meets the OCD Rule mandate that a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

AST Containment Setup

As with the secondary liner, AST Containment contractor will minimize liner seams and orient them up and down, as much as possible, not across, a slope. hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

19.15.34.12 A

(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

19.15.34.12 A

(7) The operator of a recycling containment shall place a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet or two feet of compacted soil with a saturated hydraulic conductivity of 1 x 10-5 cm/sec or greater to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection.

19.15.34.12 A

(8) The operator of a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

Factory welded seams shall be used where possible. AST Containment contractor will employ field seams in geosynthetic material that are thermally seamed. Prior to field seaming, AST Containment contractor shall overlap liners four to six inches and minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the AST Containment bottom. Qualified personnel shall perform field welding and testing.

Fluid Injection/Withdrawal Flow Diverter

The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

19.15.34.12 A

(5) The operator of a recycling containment shall minimize liner seams and orient them up and down, not across, a slope of the levee. Factory welded seams shall be used where possible. The operator shall ensure field seams in geosynthetic material are thermally seamed. Prior to field seaming, the operator shall overlap liners four to six inches. The operator shall minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the slope's toe. Qualified personnel shall perform field welding and testing.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

©2020 R.T. HICKS CONSULTANTS, LTD.

Variances and/or Equivalency Demonstrations for Above Ground Steel Tank Modular Recycling Storage Containments

- Slope and Anchor Trench
- Freeboard
- 40 mil LLDPE for Primary and Secondary Liners
- Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico

Slope and Anchor Variance Request for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR SLOPE AND ANCHOR FOR MODULAR STEEL AST CONTAINMENT

Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34.12.

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT:

A. An operator shall design and construct a recycling containment in accordance with the following specifications.

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. *The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot rench and provide adequate room for inspection and maintenance.*(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner

and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

The applicant requests a variance to prescribed slope and anchor in the setting of above ground modular steel containments.

With respect to storage of produced water for use in lieu of fresh water, Rule 34 is written for earthen, lined pits, not free-standing modular impoundments that employ liners as their primary fluid containment system. A modular impoundment consists of a professionally designed steel tank ring with vertical walls. There is no slope to consider as the segmental steel sections are set vertical.

There is no anchor trench as envisioned by the Rule, liners are anchored to the top of the steel walls with clips, no anchor trench is required.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical memorandum provides supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection.

Technical Memorandum: Slope and Anchor Trench Variance for Above Ground Steel Modular Containments NMAC 19.15.34.12 A (2), (3)

Side Slope

The design of soil side slope (inclination) is a geotechnical engineering design consideration. Liquid impoundments such as fresh water or process water containments are usually built within an excavation or with raised earthen embankments. For a liquid impoundment with an exposed liner system, the slope soils and construction dictate slope inclination and very detailed slope stability analysis may be required to determine if slope failure within the embankment will occur once loaded with impounded water. Slope failure may also occur during construction or when the impoundment is empty. A maximum slope is usually specified and is dependent on soil type and cohesive strength, saturated or unsaturated conditions, etc. Detailed analysis for slope stability can be found in "Designing with Geosynthetics" by R.M Koerner as well as many geotechnical books.

A modular impoundment, on the other hand, consists of a professionally designed steel tank ring with vertical walls. *There is no slope to consider as the segmental steel sections are set vertical.* Design of steel tanks, in regard to hydrostatic loading, wind loading, seismic loads, etc. are thoroughly referenced with detailed procedures in the design code - American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage". *There are no requirements for maximum slope inclination other than perhaps 90 degrees or vertical wall.*

Anchor Trench

All earthen impoundments with a geomembrane lining system require some form of top of slope anchor, the most common of which is an excavated and backfilled anchor trench usually set back at least 3 ft from the top of slope. Again, there are detailed procedures for anchor trench design in "Designing with Geosynthetics" by R.M Koerner.

A Modular Impoundment requires mechanical anchoring of the geomembrane at the top of the vertical steel wall using standard liner clips that prevent the geomembrane or geomembrane layers from slipping down the side wall. These are detailed in the Tank Installation Manual. There are no requirements for an "anchor trench" as this is not an in-ground impoundment.

In summary, based on the design and specifications of a modular steel impoundment, there is no requirement for a maximum interior slope angle of 2H:1V due to the fact that this impoundment is a steel tank with vertical walls. Additionally, there is no requirement for an anchor trench as the geomembrane is attached to the top of the Modular Impoundment vertical walls with large steel clips. This provides the requisite protection of fresh water, public health and the environment for many years.

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

If you have any questions on the above technical memorandum or require further information, give me a call at 303-679-0285 or email geosynthetics@msn.com

Sincerely Yours.

22 Frabel

Ronald K. Frobel, MSCE, PE

American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage"

Koemer, R.M., 2005 "Designing With Geosynthetics" Prentice Hall Publishers

Attachments:

R. K. Frobel C.V.

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics/a msn.com

Freeboard Variance Request for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR FREEBOARD FOR MODULAR STEEL AST CONTAINMENT

Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34.13

19.15.34.13 OPERATIONAL REQUIREMENTS FOR RECYCLING CONTAINMENTS:

B. The operator shall maintain and operate a recycling containment in accordance with the following requirements.

(2) The operator shall maintain at least three feet of freeboard at each containment.

The applicant requests variance to allow for a freeboard of 2 feet as opposed to the prescribed 3 feet in the setting of an above ground steel tank modular system.

Rule 34 did not take into consideration above ground steel tank modular containment systems. With respect to lined earthen impoundments that may hold 25-acre feet of produced water, a 3-foot freeboard stipulation makes sense. For example, wave action and other factors could focus stress on the upper portion of the levee or the liner system in these large impoundments. The smaller diameter steel tank (modular impoundment) does not share the same characteristics as these large earthen pits.

We believe 3-feet of freeboard is not necessary – especially during active hydraulic stimulation of wells when maximum storage volume provides the highest value. Moreover, meeting the 3-foot freeboard requirement at all times significantly reduces the storage capacity of a single modular impoundment – negatively impacting the economics of using produced water in lieu of fresh water for E&P activities.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The attached technical memorandum by Ron Frobel, PE, describes how the proposed 2-foot freeboard limit in the permit application for the modular impoundment provides the same protection afforded by the 3-foot freeboard mandate for a large earthen pit. The attached equations and supporting email from Mr. Jason Henderson, PE, shows that a 2-foot freeboard limit on the steel impoundment meets the manufacturer's design criteria.

Freeboard Requirements for Above Ground Steel Tank Modular Recycling Storage Containments NMAC 19.15.34.13 B (2)

Liquid importudinents such as fresh water or process water containments are usually built within an excavation or with raised earthen embankments. For a liquid importudinent with an exposed liner system, the slope soils and construction dietate slope inclination and very detailed slope stability analysis may be required to determine if slope failure within the embankment will occur once loaded with impounded water. Freeboard or the vertical height between the maximum water surface elevation and the top of slope is important for earthen impoundments. Specified freeboard requirements take into consideration high precipitation events and provent wave run-up on slopes that result in over-topping and potential saturation of embankments. This is particularly important on large earthen impoundments. Detailed design considerations including freeboard requirements for lined earthen impoundments can be found in "Designing with Geosynthetics" by R.M Koerner as well as other publications on reservoir design.

A modular impoundment, on the other hand, consists of a professionally designed steel tank ring with vertical walls. There is no slope to consider as the segmental steel sections are set vertical. Design of steel tanks as regards hydrostatic loading, wind loading, seismic loads, etc. are thoroughly referenced with detailed procedures in the design code - American Petroleum Institute (API) 650-98. "Welded Steel Tanks for Oil Storage". There are requirements for operational freeboard to prevent over-topping but due to the relatively small unface area and fetch of cylindrical tanks, wave heights are much less than large earthen impoundments. Thus, freeboard is usually within the range of 0.5 to 2.11. These reviewed the Tank Design Calculation Summary and regarding the structure) stability of the tank walls, a freeboard of 0.5 ft was assumed. Thus, the variance request of 2.0 ft for a Modular Impoundment is well within the Tank Design requirements.

In summary, it is my professional opinion that the design freehoard of 2.0 ft will provide requisite storage volume and prevent overtopping due to wind and wave action, potential setsmic events and high previption.

If you have any questions on the above technical memorandum or require further information, give me a call at 303-679-0285 or email geosynthetics/acmsn.com

Sincerely Yours,

RRFrobel

Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.13 OPERATIONAL REQUIREMENTS FOR RECYCLING CONTAINMENTS

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage"

Koerner, R.M., 2005 "Designing With Geosynthetics" Prentice Hall Publishers

Attachments:

R. K. Frobel C.V.

The modular impoundment is designed for use with fluids that are 8.34 pounds/gallon (62.4 pounds per cubic foot) or lighter. Exceeding this specification for fluid weight at full tank capacity (12') could lead to failure at the connection plate(s).

Assuming a freeboard of 0.5 ft (minimum modular impoundment freeboard requirement) the Hyrdo Pressure (p) of water is 718 pounds per square foot (psf), where

p = *Design Density X Height*

$$= 62.4 PCF * 11.5 ft$$

$$(design \ density = 8.34 \stackrel{lb}{___} X \ 7.48 \stackrel{ft_3}{___})$$

$$gal \qquad gal$$

The density of the conditioned produced water is 9.3 pounds/gallon. Assuming a freeboard of 3-ft (19.15.17.12.F(3) NMAC), the Hyrdo Pressure (p) of conditioned produced water is 626 psf, where

p = *Design Density X Height*

$$= 69.64 PCF *9 ft$$

(design density = $9.3 \frac{lb}{d} X 7.48 \frac{ft_3}{d}$)

Using conditioned produced water with the Pit Rule freeboard requirements of 3-feet results in a Hydro Pressure 92 psf less than the engineered design.

The operator asks the District Division to allow for a 2-foot freeboard, which yields a Hydro Pressure (p) of 696.4 psf, where

p = *Design Density X Height*

$$= 69.64 PCF * 10 ft$$

(design density = 9.3 $\frac{lb}{2} X 7.48 \frac{ft_3}{2}$)

gal gal

March 2020

Variances and/or Equivalency Demonstrations for Above Ground Steel Tank Modular Recycling Storage Containments (AST) Primary and Secondary Liners

Two 30-mil Non-reinforced LLDPE Liner as Alternate Primary Liner and 40-mil LLDPE as Secondary Liner for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR TWO 30 MIL LLDPE NON-REINFORCED GEOMEMBRANES AS AN ALTERNATIVE PRIMARY LINER AND 40-MIL LLDPE NON-REINFORCED GEOMEMBRANE AS AN ALTERNATIVE SECONDARY LINER FOR MODULAR STEEL AST IMPOUNDMENT

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34.12

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT
 (4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. *All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners.* Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The applicant proposes that two 30 mil LLDPE non-reinforced geomembranes will provide a primary liner system the is equal to or better than a single 60 mil HDPE, 30 mil PVC or 45 Mil reinforced LLDPE liner as prescribed in the Rule and a 40-mil LLDPE non-reinforced geomembrane is equivalent to the 30-mil LLDPEr liner described in the text of the Rule.

Rule 34 did not consider Above Ground Steel Storage Tanks that employ liners as a primary or secondary containment method. Due to the vertical steel walls, 60-mil HDPE, 45-mil LLDPE string reinforced and 30-mil flexible PVC primary liners are not sufficiently flexible for use in these modular containments.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical documents provide supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection. Technical comparison of the proposed material is compared to what is advised through Rule 34 is discussed. A second memorandum provides clarification that the engineering requirements for site preparation, which ensures functionality of the liner system, is crosscutting to varied locations within the Permian Basin. Siting criteria and stamped plans from design engineer confirm applicability of this liner system to this specific site.

Technical Memorandum: 30 mil and 40 mil LLDPE Geomembranes as Alternative Primary/Secondary Liner System in a Modular Steel AST Recycling Containment NMAC 19.15.34.12 A (4)

In consideration of the lining system application for Above Ground Modular Steel Impoundment (AST), size and depth of the impoundment, design details for modular tanks as well as estimated length of up to five years of service time, it is my professional opinion that two 30 mil LLDPE geomembranes with geonet and 40 mil LLDPE base liner will provide the requisite barrier against processed water loss. *The two 30 mil LLDPE liners and 40 mil base liner will function equal to or better than 60 mil HDPE, 30 mil PVC or 45 mil LLDPE (primary) and 30 mil LLDPE string reinforced (secondary) as a primary/secondary liner system.* The following are discussion points that will exhibit the attributes for using two 30 mil LLDPE geomembranes when used as the primary and a 40 mil LLDPE as the secondary lining system:

<u>The nature and formulation of LLDPE resin is very similar to HDPE</u>. The major difference is that LLDPE is lower density, lower crystallinity (more flexible and less chemical resistant). LLDPE will, however, resist aging and degradation and remain intact for many years in exposed conditions. Although the lifetime of LLDPE in covered conditions (i.e., secondary liner) will be somewhat reduced with respect to HDPE, a secondary liner of LLDPE will outlast an exposed HDPE liner. In fact, according to the Geosynthetic Research Institute (GRI) study on lifetime prediction (GRI Paper No. 6), the half-life of HDPE (GRI GM 13) exposed is > 36 years and the half-life of LLDPE (GRI GM 17) exposed is approximately 36 years. It is understood that in order to ensure compliance of materials, 60 mil HDPE must meet or exceed GRI GM 13. Likewise, the primary or secondary liner must meet or exceed GRI GM 17 for non-reinforced LLDPE. Adhering to the minimum requirements of the GRI Specifications, two 30 mil LLDPE geomembranes when used as a primary and a 40 mil LLDPE as a secondary liner system will be equally as protective as a 60 mil HDPE liner primary and 30 mil LLDPE string reinforced secondary.

<u>Flexibility Requirements.</u> 30 and 40 mil LLDPE geomembranes are less stiff and far more flexible than HDPE or 45 mil reinforced LLDPE and in this regard are preferred for installations in vertical wall tanks (AST). LLDPE provides a very flexible sheet that enables it to be fabricated into large panels, folded for shipping and installed on vertical walls transitioned to flat bottom. LLDPE will conform to the tank dimensions under hydrostatic loading.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Both dual wedge and single wedge thermal fusion welding is commonly used on LLDPE and QC testing by air channel (ASTM D 5820) or High Pressure Air Lance (ASTM D 4437) is fully acceptable and recognized as industry standards. In this regard, there should be no exception or recommended practice for seaming and QC

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

testing in the OCD rules. This would be fully covered in comprehensive specifications for both the Primary and Secondary geomembranes that would be reviewed by OCD.

<u>Potential for Leakage through the Primary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The drainage media provides immediate drainage to a low point or outside the Modular Impoundment and thus no hydrostatic head or driving gradient is available to push leakage water through a hole. In this regard, secondary geomembrane materials can be (and usually are) much less robust in both thickness and polymer type.

Leakage through any Primary geomembrane is driven by size of hole and depth and will be detected by the increase of wastewater in the drainage system and the volume being pumped out of the secondary containment. In this regard and for this variance, the AST liner system consists of 2 layers of 30 mil LLDPE geomembrane on the tank walls which will outperform a single layer of HDPE or LLDPE for potential leakage. Thus, if a leak occurs through the top layer, it will be effectively contained by the second layer and and drained via the geonet drainage media. If required, location of holes in the Primary can be found by Electrical Leak Location Survey (ELLS) using a towed electrode (ASTM D 7007). Holes found can then be repaired and thus water seepage into the Secondary will be kept to a minimum. Dependent on OCR requirements for Action Leakage Rate (ALR), the leakage volumes may only be monitored. For example, a typical ALR is < 20 gpad whereas a rapid and large leak (RLL) may be > 100 gpad. Most states specify maximum ALR values for wastewater impoundments usually in the range of 100 to 500 gpad. However, New Mexico does not specify any ALR for wastewater impoundments (GRI Paper No. 15).

HDPE cannot be prefabricated into large panels and thus 30 and 40 mil LLDPE offers the following for Primary and Secondary Liners in AST Modular Containment:

- Prefabrication in factory-controlled conditions into very large panels (up to 35,000 sf) results in ease of installation, less or no thermal fusion field seams and less on site QC and CQA.
- Large prefabricated panels of LLDPE will provide better control of thermal fusion welding in a factory environment that will improve the liner system integrity for the long term.
- The LLDPE geomembrane provides superior flexibility, lay flat characteristics and conformability which allows for more intimate contact with the underlying drainage media and tank walls.
- Two layers of the 30 mil LLDPE provide redundancy. Additionally, the bottom layer and geonet provides protection for the top layer during installation as well reduction in leakage due to pinholes (no driving head on the lower 30 mil liner)

- Ease of installation of large prefabricated custom size panels results in a greater reduction of installation time and associated installation and QC costs.
- The LLDPE geomembrane is easily repaired using the same thermal fusion bonding method without the need for special surface grinding/preparation for extrusion welding used in repair of HDPE geomembranes.

In summary, it is my professional opinion that the double 30 mil LLDPE geomembrane with geonet as well as 40 mil LLDPE base liner will provide a Primary and Secondary liner system that is equal to or better than a single 60 mil HDPE, 30 mil PVC or 45 mil reinforced LLDPE liner (primary liner) and 30 mil LLDPE string reinforced (secondary liner) and will provide the requisite protection of fresh water, public health and the environment for many years.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email <u>geosynthetics@msn.com</u>

Sincerely Yours,

R X Frobel

Ronald K. Frobel, MSCE, PE

References:

C-147 Supplemental Information Chisholm Energy AST Impoundment Prepared by Hicks Consultants

Title 19, Chapter 15, Part 34 NMAC (2015 Revision)

Geosynthetic Research Institute (GRI) Published Standards and Papers 2018

ASTM Standards 2020

Attachments:

R. K. Frobel C. V.

January 2020

Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico

Technical Memorandum: Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico NMAC 19.15.34.12 A (2)

I have reviewed the most recent historical variances for AST Containments in the document titled "Variances for C-147 Registration Packages Permian Basin of New Mexico" (January 2020) and examined the applicable design drawings and permits for the following modular AST containments located in the Permian Basin of New Mexico.

- C-147 Registration Package for Myox Above Ground Storage Tank Section 32, T25S, R28E, Eddy County (January 20, 2020)
- C-147 Registration Package for Fez Recycling Containment and Recycling Facility Area (100+ acres) Section 8, T25-S, R35-E, Lea County, Volume 2 – Above-Ground Storage Tank Containments
- Hackberry 16 Recycling Containments and Recycling Facility Section 16, T19S, R31E, Eddy County

Locations of the modular containments range from west of the Pecos River to slightly west of Jal, NM. All locations exhibit different surface and subsurface geology, different topography and are of various sizes and volumes. *However, in regard to structural integrity of the base soils that support the AST and in particular the geomembrane containment system, the specification requirements are the same*. The foundation soils must be roller compacted smooth and free of loose aggregate over ½ inch. Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698. This specification requirement is specific and causes the general or earthworks contractor to meet this standard regardless of the site- specific geology or topography. Provided that the design drawings and associated specifications call out the minimum requirements for subsoils compaction (i.e., 95% Standard Proctor Density – ASTM D 698), the design engineer or owners representative will carry out soils testing on the foundation materials to provide certainty to the AST containment owner that the earthworks contractor has met these obligations.

Thus, provided that the contractor meets the minimum specified requirements for foundation soils preparation and density, the location, geology or depth to groundwater will make no difference in regard to geomembrane liner equivalency as demonstrated by the AST variances presented in this volume and are considered valid for meeting NMOCD Rule 34 requirements for all locations within the Permian Basin of New Mexico.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email <u>geosynthetics@msn.com</u>

3

R.K. FROBEL & ASSOCIATES Consulting Engineers

Sincerely Yours,

RR France

Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

ASTM Standards 2019

32156 Castle Coutt / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@uusn.com

RONALD K. FROBEL, MSCE, P.E.

CIVIL ENGINEERING GEOSYNTHETICS EXPERT WITNESS FORENSICS

FIRM: R. K. FROBEL & ASSOCIATES Consulting Civil / Geosynthetics Engineers

TITLE: Principal and Owner

PROFESSIONAL AFFILIATIONS:

American Society for Testing and Materials (ASTM) -Founding member of Committee D 35 on Geosynthetics Chairman ASTM D35 Subcommittee on Geomembranes 1985-2000 ASTM Award of Merit Recipient/ASTM Fellow - 1992 ASTM D18 Soil and Rock - Special Service Award - 2000 Transportation Research Board (TRB) of The National Academies Appointed Member A2K07 Geosynthetics 2000 - 2003 National Society of Professional Engineers (NSPE) - Member American Society of Civil Engineers (ASCE) - Member Colorado Section - ASCE - Member International Society of Soil Mechanics and Foundation Engineers (ISSMFE) - Member International Geosynthetics Society (IGS) - Member North American Geosynthetics Society (NAGS) - Member International Standards Organization (ISO) - Member TC 221 Team Leader - USA Delegation Geosynthetics 1985 - 2001 European Committee for Standardization (CEN) - USA Observer EPA Advisory Committee on Geosynthetics (Past Member) Association of State Dam Safety Officials (ASDSO) - Member U. S. Committee on Irrigation and Drainage (USCID) - Member Technical Advisory Committee - Geosynthetics Magazine Editorial Board - Geotextiles and Geomembranes Journal Fabricated Geomembrane Institute (FGI) – Board of Directors Co-Chairman International Conference on Geomembranes Co-Chairman ASTM Symposium on Impermeable Barriers U.S. Naval Reserve Officer (Inactive) Registered Professional Engineer – Civil (Colorado) Mine Safety Health Administration (MSHA) Certified

ACADEMIC

BACKGROUND:

University of Arizona: M.S. - Civil Engineering - 1975 University of Arizona: B. S. - Civil Engineering – 1969 Wentworth Institute of Technology: A.S. Architecture – 1966

RONALD K. FROBEL, MSCE, P.E.

R. K. Frobel & Associates - Consulting Engineers Evergreen, Colorado, Principal and Owner, 1988 - Present					
Chemie Linz AG and Polyfelt Ges.m.b.H., Linz, Austria U. S. Technical Manager Geosynthetics, 1985 - 1988					
U.S. Bureau of Reclamation, Engineering and Research Center Denver, Colorado, Technical Specialist in Construction Materials Research and Application, 1978 - 1985					
Water Resources Research Center (WRRC), University of Arizona Tucson, AZ, Associate Research Engineer, 1975 - 1978					
Engineering Experiment Station, University of Arizona Tucson, AZ, Research Assistant, 1974 - 1975					
United States Navy, Commissioned Naval Officer, 1970 - 1973					

REPRESENTATIVE EXPERIENCE:

<u>R.K. Frobel & Associates</u>: Civil engineering firm specializing in the fields of geotechnical, geo-environmental and geosynthetics. Expertise is provided to full service civil/geotechnical engineering firms, federal agencies, municipalities or owners on a direct contract, joint venture or sub-consultant basis. Responsibilities are primarily devoted to specialized technical assistance in design and application for foreign and domestic projects such as the following:

Forensics investigations into geotechnical and geosynthetics failures; providing expert report and testimony on failure analysis; providing design and peer review on landfill lining and cover system design, mine waste reclamation, water treatment facilities, hydro-technical canal, dam, reservoir and mining projects, floating reservoir covers; oil and gas waste containment; design of manufacturers technical literature and manuals; development and presentation of technical seminars; new product development and testing; MQA/CQA program design and implementation.

<u>Polyfelt Ges.m.b.H., Linz, Austria and Denver Colorado</u>: As U.S. technical manager, primary responsibilities included technical development for the Polyfelt line of geosynthetics for the U.S. civil engineering market as well as worldwide applications.

Page 2

RONALD K. FROBEL, MSCE, P.E.

<u>U.S. Bureau of Reclamation, Denver, Colorado</u>: As technical specialist, responsibilities included directing laboratory research, design and development investigations into geosynthetics and construction materials for use on large western water projects such as dams, canals, power plants and other civil structures. Included were material research, selection and testing, specification writing, large scale pilot test programs, MQA/CQA program design and supervision of site installations. Prime author or contributor to several USBR technical publications incorporating geosynthetics.

<u>University of Arizona, Tucson, Arizona</u>: As research engineer at the Water Resources Research Center, responsibilities included research, design and development of engineering materials and methods for use in construction of major water projects including potable water reservoirs, canals and distribution systems. Prime author or contributor to several WRRC technical publications.

<u>Northeast Utilities, Hartford, Connecticut</u>: As field engineer for construction at Northeast Utilities, responsibilities included liason for many construction projects including additions to power plants, construction of substations, erection of fuel oil pipelines and fuel oil storage tanks. Responsibilities also included detailed review, inspection and reporting on numerous construction projects.

U.S. Navy: Commissioned Naval Officer - Nuclear Program

PUBLICATIONS: Over 85 published articles, papers and books.

CONTACT DETAILS:

Ronald K. Frobel, MSCE, P.E. R. K. Frobel & Associates Consulting Civil/Geosynthetics Engineers PO Box 2633 Evergreen, Colorado 80439 USA Phone 720-289-0300 Email: geosynthetics@msn.com Page 3

Page 106 of 110

Additional VARIANCE FOR RECYCLING STORAGE CONTAINMENTS (Inground and AST)

• Alternative Testing Methods

Request for OCD Approval of Alternative Test Methods to Analyze Concentrations of TPH and Chloride

The prescriptive mandates of the Rule that are the subject of this request are the following subsections of NMAC 19.15.17.13 [emphasis added], 19.15.34.14 and 19.15.29. 12 D

19.15.17.13 CLOSURE AND SITE RECLAMATION REQUIREMENTS:

D.(5) The operator shall collect, at a minimum, a five point composite of the contents of the temporary pit or drying pad/tank associated with a closed-loop system to demonstrate that, after the waste is solidified or stabilized with soil or other non-waste material at a ratio of no more than 3:1 soil or other non-waste material to waste, the concentration of any contaminant in the stabilized waste is not higher than the parameters listed in Table II of 19.15.17.13 NMAC.

The referenced Table II, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

Table II Closure Criteria for Burial Trenches and Waste Left in Place in Temporary Pits							
Depth below bottom of pit to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**				
	Chloride	EPA Method 300.0	20,000 mg/kg				
25-50 feet	TPH	EPA SW-846 Method 418.1	100 mg/kg				

19.15.34.14 CLOSURE AND SITE RECLAMATION REQUIREMENTS FOR RECYCLING CONTAINMENTS:

C. The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below.

(1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

The referenced Table I, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

Table I							
Closure Criteria for Recycling Containments							
Depth below bottom of containment to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**				
51 feet - 100 feet	Chloride	EPA 300.0	10,000 mg/kg				
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg				
After sampling solids of more than 50 drilling pits in the Permian Basin, we have observed and reported to OCD on numerous occasions significant problems with non-petroleum drilling additives (e.g. starch) interfering with the laboratory method 418.1. It is not surprising that in many instances we found no correlation between the laboratory results using 418.1 and the results using Method 8015.

We request approval of Method 8015 (GRO + DRO + MRO) for Method 418.1.

19.15.29.12 D. CLOSURE REQUIREMENTS. The responsible party must take the following action for any major or minor release containing liquids.

(1) The responsible party must test the remediated areas for contamination with representative five-point composite samples from the walls and base, and individual grab samples from any wet or discolored areas. The samples must be analyzed for the constituents listed in Table I of 19.15.29.12 NMAC or constituents from other applicable remediation standards.

	Closure Criteria for S	Fable I foils Impacted by a Release	
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l TDS	Constituent	Method*	Limit**
≤ 50 feet	Chloride***	EPA 300.0 or SM4500 C1 B	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg

The referenced Table I, is reproduced in part below.

We request approval of EPA 300.0 or SM4500 for the analysis of chloride.

Demonstration that OCD Approval Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The purpose of TPH analyses in the Pit Rule is to measure total petroleum hydrocarbons not all non-polar compounds, such as starch or cellulose that can interfere with Method 418.1. While Method 418.1 may provide some useful data for transportation of crude oil or condensate spills to disposal, the addition of non-polar organic materials in drilling fluids, especially for horizontal wells, renders Method 418.1 highly problematic to determine compliance with the Rule. Using Method 8015 for TPH (GRO+DRO+MRO) provides a better measurement of what we believe the Commission intended operators to measure.

In hearings before the Oil Conservation Commission technical arguments were presented regarding the use of SM4500 in lieu of EPA 300.00 for chloride analysis for Rule 29. The Division and the Commission agreed that these two methods provide equal or better protection of fresh water, public health and the environment.

District II

District IV

District I 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Action 23514

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:				OGRID:	Action Number:	Action Type:				
	CHISHOLM ENERGY OPERATING, LLC	801 Cherry Street	Fort Worth, TX76102	372137	23514	C-147L				
OCD	Condition									
Reviewer										
wenegas NMOCD has reviewed the recycling containment permit application and related documents, submitted by CHISHOLM ENERGY OPERATING, LLC [372137] on April 8, 2021, for the proposed Buffalo 12										
-	Recycling Facility and Containment in Unit Letter O, Section 12, T-19S, R-33E, in Lea County, New Mexico. The form C-147 and related documents for the proposed 1RF-464 Buffalo 12 Recycling									
1	Facility and Containment, is approved with conditions. https://ocdimage.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?appNo=									