

Western Refining Southwest LLC

A subsidiary of Marathon Petroleum Corporation I-40 Exit 39 Jamestown, NM 87347

March 4, 2022

Mr. Kevin Pierard, Chief New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, NM 87505-6303

RE: Investigation Phase II Report
Sanitary Lagoon
Western Refining Southwest LLC (dba Marathon Gallup Refinery)
EPA ID# NMD000333211
HWB-WRG-20-008

Dear Mr. Pierard:

Marathon Gallup Refinery is submitting the enclosed *Investigation Phase II Report, Sanitary Lagoon*. The work was conducted in accordance with the New Mexico Environment Department (NMED)-approved *Sanitary Lagoon Investigation Phase II Work Plan*. A timeline of the documents associated with the sanitary lagoon phase II investigation is provided below.

- Sanitary Lagoon Investigation Phase II Work Plan, dated March 31, 2021
- NMED approval with modifications, received April 26, 2021
- Modified Sanitary Lagoon Investigation Phase II Work Plan, dated July 2, 2021

If you have any questions or comments regarding the information contained herein, please do not hesitate to contact Mr. John Moore at (505) 879-7643.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction of supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Western Refining Southwest LLC, dba Marathon Gallup Refinery

Ruth Cade

Vice-President

Ruth a Code

Enclosure

cc: D. Cobrain, NMED HWB

L. Barr, NMOCD

K. Luka, Marathon Petroleum Company

H. Jones, Trihydro Corporation

M. Suzuki, NMED HWB

L. King, USEPA

J. Moore, Marathon Gallup Refinery

Western Refining Southwest, LLC D/B/A Marathon Gallup Refinery Gallup, New Mexico

EPA ID# NMD000333211

March 2022

Table of Contents

Executive Summary	7
1.0 Introduction	8
2.0 Background	9
2.1 Sanitary Lagoon Operational History	9
2.2 2019 Investigation and Basis for Continued Investigation	9
3.0 Investigation Activities/Objectives and Sample Handling	11
3.1 Delineation Sampling	11
3.2 Pipeline Corridor Assessment	11
3.3 Sample Handling	12
4.0 Investigation Results and Work Plan Deviations	13
4.1 Delineation Sample Results	13
4.2 Pipeline Corridor Sample Results	13
4.3 Work Plan Deviations and Laboratory Errors	14
4.3.1 Work Plan Deviations	14
4.3.2 Laboratory Errors	14
5.0 Conclusions and Recommendations	15
6.0 References	16
Figures	
Tables	
Appendix A – Field Logs	19
Appendix B – Data Validation	20
Appendix C – Laboratory Reports	21

List of Figures

- 1. Site Location Map, Western Refining Southwest LLC, D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 2. Sanitary Lagoon Investigation Phase II, Sample Locations, Western Refining Southwest LLC, D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 3. Sanitary Lagoon Investigation Phase II, Notable Analytical Results, Western Refining Southwest LLC, D/B/A Marathon Gallup Refinery, Gallup, New Mexico

Printed on Mar 3, 2022 Page **3** of **16**

List of Tables

- 1. Sanitary Lagoon Soil Delineation Step-Out Sample Results, TPH, Western Refining Southwest LLC., D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 2a. Sanitary Lagoon Pipeline Corridor Sample Results, VOCs, Western Refining Southwest LLC., D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 2b. Sanitary Lagoon Pipeline Corridor Sample Results, SVOCs, Western Refining Southwest LLC., D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 2c. Sanitary Lagoon Pipeline Corridor Sample Results, Inorganics, Western Refining Southwest LLC., D/B/A Marathon Gallup Refinery, Gallup, New Mexico
- 2d. Sanitary Lagoon Pipeline Corridor Sample Results, General, Western Refining Southwest LLC., D/B/A Marathon Gallup Refinery, Gallup, New Mexico

Printed on Mar 3, 2022 Page **4** of **16**

List of Appendices

- A. Field Logs
- B. Data Validation
- C. Laboratory Reports

Printed on Mar 3, 2022 Page **5** of **16**

List of Acronyms

AOC Area of Concern

DRO diesel range organics

EPA Environmental Protection Agency

FID flame ionization detector

LIF laser-induced florescence

NMED New Mexico Environment Department

ORO oil range organics

PID photoionization detector

SVOC semi-volatile organic compound

TPH total petroleum hydrocarbons

VOC volatile organic compound

Printed on Mar 3, 2022 Page **6** of **16**

Executive Summary

The Marathon Gallup Refinery (the refinery) is located 17 miles east of Gallup, New Mexico. The refinery operated since the 1950s and was indefinitely idled in 2020. This report details the second phase of investigative work at the former sanitary sewer lagoon as well as the sewer pipeline corridor leading to the lagoon.

Initial investigations at the sanitary lagoon were conducted in November 2019 and reported to New Mexico Environment Department (NMED) in the February 2020 *Investigation Report Sanitary Lagoon* (DiSorbo, 2020). Soil results from the initial investigation indicated exceedances of Total Petroleum Hydrocarbon (TPH) diesel range organics (DRO) within the former sanitary sewer lagoon at 3 locations. Additionally, due to a hydraulically upgradient gasoline leak (2019 gasoline leak at the truck loading rack), the initially proposed pipeline corridor investigation was postponed.

In September 2021 step-out delineation soil sampling related to the 2019 TPH DRO exceedances was conducted within the former sanitary lagoon along with the postponed soil sampling associated with the pipeline corridor. The results of the step-out delineation sampling and pipeline corridor sampling are discussed and presented in this report.

Printed on Mar 3, 2022 Page **7** of **16**

1.0 Introduction

The Marathon Gallup Refinery (the refinery) is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County (see Figure 1). The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The refinery is located on 810 acres. The refinery has been indefinitely idled since August 2020.

The former sanitary lagoon is in the northwest portion of the refinery. Historical assessment activities include the collection of 33 soil samples from 8 soil borings/temporary wells and 15 groundwater samples from 8 temporary wells and 7 existing permanent monitoring wells. Initial investigation activities were conducted in November 2019 and reported to New Mexico Environment Department (NMED) in the February 2020 *Investigation Report Sanitary Lagoon* (DiSorbo, 2020).

This investigation report addresses the sanitary lagoon pipeline corridor and provides analytical data for step-out sample locations within the former sanitary lagoon, as detailed in the NMED-approved *Sanitary Lagoon Investigation Phase II Work Plan*, dated March 31, 2021, revised July 2, 2021; NMED approval with modifications dated April 26, 2021 (DiSorbo, 2020). The remainder of this report is broken into the following sections:

- Section 2 Background
- Section 3 Investigation Activities and Objectives
- Section 4 Investigation Results
- Section 5 Conclusions and Recommendations

Printed on Mar 3, 2022 Page **8** of **16**

2.0 Background

This section presents background information for the sanitary lagoon including a brief history of operations and prior investigations.

2.1 Sanitary Lagoon Operational History

The sanitary lagoon is a two-cell earthen lagoon that was installed when the facility opened in 1957. Historically both cells were used to store wastewater, with raw sewage entering the southeast corner of the eastern cell via a buried pipeline that runs from the southeast. Historical sewer pipeline maps indicate that the sanitary lagoon received discharge from sanitary facilities located at the laboratory, the change house, the warehouse, and the truck loading rack driver's lounge. In October 2018, the sewer pipe was cut and plugged with concrete approximately 375 feet southeast of the lagoon. Wastewater that formerly discharged to the sanitary lagoon was rerouted to the sanitary treatment pond.

Between 2014 and 2016 two separate ditches, approximately 130 feet and 50 feet in length, were excavated to within 3 feet of the top of the sanitary lagoon pipeline; no additional activity immediately followed excavation of the ditches and those features are still present at the refinery. Figure 2 depicts the locations of the sanitary lagoon, the pipeline, the ditches, and the concrete plug location.

2.2 2019 Investigation and Basis for Continued Investigation

In November 2019, 33 soil samples were collected from 8 soil borings/temporary well locations within the sanitary lagoon. Additionally, 15 groundwater samples were collected from 8 temporary well locations and 7 existing permanent monitoring wells. Results from the 2019 sanitary lagoon investigation were presented to NMED in the aforementioned February 2020 *Investigation Report Sanitary Lagoon* (DiSorbo, 2020).

While the groundwater samples indicated impacts exist in the area surrounding/within the sanitary lagoon, those impacts were not attributed to the sanitary lagoon based on constituent type, localized flow directions, magnitudes of analytical concentrations, and results from nearby groundwater monitoring wells. Groundwater results were discussed in the NMED-approved February 2020 initial investigation report Sections 6 and 7; Section 7.2 provided recommendations for groundwater (DiSorbo, 2020).

Soil results from the 2019 investigation included detection exceedances of Total Petroleum Hydrocarbons (TPH) diesel range organics (DRO) above the applicable screening level at three locations (SL-2, SL-3, and SL-8 as shown on inset of Figure 2). Additional soil delineation sampling was recommended near the three locations with TPH DRO exceedances.

The 2019 investigation work plan included the installation and sampling of 13 trench locations southeast of the lagoon along the former sanitary lagoon pipeline. However, due to a gasoline leak discovered in late 2019 at the upgradient truck loading rack, the pipeline component of the investigation was postponed. This was agreed to by NMED via correspondence dated January 6, 2020 (DiSorbo, 2020).

Printed on Mar 3, 2022 Page **9** of **16**

The work conducted in 2021, as presented in this report, provides the required additional TPH DRO delineation data as well as data for the 13 trench locations along the former sanitary lagoon pipeline.

Printed on Mar 3, 2022 Page **10** of **16**

3.0 Investigation Activities/Objectives and Sample Handling

This section details the soil sampling activities and sampling handling procedures. The work was comprised of two distinct phases of investigation, delineation sampling within the former sanitary lagoon and a pipeline corridor assessment. The investigation was conducted in September 2021.

3.1 Delineation Sampling

Delineation step-out sampling was completed within the sanitary lagoon on September 20, 2021. Six delineation sample locations were selected to bound the three historical locations with TPH DRO exceedances. Historical and delineation sample locations are depicted on Figure 2. Note, due to a TPH DRO detection exceedance at SL-05 (one of the delineation step-out locations), an additional delineation location (SL-05a) was added and sampled on December 17, 2021. Delineation sample results are discussed in Section 4 and presented in Table 1.

The historical TPH DRO exceedances were observed in the 0 to 0.5 feet below ground surface (ft-bgs) interval. Samples were collected from the new locations at 0 to 0.5 ft-bgs and from the bottom of the boring at 2 to 2.5 ft-bgs. A decontaminated hand auger was used for sample collection. Samples were screened with a photoionization detector (PID) and lithologic information was logged following protocol described in the NMED-approved work plan. Field forms for the delineation samples are included in Appendix A.

3.2 Pipeline Corridor Assessment

The work plan proposed "up to 13 trenches, at 50 ft intervals" along the pipeline corridor to expose/trace the pipeline and allow for the collection of soil samples beneath the pipeline. Due to an earthen berm just west of the Marketing Tank Farm inhibiting the ability to reach the pipeline (i.e., pipeline was greater than 20 feet below ground surface), 2 of the proposed 13 locations were removed, resulting in 11 sample locations, as shown on Figure 2.

As further discussed in Section 4.3, originally the pipeline was to be exposed using an air knife and a trench was to be dug at each location for logging and sampling. The trench activities were completed as originally planned at the first two locations (SLP-01 and SLP-10), but the remainder of the samples were either collected in the borehole created by the air knife or by hand digging, in order to protect subsurface utilities in the area.

Of the 11 sample locations, 7 of them were air knifed to expose the pipeline. The remaining 4 locations were within the previously excavated ditches and were hand dug during sample collection efforts. Samples were field screened with a PID and/or flame ionization detector (FID) (depending on moisture content) at roughly 2-foot intervals and the lithology of each location was logged by field personnel. Field forms for these locations are provided in Appendix A. Pipeline corridor sample results are discussed in Section 4 and presented in Tables 2a through 2d.

Printed on Mar 3, 2022 Page **11** of **16**

3.3 Sample Handling

The following procedures were used during collection and screening of samples:

- 1. New disposable nitrile gloves were used to collect each sample.
- 2. Samples were transferred from the sample retrieval device (hand auger) directly into clean field screening containers (i.e., new Ziplock® baggies). Once bagged, samples were set aside to allow proper volatilization (approximately 5 minutes).
- 3. Vapors present in the sample bag's headspace were measured by inserting the probe of a PID or FID into a small opening in the bag; a PID was used to screen the soil if the sample had little or no moisture, an FID was used if obvious moisture was present.
- 4. PID/FID result were recorded on field forms along with the basic geology.
- 5. Sample labels and documentation were completed as each sample was collected. Immediately after the samples were collected, they were stored in a cooler with ice. Due to short hold times for E. Coli/Total Coliform samples (Method 9223B-2004, 24-hour hold/extraction time), the samples were shipped the same day as sample collection.
- 6. Chain-of-custody forms were completed after sample collection, prior to the transfer of samples off site, and included within each sample cooler.
- 7. Individual sample containers were packed to prevent breakage and transported in a sealed cooler with ice. Temperature blanks were included with each shipping container.
- 8. Each cooler was transported directly to the analytical laboratory by means of a courier sent from the laboratory. Custody seals were signed, dated, and used to seal each cooler in conformance with Environmental Protection Agency (EPA) protocol.

Printed on Mar 3, 2022 Page **12** of **16**

4.0 Investigation Results and Work Plan Deviations

This section presents the results of the pipeline corridor and delineation sampling. Analytical results are provided in the attached tables.

4.1 Delineation Sample Results

Delineation sample results are provided in Table 1. Initially, twelve primary samples and one duplicate sample were collected from six sample locations and analyzed for TPH DRO and oil range organics (ORO). Samples were collected from the 0 to 0.5 ft-bgs interval as well as 2 to 2.5 ft-bgs. Twelve of the thirteen samples had results below the applicable screening levels, however, at location SL-05, the surface soil sample (0 to 0.5 ft-bgs) exceeded applicable screening levels (industrial/occupational and construction) for TPH DRO. An additional sample was added and collected (SL-05a) on December 17, 2021, to adequately bound the elevated TPH concentrations. The sample results from SL-05a were below the applicable screening levels as presented in Table 1.

A figure depicting the TPH DRO analytical results (both historical and step-out delineation sample results) is included as Figure 3.

4.2 Pipeline Corridor Sample Results

Fourteen pipeline corridor samples were collected from 11 sample locations (11 primary samples and 3 duplicate samples) at the interval approximately 2 feet below the top of the sanitary lagoon pipe. Samples were analyzed for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), TPH, inorganics, geochemical, and fecal bacteria. Analytical results are provided in Tables 2a, 2b, 2c, and 2d.

Six of the 11 sample locations (SLP-06 through SLP-11) were identified as having hydrocarbon-like staining and/or hydrocarbon-like odor within the borehole and a corresponding elevated PID/FID reading (see field forms in Appendix A). Note that SLP-04 was indicated as having a "slight hydrocarbon-like odor" however the corresponding PID reading was insignificant and analytical results were below applicable limits. The pipeline itself was made of a clay-like material, approximately 8 inches in diameter, and embedded in 1 to 2 feet of sand. Most of the hydrocarbon-like staining was concentrated around the pipeline, within the sand layer.

There were no notable detections of VOCs, SVOCs, or inorganics (see Tables 2a, 2b, and 2c). There were detections of TPH DRO and gasoline range organics above applicable standards at four locations (Table 2d), however, this is to be expected in this area as it is directly down gradient of documented historical hydrocarbon releases (Area of Concern [AOC] 35).

Fecal bacteria specific soil tests indicated three locations with detectable total coliforms and one location with E-coli. Figure 3 depicts the pipeline sample locations and notable analytical detection results.

4.3 Work Plan Deviations and Laboratory Errors

4.3.1 Work Plan Deviations

As previously mentioned, the only notable deviation from the work plan pertained to the trench portion of the investigation. Originally the pipeline was to be exposed using an air knife and a trench was to be dug at each location for logging and sampling. The trench activities were completed as originally planned at the first two locations (SLP-01 and SLP-10). However, during trench activities at the third sample location (SLP-05) a firewater line was discovered but not damaged. To protect subsurface utilities in the area, the decision was made to log, screen, and sample each subsequent location in the borehole created by the air knife. A decontaminated hand auger was used to collected soil aliquots for screening from the air knife boring sidewall and the boring was logged based on the screening aliquots and a visual inspection of the boring sidewall.

4.3.2 Laboratory Errors

Due to the short hold time associated with the fecal bacteria sampling and certain geochemical parameters, arrangements were made with the analytical laboratory for same-day sample collection and shipment. More specifically, all samples were collected and processed before arrival of the laboratory courier (2:00 pm Mountain Standard Time) to ensure arrival at the laboratory within the 24-hour extraction window. Despite the coordination with the laboratory, some of the pipeline corridor samples with short hold times were extracted outside of the extraction window. The samples results were assessed by data validation experts and flagged accordingly; data validation reports can be found in Appendix B. Laboratory reports are provided in Appendix C.

Additionally, 6 of the 14 SVOC (8270) samples were extracted outside of the 14-day extraction window. These six results were rejected by the data validation team and are flagged with "R" in the applicable table (Table 2b). Although these results were rejected, re-sampling is not warranted for the following reasons:

- VOCs and inorganics were extracted within the appropriate timeframe and were not detected at levels of concern from any of the locations with rejected SVOC data
- SVOC constituents detected at low levels (below screening levels but with detection results) for locations not rejected were still detected in the rejected data sets at similarly low levels

Printed on Mar 3, 2022 Page **14** of **16**

5.0 Conclusions and Recommendations

The objectives of this investigation were to further delineate and adequately bound TPH DRO detections within the former sanitary lagoon and to determine if constituents are present along the sanitary lagoon pipeline corridor.

Delineation sample results within the former sanitary lagoon achieved the intended objective to adequately bound the previous TPH DRO detections. Analytical results are provided in Table 1 and depicted on Figure 3. At this time no additional sampling is proposed within the former sanitary lagoon.

Along the pipeline corridor, sample results indicate TPH detection exceedances hydraulically upgradient (to the southeast) of the concrete plug. The shallow subsurface soils within the region are primarily clay-like and of low permeability. It is likely that the sand layer used to embed the sanitary lagoon pipeline acted as a conduit for hydrocarbon migration from documented historical releases (e.g., the 2019 gasoline leak to the north of the truck loading rack). However, that migration appears to be cut off at the location of the concrete plug (Figure 3) as the sand layer corridor is broken by the presence of a concrete sewer yault.

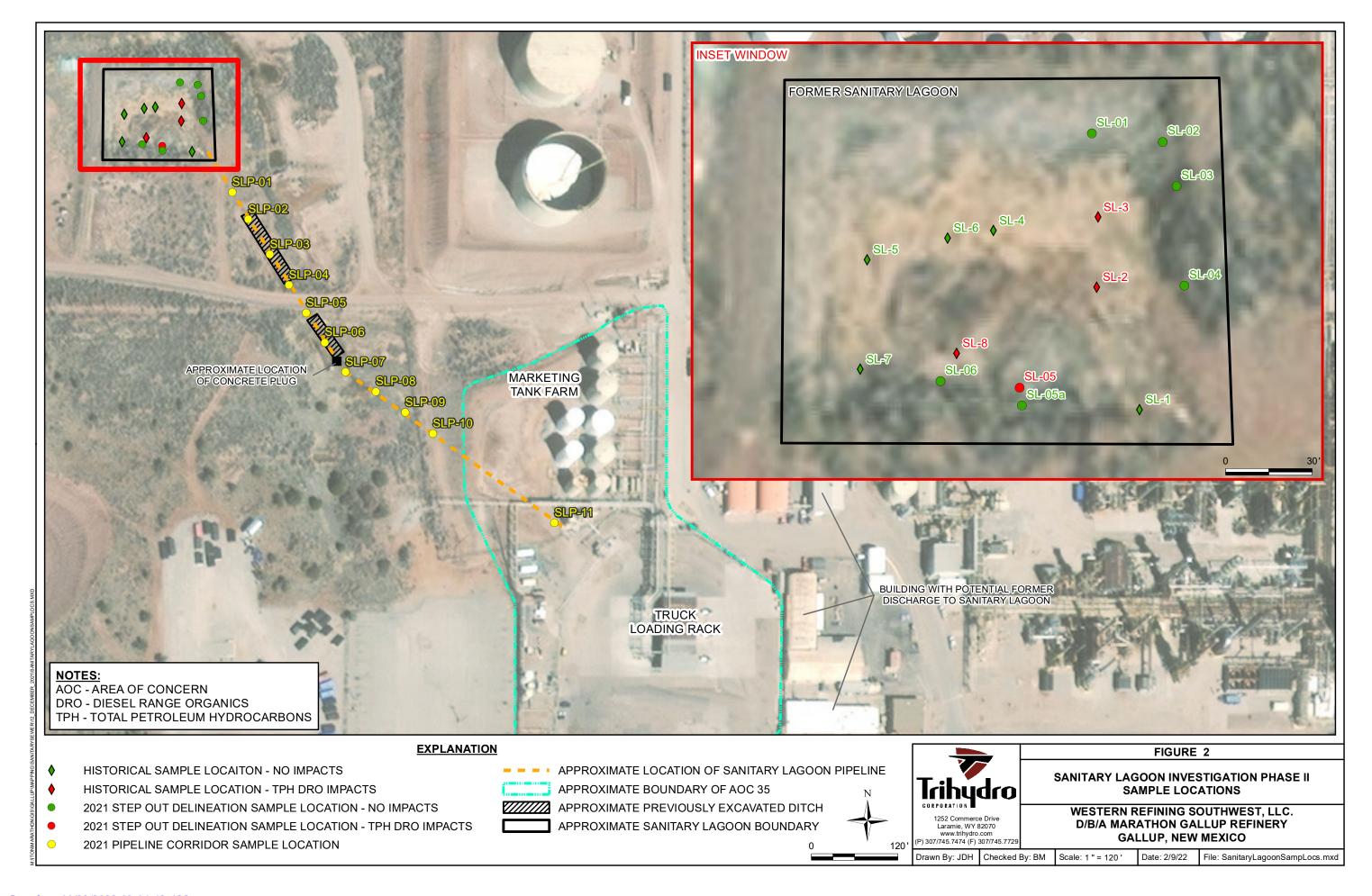
Soil within this area is known to have hydrocarbon contamination as presented in the report pertaining to the laser induced fluorescence (LIF) results (Trihydro, 2021a). Additional investigation into soil near this area is proposed in the AOC 35 investigation work plan (Trihydro, 2021b). Note that the AOC 35 work plan is currently undergoing revisions based on NMED comments received in October 2021. The modified investigation workplan is due back to NMED by March 31, 2022. At this time no additional soil investigation work is proposed based on the former sanitary lagoon pipeline and pipeline corridor. Soil in this area will be investigated further through the AOC 35 investigation which seeks to correlate the LIF investigation results with analytical concentrations. The approximate boundary of AOC 35 is depicted on Figure 2.

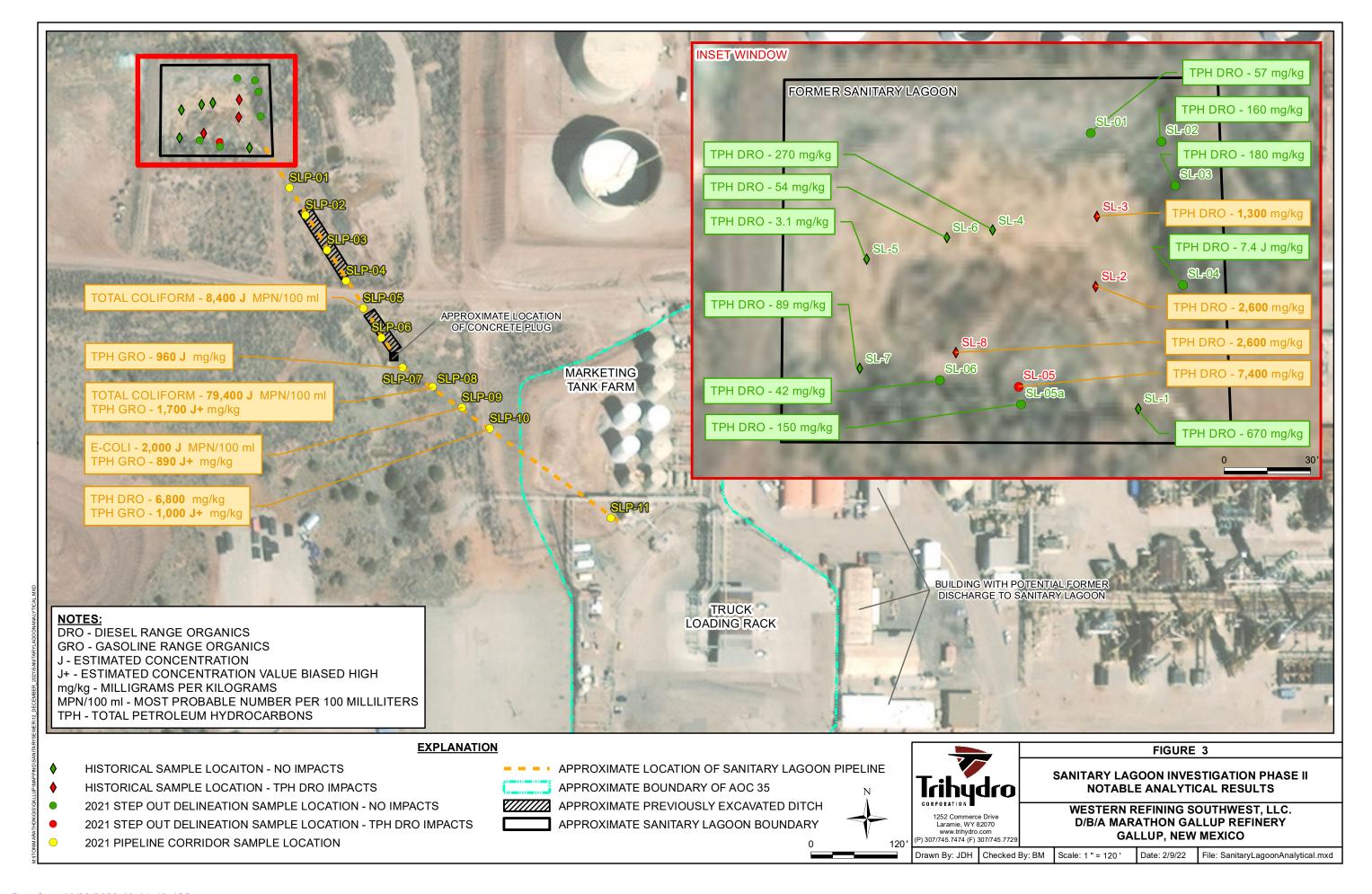
Printed on Mar 3, 2022 Page **15** of **16**

6.0 References

DiSorbo. 2020. Investigation Report Sanitary Lagoon, Marathon Petroleum Company, Gallup Refinery.

Trihydro. 2021a. Marketing Tank Farm Laser-Induced Fluorescence/Hydraulic Profiling Investigation Report, Marathon Petroleum Corporation, Gallup Refining Division.


Trihydro. 2021b. Revised Investigation Work Plan No. 2 Area of Concern 35, Western Refining Southwest Inc., Marathon Gallup Refinery.


Printed on Mar 3, 2022 Page **16** of **16**

Figures

Tables

TABLE 1. SANITARY LAGOON SOIL DELINEATION STEP-OUT SAMPLE RESULTS, TPH WESTERN REFINING SOUTHWEST, LLC.

D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

		Sample Depth	TPH DRO	TPH ORO
Location ID	Date Sampled	(ft-bgs)	(mg/kg)	(mg/kg)
SL-01	9/20/2021	0.5	57	ND(49)
SL-01	9/20/2021	2.5	ND(9)	ND(45)
SL-02	9/20/2021	0.5	160	81
SL-02	9/20/2021	2.5	ND(9.6)	ND(48)
SL-03	9/20/2021	0.5	180	91
SL-03	9/20/2021	2.5	13	ND(47)
SL-04	9/20/2021	0.5	7.4 J	ND(48)
SL-04	9/20/2021	2.5	170	ND(47)
SL-05	9/20/2021	0.5	<u>7400</u>	2500
SL-05	9/20/2021	2.5	8.5 J	ND(49)
SL-05 Dup	9/20/2021	2.5	8.6 J	ND(47)
SL-05a	12/17/2021	0.5	150	120
SL-06	9/20/2021	0.5	42	ND(48)
SL-06	9/20/2021	2.5	290	63
	NMED Residentia	Soil Screening Level		
		eedances in bold text)	1000	1000
NMED Industrial/Occu	upational Soil Scree	ning Level (0-1 ft-bgs)		
	•	text and highlighted):	3000	3800
NMED Construction	Worker Soil Screen	ing Level (0-10 ft-bgs)		
		edances underlined):	<u>3000</u>	<u>3800</u>

Notes:

DRO - diesel range organics

Dup - blind duplicate sample

ft-bgs - feet below ground surface

J - estimated concentration

ND - not detected (method detection limit in parentheses)

NMED - New Mexico Environment Department

mg/kg - milligrams per kilogram

ORO - oil range organics

TPH - total petroleum hydrocarbons

Screening level source:

NMED Risk Assessment Guidance for Site Investigations and Remediation (February 2019) - Table 6-2

TABLE 2a. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, VOCs WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Sample Depth (ft-bgs)	1,1,1-Trichloroethane (mg/kg)	1,1-Dichloroethane (mg/kg)	1,2-Dibromoethane (mg/kg)	1,2-Dichloroethane (mg/kg)	1,4-Dioxane (mg/kg)	2-Butanone (mg/kg)	Benzene (mg/kg)	Carbon Disulfide (mg/kg)	Chlorobenzene (mg/kg)
SLP-01	09/21/21	7.5	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.34)	ND(0.34)	ND(0.017)	ND(0.34)	ND(0.034)
SLP-02	09/23/21	3.5	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.28)	ND(0.28)	ND(0.014)	ND(0.28)	ND(0.028)
SLP-02 Dup	09/23/21	3.5	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.27)	ND(0.27)	ND(0.014)	ND(0.27)	ND(0.027)
SLP-03	09/21/21	3	ND(0.025)	ND(0.025)	ND(0.025)	ND(0.025)	ND(0.25)	ND(0.25)	ND(0.013)	ND(0.25)	ND(0.025)
SLP-03 Dup	09/21/21	3	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(1.4)	ND(1.4)	ND(0.072)	ND(1.4)	ND(0.14)
SLP-04	09/23/21	4.5	ND(0.028)	0.014 J	ND(0.028)	ND(0.028)	ND(0.28)	0.24 J	0.72	ND(0.28)	ND(0.028)
SLP-05	09/22/21	11.5	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.51)	ND(3.1)	ND(2.6)	0.46	ND(2.6)	ND(0.21)
SLP-06	09/22/21	4	ND(0.44)	ND(0.44)	ND(0.44)	ND(0.44)	ND(4.4)	ND(4.4)	1.2	ND(4.4)	ND(0.44)
SLP-06 Dup	09/22/21	4	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.54)	ND(3.3)	ND(2.7)	1.9	ND(2.7)	ND(0.22)
SLP-07	09/22/21	8	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.55)	ND(3.3)	ND(2.8)	2.6	ND(2.8)	ND(0.22)
SLP-08	09/22/21	5.33	ND(0.19)	ND(0.19)	ND(0.19)	0.25 J	ND(2.9)	ND(2.4)	9.5	ND(2.4)	0.15 J
SLP-09	09/22/21	7	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.57)	ND(3.4)	ND(2.8)	6.9	ND(2.8)	ND(0.23)
SLP-10	09/21/21	9.5	ND(1.4)	ND(1.4)	ND(1.4)	ND(1.4)	ND(14)	ND(14)	9.7	ND(14)	ND(1.4)
SLP-11	09/23/21	8.5	ND(0.24)	ND(0.24)	ND(0.24)	0.12 J	ND(2.4)	ND(2.4)	1.1	ND(2.4)	0.056 J
	NMED Residential S (exceed	oil Screening Level lances in bold text)	1 <i>4</i> 37 <i>4</i> 9	78.6	0.7	8.3	53.3	37418.2	17.8	1554.2	378.4
NMED Industr	rial/Occupational Soil Screenin (exceedances in bold tex	• • •	775377	383.3	3.3	40.7	257.0	410979.6	87.2	8541.0	2157.4
NMED Const	truction Worker Soil Screening (exceed	Level (0-10 ft-bgs) lances underlined):	<u>13601.9</u>	<u>1817.1</u>	<u>16.3</u>	<u>53.8</u>	<u>1880.0</u>	91656.7	<u>141.9</u>	<u>1621.5</u>	<u>411.6</u>

Location ID	Date Sampled	Sample Depth (ft-bgs)	Chloroform (mg/kg)	Ethylbenzene (mg/kg)	MTBE (mg/kg)	Styrene (mg/kg)	Tetrachloroethene (mg/kg)	Toluene (mg/kg)	Trichloroethylene (mg/kg)	Xylenes, Total (mg/kg)
SLP-01	09/21/21	7.5	ND(0.034)		ND(0.034)	ND(0.034)		ND(0.034)	ND(0.034)	ND(0.067)
SLP-02	09/23/21	3.5	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.028)	ND(0.057)
SLP-02 Dup	09/23/21	3.5	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.027)	ND(0.054)
SLP-03	09/21/21	3	ND(0.025)		ND(0.025)	ND(0.025)		ND(0.025)	ND(0.025)	0.019 J
SLP-03 Dup	09/21/21	3	ND(0.14)	-	ND(0.14)	ND(0.14)		ND(0.14)	ND(0.14)	ND(0.29)
SLP-04	09/23/21	4.5	ND(0.028)	0.061	0.021 J	ND(0.028)	ND(0.028)	0.0095 J	ND(0.028)	ND(0.056)
SLP-05	09/22/21	11.5	ND(0.21)	0.29	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	0.67
SLP-06	09/22/21	4	ND(0.44)	0.9 J	ND(0.44)	ND(0.44)	ND(0.44)	0.22 J	ND(0.44)	2.6 J
SLP-06 Dup	09/22/21	4	ND(0.22)	2.3 J	ND(0.43)	ND(0.22)	ND(0.22)	0.51 J	ND(0.22)	6.4 J
SLP-07	09/22/21	8	ND(0.22)	5.9	ND(0.44)	ND(0.22)	ND(0.22)	5.8	ND(0.22)	14
SLP-08	09/22/21	5.33	ND(0.19)	19	ND(0.39)	ND(0.19)	ND(0.19)	33	ND(0.19)	97
SLP-09	09/22/21	7	ND(0.23)	22	ND(0.45)	ND(0.23)	ND(0.23)	17	ND(0.23)	59
SLP-10	09/21/21	9.5	ND(1.4)		ND(1.4)	ND(1.4)		1.5	ND(1.4)	26
SLP-11	09/23/21	8.5	ND(0.24)	1.9	ND(0.24)	ND(0.24)	ND(0.24)	5.4	ND(0.24)	9
	NMED Residential S (exceed	oil Screening Level dances in bold text)	5.9	75.1	974.8	7264.5	110.8	5228.4	6.8	870.8
NMED Indust	rial/Occupational Soil Screenin (exceedances in bolt te	` ` '	28.7	367.6	4817.9	51298.2	628.8	61340.2	36.5	4275.3
NMED Cons	struction Worker Soil Screening exceed)	Level (0-10 ft-bgs)	133.9	<u>1771.9</u>	24230.7	10166.3	119.9	14041.3	6.9	<u>798.3</u>

Notes:

Dup - blind duplicate sample

Screening level source:

NMED Risk Assessment Guidance for Site Investigations and Remediation (February 2019) - Table A-1

ft-bgs - feet below ground surface

J - estimated concentration

mg/kg - milligrams per kilogram MTBE - Methyl tert-Butyl Ether

ND - not detected (method detection limit in parentheses)

NMED - New Mexico Environment Department

VOCs - volatile organic compounds

202202_SLP-Dataset_TBL-2.xisx

TABLE 2b. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, SVOCS WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Sample Depth (ft-bgs)	1,2,4-Trichlorobenzene (mg/kg)	1,2-Dichlorobenzene (mg/kg)	1,3-Dichlorobenzene (mg/kg)	1,4-Dichlorobenzene (mg/kg)	1-Methylnaphthalene (mg/kg)	Bis(2-chloroisopropyl) ether (mg/kg)	b-Chloronaphthalene (mg/kg)	2-Chlorophenol (mg/kg)
SLP-01	09/21/21	7.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-02	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-02 Dup	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-03	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-03 Dup	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-04	09/23/21	4.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-05	09/22/21	11.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-06	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-06 Dup	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-07	09/22/21	8	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	2.15 J	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-08	09/22/21	5.33	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	4.73 J+	ND(0.333) R	ND(0.0333)	ND(0.333) R
SLP-09	09/22/21	7	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.333)	3.3 J+	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-10	09/21/21	9.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	7.37 J-	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-11	09/23/21	8.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	0.832	ND(0.333)	ND(0.0333)	ND(0.333)
		Soil Screening Level edances in bold text)	82.9	2149.6	-	1290.0	171.6	99.3	6257.1	391.1
NMED Industr	rial/Occupational Soil Screen (exceedances in bold to	• ,	422.9	12967.5		6730.0	813.0	519.1	103822.2	6488.9
NMED Const	truction Worker Soil Screenir (excee	ng Level (0-10 ft-bgs) edances underlined):	<u>79.1</u>	<u>2495.8</u>	=	<u>24800.0</u>	6058.7	<u>3539.4</u>	<u>28315.2</u>	1769.7

Location ID	Date Sampled	Sample Depth (ft-bgs)	2,4,6-Trichlorophenol (mg/kg)	2,4-Dichlorophenol (mg/kg)	2,4-Dimethylphenol (mg/kg)	2,4-Dinitrophenol (mg/kg)	2,4-Dinitrotoluene (mg/kg)	2,6-Dintitrotoluene (mg/kg)	2,4-Dinitrophenol (mg/kg)	4-Bromophenyl phenyl ether (mg/kg)
SLP-01	09/21/21	7.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R
SLP-02	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-02 Dup	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-03	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R
SLP-03 Dup	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R
SLP-04	09/23/21	4.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-05	09/22/21	11.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-06	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-06 Dup	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-07	09/22/21	8	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-08	09/22/21	5.33	ND(0.333)	ND(0.333) R	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-09	09/22/21	7	ND(0.333)	ND(0.333) R	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
SLP-10	09/21/21	9.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R
SLP-11	09/23/21	8.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)
		Soil Screening Level edances in bold text)	61.6	184.9	1232.7	123.3	17.1	3.6	123.3	-
NMED Industr	rial/Occupational Soil Screer (exceedances in bold	` ` ,	916.3	2748.8	18325.0	1832.5	82.3	17.2	1832.5	
NMED Cons	truction Worker Soil Screeni (exce	ing Level (0-10 ft-bgs) edances underlined):	<u>269.1</u>	807.2	<u>5381.2</u>	<u>538.1</u>	<u>535.6</u>	80.9	<u>538.1</u>	=

1 of 3 202202_SLP-Dataset_TBL-2.xlsx

TABLE 2b. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, SVOCS WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Sample Depth (ft-bgs)	2-Methylnaphthalene (mg/kg)	O-Cresol (mg/kg)	2-Nitrophenol (mg/kg)	3,3-Dichlorobenzidine (mg/kg)	3,4-Methyl phenol (mg/kg)	Anthracene (mg/kg)	Benzidine (mg/kg)	Benzo(a)anthrace ne (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoran thene (mg/kg)	Benzo(g,h,i)perylene (mg/kg)
SLP-01	09/21/21	7.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(1.67) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R
SLP-02	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-02 Dup	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-03	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(1.67) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R
SLP-03 Dup	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(1.67) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R
SLP-04	09/23/21	4.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-05	09/22/21	11.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-06	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-06 Dup	09/22/21	4	0.333	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-07	09/22/21	8	3.52 J	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-08	09/22/21	5.33	8.05 J+	ND(0.333) R	ND(0.333) R	ND(0.333)	ND(0.333) R	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-09	09/22/21	7	4.96 J+	ND(0.333)	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
SLP-10	09/21/21	9.5	5.71 J+	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(1.67) R	0.0406 J	ND(0.0333) R	ND(0.0333) R	ND(0.0333) R
SLP-11	09/23/21	8.5	1.17	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(1.67)	ND(0.0333)	ND(0.0333)	ND(0.0333)	ND(0.0333)
		Soil Screening Level edances in bold text)	231.8	-	-	11.8	-	17384.8	185.0	1.5	1.1	1.5	-
NMED Industr	rial/Occupational Soil Screen (exceedances in bold	• • • • • • • • • • • • • • • • • • • •	3368.0	-		57.0	-	252597.3	2750.0	32.3	23.6	32.3	-
NMED Const	truction Worker Soil Screeni (exce	ng Level (0-10 ft-bgs) edances underlined):	1004.0	=	=	<u>409.6</u>	=	<u>75301.4</u>	<u>807.0</u>	<u>240.0</u>	<u>173.0</u>	<u>240.0</u>	=

Location ID	Date Sampled	Sample Depth (ft-bgs)	4-Chloro-3-methylphenol (mg/kg)	4-Chlorophenyl phenyl ether (mg/kg)	4-Nitrophenol (mg/kg)	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	ethylhexyl)phtha ate (mg/kg)	l Butyl Benzyl Phthalate (mg/kg)	Chrysene (mg/kg)	Dibenz(a,h)anthracen e (mg/kg)	Diethyl phthalate (mg/kg)	Dimethyl Phthalate (mg/kg)
SLP-01	09/21/21	7.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-02	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-02 Dup	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-03	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-03 Dup	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-04	09/23/21	4.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-05	09/22/21	11.5	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-06	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-06 Dup	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-07	09/22/21	8	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-08	09/22/21	5.33	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-09	09/22/21	7	ND(0.333) R	ND(0.333)	ND(0.333)	0.274	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-10	09/21/21	9.5	ND(0.333) R	ND(0.333) R	ND(0.333) R	0.472 J	ND(0.0333) R	ND(0.333) R	ND(0.333) R	0.0406 J	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-11	09/23/21	8.5	ND(0.333)	ND(0.333)	ND(0.333)	0.095	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.0333)	ND(0.333)	ND(0.333)
		Soil Screening Level dances in bold text)	-	-	-	3477.0	-	380.4	-	153.1	0.2	49307.7	61634.6
NMED Industr	ial/Occupational Soil Screeni (exceedances in bold to	• ,			-	50519.5	•	1832.5	-	3229.4	3.2	733000.7	916250.9
NMED Const	ruction Worker Soil Screenin (excee	g Level (0-10 ft-bgs) dances underlined):	=	=	=	<u>15060.3</u>	Ξ	<u>5381.2</u>	=	23126.4	<u>24.0</u>	<u>215249.9</u>	<u>269062.4</u>

202202_SLP-Dataset_TBL-2.xlsx 2 of 3

TABLE 2b. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, SVOCs WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Sample Depth (ft-bgs)	Benzo(k)fluoranthene E (mg/kg)	E Bis(2-chloroethoxy)methane (mg/kg)	Bis(2-chloroisopropyl) ether (mg/kg)	Fluorene (mg/kg)	Hexachlorobenzene (mg/kg)	Hexachlorobutadiene (mg/kg)	Hexachlorocyclop entadiene (mg/kg)	Hexachloroethane (mg/kg)	Indeno(1,2,3- c,d)pyrene (mg/kg)	Isophorone (mg/kg)	Naphthalene (mg/kg)	Nitrobenzene (mg/kg)
SLP-01	09/21/21	7.5	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-02	09/23/21	3.5	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-02 Dup	09/23/21	3.5	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-03	09/21/21	3	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-03 Dup	09/21/21	3	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R
SLP-04	09/23/21	4.5	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-05	09/22/21	11.5	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)
SLP-06	09/22/21	4	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	0.0666 J	ND(0.333)
SLP-06 Dup	09/22/21	4	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	0.153 J	ND(0.333)
SLP-07	09/22/21	8	ND(0.0333)	ND(0.333)	ND(0.333)	0.124	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	1.31	ND(0.333)
SLP-08	09/22/21	5.33	ND(0.0333)	ND(0.333) R	ND(0.333) R	0.561	ND(0.333)	ND(0.333) R	ND(0.333)	ND(0.333) R	ND(0.0333)	ND(0.333) R	5.93 J+	ND(0.333) R
SLP-09	09/22/21	7	ND(0.0333)	ND(0.333) R	ND(0.333)	0.469	ND(0.333)	ND(0.333) R	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333) R	2.74 J+	ND(0.333) R
SLP-10	09/21/21	9.5	ND(0.0333) R	ND(0.333) R	ND(0.333) R	0.786 J	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	7.43 J+	ND(0.333) R
SLP-11	09/23/21	8.5	ND(0.0333)	ND(0.333)	ND(0.333)	0.109	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	0.419	ND(0.333)
		Soil Screening Leve	15.3	-	99.3	2318.0	3.3	61.6	2.3	133.1	1.5	5605.8	1160.0	60.4
NMED Industr	ial/Occupational Soil Screer (exceedances in bold	•	′ 322 9	-	519.1	33679.6	733.0	52.1	5491.9	641.4	32.3	27005.3	16800.0	293.3
NMED Const	truction Worker Soil Screeni (exce	ng Level (0-10 ft-bgs edances underlined)	* 2312.6	Ξ.	<u>3539.4</u>	10040.2	116.7	<u>269.1</u>	<u>867.0</u>	<u>188.2</u>	239.7	53658.3	5020.0	<u>352.5</u>

Location ID	Date Sampled	Sample Depth (ft-bgs)	Di-n-butyl phthalate (mg/kg)	Di-n-octyl phthalate (mg/kg)	Fluoranthene (mg/kg)	N-Nitrosodimethylamine (mg/kg)	N-Nitrosodinpropylamine (mg/kg)	N-Nitrosodiphenylamine (mg/kg)	Pentachloropheno I (mg/kg)	Phenanthrene (mg/kg)	Phenol (mg/kg)	Pyrene (mg/kg)	Pyridine (mg/kg)	Quinoline (mg/kg)
SLP-01	09/21/21	7.5	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-02	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-02 Dup	09/23/21	3.5	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-03	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-03 Dup	09/21/21	3	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R
SLP-04	09/23/21	4.5	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-05	09/22/21	11.5	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-06	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-06 Dup	09/22/21	4	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
SLP-07	09/22/21	8	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	0.0571	ND(0.333)	ND(0.333)
SLP-08	09/22/21	5.33	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333) R	ND(0.333) R	ND(0.333)	ND(0.333)	0.794	ND(0.333) R	0.223	ND(0.333) R	ND(0.333) R
SLP-09	09/22/21	7	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	0.767	ND(0.333)	0.125	ND(0.333)	ND(0.333) R
SLP-10	09/21/21	9.5	ND(0.333) R	ND(0.333) R	ND(0.0333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	ND(0.333) R	1.66 J	ND(0.333) R	0.348 J	ND(0.333) R	ND(0.333) R
SLP-11	09/23/21	8.5	ND(0.333)	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)	ND(0.333)	ND(0.333)	0.22	ND(0.333)	ND(0.0333)	ND(0.333)	ND(0.333)
		I Soil Screening Level eedances in bold text)	6163.5	-	2318.0	0.5	-	1086.8	9.9	1738.5	18490.1	1738.5	-	-
NMED Industr	rial/Occupational Soil Screet (exceedances in bold	• •	01675 1		33679.6	7.3		5235.6	44.5	25259.7	274861.3	25259.7	-	-
NMED Cons	truction Worker Soil Screen	ing Level (0-10 ft-bgs) edances underlined):	26906.2	=	10040.2	2.1	=	<u>37855.1</u>	<u>346.2</u>	<u>7530.1</u>	<u>77383.6</u>	<u>7530.1</u>	=	=

Dup - blind duplicate sample

ft-bgs - feet below ground surface

J - estimated concentration J+ - value biased high

J- - value biased low

mg/kg - milligrams per kilogram ND - not detected (method detection limit in parentheses)

NMED - New Mexico Environment Department

R - data rejected SVOC - semivolatile organic compound

Screening level source: NMED Risk Assessment Guidance for Site Investigations and Remediation (February 2019) - Table A-1

202202_SLP-Dataset_TBL-2.xlsx

3 of 3

TABLE 2c. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, INORGANICS WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	S Date Sampled	Sample Depth (ft-bgs)	Antimony, Total (mg/kg)	Arsenic, Total (mg/kg)	Barium, Total (mg/kg)	Beryllium, Total (mg/kg)	Cadmium, Total (mg/kg)	Chromium, Dissolved (mg/kg)	Chromium, Total (mg/kg)	Cobalt, Total (mg/kg)	Iron, Total (mg/kg)
SLP-01	09/21/21	7.5	ND(2.5)	ND(2.5)	78	1.1	ND(0.099)	ND(1)	9.2	4.4	16000
SLP-02	09/23/21	3.5	ND(2.6)	ND(2.6)	120	1.2	ND(0.1)	ND(2)	12	5.6	19000
SLP-02 Dup	09/23/21	3.5	ND(2.5)	ND(2.5)	140	1	ND(0.098)	ND(2)	8.2	4.6	14000
SLP-03	09/21/21	3	ND(2.5)	ND(2.5)	150	0.87	ND(0.1)	ND(1)	8.9	3.9	15000
SLP-03 Dup	09/21/21	3	ND(2.4)	ND(2.4)	150	0.83	ND(0.097)	ND(1)	8.2	3.8	14000
SLP-04	09/23/21	4.5	ND(2.4)	ND(2.4)	240	0.76	ND(0.097)	ND(2)	8	3.4	13000
SLP-05	09/22/21	11.5	ND(2.5)	ND(2.5)	220	0.79	ND(0.098)	ND(2) UJ	6.6	3.7	12000
SLP-06	09/22/21	4	ND(2.6)	ND(2.6)	420	0.8	ND(0.1)	ND(2) UJ	7.8	3.8	13000
SLP-06 Dup	09/22/21	4	ND(2.4)	1.4 J	430	0.77	ND(0.096)	ND(2) R	5.8	3.4	10000
SLP-07	09/22/21	8	ND(2.5)	ND(2.5)	410	0.66	ND(0.099)	ND(2) UJ	6.4	3.3	11000
SLP-08	09/22/21	5.33	ND(2.4)	1.4 J	380	0.53	ND(0.097)	ND(2) UJ	4.3	2.5	8500
SLP-09	09/22/21	7	ND(2.5)	ND(2.5)	390	0.81	ND(0.098)	ND(2) UJ	5.9	3.3	12000
SLP-10	09/21/21	9.5	ND(2.4)	ND(2.4)	440	0.56	ND(0.097)	ND(1)	6.6	3.2	11000
SLP-11	09/23/21	8.5	ND(13)	ND(13)	810	0.56 J	ND(0.52)	ND(2)	3.7	2.6	8000
	NMED Residential Soil (exceedan	Screening Level ces in bold text)	313	7.1	15558.1	156.2	70.5	3.1	96.6	23.4	54750.0
NMED Indus	trial/Occupational Soil Screening L (exceedances in bold text a	· · · · · · · · · · · · · · · · · · ·	519.1	35.9	254671.1	2583.2	1107.9	72.1	504.6	388.4	908444.4
NMED Cons	struction Worker Soil Screening Le (exceedance	evel (0-10 ft-bgs) ces underlined):	<u>141.6</u>	41.2	4391.7	<u>148.1</u>	<u>72.1</u>	<u>66.9</u>	<u>133.7</u>	<u>36.7</u>	<u>247757.6</u>

Location ID	Date Sampled	Sample Depth (ft-bgs)	Lead, Total (mg/kg)	Manganese, Total (mg/kg)	Mercury, Total (mg/kg)	Nickel, Total (mg/kg)	Selenium, Total (mg/kg)	Silver, Total (mg/kg)	Vanadium, Total (mg/kg)	Zinc, Total (mg/kg)
SLP-01	09/21/21	7.5	2.1 J-	350	0.0029 J	9.4	ND(2.5)	ND(0.25)	16	13
SLP-02	09/23/21	3.5	2.3	400	0.0038 J	11	ND(2.6)	ND(0.26)	20	15
SLP-02 Dup	09/23/21	3.5	3.5	460	0.0089 J	8.4	ND(2.5)	ND(0.25)	14	12
SLP-03	09/21/21	3	1.9 J-	360	0.0031 J	8.4	ND(2.5)	ND(0.25)	16	11
SLP-03 Dup	09/21/21	3	2.4 J-	380	ND(0.033)	8.9	ND(2.4)	ND(0.24)	16	11
SLP-04	09/23/21	4.5	1.4	350	ND(0.031)	6.7	ND(2.4)	ND(0.24)	17	11
SLP-05	09/22/21	11.5	3	300	ND(0.035)	7.2	ND(2.5)	ND(0.25)	14	11
SLP-06	09/22/21	4	2.4	<u>510</u>	0.0028 J	7.3	ND(2.6)	ND(0.26)	16	12
SLP-06 Dup	09/22/21	4	3	460	0.0032 J	6.9	ND(2.4)	ND(0.24)	12	10
SLP-07	09/22/21	8	3.7	490	0.0035 J	6.2	ND(2.5)	ND(0.25)	16	11
SLP-08	09/22/21	5.33	3.6	330	ND(0.034)	4.6	ND(2.4)	ND(0.24)	14	7.9
SLP-09	09/22/21	7	2.4	310	ND(0.031)	6.6	ND(2.5)	ND(0.25)	12	9.7
SLP-10	09/21/21	9.5	2 J-	<u>750</u>	0.0045 J	6	ND(2.4)	ND(0.24)	15	12
SLP-11	09/23/21	8.5	4.4	<u>2400</u>	0.015 J	3.9	ND(13)	1.3	16	8.5 J
		al Soil Screening Level eedances in bold text)	-	10547.7	23.8	1559.6	391.1	391.1	393.9	23464.3
NMED Indu	strial/Occupational Soil Scree (exceedances in bold	ening Level (0-1 ft-bgs) I text and highlighted):	-	160183.1	112.1	25681.9	6488.8	6488.9	6525.0	389333.3
NMED Cor	nstruction Worker Soil Screer (exc	ning Level (0-10 ft-bgs) eedances underlined):	=	<u>463.8</u>	20.7	<u>753.1</u>	<u>1753.1</u>	<u>1769.7</u>	<u>614.1</u>	<u>106181.8</u>

Notes:

Dup - blind duplicate sample

ft-bgs - feet below ground surface

J - estimated concentration

J- - value biased low

mg/kg - milligrams per kilogram

ND - not detected (method detection limit in parentheses)

NMED - New Mexico Environment Department

R - data rejected

UJ - estimated reporting limit

reening level source:

 ${\it NMED~Risk~Assessment~Guidance~for~Site~Investigations~and~Remediation~(February~2019)~-~Table~A-1}$

202202 SLP-Dataset_TBL-2.xlsx

TABLE 2d. SANITARY LAGOON PIPELINE CORRIDOR SAMPLE RESULTS, GENERAL WESTERN REFINING SOUTHWEST, LLC. D/B/A MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Location ID	Date Sampled	Sample Depth (ft-bgs)	Bacteria, Total Coliform (MPN/100ml)	E-Coli (MPN/100ml)	Chloride (mg/kg)	Cyanide, Total (mg/kg)	Fluoride, Total (mg/kg)	Nitrogen, Nitrate (mg/kg)
SLP-01	09/21/21	7.5	ND(0) UJ		86	ND(0.25)	14	ND(1.5) R
SLP-02	09/23/21	3.5	ND(0) UJ	ND(0) UJ	260	ND(0.25)	3.7	ND(1.5) R
SLP-02 Dup	09/23/21	3.5	ND(0) UJ	ND(0) UJ	210	ND(0.25)	3.8	ND(1.5) R
SLP-03	09/21/21	3	ND(0) UJ		87	ND(0.25)	6.9	ND(1.5) R
SLP-03 Dup	09/21/21	3	ND(0)		91	ND(0.25)	7.7	ND(1.5) R
SLP-04	09/23/21	4.5	ND(0) UJ	ND(0) UJ	120	ND(0.25)	9	ND(1.5) R
SLP-05	09/22/21	11.5	8400 J	ND(0) UJ	94	ND(0.25)	2.9	ND(1.5) R
SLP-06	09/22/21	4	ND(0) UJ	ND(0) UJ	88	ND(0.25)	4.4	ND(1.5) R
SLP-06 Dup	09/22/21	4	1000 J	ND(0) UJ	93	ND(0.25) UJ	4.7	ND(1.5) R
SLP-07	09/22/21	8	ND(0) UJ	ND(0) UJ	37	ND(0.25)	4	ND(1.5) R
SLP-08	09/22/21	5.33	79400 J	ND(0) UJ	49	ND(0.25)	3.4	ND(1.5) R
SLP-09	09/22/21	7	ND(0) UJ	2000 J	32	ND(0.25) R	4	ND(1.5) R
SLP-10	09/21/21	9.5	ND(0)		23	ND(0.25)	1.7	ND(1.5) R
SLP-11	09/23/21	8.5	ND(0) UJ	ND(0) UJ	26	ND(0.25)	1.8	ND(1.5) R
	NMED	Residential Soil Screening Level (exceedances in bold text)	-	-	12000000	11.2	4690	125000
		Soil Screening Level (0-1 ft-bgs) es in bold text and highlighted):	-	-	58400000	63.3	77800	2080000
	NMED Construction Worker S	ioil Screening Level (0-10 ft-bgs) (exceedances underlined):	=	Ξ	<u>15900000</u>	<u>12.1</u>	<u>18100</u>	<u>566000</u>

		Sample Depth	Nitrogen, Nitrite	Sulfate	Diesel Range Organics	Gasoline Range Organics	Oil Range Organics
Location ID	Date Sampled	(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SLP-01	09/21/21	7.5	ND(1.5) R	19	ND(9.4)	ND(3.4)	ND(47)
SLP-02	09/23/21	3.5	ND(1.5) R	480 J-	ND(9.9)	ND(2.8)	ND(50)
SLP-02 Dup	09/23/21	3.5	ND(1.5) R	230 J-	5.6 J	ND(2.7)	ND(50)
SLP-03	09/21/21	3	ND(1.5) R	14	160	ND(2.5)	ND(48)
SLP-03 Dup	09/21/21	3	ND(1.5) R	17	260	ND(14)	ND(47)
SLP-04	09/23/21	4.5	ND(1.5) R	11 J-	ND(9.9)	3.1	ND(50)
SLP-05	09/22/21	11.5	ND(1.5) R	ND(7.5)	14	65 J+	ND(46)
SLP-06	09/22/21	4	ND(1.5) R	8	8.9 J	150 J+	ND(46)
SLP-06 Dup	09/22/21	4	ND(1.5) R	13	ND(9.6)	470 J+	ND(48)
SLP-07	09/22/21	8	ND(1.5) R	9.2	310	<u>960 J</u>	ND(43)
SLP-08	09/22/21	5.33	ND(1.5) R	ND(7.5)	2000	1700 J+	ND(230)
SLP-09	09/22/21	7	ND(1.5) R	12	410	890 J+	ND(47)
SLP-10	09/21/21	9.5	ND(1.5) R	17	<u>6800</u>	1000 J+	ND(460)
SLP-11	09/23/21	8.5	ND(1.5) R	ND(7.5) UJ	250	190	ND(40)
	NMED	Residential Soil Screening Level (exceedances in bold text)	7820	-	1000	100	1000
	•	Soil Screening Level (0-1 ft-bgs) ces in bold text and highlighted):	130000	-	3000	500	3800
	NMED Construction Worker S	Soil Screening Level (0-10 ft-bgs) (exceedances underlined):	<u>35400</u>	=	<u>3000</u>	<u>500</u>	<u>3800</u>

Notes

Dup - blind duplicate sample

ft-bgs - feet below ground surface

J - estimated concentration

J+ - value biased high

J- - value biased low

mg/kg - milligrams per kilogram

MPN/100 ml - most probably number per 100 milliliters

ND - not detected (method detection limit in parentheses)

NMED - New Mexico Environment Department

R - data rejected

TPH - total petroleum hydrocrabons

UJ - estimated reporting limit

Screening level source: NMED Risk Assessment Guidance for Site Investigations and Remediation (February 2019) - Table 6-2 and A-1

202202_SLP-Dataset_TBL-2.xlsx

Appendix A - Field Logs

Trihydro					LOCID	
Lithology Log		Shee	et of		Lagron	(51-01)
oject Name Sanitary Lagoon Investigation Phase II	Project Number 697-094-001			Site ID	ARATHON	
Excavation Company	Operator	Date	1	1 416	Total Depth	Concur
Type of Sampling Device	Operator RAND DIG **		10/2021		2.5'	
Hand Auger			in House	da 4.4	Raida	Melousesee
Weather 3 mny, Cless, 81) '\$		1 0 - F 1 1 4 2 6 1 B 0	-	100 0000	7 14 00 00 00 00
Site Conditions					·	
Location Description	•					
Ι	Description				Remarks	-A.A.
Depti		PID/FID Results	(Include all samp	ole types, times,	and depth, odor, org	ganic vapor measurements, etc.)
13 Pry Loose Son	l no oden			<u> </u>		
6" - moist (der red		Sanf	la O	15:12	
		·				
<u> </u>						

Tribudro				, ,		LOCID	
Lithology Log roject Name		Project Number	Shee	et of	Site ID	<u> </u>	~ #2 (sl-02)
Sanitary Lagoon Investigation Phase		697-094-001			MAN	corpor	Cour
Excavation Company	Operator HAM) 016 M	Date	120/2021		Total Depth,	
Type of Sampling Device	1,100	<i>y</i> •••		nel Present			
Hand Auger			J	in Hasen	an	BRION	Mclougera
Weather Site Conditions	Clear, 80's						
Location Description	Creer, DV3				***************************************		
i T	Description			1		Remarks	7,04
	Dodorphion		esults			Komarks	7-7-20-Miles
Depth			PID/FID Results				
ļ-,			PD	(Include all sampl	e types, times,	and depth, odor,	, organic vapor measurements, etc.)
10 Loose	Soil, brown o	dis			- 10	F 41	
10 to 10)=			Sample	@ /5	:00	
Dry Co	ed det						
					0	1000	
				Sampi	le 3	15:65	
7 -	\sim	«Oden					
		ORDER STOCK OF CONTROL					
(1770) Notes							
CERTIFICATION OF THE PROPERTY							
, 12 (2000) 12 (2000)							
eraza							
CEDA.							
200							ţ
CO.							
₩ .							
ena.							
delictrolony costs							
_							
SER .							į
FI							
H				!			
FI							
<u> </u>							

Trihydro				3	LOCID
CORPORATION M Lithology Log			Shee	et of	Lagon #3 (SLW)
roject Name		Project Number	7-77-0014A1/20-100-		Site ID
Sanitary Lagoon Investigation Phase II	To	697-094-001	D-4-		MARASTION CORNEY Total Depth
Excavation Company Staron TRINYDRO	Operator 14-ANO	0168	Date ©	120/2021	2.5
Type of Sampling Device	1 13134-8			nnel Present	4.7
Hand Auger			$\Box \Im u$	m Hasenaa	BRIDE MCLOUGEIA
Weather Sunny, clear ~	80 'S				
Site Conditions Location Description					
Eccusion Description					
Desc	ription		yr-		Remarks
			PID/FID Results		
Depth			D/FID		
	.1	1/0/11	M	(Include all sample	e types, times, and depth, odor, organic vapor measurements, etc.)
Bed & Brown of No Odor	cky + S	on (Silvy)	0	(ande (Q 14:30
10 F No Oder				1	
	0				- 111.25
25 Dry clay rea) 4		0	supple	@. 14:35
y - No adar			Vestille.		
-					
Section 1 to 1		THE ENGINEER OF PERSONS AS A STREET OF THE PERSO	Millett annen state di section se secretario escriptiva	ing stageting of material and analysis are a	
entition of					
cia-					
ana a					
otosa .					
1000					
-					
-					
'. Fl					
<u>, </u>			·		

Tribudro				LOCID	- A
Lithology Log roject Name	Project Number	Shee	et of	Site ID	04)
Sanitary Lagoon Investigation Phase II	697-094-001	<u> </u>		MManson GALLUP	
Excavation Company Slargen Truthypno	Operator P 14AAO 1946	Date O	/20/2021	Total Depth . 2.5"	
Type of Sampling Device	1711100) 1000	Persor	nnel Present	:	
Hand Auger Weather	A .		in HABER	or, BRIAN MCLOURUN	
Weather Suny Clear ~ 91 Site Conditions)'\$		•		
Location Description					***************************************
Descrip	tion			Remarks	
.e		Results			
Depth		PID/FID Results			
		II.	(Include all sample	e types, times, and depth, odor, organic vapor measurements,	, etc.)
LE Dry Red cla	7				
18H	No Oder	0	Scaple	0 14:45	
S- Dry Red clo			Manager or		
ISH VOY VO			_	Co les estates	
Send lenses	N. Color	0	Scaple	e 0 /4:52	
´V	700 00 0				
, and the second of the second contract of th		the Country tolorogation in over the extension of the	description of the consequences of the consequ		
7750					
cora (missen)					
cas .					
com com		ļ			
7000					
6070 9739					
oversion.					
core.					
ganatave					
-					
-					
<u></u>					
Н					

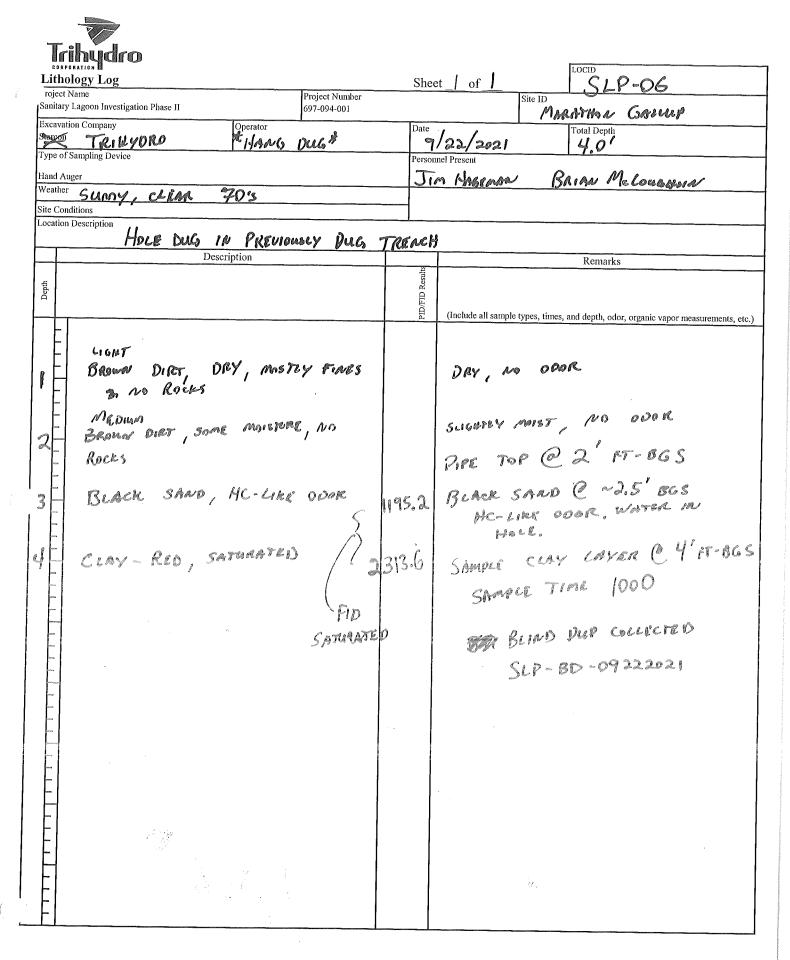
CORPE	Ination logy Log		She	et of		Locid Lagran 5 (SL-05)
roject l Sanitary	Name Lagoon Investigation Phase II	Project Number 697-094-001			Site ID	MARTHON CAUM
	ion Company	Operator	Date	9/20/20		Total Depth 2.5
Type of	TRILYPR 9 Sampling Device	B HAND DIGE	Person	mel Present	A.I	600
Hand Au				JIM HAGEA	nss.	BRION Mccongun
Weather	JULINA / CLOSS / DV	15			, , , , , , , , , , , , , , , , , , ,	
Site Con Location	Description	1		1517		
	Dogo	i. tion	7	T	- Table	D 1
	Desc	ription	sults			Remarks
Depth			PID/FID Results	(Include all sample	e types, times	s, and depth, odor, organic vapor measurements, etc.)
(3-5)	Organ mater Soil (loose) A 0.5 - 1.5 11/14 brown Sin 1.5 -2 EL Red Marst	Hy c/g/	0			€ 15.15
	2-2.5 f Red Most Cl Spo DW	Collected	0	Semp	ple. DUPC	e 15:17
						·

Lithology Log roject Name Sanitary Lagoon Investigation Phase II Excavation Company Tarrypao Type of Sampling Device Hand Auger Weather Site Conditions Location Description	Project Number 697-094-001 Operator HAND DIG	Date Person	LOCID LAGOCA (SL-Q Site ID Maparifica Cracup Total Depth 25" sonnel Present Jan Habinan Baina Mecousia
De	scription		Remarks
pbdo Q		PID/FID Results	(Include all sample types, times, and depth, odor, organic vapor measurements, et
- 0.0.015 mater a organic sails) Lit brown sails)	no oder	0	Sample @ 15:20
Myhed Chy @	14 - 2.5 Ider	0	Sample @ 15:25
200 CON CONTROL OF CON			

Trihydro		Locin
Lithology Log	Shee	t_lof_l SLP-01
Project Name Project Number Sanitary Lagoon Investigation Phase II 697-094-001		Site ID
Excavation Company Operator	Date	9/21/21 Total Depth
Starcon Bren Andersen Type of Sampling Device	Person	9/21/21 8 "nel Present
Hand Auger	J	in Hageran, Brian Mcloughlin
Weather Cleer, Sany Site Conditions		
Location Description		0
SCP-1 18 closest to the Santary	19000	Remarks
	tesults	
Dept	PID/FID Result	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
2 Brown / H Brown Silty Seil, loose. Dry, no oder	Q	
E Dry, no oder		
	0	
5 ft - Sand taylens near pipe		
5 ft - Saw terplens near pipe 6 Top of Pipe @ 5.5 ft Beaut / ALO Beaut Clay	0	PIDE EMBEDOND IN SAND ~ 12" (SOM DIAMETER ARGUAD PIPE
Reque / RED Beaux Clay		PIDE EMBROAD IN SOME
little mistere , no ador	(b)	DIAMETER ANDRES
8 -		
10		
12		
		PIPE ~ 5.5 ft. bgs
		0 , 70 fl. has
		SAMPLE FROM ~ # 7.5 F1-698
co 		44
		CAMOLE FROM ~ \$ 7.5 9-69
<u> </u>		SAMPLE TIME 10:10
<u> - </u>	İ	SAMPLE TIME

Trihydro			
CORPORATION LITTON		She	eet $\underline{\int}$ of $\underline{\int}$ $\underline{\int}$ $\underline{\int}$ $\underline{\int}$ $\underline{\int}$ $\underline{\int}$ $\underline{\partial}$ $\underline{\partial}$
'roject Name	Project Number	OIR	Site ID
Sanitary Lagoon Investigation Phase II Excavation Company	697-094-001 Operator	ID-4-	In the state of th
Staten	* HANO VUS*	Date	9/23/2021 Total Depth 3.5 FT BGS
Type of Sampling Device		Perso	onnel Present
Hand Auger Weather	to the second	_ 3	IM HAGEMAN BRIGA MCLONGHUN
Site Conditions Cloudy , 1	o wind 60's		
Location Description	•	40	salt
1776 600	Description The Date		Remarks
4		Results	
Depth		PID/FID]	
		딦	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
L RIND SUT/	SMP, MEDIUM BROWN		DRY , NO DIPOR
		0	,
1 ' F	,	*	A sumb A set to set
SAND LAYER	PIPE EMBLANKI), LIGHT		1.5 FT BGS TO TOP OF PIPE
2 BRIWN SA	PIPE EMBERNES), LIGHT LO	Ø	
			DRY, NO ODOR
	. PIPK RED NO	0	- A. 13
ST CLAY DALVY	w PIPK, RED, NO o MOISTERL		VRY, 20 OVER
Kaces / //	9 100021 202	Q	
		weed!	and the second s
			SAMPLE INFO
			SLP-02 @ 3.5 FT BGS
600.00000 5.000			Time A930
673 679		•	TIME 0930
constants			
orda .			
,			
amora			
7004 7005			
2000			
	,		
100 C			
	A STATE OF THE STA	W-1	

Trihydro Lithology Log		Shee	t of SLP-03
reject Name Sanitary Lagoon Investigation Phase II	Project Number 697-094-001		Site ID
Excavation Company Operator	L. X	Date	MARATHON CALCUT
Starcon "I AND Device	46°		21/2021 Total Beptil
Hand Auger			y HAGEARN, BRIAN Mc LOUGHLING
Weather Sunny Clear			·
Site Conditions Location Description		1	
PREVIOUSLY DUG TREACH, NORTH O	F MAIN ROAD		
Description		ılts	Remarks
Depth		PID/FID Results	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
LICHT BROWN DIRT, NO A	Pock S	O	PIPE NI FT TO TOP OF PIPE NO OCOL
2 LIGHT BROWN DIRT & SON	NO	Q	No ODOR
3 REDDISH CLAY MATERIAL	No.	ŝ.,}	PIO @ SAMPLE DEPTH . NO ODOR
1980 1980			SAMPLE @ 3 FT - BGS
			SLP-03 @ 1315
<u>-</u>			


lrihydro				Login
Lithology Log		She	et of	SLP-04
oject Name Sanitary Lagoon Investigation Phase II	Project Number 697-094-001		Site ID	
Excavation Company		Date		Total Depth
Secon	Operator PIG 2		23/2021	4,5 FT BGS
Type of Sampling Device			nnel Present	BRIAN MCLOUSHEIN
Hand Auger Weather Cloudy 605	NO WIND		JP MRALMIN	DUINE LICEOUGHER
Site Conditions				
Location Description PIPE FOUAD IN	EXISTIAG TREA	C 8 &	10' BELOW ADBA	CRAT PAAN
	ription		1	Remarks
		Results		
Depth		PID/FID]		
		- III	(Include all sample types, times,	and depth, odor, organic vapor measurements, etc.)
<u> </u>		1	L. DAGR	NO STAIRIRG
SILTY DIET ME DIE	an Bullian	9	/ / / / / / / / / / / / / / / / / / /	,-0
No Pocks, SOME				
	Kiero		S. A. A.	NO ODOR
2 FIRE ARYMA B.	and Char			on such a Asa a sa
2 FINES, MEDIUM B.	A A A A A A A A A A A A A A A A A A A	Q	NO 00	or, no stailing is 7 Tot of Pire
THE PROPERTY OF	LEND ILBANIS		2,5 57-86	is 7 Tor of Pirk
3		(a)		
S.A.A.			Shaple OEP	TH ~ 4.5 FT 865
daing and a second			Change O 1 8	TIME @ 1000
4	De la contraction de la contra	38,5		9/23/2021
CLAY, RED N SUGAT HC.L	MISTURA	3013	Marian San	11.0012001
le sugar Ac.c	ike over		DL16147	HC-Like gran
[5 []		ļ		
CCT				v.
ones de la company de la compa				
-				
a consense				
-				
American ports		ļ		P
El]		
F				
FI				

Released to Imaging: 11/23/2022 10:14:43 AM

t Name	Project Number	She	SLP - 0.5
ry Lagoon Investigation Phase II	697-094-001		MARATHON GALLUP
ation Company on	Operator Operator	Date	
of Sampling Device	BRIAN ANDERSON	Perso	
Auger		J	M HAGEMAN, BRIBN McLOUBBUR
er Surry Closer ~ 8	Ø's		- Marie - Oceanian
onditions on Description	- Andrews - Control of the Control o		
Just Off ROAD	(TO SOUTH). ROL	AB 50	LISS TWO PREVIOUSLY EXCHUATED TREM
Descrip		_	Remarks
		Results	
		PID/FID]	
	The second secon	II.	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
REDDISH BROWN	DIRT		NO OPOR, NO MOISTURE
•	•	1	1,000
		ł	
S. A.A.		0.0	
D. 19. P.			
l e a a			
). M. 16		۵	
S.A.A.		0.0	NO ODOR NO MOISTARE
30/11/10			5 6 M/L
			NO ODOR NO MOISTURE PVC PIPE FOUND @ ~4.5 F
		(v_{α}
			ASSUMED TO BE FIRE WATER
		and the second section	PIPE. NO SOIL DISCOLORATION
REMISIN BROWN 3	soc very		
LICHAT BROWN	SILT/SAND		I AM STAINIAG, NO ODOR
Some Moisture	,	\n	
Some fine to brue on the fine		1 3	COULD NOT CONTINUE DIGGIAL
		/	WALL MINI-EXCANATION USED
			ALD LARGE HOLE TO COLLECT
			GEARATE PIPE
			MOISTURE IN HOLK ~ 9'7" BGS
			Moisture
•.			- / II
			PIPE TOP ~9'4" BGS
. 1	_		
WATER @ 10 FT-	365		SAMPLE AT 11'6" BES
'_ DARK GRAY SAND			IMPLE ON 9/22/2021

PRO REMOVE PREMY

11.5 Fr-Bas @ 0915

T	ibude			
	PORATION COORDINATION COORDINAT		Sheet	1 of 1 SLP-08
rojec	Name Project Number y Lagoon Investigation Phase II 697-094-001	Raya , and another	Officer	Site ID
Excava	tion Company Operator		Date	Total Depth
Starcor Type o	f Sampling Device			/22/2021 7'6"
Hand A			310	M HAGEMAN / BRIAN MORREN
Weather Site Co	nditions			
Location	on Description			
	Description			Remarks
Depth			PID/FID Results	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
1 -	REDDISH BROWN CLAY, NO. ROCKS	No.	H M	NO OPOR, NO MOISTURE
2	5.A.A.	10	7	No opor, No Moisture
3	CIGHT BROWN & REDDIEST CLAY SOME BLACK/GRAY STAIRSES	I G		No open / Min Moisruge @ 4'BG:
5	BLACK SAND, MC-LIKE STAINING		a	HC-LIKE SMELL, TOP OF PIPE @ ~5'4" BGS
	L SMELL	362		BLACK STAINING, STRONG
6	FO RESUL			NC-LIKE SMELL
7				SAMPLE TIME 1030
8				9/22/2021
E				

	RATION LOG			C1	LOCID
roject 1			Project Number	Sh	neet of SLP-Q9
Sanitary	Lagoon Investigation Phase II		697-094-001		MARATHON GALVAP
	on Company	Operator	The state of the s	Date	Total Depth
Starcon				9	7/22/2021 7 FT B65
Type of	Sampling Device				sonnel Present
Hand Au Weather				J ₁	IN HAGENTA, BRITA MCLOUGESA
Site Con	LIEW, SURY, BUIS			•	
	Description		Harris Control of the		
	No.		•		
	Descr	ription			Remarks
_				PID/FID Resuits	
Depth				J R	
64)				M.C.	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.
				ł	
. [REBUISH BROWN D	URS DRY			No STAILLES, NO ODOR, DRY
	KEDDISH DEAL	, ,			
	a A			(2')	
	S.A.A.				
	* ·				
-	gange L				04.00
> [_]	STUBL MEONE	n face	Dual,	<u> </u> 	No STAILLE, NO ODER, DAND
-	THE SAND LIGHT	Mr Brown	Dirai	, ,	
600	O 1184 A.			(4")	
	5. A.A.			242	70
1	J. M. M.				
2000					
	S. A.A / ADDITE	ra a Cara	p~\		
	V				TOP OF PIPE @ 5' BGS
	AROUAN PIPE	Ĩ.	į		
-		1 %			
Stationary	BLACK/GRAY 5	there is to	Carl Williams		HC-Like ODOR, VERY MOIST
-	Pipe.			18000 8	
OTTAN	•			(7)	SAMPLE TAKEN @ 7' BGS
colore de la color	CLAY CAYER BE	can firk	j	433	I
			Ad a come of the	(It-like ODOR
22.4	REPOISH WITH BE	LACE/CIRAY	(TOTTLE)		
FI	SOIL, UERY A	10151		`	PFID
			ļ		
FI					
El			j		
					•
F1					
-	•			i	

CORP	inudo ology Log		Shee	neet of Sep-10
niect	Name	Project Number	Sile	Site ID
	y Lagoon Investigation Phase II tion Company	697-094-001 Operator	Date	MARATION 6 ALL UP Total Depth
	Sampling Device	BRIAN ANVERSON		9/21/202 \ sonnel Present
Hand A	uger		ياگ	Some Present Sim Haseman, Brim McLowania & Trimyp
Site Cor	CIEW MANY	~	R	3 RIAN RYAN & STARCON
	n Description	~ a		
	Base of bern Descri		y of	Remarks
Depth			PPS PID/FID Results	(Include all completures times and death, adversion
-	Rode / Rodo Base, 50	eldish silt, gravel 3"	ي م	
2 =	Asphalt ~ 2' bgs	no oder	Q	Asphalt my" layer no odor
4	Asphalt ~ 2' bgs (D (4"asphalt layer) Asphalt subbase w no-odor possible	iell graded grad		k presible Hc. Like ODOR ~ 5' to 6' bgs
2003 2003 2009	possible HC-Like opor C gray/black moth	d water	74.8 [*]	PG' PID REMONAS AT 6' bgs
6	OARK BROWN, HC-1		49 C	PID PRADICES AT 7' bys
6	SAND LAYER FOR PIP BLACK SOIL, Br	oun Sond	17 - 782 - 682 -	+ PID @ -B' Soud/PIPE EMBER > NC-LINE PID @ 8.5' Domp ODOR
	BLAUL SOIL, BRO	and your		F. P. C
		·		
(2000) (2000)				
anna anna anna anna anna				* PID READING 74.8 @ ~ 5.5 FT BE GRAY/BLAKE MOTHERO, DAMP
		Pinton.	Culy	Sample depth 9.5 Pt @ 12:45 Sen PID 836

CORP	ihydro			t of SLP-11
	logy Log		Shee	
roject l Sanitary	name Lagoon Investigation Phase II	Project Number 697-094-001		Site ID
Excavati Starcon	on Company Operator Bulan	Anoreson	Date	1/23/2021 Total Depth 8'6"
Type of	Sampling Device	1) to Office sing		nel Present
Hand Au	nger			IM HAGERAN BRIAN Mc LOUGHER
Weather		50'5		10. 1112-062 (100-
Site Con	ditions		- to standard	
Location	Description			
	Description	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Remarks
			sults	
Depth			PID/FID Results	(Include all sample types, times, and depth, odor, organic vapor measurements, etc.)
				ROAD MATERIAL NO ODOR
, H		_		
' FI	CLASS DE SANO L'AMBREMENT LAS"		75.5	NO ODOR
	RESDISH COLOR 1.28"	rad bost	73,3	,
) ;	
2 -				
L	S.D.A. KORD MASS	SKNL		
	Jan			
3	(LBY / (2PL)	vi i		
	50-19-		103	SOME NC-LINE OPOR
Constant			14 9	20 116 140-5148 ph. 42
Acres				
9000	5.0.0:		į	
5	2.69.69.		arment of	
			Zilin I	A 6 12-865 5 HC-1168
	SOTURBON, AC-CIRE	י אמרוני	JU 35'	MOISTURE @ 6 FT 805 5 HC-LIKE
6	2111 Alexand 1 22 - 2. 22	1		NO STAINING
-	RED/MEDIM BROWN SAND	b curse		PIPE TOP @ GFT GIMHES BGS (6)
-				Libr lat G D Li Diversity Day (0)
7				
	·			
-				
8 📙			,	4.
-			3650	0 00 01 01 BCC (8'6")
	C	11/) ⁶	SAMPLE & X " 6" DOS
aЦ		1016	.	SAMPLE @ 8 PT 6 IN BGS (8'6") SAMPLE TIME 0900
1-1	(Leo	ויי גייוטא	·	2 Wine
	@	DEPTH		

Investigation Phase II Report Sanitary Lagoon

Appendix B - Data Validation

Client: Marathon Oil	Laboratory: Hall Environmental
Project Name: Sanitary Sewer Lagoon	Sample Matrix: Soil, QA Water
Project Number: 697-094-001 Task: 0002	Sample Start Date: 09/20/2021
Date Validated: 11/29/2021	Sample End Date: 09/21/2021

Parameters Included:

- Volatile Organic Compounds (VOC) by Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste (SW-846) Method 8260B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270D
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by SW-846 Method 8015D MOD
- TPH Diesel Range Organics (DRO) and Motor Oil Range Organics (MRO) by SW-846 Method 8015M/D
- Anions by EPA Method 300.0
- Hexavalent Chromium by SW-846 Method 7199
- Total Metals by SW-846 Method 6010B
- Total Mercury by SW-846 Method 7471
- Cyanide by SW-846 Method 9012
- Fecal Coliform by EPA Method 1681

Laboratory Project ID: 2109B64

Data Validator: Daran O'Hollearn, Lead Project Scientist

Reviewer: Charles Ballek, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report packages generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, with additional data from Pace National of Mount Juliet, Tennessee evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

202202_TierII_2109B64_DV.docx 1 of 21

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

- Trip blanks
- Equipment blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
SL-03 (0.5)	2109B64-001
SL-03(2.5)	2109B64-002
SL-04 (0.5)	2109B64-003
SL-04(2.5)	2109B64-004
SL-02(0.5)	2109B64-005
SL-02(2.5)	2109B64-006
SL-01(0.5)	2109B64-007
SL-01(2.5)	2109B64-008
SL-05(0.5)	2109B64-009
SL-05(2.5)	2109B64-010
SL-06(0.5)	2109B64-011
SL-06(2.5)	2109B64-012
SL-BD-09202021	2109B64-013
SL-EB-09202021	2109B64-014
SLP-01	2109B64-015
SLP-10	2109B64-016
SLP-03	2109B64-017
SLP-BD-09212021	2109B64-018
SLP-EB-09212021	2109B64-019
MeOH Blank	2109b64-020

2 of 21 202202_TierIl_2109B64_DV.docx

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- ⊗ MS/MSD (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- ⊗ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Equipment and Trip Blanks (Items 18 and 19)
- √ Field Duplicates (Items 20 and 21)
- ✓ Laboratory Duplicates (Item 22)
- ✓ Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-20-005, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-542-R-20-006, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.
- Trihydro Data Validation Variance Documentation, February 2021.

202202_TierII_2109B64_DV.docx 3 of 21

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>
J	Estimated concentration
J+	The result is an estimated concentration, but may be biased high
J-	The result is an estimated concentration, but may be biased low
UJ	Estimated reporting limit
R	Rejected, data not usable

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete combined data package consisted of 442 data points. The data completeness calculation does not include any submitted blank sample results. A total of 247 data points were rejected. The data completeness measure for this data package is calculated to be 44.12% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

No

Comments: The laboratory noted the following analytical non-conformances related to this data set.

Method 1681: For sample SLP-10, analysis was performed from an improper container.

Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. No

Comments: The laboratory used the following data qualification flags with this data set.

- D Sample diluted due to matrix.
- H Holding times for preparation or analysis exceeded.
- J Analyte detected below quantitation limits.
- J1 Surrogate recovery limits have been exceeded; values are outside upper control limits.
- J2 Surrogate recovery limits have been exceeded; values are outside lower control limits.
- J3 The associated batch QC was outside the established quality control range for precision.
- J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.
- P1 RPD value not applicable for sample concentrations less than 5 times the reporting limit.
- R RPD value outside of range.
- S % Recovery outside of range due to dilution or matrix.
- T8 Sample(s) received past/too close to holding time expiration.
- 3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Custody seals were not present or required since the samples were delivered to the laboratory by a laboratory courier, and custody was maintained at all times.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the data set were reviewed and appeared to be acceptable. The following dilutions were applied to the project samples.

Method	Sample(s)	<u>Analyte(s)</u>	<u>Dilution</u> <u>Factor</u>
300.0	Submitted Samples	Anions	5
8015	SLP-BD-09212021	GRO	5
8260B	SLP-BD-09212021	VOC	5
8270D	SLP-10	Select SVOC	5
6010B	Multiple Samples	Select Metals	10
8015	SLP-10	DRO and MRO	10
8270D	SLP-10	1-Methylnaphthalene	10
8015	SL-05(0.5)	DRO and MRO	20
8260B	SLP-10	VOC	50
8015	SLP-10	GRO	100
6010B	Submitted Samples	Iron	100
1681	Submitted Samples	Fecal Coliform	1,000

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

No

Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC, with the following exceptions.

The CoC requested nitrite and sulfate using Method 300.3; however, the laboratory analyzed the samples using Method 300.0. This substituted analytical method met similar sensitivity, accuracy, and precision goals and therefore, was an acceptable replacement. Also, the CoC requested total coliform and E.coli by Methods 922SB and 92238, but the laboratory analyzed and reported fecal coliforms by Method 1681.

6. Were samples received in good condition within method-specified requirements?

Yes

Comments: Samples were received on ice, in good condition, and with the cooler temperature within the recommended temperature range of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at 2.2°C as noted on the Sample Log-in Check List. Samples transferred to Pace National were received in good condition with the cooler temperature within the recommended range at 5.6°C and as noted on the CoC.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

No

Comments: The samples were digested/extracted and analyzed within method-specific holding times, with the following exceptions.

<u>Method 1681 / D922</u>: Samples SLP-01 and SLP-10 were analyzed for fecal coliform outside the defined holding time of 24 hours by approximately 0.25 to 2.75 hours. Fecal coliforms were not detected in samples SLP-01 and SLP-10. These non-detect results were assigned UJ qualifiers based on the holding time exceedances.

Method 300.0: The submitted samples were analyzed for nitrate and nitrite outside the defined holding time of 7 days by approximately 2 days. Nitrate and nitrite were not detected in the submitted samples. These results were assigned R qualifiers to indicate that the data were rejected due to the holding time being exceeded.

Method 8270D: The submitted samples were extracted for SVOC outside the defined holding time of 14 days by approximately 4 days. Detected results for the submitted samples by Method 8270D were assigned J qualifiers based on the holding time exceedances. Non-detect results were assigned R qualifiers indicating that the data were rejected and not usable due to exceedance of the holding time.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of micrograms per liter (µg/L), milligrams per kilogram (mg/kg), and most probable number per gram (MPN/g), which were acceptable for the sample matrix and the analyses requested. The analytical results for the soil samples were reported on a wet weight, as received basis for this sample set.

9. Did the laboratory provide any specific initial and/or continuing calibration results?

No

Comments: Initial and continuing calibration data were not included as part of this data set.

10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?

N/A

Comments: Initial and continuing calibration data were not included as part of this data set.

11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

12. Were target analytes reported as not detected in the laboratory blanks?

Yes

Comments: Target analytes were reported as not detected in the laboratory blanks.

6 of 21 202202_TierII_2109B64_DV.docx

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although MS samples were not prepared for all analyses and/or batches. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

<u>Method</u>	<u>Analytes</u>	<u>Batch</u>	MS Sample Source
D9222	Fecal Coliforms	R82014 / WG1745590	Not Prepared
300.0	Anions	62945	SLP-01, SLP-10
6010B	Metals	63108	SLP-01
7196A	Hexavalent Chromium	R82014 / WG1747651	Not Associated
7471	Mercury	63122	Not Prepared
8015D MOD	GRO	B81560	Not Prepared
8015D MOD	GRO	G81561	Not Prepared
8015M/D	DRO / MRO	62780	Not Prepared
8015M/D	DRO / MRO	62781	SLP-BD-09212021
8260B	VOCs	B81470	Not Prepared
8260B	VOCs	R81513	Not Prepared
8260B	VOCs	S81575	SLP-BD-09212021
8270D	SVOCs	R82028 / WG1753989	Not Associated
9012B	Cyanide	R82014 / WG1749144	Not Associated

Not Associated – The MS sample source was not associated with this project. Not Prepared – Matrix spikes were not prepared for this batch.

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: The percent recoveries and RPDs for MS/MSDs prepared from project samples were within data validation and laboratory QC limits or were not applicable because the unspiked amount was more than four times the spike added, with the following exceptions.

The MS and MSD recoveries for lead in Method 8260B batch 63108 were outside the QC limits of 75-125% at 65.1% and 67.1%, respectively. Lead was detected in the associated samples, and these results were qualified as J- due to evidence of potential low bias.

15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.

16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

Yes

Comments: The LCS percent recoveries were within laboratory QC limits. LCSDs were not analyzed as part of this sample set.

7 Trihydro

202202_TierII_2109B64_DV.docx

17. Were surrogate recoveries within laboratory QC limits?

No

Comments: Surrogate recoveries in the analyses of the submitted samples were within laboratory QC limits, with the following exceptions.

Method	<u>Surrogate</u>	<u>Sample</u>	Surrogate Recovery	QC Limits
8015D (GRO)	Bromofluorobenzene (BFB)	SLP-10	133%	70-130%
8270C	Nitrobenzene-d ₅ (no dilution)	SLP-10	352%	10.0-122%
8270C	Nitrobenzene-d₅ (10x dilution)	SLP-10	0.0%	10.0-122%
8270C	Nitrobenzene-d₅ (5x dilution)	SLP-10	407%	10.0-122%

GRO, naphthalene, and 2-methylnaphthalene were detected in sample SLP-10 and these results were qualified as J+ due to evidence of potential high bias.

The analyte 1-methylnaphthalene was detected in sample SLP-10 and the result was qualified as J- due to evidence of potential low bias.

The DRO and MRO results for samples SL-05(0.5) and SLP-10 were not qualified based on the surrogate non-conformances in the Method 8015M/D analyses since the applied dilutions of 20 and 10 times resulted in surrogate concentrations below routinely calibrated levels, and those results were deemed unreliable and possibly inaccurate.

18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the total number of samples. One trip blank sample, MeOH Blank, and two equipment blank samples, SL-EB-09202021 and SLP-EB-09212021, were collected as part of this sample set.

19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?

No

Comments: Target analytes were reported as not detected in the trip blank and equipment blank samples, with the following exceptions.

Blank Sample ID	Method	<u>Analyte</u>	<u>Concentration</u>
SL-EB-09202021	8260B	1,2,4-Trimethylbenzene	0.17 μg/L
SLP-EB-09212021	8260B	1,2,4-Trimethylbenzene	0.17 μg/L
SL-EB-09202021	8260B	2-Butanone	2.70 μg/L
SLP-EB-09212021	8260B	2-Butanone	2.80 μg/L
SL-EB-09202021	8260B	Acetone	4.00 μg/L
SLP-EB-09212021	8260B	Acetone	4.40 μg/L
SL-EB-09202021	8260B	Carbon Disulfide	2.70 μg/L
SLP-EB-09212021	8260B	Carbon Disulfide	1.80 μg/L
SL-EB-09202021	8260B	Styrene	0.20 μg/L
SLP-EB-09212021	8260B	Styrene	0.21 μg/L

The identified analytes were not detected in the associated samples and the results did not require qualification.

20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the number of samples.

- Sample SL-BD-09202021 was collected as a field duplicate of sample SLP-03.
- Sample SL-BD-09212021 was collected as a field duplicate of sample SL-05(2.5).
- 21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

Yes

Comment: As indicated in the Field Duplicate Summary Tables at the end of this report, field duplicate RPD values were within data validation QC limits of 0-50% for soil samples.

22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?

N/A

Comments: Laboratory duplicates were prepared for these analyses and the laboratory duplicate sample sources are summarized in the following table.

Method	<u>Analytes</u>	<u>Batch</u>	<u>Laboratory Duplicate</u> <u>Sample Source</u>
7196A	Hexavalent Chromium	R82014 / WG1747651	SLP-BD-09212021, Not Associated
9012B	Cyanide	R82014 / WG1749144	Not Associated

Not Associated - The laboratory duplicate sample source was not associated with this project.

The RPDs for laboratory duplicates prepared from project samples were not applicable since the result for one or both measurements were within 5 times the reporting limit.

- 23. Were the following data relationships realistic and acceptable?
 - Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement?

N/A

Comments: Target analytes were not reported by more than one method.

 Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results? N/A

Comments: Only total metals were analyzed as part of this data set.

FIELD DUPLICATE SUMMARY

Client Sample ID: SL-05(2.5) Field Duplicate Sample ID: SL-BD-09202021								
Analyte	Method	Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)				
TPH DRO	SW8015	8.5 mg/kg	8.6 mg/kg	1.2% +/-RL				

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

+/-RL – Indicates that the detections in both of the samples were within two times the reporting limit. Qualification of data was not required.

	Client Sample ID: SLP-03 Field Duplicate Sample ID: SL-BD-09212021									
Analyte	Method	Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)						
Chloride	300.0	87 mg/kg	91 mg/kg	4.5%						
Fluoride, Total	300.0	6.9 mg/kg	7.7 mg/kg	11.0%						
Sulfate	300.0	14 mg/kg	17 mg/kg	19.4% +/-RL						
Barium, Total	SW6010B	150 mg/kg	150 mg/kg	0.0%						
Beryllium, Total	SW6010B	0.87 mg/kg	0.83 mg/kg	4.7%						
Chromium, Total	SW6010B	8.9 mg/kg	8.2 mg/kg	8.2%						
Cobalt, Total	SW6010B	3.9 mg/kg	3.8 mg/kg	2.6%						
Iron, Total	SW6010B	15,000 mg/kg	14,000 mg/kg	6.9%						
Lead, Total	SW6010B	1.9 mg/kg	2.4 mg/kg	23.3%						
Manganese, Total	SW6010B	360 mg/kg	380 mg/kg	5.4%						
Nickel, Total	SW6010B	8.4 mg/kg	8.9 mg/kg	5.8%						
Vanadium, Total	SW6010B	16 mg/kg	16 mg/kg	0.0%						
Zinc, Total	SW6010B	11 mg/kg	11 mg/kg	0.0%						
Mercury, Total	SW7471	0.0031 mg/kg	ND (0.033 mg/kg)	DL						
TPH DRO	SW8015	160 mg/kg	260 mg/kg	47.6%						
Xylenes, Total	SW8260B	0.019 mg/kg	ND (0.29 mg/kg)	DL						

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit. Non-detected results are indicated above with the applicable reporting limit as ND (RL).

+/-RL – Indicates that the detections in both of the samples were within two times the reporting limit. Qualification of data was not required.

10 of 21 202202_TierII_2109B64_DV.docx

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HT-EX	Sample was extracted outside of the method holding time.
HT-AN	Sample was analyzed outside of the method holding time.
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.
HR-SUR	The surrogate percent recovery was greater than the upper acceptable limit indicating a possible high bias.
LR-SUR	The surrogate percent recovery was less than the lower acceptable limit indicating a possible low bias.
MDLRL	Flagged by the laboratory: The result was greater than the MDL but less than the RL.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
1,2,4-Trichlorobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
1,2,4-Trichlorobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
1,2,4-Trichlorobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
1,2,4-Trichlorobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
1,2,4-Trimethylbenzene	SW8260B	SL-EB-09202021	2109B64-014a	0.17	1.0	μg/L	J	MDLRL
1,2,4-Trimethylbenzene	SW8260B	SLP-EB-09212021	2109B64-019a	0.17	1.0	μg/L	J	MDLRL
1,2-Dichlorobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
1,2-Dichlorobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
1,2-Dichlorobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
1,2-Dichlorobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
1,3-Dichlorobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
1,3-Dichlorobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
1,3-Dichlorobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
1,3-Dichlorobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
1,4-Dichlorobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
1,4-Dichlorobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
1,4-Dichlorobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 11 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
1,4-Dichlorobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
1-Methylnaphthalene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
1-Methylnaphthalene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
1-Methylnaphthalene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
1-Methylnaphthalene	8270D	SLP-10	2109B64-016B	7.37	3.33	mg/kg	J-	HT-EX, LR-SUR
2,2-oxybis(1-Chloropropane)	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,2-oxybis(1-Chloropropane)	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,2-oxybis(1-Chloropropane)	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,2-oxybis(1-Chloropropane)	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,4,6-Trichlorophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,4,6-Trichlorophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,4,6-Trichlorophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,4,6-Trichlorophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,4-Dichlorophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,4-Dichlorophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,4-Dichlorophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,4-Dichlorophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,4-Dimethylphenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,4-Dimethylphenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,4-Dimethylphenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,4-Dimethylphenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrotoluene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrotoluene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 12 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
2,4-Dinitrotoluene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,4-Dinitrotoluene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2,6-Dinitrotoluene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2,6-Dinitrotoluene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2,6-Dinitrotoluene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2,6-Dinitrotoluene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2-Butanone	SW8260B	SL-EB-09202021	2109B64-014a	2.7	10	μg/L	J	MDLRL
2-Butanone	SW8260B	SLP-EB-09212021	2109B64-019a	2.8	10	μg/L	J	MDLRL
2-Chloronaphthalene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
2-Chloronaphthalene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
2-Chloronaphthalene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
2-Chloronaphthalene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
2-Chlorophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2-Chlorophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2-Chlorophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2-Chlorophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2-Methylnaphthalene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2-Methylnaphthalene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2-Methylnaphthalene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2-Methylnaphthalene	8270D	SLP-10	2109B64-016B	5.71	1.67	mg/kg	J+	HR-SUR, HT-EX
2-Methylphenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2-Methylphenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2-Methylphenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
2-Methylphenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
2-Nitrophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
2-Nitrophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
2-Nitrophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
2-Nitrophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
3,3-Dichlorobenzidine	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
3,3-Dichlorobenzidine	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
3,3-Dichlorobenzidine	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
3,3-Dichlorobenzidine	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
3,4-Methylphenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
3,4-Methylphenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
3,4-Methylphenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
3,4-Methylphenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
4,6-Dinitro-2-methylphenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
4,6-Dinitro-2-methylphenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
4,6-Dinitro-2-methylphenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
4,6-Dinitro-2-methylphenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
4-Bromophenyl-phenylether	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
4-Bromophenyl-phenylether	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
4-Bromophenyl-phenylether	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
4-Bromophenyl-phenylether	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
4-Chloro-3-Methylphenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
4-Chloro-3-Methylphenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
4-Chloro-3-Methylphenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
4-Chloro-3-Methylphenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
4-Chlorophenyl-phenylether	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
4-Chlorophenyl-phenylether	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
4-Chlorophenyl-phenylether	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
4-Chlorophenyl-phenylether	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
4-Nitrophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
4-Nitrophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 14 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
4-Nitrophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
4-Nitrophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Acenaphthene	8270D	SLP-10	2109B64-016B	0.472	0.0333	mg/kg	J	HT-EX
Acenaphthene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthylene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthylene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthylene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Acenaphthylene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Acetone	SW8260B	SL-EB-09202021	2109B64-014a	4.0	10	μg/L	J	MDLRL
Acetone	SW8260B	SLP-EB-09212021	2109B64-019a	4.4	10	μg/L	J	MDLRL
Anthracene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Anthracene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Anthracene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Anthracene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Bacteria, Fecal Coliform	9222D	SLP-01	2109B64-015C	ND	0	MPN/g	UJ	HT-AN
Bacteria, Fecal Coliform	9222D	SLP-03	2109B64-017C	ND	0	MPN/g	UJ	HT-AN
Benzidine	8270D	SLP-01	2109B64-015B	ND	1.67	mg/kg	R	HT-EX
Benzidine	8270D	SLP-10	2109B64-016B	ND	1.67	mg/kg	R	HT-EX
Benzidine	8270D	SLP-03	2109B64-017B	ND	1.67	mg/kg	R	HT-EX
Benzidine	8270D	SLP-BD-09212021	2109B64-018B	ND	1.67	mg/kg	R	HT-EX
Benzo(a)anthracene	8270D	SLP-10	2109B64-016B	0.0406	0.0333	mg/kg	J	HT-EX
Benzo(a)anthracene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Benzo(a)anthracene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Benzo(a)anthracene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Benzo(a)pyrene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 15 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Benzo(a)pyrene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Benzo(a)pyrene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Benzo(a)pyrene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Benzo(b)fluoranthene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Benzo(b)fluoranthene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Benzo(b)fluoranthene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Benzo(b)fluoranthene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Benzo(g,h,i)perylene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Benzo(g,h,i)perylene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Benzo(g,h,i)perylene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Benzo(g,h,i)perylene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Benzo(k)fluoranthene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Benzo(k)fluoranthene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Benzo(k)fluoranthene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Benzo(k)fluoranthene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Bis(2-chloroethoxy)methane	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethoxy)methane	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethoxy)methane	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethoxy)methane	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethyl)ether	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethyl)ether	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethyl)ether	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Bis(2-chloroethyl)ether	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Bis(2-ethylhexyl)phthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Bis(2-ethylhexyl)phthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Bis(2-ethylhexyl)phthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Bis(2-ethylhexyl)phthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 16 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Butylbenzylphthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Butylbenzylphthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Butylbenzylphthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Butylbenzylphthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Carbon Disulfide	SW8260B	SL-EB-09202021	2109B64-014a	2.7	10	μg/L	J	MDLRL
Carbon Disulfide	SW8260B	SLP-EB-09212021	2109B64-019a	1.8	10	μg/L	J	MDLRL
Chrysene	8270D	SLP-10	2109B64-016B	0.0406	0.0333	mg/kg	J	HT-EX
Chrysene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Chrysene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Chrysene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Dibenzo(a,h)anthracene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Dibenzo(a,h)anthracene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Dibenzo(a,h)anthracene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Dibenzo(a,h)anthracene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Diethylphthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Diethylphthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Diethylphthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Diethylphthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Dimethylphthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Dimethylphthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Dimethylphthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Dimethylphthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Di-n-butylphthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Di-n-butylphthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Di-n-butylphthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Di-n-butylphthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Di-n-octylphthalate	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 17 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Di-n-octylphthalate	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Di-n-octylphthalate	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Di-n-octylphthalate	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Fluoranthene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Fluoranthene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Fluoranthene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Fluoranthene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Fluorene	8270D	SLP-10	2109B64-016B	0.786	0.0333	mg/kg	J	HT-EX
Fluorene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Fluorene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Fluorene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Hexachlorobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobutadiene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobutadiene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobutadiene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Hexachlorobutadiene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Hexachlorocyclopentadiene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Hexachlorocyclopentadiene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Hexachlorocyclopentadiene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Hexachlorocyclopentadiene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Hexachloroethane	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Hexachloroethane	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Hexachloroethane	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Hexachloroethane	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx 18 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Indeno(1,2,3-cd)pyrene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Indeno(1,2,3-cd)pyrene	8270D	SLP-10	2109B64-016B	ND	0.0333	mg/kg	R	HT-EX
Indeno(1,2,3-cd)pyrene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Indeno(1,2,3-cd)pyrene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Isophorone	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Isophorone	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Isophorone	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Isophorone	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Lead, Total	SW6010B	SLP-01	2109B64-015A	2.1	0.30	mg/kg	J-	LR-MS
Lead, Total	SW6010B	SLP-10	2109B64-016A	2.0	0.29	mg/kg	J-	LR-MS
Lead, Total	SW6010B	SLP-03	2109B64-017A	1.9	0.31	mg/kg	J-	LR-MS
Lead, Total	SW6010B	SLP-BD-09212021	2109B64-018A	2.4	0.29	mg/kg	J-	LR-MS
Mercury, Total	SW7471	SLP-01	2109B64-015A	0.0029	0.034	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-10	2109B64-016A	0.0045	0.035	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-03	2109B64-017A	0.0031	0.034	mg/kg	J	MDLRL
Naphthalene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Naphthalene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Naphthalene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Naphthalene	8270D	SLP-10	2109B64-016B	7.43	0.167	mg/kg	J+	HR-SUR, HT-EX
Nitrobenzene	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Nitrobenzene	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Nitrobenzene	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Nitrobenzene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Nitrogen, Nitrate	E300	SLP-01	2109B64-015A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-10	2109B64-016A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-03	2109B64-017A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-BD-09212021	2109B64-018A	ND	1.5	mg/kg	R	HT-AN

202202_TierII_2109B64_DV.docx 19 of 21

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Nitrogen, Nitrite	E300	SLP-01	2109B64-015A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-10	2109B64-016A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-03	2109B64-017A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-BD-09212021	2109B64-018A	ND	1.5	mg/kg	R	HT-AN
N-Nitrosodimethylamine	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodimethylamine	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodimethylamine	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodimethylamine	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodi-n-propylamine	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodi-n-propylamine	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodi-n-propylamine	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodi-n-propylamine	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodiphenylamine	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodiphenylamine	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodiphenylamine	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
N-Nitrosodiphenylamine	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Pentachlorophenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Pentachlorophenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Pentachlorophenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Pentachlorophenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Phenanthrene	8270D	SLP-10	2109B64-016B	1.66	0.167	mg/kg	J	HT-EX
Phenanthrene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Phenanthrene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Phenanthrene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Phenol	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Phenol	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Phenol	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX

202202_TierII_2109B64_DV.docx

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Phenol	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Pyrene	8270D	SLP-10	2109B64-016B	0.348	0.0333	mg/kg	J	HT-EX
Pyrene	8270D	SLP-01	2109B64-015B	ND	0.0333	mg/kg	R	HT-EX
Pyrene	8270D	SLP-03	2109B64-017B	ND	0.0333	mg/kg	R	HT-EX
Pyrene	8270D	SLP-BD-09212021	2109B64-018B	ND	0.0333	mg/kg	R	HT-EX
Pyridine	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Pyridine	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Pyridine	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Pyridine	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Quinoline	8270D	SLP-01	2109B64-015B	ND	0.333	mg/kg	R	HT-EX
Quinoline	8270D	SLP-10	2109B64-016B	ND	0.333	mg/kg	R	HT-EX
Quinoline	8270D	SLP-03	2109B64-017B	ND	0.333	mg/kg	R	HT-EX
Quinoline	8270D	SLP-BD-09212021	2109B64-018B	ND	0.333	mg/kg	R	HT-EX
Styrene	SW8260B	SL-EB-09202021	2109B64-014a	0.20	1.0	μg/L	J	MDLRL
Styrene	SW8260B	SLP-EB-09212021	2109B64-019a	0.21	1.0	μg/L	J	MDLRL
TPH DRO	SW8015	SL-04 (0.5)	2109B64-003A	7.4	9.6	mg/kg	J	MDLRL
TPH DRO	SW8015	SL-05(2.5)	2109B64-010A	8.5	9.8	mg/kg	J	MDLRL
TPH DRO	SW8015	SL-BD-09202021	2109B64-013A	8.6	9.5	mg/kg	J	MDLRL
TPH GRO	SW8015	SLP-10	2109B64-016a	1,000	290	mg/kg	J+	HR-SUR
Xylenes, Total	SW8260B	SLP-03	2109b64-017a	0.019	0.050	mg/kg	J	MDLRL

202202_TierII_2109B64_DV.docx

Client: Marathon Oil	Laboratory: Hall Environmental				
Project Name: Sanitary Sewer Lagoon	Sample Matrix: Soil, QA Water				
Project Number: 697-094-001 Task: 0002	Sample Start Date: 09/22/2021				
Date Validated: 11/08/2021	Sample End Date: 09/22/2021				

Parameters Included:

- Volatile Organic Compounds (VOC) by Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste (SW-846) Method 8260B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270D
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by SW-846 Method 8015D MOD
- TPH Diesel Range Organics (DRO) and Motor Oil Range Organics (MRO) by SW-846 Method 8015M/D
- Anions by EPA Method 300.0
- Hexavalent Chromium by SW-846 Method 7196A
- Total Metals by SW-846 Method 6010B
- Total Mercury by SW-846 Method 7471
- Cyanide by SW-846 Method 9012B
- Total Coliform and E.Coli by Standard Methods for the Examination of Water and Wastewater (SM) Method 9223B

Laboratory Project ID: 2109C60

Data Validator: Daran O'Hollearn, Lead Project Scientist

Reviewer: Mike Phillips, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, with additional data from Pace National of Mount Juliet, Tennessee evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

202202_TierII_2109C60_DV.docx 1 of 15

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

Equipment blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
SLP-BD-09222021	2109C60-001
SLP-EB-09222021	2109C60-002
SLP-09	2109C60-003
SLP-05	2109C60-004
SLP-06	2109C60-005
SLP-08	2109C60-006
SLP-07	2109C60-007

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ⊗ Laboratory Qualifiers (Item 2)
- ✓ CoC Documentation (Item 3)
- ⊗ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- ⊗ MS/MSD (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Equipment Blanks (Items 18 and 19)
- Second Street - ✓ Laboratory Duplicates (Item 22)
- O Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-20-005, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-542-R-20-006, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.
- Trihydro Data Validation Variance Documentation, February 2021.

202202_TierII_2109C60_DV.docx 3 of 15

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>			
J Estimated concentration				
J+	The result is an estimated concentration, but may be biased high			
UJ	Estimated reporting limit			
R	Rejected, data not usable			

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete combined data package consisted of 642 data points. The data completeness calculation does not include any submitted blank sample results. Forty-seven data points were rejected. The data completeness measure for this data package is calculated to be 92.68% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not report non-conformances related to the analytical data for this sample set.

Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. No

Comments: The laboratory used the following data qualification flags with this data set.

- D Sample diluted due to matrix.
- E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). The target analytes 1-methylnaphthalene and 2-methylnaphthalene in sample SLP-07 and 2-methylnaphthalene in sample SLP-08 were flagged by the laboratory with the E flag. These results were assigned J qualifiers to indicate estimated concentrations.
- H Holding times for preparation or analysis exceeded.
- J Analyte detected below quantitation limits.
- J1 Surrogate recovery limits have been exceeded; values are outside upper control limits.
- J2 Surrogate recovery limits have been exceeded; values are outside lower control limits.
- J3 The associated batch QC was outside the established quality control range for precision.
- J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.
- O1 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
- P1 RPD value not applicable for sample concentrations less than 5 times the reporting limit.
- S % Recovery outside of range due to dilution or matrix.
- T8 Sample(s) received past/too close to holding time expiration.
- 3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Custody seals were present, but not required since the samples were delivered to the laboratory by a laboratory courier, and custody was maintained at all times.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the data set were reviewed and appeared to be acceptable. The following dilutions were applied to the project samples.

Method	Sample(s) Analyte(s		<u>Dilution</u> <u>Factor</u>
300.0	Submitted Samples	Anions	5
6010B	Submitted Samples	Select Metals	5
8015	SLP-BD-09222021, SLP-05, SLP-06	GRO	5
8015	SLP-08	DRO and MRO	5
8270D	SLP-09, SLP-08	Select SVOC	5
8015	SLP-09	GRO	20
8260B	Submitted Samples	VOC	20
8015	SLP-08, SLP-07	GRO	50
6010B	Submitted Samples	Iron	100
9223B	Submitted Samples	Total Coliform and E.Coli	1,000

202202_TierII_2109C60_DV.docx 5 of 15

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

No

Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC, with the following exceptions.

The CoC requested nitrite and sulfate using Method 300.3, and total coliforms and E.Coli by Methods SM922SB and SM92238, respectively; however, the laboratory analyzed the samples using Method 300.0 and Method 9223B. These substituted analytical methods met similar sensitivity, accuracy, and precision goals and, therefore, were acceptable replacements.

6. Were samples received in good condition within method-specified requirements?

No

Comments: Samples were received on ice, in good condition, and with the cooler temperature outside the recommended temperature range of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at 7.0°C as noted on the Sample Log-in Check List. Samples transferred to Pace National were received in good condition with the cooler temperature within the recommended range at 2.6°C as noted on the CoC.

The cooler temperature above 6°C was evaluated to be acceptable since the samples were received at the laboratory on the same day (within 24 hours) of the last sample collection time, and temperature equilibrium had not been established.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

No

Comments: The samples were digested/extracted and analyzed within method-specific holding times, with the following exceptions.

Method 9223B: The submitted samples were analyzed for total coliforms and E.Coli outside the defined holding time of 24 hours by approximately 4.25 to 7 hours. Detected results for total coliforms and E.Coli were assigned J qualifiers based on the holding time exceedances. Non-detect results were assigned UJ qualifiers based on the holding time exceedances.

Method 300.0: The submitted samples were analyzed for nitrate and nitrite outside the defined holding time of 2 days by approximately 12 days. Nitrate and nitrite were not detected in the submitted samples. These results were assigned R qualifiers to indicate that the data were rejected due to the holding time being exceeded.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of micrograms per liter (μ g/L), milligrams per kilogram (μ g/kg), and most probable number per 100 milliliters (MPN/100mL), which were acceptable for the sample matrix and the analyses requested. The analytical results for the soil samples were reported on a wet weight, as received basis for this sample set.

9. Did the laboratory provide any specific initial and/or continuing calibration results?

No

Comments: Initial and continuing calibration data were not included as part of this data set.

10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?

N/A

Comments: Initial and continuing calibration data were not included as part of this data set.

11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

12. Were target analytes reported as not detected in the laboratory blanks?

Yes

Comments: Target analytes were reported as not detected in the laboratory blanks.

6 of 15 202202_TierII_2109C60_DV.docx

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although MS samples were not prepared for all analyses and/or batches. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

<u>Method</u>	<u>Analytes</u>	<u>Batch</u>	MS Sample Source
9223B	Total Coliforms, E.Coli	WG1745591 / R82014	Not Prepared
300.0	Anions	63078	Not Prepared
6010B	Metals	62806	Not Prepared
7196A	Hexavalent Chromium	WG1748884 / R82014	SLP-BD-09222021
7471	Mercury	62905	Not Prepared
8015D MOD	GRO	B81560	Not Prepared
8015M/D	DRO / MRO	62799	Not Prepared
8015M/D	DRO / MRO	62827	Not Prepared
8260B	VOCs	R81575	Not Prepared
8260B	VOCs	S81575	Not Prepared
8260B	VOCs	V81541	Not Prepared
8270D	SVOCs	WG1750662 / R82028	Not Associated
9012B	Cyanide	WG1749144 / R82014	Not Associated, SLP-09
9012B	Cyanide	WG1749587 / R82014	Not Associated

Not Associated – The MS sample source was not associated with this project.

Not Prepared – Matrix spikes were not prepared for this batch.

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: The percent recoveries and RPDs for MS/MSDs prepared from project samples were within data validation and laboratory QC limits or were not applicable because the unspiked amount was more than four times the spike added, with the following exceptions.

The MS and MSD recoveries for hexavalent chromium in Method 7196A batch WG1748884 / R82014 were outside the QC limits of 75.0-125% at 8.72% and 8.24%, respectively. Hexavalent chromium was not detected in the associated samples, and the results were qualified as UJ due to evidence of potential low bias. Since the recovery was below 30%, the parent sample SLP-BD-09222021 was qualified R to indicate rejected (not usable) data based on evidence of extreme low bias.

The MS and MSD recoveries for cyanide in Method 9012B batch WG1749144 / R82014 were outside the QC limits of 75.0-125% at 27.1% and 33.3%, respectively. Cyanide was not detected in the associated samples, and the results were qualified as UJ due to evidence of potential low bias. Since the MS recovery was below 30%, the parent sample SLP-09 was qualified R to indicate rejected (not usable) data based on evidence of extreme low bias.

Recoveries and RPDs for MS/MSDs prepared from non-project samples were considered, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.

202202_TierII_2109C60_DV.docx

16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

Yes

Comments: The LCS percent recoveries were within laboratory QC limits. LCSDs were not analyzed as part of this sample set.

17. Were surrogate recoveries within laboratory QC limits?

No

Comments: Surrogate recoveries in the analyses of the submitted samples were within laboratory QC limits, with the following exceptions.

<u>Method</u>	<u>Surrogate</u>	<u>Sample</u>	Surrogate Recovery	QC Limits
8015D	BFB	SLP-BD-09222021	222%	70-130%
8015D	BFB	SLP-09	183%	70-130%
8015D	BFB	SLP-05	140%	70-130%
8015D	BFB	SLP-06	142%	70-130%
8015D	BFB	SLP-08	145%	70-130%
8270C	Nitrobenzene-d₅	SLP-09	0.0%	10.0-122%
8270C	Nitrobenzene-d₅	SLP-09	149%	10.0-122%
8270C	2-Fluorophenol	SLP-08	0.0%	12.0-120%
8270C	Phenol-d₅	SLP-08	0.0%	10.0-120%
8270C	Phenol-d₅	SLP-08	0.0%	10.0-120%
8270C	Nitrobenzene-d₅	SLP-08	0.0%	10.0-122%
8270C	Nitrobenzene-d₅	SLP-08	229%	10.0-122%

GRO was detected in the indicated samples, and these results were qualified as J+ due to evidence of potential high bias.

The recoveries for the Method 8270C surrogates (2-fluorophenol, phenol- d_5 , and nitrobenzene- d_5) for sample SLP-8 and nitrobenzene- d_5 for sample SLP-09 were less than 10%. The SVOC target analytes associated with these surrogate recoveries that were less than 10% were not detected in samples SLP-08 and SLP-09, and the results were qualified as R indicating rejected results, data not usable.

The analytes 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in samples SLP-8 and SLP-9, and these results were qualified as J+ due to evidence of potential high bias.

18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the total number of samples. One equipment blank sample, SLP-EB-09222021, was collected as part of this sample set.

19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?

No

Comments: Target analytes were reported as not detected in the equipment blank sample, with the following exception. Carbon disulfide was detected in the 8260B analysis of equipment blank sample SLP-EB-09222021 at 2.4 µg/L. Carbon disulfide was not detected in the associated samples, and the results did not require qualification.

20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the number of samples. Sample SLP-BD-09222021 was collected as a field duplicate of sample SLP-06.

7 Trihydro

8 of 15 202202_TierII_2109C60_DV.docx

21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comment: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within data validation QC limits of 0-50% for soil samples, with the following exceptions.

The RPD values for ethylbenzene, toluene, total xylenes, and naphthalene exceeded the data validation limit of 50% at 87.5%, 79.5%, 84.4%, and 78.7%, respectively, which was evidence of poor precision. The ethylbenzene, toluene, total xylenes, and naphthalene results were qualified as J for samples SLP-06 and SLP-BD-09222021.

The RPD value for TPH GRO greatly exceeded the data validation limit of 50% at 103.2%. The TPH GRO results were qualified as J for the parent and duplicate samples, SLP-06 and SLP-BD-09222021, as well as the remaining associated samples based on evidence of extremely poor precision (RPD > 100%).

22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?

N/A

Comments: Laboratory duplicates were prepared for these analyses and the laboratory duplicate sample sources are summarized in the following table.

Method	<u>Analytes</u>	<u>Batch</u>	<u>Laboratory Duplicate</u> <u>Sample Source</u>
7196A	Hexavalent Chromium	WG1748884 / R82014	Not Associated
9012B	Cyanide	WG1749144 / R82014	Not Associated, SLP-BD-09222021
9012B	Cyanide	WG1749587 / R82014	Not Associated

Not Associated - The laboratory duplicate sample source was not associated with this project.

The RPDs for laboratory duplicates prepared from project samples were not applicable since the results for one or both measurements were within 5 times the reporting limit.

The RPD values for laboratory duplicate samples prepared from non-project samples were evaluated and considered, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

- 23. Were the following data relationships realistic and acceptable?
 - Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement?

N/A

Comments: Target analytes were not reported by more than one method.

• Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results?

N/A

Comments: Only total metals were analyzed as part of this data set.

FIELD DUPLICATE SUMMARY

Client Sample ID: SLP-06										
	Field Duplicate Sample ID: SLP-BD-09222021									
Analyte	Method	Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)						
Chloride	E300	88 mg/kg	93 mg/kg	5.5%						
Fluoride, Total	E300	4.4 mg/kg	4.7 mg/kg	6.6%						
Sulfate	E300	8.0 mg/kg	13 mg/kg	47.6% +/-RL						
Arsenic, Total	SW6010B	ND (2.6 mg/kg)	1.4 mg/kg	DL						
Barium, Total	SW6010B	420 mg/kg	430 mg/kg	2.4%						
Beryllium, Total	SW6010B	0.80 mg/kg	0.77 mg/kg	3.8%						
Chromium, Total	SW6010B	7.8 mg/kg	5.8 mg/kg	29.4%						
Cobalt, Total	SW6010B	3.8 mg/kg	3.4 mg/kg	11.1%						
Iron, Total	SW6010B	13,000 mg/kg	10,000 mg/kg	26.1%						
Lead, Total	SW6010B	2.4 mg/kg	3.0 mg/kg	22.2%						
Manganese, Total	SW6010B	510 mg/kg	460 mg/kg	10.3%						
Nickel, Total	SW6010B	7.3 mg/kg	6.9 mg/kg	5.6%						
Vanadium, Total	SW6010B	16 mg/kg	12 mg/kg	28.6%						
Zinc, Total	SW6010B	010B 12 mg/kg	10 mg/kg	18.2%						
Mercury, Total	SW7471	0.0028 mg/kg	0.0032 mg/kg	13.3% +/-RL						
TPH DRO	SW8015	8.9 mg/kg	ND (9.6 mg/kg)	DL						
TPH GRO	SW8015	150 mg/kg	470 mg/kg	103.2%						
Benzene	SW8260B	1.2 mg/kg	1.9 mg/kg	45.2%						
Ethylbenzene	SW8260B	0.90 mg/kg	2.3 mg/kg	87.5%						
Toluene	SW8260B	0.22 mg/kg	0.51 mg/kg	79.5%						
Xylenes, Total	SW8260B	2.6 mg/kg	6.4 mg/kg	84.4%						
2-Methylnaphthalene	8270D	ND (0.333) mg/kg	0.333 mg/kg	DL						
Naphthalene	8270D	0.0666 mg/kg	0.153 mg/kg	78.7%						
Bacteria, Total Coliform	A9223 B	ND (0 MPN/100mL)	1000 MPN/100mL	DL						

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit. Non-detected results are indicated above with the applicable reporting limit as ND (RL).

+/-RL – Indicates that the detections in both of the samples were within two times the reporting limit. Qualification of data was not required.

The RPD values for ethylbenzene, toluene, total xylenes, and naphthalene exceeded the data validation limit of 50% at 87.5%, 79.5%, 84.4%, and 78.7%, respectively, which was evidence of poor precision. The ethylbenzene, toluene, total xylenes, and naphthalene results were qualified as J for samples SLP-06 and SLP-BD-09222021.

The RPD value for TPH GRO greatly exceeded the data validation limit of 50% at 103.2%. The TPH GRO results were qualified as J for the parent and duplicate samples, SLP-06 and SLP-BD-09222021, as well as the remaining associated samples based on evidence of extremely poor precision (RPD > 100%).

10 of 15 202202_TierII_2109C60_DV.docx

DATA QUALIFICATION SUMMARY

Abbreviation	Reason				
ECAL	The result exceeds the calibration range.				
ERPD-FD	High field duplicate RPD.				
HT-AN	Sample was analyzed outside of the method holding time.				
HR-SUR	The surrogate percent recovery was greater than the upper acceptable limit indicating a possible high bias.				
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.				
LR-SUR	The surrogate percent recovery was less than the lower acceptable limit indicating a possible low bias.				
MDLRL	Flagged by the laboratory: The result was greater than the MDL but less than the RL.				

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
1,2,4-Trichlorobenzene	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
1,2,4-Trichlorobenzene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
1,2-Dichlorobenzene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
1,2-Dichloroethane	SW8260B	SLP-08	2109c60-006a	0.25	0.48	mg/kg	J	MDLRL
1,3-Dichlorobenzene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
1,4-Dichlorobenzene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
1-Methylnaphthalene	8270D	SLP-09	2109C60-003C	3.3	1.67	mg/kg	J+	HR-SUR
1-Methylnaphthalene	8270D	SLP-08	2109C60-006C	4.73	1.67	mg/kg	J+	HR-SUR
1-Methylnaphthalene	8270D	SLP-07	2109C60-007C	2.15	0.333	mg/kg	J	ECAL
2,2-oxybis(1-Chloropropane)	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
2,4-Dichlorophenol	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
2,4-Dichlorophenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
2,4-Dimethylphenol	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
2,4-Dimethylphenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
2-Chlorophenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
2-Methylnaphthalene	8270D	SLP-09	2109C60-003C	4.96	1.67	mg/kg	J+	HR-SUR
2-Methylnaphthalene	8270D	SLP-07	2109C60-007C	3.52	0.333	mg/kg	J	ECAL

202202_TierII_2109C60_DV.docx 11 of 15

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
2-Methylnaphthalene	8270D	SLP-08	2109C60-006C	8.05	1.67	mg/kg	J+	ECAL, HR-SUR
2-Methylphenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
2-Nitrophenol	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
2-Nitrophenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
3,4-Methylphenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
4-Chloro-3-Methylphenol	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
4-Chloro-3-Methylphenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Arsenic, Total	SW6010B	SLP-BD- 09222021	2109C60-001A	1.4	2.4	mg/kg	J	MDLRL
Arsenic, Total	SW6010B	SLP-08	2109C60-006A	1.4	2.4	mg/kg	J	MDLRL
Bacteria, Total Coliform	A9223 B	SLP-BD- 09222021	2109C60-001B	1,000	0	MPN/100ml	J	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-05	2109C60-004B	8,400	0	MPN/100mL	J	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-08	2109C60-006B	79,400	0	MPN/100mL	J	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-09	2109C60-003B	ND	0	MPN/100mL	UJ	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-06	2109C60-005B	ND	0	MPN/100mL	UJ	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-07	2109C60-007B	ND	0	MPN/100mL	UJ	HT-AN
Bis(2-chloroethoxy)methane	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
Bis(2-chloroethoxy)methane	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Bis(2-chloroethyl)ether	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Carbon Disulfide	SW8260B	SLP-EB-09222021	2109c60-002a	2.4	10	ug/L	J	MDLRL
Chlorobenzene	SW8260B	SLP-08	2109c60-006a	0.15	0.19	mg/kg	J	MDLRL
Chromium, Hexavalent, Dissolved	SW7196A	SLP-BD- 09222021	2109C60-001C	ND	2.0	mg/kg	R	LR-MS
Chromium, Hexavalent, Dissolved	SW7196A	SLP-09	2109C60-003C	ND	2.0	mg/kg	UJ	LR-MS
Chromium, Hexavalent, Dissolved	SW7196A	SLP-05	2109C60-004C	ND	2.0	mg/kg	UJ	LR-MS
Chromium, Hexavalent, Dissolved	SW7196A	SLP-06	2109C60-005C	ND	2.0	mg/kg	UJ	LR-MS
Chromium, Hexavalent, Dissolved	SW7196A	SLP-08	2109C60-006C	ND	2.0	mg/kg	UJ	LR-MS
Chromium, Hexavalent, Dissolved	SW7196A	SLP-07	2109C60-007C	ND	2.0	mg/kg	UJ	LR-MS
Cyanide, Total	SW9012	SLP-09	2109C60-003C	ND	0.25	mg/kg	R	LR-MS

202202_TierII_2109C60_DV.docx 12 of 15

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Cyanide, Total	SW9012	SLP-BD- 09222021	2109C60-001C	ND	0.25	mg/kg	UJ	LR-MS
E-Coli	A9223 B	SLP-09	2109C60-003B	2,000	0	MPN/100mL	J	HT-AN
E-Coli	A9223 B	SLP-BD- 09222021	2109C60-001B	ND	0	MPN/100mL	UJ	HT-AN
E-Coli	A9223 B	SLP-05	2109C60-004B	ND	0	MPN/100mL	UJ	HT-AN
E-Coli	A9223 B	SLP-06	2109C60-005B	ND	0	MPN/100mL	UJ	HT-AN
E-Coli	A9223 B	SLP-08	2109C60-006B	ND	0	MPN/100mL	UJ	HT-AN
E-Coli	A9223 B	SLP-07	2109C60-007B	ND	0	MPN/100mL	UJ	HT-AN
Ethylbenzene	SW8260B	SLP-BD- 09222021	2109c60-001a	2.3	0.22	mg/kg	J	ERPD-FD
Ethylbenzene	SW8260B	SLP-06	2109c60-005a	0.90	0.44	mg/kg	J	ERPD-FD
Hexachlorobutadiene	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
Hexachlorobutadiene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Hexachloroethane	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Isophorone	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
Isophorone	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Mercury, Total	SW7471	SLP-BD- 09222021	2109C60-001A	0.0032	0.031	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-06	2109C60-005A	0.0028	0.035	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-07	2109C60-007A	0.0035	0.033	mg/kg	J	MDLRL
Naphthalene	8270D	SLP-09	2109C60-003C	2.74	0.167	mg/kg	J+	HR-SUR
Naphthalene	8270D	SLP-08	2109C60-006C	5.93	0.167	mg/kg	J+	HR-SUR
Naphthalene	8270D	SLP-BD- 09222021	2109C60-001C	0.153	0.0333	mg/kg	J	ERPD-FD
Naphthalene	8270D	SLP-06	2109C60-005C	0.0666	0.0333	mg/kg	J	ERPD-FD
Nitrobenzene	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
Nitrobenzene	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Nitrogen, Nitrate	E300	SLP-BD- 09222021	2109C60-001A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-09	2109C60-003A	ND	1.5	mg/kg	R	HT-AN

202202_TierII_2109C60_DV.docx 13 of 15

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Nitrogen, Nitrate	E300	SLP-05	2109C60-004A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-06	2109C60-005A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-08	2109C60-006A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-07	2109C60-007A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-BD- 09222021	2109C60-001A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-09	2109C60-003A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-05	2109C60-004A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-06	2109C60-005A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-08	2109C60-006A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-07	2109C60-007A	ND	1.5	mg/kg	R	HT-AN
N-Nitrosodimethylamine	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
N-Nitrosodi-n-propylamine	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Phenol	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Pyridine	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Quinoline	8270D	SLP-09	2109C60-003C	ND	0.333	mg/kg	R	LR-SUR
Quinoline	8270D	SLP-08	2109C60-006C	ND	0.333	mg/kg	R	LR-SUR
Toluene	SW8260B	SLP-BD- 09222021	2109c60-001a	0.51	0.22	mg/kg	J	ERPD-FD
Toluene	SW8260B	SLP-06	2109c60-005a	0.22	0.44	mg/kg	J	ERPD-FD, MDLRL
TPH DRO	SW8015	SLP-06	2109C60-005A	8.9	9.2	mg/kg	J	MDLRL
TPH GRO	SW8015	SLP-07	2109c60-007a	960	140	mg/kg	J	ERPD-FD
TPH GRO	SW8015	SLP-BD- 09222021	2109c60-001a	470	14	mg/kg	J+	ERPD-FD, HR-SUR
TPH GRO	SW8015	SLP-09	2109c60-003a	890	57	mg/kg	J+	ERPD-FD, HR-SUR
TPH GRO	SW8015	SLP-05	2109c60-004a	65	13	mg/kg	J+	ERPD-FD, HR-SUR
TPH GRO	SW8015	SLP-06	2109c60-005a	150	11	mg/kg	J+	ERPD-FD, HR-SUR
TPH GRO	SW8015	SLP-08	2109c60-006a	1,700	120	mg/kg	J+	ERPD-FD, HR-SUR
Xylenes, Total	SW8260B	SLP-BD- 09222021	2109c60-001a	6.4	0.43	mg/kg	J	ERPD-FD

202202_TierII_2109C60_DV.docx 14 of 15

Received by OCD: 3/11/2022 2:21:53 PM

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Xylenes, Total	SW8260B	SLP-06	2109c60-005a	2.6	0.89	mg/kg	J	ERPD-FD

202202_TierII_2109C60_DV.docx 15 of 15

Client: Marathon Oil	Laboratory: Hall Environmental
Project Name: Sanitary Sewer Lagoon Investigation	Sample Matrix: Soil
Project Number: 697-094-001 Task: 0002	Sample Start Date: 09/23/2021
Date Validated: 11/11/2021	Sample End Date: 09/23/2021

Parameters Included:

- Volatile Organic Compounds (VOC) by Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste (SW-846) Method 8260B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270D
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by SW-846 Method 8015D MOD
- TPH Diesel Range Organics (DRO) and Motor Oil Range Organics (MRO) by SW-846 Method 8015M/D
- Anions by EPA Method 300.0
- Hexavalent Chromium by SW-846 Method 7196A
- Total Metals by SW-846 Method 6010B
- Total Mercury by SW-846 Method 7471
- Cyanide by SW-846 Method 9012B
- Total Coliform and Escherichia coli (E. Coli) by Standard Methods for the Examination of Water and Wastewater (SM) Method 9223B

Laboratory Project ID: 2109D24

Data Validator: Charles Ballek, Senior Chemist

Reviewer: Mike Phillips, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report packages generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, with additional data from Pace National of Mount Juliet, Tennessee, evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Laboratory duplicate pairs
- Field duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

202202_TierII_2109D24_DV.docx 1 of 11

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

Equipment blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
SLP-BD-09232021	2109D24-001
SLP-EB-09232021	2109D24-002
SLP-11	2109D24-003
SLP-02	2109D24-004
SLP-04	2109D24-005

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ⊗ Holding Times and Preservation (Items 6 and 7)
- Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- ⊗ MS/MSD (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Equipment Blanks (Items 18 and 19)
- ⊗ Field Duplicates (Items 20 and 21)
- ✓ Laboratory Duplicates (Item 22)
- ✓ Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-20-005, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-542-R-20-006, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.
- Trihydro Data Validation Variance Documentation, February 2021.

202202_TierII_2109D24_DV.docx 3 of 11

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>
J	Estimated concentration
J-	The result is an estimated concentration, but may be biased low
UJ	Estimated reporting limit
R	Rejected, data not usable

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 428 data points. The data completeness calculation does not include any submitted blank sample results. Eight data points were rejected. The data completeness measure for this data package is calculated to be 98.13% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not identify analytical non-conformances related to this data set.

Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. No

Comments: The laboratory used the following data qualification flags with this data set.

- J Analyte detected below quantitation limits
- J3 The associated batch QC was outside the established quality control range for precision.
- J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.
- T8 Sample(s) received past/too close to holding time expiration.
- 3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Custody seals were not present or required since the samples were delivered to the laboratory by courier, and custody was maintained at all times.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the data set were reviewed and appeared to be acceptable. The following dilutions were applied to the project samples.

Method 8260B: A dilution factor of 10 times was applied to sample SLP-11 for the analysis of VOCs.

Method 8015: Sample SLP-11 was diluted by a factor of 50 times for the analysis of GRO.

Method 300.0: Dilution factors of 5 times were applied to the submitted samples for the analysis of anions.

Method 6010B: Select samples were diluted by factors of 5 to 100 times for the analysis of metals.

Method 9223B: Dilution factors of 1000 times were applied to the samples for the analysis of Total Coliform and E.Coli.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

Yes

Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC.

6. Were samples received in good condition within method-specified requirements?

Yes

Comments: Samples were received at Hall Environmental on ice, in good condition, and with the cooler temperature within the recommended temperature range of 4°C ± 2°C at 3.3°C as noted on the *Sample Log-in Check List*.

Samples transferred to Pace National were received in good condition with the cooler temperature within the recommended range at 2.9°C as noted on the CoC.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

No

Comments: The samples were digested/extracted and analyzed within method-specific holding times, with the following exceptions.

<u>Method 9223B</u>: The submitted samples were analyzed for total coliforms and *E.Coli* outside the defined holding time of 24 hours by approximately 3 days. Total coliforms and *E.Coli* were not detected in the samples, and the results were assigned UJ qualifiers based on the holding time exceedances.

<u>Method 300.0</u>: The submitted samples were analyzed for nitrate and nitrite outside the defined holding time of 2 days by approximately 11 days. Nitrate and nitrite were not detected in the submitted samples. These results were assigned R qualifiers to indicate that the data were rejected due to the holding time exceedances.

202202_TierII_2109D24_DV.docx 5 of 11

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), and most probable number per 100 milliliters (MPN/100mL), which were acceptable for the sample matrix and the analyses requested. The analytical results for the soil samples were reported on a wet weight, as received basis for this sample set.

Analytical results for the aqueous equipment blank were reported in units of micrograms per liter (µg/L).

9. Did the laboratory provide any specific initial and/or continuing calibration results?

No

Comments: Initial and continuing calibration data were not included as part of this data set.

10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?

N/A

Comments: Initial and continuing calibration data were not included as part of this data set.

11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

12. Were target analytes reported as not detected in the laboratory blanks?

No

Comments: Target analytes were reported as not detected in the laboratory blanks, with the following exception.

Cadmium was detected in the method blank for Method 6010B batch 62888 at a concentration of 0.050 mg/kg. Cadmium was not detected in the remaining associated samples, and qualification of those results was not required based on the method blank detection.

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although MS samples were not prepared for all analyses and/or batches. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

<u>Method</u>	<u>Analytes</u>	<u>Batch</u>	MS Sample Source
8260B	VOCs	R81575	Not Prepared
8260B	VOCs	S81617	SLP-BD-09232021
8270C	SVOCs	WG1751574 (R82028)	Not Associated
8015D	GRO	B81560	Not Prepared
8015D	GRO	G81561	SLP-02
8015 MOD	DRO	62827	Not Prepared
300.0	Anions	63078	SLP-04
6010B	Total Metals	62888	Not Prepared
7196A	Hexavalent Chromium	WG1748884 (R82014)	Not Associated
7471	Mercury	62905	Not Prepared
9012	Cyanide	WG1749587 (R82014)	Not Associated
9223B	Bacteria	WG1747276 (R82014)	Not Prepared

Not Associated – The MS sample source was not associated with this project.

Not Prepared – Matrix spikes were not prepared for this batch.

6 of 11 202202_TierII_2109D24_DV.docx

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?

No

Comments: The percent recoveries and RPDs for the MS/MSDs prepared from project samples were within laboratory and data validation QC limits, with the following exception.

The reported recoveries for sulfate in the MS and MSD for Method 300.0 batch 63078 were within laboratory limits but outside the data validation limits of 80-120% at 77.5% and 69.1%, respectively. Detections of sulfate in the associated samples in this batch were assigned J- qualifiers and the non-detect result for sample SLP-11 was assigned a UJ qualifier due to the evidence of potential low bias.

15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.

16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

Yes

Comments: The LCS percent recoveries were within laboratory QC limits. Analyses of LCSD were not performed for the analytical batches in this data set.

17. Were surrogate recoveries within laboratory QC limits?

Yes

Comments: Surrogate recoveries in the analyses of the submitted samples were within laboratory QC limits.

18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the total number of samples. One equipment blank sample, SLP-EB-09232021, was collected as part of this sample set.

19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?

Yes

Comments: Target analytes were reported as not detected in the equipment blank sample.

20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the number of samples.

Sample SLP-BD-09232021 was collected as a field duplicate of sample SLP-02.

21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comment: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within data validation QC limits of 0-30% for water samples, with the following exception.

The RPD value for sulfate exceeded the data validation limit of 50% at 70.4%. The reported results for sulfate were assigned J qualifiers for the parent and field duplicate samples, SLP-02 and SLP-BD-09232021, due to evidence of poor precision.

7 Trihydro

22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?

Yes

Comments: Laboratory duplicates were prepared for Method 7196A batch WG1748884 (R82014) from sample SLP-BD-09232021 and a sample not associated with this project. Laboratory duplicates were prepared for Method 9012B batch WG1749587 (R82014) from samples not associated with this project.

Hexavalent chromium was not detected in the parent sample or the duplicate in the Method 7196A laboratory duplicate analysis. Qualification of sample results was not required.

The RPD values for laboratory duplicate samples prepared from non-project samples were evaluated and considered, but data were not qualified based on these results since matrix similarity to project samples could not be guaranteed.

23. Were the following data relationships realistic and acceptable?

• Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement?

N/A

Comments Target analytes were not reported by more than one method.

 Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results? Yes

Comments: The submitted samples were analyzed for total metals only as part of this data set.

The concentrations of total chromium were greater than the hexavalent chromium results for each of the samples analyzed.

FIELD DUPLICATE SUMMARY

Client Sample ID: SLP-02
Field Duplicate Sample ID: SLP-BD-09232021

Method	Analyte	Laboratory Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference (RPD)
SW8015	Diesel Range Organics (DRO)	ND (9.9)	5.6	DL
E300.0	Chloride	260	210	21.3%
E300.0	Fluoride	3.7	3.8	2.7%
E300.0	Sulfate	480	230	70.4%
SW6010B	Barium	120	140	15.4%
SW6010B	Beryllium	1.2	1	18.2%
SW6010B	Chromium	12	8.2	37.6%
SW6010B	Cobalt	5.6	4.6	19.6%
SW6010B	Iron	19,000	14,000	30.3%
SW6010B	Lead	2.3	3.5	41.4%
SW6010B	Manganese	400	460	14.0%
SW6010B	Nickel	11	8.4	26.8%
SW6010B	Vanadium	20	14	35.3%
SW6010B	Zinc	15	12	22.2%
SW7471	Mercury	0.0038	0.0089	80.3% +/-RL

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit. Non-detected results are indicated above with the applicable reporting limit as ND (RL).

+/-RL – Indicates that the detections in both of the samples were within two times the reporting limit. Qualification of data was not required.

The RPD value for sulfate exceeded the data validation limit of 50%. The reported results for sulfate were assigned J qualifiers for the parent and field duplicate samples, SLP-02 and SLP-BD-09232021, due to evidence of poor precision.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HT-AN	Sample was analyzed outside of the method holding time.
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.
ERPD-FD	High field duplicate RPD.
MDLRL	Flagged by the laboratory: The result was greater than the MDL but less than the RL.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
1,1-Dichloroethane	SW8260B	SLP-04	2109d24-005a	0.014	0.028	mg/kg	J	MDLRL
1,2-Dichloroethane	SW8260B	SLP-11	2109d24-003a	0.12	0.24	mg/kg	J	MDLRL
2-Butanone	SW8260B	SLP-04	2109d24-005a	0.24	0.28	mg/kg	J	MDLRL
Bacteria, Total Coliform	A9223 B	SLP-BD-09232021	2109D24-001B	ND	0	MPN/100ml	UJ	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-11	2109D24-003B	ND	0	MPN/100ml	UJ	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-02	2109D24-004B	ND	0	MPN/100ml	UJ	HT-AN
Bacteria, Total Coliform	A9223 B	SLP-04	2109D24-005B	ND	0	MPN/100ml	UJ	HT-AN
Beryllium, Total	SW6010B	SLP-11	2109D24-003A	0.56	0.78	mg/kg	J	MDLRL
Chlorobenzene	SW8260B	SLP-11	2109d24-003a	0.056	0.24	mg/kg	J	MDLRL
E-Coli	A9223 B	SLP-BD-09232021	2109D24-001B	ND	0	MPN/100ml	UJ	HT-AN
E-Coli	A9223 B	SLP-11	2109D24-003B	ND	0	MPN/100ml	UJ	HT-AN
E-Coli	A9223 B	SLP-02	2109D24-004B	ND	0	MPN/100ml	UJ	HT-AN
E-Coli	A9223 B	SLP-04	2109D24-005B	ND	0	MPN/100ml	UJ	HT-AN
Mercury, Total	SW7471	SLP-BD-09232021	2109D24-001A	0.0089	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-11	2109D24-003A	0.015	0.035	mg/kg	J	MDLRL
Mercury, Total	SW7471	SLP-02	2109D24-004A	0.0038	0.034	mg/kg	J	MDLRL
MTBE	SW8260B	SLP-04	2109d24-005a	0.021	0.028	mg/kg	J	MDLRL
Nitrogen, Nitrate	E300	SLP-BD-09232021	2109D24-001A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-11	2109D24-003A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrate	E300	SLP-02	2109D24-004A	ND	1.5	mg/kg	R	HT-AN

202202_TierII_2109D24_DV.docx 10 of 11

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Nitrogen, Nitrate	E300	SLP-04	2109D24-005A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-BD-09232021	2109D24-001A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-11	2109D24-003A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-02	2109D24-004A	ND	1.5	mg/kg	R	HT-AN
Nitrogen, Nitrite	E300	SLP-04	2109D24-005A	ND	1.5	mg/kg	R	HT-AN
Sulfate	E300	SLP-BD-09232021	2109D24-001A	230	7.5	mg/kg	J-	ERPD-FD, LR- MS
Sulfate	E300	SLP-11	2109D24-003A	ND	7.5	mg/kg	UJ	LR-MS
Sulfate	E300	SLP-02	2109D24-004A	480	7.5	mg/kg	J-	ERPD-FD, LR- MS
Sulfate	E300	SLP-04	2109D24-005A	11	7.5	mg/kg	J-	LR-MS
Toluene	SW8260B	SLP-04	2109d24-005a	0.0095	0.028	mg/kg	J	MDLRL
TPH DRO	SW8015	SLP-BD-09232021	2109D24-001A	5.6	10	mg/kg	J	MDLRL
Zinc, Total	SW6010B	SLP-11	2109D24-003A	8.5	13	mg/kg	J	MDLRL

202202_TierII_2109D24_DV.docx 11 of 11

Client: Marathon Oil	Laboratory: Hall Environmental Analysis Laboratory				
Project Name: Western Refining Southwest, Sanitary Lagoon Sample Matrix: Soil					
Project Number: 697-094-001 Task: 0002 Sample Start Date: 12/17/2021					
Date Validated: 01/04/2022 Sample End Date: 12/17/2021					
 Parameters Included: Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO) and Motor Oil Range Organics (MRO) by Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste (SW-846) Method 8015D Modified 					
Laboratory Project ID: 2112B72					
Data Validator: Daran O'Hollearn, Lead Project Scientist					
Reviewer: Mike Phillips, Senior Chemist					

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
SL-05a	2112B72-001A

202202_TierII_2112B72_DV.docx 1 of 7

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\bigcirc) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- O Matrix Spikes (MS) and Matrix Spike Duplicates (MSD) (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- O Field, Equipment, and Trip Blanks (Items 18 and 19)
- O Field Duplicates (Items 20 and 21)
- O Laboratory Duplicates (Item 22)
- Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-20-005, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Trihydro Data Validation Variance Documentation, February 2021.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 2 data points. Data points were not rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST 1. Was the report free of non-conformances identified by the laboratory? Yes Comments: The laboratory did not identify non-conformances regarding the analytical data. 2. Were the data free of data qualification flags and/or notes used by the laboratory? Yes If no, define. Comments: The laboratory did not apply qualification flags or other notes to the data in the laboratory report. Were sample CoC forms and custody procedures complete? Yes Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Custody seals were not present or required since the samples were delivered to the laboratory by courier, and custody was maintained at all times. Were detection limits in accordance with the quality assurance project plan (QAPP), Yes permit, or method, or indicated as acceptable? Comments: The reporting limits for the analyses were reviewed and appeared to be acceptable. Dilutions were not applied for the analyses of the submitted sample. 5. Were the reported analytical methods and constituents in compliance with the Yes QAPP, permit, or CoC? Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC. Were samples received in good condition within method-specified requirements? Yes Comments: The sample was received on ice, in good condition, and with the cooler temperature within the recommended temperature range of 4°C ± 2°C at 3.8°C as noted on the CoC and the Sample Log-in Check List. Were samples extracted/digested and analyzed within method-specified or Yes technical holding times? Comments: The sample was extracted and analyzed within method-specific holding times. Were reported units appropriate for the sample matrix/matrices and analytical Yes method(s)? Specify if wet or dry units were used for soil. Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), which were acceptable for the sample matrix and the analyses requested. The analytical results for the soil sample were reported on a wet weight asreceived basis for this sample set. Did the laboratory provide any specific initial and/or continuing calibration results? Nο Comments: Initial and continuing calibration data were not included as part of this data set. N/A 10. If initial and/or continuing calibration results were provided, were the results within acceptable limits? Comments: Initial and continuing calibration data were not included as part of this data set. 11. Was the total number of laboratory blank samples prepared equal to at least 5% of Yes the total number of samples or analyzed as required by the method? Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples. 12. Were target analytes reported as not detected in the laboratory blanks? Yes

4 of 7 202202_TierIl_2112B72_DV.docx

Comments: Target analytes were reported as not detected in the laboratory blanks.

VALIDATION CRITERIA CHECKLIST	
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the t samples. Matrix spikes were not prepared for the analyses in this data set.	otal number of
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A
Comments: MS/MSD samples were not prepared using project samples as the sample source.	
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number	r of samples.
Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes
Comments: The LCS percent recoveries were within laboratory QC limits. LCSDs were not analyze set.	d as part of this sample
17. Were surrogate recoveries within laboratory QC limits?	Yes
Comments: The surrogate recoveries were within laboratory QC limits.	
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: Field duplicates were not collected as part of this sample set.	
21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?	N/A
Comments: Field duplicates were not collected as part of this sample set.	
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A
Comments: Laboratory duplicate samples were not prepared for this sample set.	

- 23. Were the following data relationships realistic and acceptable?
 - Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement?

N/A

Comments: Target analytes were not reported by more than one method in this data set.

• Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results?

N/A

Comments: Total and dissolved metals analyses were not performed for this data set.

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

202202_TierII_2112B72_DV.docx 7 of 7

Investigation Phase II Report Sanitary Lagoon

Appendix C - Laboratory Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2109B64

October 13, 2021

Brian McLoughlin Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: Sanitary Lagoon Invesigation Phase II

Dear Brian McLoughlin:

Hall Environmental Analysis Laboratory received 20 sample(s) on 9/21/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-03 (0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 2:30:00 PMLab ID:2109B64-001Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS						Analyst: SB	}
Diesel Range Organics (DRO)	180	4.8	9.7	mg/Kg	1	9/27/2021 5:19:25 PI	M 62780
Motor Oil Range Organics (MRO)	91	48	48	mg/Kg	1	9/27/2021 5:19:25 Pf	M 62780
Surr: DNOP	104	0	70-130	%Rec	1	9/27/2021 5:19:25 Pf	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-03(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 2:35:00 PMLab ID:2109B64-002Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS						Analyst: SE	1
Diesel Range Organics (DRO)	13	4.6	9.4	mg/Kg	1	9/27/2021 8:32:15 PI	M 62780
Motor Oil Range Organics (MRO)	ND	47	47	mg/Kg	1	9/27/2021 8:32:15 PI	M 62780
Surr: DNOP	116	0	70-130	%Rec	1	9/27/2021 8:32:15 PI	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-04 (0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 2:45:00 PMLab ID:2109B64-003Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS							Analyst: SE	3
Diesel Range Organics (DRO)	7.4	4.7	9.6	J	mg/Kg	1	9/24/2021 9:19:38 P	M 62780
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	9/24/2021 9:19:38 P	M 62780
Surr: DNOP	100	0	70-130		%Rec	1	9/24/2021 9:19:38 P	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-04(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 2:50:00 PMLab ID:2109B64-004Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS						Analyst: SB	3
Diesel Range Organics (DRO)	170	4.7	9.5	mg/Kg	1	9/27/2021 8:19:56 PI	M 62780
Motor Oil Range Organics (MRO)	ND	47	47	mg/Kg	1	9/27/2021 8:19:56 PI	M 62780
Surr: DNOP	95.3	0	70-130	%Rec	1	9/27/2021 8:19:56 PI	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-02(0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:00:00 PMLab ID:2109B64-005Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: SE	3
Diesel Range Organics (DRO)	160	4.9	9.8	mg/Kg	1	9/27/2021 5:43:46 PI	M 62780
Motor Oil Range Organics (MRO)	81	49	49	mg/Kg	1	9/27/2021 5:43:46 PI	M 62780
Surr: DNOP	110	0	70-130	%Rec	1	9/27/2021 5:43:46 PI	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-02(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:03:00 PMLab ID:2109B64-006Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS					Analyst: SE	3
Diesel Range Organics (DRO)	ND	4.7	9.6	mg/Kg	1	9/24/2021 10:08:25	PM 62780
Motor Oil Range Organics (MRO)	ND	48	48	mg/Kg	1	9/24/2021 10:08:25	PM 62780
Surr: DNOP	93.6	0	70-130	%Rec	1	9/24/2021 10:08:25	PM 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-01(0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:10:00 PMLab ID:2109B64-007Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS					Analyst: SE	3
Diesel Range Organics (DRO)	57	4.8	9.7	mg/Kg	1	9/27/2021 6:08:01 Pl	M 62780
Motor Oil Range Organics (MRO)	ND	49	49	mg/Kg	1	9/27/2021 6:08:01 Pl	M 62780
Surr: DNOP	98.6	0	70-130	%Rec	1	9/27/2021 6:08:01 Pl	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-01(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:12:00 PMLab ID:2109B64-008Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS					Analyst: SE	3
Diesel Range Organics (DRO)	ND	4.5	9.0	mg/Kg	1	9/24/2021 10:32:46	PM 62780
Motor Oil Range Organics (MRO)	ND	45	45	mg/Kg	1	9/24/2021 10:32:46	PM 62780
Surr: DNOP	90.0	0	70-130	%Rec	1	9/24/2021 10:32:46	PM 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-05(0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:15:00 PMLab ID:2109B64-009Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SB	_
Diesel Range Organics (DRO)	7400	120	230		mg/Kg	20	9/28/2021 4:51:14 PM	A 62780
Motor Oil Range Organics (MRO)	2500	1200	1200		mg/Kg	20	9/28/2021 4:51:14 PN	A 62780
Surr: DNOP	0	0	70-130	S	%Rec	20	9/28/2021 4:51:14 PN	A 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-05(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:17:00 PMLab ID:2109B64-010Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SE	3
Diesel Range Organics (DRO)	8.5	4.8	9.8	J	mg/Kg	1	9/24/2021 10:57:05	PM 62780
Motor Oil Range Organics (MRO)	ND	49	49		mg/Kg	1	9/24/2021 10:57:05	PM 62780
Surr: DNOP	93.5	0	70-130		%Rec	1	9/24/2021 10:57:05	PM 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-06(0.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:20:00 PMLab ID:2109B64-011Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS					Analyst: SB	}
Diesel Range Organics (DRO)	42	4.7	9.6	mg/Kg	1	9/27/2021 6:32:16 PM	M 62780
Motor Oil Range Organics (MRO)	ND	48	48	mg/Kg	1	9/27/2021 6:32:16 PM	M 62780
Surr: DNOP	102	0	70-130	%Rec	1	9/27/2021 6:32:16 PM	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-06(2.5)

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 3:25:00 PMLab ID:2109B64-012Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS					Analyst: SB	1
Diesel Range Organics (DRO)	290	4.8	9.7	mg/Kg	1	9/27/2021 7:20:44 PI	M 62780
Motor Oil Range Organics (MRO)	63	48	48	mg/Kg	1	9/27/2021 7:20:44 Pf	M 62780
Surr: DNOP	93.8	0	70-130	%Rec	1	9/27/2021 7:20:44 Pf	M 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-BD-09202021

Project: Sanitary Lagoon Invesigation Phase II **Collection Date:** 9/20/2021

Lab ID: 2109B64-013 **Matrix:** SOIL **Received Date:** 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SE	3
Diesel Range Organics (DRO)	8.6	4.7	9.5	J	mg/Kg	1	9/24/2021 11:21:32	PM 62780
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	9/24/2021 11:21:32	PM 62780
Surr: DNOP	94.4	0	70-130		%Rec	1	9/24/2021 11:21:32	PM 62780

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-EB-09202021

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 1:15:00 PMLab ID:2109B64-014Matrix: AQUEOUSReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: CCN	/
Benzene	ND	0.23	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Toluene	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Ethylbenzene	ND	0.21	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Methyl tert-butyl ether (MTBE)	ND	0.39	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2,4-Trimethylbenzene	0.17	0.12	1.0	J	μg/L	1	9/23/2021 7:23:00 AM	B81470
1,3,5-Trimethylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2-Dichloroethane (EDC)	ND	0.25	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2-Dibromoethane (EDB)	ND	0.30	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Naphthalene	ND	0.50	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1-Methylnaphthalene	ND	0.84	4.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
2-Methylnaphthalene	ND	0.69	4.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Acetone	4.0	2.5	10	J	μg/L	1	9/23/2021 7:23:00 AM	B81470
Bromobenzene	ND	0.28	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Bromodichloromethane	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Bromoform	ND	0.31	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Bromomethane	ND	0.85	3.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
2-Butanone	2.7	2.0	10	J	μg/L	1	9/23/2021 7:23:00 AM	B81470
Carbon disulfide	2.7	0.59	10	J	μg/L	1	9/23/2021 7:23:00 AM	B81470
Carbon Tetrachloride	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Chlorobenzene	ND	0.16	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Chloroethane	ND	0.38	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Chloroform	ND	0.13	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Chloromethane	ND	0.41	3.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
2-Chlorotoluene	ND	0.13	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
4-Chlorotoluene	ND	0.34	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
cis-1,2-DCE	ND	0.39	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
cis-1,3-Dichloropropene	ND	0.36	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2-Dibromo-3-chloropropane	ND	0.59	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Dibromochloromethane	ND	0.28	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Dibromomethane	ND	0.31	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2-Dichlorobenzene	ND	0.15	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,3-Dichlorobenzene	ND	0.16	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,4-Dichlorobenzene	ND	0.21	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Dichlorodifluoromethane	ND	0.40	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1-Dichloroethane	ND	0.27	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1-Dichloroethene	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2-Dichloropropane	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,3-Dichloropropane	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
2,2-Dichloropropane	ND	0.26	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SL-EB-09202021

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/20/2021 1:15:00 PMLab ID:2109B64-014Matrix: AQUEOUSReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: CCI	И
1,1-Dichloropropene	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Hexachlorobutadiene	ND	0.56	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
2-Hexanone	ND	1.8	10		μg/L	1	9/23/2021 7:23:00 AM	B81470
Isopropylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
4-Isopropyltoluene	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
4-Methyl-2-pentanone	ND	0.88	10		μg/L	1	9/23/2021 7:23:00 AM	B81470
Methylene Chloride	ND	0.50	3.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
n-Butylbenzene	ND	0.25	3.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
n-Propylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
sec-Butylbenzene	ND	0.14	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Styrene	0.20	0.14	1.0	J	μg/L	1	9/23/2021 7:23:00 AM	B81470
tert-Butylbenzene	ND	0.24	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1,1,2-Tetrachloroethane	ND	0.27	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1,2,2-Tetrachloroethane	ND	0.27	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Tetrachloroethene (PCE)	ND	0.36	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
trans-1,2-DCE	ND	0.19	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
trans-1,3-Dichloropropene	ND	0.34	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2,3-Trichlorobenzene	ND	0.25	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2,4-Trichlorobenzene	ND	0.24	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1,1-Trichloroethane	ND	0.30	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,1,2-Trichloroethane	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Trichloroethene (TCE)	ND	0.20	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Trichlorofluoromethane	ND	0.16	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
1,2,3-Trichloropropane	ND	0.44	2.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Vinyl chloride	ND	0.32	1.0		μg/L	1	9/23/2021 7:23:00 AM	B81470
Xylenes, Total	ND	0.37	1.5		μg/L	1	9/23/2021 7:23:00 AM	B81470
Surr: 1,2-Dichloroethane-d4	104	0	70-130		%Rec	1	9/23/2021 7:23:00 AM	B81470
Surr: 4-Bromofluorobenzene	99.8	0	70-130		%Rec	1	9/23/2021 7:23:00 AM	B81470
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	9/23/2021 7:23:00 AM	B81470
Surr: Toluene-d8	96.4	0	70-130		%Rec	1	9/23/2021 7:23:00 AM	B81470

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 42

CLIENT: Marathon

Analytical ReportLab Order **2109B64**

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: SLP-01

Project: Sanitary Lagoon Invesigation Phase II Collection Date: 9/21/2021 10:10:00 AM

Lab ID: 2109B64-015 Matrix: SOIL Received Date: 9/21/2021 4:30:00 PM

		_						
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	ND	4.6	9.4		mg/Kg	1	9/24/2021 11:45:41 PM	62780
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	9/24/2021 11:45:41 PM	62780
Surr: DNOP	94.5	0	70-130		%Rec	1	9/24/2021 11:45:41 PM	62780
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	2.2	3.4		mg/Kg	1	9/25/2021 3:54:10 AM	B81560
Surr: BFB	102	0	70-130		%Rec	1	9/25/2021 3:54:10 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	14	1.5	1.5		mg/Kg	5	10/1/2021 2:00:54 AM	62945
Chloride	86	7.5	7.5		mg/Kg	5	10/1/2021 2:00:54 AM	62945
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 2:00:54 AM	62945
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 2:00:54 AM	62945
Sulfate	19	7.5	7.5		mg/Kg	5	10/1/2021 2:00:54 AM	62945
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0029	0.0027	0.034	J	mg/Kg	1	10/8/2021 10:10:04 AM	63122
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.5		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Arsenic	ND	1.4	2.5		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Barium	78	0.060	0.099		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Beryllium	1.1	0.029	0.15		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Cadmium	ND	0.050	0.099		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Chromium	9.2	0.15	0.30		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Cobalt	4.4	0.060	0.30		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Iron	16000	250	250		mg/Kg	100	10/7/2021 1:59:47 PM	63108
Lead	2.1	0.27	0.30		mg/Kg	1	10/7/2021 3:20:56 PM	63108
Manganese	350	1.6	2.0		mg/Kg	10	10/7/2021 1:57:49 PM	63108
Nickel	9.4	0.20	0.50		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Selenium	ND	2.2	2.5		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Silver	ND	0.14	0.25		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Vanadium	16	0.11	2.5		mg/Kg	1	10/7/2021 12:46:56 PM	63108
Zinc	13	1.3	2.5		mg/Kg	1	10/7/2021 12:46:56 PM	63108
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.0065	0.017		mg/Kg	1	9/22/2021 9:26:17 PM	R81513
Toluene	ND	0.0043	0.034		mg/Kg	1	9/22/2021 9:26:17 PM	R81513
Methyl tert-butyl ether (MTBE)	ND	0.019	0.034		mg/Kg	1	9/22/2021 9:26:17 PM	R81513
1,2-Dichloroethane (EDC)	ND	0.0077	0.034		mg/Kg	1	9/22/2021 9:26:17 PM	R81513
1,2-Dibromoethane (EDB)	ND	0.013	0.034		mg/Kg	1	9/22/2021 9:26:17 PM	R81513
2-Butanone	ND	0.15	0.34		mg/Kg	1	9/22/2021 9:26:17 PM	R81513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-01

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 10:10:00 AMLab ID:2109B64-015Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RA	Α
Carbon disulfide	ND	0.014	0.34	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Chlorobenzene	ND	0.0061	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Chloroform	ND	0.0048	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
1,1-Dichloroethane	ND	0.0098	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Styrene	ND	0.0046	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
1,1,1-Trichloroethane	ND	0.0074	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Trichloroethene (TCE)	ND	0.0066	0.034	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Xylenes, Total	ND	0.018	0.067	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
1,4-Dioxane	ND	0.19	0.34	mg/Kg	1	9/22/2021 9:26:17 PN	M R81513
Surr: Dibromofluoromethane	116		70-130	%Rec	1	9/22/2021 9:26:17 PN	M R81513
Surr: 1,2-Dichloroethane-d4	104		70-130	%Rec	1	9/22/2021 9:26:17 PN	M R81513
Surr: Toluene-d8	97.4		70-130	%Rec	1	9/22/2021 9:26:17 PN	M R81513
Surr: 4-Bromofluorobenzene	92.9		70-130	%Rec	1	9/22/2021 9:26:17 PM	M R81513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-10

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 12:45:00 PMLab ID:2109B64-016Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Eub ID: 210) Bo 1 010								
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed 1	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	6800	46	92		mg/Kg	10	9/24/2021 1:09:52 PM	62780
Motor Oil Range Organics (MRO)	ND	460	460	D	mg/Kg	10	9/24/2021 1:09:52 PM	62780
Surr: DNOP	0	0	70-130	S	%Rec	10	9/24/2021 1:09:52 PM	62780
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	1000	190	290		mg/Kg	100	9/25/2021 4:17:38 AM	B81560
Surr: BFB	133	0	70-130	S	%Rec	100	9/25/2021 4:17:38 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	1.7	1.5	1.5		mg/Kg	5	10/1/2021 2:50:34 AM	62945
Chloride	23	7.5	7.5		mg/Kg	5	10/1/2021 2:50:34 AM	62945
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 2:50:34 AM	62945
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 2:50:34 AM	62945
Sulfate	17	7.5	7.5		mg/Kg	5	10/1/2021 2:50:34 AM	62945
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0045	0.0028	0.035	J	mg/Kg	1	10/8/2021 10:12:12 AM	1 63122
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.4		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Arsenic	ND	1.4	2.4		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Barium	440	0.58	0.97		mg/Kg	10	10/7/2021 2:01:50 PM	63108
Beryllium	0.56	0.028	0.15		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Cadmium	ND	0.048	0.097		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Chromium	6.6	0.15	0.29		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Cobalt	3.2	0.059	0.29		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Iron	11000	240	240		mg/Kg	100	10/7/2021 2:03:48 PM	63108
Lead	2.0	0.26	0.29		mg/Kg	1	10/7/2021 3:26:43 PM	63108
Manganese	750	1.6	1.9		mg/Kg	10	10/7/2021 2:01:50 PM	63108
Nickel	6.0	0.19	0.48		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Selenium	ND	2.1	2.4		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Silver	ND	0.14	0.24		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Vanadium	15	0.11	2.4		mg/Kg	1	10/7/2021 1:06:43 PM	63108
Zinc	12	1.3	2.4		mg/Kg	1	10/7/2021 1:06:43 PM	63108
EPA METHOD 8260B: VOLATILES							Analyst: RAA	1
Benzene	9.7	0.28	0.72		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513
Toluene	1.5	0.19	1.4		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513
Methyl tert-butyl ether (MTBE)	ND	0.81	1.4		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513
1,2-Dichloroethane (EDC)	ND	0.33	1.4		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513
1,2-Dibromoethane (EDB)	ND	0.57	1.4		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513
2-Butanone	ND	6.2	14		mg/Kg	50	9/22/2021 10:20:06 PM	1 R81513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-10

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 12:45:00 PMLab ID:2109B64-016Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: R	AA
Carbon disulfide	ND	0.59	14	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Chlorobenzene	ND	0.26	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Chloroform	ND	0.20	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
1,1-Dichloroethane	ND	0.42	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Styrene	ND	0.20	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
1,1,1-Trichloroethane	ND	0.32	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Trichloroethene (TCE)	ND	0.28	1.4	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Xylenes, Total	26	0.76	2.9	mg/Kg	50	9/22/2021 10:20:06	PM R81513
1,4-Dioxane	ND	8.2	14	mg/Kg	50	9/22/2021 10:20:06	PM R81513
Surr: Dibromofluoromethane	98.4		70-130	%Rec	50	9/22/2021 10:20:06	PM R81513
Surr: 1,2-Dichloroethane-d4	96.0		70-130	%Rec	50	9/22/2021 10:20:06	PM R81513
Surr: Toluene-d8	101		70-130	%Rec	50	9/22/2021 10:20:06	PM R81513
Surr: 4-Bromofluorobenzene	113		70-130	%Rec	50	9/22/2021 10:20:06	PM R81513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-03

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 1:15:00 PMLab ID:2109B64-017Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

210/201 01/	10001/04/2001/11/2021 1180100 11/1						1 1.30.00 1 111	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	160	4.8	9.7		mg/Kg	1	9/28/2021 6:50:21 PM	62780
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	9/28/2021 6:50:21 PM	62780
Surr: DNOP	108	0	70-130		%Rec	1	9/28/2021 6:50:21 PM	62780
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.7	2.5		mg/Kg	1	9/26/2021 11:58:51 AM	G81561
Surr: BFB	113	0	70-130		%Rec	1	9/26/2021 11:58:51 AM	G81561
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	6.9	1.5	1.5		mg/Kg	5	10/1/2021 4:05:02 AM	62945
Chloride	87	7.5	7.5		mg/Kg	5	10/1/2021 4:05:02 AM	62945
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 4:05:02 AM	62945
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 4:05:02 AM	62945
Sulfate	14	7.5	7.5		mg/Kg	5	10/1/2021 4:05:02 AM	62945
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0031	0.0027	0.034	J	mg/Kg	1	10/8/2021 10:18:36 AM	63122
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.7	2.5		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Arsenic	ND	1.4	2.5		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Barium	150	0.061	0.10		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Beryllium	0.87	0.030	0.15		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Cadmium	ND	0.051	0.10		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Chromium	8.9	0.15	0.31		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Cobalt	3.9	0.062	0.31		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Iron	15000	250	250		mg/Kg	100	10/7/2021 2:07:47 PM	63108
Lead	1.9	0.27	0.31		mg/Kg	1	10/7/2021 3:32:33 PM	63108
Manganese	360	1.7	2.0		mg/Kg	10	10/7/2021 2:05:50 PM	63108
Nickel	8.4	0.20	0.51		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Selenium	ND	2.2	2.5		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Silver	ND	0.15	0.25		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Vanadium	16	0.12	2.5		mg/Kg	1	10/7/2021 1:08:57 PM	63108
Zinc	11	1.4	2.5		mg/Kg	1	10/7/2021 1:08:57 PM	63108
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.0048	0.013		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Toluene	ND	0.0032	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Methyl tert-butyl ether (MTBE)	ND	0.014	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
1,2-Dichloroethane (EDC)	ND	0.0057	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
1,2-Dibromoethane (EDB)	ND	0.0099	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
2-Butanone	ND	0.11	0.25		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
- 4								

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-03

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 1:15:00 PMLab ID:2109B64-017Matrix: SOILReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	Α
Carbon disulfide	ND	0.010	0.25		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Chlorobenzene	ND	0.0045	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Chloroform	ND	0.0036	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
1,1-Dichloroethane	ND	0.0073	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Styrene	ND	0.0034	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
1,1,1-Trichloroethane	ND	0.0055	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Trichloroethene (TCE)	ND	0.0049	0.025		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Xylenes, Total	0.019	0.013	0.050	J	mg/Kg	1	9/22/2021 9:53:13 PM	R81513
1,4-Dioxane	ND	0.14	0.25		mg/Kg	1	9/22/2021 9:53:13 PM	R81513
Surr: Dibromofluoromethane	113		70-130		%Rec	1	9/22/2021 9:53:13 PM	R81513
Surr: 1,2-Dichloroethane-d4	103		70-130		%Rec	1	9/22/2021 9:53:13 PM	R81513
Surr: Toluene-d8	102		70-130		%Rec	1	9/22/2021 9:53:13 PM	R81513
Surr: 4-Bromofluorobenzene	105		70-130		%Rec	1	9/22/2021 9:53:13 PM	R81513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-BD-09212021

Project: Sanitary Lagoon Invesigation Phase II **Collection Date:** 9/21/2021

Lab ID: 2109B64-018 **Matrix:** SOIL **Received Date:** 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	260	4.7	9.4		mg/Kg	1	9/27/2021 7:42:56 PM	62781
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	9/27/2021 7:42:56 PM	62781
Surr: DNOP	94.2	0	70-130		%Rec	1	9/27/2021 7:42:56 PM	62781
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	9.6	14	D	mg/Kg	5	9/26/2021 12:46:02 PM	G81561
Surr: BFB	116	0	70-130	D	%Rec	5	9/26/2021 12:46:02 PM	G81561
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	7.7	1.5	1.5		mg/Kg	5	10/1/2021 4:29:52 AM	62945
Chloride	91	7.5	7.5		mg/Kg	5	10/1/2021 4:29:52 AM	62945
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 4:29:52 AM	62945
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/1/2021 4:29:52 AM	62945
Sulfate	17	7.5	7.5		mg/Kg	5	10/1/2021 4:29:52 AM	62945
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	ND	0.0026	0.033		mg/Kg	1	10/8/2021 10:20:43 AM	63122
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.4		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Arsenic	ND	1.4	2.4		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Barium	150	0.058	0.097		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Beryllium	0.83	0.028	0.15		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Cadmium	ND	0.049	0.097		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Chromium	8.2	0.15	0.29		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Cobalt	3.8	0.059	0.29		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Iron	14000	240	240		mg/Kg	100	10/7/2021 2:11:46 PM	63108
Lead	2.4	0.26	0.29		mg/Kg	1	10/7/2021 3:34:05 PM	63108
Manganese	380	1.6	1.9		mg/Kg	10	10/7/2021 2:09:49 PM	63108
Nickel	8.9	0.19	0.49		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Selenium	ND	2.1	2.4		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Silver	ND	0.14	0.24		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Vanadium	16	0.11	2.4		mg/Kg	1	10/7/2021 1:11:09 PM	63108
Zinc	11	1.3	2.4		mg/Kg	1	10/7/2021 1:11:09 PM	63108
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.028	0.072	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
Toluene	ND	0.019	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.082	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.033	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.057	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
2-Butanone	ND	0.63	1.4	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-BD-09212021

Project: Sanitary Lagoon Invesigation Phase II **Collection Date:** 9/21/2021

Lab ID: 2109B64-018 **Matrix:** SOIL **Received Date:** 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	A
Carbon disulfide	ND	0.060	1.4	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
Chlorobenzene	ND	0.026	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
Chloroform	ND	0.021	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
1,1-Dichloroethane	ND	0.042	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
Styrene	ND	0.020	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
1,1,1-Trichloroethane	ND	0.032	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
Trichloroethene (TCE)	ND	0.028	0.14	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
Xylenes, Total	ND	0.076	0.29	D	mg/Kg	5	9/24/2021 5:28:54 PM	S81575
1,4-Dioxane	ND	0.83	1.4	D	mg/Kg	5	9/24/2021 5:28:54 PM	1 S81575
Surr: Dibromofluoromethane	94.7		70-130	D	%Rec	5	9/24/2021 5:28:54 PM	1 S81575
Surr: 1,2-Dichloroethane-d4	89.7		70-130	D	%Rec	5	9/24/2021 5:28:54 PM	1 S81575
Surr: Toluene-d8	95.4		70-130	D	%Rec	5	9/24/2021 5:28:54 PM	S81575
Surr: 4-Bromofluorobenzene	99.8		70-130	D	%Rec	5	9/24/2021 5:28:54 PM	1 S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-EB-09212021

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 1:15:00 PMLab ID:2109B64-019Matrix: AQUEOUSReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: CC	М
Benzene	ND	0.23	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Toluene	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Ethylbenzene	ND	0.21	1.0		μg/L	1	9/23/2021 7:46:00 AM	1 B81470
Methyl tert-butyl ether (MTBE)	ND	0.39	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2,4-Trimethylbenzene	0.17	0.12	1.0	J	μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,3,5-Trimethylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2-Dichloroethane (EDC)	ND	0.25	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2-Dibromoethane (EDB)	ND	0.30	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Naphthalene	ND	0.50	2.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1-Methylnaphthalene	ND	0.84	4.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
2-Methylnaphthalene	ND	0.69	4.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Acetone	4.4	2.5	10	J	μg/L	1	9/23/2021 7:46:00 AM	M B81470
Bromobenzene	ND	0.28	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Bromodichloromethane	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Bromoform	ND	0.31	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Bromomethane	ND	0.85	3.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
2-Butanone	2.8	2.0	10	J	μg/L	1	9/23/2021 7:46:00 AM	M B81470
Carbon disulfide	1.8	0.59	10	J	μg/L	1	9/23/2021 7:46:00 AM	M B81470
Carbon Tetrachloride	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Chlorobenzene	ND	0.16	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Chloroethane	ND	0.38	2.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Chloroform	ND	0.13	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Chloromethane	ND	0.41	3.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
2-Chlorotoluene	ND	0.13	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
4-Chlorotoluene	ND	0.34	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
cis-1,2-DCE	ND	0.39	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
cis-1,3-Dichloropropene	ND	0.36	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2-Dibromo-3-chloropropane	ND	0.59	2.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Dibromochloromethane	ND	0.28	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Dibromomethane	ND	0.31	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2-Dichlorobenzene	ND	0.15	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,3-Dichlorobenzene	ND	0.16	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,4-Dichlorobenzene	ND	0.21	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
Dichlorodifluoromethane	ND	0.40	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,1-Dichloroethane	ND	0.27	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,1-Dichloroethene	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,2-Dichloropropane	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
1,3-Dichloropropane	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470
2,2-Dichloropropane	ND	0.26	2.0		μg/L	1	9/23/2021 7:46:00 AM	M B81470

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-EB-09212021

Project:Sanitary Lagoon Invesigation Phase IICollection Date: 9/21/2021 1:15:00 PMLab ID:2109B64-019Matrix: AQUEOUSReceived Date: 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: CCN	1
1,1-Dichloropropene	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Hexachlorobutadiene	ND	0.56	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
2-Hexanone	ND	1.8	10		μg/L	1	9/23/2021 7:46:00 AM	B81470
Isopropylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
4-Isopropyltoluene	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
4-Methyl-2-pentanone	ND	0.88	10		μg/L	1	9/23/2021 7:46:00 AM	B81470
Methylene Chloride	ND	0.50	3.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
n-Butylbenzene	ND	0.25	3.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
n-Propylbenzene	ND	0.18	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
sec-Butylbenzene	ND	0.14	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Styrene	0.21	0.14	1.0	J	μg/L	1	9/23/2021 7:46:00 AM	B81470
tert-Butylbenzene	ND	0.24	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,1,1,2-Tetrachloroethane	ND	0.27	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,1,2,2-Tetrachloroethane	ND	0.27	2.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Tetrachloroethene (PCE)	ND	0.36	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
trans-1,2-DCE	ND	0.19	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
trans-1,3-Dichloropropene	ND	0.34	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,2,3-Trichlorobenzene	ND	0.25	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,2,4-Trichlorobenzene	ND	0.24	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,1,1-Trichloroethane	ND	0.30	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,1,2-Trichloroethane	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Trichloroethene (TCE)	ND	0.20	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Trichlorofluoromethane	ND	0.16	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
1,2,3-Trichloropropane	ND	0.44	2.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Vinyl chloride	ND	0.32	1.0		μg/L	1	9/23/2021 7:46:00 AM	B81470
Xylenes, Total	ND	0.37	1.5		μg/L	1	9/23/2021 7:46:00 AM	B81470
Surr: 1,2-Dichloroethane-d4	105	0	70-130		%Rec	1	9/23/2021 7:46:00 AM	B81470
Surr: 4-Bromofluorobenzene	98.9	0	70-130		%Rec	1	9/23/2021 7:46:00 AM	B81470
Surr: Dibromofluoromethane	105	0	70-130		%Rec	1	9/23/2021 7:46:00 AM	B81470
Surr: Toluene-d8	96.6	0	70-130		%Rec	1	9/23/2021 7:46:00 AM	B81470

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 42

CLIENT: Marathon

Project:

Analytical ReportLab Order **2109B64**

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MeOH Blank

Sanitary Lagoon Invesigation Phase II Collection Date:

Lab ID: 2109B64-020 **Matrix:** SOIL **Received Date:** 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	\
Benzene	ND	0.0096	0.025	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Toluene	ND	0.0064	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Ethylbenzene	ND	0.012	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.028	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2,4-Trimethylbenzene	ND	0.0071	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,3,5-Trimethylbenzene	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.020	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Naphthalene	ND	0.019	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
2-Methylnaphthalene	ND	0.046	0.20	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Acetone	ND	0.16	0.75	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Bromobenzene	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Bromodichloromethane	ND	0.0064	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Bromoform	ND	0.012	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
2-Butanone	ND	0.22	0.50	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Carbon disulfide	ND	0.021	0.50	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Carbon tetrachloride	ND	0.0056	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Chlorobenzene	ND	0.0090	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Chloroethane	ND	0.019	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Chloroform	ND	0.0071	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Chloromethane	ND	0.018	0.15	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
2-Chlorotoluene	ND	0.0067	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
4-Chlorotoluene	ND	0.026	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
cis-1,2-DCE	ND	0.025	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
cis-1,3-Dichloropropene	ND	0.0074	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2-Dibromo-3-chloropropane	ND	0.022	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Dibromochloromethane	ND	0.0080	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Dibromomethane	ND	0.012	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2-Dichlorobenzene	ND	0.010	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,3-Dichlorobenzene	ND	0.0094	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,4-Dichlorobenzene	ND	0.013	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Dichlorodifluoromethane	ND	0.019	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,1-Dichloroethane	ND	0.015	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,1-Dichloroethene	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,2-Dichloropropane	ND	0.0097	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,3-Dichloropropane	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
2,2-Dichloropropane	ND	0.0071	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
1,1-Dichloropropene	ND	0.0060	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575
Hexachlorobutadiene	ND	0.034	0.10	mg/Kg	1	9/24/2021 6:50:08 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 42

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: MeOH Blank

Project: Sanitary Lagoon Invesigation Phase II Collection Date:

Lab ID: 2109B64-020 **Matrix:** SOIL **Received Date:** 9/21/2021 4:30:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RA	A
2-Hexanone	ND	0.022	0.50	mg/Kg	1	9/24/2021 6:50:08 PN	1 S81575
Isopropylbenzene	ND	0.0093	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
4-Isopropyltoluene	ND	0.013	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
4-Methyl-2-pentanone	ND	0.058	0.50	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Methylene chloride	ND	0.036	0.15	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
n-Butylbenzene	ND	0.013	0.15	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
n-Propylbenzene	ND	0.0081	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
sec-Butylbenzene	ND	0.041	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Styrene	ND	0.0068	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
tert-Butylbenzene	ND	0.012	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,1,1,2-Tetrachloroethane	ND	0.0073	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,1,2,2-Tetrachloroethane	ND	0.016	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Tetrachloroethene (PCE)	ND	0.014	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
trans-1,2-DCE	ND	0.0097	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
trans-1,3-Dichloropropene	ND	0.012	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,2,3-Trichlorobenzene	ND	0.0077	0.10	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,2,4-Trichlorobenzene	ND	0.017	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,1,1-Trichloroethane	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,1,2-Trichloroethane	ND	0.013	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Trichloroethene (TCE)	ND	0.0098	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Trichlorofluoromethane	ND	0.011	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
1,2,3-Trichloropropane	ND	0.021	0.10	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Vinyl chloride	ND	0.0095	0.050	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Xylenes, Total	ND	0.026	0.10	mg/Kg	1	9/24/2021 6:50:08 PN	M S81575
Surr: Dibromofluoromethane	112		70-130	%Rec	1	9/24/2021 6:50:08 PN	M S81575
Surr: 1,2-Dichloroethane-d4	104		70-130	%Rec	1	9/24/2021 6:50:08 PN	M S81575
Surr: Toluene-d8	97.8		70-130	%Rec	1	9/24/2021 6:50:08 PN	M S81575
Surr: 4-Bromofluorobenzene	92.1		70-130	%Rec	1	9/24/2021 6:50:08 PN	1 S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 42

Pace Analytical® ANALYTICAL REPORT

October 04, 2021

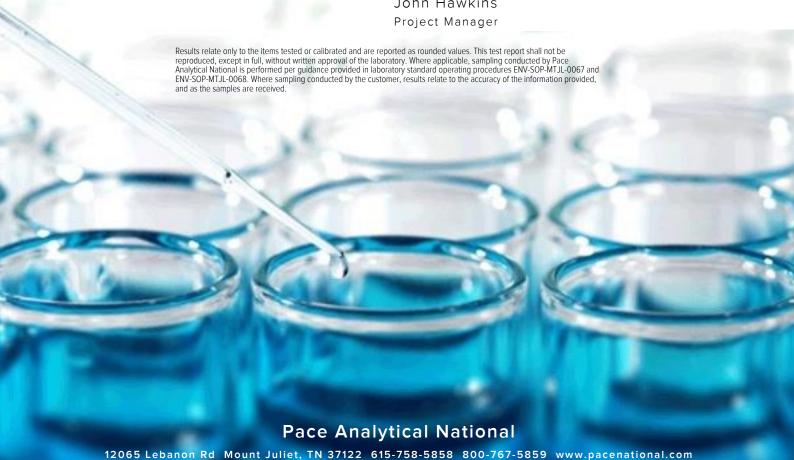
Ss

Hall Environmental Analysis Laboratory

L1406936 Sample Delivery Group: Samples Received: 09/22/2021

Project Number:

Description:


Report To: Andy Freeman

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2109B64-015B SLP-01 L1406936-01	5
2109B64-015C SLP-01 L1406936-02	6
2109B64-016B SLP-10 L1406936-03	7
2109B64-016C SLP-10 L1406936-04	8
2109B64-017B SLP-03 L1406936-05	9
2109B64-017C SLP-03 L1406936-06	10
2109B64-018B SLP-BD-09212021 L1406936-07	11
2109B64-018C SLP-BD-09212021 L1406936-08	12
Qc: Quality Control Summary	13
Wet Chemistry by Method 7199	13
Wet Chemistry by Method 9012B	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16

17

Sc: Sample Chain of Custody

SAMPLE SUMMARY

2109B64-015B SLP-01 L1406936-01 Solid			Collected by	Collected date/time 09/21/21 10:10	Received da 09/22/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 7199	WG1747651	1	09/28/21 10:29	09/29/2112:33	GB	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:02	SDL	Mt. Juliet, TN
			Collected by	Collected date/time		
2109B64-015C SLP-01 L1406936-02 Solid				09/21/21 10:10	09/22/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method EPA 1681	WG1745590	1000	09/22/2113:55	09/22/2113:55	BGE	Mt. Juliet, TN
			Collected by	Collected date/time		
2109B64-016B SLP-10 L1406936-03 Solid				09/21/21 12:45	09/22/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 7199	WG1747651	1	09/28/2110:29	09/29/21 12:38	GB	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:03	SDL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109B64-016C SLP-10 L1406936-04 Solid				09/21/21 12:45	09/22/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method EPA 1681	WG1745590	1000	09/22/21 13:55	09/22/21 13:55	BGE	Mt. Juliet, TN
2109B64-017B SLP-03 L1406936-05 Solid			Collected by	Collected date/time 09/21/2113:15	Received da 09/22/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 7199	WG1747651	1	09/28/2110:29	09/29/21 12:43	GB	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:04	SDL	Mt. Juliet, TN
2109B64-017C SLP-03 L1406936-06 Solid			Collected by	Collected date/time 09/21/21 13:15	Received da 09/22/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method EPA 1681	WG1745590	1000	09/22/21 13:55	09/22/21 13:55	BGE	Mt. Juliet, TN
2109B64-018B SLP-BD-09212021 L1406936-07	Solid		Collected by	Collected date/time 09/21/21 00:00	Received da 09/22/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 7199	WG1747651	1	09/28/21 10:29	09/29/2112:49	GB	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:05	SDL	Mt. Juliet, TN
2400004 0400 CLD DD 00242024 14400020 02	Calid		Collected by	Collected date/time 09/21/21 00:00	Received da 09/22/21 09	
2109B64-018C SLP-BD-09212021 L1406936-08		Dilinat	Drong			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method EPA 1681	WG1745590	1000	09/22/21 13:55	09/22/21 13:55	BGE	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Cample Bellvery Croup (CBC) Italiative

Lab Sample ID

John Hawkins Project Manager

Project Sample ID

Analysis was performed from an improper container for the following samples.

Method EPA 1681

2109B64-016C SLP-10

Page 136 of 317

SAMPLE RESULTS - 01

Wet Chemistry by Method 7199

Collected date/time: 09/21/21 10:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexavalent Chromium	ND		1.00	1	09/29/2021 12:33	WG1747651

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	09/30/2021 19:02	WG1749144

Page 137 of 317

SAMPLE RESULTS - 02

Collected date/time: 09/21/21 10:10

Microbiology by Method EPA 1681

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	MPN/g			date / time	
Fecal Coliform	<226.1	<u>T8</u>	1000	09/22/2021 13:55	WG1745590

Page 138 of 317

SAMPLE RESULTS - 03

Collected date/time: 09/21/21 12:45

Wet Chemistry by Method 7199

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexavalent Chromium	ND		1.00	1	09/29/2021 12:38	WG1747651

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Cvanide	ND		0.250	1	09/30/2021 19:03	WG1749144	

Page 139 of 317

SAMPLE RESULTS - 04

L1406936

Microbiology by Method EPA 1681

Collected date/time: 09/21/21 12:45

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	MPN/g			date / time		
Fecal Coliform	<223.5	T8	1000	09/22/2021 13:55	WG1745590	

Page 140 of 317

SAMPLE RESULTS - 05

Collected date/time: 09/21/21 13:15

Wet Chemistry by Method 7199

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexavalent Chromium	ND		1.00	1	09/29/2021 12:43	WG1747651

²Tc

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	09/30/2021 19:04	WG1749144

Page 141 of 317

SAMPLE RESULTS - 06

Collected date/time: 09/21/21 13:15

Microbiology by Method EPA 1681

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/g			date / time	
Fecal Coliform	<224.6	<u>T8</u>	1000	09/22/2021 13:55	WG1745590

Page 142 of 317

SAMPLE RESULTS - 07

Wet Chemistry by Method 7199

Collected date/time: 09/21/21 00:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Hexavalent Chromium	ND		1.00	1	09/29/2021 12:49	WG1747651

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	09/30/2021 19:05	WG1749144

SAMPLE RESULTS - 08

L1406936

Microbiology by Method EPA 1681

Collected date/time: 09/21/21 00:00

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	MPN/g			date / time		
Fecal Coliform	<219.5	T8	1000	09/22/2021 13:55	WG1745590	

QUALITY CONTROL SUMMARY

Page 144 of 317

Wet Chemistry by Method 7199

L1406936-01,03,05,07

Method Blank (MB)

(MB) R3710903-1 09/29	/21 12:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Hexavalent Chromium	U		0.255	1.00

²Tc

³Ss

L1406936-07 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

[†]Cn

L1407403-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1407403-03 09/29/21 14:01 • (DUP) R3710903-8 09/29/21 14:06

(03) [1407403-03 03/23/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3710903-2 09/29/2112:28

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Hexavalent Chromium	10.0	9.06	90.6	80.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC)	 (MS) R3710903-4 	00/20/21 12:20	(MCD) D2710002 E	00/20/21 12:2E
1031	• (IVIS) RS/10903-4	09/29/21 13.30 •	1101201 K3/10903-3	09/29/21 13.33

(O3) • (IVI3) K37 IO303	-4 03/23/21 13.30 • (IVI3D) K	710903-3 09/2	3/21 13.33									
	Spike Amount Original Re	esult MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Hexavalent Chromium	20.0	ND	ND	0.000	0.000	1	75.0-125	J6	J6	0.000	20	

Original Sample (OS) • Matrix Spike (MS)

(OS) • (MS) R3710903-6	(OS) • (MS) R3710903-6 09/29/21 13:41						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/kg		mg/kg	%		%	
Hexavalent Chromium	643		574	89.3	50	75.0-125	

Page 145 of 317

Wet Chemistry by Method 9012B

L1406936-01,03,05,07

Method Blank (MB)

(MB) R3711018-1 09/30/2	21 18:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cyanide	U		0.0733	0.250

Ср

Ss

L1407340-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	0.279	1	90.2	<u>P1</u>	20

L1407688-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1407688-02 09/30/21 19:16 • (DUP) R3711018-6 09/30/21 19:17

(03) 1140/000-02 03/30/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3711018-2 09/30/21 18:47

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.52	101	85.0-115	

L1407395-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407395-02 09/30/21 19:12 • (MS) R3711018-4 09/30/21 19:13 • (MSD) R3711018-5 09/30/21 19:15

. ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	0.622	0.582	37.3	34.9	1	75.0-125	<u>J6</u>	<u>J6</u>	6.56	20

L1407688-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407688-04 09/30/21 19:18 • (MS) R3711018-7 09/30/21 19:19 • (MSD) R3711018-8 09/30/21 19:20

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	0.451	0.555	27.1	33.3	1	75.0-125	<u>J6</u>	<u>J3 J6</u>	20.8	20

SDG:

L1406936

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

, 10.0.10 V.10.1.10 G.1.10	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

Pace Analytical National	12065 Lebanon Ro	1 Mount Juliet	TN 37122
i acc Analytical National		a iviounit dunct.	, 114 0/122

		<u> </u>	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Received by OGD: 3/11/2022 2:21:53 PM

QQD: 3/11/2022 2:21:53	S PM
ENVIRONMENTAL	
ANALYSIS	
LABORATORY	

CHAIN OF CUSTODY RECORD PAGE

AGE:	OF:
1	1

K197

Hall Environmental Analysis Laborato Page 148 of 317

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107

Website: clients.hallenvironmental.com

	NTRATOR: Pace	COMPANY: PA	CE TN			PHONE:	(800) 767-5859 FAX: (615) 758-5859
DDRES	12065	Lebanon Rd				ACCOUNT #:	EMAIL:
TY, ST	ATE 7ID		الله الله الله الله الله الله الله الله	:			
	Mt. Ju	ıliet, TN 37122					
			BOTTLE	180		LECTION	U40636 ANALYTICAL COMMENTS
ГЕМ	SAMPLE	CLIENT SAMPLE ID	TYPE	MATRIX		DATE	6
	2109B64-015B		40ZGU	Soil			2 Cr6, Total Cyanide in soil
2	2109B64-015C	SLP-01	120 ML	Soil	9/21/202	10:10:00 AM	1 Total Coliform and E.Coli in soil
3	2109B64-016B	SLP-10	40ZGU	Soil	9/21/202	12:45:00 PM	Cr6, Total Cyanide in soil
4	2109B64-016C	SLP-10	120 ML NA2S2O3	Soil	9/21/202	12:45:00 PM	1 Total Coliform and E.Coli in soil — d
5	2109B64-017B	SLP-03	40ZGU	Soil	9/21/202	1:15:00 PM	Cr6, Total Cyanide in soil
6	2109B64-017C	SLP-03	120 ML NA2S2O3	Soil	9/21/202	1:15:00 PM	1 Total Coliform and E.Coli in soil — Ob
7	2109B64-018B	SLP-bd-09212021	40ZGU	Soil	9/21/202	1	Cr6, Total Cyanide in soil
8	2109B64-018C	SLP-bd-09212021	120 ML	Soil	9/21/202	1	1 Total Coliform and E.Coli in soil
			NASSOS		-		IO 09.21.2021
		Sample Receipt Checklist //Intact: N If Applicate				#	
Bot Co:	Signed/Accur tles arrive i rect bottles	ntact: N VOA Zero Headspac ntact: N Pres.Correct/Chec used: N		£ -			
COC Bot Cor Sut RAI	Signed/Accur tles arrive i	ntact: N VOA Zero Headspace. ntact: N Pres.Correct/Checused: N N N N N N N N N N N N N N N N N N N					3,6+0=9
COO Bot Cor Sur RAI	Signed/Accur ttles arrive i rect bottles fficient volum Screen <0.5	ntact: N VOA Zero Headspace. Intact: N Pres.Correct/Check used: N N ne sent: N N COMMENTS:	sk: <u>Y</u> N	ail results to	lab@hall	environmental	5,6+5-9 .com. Please return all coolers and blue ice. Thank you.
COO Bot Coo Sut RAI PECIA	Signed/Accur ttles arrive i rect bottles fficient volum Screen <0.5	ntact: N VOA Zero Headspace. Intact: N Pres.Correct/Check used: N N ne sent: N N COMMENTS:	l reports. Please e-m	ail results to	lab@hall	environmental	.com. Please return all coolers and blue ice. Thank you. REPORT TRANSMITTAL DESIRED:
COO Bot Cor Sut RAI PECIA Pleas	Signed/Accurtles arrive in the sarrive in the sarri	ntact: N VOA Zero Headspace Pres.Correct/Check used: N N N N N N N N N N N N N N N N N N N	l reports. Please e-m	be o	lab@hall	<i>c</i> 2166	.com. Please return all coolers and blue ice. Thank you. REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
PECIA Pleas	Signed/Accurtles arrive in the second	Pres. Correct/Check used: N N ne sent: N N ne Sent: N N ne Sent: N N N COMMENTS: B ID and the CLIENT SAMPLE ID on all fina	I reports. Please e-m	be o	Pate: 9/24 Date:	Time: 9:4	.com. Please return all coolers and blue ice. Thank you. REPORT TRANSMITTAL DESIRED:

CLIENT: Pace L# L1406936-02,-04,-06,-08 **HALLENVANM** DATE OFF: DATE ON: 9/22/2021 9/23/2021 Data entered into excel spreadsheet by: ml filtered ML 607 Sample No. Dilution <---Highest dilution (If not all samples share the same dil. 0.001 1 Α 0.0001 Then must change dilution below to make the calculation 2 В correct)

3 С 0.00001 4 D 0.000001 5 6 sample type:

**Enter data into areas that are

in blue font.

MPN/mL From Table 4 Method 1681

	MPN Result	Dilution	MPN/mL	sitives	ation of Po	Combin	Sample No.
2	<226.1	0.001	<0.1803	0	0	0	1
	≺223.5	0.001	< 0.1803	0	0	0	2
	< 224.6	0.001	< 0.1803	0	0	0	3
] 2	<219.5	0.001	<0.1803	0	0	0	4
1	#DIV/0!						5
]	#DIV/0!						6
1	#DIV/0!						7

og Values 54239084 .349215 3513443 41478001 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0!

GEO MEAN

(MPN/1mL) From Table 4 [FCMPN/g]= (Largest Vol tested) X (% total solids-expressed as a decimal)

> % Total Solids = (expressed as a decimal)

Dry wt - Initial wt Wet wt - Initial wt

	Percent Tot	al Solids				
Sample #	Initial Weight	Wet Weigl	Dry weight	% Solids (expressed as a decimal)	Amount required	Weight used
1	1.27719	9.52644	7.85636	0.80	30.0	29.92328
2	1.28264	7.16966	6.03245	0.81	30.0	30.00241
3	1.27349	7.34334	6.14686	0.80	30.0	30.02351
4	1.26948	8.33284	7.07083	0.82	30.0	29.98639
5				#DIV/0!	30.0	
6				#DIV/0!	30.0	
7				#DIV/0!	30.0	

BIO-05

AUTS

Class B Fecal Coliform Analysis by MPN- EPA 1681

[Liquid or Solid]

	Client Name: 1	ALLENY ANN		SC Sample #: (10ml per tube of 10,0004)		(10mL per tube of 1,000,000x)	(10mL per tube of 10,000,000xl	Final pH must be bety must not use more th or NaOH) per		
	Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	75	1
1	Date/Time: 0.223\P (355	9-22-21P164	Pate/Times -71 6 1410		O	0	3	Final pH	75	i
6	Temp: 35	Tempy	Temp: 44.5	0	U	<u>n</u>	0	Method Blank	-/-	1
-UJ	Analyst: BE/M	Analyst: 🛶	Analyst: MY	0	0	Ó	()	Negative Con		ĺ
	8-21-2 2 (0(0)	Combination of Positive	501	0	0	O	()	Decitive Con		
	1777101010	MPN/mL from table:	<9.1803		0	0	~~	Positive Con MPN Result	< 226	1
	Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	75	
2	Date/Time:	Date/Time:	Date/Time:	0	20,000	(C)	1,000,000	Final pH	75	
4.	Temp:	Temp:	Temp:	0	0	0	0	Method Blank	-/-	
-07	Analyst:	Analyst:	Analyst:	0	0	0	0	Negative Con	-	
	SAMPLE COLLECTION:	Combination of Positive		0	0	0	6			
	9-21-21 12 1215	MPN/mL from table:			0	- 1-	0	Positive Con	7	2 /
	Satur 25 des		011003		~	0	0	MPN Result	<22°	2,5
3	Set up 35 deg Date/Time:	Move to 44.5 deg	Test end info Date/Time:	1,000x	10,000x	100,000x	1,000,000x	Initial pH	7.5	
,	Temp:	Temp:		0	6	- 0	00	Final pH	7.5	
-110	Analyst:	Analyst:	Temp: Analyst:	~	0	6	2	Method Blank	-graphia	
• -	SAMPLE COLLECTION:	Combination of Positive		0	0		7	Negative Con		
	9-21-218 1315		0.00	V V	0	<u>0</u>	C	Positive Con		
		MPN/mL from table:	< 0.1803	1	0	0	0	MPN Result	- /	4.6
4	Set up 35 deg Date/Time:	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	7.6	IM
4			Date/Time:	0	0	<u>Ø</u>	()	Final pH	4,2	12
-01	Temp:	Temp:	Temp:	0	0	<u> </u>	0	Method Blank	/-	
-08	Analyst: SAMPLE COLLECTION:	Analyst:	Analyst:	0	0_	0	0	Negative Con	3	-
	9-21-21 06000	Combination Positive	0.001	0	0	0 -	0	Positive Con	1	
		MPN/mL from table:	<1863	0	6	0	0	MPN Result	< Z1	9.5
	Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH		
5	Date/Time:	Date/Time:	Date/Time;					Final pH		
	Temp:	Temp:	Temp:					Method Blank	/	
	Analyst: SAMPLE COLLECTION:	Analyst:	Analyst:					Negative Con		
		Combination of Positive	1					Positive Con		
		MPN/mL from table:						MPN Result		
								Initial pH		
	Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	milital pri		1
6	Set up 35 deg Date/Time:	Move to 44.5 deg	Test end info	1,000x	10,000x		1,000,000x	Final pH		
6				1,000x	10,000x	100,000x	1,000,000x		/	
6	Date/Time: Temp: Analyst:	Date/Time: Temp: Analyst:	Date/Time: Temp: Analyst:	1,000x	10,000x		1,000,000x	Final pH	1	
6	Date/Time: Temp:	Date/Time: Temp:	Date/Time: Temp: Analyst:	1,000x	10,000x		1,000,000x	Final pH Method Blank	/	6
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst:	Date/Time: Temp: Analyst:	1,000x	10,000x		1,000,000x	Final pH Method Blank Negative Con	/	
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst: Combination of Positive	Date/Time: Temp: Analyst:	1,000x	10,000x 10,000x		1,000,000x	Final pH Method Blank Negative Con Positive Con	/	
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst: Combination of Positive MPN/mL from table:	Date/fime: Temp: Analyst:					Final pH Method Blank Negative Con Positive Con MPN Result	/	
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst: Combination of Positive MPN/mL from table: Move to 44.5 deg	Date/fime: Temp: Analyst: Test end info					Final pH Method Blank Negative Con Positive Con MPN Result Initial pH	/	
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst: Combination of Positive MPN/mL from table: Move to 44.5 deg Date/Time: Temp: Analyst:	Date/fime: Temp: Analyst: Test end info Date/Time: Temp: Analyst:					Final pH Method Blank Negative Con Positive Con MPN Result Initial pH Final pH	/	
	Date/Time: Temp: Analyst: SAMPLE COLLECTION:	Date/Time: Temp: Analyst: Combination of Positive MPN/mL from table: Move to 44.5 deg Date/Time: Temp:	Date/fime: Temp: Analyst: Test end info Date/Time: Temp: Analyst:					Final pH Method Blank Negative Con Positive Con MPN Result Initial pH Final pH Method Blank	/	

I Otal 201102 Wilaston	Total Sol	ids Ana	alysis
------------------------	------------------	---------	--------

(30g +/-.1g)

	Sample	Dish Label	Initial wt (g)	Wet wt (g)	Dry wt (g)	%Tot Solids	Amt used (g)
<i>~</i> cર	Sample #1	934-02	1.27719	9.52644	7.83636	,80	29.42328
-04	Sample #2	93604	1.28204	7.118666	6,03245	. 81	30.00241
-06	Sample #3	936-06	1,27349	7.34334	6-14681	, 80	30.02351
~08	Sample #4	936-08	1,26948	8.33284	7.80 +083	.82	29.98639
	Sample #5						,
	Sample #6						
	Sample #7						

Media/Reagents Lot #	<u>Lot:</u>	Exp date	
A1 medium Lot #:	48061	7-31-22	48062 7-31-22
Phosphate Buffer:	47391	11-30-22	
NaOH Lot:	NA	AM	
HCI Lot: IN	46699	1630-22	
Positive Control: E. coli	092121	9-22-21	
Negative Control: E.aerogenes	091021	12-10-21	OBE 9-22-21
^(only need for OPR or MS)			
^TSA Slant Lot #:	NA	M	
^1% LTB Lot #:		T	

Pace Analytical® ANALYTICAL REPORT

October 13, 2021

Ss

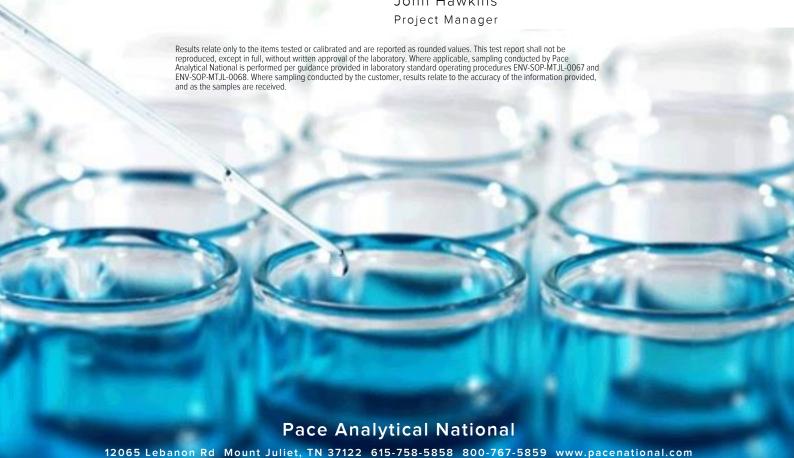
Hall Environmental Analysis Laboratory

L1414472 Sample Delivery Group:

Samples Received: 09/22/2021

Project Number:

Description:


Report To: Andy Freeman

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2109B64-015B SLP-01 L1414472-01	5
2109B64-016B SLP-10 L1414472-02	7
2109B64-017B SLP-03 L1414472-03	9
2109B64-018B SLP-BD-09212021 L1414472-04	11
Qc: Quality Control Summary	13
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	13
GI: Glossary of Terms	19
Al: Accreditations & Locations	20
Sc: Sample Chain of Custody	21

Ss

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
2109B64-015B SLP-01 L1414472-01 Solid				09/21/21 10:10	09/22/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753989	1	10/09/21 14:15	10/10/21 17:08	ADF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109B64-016B SLP-10 L1414472-02 Solid				09/21/21 12:45	09/22/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753989	1	10/09/21 14:15	10/10/21 18:13	ADF	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753989	10	10/09/21 14:15	10/12/21 11:09	AMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753989	5	10/09/21 14:15	10/11/21 18:00	AMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109B64-017B SLP-03 L1414472-03 Solid				09/21/21 13:15	09/22/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1753989	1	10/09/21 14:15	10/10/21 17:51	ADF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109B64-018B SLP-BD-09212021 L1414472-04	Solid			09/21/21 00:00	09/22/21 09:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

WG1753989

10/09/21 14:15

10/10/21 17:30

ADF

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager

SDG:

L1414472

Ss

Cn

GI

Sc

SAMPLE RESULTS - 01

Collected date/time: 09/21/21 10:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Acenaphthylene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Anthracene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
Benzidine	ND	T8	1.67	1	10/10/2021 17:08	WG1753989
Benzo(a)anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Benzo(b)fluoranthene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
Benzo(k)fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Benzo(g,h,i)perylene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
Benzo(a)pyrene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
Bis(2-chlorethoxy)methane	ND	T8	0.333	1	10/10/2021 17:08	WG1753989
Bis(2-chloroethyl)ether	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,2-Oxybis(1-Chloropropane)	ND	T8	0.333	1	10/10/2021 17:08	WG1753989
4-Bromophenyl-phenylether	ND	T8	0.333	1	10/10/2021 17:08	WG1753989
2-Chloronaphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
4-Chlorophenyl-phenylether	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Chrysene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Dibenz(a,h)anthracene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
1,2-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
1,3-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
1,4-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
3,3-Dichlorobenzidine	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,4-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,6-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Fluorene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Hexachlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Hexachloro-1,3-butadiene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Hexachlorocyclopentadiene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Hexachloroethane	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Indeno(1,2,3-cd)pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Isophorone	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Naphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
1-Methylnaphthalene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2-Methylnaphthalene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Nitrobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
n-Nitrosodimethylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
n-Nitrosodiphenylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
n-Nitrosodi-n-propylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Phenanthrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:08	WG1753989
Benzylbutyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Bis(2-ethylhexyl)phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Di-n-butyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Diethyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Dimethyl phthalate	ND	T8	0.333	1	10/10/2021 17:08	WG1753989
Di-n-octyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Pyrene	ND	T8	0.0333	1	10/10/2021 17:08	WG1753989
Pyridine	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
1,2,4-Trichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Quinoline	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2-Methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
3&4-Methyl Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
4-Chloro-3-methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2-Chlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,4-Dichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,4-Dimethylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
_,	110		0.000			

Collected date/time: 09/21/21 10:10

SAMPLE RESULTS - 01

L1414472

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
2,4-Dinitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
4-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Pentachlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
2,4,6-Trichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:08	WG1753989
(S) 2-Fluorophenol	60.1		12.0-120		10/10/2021 17:08	WG1753989
(S) Phenol-d5	59.6		10.0-120		10/10/2021 17:08	WG1753989
(S) Nitrobenzene-d5	48.8		10.0-122		10/10/2021 17:08	WG1753989
(S) 2-Fluorobiphenyl	60.7		15.0-120		10/10/2021 17:08	WG1753989
(S) 2,4,6-Tribromophenol	87.0		10.0-127		10/10/2021 17:08	WG1753989
(S) p-Terphenyl-d14	70.1		10.0-120		10/10/2021 17:08	WG1753989

SAMPLE RESULTS - 02

Reault	
Accomplithfone 0.472 18 0.0333 1 0.0002011813 WGF753892 Accemphitylene ND 18 0.0333 1 0.0020211813 WGF753892 Anthracene ND 18 1.67 1 100020211813 WGF753892 Benzol(phroramhene ND 18 0.0333 1 100020211813 WGF753892 Benzol(phroramhene ND 18 0.0333 1 100020211813 WGF753892 Benzol(phroramhene ND 18 0.0333 1 100020211813 WGF753892 Benzol(phyrone ND 18 0.333 1 100020211813 WGF753892 Benzol(phyrone ND 18 0.333 1	
Acetaphthylene ND 18 0.9333 1 1010/202118181 WiST/53899 Anthaccne ND 18 0.0333 1 1010/20211813 WiST/53899 Bemodiplimatenee 0.0406 18 0.0333 1 1010/20211813 WiST/53899 Bemodiplipularithacene ND 18 0.0333 1 1010/20211813 WiST/53899 Bemodiplipyrion ND 18 0.0333 1 1010/20211813 WiST/53899 Bib2-Chitorethyloperien ND 18 0.0333 1 1010/20211813 WiST/53899 Bib2-Chitorethyloperien ND 18 0.0333 1 1010/20211813 WiST/53899 Bib2-Chitorethyloperien ND 18 0.333 1 1010/20211813 WiST/53899 Bib2-Chitorethyloperien ND 18 0.333 1 1010/20211813 WiST/53899 2-2-Onylist-Chitorroponene ND 18 0.333 1 1010/20211813 WiST/53899 2-2-Chitorespitholer <td< th=""><th></th></td<>	
Ambracene ND 13 0.0333 1 1.010/02/11 8/13 WEUTS-3889 Benzudinardene 0.0406 13 0.0333 1 1010/02/11 8/13 WIDTS-3899 Benzudifuluranthene ND 18 0.0333 1 1010/02/11 8/13 WIDTS-3899 Benzudifuluranthene ND 18 0.0333 1 1010/02/21 18/13 WIDTS-3899 Benzudighuranthene ND 18 0.0333 1 1010/02/21 18/13 WIDTS-3899 Benzudighyrene ND 18 0.0333 1 1010/02/21 18/13 WIDTS-3899 Benzidinerbodynethane ND 18 0.333 1 1010/02/21 18/13 WIDTS-3899 Belz-chlorethylether ND 18 0.333 1 1010/02/21 18/13 WIDTS-3899 4-Bromopherylpherylether ND 18 0.333 1 1010/02/21 18/13 WIDTS-3899 Chysicane ND 18 0.333 1 1010/02/21 18/13 WIDTS-3899 Chysicane ND	
Bendeline	
Benzollylluoranthene 0.0406 T8 0.0333 1 1.01/10/2021 18:13 WCITY3398 Benzollylluoranthene ND T8 0.0333 1 10/10/2021 18:13 WCITY3398 Benzollylluoranthene ND T8 0.0333 1 10/10/2021 18:13 WCITY3398 Benzollyllyrore ND T8 0.0333 1 10/10/2021 18:13 WCITY3398 Bis/2-chlorethorylmethane ND T8 0.0333 1 10/10/2021 18:13 WCITY3398 Bis/2-chlorethorylmethane ND T8 0.333 1 10/10/2021 18:13 WCITY33989 4-Bromopheny-freeder ND T8 0.333 1 10/10/2021 18:13 WCITY33989 4-Bromopheny-freeder ND T8 0.333 1 10/10/2021 18:13 WCITY33989 4-Bromopheny-freeder ND T8 0.333 1 10/10/2021 18:13 WCITY33989 4-Chloropheny-freedy-free ND T8 0.333 1 10/10/2021 18:13 WCITY33989 <	
Benzollyfluoranthene ND 18 0.0333 1 0.010/02/118/13 WGD53899 Benzolg/huber/lene ND 18 0.0333 1 0.010/20/2118/13 WGD53899 Benzolg/huber/lene ND 18 0.0333 1 0.010/20/2118/13 WGD53899 Biss/2-chloroschylyfishene ND 18 0.333 1 0.010/20/2118/13 WGD53899 Biss/2-chloroschylyfishene ND 18 0.333 1 0.010/20/218/13 WGD53899 Biss/2-chloroschylyfishene ND 18 0.333 1 0.010/20/218/13 WGD53899 Biss/2-chloroschylyfishene ND 18 0.333 1 0.010/20/218/13 WGD53899 2-Chlorosphryhphosphether ND 18 0.333 1 0.010/20/218/13 WGD53899 2-Chlorosphylphosphether ND 18 0.333 1 0.010/20/218/13 WGD53999 2-Chlorosphylphosphether ND 18 0.333 1 0.010/20/218/13 WGD53989 1-Le	
Benzolg/ultroamthene ND 12 0.0333 1 010/02/21 Rt/3 WG/15/3989 Benzolg/ultropene ND 18 0.0333 1 10/10/20/21 Rt/3 WG/15/3989 Berzolg/ultropene ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 Bis/2-chinochty/jether ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 2,2-Oxybis/I-Chioropropane ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 4-Bromophenyl-phenylether ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 4-Chlorophenyl-phenylether ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 4-Chlorophenyl-phenylether ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 1-Chlorophenyl-phenylether ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989 1-2-Dichloroberophene ND 18 0.333 1 10/10/20/21 Rt/3 WG/15/3989	
Benzo(a)pyrene ND	
Benzolapyrene ND IE 0.333 1 10/02/2011813 WG/T53989 BisQ-chlororthoxylhether ND 18 0.333 1 10/10/20211813 WG/T53989 2.2-OxybisH-Chloropropanel ND 18 0.333 1 10/10/20211813 WG/T53989 2.2-OxybisH-Chloropropanel ND 18 0.333 1 10/10/20211813 WG/T53989 4-Bromophenyl-phenylether ND 18 0.333 1 10/10/20211813 WG/T53989 4-Chloropaphral-phenylether ND 18 0.333 1 10/10/20211813 WG/T53989 4-Chlorophenyl-phenylether ND 18 0.333 1 10/10/20211813 WG/T53989 Chrysene ND 18 0.333 1 10/10/20211813 WG/T53989 1.2-Dichloroberace ND 18 0.333 1 10/10/20211813 WG/T53989 1.2-Dichloroberace ND 18 0.333 1 10/10/20211813 WG/T53989 1.2-Dichloroberace <	
Bib/2 chlorethoxymethane ND 18 0.333 1 1010/2021 18:13 WG/T53989 2.2 Oxybis/Chloropropanel ND 18 0.333 1 1010/2021 18:13 WG/T53989 2.2 Oxybis/Chloropropanel ND 18 0.333 1 1010/2021 18:13 WG/T53989 2 Chloropaphrhalpenel ND 18 0.333 1 1010/2021 18:13 WG/T53989 2 Chloropaphrhalpenel ND 18 0.333 1 1010/2021 18:13 WG/T53989 Chrysene ND 18 0.333 1 1010/2021 18:13 WG/T53989 Chrysene ND 18 0.333 1 1010/2021 18:13 WG/T53989 Chrysene ND 18 0.333 1 1010/2021 18:13 WG/T53989 Labchloroberzene ND 18 0.333 1 1010/2021 18:13 WG/T53989 Labchloroberzene ND 18 0.333 1 1010/2021 18:13 WG/T53989 Labchloroberzene ND 18	
BisQ-Achosethylpether ND T8 0.333 1 10/10/2021 18:13 WGF753989 2.2 - Oxybis(-Chieropropane) ND T8 0.333 1 10/10/2021 18:13 WGF753989 4-Chioronaphthalene ND T8 0.333 1 10/10/2021 18:13 WGF753989 4-Chiorophenyl-phenylether ND T8 0.333 1 10/10/2021 18:13 WGF753989 4-Chiorophenyl-phenylether ND T8 0.333 1 10/10/2021 18:13 WGF753989 1-Chiorophenyl-phenylether ND T8 0.333 1 10/10/2021 18:13 WGF753989 1-Chiorophenyl-phenylether ND T8 0.333 1 10/10/2021 18:13 WGF753989 1-2-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WGF753989 1,4-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WGF753989 1,4-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WGF753989	
2.2 Oyolysij-Chiorgorpone) ND T8 0.333 1 10/10/202118:13 WG/T53989 4-Bromophenyl-phenylether ND T8 0.333 1 10/10/202118:13 WG/T53989 4-Chlorophenyl-phenylether ND T8 0.0333 1 10/10/202118:13 WG/T53989 Chrysene 0.0406 T8 0.0333 1 10/10/202118:13 WG/T53989 12-Dichlorobenzene ND T8 0.0333 1 10/10/202118:13 WG/T53989 12-Dichlorobenzene ND T8 0.333 1 10/10/202118:13 WG/T53989 2-4-Dinitrobluene ND T8 0.333 1 10/10/202118:13 WG/T53989 Fluoranthene ND </td <td></td>	
4-Bromophenyl-phenylether ND TB 0.333 1 1010/2021 18:13 WG1753989 2-Chlorroaphthalene ND 18 0.0333 1 1010/2021 18:13 WG1753989 Chrysene 0.0406 TB 0.0333 1 1010/2021 18:13 WG1753989 Diberale, Jhanthracene ND TB 0.0333 1 1010/2021 18:13 WG1753989 1.3-Dichlorobenzene ND TB 0.333 1 1010/2021 18:13 WG1753989 1.3-Dichlorobenzene ND TB 0.333 1 1010/2021 18:13 WG1753989 1.4-Dichlorobenzene ND TB 0.333 1 1010/2021 18:13 WG1753989 1.4-Dichlorobenzene ND TB 0.333 1 1010/2021 18:13 WG1753989 2.6-Dintrotoluene ND TB 0.333 1 1010/2021 18:13 WG1753989 Fluorane ND TB 0.333 1 1010/2021 18:13 WG1753989 Heuschloroebenzene ND	
2-Chloropphenyl-phenylether ND T8 0.0333 1 10/10/2021 18:13 W05753989 4-Chloropphenyl-phenylether ND T8 0.0333 1 10/10/2021 18:13 WG1753989 Chryspene 0.0406 T8 0.0333 1 10/10/2021 18:13 WG1753989 1-2-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-2-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-4-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-4-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-4-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 2-4-Dinitrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Fluoranthene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Fluoranthene <t< td=""><td></td></t<>	
4-Chlorophenyl-phenylether ND T8 0.333 1 10/10/2021 18:13 WG1753989 Chrysene 0.0406 T8 0.0333 1 10/10/2021 18:13 WG1753988 1.2-Dichlorobenzene ND T8 0.0333 1 10/10/2021 18:13 WG1753989 1.3-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1.3-Dichlorobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 3.3-Dichlorobenzidine ND T8 0.333 1 10/10/2021 18:13 WG1753989 2,4-Dinitrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 2,4-Dinitrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 2,6-Dintrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-Loronene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorobenzene ND <td></td>	
Chrysene 0,0466 T8 0,0333 1 10/00/2021 18:13 WG/753989 Dibenzía, Ajanthrácene ND T8 0,0333 1 10/10/2021 18:13 WG/753989 1,3-Dichlorobenzene ND T8 0,333 1 10/10/2021 18:13 WG/753989 1,4-Dichlorobenzene ND T8 0,333 1 10/10/2021 18:13 WG/753989 3,3-Dichlorobenzidine ND T8 0,333 1 10/10/2021 18:13 WG/753989 2,4-Dinitrofoluene ND T8 0,333 1 10/10/2021 18:13 WG/753989 Fluorent ND T8 0,333 1 10/10/2021 18:13 WG/753989 Fluoranthene ND T8 0,333 1 10/10/2021 18:13 WG/753989 Fluorene 0,786 T8 0,333 1 10/10/2021 18:13 WG/753989 Hexachloro-L3-butadiene ND T8 0,333 1 10/10/2021 18:13 WG/753989 Hexachloro-L3-butadiene ND	
Dibenz(a,h)anthracene ND TB 0.0333 1 10/10/202118:13 WG1753989 1.2-Dichlorobenzene ND TB 0.333 1 10/10/202118:13 WG1753989 1.4-Dichlorobenzene ND TB 0.333 1 10/10/202118:13 WG1753989 3.3-Dichlorobenzidine ND TB 0.333 1 10/10/202118:13 WG1753989 2,4-Dinitrotoluene ND TB 0.333 1 10/10/202118:13 WG1753989 2,4-Dinitrotoluene ND TB 0.333 1 10/10/202118:13 WG1753989 Fluoranthene ND TB 0.333 1 10/10/202118:13 WG1753989 Fluorene ND TB 0.0333 1 10/10/202118:13 WG1753989 Fluorene ND TB 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND TB 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND <td< td=""><td></td></td<>	
1,2-Dichlorobenzene ND T8 0.333 1 10/10/202118:13 WG1753989 1,3-Dichlorobenzene ND T8 0.333 1 10/10/202118:13 WG1753989 3,3-Dichlorobenzidine ND T8 0.333 1 10/10/202118:13 WG1753989 2,4-Dinitrotoluene ND T8 0.333 1 10/10/202118:13 WG1753989 2,4-Dinitrotoluene ND T8 0.333 1 10/10/202118:13 WG1753989 Fluoranthene ND T8 0.333 1 10/10/202118:13 WG1753989 Fluoranthene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachloro-1,3-butadiene	
1,3-Dichlorobenzene ND T8 0.333 1 10/0/2021 18:13 WGT753989 1,4-Dichlorobenzene ND T8 0.333 1 10/0/2021 18:13 WGT753989 3,3-Dichlorobenzidine ND T8 0.333 1 10/0/2021 18:13 WGT753989 2,6-Dinitrotoluene ND T8 0.333 1 10/0/2021 18:13 WGT753989 Fluoranthene ND T8 0.333 1 10/0/2021 18:13 WGT753989 Fluoranthene ND T8 0.0333 1 10/0/2021 18:13 WGT753989 Fluoranthene ND T8 0.0333 1 10/0/2021 18:13 WGT753989 Hexachloro-1,3-butadiene ND T8 0.333 1 10/0/2021 18:13 WGT753989 Hexachloro-1,3-butadiene ND T8 0.333 1 10/0/2021 18:13 WGT753989 Hexachloro-1,3-butadiene ND T8 0.333 1 10/0/2021 18:13 WGT753989 Hexachloro-1,3-butadiene ND </td <td></td>	
1,4-Dichlorobenzene ND 18 0.333 1 10/0/2021 18:13 WG1753989 3,3-Dichlorobenzidine ND 18 0.333 1 10/0/2021 18:13 WG1753989 2,4-Dinitrotoluene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Fluoranthene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Fluorene 0.786 18 0.0333 1 10/0/2021 18:13 WG1753989 Hexachlorobenzene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Hexachloro-1,3-butdiene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Hexachloro-2,4-butdiene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Hexachloro-2,4-butdiene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Hexachloro-2,4-butdiene ND 18 0.333 1 10/0/2021 18:13 WG1753989 Indexachloro-2,3-butdiene <td< td=""><td></td></td<>	
3.3-Dichlorobenzidine ND T8 0.333 1 0/10/2021 18:13 WG1753989 2.4-Dinitrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 2.6-Dinitrotoluene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Fluoranthene ND T8 0.0333 1 10/10/2021 18:13 WG1753989 Fluorene 0.786 T8 0.0333 1 10/10/2021 18:13 WG1753989 Hexachloroe1,3-butadiene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Hexachloroe4,3-butadiene ND T8 0.333 1 10/10/2021 18:13 WG1753989 Hexachloroe4,10-e4thane ND T8 0.333 1 10/10/2021 18:13 WG1753989 Hexachloroe4,10-e4thane ND T8 0.333 1 10/10/2021 18:13 WG1753989 Ideach (1,2,3-cd)pyrene ND T8 0.333 1 10/10/2021 18:13 WG1753989 1-4-Methylnaphthalene <td></td>	
2,4-Dinitrotoluene ND TB 0.333 1 10/10/2021 18:13 WG1753989 2,6-Dinitrotoluene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Fluoranthene ND TB 0.0333 1 10/10/2021 18:13 WG1753989 Hexachlorobenzene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Hexachloroc+1,3-butadiene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorocyclopentadiene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Indepol	
2,6-Dinitrotoluene ND T8 0.333 1 10/10/202118:13 WG1753989 Fluoranthene ND T8 0.0333 1 10/10/202118:13 WG1753989 Fluorene 0.786 T8 0.0333 1 10/10/202118:13 WG1753989 Hexachloroe-1,3-butadlene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Indeno(1,2,3-cd)pyrene ND T8 0.333 1 10/10/202118:13 WG1753989 Isophorone ND T8 0.333 1 10/10/202118:13 WG1753989 1-Methylnaphthalene 7.43 T8 0.167 5 10/11/202118:00 WG1753989 1-Mitrobantere ND <td></td>	
Fluoranthene ND 18 0.0333 1 10/10/202118:13 WG1753989 Fluorene 0.786 18 0.0333 1 10/10/202118:13 WG1753989 Hexachlorobenzene ND 18 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND 18 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND 18 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND 18 0.333 1 10/10/202118:13 WG1753989 Indeno(1,2,3-cd)pyrene ND 18 0.333 1 10/10/202118:13 WG1753989 Indeno(1,2,3-cd)pyrene ND 18 0.333 1 10/10/202118:13 WG1753989 Isophorone ND 18 0.333 1 10/10/202118:00 WG1753989 1-Methylnaphthalene 7.37 18 0.333 1 10/10/202118:13 WG1753989 Nitrobenzene ND	
Fluorene 0.786 18 0.0333 1 0/0/0/2021 8:13 WG1753989 Hexachlorobenzene ND 18 0.333 1 10/10/2021 8:13 WG1753989 Hexachloro-1,3-butadiene ND 18 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorocyclopentadiene ND 18 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorocytlopentadiene ND 18 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorocytlopentadiene ND 18 0.333 1 10/10/2021 18:13 WG1753989 Indenot(1,2,3-cd)pyrene ND 18 0.0333 1 10/10/2021 18:13 WG1753989 Isophorone ND 18 0.333 1 10/10/2021 18:10 WG1753989 I-Methylnaphthalene 7.43 18 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.51 18 0.67 5 10/11/2021 18:13 WG1753989 N-Nitrosodimethylamine	
Hexachlorobenzene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Hexachloro-1,3-butadiene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Hexachlorocyclopentadiene ND TB 0.333 1 10/10/2021 18:13 WG1753989 Hexachloroethane ND TB 0.333 1 10/10/2021 18:13 WG1753989 Indeno(1,2,3-cd)pyrene ND TB 0.0333 1 10/10/2021 18:13 WG1753989 Isophorone ND TB 0.333 1 10/10/2021 18:13 WG1753989 Naphthalene 7.43 TB 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.37 TB 1.67 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 5.71 TB 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND TB 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND<	
Hexachloro-1,3-butadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachlorocyclopentadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachloroethane ND T8 0.333 1 10/10/202118:13 WG1753989 Indeno(1,2,3-cd)pyrene ND T8 0.0333 1 10/10/202118:13 WG1753989 Isophorone ND T8 0.333 1 10/10/202118:13 WG1753989 Naphthalene 7.43 T8 0.167 5 10/11/202118:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/10/202118:00 WG1753989 1-Methylnaphthalene 5.71 T8 1.67 5 10/11/202118:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/202118:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/202118:13 WG1753989 n-n-butyliphthalate ND	
Hexachlorocyclopentadiene ND T8 0.333 1 10/10/202118:13 WG1753989 Hexachloroethane ND T8 0.333 1 10/10/202118:13 WG1753989 Indeno(1,2,3-cd)pyrene ND T8 0.0333 1 10/10/202118:13 WG1753989 Isophorone ND T8 0.333 1 10/10/202118:13 WG1753989 Naphthalene 7.43 T8 0.167 5 10/11/202118:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/12/202111:09 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/202118:00 WG1753989 Noberacene ND T8 0.333 1 10/10/202118:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/202118:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/202118:13 WG1753989 Phenanthrene 1.66	
Hexachloroethane ND T8 0.333 1 10/10/2021 18:13 WG1753989 Indeno(1,2,3-cd)pyrene ND T8 0.0333 1 10/10/2021 18:13 WG1753989 Isophorone ND T8 0.333 1 10/10/2021 18:13 WG1753989 Naphthalene 7.43 T8 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/12/2021 11:09 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:0 WG1753989 Bis(2-ethylhexyl)phthalate ND </td <td></td>	
Indeno(1,2,3-cd)pyrene ND T8 0.0333 1 10/10/2021 18:13 WG1753989 Isophorone ND T8 0.333 1 10/10/2021 18:13 WG1753989 Naphthalene 7.43 T8 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/12/2021 18:00 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND </td <td></td>	
Sophorone ND T8 0.333 1 10/10/2021 18:13 WG1753989 Naphthalene 7.43 T8 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/12/2021 11:09 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodiphenylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 N-Nitrosodi-n-propylamine	
Naphthalene 7.43 T8 0.167 5 10/11/2021 18:00 WG1753989 1-Methylnaphthalene 7.37 T8 3.33 10 10/12/2021 11:09 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate	
1-Methylnaphthalene 7.37 T8 3.33 10 10/12/2021 11:09 WG1753989 2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
2-Methylnaphthalene 5.71 T8 1.67 5 10/11/2021 18:00 WG1753989 Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate	
Nitrobenzene ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodiphenylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate	
n-Nitrosodimethylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodiphenylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
n-Nitrosodiphenylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
n-Nitrosodi-n-propylamine ND T8 0.333 1 10/10/2021 18:13 WG1753989 Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Phenanthrene 1.66 T8 0.167 5 10/11/2021 18:00 WG1753989 Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Benzylbutyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Bis(2-ethylhexyl)phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Di-n-butyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Diethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989 Dimethyl phthalate ND T8 0.333 1 10/10/2021 18:13 WG1753989	
Dimethyl phthalate ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
-	
Din-octyl htthalate ND T8 0.333 1 10/f0/2001 19:10 MC17E2000	
Pyrene 0.348 <u>T8</u> 0.0333 1 10/10/2021 18:13 <u>WG1753989</u>	
Pyridine ND <u>T8</u> 0.333 1 10/10/2021 18:13 <u>WG1753989</u>	
1,2,4-Trichlorobenzene ND <u>T8</u> 0.333 1 10/10/2021 18:13 <u>WG1753989</u>	
Quinoline ND T8 0.333 1 10/10/2021 18:13 WG1753989	
2-Methylphenol ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
3&4-Methyl Phenol ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
4-Chloro-3-methylphenol ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
2-Chlorophenol ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
2,4-Dichlorophenol ND <u>T8</u> 0.333 1 10/10/202118:13 <u>WG1753989</u>	
2,4-Dimethylphenol ND <u>T8</u> 0.333 1 10/10/2021 18:13 <u>WG1753989</u>	
4,6-Dinitro-2-methylphenol ND <u>T8</u> 0.333 1 10/10/2021 18:13 <u>WG1753989</u>	

SAMPLE RESULTS - 02

Collected date/time: 09/21/21 12:45

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
2,4-Dinitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
2-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
4-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
Pentachlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
2,4,6-Trichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 18:13	WG1753989	
(S) 2-Fluorophenol	40.2		12.0-120		10/10/2021 18:13	WG1753989	
(S) 2-Fluorophenol	59.2		12.0-120		10/12/2021 11:09	WG1753989	
(S) 2-Fluorophenol	35.7		12.0-120		10/11/2021 18:00	WG1753989	
(S) Phenol-d5	60.4		10.0-120		10/11/2021 18:00	WG1753989	
(S) Phenol-d5	46.7		10.0-120		10/10/2021 18:13	WG1753989	
(S) Phenol-d5	69.3		10.0-120		10/12/2021 11:09	WG1753989	
(S) Nitrobenzene-d5	352	<u>J1</u>	10.0-122		10/10/2021 18:13	WG1753989	
(S) Nitrobenzene-d5	0.000	<u>J2</u>	10.0-122		10/12/2021 11:09	WG1753989	
(S) Nitrobenzene-d5	407	<u>J1</u>	10.0-122		10/11/2021 18:00	WG1753989	
(S) 2-Fluorobiphenyl	45.8		15.0-120		10/11/2021 18:00	WG1753989	
(S) 2-Fluorobiphenyl	75.0		15.0-120		10/12/2021 11:09	WG1753989	
(S) 2-Fluorobiphenyl	53.6		15.0-120		10/10/2021 18:13	WG1753989	
(S) 2,4,6-Tribromophenol	50.8		10.0-127		10/12/2021 11:09	WG1753989	
(S) 2,4,6-Tribromophenol	79.1		10.0-127		10/10/2021 18:13	WG1753989	
(S) 2,4,6-Tribromophenol	64.3		10.0-127		10/11/2021 18:00	WG1753989	
(S) p-Terphenyl-d14	54.2		10.0-120		10/11/2021 18:00	WG1753989	
(S) p-Terphenyl-d14	66.0		10.0-120		10/10/2021 18:13	WG1753989	
(S) p-Terphenyl-d14	48.2		10.0-120		10/12/2021 11:09	WG1753989	

L1414472-02 WG1753989: Surrogate failure due to matrix interference

SAMPLE RESULTS - 03

Collected date/time: 09/21/21 13:15

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Acenaphthylene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzidine	ND	<u>T8</u>	1.67	1	10/10/2021 17:51	WG1753989
Benzo(a)anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzo(b)fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzo(k)fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzo(g,h,i)perylene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzo(a)pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Bis(2-chlorethoxy)methane	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Bis(2-chloroethyl)ether	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,2-Oxybis(1-Chloropropane)	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
1-Bromophenyl-phenylether	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2-Chloronaphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
4-Chlorophenyl-phenylether	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Chrysene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Dibenz(a,h)anthracene	ND	T8	0.0333	1	10/10/2021 17:51	WG1753989
,2-Dichlorobenzene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
,3-Dichlorobenzene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
,4-Dichlorobenzene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
3,3-Dichlorobenzidine	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,4-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,6-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
luoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
luorene	ND	T8	0.0333	1	10/10/2021 17:51	WG1753989
Hexachlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Hexachloro-1,3-butadiene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Hexachlorocyclopentadiene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
lexachloroethane	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
ndeno(1,2,3-cd)pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
sophorone	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Naphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
-Methylnaphthalene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2-Methylnaphthalene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Vitrobenzene	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
n-Nitrosodimethylamine	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
n-Nitrosodiphenylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
n-Nitrosodi-n-propylamine	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Phenanthrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Benzylbutyl phthalate	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Bis(2-ethylhexyl)phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Di-n-butyl phthalate	ND	T8	0.333	1	10/10/2021 17:51	WG1753989
Diethyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Dimethyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Di-n-octyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:51	WG1753989
Pyridine	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
,2,4-Trichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Quinoline	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2-Methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
8&4-Methyl Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
I-Chloro-3-methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2-Chlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,4-Dichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,4-Dimethylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
L, I DIIIICHIYIPIICIIOI	ND	10	0.000		10/10/2021 1/.31	

Page 161 of 317

SAMPLE RESULTS - 03

Collected date/time: 09/21/21 13:15

L1414472

Jenn Volatile Organi	e compound	35 (OO/IVIC	y by mean	00 0270		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
2,4-Dinitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
4-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Pentachlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
2,4,6-Trichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:51	WG1753989
(S) 2-Fluorophenol	65.4		12.0-120		10/10/2021 17:51	WG1753989
(S) Phenol-d5	63.1		10.0-120		10/10/2021 17:51	WG1753989
(S) Nitrobenzene-d5	59.2		10.0-122		10/10/2021 17:51	WG1753989
(S) 2-Fluorobiphenyl	67.1		15.0-120		10/10/2021 17:51	WG1753989
(S) 2,4,6-Tribromophenol	88.4		10.0-127		10/10/2021 17:51	WG1753989
(S) p-Terphenyl-d14	67.1		10.0-120		10/10/2021 17:51	WG1753989

Collected date/time: 09/21/21 00:00

SAMPLE RESULTS - 04

L1414472

	Result Qualifier RDL Dilution Analysis		Analysis	lysis <u>Batch</u>			
Analyte	mg/kg	Gadinici	mg/kg	Bilduoii	date / time	2401	
Acenaphthene	ND ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Acenaphthylene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Benzidine	ND	<u>T8</u>	1.67	1	10/10/2021 17:30	WG1753989	
Benzo(a)anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Benzo(b)fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Benzo(k)fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Benzo(g,h,i)perylene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Benzo(a)pyrene	ND		0.0333	1	10/10/2021 17:30	WG1753989	
Bis(2-chlorethoxy)methane	ND	<u>T8</u> <u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Bis(2-chloroethyl)ether	ND		0.333	1	10/10/2021 17:30	WG1753989	
2,2-Oxybis(1-Chloropropane)	ND	<u>T8</u> <u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
	ND		0.333		10/10/2021 17:30		
4-Bromophenyl-phenylether		<u>T8</u>		1		WG1753989	
2-Chloronaphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
4-Chlorophenyl-phenylether	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Chrysene Dih annia hlanthranana	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Dibenz(a,h)anthracene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
1,2-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
1,3-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
1,4-Dichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
3,3-Dichlorobenzidine	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2,4-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2,6-Dinitrotoluene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Fluoranthene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Fluorene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Hexachlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Hexachloro-1,3-butadiene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Hexachlorocyclopentadiene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Hexachloroethane	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Indeno(1,2,3-cd)pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Isophorone	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
Naphthalene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	<u>WG1753989</u>	
1-Methylnaphthalene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
2-Methylnaphthalene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
Nitrobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
n-Nitrosodimethylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
n-Nitrosodiphenylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
n-Nitrosodi-n-propylamine	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
Phenanthrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	<u>WG1753989</u>	
Benzylbutyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
Bis(2-ethylhexyl)phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>	
Di-n-butyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Diethyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Dimethyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Di-n-octyl phthalate	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Pyrene	ND	<u>T8</u>	0.0333	1	10/10/2021 17:30	WG1753989	
Pyridine	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
1,2,4-Trichlorobenzene	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
Quinoline	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2-Methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
3&4-Methyl Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
4-Chloro-3-methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2-Chlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2,4-Dichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
2,4-Dimethylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	
4,6-Dinitro-2-methylphenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989	

Collected date/time: 09/21/21 00:00

Page 163 of 317

SAMPLE RESULTS - 04

L1414472

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
2,4-Dinitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989
2-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989
4-Nitrophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989
Pentachlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>
Phenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	WG1753989
2,4,6-Trichlorophenol	ND	<u>T8</u>	0.333	1	10/10/2021 17:30	<u>WG1753989</u>
(S) 2-Fluorophenol	60.1		12.0-120		10/10/2021 17:30	WG1753989
(S) Phenol-d5	56.9		10.0-120		10/10/2021 17:30	WG1753989
(S) Nitrobenzene-d5	54.1		10.0-122		10/10/2021 17:30	WG1753989
(S) 2-Fluorobiphenyl	61.0		15.0-120		10/10/2021 17:30	WG1753989
(S) 2,4,6-Tribromophenol	81.1		10.0-127		10/10/2021 17:30	WG1753989
(S) p-Terphenyl-d14	62.2		10.0-120		10/10/2021 17:30	WG1753989

Page 164 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

Method Blank (MB)

ivietnod Blank (IVIB)	<u>'</u>			
(MB) R3714755-2 10/10/21				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Acenaphthene	U		0.00539	0.0333
Acenaphthylene	U		0.00469	0.0333
Anthracene	U		0.00593	0.0333
Benzidine	U		0.0626	1.67
Benzo(a)anthracene	U		0.00587	0.0333
Benzo(b)fluoranthene	U		0.00621	0.0333
Benzo(k)fluoranthene	U		0.00592	0.0333
Benzo(g,h,i)perylene	U		0.00609	0.0333
enzo(a)pyrene	U		0.00619	0.0333
is(2-chlorethoxy)methane	U		0.0100	0.333
Bis(2-chloroethyl)ether	U		0.0110	0.333
,2-oxybis(1-chloropropane)	U		0.0144	0.333
Bromophenyl-phenylether	U		0.0117	0.333
Chloronaphthalene	U		0.00585	0.0333
-Chlorophenyl-phenylether	U		0.0116	0.333
hrysene	U		0.00662	0.0333
enz(a,h)anthracene	U		0.00923	0.0333
-Dichlorobenzene	U		0.00987	0.333
3-Dichlorobenzene	U		0.0101	0.333
Dichlorobenzene	U		0.00991	0.333
-Dichlorobenzidine	U		0.0123	0.333
-Dinitrotoluene	U		0.00955	0.333
i-Dinitrotoluene	U		0.0109	0.333
oranthene	U		0.00601	0.0333
uorene	U		0.00542	0.0333
xachlorobenzene	U		0.0118	0.333
exachloro-1,3-butadiene	U		0.0112	0.333
exachlorocyclopentadiene	U		0.0175	0.333
exachloroethane	U		0.0131	0.333
ndeno(1,2,3-cd)pyrene	U		0.00941	0.0333
sophorone	U		0.0102	0.333
-Methylnaphthalene	U		0.00426	0.333
-Methylnaphthalene	U		0.00420	0.333
laphthalene	U		0.00432	0.0333
litrobenzene	U		0.00830	0.0333
-Nitrosodimethylamine	U		0.0494	0.333
-Nitrosodimetriylamine	U		0.0494	0.333
-Nitrosodi-n-propylamine	U		0.0252	0.333
Phenanthrene			0.00661	0.333
	U			
Benzylbutyl phthalate	U		0.0104	0.333

Page 165 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

Method Blank (MB)

(MB) R3714755-2 10/10/2	1 15:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Bis(2-ethylhexyl)phthalate	U		0.0422	0.333	
Di-n-butyl phthalate	U		0.0114	0.333	
Diethyl phthalate	U		0.0110	0.333	
Dimethyl phthalate	U		0.0706	0.333	
Di-n-octyl phthalate	U		0.0225	0.333	
Pyrene	U		0.00648	0.0333	
Pyridine	U		0.0220	0.333	
1,2,4-Trichlorobenzene	U		0.0104	0.333	
4-Chloro-3-methylphenol	U		0.0108	0.333	
2-Chlorophenol	U		0.0110	0.333	
2-Methylphenol	U		0.0100	0.333	
3&4-Methyl Phenol	U		0.0104	0.333	
2,4-Dichlorophenol	U		0.00970	0.333	
2,4-Dimethylphenol	U		0.00870	0.333	
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	
2,4-Dinitrophenol	U		0.0779	0.333	
2-Nitrophenol	U		0.0119	0.333	
4-Nitrophenol	U		0.0104	0.333	
Pentachlorophenol	U		0.00896	0.333	
Phenol	U		0.0134	0.333	
2,4,6-Trichlorophenol	U		0.0107	0.333	
Quinoline	U		0.00861	0.333	
(S) Nitrobenzene-d5	56.8			10.0-122	
(S) 2-Fluorobiphenyl	70.9			15.0-120	
(S) p-Terphenyl-d14	73.3			10.0-120	
(S) Phenol-d5	64.7			10.0-120	
(S) 2-Fluorophenol	70.3			12.0-120	
(S) 2,4,6-Tribromophenol	85.0			10.0-127	

Laboratory Control Sample (LCS)

(LCS) R3714755-1 10/10	LCS) R3714755-1 10/10/21 14:39										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
Acenaphthene	0.666	0.464	69.7	38.0-120							
Acenaphthylene	0.666	0.467	70.1	40.0-120							
Anthracene	0.666	0.499	74.9	42.0-120							
Benzidine	1.33	0.480	36.1	10.0-120							
Renzo(a)anthracene	0.666	0.552	82 9	44 0-120							

Page 166 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

Laboratory Control Sample (LCS)

Laboratory Control	i Sumple (L	C3)			
(LCS) R3714755-1 10/10/21	1 14:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzo(b)fluoranthene	0.666	0.527	79.1	43.0-120	
Benzo(k)fluoranthene	0.666	0.519	77.9	44.0-120	
Benzo(g,h,i)perylene	0.666	0.538	80.8	43.0-120	
Benzo(a)pyrene	0.666	0.523	78.5	45.0-120	
Bis(2-chlorethoxy)methane	0.666	0.366	55.0	20.0-120	
Bis(2-chloroethyl)ether	0.666	0.502	75.4	16.0-120	
2,2-Oxybis(1-Chloropropane)	0.666	0.405	60.8	23.0-120	
4-Bromophenyl-phenylether	0.666	0.555	83.3	40.0-120	
2-Chloronaphthalene	0.666	0.452	67.9	35.0-120	
4-Chlorophenyl-phenylether	0.666	0.500	75.1	40.0-120	
Chrysene	0.666	0.504	75.7	43.0-120	
Dibenz(a,h)anthracene	0.666	0.537	80.6	44.0-120	
1,2-Dichlorobenzene	0.666	0.420	63.1	32.0-120	
1,3-Dichlorobenzene	0.666	0.407	61.1	30.0-120	
l,4-Dichlorobenzene	0.666	0.406	61.0	31.0-120	
3,3-Dichlorobenzidine	1.33	1.02	76.7	28.0-120	
,4-Dinitrotoluene	0.666	0.569	85.4	45.0-120	
,6-Dinitrotoluene	0.666	0.523	78.5	42.0-120	
luoranthene	0.666	0.538	80.8	44.0-120	
uorene	0.666	0.500	75.1	41.0-120	
lexachlorobenzene	0.666	0.556	83.5	39.0-120	
exachloro-1,3-butadiene	0.666	0.407	61.1	15.0-120	
exachlorocyclopentadiene	0.666	0.449	67.4	15.0-120	
lexachloroethane	0.666	0.395	59.3	17.0-120	
ideno(1,2,3-cd)pyrene	0.666	0.569	85.4	45.0-120	
sophorone	0.666	0.376	56.5	23.0-120	
-Methylnaphthalene	0.666	0.402	60.4	34.0-120	
2-Methylnaphthalene	0.666	0.390	58.6	34.0-120	
Naphthalene	0.666	0.355	53.3	18.0-120	
litrobenzene	0.666	0.361	54.2	17.0-120	
-Nitrosodimethylamine	0.666	0.313	47.0	10.0-125	
n-Nitrosodiphenylamine	0.666	0.490	73.6	40.0-120	
n-Nitrosodi-n-propylamine	0.666	0.425	63.8	26.0-120	
Phenanthrene	0.666	0.494	74.2	42.0-120	
Benzylbutyl phthalate	0.666	0.533	80.0	40.0-120	
Bis(2-ethylhexyl)phthalate	0.666	0.527	79.1	41.0-120	
Di-n-butyl phthalate	0.666	0.519	77.9	43.0-120	
Diethyl phthalate	0.666	0.510	76.6	43.0-120	
Dimethyl phthalate	0.666	0.485	72.8	43.0-120	
Di-n-octyl phthalate	0.666	0.505	75.8	40.0-120	

Page 167 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

Laboratory Control Sample (LCS)

(LCS) R3714755-1 10/10/2	114:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Pyrene	0.666	0.503	75.5	41.0-120	
Pyridine	0.666	0.262	39.3	10.0-120	
1,2,4-Trichlorobenzene	0.666	0.400	60.1	17.0-120	
4-Chloro-3-methylphenol	0.666	0.424	63.7	28.0-120	
2-Chlorophenol	0.666	0.458	68.8	28.0-120	
2-Methylphenol	0.666	0.453	68.0	35.0-120	
3&4-Methyl Phenol	0.666	0.537	80.6	42.0-120	
2,4-Dichlorophenol	0.666	0.434	65.2	25.0-120	
2,4-Dimethylphenol	0.666	0.401	60.2	15.0-120	
4,6-Dinitro-2-methylphenol	0.666	0.549	82.4	16.0-120	
2,4-Dinitrophenol	0.666	0.489	73.4	10.0-120	
2-Nitrophenol	0.666	0.462	69.4	20.0-120	
4-Nitrophenol	0.666	0.514	77.2	27.0-120	
Pentachlorophenol	0.666	0.609	91.4	29.0-120	
Phenol	0.666	0.387	58.1	28.0-120	
2,4,6-Trichlorophenol	0.666	0.543	81.5	37.0-120	
Quinoline	0.666	0.478	71.8	30.0-120	
(S) Nitrobenzene-d5			60.7	10.0-122	
(S) 2-Fluorobiphenyl			75.4	15.0-120	
(S) p-Terphenyl-d14			76.6	10.0-120	
(S) Phenol-d5			66.4	10.0-120	
(S) 2-Fluorophenol			70.9	12.0-120	

L1412037-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

101

10.0-127

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.666	ND	0.357	0.355	53.6	54.8	1	18.0-120			0.562	32
Acenaphthylene	0.666	ND	0.352	0.353	52.9	54.5	1	25.0-120			0.284	32
Anthracene	0.666	ND	0.438	0.380	65.8	58.6	1	22.0-120			14.2	29
Benzidine	1.33	ND	ND	ND	39.9	23.2	1	10.0-120		<u>J3</u>	55.3	40
Benzo(a)anthracene	0.666	ND	0.500	0.419	75.1	64.7	1	25.0-120			17.6	29
Benzo(b)fluoranthene	0.666	ND	0.469	0.388	70.4	59.9	1	19.0-122			18.9	31
Benzo(k)fluoranthene	0.666	ND	0.460	0.381	69.1	58.8	1	23.0-120			18.8	30
Benzo(g,h,i)perylene	0.666	ND	0.472	0.395	70.9	61.0	1	10.0-120			17.8	33
Benzo(a)pyrene	0.666	ND	0.477	0.397	71.6	61.3	1	24.0-120			18.3	30
Bis(2-chlorethoxy)methane	0.666	ND	ND	ND	43.7	43.1	1	10.0-120			4.21	34

(S) 2,4,6-Tribromophenol

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

L1412037-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412037-11 10/10/21 15:22 • (MS) R3714755-3 1	10/10/21 15:43 • (MSD) R3714755-4 10/10/21 16:04
---	--

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Bis(2-chloroethyl)ether	0.666	ND	ND	ND	45.6	39.8	1	10.0-120			16.4	40
2,2-Oxybis(1-Chloropropane)	0.666	ND	ND	ND	45.3	45.5	1	10.0-120			2.35	40
4-Bromophenyl-phenylether	0.666	ND	0.452	0.418	67.9	64.5	1	27.0-120			7.82	30
2-Chloronaphthalene	0.666	ND	0.344	0.340	51.7	52.5	1	20.0-120			1.17	32
4-Chlorophenyl-phenylether	0.666	ND	0.405	0.393	60.8	60.6	1	24.0-120			3.01	29
Chrysene	0.666	ND	0.457	0.383	68.6	59.1	1	21.0-120			17.6	29
Dibenz(a,h)anthracene	0.666	ND	0.482	0.393	72.4	60.6	1	10.0-120			20.3	32
1,2-Dichlorobenzene	0.666	ND	ND	ND	42.8	46.3	1	10.0-120			5.13	38
1,3-Dichlorobenzene	0.666	ND	ND	ND	39.0	43.8	1	10.0-120			8.82	40
1,4-Dichlorobenzene	0.666	ND	ND	ND	39.9	44.0	1	10.0-120			6.90	39
3,3-Dichlorobenzidine	1.33	ND	0.910	0.714	68.4	54.9	1	10.0-120			24.1	34
2,4-Dinitrotoluene	0.666	ND	0.486	0.451	73.0	69.6	1	30.0-120			7.47	31
2,6-Dinitrotoluene	0.666	ND	0.425	0.403	63.8	62.2	1	25.0-120			5.31	31
Fluoranthene	0.666	ND	0.487	0.410	73.1	63.3	1	18.0-126			17.2	32
Fluorene	0.666	ND	0.396	0.386	59.5	59.6	1	25.0-120			2.56	30
Hexachlorobenzene	0.666	ND	0.457	0.418	68.6	64.5	1	27.0-120			8.91	28
Hexachloro-1,3-butadiene	0.666	ND	ND	ND	41.3	46.8	1	10.0-120			9.69	38
Hexachlorocyclopentadiene	0.666	ND	ND	ND	40.8	31.0	1	10.0-120			30.0	40
Hexachloroethane	0.666	ND	ND	ND	37.7	41.8	1	10.0-120			7.66	40
Indeno(1,2,3-cd)pyrene	0.666	ND	0.509	0.433	76.4	66.8	1	10.0-120			16.1	32
Isophorone	0.666	ND	ND	ND	44.6	44.9	1	13.0-120			2.04	34
1-Methylnaphthalene	0.666	ND	ND	ND	44.6	48.0	1	10.0-120			4.61	36
2-Methylnaphthalene	0.666	ND	ND	ND	42.8	46.1	1	10.0-120			4.79	37
Naphthalene	0.666	ND	0.264	0.275	39.6	42.4	1	10.0-120			4.08	35
Nitrobenzene	0.666	ND	ND	ND	41.4	43.1	1	10.0-120			1.08	36
n-Nitrosodimethylamine	0.666	ND	ND	ND	36.3	40.6	1	10.0-127			8.32	40
n-Nitrosodiphenylamine	0.666	ND	0.380	0.347	57.1	53.5	1	17.0-120			9.08	29
n-Nitrosodi-n-propylamine	0.666	ND	0.343	ND	51.5	49.7	1	10.0-120			6.32	37
Phenanthrene	0.666	ND	0.422	0.382	63.4	59.0	1	17.0-120			9.95	31
Benzylbutyl phthalate	0.666	ND	0.477	0.403	71.6	62.2	1	23.0-120			16.8	30
Bis(2-ethylhexyl)phthalate	0.666	ND	0.472	0.393	70.9	60.6	1	17.0-126			18.3	30
Di-n-butyl phthalate	0.666	ND	0.466	0.390	70.0	60.2	1	30.0-120			17.8	29
Diethyl phthalate	0.666	ND	0.425	0.395	63.8	61.0	1	26.0-120			7.32	28
Dimethyl phthalate	0.666	ND	0.402	0.381	60.4	58.8	1	25.0-120			5.36	29
Di-n-octyl phthalate	0.666	ND	0.461	0.390	69.2	60.2	1	21.0-123			16.7	29
Pyrene	0.666	ND	0.450	0.388	67.6	59.9	1	16.0-121			14.8	32
Pyridine	0.666	ND	ND	ND	37.2	31.0	1	10.0-120			20.9	40
1,2,4-Trichlorobenzene	0.666	ND	ND	ND	43.4	48.0	1	12.0-120			7.33	37
4-Chloro-3-methylphenol	0.666	ND	0.352	ND	52.9	50.6	1	15.0-120			7.06	30
2-Chlorophenol	0.666	ND	0.356	0.338	53.5	52.2	1	15.0-120			5.19	37

Page 168 of 317

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

Page 169 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1414472-01,02,03,04

L1412037-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412037-11 10/10/21	15:22 • (MS) R37	714755-3 10/10	/21 15:43 • (MS	SD) R3714755-4	10/10/21 16:0)4						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2-Methylphenol	0.666	ND	0.382	0.341	57.4	52.6	1	11.0-120			11.3	40
3&4-Methyl Phenol	0.666	ND	0.437	0.389	65.6	60.0	1	12.0-123			11.6	38
2,4-Dichlorophenol	0.666	ND	0.339	ND	50.9	49.5	1	20.0-120			5.45	31
2,4-Dimethylphenol	0.666	ND	ND	ND	45.9	42.0	1	10.0-120			11.8	33
4,6-Dinitro-2-methylphenol	0.666	ND	ND	0.450	48.9	69.4	1	10.0-120			32.0	39
2,4-Dinitrophenol	0.666	ND	ND	0.452	36.5	69.8	1	10.0-121		<u>J3</u>	60.1	40
2-Nitrophenol	0.666	ND	0.350	0.369	52.6	56.9	1	12.0-120			5.29	39
4-Nitrophenol	0.666	ND	0.449	0.399	67.4	61.6	1	10.0-137			11.8	32
Pentachlorophenol	0.666	ND	0.444	0.433	66.7	66.8	1	10.0-160			2.51	31
Phenol	0.666	ND	ND	ND	49.7	41.2	1	12.0-120			21.4	38
2,4,6-Trichlorophenol	0.666	ND	0.424	0.387	63.7	59.7	1	19.0-120			9.12	32
Quinoline	0.666	ND	0.404	0.380	60.7	58.6	1	20.0-122			6.12	32
(S) Nitrobenzene-d5					45.0	49.7		10.0-122				
(S) 2-Fluorobiphenyl					53.8	56.8		15.0-120				
(S) p-Terphenyl-d14					66.1	58.6		10.0-120				
(S) Phenol-d5					56.3	50.6		10.0-120				

54.2

77.2

55.4

76.7

12.0-120

10.0-127

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

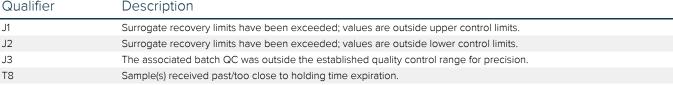
Qualifier	Description
-----------	-------------

times of preparation and/or analysis.

Sample Summary (Ss)

J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
T8	Sample(s) received past/too close to holding time expiration.

Ss



This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Pace Analytical National	12065 Lebanon Rd Mount Ju	uliet TN 37122
race Aliaivilcai NaiiOliai	12005 Lebanon Ru Mount Ju	JIIEL IIV 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

CHAIN OF CUSTODY RECORD

PAGE:	OF:
1	1

K197

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107 Website: clients.hallenvironmental.com

JB CO	NTRATOR: Pace T	COMPANY: P.	ACE TN			PHONE:	(800) 767-5859	FAX:	(615) 758-5859	П
DDRE	12065	Lebanon Rd				ACCOUNT#		EMAIL:		
TY, S	ATE, ZIP: Mt. Ju	liet, TN 37122								1
			BOTTLE		DOST PROPERTY.	LECTION	# CONTAINE	ANALYTICAL	LIV 14172 LIV COMMENTS	
EM 1	2109B64-015B	CLIENT SAMPLE ID	TYPE 40ZGU	MATRIX		DATE	2 Cr6, Total Cyanid	100000 EDF 7	L COMMENTS	4
			300 E37				THE RESIDENCE		-01	
_	2109B64-015C		120 ML NA35303	Soil			1 Total Coliform an	10000000000000000000000000000000000000	-02	
3	2109B64-016B		40ZGU	Soil	9/21/202	1 12 45:00 PM	2 Cr6, Total Cyanid	e in soil	-03	-
+	2109B64-016C	SLP-10	120 ML	Soil	9/21/202	1 12:45:00 PM	1 Total Coliform an	d E.Coli in soil	-d+	
5	2109B64-017B	SLP-03	4OZGU	Soil	9/21/202	1 1:15:00 PM	% Cr6, Total Cyanide	e in soil	-05	-
,	2109B64-017C	SLP-03	120 ML NA2S203	Soil	9/21/202	1.15.00 PM	1 Total Coliform an	d E.Coli in soil	-ots	
'	2109B64-018B	SLP-bd-09212021	40ZGU	Soil	9/21/202	1 1	& Cr6, Total Cyanid	e in soil	-07	-
3	2109B64-018C	SLP-bd-09212021	120 ML	Soil	9/21/202	1	1 Total Coliform an	d E.Coli in soil	>00	
CO Bo Co Su RA	Signed/Accur	ntact: N Pres.Correct/Ch used: N N mar/hr: N N	ace: Y_N					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,6+5=5cc Par	
	e include the LAB	ID and the CLIENT SAMPLE ID on all fi	nal reports. Please e-	mail results to	lab@hall	environmental	com. Please return all			
		9/21/2021 4:52 PM	10/	100	9/04	4 4.8	HARDO	REPORT TRANSA OPY (extra cost) FAX		
	shed By:		ived By:	- 1	Date:	Time:		FOR LAB U		-
inqui	shed By:	Date: Time: Recei	ived By:	1	Date:	Time	Temp of s	ample C	Attempt to Cool ?	
	TAT:	Standard RUSH	Next BD	2nd BD	3rd 1	BID [remp or s	and the same of th	Audity to Con	

CLIENT:	HALL	HALLENVANM		Pace L#	L1406936	L1406936-02,-04,-06,-08	
DATE ON:	9/22/2021	DATE OFF:		9/23/2021			
			Data entered into excel	into excel			
			spreadsheet by				
Sample No.	Dilution	Dilution mi filtered		ML 607			
1	A	0.001	<highest di<="" td=""><td>lution (If not a</td><td>Ill samples sha</td><td><highest (if="" all="" dil.<="" dilution="" not="" same="" samples="" share="" td="" the=""><td></td></highest></td></highest>	lution (If not a	Ill samples sha	<highest (if="" all="" dil.<="" dilution="" not="" same="" samples="" share="" td="" the=""><td></td></highest>	
2	8	0.0001	Then must ch	ange dilution	below to make	Then must change dilution below to make the calculation	
3	O	0.00001	correct)				
4	٥	0.000001	**Enter data into areas that are	nto areas that	are		
5			in blue font.	t.			
9		sample type:		0	(
7			5	3	33)		
		MPN/mL	MPN/mL From Table 4 Method 1681	Method 168	-		
STATES OF STREET					MPN		
Sample No.	Combination of Positives	ositives	MPN/mL	Dilution	Result	Log Values	
-	0	0	<0.1803	0.001	< 226.1	2.354239084	
2	0	0	< 0.1803	0.001	<223.5	2.349215	
3	0	0	< 0.1803	0.001	< 224.6	2.3513443	
4	0	0	<0.1803	0.001	₹219.5	2.341478001	
2					#DIV/0!	#DIV/0!	
9					#DIV/0!	#DIV/O!	
7					#DIV/0!	#DIV/O!	
						#DIV/0i	
					GEO MEAN	#DIV/0i	
	W	(MPN/1mL) From Table 4	Table 4				
[FCMPN/g]= -	(Largest Vol tested) X (% total solids-expressed as a decimal)	X (% total solid	s-expressed as	a decimal)			

% Total Solids = (expressed as a decimal)

	Percent Total Solids	al Solids				
Sample#	Initial Weight Wet Weigl Dry weight	Wet Weig	Dry weight	% Solids (expressed as a decimal)	Amount required Weight used	Weight used
1	1.27719	9.52644	7.85636	0.80	30.0	29.92328
2	1.28264	7.16966	6.03245	0.81	30.0	30.00241
8	1.27349	7.34334	6.14686	0.80	30.0	30.02351
4	1.26948	8.33284	7.07083	0.82	30.0	29.98639
5				#DIV/0i	30.0	
9				#DIV/0i	30.0	
7				#DIV/0i	30.0	

H:\DOCS\BIOMON\QA-QC Excel (Micro Calc)\2021 Calculated Sludge\HALLENVANM L1406936-02,-04,-06,-08 BIO-08&GEOD 2 A/21/2020 Page 1 of 1

	HALL
	ENVIRONMENTAL
-	ANALYSIS
	LABORATORY

CHAIN OF CUSTODY RECORD

PAGE:	OF:
1	1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

SUB CO	ONTRATOR: Pace	TN COMPANY: PACE	TN		PHONE:		(800) 767-5859 FAX (615) 758-5859	Ī
ADDRE	12065	Lebanon Rd			ACCOUNT	f#:	EMAIL.	1
CITY, S	TATE, ZIP: Mt. Ju	uliet, TN 37122						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTIO	N	L/V/447Z ANALYTICAL COMMENTS	
1	2109B64-015B	SLP-01	40ZGU	Soil	9/21/2021 10:10:00	AM	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	-(
2	2109B64-015C	SLP-01	120 ML	Soil	9/21/2021 10:10:00	AM	1 Total Coliform and E.Coli in soil- J and MDL	1
3	2109B64-016B	SLP-10	40ZGU	Soil	9/21/2021 12:45:00	PM	Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	-0
4	2109B64-016C	SLP-10	120 ML	Soil	9/21/2021 12 45:00	PM	1 Total Coliform and E.Coli in soil- J and MDL	
5	2109B64-017B	SLP-03	40ZGU	Soil	9/21/2021 1:15:00 F	M	Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	-2
6	2109B64-017C	SLP-03	120 ML	Soil	9/21/2021 1:15:00 F	M	1 Total Coliform and E.Coli in soil- J and MDL	
7	2109B64-018B	SLP-bd-09212021	40ZGU	Soil	9/21/2021		1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	-
8	2109B64-018C	SLP-bd-09212021	120 ML	Soil	9/21/2021		1 Total Coliform and E.Coli in soil- J and MDL	

clinquished By:	Date: 9/22/2021	Time: 8:28 AM	Received By:	Date:	Time;	REPORT TRANSMITTAL DESIRED.
elinquished By:	Date:	Time:	Received By	Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
Relinquished By:	Date:	Time	Received By:	Date:	Time	FOR LAB USE ONLY

8270 Skinner List

ATTACHMENT 1

	Region 5 Waste M Constituents of Concer	Region 5 Waste Management Branch "Skinner List" Constituents of Concern for Wastes from Petroleum Processes	nner List" leum Processes	
Inogganics				
Antimony	Gadmium		Service Control of the Control of th	
Arsenia	Chromium	Merenny	Vermethorn	
Bariams	Cobair	Merce	1	
Beryttimm	Gyunidown	Sedomium		

Benzene 12 Dichloraethane Ethylencedibromide (FDB) 144 Trioblancethane Carbon disulfide. 11 Dichloraethane Methylethylectone (MEK) Trionforothene Chlorobenzene Styrene Styrene Tehene Tehene Tehene (MEK)	Volatile Organics			
irde Li-Dichlernethane Methyl ethyldetone (MEK) T	Benzene	1.2-Dichloroethane	Ethylene-dibromide (EDB)	Lyl, L. Erichloraethane
E. Styrene Styrene T	Garborrdisulfides	11-Dichloroethane.	Mathyl ethyl-leetone (MEK)	Trienioroethen
dan Tolstone,	Chlorohenzene	1.4-Diawana	Citysono-	Tetrachloroethylene
	Chloroform	Bihydbenzenam	Teluene,	Xylenes (total)

Semivolatile Organics			
Acenaphthene	o-Cresol	Diethyl phthalate	Naphthalene
Anthracene	m-Cresol	2,4 Dimethylphenol	4-Nitrophenol
Benzo(a)anthracene	p-Cresol	Dimethyl phthalate	Phenanthrene
Benzo(b)fluroranthene	Dibenz(a,h)anthracene	2,4 Dinitrophenol	Phenol
Benzo(k)fluoranthene	Di-n-butyl phthalate	Fluoranthene	Pyrene
Benzo(a)pyrene	1,2-Dichlorobenzene*	Fluorene	Pyridine
Bis(2-ethylhexyl) phthalate	1,3-Dichlorobenzene*	Indeno(1,2,3-cd)pyrene	Quinoline
Chrysene	1,4-Dichlorobenzene*	Medical Letter (MTPP) *- can be tested as a volatile	*- can be tested as a volatile

Benzo(a)anthracene	Benzo(k)fluoranthene	Benzo(k)fluoranthene Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene
Benzo(b)fluoranthene	Benzo(a)pyrene	Chrysene*	

Note that 2-Methylnaphthalene is part of Appendix IX and is a CLP TCL organic. 1-Methylnaphthalene is not on these lists. 1-Methylnaphthalene Optional Semivolatile Organics

9
3
6
9
0
4
-

L1406936-01 2109B64-015B SLP-01 Please log for SV8270

L1406936-03 2109B64-016B SLP-10

L1406936-07 2109B64-018B SLP-BD-09212021 L1406936-05 2109B64-017B SLP-03

Time estimate: oh

Time spent: oh

Members

John V Hawkins (responsible)

Comments

Revised COC attached John V Hawkins

John V Hawkins Please make R4

7 October 2021 09:20

7 October 2021 07:14

OC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: MB-62945 SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBS Batch ID: 62945 RunNo: 81698 Prep Date: Analysis Date: 9/30/2021 9/30/2021 SeqNo: 2888548 Units: mq/Kq PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Fluoride ND 0.30

 Chloride
 ND
 1.5

 Nitrogen, Nitrite (As N)
 ND
 0.30

 Nitrogen, Nitrate (As N)
 ND
 0.30

 Sulfate
 ND
 1.5

Sample ID: LCS-62945 SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSS Batch ID: 62945 RunNo: 81698 Prep Date: 9/30/2021 Analysis Date: 9/30/2021 SeqNo: 2888549 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 1.5 0.30 1.500 0 102 90 110 Chloride 14 15.00 0 95.8 90 1.5 110 Nitrogen, Nitrite (As N) 3.2 0.30 3.000 0 107 90 110 7.500 O 99.8 90 Nitrogen, Nitrate (As N) 7.5 0.30 110 Sulfate 29 30.00 0 97.0 90 110

Sample ID: 2109B64-015AMS SampType: MS TestCode: EPA Method 300.0: Anions Client ID: SLP-01 Batch ID: 62945 RunNo: 81698 Prep Date: 9/30/2021 Analysis Date: 10/1/2021 SeqNo: 2888561 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 14 13.52 55.8 Fluoride 1.5 1.500 15 125 7.3 1.5 7.500 0 97.0 64.4 122 Nitrogen, Nitrate (As N)

18.72

90.0

42 2

138

Sample ID: 2109B64-015AMSD SampType: MSD TestCode: EPA Method 300.0: Anions Client ID: SLP-01 Batch ID: 62945 RunNo: 81698 Prep Date: 9/30/2021 Analysis Date: 10/1/2021 SeqNo: 2888562 Units: mg/Kg Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 20 14 13.52 56.4 15 Fluoride 1.5 1.500 125 0.0643 Nitrogen, Nitrate (As N) 7.1 1.5 7.500 0 95.0 64.4 122 2.07 20 Sulfate 45 7.5 30.00 18.72 87.7 42 2 138 1.54 20

Sample ID: 2109B64-016AMS SampType: MS TestCode: EPA Method 300.0: Anions

30.00

Client ID: **SLP-10** Batch ID: **62945** RunNo: **81698**

46

7.5

Prep Date: 9/30/2021 Analysis Date: 10/1/2021 SeqNo: 2888568 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Sulfate

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit
POL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 28 of 42

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: 2109B64-016AMS	SampT	уре: М S	3	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: SLP-10	Batch	ID: 62 9	945	F	RunNo: 8	1698				
Prep Date: 9/30/2021	Analysis D	ate: 10)/1/2021	8	SeqNo: 28	888568	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.3	1.5	1.500	1.672	38.8	15	125			
Chloride	32	7.5	15.00	22.91	62.2	36.7	168			
Nitrogen, Nitrate (As N)	6.9	1.5	7.500	0	91.5	64.4	122			
Sulfate	37	7.5	30.00	17.42	66.9	42.2	138			

Sample ID: 2109B64-016AMSI	S ampT	ype: MS	SD	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: SLP-10	Batch	1D: 62 9	945	F	RunNo: 8	1698				
Prep Date: 9/30/2021	Analysis D	ate: 10)/1/2021	S	SeqNo: 2	888569	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.4	1.5	1.500	1.672	46.2	15	125	4.81	20	
Chloride	36	7.5	15.00	22.91	90.5	36.7	168	12.4	20	
Nitrogen, Nitrate (As N)	7.5	1.5	7.500	0	101	64.4	122	9.45	20	
Sulfate	41	7.5	30.00	17 42	79.5	42.2	138	9.62	20	

Qualifiers:

Page 29 of 42

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Result

ND

ND

10

PQL

10

50

10.00

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: LCS-62781	SampTy _l	pe: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: LCSS	Batch I	ID: 62	781	F	RunNo: 8	1579				
Prep Date: 9/23/2021	Analysis Da	ite: 9/	25/2021	5	SeqNo: 2	883289	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49	10	50.00	0	97.5	68.9	135			
Surr: DNOP	4.9		5.000		98.3	70	130			
Sample ID: MB-62780	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: PBS	Batch I	ID: 62	780	F	RunNo: 8	1579				
Prep Date: 9/23/2021	Analysis Da	te: 9/	24/2021	9	SeqNo: 2	883291	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.9		10.00		99.3	70	130			
Sample ID: MB-62781	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	<u>'</u>
Client ID: PBS	Batch I	ID: 62	781	F	RunNo: 8	1579				
Prep Date: 9/23/2021	Analysis Da	te: 9/	25/2021	S	SeqNo: 2	883292	Units: mg/K	(g		

Sample ID: 2109B64-018AMS SampType: MS				TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: SLP-BD-0921202	1 Batch	Batch ID: 62781			RunNo: 81594						
Prep Date: 9/23/2021	Analysis Date: 9/27/202		27/2021	\$	883996	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	200	9.2	46.00	263.8	-135	39.3	155			S	
Surr: DNOP	4.5		4.600		97.8	70	130				

SPK value SPK Ref Val %REC LowLimit

103

HighLimit

130

70

%RPD

RPDLimit

Qual

Sample ID: 2109B64-018AM	SD Sampl	ype: MS	SD	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: SLP-BD-0921202	21 Batch	Batch ID: 62781			RunNo: 81594						
Prep Date: 9/23/2021	Analysis D	Analysis Date: 9/27/2021			SeqNo: 2883997			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	290	9.8	48.97	263.8	52.7	39.3	155	35.9	23.4	R	
Surr: DNOP	4.9		4.897		99.2	70	130	0	0		

Qualifiers:

Analyte

Surr: DNOP

Diesel Range Organics (DRO)

Motor Oil Range Organics (MRO)

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 30 of 42

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64** *13-Oct-21*

Client: Marathon

Project: Sanitary Lagoon Investgation Phase II

Sample ID: LCS-62780 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: LCSS Batch ID: 62780 RunNo: 81594

Prep Date: 9/23/2021 Analysis Date: 9/27/2021 SeqNo: 2884001 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 57
 10
 50.00
 0
 115
 68.9
 135

 Surr: DNOP
 5.6
 5.000
 111
 70
 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 31 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882065 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1000 1000 104 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882066 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 26
 5.0
 25.00
 0
 105
 78.6
 131

 Surr: BFB
 1200
 1000
 115
 70
 130

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: G81561 RunNo: 81561

Prep Date: Analysis Date: 9/26/2021 SeqNo: 2882163 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1100 1000 107 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: G81561 RunNo: 81561

Prep Date: Analysis Date: 9/26/2021 SeqNo: 2882164 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Gasoline Range Organics (GRO) 24 5.0 25.00 97.5 78.6 131 n

Surr: BFB 1200 1000 118 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 32 of 42

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2109B64**

13-Oct-21

Client: Marathon

Sample ID: mb

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: 100ng Ics	SampT	Type: LC	S	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batcl	h ID: R8	1513	F	RunNo: 8	1513				
Prep Date:	Analysis D	Date: 9/ 2	22/2021	8	SeqNo: 28	879783	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.8	70	130	•		•
Toluene	0.92	0.050	1.000	0	92.4	70	130			
Chlorobenzene	0.93	0.050	1.000	0	92.6	70	130			
Trichloroethene (TCE)	0.95	0.050	1.000	0	95.0	70	130			
Surr: Dibromofluoromethane	0.56		0.5000		112	70	130			
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		102	70	130			
Surr: Toluene-d8	0.52		0.5000		104	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		101	70	130			

TestCode: EPA Method 8260B: Volatiles

Client ID: PBS	Batc	h ID: R8	1513	F	RunNo: 8	1513				
Prep Date:	Analysis [Date: 9/	22/2021	S	SeqNo: 2	879822	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Chlorobenzene	ND	0.050								
Chloroform	ND	0.050								
1,1-Dichloroethane	ND	0.050								
Styrene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Xylenes, Total	ND	0.10								
1,4-Dioxane	ND	0.50								
Surr: Dibromofluoromethane	0.56		0.5000		113	70	130			
Surr: 1,2-Dichloroethane-d4	0.52		0.5000		104	70	130			
Surr: Toluene-d8	0.49		0.5000		98.2	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		95.1	70	130			

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batch	ID: S8	1575	R	RunNo: 8	1575				
Prep Date:	Analysis D	ate: 9/	24/2021	S	SeqNo: 2	882825	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.93	0.025	1.000	0	93.2	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 33 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: 2109B64

13-Oct-21

Client: Marathon

Sample ID: 2109b64-018a ms

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: S81575 RunNo: 81575 Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882825 Units: mq/Kq PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Toluene 0.82 0.050 1.000 0 82.1 70 130 Chlorobenzene 0.85 0.050 1.000 0 84.9 70 130 1,1-Dichloroethene 0.83 0.050 1.000 0 83.0 70 130 Trichloroethene (TCE) 0.86 0.050 1.000 0 85.6 70 130

TestCode: EPA Method 8260B: Volatiles

Surr: Dibromofluoromethane 0.51 0.5000 102 70 130 98.4 Surr: 1,2-Dichloroethane-d4 0.5000 70 0.49 130 Surr: Toluene-d8 0.48 0.5000 96.9 70 130 Surr: 4-Bromofluorobenzene 0.49 0.5000 97.8 70 130

Client ID: SLP-BD-09212021 Batch ID: **S81575** RunNo: 81575

SampType: MS

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882828 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 3.1 0.072 2.898 O 105 70 D Benzene 130 Toluene 2.4 0.14 2.898 0 82.3 70 130 D O 70 Chlorobenzene 2.5 0.14 2.898 85.2 130 D 0.14 2.898 0 97.4 49.9 D 1,1-Dichloroethene 2.8 132 0.14 0 97.5 52.9 D Trichloroethene (TCE) 2.8 2.898 126 Surr: Dibromofluoromethane 1.6 1.449 108 70 130 D Surr: 1,2-Dichloroethane-d4 1.5 1.449 105 70 130 D Surr: Toluene-d8 1.3 1.449 93.1 70 130 D Surr: 4-Bromofluorobenzene 1.5 1.449 107 70 130 D

Sample ID: 2109b64-018a msd SampType: MSD TestCode: EPA Method 8260B: Volatiles

Client ID: SLP-BD-09212021 Batch ID: S81575 RunNo: 81575

Prep Date:	Analysis [Date: 9/	24/2021	\$	SeqNo: 2	882829	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2.8	0.072	2.898	0	94.9	70	130	10.5	20	D
Toluene	2.3	0.14	2.898	0	79.1	70	130	4.00	20	D
Chlorobenzene	2.3	0.14	2.898	0	80.8	70	130	5.31	20	D
1,1-Dichloroethene	2.5	0.14	2.898	0	86.9	49.9	132	11.4	20	D
Trichloroethene (TCE)	2.6	0.14	2.898	0	88.0	52.9	126	10.2	20	D
Surr: Dibromofluoromethane	1.5		1.449		105	70	130	0	0	D
Surr: 1,2-Dichloroethane-d4	1.4		1.449		98.2	70	130	0	0	D
Surr: Toluene-d8	1.4		1.449		93.3	70	130	0	0	D
Surr: 4-Bromofluorobenzene	1.5		1.449		102	70	130	0	0	D

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RI. Reporting Limit Page 34 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Sample ID: mb	Sampi	ype: ME	SLK	res	icode: El	A wethod	8260B: Voiat	iies		
Client ID: PBS	Batch	n ID: S8	1575	R	RunNo: 81	1575				
Prep Date:	Analysis D	ate: 9/ 2	24/2021	S	SeqNo: 28	382837	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.030								
, = = op. op		5.10								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Commis ID:l	0		N. 16	T	·Oada: =:	NA 84-41- 1	0000D W 1 4			
Sample ID: mb		ype: ME					8260B: Volat	iles		
Client ID: PBS	Batcl	h ID: S8	1575	R	RunNo: 8	1575				
Prep Date:	Analysis D	Date: 9/	24/2021	S	SeqNo: 28	882837	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.49		0.5000		97.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		89.4	70	130			
Surr: Toluene-d8	0.52		0.5000		105	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		100	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 36 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investgation Phase II

Sample ID: 100ng 8260 lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: B8	1470	F	RunNo: 8	1470				
Prep Date:	Analysis D	ate: 9/	23/2021	8	SeqNo: 2	879190	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	19	1.0	20.00	0	94.6	70	130			
Chlorobenzene	19	1.0	20.00	0	95.3	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	94.3	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	94.0	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.7		10.00		97.0	70	130			

Sample ID: mb2 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW Batch ID: B81470 RunNo: 81470

Prep Date: Analysis Date: 9/23/2021 SeqNo: 2879191 Units: μg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: mb2 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: **B81470** RunNo: 81470 Prep Date: Analysis Date: 9/23/2021 SeqNo: 2879191 Units: µq/L SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual 4-Chlorotoluene ND 1.0 cis-1.2-DCE ND 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 ND Dibromomethane 1.0 1.2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1.1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 ND 2.0 2,2-Dichloropropane 1,1-Dichloropropene ND 1.0 Hexachlorobutadiene ND 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Styrene ND 1.0 tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1.1.2.2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 ND trans-1,2-DCE 1.0 trans-1,3-Dichloropropene ND 1.0 ND 1.0 1,2,3-Trichlorobenzene 1.2.4-Trichlorobenzene ND 1.0 1,1,1-Trichloroethane ND 1.0 1.1.2-Trichloroethane ND 1.0 Trichloroethene (TCE) ND 1.0 Trichlorofluoromethane ND 1.0 1,2,3-Trichloropropane ND 2.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: mb2	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: B8	1470	F	RunNo: 8	1470				
Prep Date:	Analysis D	Date: 9/	23/2021	5	SeqNo: 2	879191	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.6		10.00		96.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109B64** *13-Oct-21*

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: MB-63122 SampType: MBLK TestCode: EPA Method 7471B: Mercury

Client ID: **PBS** Batch ID: **63122** RunNo: **81906**

Prep Date: 10/7/2021 Analysis Date: 10/8/2021 SegNo: 2898222 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LLLCS-63122 SampType: LCSLL TestCode: EPA Method 7471B: Mercury

Client ID: BatchQC Batch ID: 63122 RunNo: 81906

Prep Date: 10/7/2021 Analysis Date: 10/8/2021 SeqNo: 2898223 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0071 0.033 0.006660 0 107 70 130 J

Sample ID: LCS-63122 SampType: LCS TestCode: EPA Method 7471B: Mercury

Client ID: LCSS Batch ID: 63122 RunNo: 81906

Prep Date: 10/7/2021 Analysis Date: 10/8/2021 SeqNo: 2898224 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.17 0.033 0.1667 0 102 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 40 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: 2109B64

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: MB-63108 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 63108 RunNo: 81872

Prep Date: 10/6/2021	Analysis D	ate: 10)/7/2021	5	SeqNo: 2	896569	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	ND	2.5								
Manganese	ND	0.20								
Nickel	ND	0.50								
Selenium	ND	2.5								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	ND	2.5								

Sample ID: LCS-63108	SampT	ype: LC	S	Tes	tCode: EF	PA Method	6010B: Soil	Metals		
Client ID: LCSS	Batch	n ID: 63 ′	108	F	RunNo: 8	1872				
Prep Date: 10/6/2021	Analysis D	ate: 10	0/7/2021	S	SeqNo: 28	396570	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	23	2.5	25.00	0	91.6	80	120			
Arsenic	23	2.5	25.00	0	90.1	80	120			
Barium	23	0.10	25.00	0	92.8	80	120			
Beryllium	24	0.15	25.00	0	95.6	80	120			
Cadmium	23	0.10	25.00	0	92.3	80	120			
Chromium	24	0.30	25.00	0	94.1	80	120			
Cobalt	23	0.30	25.00	0	93.1	80	120			
Iron	24	2.5	25.00	0	97.5	80	120			
Manganese	23	0.20	25.00	0	92.7	80	120			
Nickel	23	0.50	25.00	0	93.0	80	120			
Selenium	21	2.5	25.00	0	85.1	80	120			
Silver	4.7	0.25	5.000	0	93.6	80	120			
Vanadium	23	2.5	25.00	0	93.8	80	120			
Zinc	22	2.5	25.00	0	87.9	80	120			

Sample ID: 2109B64-015AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals

Client ID: SLP-01 Batch ID: 63108 RunNo: 81872

Prep Date: Analysis Date: 10/7/2021 10/6/2021 SeqNo: 2896577 Units: mg/Kg

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range RL Reporting Limit

Page 41 of 42

Hall Environmental Analysis Laboratory, Inc.

WO#: 2109B64

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Invesigation Phase II

Sample ID: 2109B64-015AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals Client ID: SLP-01 Batch ID: 63108 RunNo: 81872 Analysis Date: 10/7/2021 SeqNo: 2896577 Units: mg/Kg Prep Date: 10/6/2021 PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Beryllium 20 0.14 24.02 1.054 77.2 75 125 29 0.29 24.02 81.2 75 125 Chromium 9 156 Vanadium 38 2.4 24.02 15.54 95.2 75 125

Sample ID: 2109B64-015AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals Client ID: SLP-01 Batch ID: 63108 RunNo: 81872 Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2896578 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 0.15 1.054 78.5 75 2.94 Beryllium 20 24.35 125 20 Chromium 30 0.29 24.35 9.156 86.1 75 125 4.93 20 Vanadium 39 2.4 24.35 15.54 96.8 75 125 1.83 20

Sample ID: MB-63108 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals Client ID: PBS Batch ID: 63108 RunNo: 81872 Units: mg/Kg Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2896775 Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

ND 0.30 Lead

Sample ID: LCS-63108 TestCode: EPA Method 6010B: Soil Metals SampType: LCS Client ID: LCSS Batch ID: 63108 RunNo: 81872 Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2896777 Units: mg/Kg SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit Qual Lead 0.30 25.00 90.1 120

Sample ID: 2109B64-015AMS SampType: MS TestCode: EPA Method 6010B: Soil Metals Client ID: SLP-01 Batch ID: 63108 RunNo: 81872 Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2896781 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result POL LowLimit HighLimit Qual I ead 18 0.29 24.02 2.085 65.1 75 125 S

Sample ID: 2109B64-015AMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: SLP-01 RunNo: 81872 Batch ID: 63108 Analysis Date: 10/7/2021

Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte

Lead 18 0.29 24.35 2.085 67.1 75 125 3.92 20 S

Qualifiers:

Prep Date:

Value exceeds Maximum Contaminant Level

10/6/2021

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

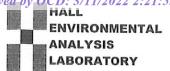
ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

SeqNo: 2896782


Units: mq/Kq

Value above quantitation range Е

Analyte detected below quantitation limits

Sample pH Not In Range

RI. Reporting Limit Page 42 of 42

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Marathon Work Order Number: 2109B64 RcptNo: 1 Received By: **Desiree Dominguez** 9/21/2021 4:30:00 PM Completed By: **Desiree Dominguez** 9/21/2021 4:31:53 PM In 9/22/21 Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? No 🗌 Yes 🗸 NA 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C No 🗌 Yes 🗸 NA 🗌 5. Sample(s) in proper container(s)? Yes 🗸 No 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? No 🗌 Yes 🗸 8. Was preservative added to bottles? No V Yes NA 📗 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes 🗸 No 🗌 NA 🗌 10. Were any sample containers received broken? Yes 🗆 No 🗸 # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🔲 13. Is it clear what analyses were requested? Yes 🗸 No 🗌 Checked by: DAD 9/21/21 (015-020) SIA 9-22/21 (011-018) 14. Were all holding times able to be met? Yes 🗸 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes NA 🗸 No _ Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 2.2 Good Yes

ENVIRONMENTAL LABORATORY ANALYSIS HALL

CHAIN OF CUSTODY RECORD PAGE 1

4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory TEL: 505-345-3975

FAX: 505-345-4107

Website: clients.hallenvironmental.com

SUB	SUB CONTRATOR: Pace TN	TN COMPANY: PACE TN	Ľ		PHONE:	(800) 767-5859 FAX: (615) 758-5859
ADDRESS		12065 Lebanon Rd			ACCOUNT#:	EMAIL:
CITY,	, STATE, ZIP. Mt. Ju	CITY, STATE, ZIP. Mt. Juliet, TN 37122				
ITEM	M SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	#OMMENTS #UNITATION #UNITATI
1	2109B64-015B SLP-01	SLP-01	40ZGU	Soil	9/21/2021 10:10:00 AM	9/21/2021 10:10:00 AW 1 Skinner List SVOC,Cr6, Total Cyanide in soil- 3 and MDL
7	2109B64-015C SLP-01	SLP-01	120 ML	Soil	9/21/2021 10:10:00 AM	9/21/2021 10:10:00 AM 1 Total Coliform and E.Coli in soil- J and MDL
m	2109B64-016B SLP-10	SLP-10	40ZGU	Soil	9/21/2021 12:45:00 PM	9/21/2021 12:45:00 PM 1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL
4	2109B64-016C SLP-10	SLP-10	120 ML	Soil	9/21/2021 12:45:00 PM	9/21/2021 12:45:00 PM 1 Total Coliform and E.Coli in soil- J and MDL
2	2109B64-017B SLP-03	SLP-03	40ZGU	Soil	9/21/2021 1:15:00 PM	9/21/2021 1:15:00 PM 1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL
9	2109B64-017C SLP-03	SLP-03	120 ML	Soil	9/21/2021 1:15:00 PM	1 Total Coliform and E.Coli in soil- J and MDL
^		2109B64-018B SLP-bd-09212021	40ZGU	Soil	9/21/2021	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL
ω	2109B64-018C	2109B64-018C SLP-bd-09212021	120 ML	Soil	9/21/2021	1 Total Coliform and E.Coli in soil- J and MDL

	ì	
	;	
	;	
	١	
	¢	
	ζ	
	,	
	ζ	
	Ì	
	i	
	١	
	į	
	•	
	ì	
	֡	

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:		Date: Time: 8:28 AM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY
						Temp of samples C Attempt to Cool ?
TAT:	Standard 🔀	RUSH	Next BD		3rd BD	
						Comments:

HALL ENVIRONMENTAL ANALYSIS LABORATORY

CHAIN OF CUSTODY RECORD PAGE: 1 OFF 1

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Hall Environmental Analysis Laboratory

Website: clients.hallenvironmental.com

SUB CC	SUB CONTRATOR: Pace TN	TN COMPANY: PACE TN	ľN		PHONE	(800) 767-5859 FAX: (615) 758-5859
ADDRESS		12065 Lebanon Rd			ACCOUNT #:	EMAIL:
CITY, S	STATE, ZIP: Mt. J.	CITY, STATE, ZIP. Mt. Juliet, TN 37122				
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	ANALYTICAL COMMENTS
п	2109B64-015B SLP-01	SLP-01	40ZGU	Soil	9/21/2021 10:10:00 AM	9/21/2021 10:10:00 AW 1 Skinner List SVOC, Cr6, Total Cyanide in soil- J and MDL
2	2109B64-015C SLP-01	SLP-01	120 ML	Soil	9/21/2021 10:10:00 AM	9/21/2021 10:10:00 AM 1 Total Coliform and E.Coli in soil- J and MDL
3	2109B64-016B SLP-10	SLP-10	40ZGU	Soil	9/21/2021 12:45:00 PM	9/21/2021 12:45:00 PW 1 Skinner List SVOC,Cr6, Total Cyanide in soil- 3 and MDL
4	2109B64-016C SLP-10	SLP-10	120 ML	Soil	9/21/2021 12:45:00 PM	9/21/2021 12:45:00 PM Total Coliform and E.Coli in soil- J and MDL
2	2109B64-017B SLP-03	SLP-03	40ZGU	Soil	9/21/2021 1:15:00 PM	1 Skinner List SVOC, Cr6, Total Cyanide in soil- J and MDL
9	2109B64-017C SLP-03	SLP-03	120 ML	Soil	9/21/2021 1:15:00 PM	1 Total Coliform and E.Coli in soil- J and MDL
7	2109B64-018B	2109B64-018B SLP-bd-09212021	40ZGU	Soil	9/21/2021	1 Skinner List SVOC, Cr6, Total Cyanide in soil- J and MDL
ω	2109B64-018C	2109B64-018C SLP-bd-09212021	120 ML	Soil	9/21/2021	1 Total Coliform and E.Coli in soil- J and MDL

	Thank you.
	Please return all coolers and blue ice.
	Please e-mail results to lab@hallenvironmental.com.
SPECIAL INSTRUCTIONS / COMMENTS:	Please include the LAB ID and the CLIENT SAMPLE ID on all final reports.

Relinquished By:	Date: Time: Received By: 9/22/2021	Time: 8:28 AM	Received By:	ď	Date:	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Time:	Received By:		Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLINE
Relinquished By:	Date:	Time:	Received By:	Q	Date:	Time:	FOR LAB USE ONLY
TAT:	Standard 🔀	RUSH	Next BD	2nd BD	3rd BD		Temp of samples C Attempt to Cool ?
						1	Comments:

TABLE 1. SOIL ANALYTE LIST MARATHON PETROLEM COMPANY GALLUP REFINING DEVISION, GALLUP, NEW MEXICO

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/3352 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020 —
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020
Chloride	EPA Method 300
Fluoride	EPA Method 300
Nitrate	EPA Method 300
Nitrite	EPA Method 300.3
Sulfate	EPA Method 300.3
Total coliform	SM922SB (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
E. coli	SM92238 <i>Qaxana</i>
Skinner list VOC	SW-846 Method 8260
Skinner list SVOC	SW-846 Method 8270 ++++
TPH - GRO, DRO, and MRO	SW-846 Method 8015B

Notes:

EPA = Environmental Protection Agency

SW-846 = EPA Solid Waste Test Method

VOC = volitile organic componds

SVOC = Semi-volitile organic componds

TPH = Total petroleum hydrocarbons

GRO = Gasoline range organics (C5-C10)

DRO = Diesel range organics (>C10-C28)

MRO = Motor oil range organics (>C28-C36)

Total and dissoved metals will be analyzed

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 13, 2021

Brian McLoughlin Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: FAX

RE: Sanitary Lagoon Investigation Phase II OrderNo.: 2109C60

Dear Brian McLoughlin:

Hall Environmental Analysis Laboratory received 7 sample(s) on 9/22/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-BD-09222021

Project: Sanitary Lagoon Investigation Phase II **Collection Date:** 9/22/2021

Lab ID: 2109C60-001 **Matrix:** MEOH (SOIL) **Received Date:** 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed B	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS						Analyst: SB	
Diesel Range Organics (DRO)	ND	4.7	9.6		mg/Kg	1	9/24/2021 6:04:41 PM	62799
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	9/24/2021 6:04:41 PM	62799
Surr: DNOP	94.2	0	70-130		%Rec	1	9/24/2021 6:04:41 PM	62799
EPA METHOD 8015D: GASOLINE RANG	SE .						Analyst: NSB	
Gasoline Range Organics (GRO)	470	9.0	14		mg/Kg	5	9/25/2021 5:28:08 AM	B81560
Surr: BFB	222	0	70-130	S	%Rec	5	9/25/2021 5:28:08 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	4.7	1.5	1.5		mg/Kg	5	10/6/2021 10:17:17 PM	63078
Chloride	93	7.5	7.5		mg/Kg	5	10/6/2021 10:17:17 PM	
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 10:17:17 PM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 10:17:17 PM	63078
Sulfate	13	7.5	7.5		mg/Kg	5	10/6/2021 10:17:17 PM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0032	0.0025	0.031	J	mg/Kg	1	9/30/2021 9:55:53 AM	62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.4		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Arsenic	1.4	1.4	2.4	J	mg/Kg	1	9/27/2021 1:57:43 PM	62806
Barium	430	0.29	0.48		mg/Kg	5	9/27/2021 3:56:24 PM	62806
Beryllium	0.77	0.028	0.14		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Cadmium	ND	0.048	0.096		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Chromium	5.8	0.14	0.29		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Cobalt	3.4	0.058	0.29		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Iron	10000	240	240		mg/Kg	100	9/27/2021 3:58:30 PM	62806
Lead	3.0	0.26	0.29		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Manganese	460	0.79	0.96		mg/Kg	5	9/27/2021 3:56:24 PM	62806
Nickel	6.9	0.19	0.48		mg/Kg	1	9/27/2021 6:47:50 PM	62806
Selenium	ND	2.1	2.4		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Silver	ND	0.14	0.24		mg/Kg	1	9/27/2021 6:47:50 PM	62806
Vanadium	12	0.11	2.4		mg/Kg	1	9/27/2021 1:57:43 PM	62806
Zinc	10	1.3	2.4		mg/Kg	1	9/27/2021 1:57:43 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	1.9	0.10	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Toluene	0.51	0.070	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Ethylbenzene	2.3	0.13	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.31	0.43	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.12	0.54	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.21	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-BD-09222021

Project: Sanitary Lagoon Investigation Phase II **Collection Date:** 9/22/2021

Lab ID: 2109C60-001 **Matrix:** MEOH (SOIL) **Received Date:** 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	Α
2-Butanone	ND	2.4	2.7	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Carbon disulfide	ND	0.22	2.7	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Chlorobenzene	ND	0.098	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Chloroform	ND	0.077	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
1,1-Dichloroethane	ND	0.16	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Styrene	ND	0.074	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Tetrachloroethene (PCE)	ND	0.15	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
1,1,1-Trichloroethane	ND	0.12	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Trichloroethene (TCE)	ND	0.11	0.22	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Xylenes, Total	6.4	0.29	0.43	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
1,4-Dioxane	ND	3.1	3.3	D	mg/Kg	20	9/24/2021 7:17:08 PM	S81575
Surr: Dibromofluoromethane	93.8		70-130	D	%Rec	20	9/24/2021 7:17:08 PM	S81575
Surr: 1,2-Dichloroethane-d4	89.6		70-130	D	%Rec	20	9/24/2021 7:17:08 PM	S81575
Surr: Toluene-d8	94.4		70-130	D	%Rec	20	9/24/2021 7:17:08 PM	S81575
Surr: 4-Bromofluorobenzene	103		70-130	D	%Rec	20	9/24/2021 7:17:08 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-EB-09222021

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 10:00:00 AMLab ID:2109C60-002Matrix: AQUEOUSReceived Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	Α
Benzene	ND	0.23	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Toluene	ND	0.20	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Ethylbenzene	ND	0.21	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Methyl tert-butyl ether (MTBE)	ND	0.39	1.0		μg/L	1	9/23/2021 6:15:14 PM	N V81541
1,2-Dichloroethane (EDC)	ND	0.25	1.0		μg/L	1	9/23/2021 6:15:14 PM	N V81541
1,2-Dibromoethane (EDB)	ND	0.30	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
2-Butanone	ND	2.0	10		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Carbon disulfide	2.4	0.59	10	J	μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Chlorobenzene	ND	0.16	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Chloroform	ND	0.13	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
1,1-Dichloroethane	ND	0.27	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Styrene	ND	0.14	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Tetrachloroethene (PCE)	ND	0.36	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
1,1,1-Trichloroethane	ND	0.30	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Trichloroethene (TCE)	ND	0.20	1.0		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Xylenes, Total	ND	0.37	1.5		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
1,4-Dioxane	ND	7.0	10		μg/L	1	9/23/2021 6:15:14 PM	1 V81541
Surr: 1,2-Dichloroethane-d4	102	0	70-130		%Rec	1	9/23/2021 6:15:14 PM	1 V81541
Surr: 4-Bromofluorobenzene	101	0	70-130		%Rec	1	9/23/2021 6:15:14 PM	1 V81541
Surr: Dibromofluoromethane	106	0	70-130		%Rec	1	9/23/2021 6:15:14 PM	1 V81541
Surr: Toluene-d8	99.1	0	70-130		%Rec	1	9/23/2021 6:15:14 PM	1 V81541

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-09

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 8:30:00 AMLab ID:2109C60-003Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed H	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SB	
Diesel Range Organics (DRO)	410	4.6	9.3		mg/Kg	1	9/27/2021 8:44:29 PM	62799
Motor Oil Range Organics (MRO)	ND	47	47		mg/Kg	1	9/27/2021 8:44:29 PM	62799
Surr: DNOP	97.4	0	70-130		%Rec	1	9/27/2021 8:44:29 PM	62799
EPA METHOD 8015D: GASOLINE RANGI	E						Analyst: NSB	
Gasoline Range Organics (GRO)	890	38	57		mg/Kg	20	9/25/2021 5:51:29 AM	B81560
Surr: BFB	183	0	70-130	S	%Rec	20	9/25/2021 5:51:29 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	4.0	1.5	1.5		mg/Kg	5	10/6/2021 10:42:07 PM	63078
Chloride	32	7.5	7.5		mg/Kg	5	10/6/2021 10:42:07 PM	63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 10:42:07 PM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 10:42:07 PM	63078
Sulfate	12	7.5	7.5		mg/Kg	5	10/6/2021 10:42:07 PM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	ND	0.0025	0.031		mg/Kg	1	9/30/2021 9:58:03 AM	62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.5		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Arsenic	ND	1.4	2.5		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Barium	390	0.29	0.49		mg/Kg	5	9/27/2021 4:00:34 PM	62806
Beryllium	0.81	0.029	0.15		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Cadmium	ND	0.049	0.098		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Chromium	5.9	0.15	0.29		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Cobalt	3.3	0.059	0.29		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Iron	12000	250	250		mg/Kg	100	9/27/2021 4:02:40 PM	62806
Lead	2.4	0.26	0.29		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Manganese	310	0.81	0.98		mg/Kg	5	9/27/2021 4:00:34 PM	62806
Nickel	6.6	0.19	0.49		mg/Kg	1	9/27/2021 6:49:16 PM	62806
Selenium	ND	2.2	2.5		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Silver	ND	0.14	0.25		mg/Kg	1	9/27/2021 6:49:16 PM	62806
Vanadium	12	0.11	2.5		mg/Kg	1	9/27/2021 1:59:59 PM	62806
Zinc	9.7	1.3	2.5		mg/Kg	1	9/27/2021 1:59:59 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	6.9	0.11	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Toluene	17	0.073	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Ethylbenzene	22	0.14	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.32	0.45	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.13	0.57	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.22	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-09

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 8:30:00 AMLab ID:2109C60-003Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	ND	2.5	2.8	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Carbon disulfide	ND	0.23	2.8	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Chlorobenzene	ND	0.10	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Chloroform	ND	0.081	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
1,1-Dichloroethane	ND	0.17	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Styrene	ND	0.077	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Tetrachloroethene (PCE)	ND	0.16	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
1,1,1-Trichloroethane	ND	0.13	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Trichloroethene (TCE)	ND	0.11	0.23	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Xylenes, Total	59	0.30	0.45	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
1,4-Dioxane	ND	3.2	3.4	D	mg/Kg	20	9/24/2021 7:44:06 PM	S81575
Surr: Dibromofluoromethane	102		70-130	D	%Rec	20	9/24/2021 7:44:06 PM	S81575
Surr: 1,2-Dichloroethane-d4	95.7		70-130	D	%Rec	20	9/24/2021 7:44:06 PM	S81575
Surr: Toluene-d8	102		70-130	D	%Rec	20	9/24/2021 7:44:06 PM	S81575
Surr: 4-Bromofluorobenzene	110		70-130	D	%Rec	20	9/24/2021 7:44:06 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-05

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 9:25:00 AMLab ID:2109C60-004Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SB	
Diesel Range Organics (DRO)	14	4.5	9.2		mg/Kg	1	9/27/2021 1:17:59 PM	62827
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	9/27/2021 1:17:59 PM	62827
Surr: DNOP	80.2	0	70-130		%Rec	1	9/27/2021 1:17:59 PM	62827
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSE	3
Gasoline Range Organics (GRO)	65	8.6	13		mg/Kg	5	9/25/2021 6:15:03 AM	B81560
Surr: BFB	140	0	70-130	S	%Rec	5	9/25/2021 6:15:03 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	2.9	1.5	1.5		mg/Kg	5	10/6/2021 11:06:55 PN	1 63078
Chloride	94	7.5	7.5		mg/Kg	5	10/6/2021 11:06:55 PN	1 63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 11:06:55 PN	1 63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 11:06:55 PN	1 63078
Sulfate	ND	7.5	7.5		mg/Kg	5	10/6/2021 11:06:55 PM	d 63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	ND	0.0028	0.035		mg/Kg	1	9/30/2021 10:00:13 AM	A 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.5		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Arsenic	ND	1.4	2.5		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Barium	220	0.059	0.098		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Beryllium	0.79	0.029	0.15		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Cadmium	ND	0.049	0.098		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Chromium	6.6	0.15	0.30		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Cobalt	3.7	0.059	0.30		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Iron	12000	250	250		mg/Kg	100	9/27/2021 4:06:50 PM	62806
Lead	3.0	0.26	0.30		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Manganese	300	0.82	0.98		mg/Kg	5	9/27/2021 4:04:44 PM	62806
Nickel	7.2	0.19	0.49		mg/Kg	1	9/27/2021 6:50:42 PM	62806
Selenium	ND	2.2	2.5		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Silver	ND	0.14	0.25		mg/Kg	1	9/27/2021 6:50:42 PM	62806
Vanadium	14	0.11	2.5		mg/Kg	1	9/27/2021 2:02:16 PM	62806
Zinc	11	1.3	2.5		mg/Kg	1	9/27/2021 2:02:16 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	١
Benzene	0.46	0.099	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Toluene	ND	0.066	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Ethylbenzene	0.29	0.13	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.29	0.41	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.12	0.51	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.20	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-05

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 9:25:00 AMLab ID:2109C60-004Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	ND	2.2	2.6	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Carbon disulfide	ND	0.21	2.6	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Chlorobenzene	ND	0.093	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Chloroform	ND	0.073	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
1,1-Dichloroethane	ND	0.15	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Styrene	ND	0.070	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Tetrachloroethene (PCE)	ND	0.14	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
1,1,1-Trichloroethane	ND	0.11	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Trichloroethene (TCE)	ND	0.10	0.21	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Xylenes, Total	0.67	0.27	0.41	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
1,4-Dioxane	ND	2.9	3.1	D	mg/Kg	20	9/24/2021 8:11:01 PM	S81575
Surr: Dibromofluoromethane	99.0		70-130	D	%Rec	20	9/24/2021 8:11:01 PM	S81575
Surr: 1,2-Dichloroethane-d4	97.0		70-130	D	%Rec	20	9/24/2021 8:11:01 PM	S81575
Surr: Toluene-d8	100		70-130	D	%Rec	20	9/24/2021 8:11:01 PM	S81575
Surr: 4-Bromofluorobenzene	104		70-130	D	%Rec	20	9/24/2021 8:11:01 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-06

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 10:00:00 AMLab ID:2109C60-005Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed F	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	8.9	4.5	9.2	J	mg/Kg	1	9/27/2021 4:49:47 PM	62827
Motor Oil Range Organics (MRO)	ND	46	46		mg/Kg	1	9/27/2021 4:49:47 PM	62827
Surr: DNOP	88.6	0	70-130		%Rec	1	9/27/2021 4:49:47 PM	62827
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	150	7.4	11		mg/Kg	5	9/25/2021 6:38:26 AM	B81560
Surr: BFB	142	0	70-130	S	%Rec	5	9/25/2021 6:38:26 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	4.4	1.5	1.5		mg/Kg	5	10/6/2021 11:56:34 PM	63078
Chloride	88	7.5	7.5		mg/Kg	5	10/6/2021 11:56:34 PM	
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 11:56:34 PM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/6/2021 11:56:34 PM	63078
Sulfate	8.0	7.5	7.5		mg/Kg	5	10/6/2021 11:56:34 PM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0028	0.0028	0.035	J	mg/Kg	1	9/30/2021 10:02:20 AM	62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.7	2.6		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Arsenic	ND	1.5	2.6		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Barium	420	0.31	0.52		mg/Kg	5	9/27/2021 4:08:55 PM	62806
Beryllium	0.80	0.030	0.16		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Cadmium	ND	0.052	0.10		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Chromium	7.8	0.16	0.31		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Cobalt	3.8	0.062	0.31		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Iron	13000	260	260		mg/Kg	100	9/27/2021 4:11:01 PM	62806
Lead	2.4	0.28	0.31		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Manganese	510	0.86	1.0		mg/Kg	5	9/27/2021 4:08:55 PM	62806
Nickel	7.3	0.20	0.52		mg/Kg	1	9/27/2021 6:52:08 PM	62806
Selenium	ND	2.3	2.6		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Silver	ND	0.15	0.26		mg/Kg	1	9/27/2021 6:52:08 PM	62806
Vanadium	16	0.12	2.6		mg/Kg	1	9/27/2021 2:04:32 PM	62806
Zinc	12	1.4	2.6		mg/Kg	1	9/27/2021 2:04:32 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	1.2	0.086	0.22	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Toluene	0.22	0.057	0.44	JD	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Ethylbenzene	0.90	0.11	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Methyl tert-butyl ether (MTBE)	ND	0.25	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
1,2-Dichloroethane (EDC)	ND	0.10	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
1,2-Dibromoethane (EDB)	ND	0.18	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-06

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 10:00:00 AMLab ID:2109C60-005Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RAA	A
2-Butanone	ND	1.9	4.4	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Carbon disulfide	ND	0.18	4.4	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Chlorobenzene	ND	0.080	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Chloroform	ND	0.063	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
1,1-Dichloroethane	ND	0.13	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Styrene	ND	0.061	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Tetrachloroethene (PCE)	ND	0.12	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
1,1,1-Trichloroethane	ND	0.098	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Trichloroethene (TCE)	ND	0.087	0.44	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Xylenes, Total	2.6	0.23	0.89	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
1,4-Dioxane	ND	2.5	4.4	D	mg/Kg	20	9/24/2021 8:37:55 PM	R81575
Surr: Dibromofluoromethane	104		70-130	D	%Rec	20	9/24/2021 8:37:55 PM	R81575
Surr: 1,2-Dichloroethane-d4	95.8		70-130	D	%Rec	20	9/24/2021 8:37:55 PM	R81575
Surr: Toluene-d8	94.0		70-130	D	%Rec	20	9/24/2021 8:37:55 PM	R81575
Surr: 4-Bromofluorobenzene	101		70-130	D	%Rec	20	9/24/2021 8:37:55 PM	R81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-08

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 10:30:00 AMLab ID:2109C60-006Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: JME	
Diesel Range Organics (DRO)	2000	22	45		mg/Kg	5	9/30/2021 12:13:37 PM	62827
Motor Oil Range Organics (MRO)	ND	230	230	D	mg/Kg	5	9/30/2021 12:13:37 PM	62827
Surr: DNOP	88.0	0	70-130		%Rec	5	9/30/2021 12:13:37 PM	62827
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	1700	81	120		mg/Kg	50	9/25/2021 7:02:00 AM	B81560
Surr: BFB	145	0	70-130	S	%Rec	50	9/25/2021 7:02:00 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	3.4	1.5	1.5		mg/Kg	5	10/7/2021 12:21:24 AM	63078
Chloride	49	7.5	7.5		mg/Kg	5	10/7/2021 12:21:24 AM	63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 12:21:24 AM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 12:21:24 AM	63078
Sulfate	ND	7.5	7.5		mg/Kg	5	10/7/2021 12:21:24 AM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	ND	0.0027	0.034		mg/Kg	1	9/30/2021 10:04:27 AM	62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.4		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Arsenic	1.4	1.4	2.4	J	mg/Kg	1	9/27/2021 2:06:48 PM	62806
Barium	380	0.29	0.49		mg/Kg	5	9/27/2021 4:13:05 PM	62806
Beryllium	0.53	0.028	0.15		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Cadmium	ND	0.049	0.097		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Chromium	4.3	0.15	0.29		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Cobalt	2.5	0.059	0.29		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Iron	8500	240	240		mg/Kg	100	9/27/2021 4:25:38 PM	62806
Lead	3.6	0.26	0.29		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Manganese	330	0.80	0.97		mg/Kg	5	9/27/2021 4:13:05 PM	62806
Nickel	4.6	0.19	0.49		mg/Kg	1	9/27/2021 6:53:33 PM	62806
Selenium	ND	2.1	2.4		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Silver	ND	0.14	0.24		mg/Kg	1	9/27/2021 6:53:33 PM	62806
Vanadium	14	0.11	2.4		mg/Kg	1	9/27/2021 2:06:48 PM	62806
Zinc	7.9	1.3	2.4		mg/Kg	1	9/27/2021 2:06:48 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	9.5	0.093	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Toluene	33	0.062	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Ethylbenzene	19	0.12	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.27	0.39	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
1,2-Dichloroethane (EDC)	0.25	0.11	0.48	JD	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.19	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-08

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 10:30:00 AMLab ID:2109C60-006Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	ND	2.1	2.4	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Carbon disulfide	ND	0.20	2.4	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Chlorobenzene	0.15	0.087	0.19	JD	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Chloroform	ND	0.069	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
1,1-Dichloroethane	ND	0.14	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Styrene	ND	0.066	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Tetrachloroethene (PCE)	ND	0.13	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
1,1,1-Trichloroethane	ND	0.11	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Trichloroethene (TCE)	ND	0.095	0.19	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Xylenes, Total	97	0.25	0.39	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
1,4-Dioxane	ND	2.8	2.9	D	mg/Kg	20	9/24/2021 9:04:54 PM	S81575
Surr: Dibromofluoromethane	93.2		70-130	D	%Rec	20	9/24/2021 9:04:54 PM	S81575
Surr: 1,2-Dichloroethane-d4	93.0		70-130	D	%Rec	20	9/24/2021 9:04:54 PM	S81575
Surr: Toluene-d8	100		70-130	D	%Rec	20	9/24/2021 9:04:54 PM	S81575
Surr: 4-Bromofluorobenzene	114		70-130	D	%Rec	20	9/24/2021 9:04:54 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-07

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 11:15:00 AMLab ID:2109C60-007Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

		- (,					
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	310	4.2	8.5		mg/Kg	1	9/27/2021 5:14:45 PM	62827
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	9/27/2021 5:14:45 PM	62827
Surr: DNOP	92.1	0	70-130		%Rec	1	9/27/2021 5:14:45 PM	62827
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	3
Gasoline Range Organics (GRO)	960	92	140		mg/Kg	50	9/25/2021 7:25:26 AM	B81560
Surr: BFB	130	0	70-130		%Rec	50	9/25/2021 7:25:26 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	4.0	1.5	1.5		mg/Kg	5	10/7/2021 12:46:15 AM	1 63078
Chloride	37	7.5	7.5		mg/Kg	5	10/7/2021 12:46:15 AM	
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 12:46:15 AM	
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 12:46:15 AM	1 63078
Sulfate	9.2	7.5	7.5		mg/Kg	5	10/7/2021 12:46:15 AM	d 63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0035	0.0026	0.033	J	mg/Kg	1	9/30/2021 10:06:34 AM	A 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.5		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Arsenic	ND	1.4	2.5		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Barium	410	0.30	0.49		mg/Kg	5	9/27/2021 4:28:11 PM	62806
Beryllium	0.66	0.029	0.15		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Cadmium	ND	0.049	0.099		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Chromium	6.4	0.15	0.30		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Cobalt	3.3	0.060	0.30		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Iron	11000	250	250		mg/Kg	100	9/27/2021 4:30:14 PM	62806
Lead	3.7	0.26	0.30		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Manganese	490	0.82	0.99		mg/Kg	5	9/27/2021 4:28:11 PM	62806
Nickel	6.2	0.19	0.49		mg/Kg	1	9/27/2021 6:55:00 PM	62806
Selenium	ND	2.2	2.5		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Silver	ND	0.14	0.25		mg/Kg	1	9/27/2021 6:55:00 PM	62806
Vanadium	16	0.11	2.5		mg/Kg	1	9/27/2021 2:19:16 PM	62806
Zinc	11	1.3	2.5		mg/Kg	1	9/27/2021 2:19:16 PM	62806
EPA METHOD 8260B: VOLATILES							Analyst: RAA	1
Benzene	2.6	0.11	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Toluene	5.8	0.071	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Ethylbenzene	5.9	0.13	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Methyl tert-butyl ether (MTBE)	ND	0.31	0.44	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
1,2-Dichloroethane (EDC)	ND	0.13	0.55	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
1,2-Dibromoethane (EDB)	ND	0.22	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 22

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-07

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/22/2021 11:15:00 AMLab ID:2109C60-007Matrix: MEOH (SOIL)Received Date: 9/22/2021 4:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	ND	2.4	2.8	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Carbon disulfide	ND	0.23	2.8	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Chlorobenzene	ND	0.099	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Chloroform	ND	0.078	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
1,1-Dichloroethane	ND	0.16	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Styrene	ND	0.075	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Tetrachloroethene (PCE)	ND	0.15	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
1,1,1-Trichloroethane	ND	0.12	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Trichloroethene (TCE)	ND	0.11	0.22	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Xylenes, Total	14	0.29	0.44	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
1,4-Dioxane	ND	3.2	3.3	D	mg/Kg	20	9/24/2021 9:31:47 PM	S81575
Surr: Dibromofluoromethane	96.4		70-130	D	%Rec	20	9/24/2021 9:31:47 PM	S81575
Surr: 1,2-Dichloroethane-d4	96.6		70-130	D	%Rec	20	9/24/2021 9:31:47 PM	S81575
Surr: Toluene-d8	101		70-130	D	%Rec	20	9/24/2021 9:31:47 PM	S81575
Surr: 4-Bromofluorobenzene	113		70-130	D	%Rec	20	9/24/2021 9:31:47 PM	S81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 22

Pace Analytical® ANALYTICAL REPORT

October 13, 2021

Hall Environmental Analysis Laboratory

L1407688 Sample Delivery Group: Samples Received: 09/23/2021

Project Number:

Description:

Report To: Andy Freeman

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
2109C60-001B SLP-BD-09222021 L1407688-01	6
2109C60-001C SLP-BD-09222021 L1407688-02	7
2109C60-003B SLP-09 L1407688-03	9
2109C60-003C SLP-09 L1407688-04	10
2109C60-004B SLP-05 L1407688-05	12
2109C60-004C SLP-05 L1407688-06	13
2109C60-005B SLP-06 L1407688-07	15
2109C60-005C SLP-06 L1407688-08	16
2109C60-006B SLP-08 L1407688-09	18
2109C60-006C SLP-08 L1407688-10	19
2109C60-007B SLP-07 L1407688-11	21
2109C60-007C SLP-07 L1407688-12	22
Qc: Quality Control Summary	24
Wet Chemistry by Method 3060A/7196A	24
Wet Chemistry by Method 9012B	25
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	27
GI: Glossary of Terms	33
Al: Accreditations & Locations	34

Ss

Sc: Sample Chain of Custody

35

SAMPLE SUMMARY

Received by Octo. 3/11/2022 2.21.33 1 141	SAMPLES	2 O IVI IV	MARY			1 ugc 2
2109C60-001B SLP-BD-09222021 L140768	8-01 Solid		Collected by	Collected date/time 09/22/21 00:00	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1745591	1000	09/23/2116:34	09/23/21 16:34	BGE	Mt. Juliet, TN
2109C60-001C SLP-BD-09222021 L140768	8-02 Solid		Collected by	Collected date/time 09/22/21 00:00	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:25	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:16	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	1	10/04/21 05:02	10/04/21 14:51	ADF	Mt. Juliet, TN
2109C60-003B SLP-09 L1407688-03 Solid	I		Collected by	Collected date/time 09/22/21 08:30	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1745591	1000	09/23/21 16:34	09/23/21 16:34	BGE	Mt. Juliet, TN
2109C60-003C SLP-09 L1407688-04 Solic	1		Collected by	Collected date/time 09/22/21 08:30	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:30	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749144	1	09/30/21 14:34	09/30/21 19:18	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	1	10/04/21 05:02	10/04/21 15:53	ADF	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	5	10/04/21 05:02	10/06/21 03:33	ADF	Mt. Juliet, TN
2109C60-004B SLP-05 L1407688-05 Solic	I		Collected by	Collected date/time 09/22/21 09:25	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1745591	1000	09/23/21 16:34	09/23/21 16:34	BGE	Mt. Juliet, TN
2109C60-004C SLP-05 L1407688-06 Solic	d		Collected by	Collected date/time 09/22/21 09:25	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:30	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:08	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	1	10/04/21 05:02	10/04/21 13:09	ADF	Mt. Juliet, TN
2109C60-005B SLP-06 L1407688-07 Solid	I		Collected by	Collected date/time 09/22/2110:00	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Microbiology by Method 9223B-2004

WG1745591

1000

09/23/2116:34

09/23/21 16:34

BGE

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
2109C60-005C SLP-06 L1407688-08 Solid				09/22/2110:00	09/23/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:30	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:09	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	1	10/04/21 05:02	10/04/21 14:10	ADF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109C60-006B SLP-08 L1407688-09 Solid				09/22/2110:30	09/23/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Microbiology by Method 9223B-2004	WG1745591	1000	09/23/21 16:34	09/23/21 16:34	BGE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109C60-006C SLP-08 L1407688-10 Solid				09/22/2110:30	09/23/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:31	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:10	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	1	10/04/21 05:02	10/04/21 16:13	ADF	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1750662	5	10/04/21 05:02	10/06/21 03:12	ADF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109C60-007B SLP-07 L1407688-11 Solid				09/22/21 11:15	09/23/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Microbiology by Method 9223B-2004	WG1745591	1000	09/23/21 16:34	09/23/2116:34	BGE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2109C60-007C SLP-07 L1407688-12 Solid				09/22/21 11:15	09/23/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
W. C. C. L. M. H. LOCCOA FRANCA	11104740664		00/00/04 40 00	00/00/04 04 04	14514	14. 1 D . Th

WG1748884

WG1749587

WG1750662

1

1

Wet Chemistry by Method 3060A/7196A

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Wet Chemistry by Method 9012B

09/29/2118:00

10/01/21 16:20

10/04/21 05:02

09/30/21 21:31

10/02/21 01:11

10/04/21 17:35

MRM

SDL

ADF

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager Collected date/time: 09/22/21 00:00

Page 217 of 317

SAMPLE RESULTS - 01

L1407688

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	<u>T8</u>	1000	09/23/2021 16:34	WG1745591
Coliform,Total	1000	<u>T8</u>	1000	09/23/2021 16:34	WG1745591

Page 218 of 317

SAMPLE RESULTS - 02

L1407688

Collected date/time: 09/22/21 00:00

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Chromium.Hexavalent	ND	J6 O1	2.00	1	09/30/2021 21:25	WG1748884

Ср ²Тс

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	09/30/2021 19:16	WG1749144

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Acenaphthylene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Anthracene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzidine	ND		1.67	1	10/04/2021 14:51	WG1750662
Benzo(a)anthracene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzo(b)fluoranthene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzo(k)fluoranthene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzo(g,h,i)perylene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzo(a)pyrene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Bis(2-chlorethoxy)methane	ND		0.333	1	10/04/2021 14:51	WG1750662
Bis(2-chloroethyl)ether	ND		0.333	1	10/04/2021 14:51	WG1750662
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/04/2021 14:51	WG1750662
4-Bromophenyl-phenylether	ND		0.333	1	10/04/2021 14:51	WG1750662
2-Chloronaphthalene	ND		0.0333	1	10/04/2021 14:51	WG1750662
1-Chlorophenyl-phenylether	ND		0.333	1	10/04/2021 14:51	WG1750662
Chrysene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Dibenz(a,h)anthracene	ND		0.0333	1	10/04/2021 14:51	WG1750662
,2-Dichlorobenzene	ND		0.333	1	10/04/2021 14:51	WG1750662
,3-Dichlorobenzene	ND		0.333	1	10/04/2021 14:51	WG1750662
4-Dichlorobenzene	ND		0.333	1	10/04/2021 14:51	WG1750662
,3-Dichlorobenzidine	ND		0.333	1	10/04/2021 14:51	WG1750662
2,4-Dinitrotoluene	ND		0.333	1	10/04/2021 14:51	WG1750662
2,6-Dinitrotoluene	ND		0.333	1	10/04/2021 14:51	WG1750662
Fluoranthene	ND		0.0333	1	10/04/2021 14:51	WG1750662
·luorene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Hexachlorobenzene	ND		0.333	1	10/04/2021 14:51	WG1750662
lexachloro-1,3-butadiene	ND		0.333	1	10/04/2021 14:51	WG1750662
Hexachlorocyclopentadiene	ND		0.333	1	10/04/2021 14:51	WG1750662
Hexachloroethane	ND		0.333	1	10/04/2021 14:51	WG1750662
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/04/2021 14:51	WG1750662
sophorone	ND		0.333	1	10/04/2021 14:51	WG1750662
Naphthalene	0.153		0.0333	1	10/04/2021 14:51	WG1750662
-Methylnaphthalene	ND		0.333	1	10/04/2021 14:51	WG1750662
2-Methylnaphthalene	0.333		0.333	1	10/04/2021 14:51	WG1750662
Vitrobenzene	ND		0.333	1	10/04/2021 14:51	WG1750662
n-Nitrosodimethylamine	ND		0.333	1	10/04/2021 14:51	WG1750662
n-Nitrosodiphenylamine	ND		0.333	1	10/04/2021 14:51	WG1750662
-Nitrosodi-n-propylamine	ND		0.333	1	10/04/2021 14:51	WG1750662
Phenanthrene	ND		0.0333	1	10/04/2021 14:51	WG1750662
Benzylbutyl phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662
Di-n-butyl phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662
Diethyl phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662
Dimethyl phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662
Di-n-octyl phthalate	ND		0.333	1	10/04/2021 14:51	WG1750662

(S) p-Terphenyl-d14

SAMPLE RESULTS - 02

Collected date/time: 09/22/21 00:00

L1407688

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

66.4

	RDL	Dilution	Analysis	Batch
mg/kg	mg/kg		date / time	
ND	0.0333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
ND	0.333	1	10/04/2021 14:51	WG1750662
56.7	12.0-120		10/04/2021 14:51	WG1750662
51.5	10.0-120		10/04/2021 14:51	WG1750662
47.1	10.0-122		10/04/2021 14:51	WG1750662
52.9	15.0-120		10/04/2021 14:51	WG1750662
74.6	10.0-127		10/04/2021 14:51	WG1750662
	ND N	ND 0.0333 ND 0.333 ND 0.333	ND 0.0333 1 ND 0.333 1	ND O.0333 1 10/04/2021 14:51 ND O.333 1 10/04/2021 14:51 ND O.334 1 10/04/2021 14:51 ND O.335 1 10/04/2021 14:51 ND O.345 D.515 D.51

10/04/2021 14:51

WG1750662

10.0-120

Collected date/time: 09/22/21 08:30

Page 220 of 317

SAMPLE RESULTS - 03

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	2000	<u>T8</u>	1000	09/23/2021 16:34	WG1745591
Coliform,Total	>2419600	<u>T8</u>	1000	09/23/2021 16:34	WG1745591

SAMPLE RESULTS - 04

Page 221 of 317

Collected date/time: 09/22/21 08:30

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Chromium.Hexavalent	ND		2.00	1	09/30/2021 21:30	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND	<u>J3 J6</u>	0.250	1	09/30/2021 19:18	WG1749144

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result Qualifie	<u>r</u> RDL	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Acenaphthene	0.274	0.0333	1	10/04/2021 15:53	WG1750662
Acenaphthylene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Anthracene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Benzidine	ND	1.67	1	10/04/2021 15:53	WG1750662
Benzo(a)anthracene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Benzo(b)fluoranthene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Benzo(k)fluoranthene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Benzo(g,h,i)perylene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Benzo(a)pyrene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Bis(2-chlorethoxy)methane	ND	0.333	1	10/04/2021 15:53	WG1750662
Bis(2-chloroethyl)ether	ND	0.333	1	10/04/2021 15:53	WG1750662
2,2-Oxybis(1-Chloropropane)	ND	0.333	1	10/04/2021 15:53	WG1750662
I-Bromophenyl-phenylether	ND	0.333	1	10/04/2021 15:53	WG1750662
2-Chloronaphthalene	ND	0.0333	1	10/04/2021 15:53	WG1750662
1-Chlorophenyl-phenylether	ND	0.333	1	10/04/2021 15:53	WG1750662
Chrysene	ND	0.0333	1	10/04/2021 15:53	WG1750662
Dibenz(a,h)anthracene	ND	0.0333	1	10/04/2021 15:53	WG1750662
,2-Dichlorobenzene	ND	0.333	1	10/04/2021 15:53	WG1750662
,3-Dichlorobenzene	ND	0.333	1	10/04/2021 15:53	WG1750662
,4-Dichlorobenzene	ND	0.333	1	10/04/2021 15:53	WG1750662
3,3-Dichlorobenzidine	ND	0.333	1	10/04/2021 15:53	WG1750662
2,4-Dinitrotoluene	ND	0.333	1	10/04/2021 15:53	WG1750662
2,6-Dinitrotoluene	ND	0.333	1	10/04/2021 15:53	WG1750662
-luoranthene	ND	0.0333	1	10/04/2021 15:53	WG1750662
·luorene	0.469	0.0333	1	10/04/2021 15:53	WG1750662
Hexachlorobenzene	ND	0.333	1	10/04/2021 15:53	WG1750662
lexachloro-1,3-butadiene	ND	0.333	1	10/04/2021 15:53	WG1750662
Hexachlorocyclopentadiene	ND	0.333	1	10/04/2021 15:53	WG1750662
Hexachloroethane	ND	0.333	1	10/04/2021 15:53	WG1750662
ndeno(1,2,3-cd)pyrene	ND	0.0333	1	10/04/2021 15:53	WG1750662
sophorone	ND	0.333	1	10/04/2021 15:53	WG1750662
Naphthalene	2.74	0.167	5	10/06/2021 03:33	WG1750662
-Methylnaphthalene	3.30	1.67	5	10/06/2021 03:33	WG1750662
2-Methylnaphthalene	4.96	1.67	5	10/06/2021 03:33	WG1750662
Nitrobenzene	ND	0.333	1	10/04/2021 15:53	WG1750662
n-Nitrosodimethylamine	ND	0.333	1	10/04/2021 15:53	WG1750662
n-Nitrosodiphenylamine	ND	0.333	1	10/04/2021 15:53	WG1750662
n-Nitrosodi-n-propylamine	ND	0.333	1	10/04/2021 15:53	WG1750662
Phenanthrene	0.767	0.0333	1	10/04/2021 15:53	WG1750662
Benzylbutyl phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662
Bis(2-ethylhexyl)phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662
)i-n-butyl phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662
Diethyl phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662
Dimethyl phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662
Di-n-octyl phthalate	ND	0.333	1	10/04/2021 15:53	WG1750662

Collected date/time: 09/22/21 08:30

SAMPLE RESULTS - 04

L1407688

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Pyrene	0.125		0.0333	1	10/04/2021 15:53	WG1750662	
Pyridine	ND		0.333	1	10/04/2021 15:53	WG1750662	
1,2,4-Trichlorobenzene	ND		0.333	1	10/04/2021 15:53	WG1750662	
Quinoline	ND		0.333	1	10/04/2021 15:53	WG1750662	
2-Methylphenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
3&4-Methyl Phenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
4-Chloro-3-methylphenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2-Chlorophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2,4-Dichlorophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2,4-Dimethylphenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2,4-Dinitrophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2-Nitrophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
4-Nitrophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
Pentachlorophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
Phenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
2,4,6-Trichlorophenol	ND		0.333	1	10/04/2021 15:53	WG1750662	
(S) 2-Fluorophenol	51.4		12.0-120		10/06/2021 03:33	WG1750662	
(S) 2-Fluorophenol	55.2		12.0-120		10/04/2021 15:53	WG1750662	
(S) Phenol-d5	62.1		10.0-120		10/04/2021 15:53	WG1750662	
(S) Phenol-d5	57.8		10.0-120		10/06/2021 03:33	WG1750662	
(S) Nitrobenzene-d5	0.000	<u>J2</u>	10.0-122		10/04/2021 15:53	WG1750662	
(S) Nitrobenzene-d5	149	<u>J1</u>	10.0-122		10/06/2021 03:33	WG1750662	
(S) 2-Fluorobiphenyl	59.9		15.0-120		10/06/2021 03:33	WG1750662	
(S) 2-Fluorobiphenyl	66.1		15.0-120		10/04/2021 15:53	WG1750662	
(S) 2,4,6-Tribromophenol	89.7		10.0-127		10/04/2021 15:53	WG1750662	
(S) 2,4,6-Tribromophenol	74.8		10.0-127		10/06/2021 03:33	WG1750662	
(S) p-Terphenyl-d14	60.2		10.0-120		10/06/2021 03:33	WG1750662	

10/04/2021 15:53

WG1750662

10.0-120

Sample Narrative:

(S) p-Terphenyl-d14

L1407688-04 WG1750662: Surrogate failure due to matrix interference

63.0

Page 223 of 317

SAMPLE RESULTS - 05

Collected date/time: 09/22/21 09:25

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	<u>T8</u>	1000	09/23/2021 16:34	WG1745591
Coliform,Total	8400	<u>T8</u>	1000	09/23/2021 16:34	WG1745591

SAMPLE RESULTS - 06

Page 224 of 317

Collected date/time: 09/22/21 09:25

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:30	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:08	WG1749587

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	-	Qualifier RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg	mg/kg		date / time		
Acenaphthene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Acenaphthylene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Anthracene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Benzidine	ND	1.67	1	10/04/2021 13:09	WG1750662	
Benzo(a)anthracene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Benzo(b)fluoranthene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Benzo(k)fluoranthene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Benzo(g,h,i)perylene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Benzo(a)pyrene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Bis(2-chlorethoxy)methane	ND	0.333	1	10/04/2021 13:09	WG1750662	
Bis(2-chloroethyl)ether	ND	0.333	1	10/04/2021 13:09	WG1750662	
2,2-Oxybis(1-Chloropropane)	ND	0.333	1	10/04/2021 13:09	WG1750662	
4-Bromophenyl-phenylether	ND	0.333	1	10/04/2021 13:09	WG1750662	
2-Chloronaphthalene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
l-Chlorophenyl-phenylether	ND	0.333	1	10/04/2021 13:09	WG1750662	
Chrysene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
Dibenz(a,h)anthracene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
2-Dichlorobenzene	ND	0.333	1	10/04/2021 13:09	WG1750662	
3-Dichlorobenzene	ND	0.333	1	10/04/2021 13:09	WG1750662	
4-Dichlorobenzene	ND	0.333	1	10/04/2021 13:09	WG1750662	
,3-Dichlorobenzidine	ND	0.333	1	10/04/2021 13:09	WG1750662	
2,4-Dinitrotoluene	ND	0.333	1	10/04/2021 13:09	WG1750662	
,6-Dinitrotoluene	ND	0.333	1	10/04/2021 13:09	WG1750662	
luoranthene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
luorene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
lexachlorobenzene	ND	0.333	1	10/04/2021 13:09	WG1750662	
lexachloro-1,3-butadiene	ND	0.333	1	10/04/2021 13:09	WG1750662	
lexachlorocyclopentadiene	ND	0.333	1	10/04/2021 13:09	WG1750662	
exachloroethane	ND	0.333	1	10/04/2021 13:09	WG1750662	
ndeno(1,2,3-cd)pyrene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
sophorone	ND	0.333	1	10/04/2021 13:09	WG1750662	
laphthalene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
-Methylnaphthalene	ND	0.333	1	10/04/2021 13:09	WG1750662	
2-Methylnaphthalene	ND	0.333	1	10/04/2021 13:09	WG1750662	
litrobenzene	ND	0.333	1	10/04/2021 13:09	WG1750662	
-Nitrosodimethylamine	ND	0.333	1	10/04/2021 13:09	WG1750662	
Nitrosodiphenylamine	ND	0.333	1	10/04/2021 13:09	WG1750662	
Nitrosodi-n-propylamine	ND	0.333	1	10/04/2021 13:09	WG1750662	
henanthrene	ND	0.0333	1	10/04/2021 13:09	WG1750662	
enzylbutyl phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	
s(2-ethylhexyl)phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	
i-n-butyl phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	
Diethyl phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	
Dimethyl phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	
i-n-octyl phthalate	ND	0.333	1	10/04/2021 13:09	WG1750662	

Collected date/time: 09/22/21 09:25

Page 225 of 317

SAMPLE RESULTS - 06

L140768

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

64.5

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Pyrene	ND		0.0333	1	10/04/2021 13:09	WG1750662
Pyridine	ND		0.333	1	10/04/2021 13:09	WG1750662
1,2,4-Trichlorobenzene	ND		0.333	1	10/04/2021 13:09	WG1750662
Quinoline	ND		0.333	1	10/04/2021 13:09	WG1750662
2-Methylphenol	ND		0.333	1	10/04/2021 13:09	WG1750662
3&4-Methyl Phenol	ND		0.333	1	10/04/2021 13:09	WG1750662
4-Chloro-3-methylphenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2-Chlorophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2,4-Dichlorophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2,4-Dimethylphenol	ND		0.333	1	10/04/2021 13:09	WG1750662
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2,4-Dinitrophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2-Nitrophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
4-Nitrophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
Pentachlorophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
Phenol	ND		0.333	1	10/04/2021 13:09	WG1750662
2,4,6-Trichlorophenol	ND		0.333	1	10/04/2021 13:09	WG1750662
(S) 2-Fluorophenol	51.5		12.0-120		10/04/2021 13:09	WG1750662
(S) Phenol-d5	48.3		10.0-120		10/04/2021 13:09	WG1750662
(S) Nitrobenzene-d5	38.9		10.0-122		10/04/2021 13:09	WG1750662
(S) 2-Fluorobiphenyl	46.4		15.0-120		10/04/2021 13:09	WG1750662
(S) 2,4,6-Tribromophenol	65.1		10.0-127		10/04/2021 13:09	WG1750662

10.0-120

WG1750662

10/04/2021 13:09

(S) p-Terphenyl-d14

Collected date/time: 09/22/21 10:00

Page 226 of 317

SAMPLE RESULTS - 07

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	T8	1000	09/23/2021 16:34	WG1745591
Coliform,Total	<1000	<u>T8</u>	1000	09/23/2021 16:34	WG1745591

Wet Chemistry by Method 9012B

Analyte

SAMPLE RESULTS - 08

Batch

WG1749587

Collected date/time: 09/22/21 10:00

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium Hexavalent	ND		2 00	1	09/30/2021 21:30	WG1748884

Dilution

Analysis

date / time

Page 227 of 317

Ss

l⁴Cn l

ND 0.250 10/02/2021 01:09 Cyanide Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Qualifier

RDL

mg/kg

Result

mg/kg

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Acenaphthylene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Anthracene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzidine	ND		1.67	1	10/04/2021 14:10	WG1750662
Benzo(a)anthracene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzo(b)fluoranthene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzo(k)fluoranthene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzo(g,h,i)perylene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzo(a)pyrene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Bis(2-chlorethoxy)methane	ND		0.333	1	10/04/2021 14:10	WG1750662
Bis(2-chloroethyl)ether	ND		0.333	1	10/04/2021 14:10	WG1750662
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/04/2021 14:10	WG1750662
4-Bromophenyl-phenylether	ND		0.333	1	10/04/2021 14:10	WG1750662
2-Chloronaphthalene	ND		0.0333	1	10/04/2021 14:10	WG1750662
4-Chlorophenyl-phenylether	ND		0.333	1	10/04/2021 14:10	WG1750662
Chrysene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Dibenz(a,h)anthracene	ND		0.0333	1	10/04/2021 14:10	WG1750662
1,2-Dichlorobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
1,3-Dichlorobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
l,4-Dichlorobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
3,3-Dichlorobenzidine	ND		0.333	1	10/04/2021 14:10	WG1750662
2,4-Dinitrotoluene	ND		0.333	1	10/04/2021 14:10	WG1750662
2,6-Dinitrotoluene	ND		0.333	1	10/04/2021 14:10	WG1750662
Fluoranthene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Fluorene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Hexachlorobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
Hexachloro-1,3-butadiene	ND		0.333	1	10/04/2021 14:10	WG1750662
Hexachlorocyclopentadiene	ND		0.333	1	10/04/2021 14:10	WG1750662
Hexachloroethane	ND		0.333	1	10/04/2021 14:10	WG1750662
Indeno(1,2,3-cd)pyrene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Isophorone	ND		0.333	1	10/04/2021 14:10	WG1750662
Naphthalene	0.0660		0.0333	1	10/04/2021 14:10	WG1750662
1-Methylnaphthalene	ND		0.333	1	10/04/2021 14:10	WG1750662
2-Methylnaphthalene	ND		0.333	1	10/04/2021 14:10	WG1750662
Nitrobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
n-Nitrosodimethylamine	ND		0.333	1	10/04/2021 14:10	WG1750662
n-Nitrosodiphenylamine	ND		0.333	1	10/04/2021 14:10	WG1750662
n-Nitrosodi-n-propylamine	ND		0.333	1	10/04/2021 14:10	WG1750662
Phenanthrene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Benzylbutyl phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662
Di-n-butyl phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662
Diethyl phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662
Dimethyl phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662
Di-n-octyl phthalate	ND		0.333	1	10/04/2021 14:10	WG1750662

Collected date/time: 09/22/21 10:00

(S) p-Terphenyl-d14

Page 228 of 317

SAMPLE RESULTS - 08

1.14

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

54.7

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Pyrene	ND		0.0333	1	10/04/2021 14:10	WG1750662
Pyridine	ND		0.333	1	10/04/2021 14:10	WG1750662
1,2,4-Trichlorobenzene	ND		0.333	1	10/04/2021 14:10	WG1750662
Quinoline	ND		0.333	1	10/04/2021 14:10	WG1750662
2-Methylphenol	ND		0.333	1	10/04/2021 14:10	WG1750662
3&4-Methyl Phenol	ND		0.333	1	10/04/2021 14:10	WG1750662
4-Chloro-3-methylphenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2-Chlorophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2,4-Dichlorophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2,4-Dimethylphenol	ND		0.333	1	10/04/2021 14:10	WG1750662
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2,4-Dinitrophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2-Nitrophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
4-Nitrophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
Pentachlorophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
Phenol	ND		0.333	1	10/04/2021 14:10	WG1750662
2,4,6-Trichlorophenol	ND		0.333	1	10/04/2021 14:10	WG1750662
(S) 2-Fluorophenol	38.0		12.0-120		10/04/2021 14:10	WG1750662
(S) Phenol-d5	37.2		10.0-120		10/04/2021 14:10	WG1750662
(S) Nitrobenzene-d5	28.9		10.0-122		10/04/2021 14:10	WG1750662
(S) 2-Fluorobiphenyl	35.4		15.0-120		10/04/2021 14:10	WG1750662
(S) 2,4,6-Tribromophenol	52.8		10.0-127		10/04/2021 14:10	WG1750662

10/04/2021 14:10

WG1750662

10.0-120

Collected date/time: 09/22/21 10:30

Page 229 of 317

SAMPLE RESULTS - 09

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	T8	1000	09/23/2021 16:34	WG1745591
Coliform,Total	79400	T8	1000	09/23/2021 16:34	WG1745591

Page 230 of 317

SAMPLE RESULTS - 10

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:31	WG1748884	

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:10	WG1749587

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Acenaphthylene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Anthracene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Benzidine	ND		1.67	1	10/04/2021 16:13	WG1750662
Benzo(a)anthracene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Benzo(b)fluoranthene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Benzo(k)fluoranthene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Benzo(g,h,i)perylene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Benzo(a)pyrene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Bis(2-chlorethoxy)methane	ND		0.333	1	10/04/2021 16:13	WG1750662
Bis(2-chloroethyl)ether	ND		0.333	1	10/04/2021 16:13	WG1750662
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/04/2021 16:13	WG1750662
1-Bromophenyl-phenylether	ND		0.333	1	10/04/2021 16:13	WG1750662
2-Chloronaphthalene	ND		0.0333	1	10/04/2021 16:13	WG1750662
1-Chlorophenyl-phenylether	ND		0.333	1	10/04/2021 16:13	WG1750662
Chrysene	ND		0.0333	1	10/04/2021 16:13	WG1750662
Dibenz(a,h)anthracene	ND		0.0333	1	10/04/2021 16:13	WG1750662
,2-Dichlorobenzene	ND		0.333	1	10/04/2021 16:13	WG1750662
,3-Dichlorobenzene	ND		0.333	1	10/04/2021 16:13	WG1750662
,4-Dichlorobenzene	ND		0.333	1	10/04/2021 16:13	WG1750662
3,3-Dichlorobenzidine	ND		0.333	1	10/04/2021 16:13	WG1750662
2,4-Dinitrotoluene	ND		0.333	1	10/04/2021 16:13	WG1750662
2,6-Dinitrotoluene	ND		0.333	1	10/04/2021 16:13	WG1750662
Fluoranthene	ND		0.0333	1	10/04/2021 16:13	WG1750662
·luorene	0.561		0.0333	1	10/04/2021 16:13	WG1750662
Hexachlorobenzene	ND		0.333	1	10/04/2021 16:13	WG1750662
Hexachloro-1,3-butadiene	ND		0.333	1	10/04/2021 16:13	WG1750662
Hexachlorocyclopentadiene	ND		0.333	1	10/04/2021 16:13	WG1750662
Hexachloroethane	ND		0.333	1	10/04/2021 16:13	WG1750662
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/04/2021 16:13	WG1750662
sophorone	ND		0.333	1	10/04/2021 16:13	WG1750662
Naphthalene	5.93		0.167	5	10/06/2021 03:12	WG1750662
-Methylnaphthalene	4.73		1.67	5	10/06/2021 03:12	WG1750662
2-Methylnaphthalene	8.05	<u>E</u>	1.67	5	10/06/2021 03:12	WG1750662
Nitrobenzene	ND	_	0.333	1	10/04/2021 16:13	WG1750662
n-Nitrosodimethylamine	ND		0.333	1	10/04/2021 16:13	WG1750662
n-Nitrosodiphenylamine	ND		0.333	1	10/04/2021 16:13	WG1750662
-Nitrosodi-n-propylamine	ND		0.333	1	10/04/2021 16:13	WG1750662
Phenanthrene	0.794		0.0333	1	10/04/2021 16:13	WG1750662
Benzylbutyl phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662
Ris(2-ethylhexyl)phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662
Di-n-butyl phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662
Diethyl phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662
Dimethyl phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662
Di-n-octyl phthalate	ND		0.333	1	10/04/2021 16:13	WG1750662

SAMPLE RESULTS - 10

Collected date/time: 09/22/21 10:30

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		
Pyrene	0.223		0.0333	1	10/04/2021 16:13	WG1750662	
Pyridine	ND		0.333	1	10/04/2021 16:13	WG1750662	
1,2,4-Trichlorobenzene	ND		0.333	1	10/04/2021 16:13	WG1750662	
Quinoline	ND		0.333	1	10/04/2021 16:13	WG1750662	
2-Methylphenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
3&4-Methyl Phenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
4-Chloro-3-methylphenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2-Chlorophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2,4-Dichlorophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2,4-Dimethylphenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
1,6-Dinitro-2-methylphenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2,4-Dinitrophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2-Nitrophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
1-Nitrophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
Pentachlorophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
Phenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
2,4,6-Trichlorophenol	ND		0.333	1	10/04/2021 16:13	WG1750662	
(S) 2-Fluorophenol	45.1		12.0-120		10/06/2021 03:12	WG1750662	
(S) 2-Fluorophenol	0.000	<u>J2</u>	12.0-120		10/04/2021 16:13	WG1750662	
(S) Phenol-d5	0.000	<u>J2</u>	10.0-120		10/06/2021 03:12	WG1750662	
(S) Phenol-d5	0.000	<u>J2</u>	10.0-120		10/04/2021 16:13	WG1750662	
(S) Nitrobenzene-d5	0.000	<u>J2</u>	10.0-122		10/04/2021 16:13	WG1750662	
(S) Nitrobenzene-d5	229	<u>J1</u>	10.0-122		10/06/2021 03:12	WG1750662	
(S) 2-Fluorobiphenyl	54.7		15.0-120		10/06/2021 03:12	WG1750662	
(S) 2-Fluorobiphenyl	78.0		15.0-120		10/04/2021 16:13	WG1750662	
(S) 2,4,6-Tribromophenol	74.7		10.0-127		10/06/2021 03:12	WG1750662	
(S) 2,4,6-Tribromophenol	95.8		10.0-127		10/04/2021 16:13	WG1750662	
(S) p-Terphenyl-d14	54.1		10.0-120		10/06/2021 03:12	WG1750662	

10/04/2021 16:13

WG1750662

10.0-120

Sample Narrative:

(S) p-Terphenyl-d14

L1407688-10 WG1750662: Surrogate failure due to matrix interference

61.0

Collected date/time: 09/22/21 11:15

Page 232 of 317

SAMPLE RESULTS - 11

L1407688

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	T8	1000	09/23/2021 16:34	WG1745591
Coliform,Total	<1986300	T8	1000	09/23/2021 16:34	WG1745591

SAMPLE RESULTS - 12

Page 233 of 317

Collected date/time: 09/22/21 11:15

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:31	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:11	WG1749587

mi Volatilo Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Acenaphthylene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Anthracene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Benzidine	ND		1.67	1	10/04/2021 17:35	WG1750662
Benzo(a)anthracene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Benzo(b)fluoranthene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Benzo(k)fluoranthene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Benzo(g,h,i)perylene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Benzo(a)pyrene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Bis(2-chlorethoxy)methane	ND		0.333	1	10/04/2021 17:35	WG1750662
Bis(2-chloroethyl)ether	ND		0.333	1	10/04/2021 17:35	WG1750662
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/04/2021 17:35	WG1750662
4-Bromophenyl-phenylether	ND		0.333	1	10/04/2021 17:35	WG1750662
2-Chloronaphthalene	ND		0.0333	1	10/04/2021 17:35	WG1750662
4-Chlorophenyl-phenylether	ND		0.333	1	10/04/2021 17:35	WG1750662
Chrysene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Dibenz(a,h)anthracene	ND		0.0333	1	10/04/2021 17:35	WG1750662
1,2-Dichlorobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
1,3-Dichlorobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
1,4-Dichlorobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
3,3-Dichlorobenzidine	ND		0.333	1	10/04/2021 17:35	WG1750662
2,4-Dinitrotoluene	ND		0.333	1	10/04/2021 17:35	WG1750662
2,6-Dinitrotoluene	ND		0.333	1	10/04/2021 17:35	WG1750662
Fluoranthene	ND		0.0333	1	10/04/2021 17:35	WG1750662
Fluorene	0.124		0.0333	1	10/04/2021 17:35	WG1750662
Hexachlorobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
Hexachloro-1,3-butadiene	ND		0.333	1	10/04/2021 17:35	WG1750662
Hexachlorocyclopentadiene	ND		0.333	1	10/04/2021 17:35	WG1750662
Hexachloroethane	ND		0.333	1	10/04/2021 17:35	WG1750662
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/04/2021 17:35	WG1750662
sophorone	ND		0.333	1	10/04/2021 17:35	WG1750662
Naphthalene	1.31		0.0333	1	10/04/2021 17:35	WG1750662
1-Methylnaphthalene	2.15	<u>E</u>	0.333	1	10/04/2021 17:35	WG1750662
2-Methylnaphthalene	3.52	<u>E</u>	0.333	1	10/04/2021 17:35	WG1750662
Nitrobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
n-Nitrosodimethylamine	ND		0.333	1	10/04/2021 17:35	WG1750662
n-Nitrosodiphenylamine	ND		0.333	1	10/04/2021 17:35	WG1750662
n-Nitrosodi-n-propylamine	ND		0.333	1	10/04/2021 17:35	WG1750662
Phenanthrene	0.224		0.0333	1	10/04/2021 17:35	WG1750662
Benzylbutyl phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662
Di-n-butyl phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662
Diethyl phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662
Dimethyl phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662
Di-n-octyl phthalate	ND		0.333	1	10/04/2021 17:35	WG1750662

SAMPLE RESULTS - 12

Page 234 of 317

Collected date/time: 09/22/21 11:15

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

64.3

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Pyrene	0.0571		0.0333	1	10/04/2021 17:35	WG1750662
Pyridine	ND		0.333	1	10/04/2021 17:35	WG1750662
1,2,4-Trichlorobenzene	ND		0.333	1	10/04/2021 17:35	WG1750662
Quinoline	ND		0.333	1	10/04/2021 17:35	WG1750662
2-Methylphenol	ND		0.333	1	10/04/2021 17:35	WG1750662
3&4-Methyl Phenol	ND		0.333	1	10/04/2021 17:35	WG1750662
4-Chloro-3-methylphenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2-Chlorophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2,4-Dichlorophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2,4-Dimethylphenol	ND		0.333	1	10/04/2021 17:35	WG1750662
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2,4-Dinitrophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2-Nitrophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
4-Nitrophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
Pentachlorophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
Phenol	ND		0.333	1	10/04/2021 17:35	WG1750662
2,4,6-Trichlorophenol	ND		0.333	1	10/04/2021 17:35	WG1750662
(S) 2-Fluorophenol	52.2		12.0-120		10/04/2021 17:35	WG1750662
(S) Phenol-d5	52.3		10.0-120		10/04/2021 17:35	WG1750662
(S) Nitrobenzene-d5	38.5		10.0-122		10/04/2021 17:35	WG1750662
(S) 2-Fluorobiphenyl	47.7		15.0-120		10/04/2021 17:35	WG1750662
(S) 2,4,6-Tribromophenol	83.5		10.0-127		10/04/2021 17:35	WG1750662

10/04/2021 17:35

WG1750662

10.0-120

(S) p-Terphenyl-d14

Page 235 of 317

Wet Chemistry by Method 3060A/7196A

L1407688-02,04,06,08,10,12

Method Blank (MB)

(MB) R3711034-1 09/30/21 21:22											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Chromium, Hexavalent	U		0.640	2.00							

L1402782-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1402782-01 09/30/21 21:23 • (DUP) R3711034-3 09/30/21 21:24

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chromium.Hexavalent	ND	ND	1	0.000		20	

L1408624-02 Original Sample (OS) • Duplicate (DUP)

(03) [1408024-02 03/30/	Original Result	,		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chromium, Hexavalent	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3711034-2 09/30/21 21:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chromium, Hexavalent	24.0	24.3	101	80.0-120	

L1407688-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407688-02 09/30/21 21:25 • (MS) R3711034-4 09/30/21 21:27 • (MSD) R3711034-5 09/30/21 21:27

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chromium, Hexavalent	20.0	ND	ND	ND	8.72	8.24	1	75.0-125	<u>J6</u>	<u>J6</u>	5.71	20

L1407688-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1407688-02 09/30/21 21:25 • (MS) R3711034-6 09/30/21 21:28

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/kg	mg/kg	mg/kg	%		%	
Chromium, Hexavalent	638	ND	613	96.0	50	75.0-125	

Page 236 of 317

Wet Chemistry by Method 9012B

L1407688-02,04

Method Blank (MB)

(MB) R3711018-1 09/30/211	18:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cvanide	U		0.0733	0.250

L1407340-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1407340-02 09/30/21 19:10 • (DUP) R3711018-3 09/30/21 19:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	0.279	1	90.2	P1	20

L1407688-02 Original Sample (OS) • Duplicate (DUP)

(OS) 1.1407699 02 00/20/21 10:16 (DLID) D2711019 6 00/20/21 10:17

(US) E1407666-02 U973U	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3711018-2 09/30/21 18:47

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.52	101	85.0-115	

L1407395-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407395-02 09/30/21 19:12 • (MS) R3711018-4 09/30/21 19:13 • (MSD) R3711018-5 09/30/21 19:15

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	0.622	0.582	37.3	34.9	1	75.0-125	<u>J6</u>	<u>J6</u>	6.56	20

L1407688-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1407688-04 09/30/21 19:18 • (MS) R3711018-7 09/30/21 19:19 • (MSD) R3711018-8 09/30/21 19:20

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	0.451	0.555	27.1	33.3	1	75.0-125	<u>J6</u>	<u>J3 J6</u>	20.8	20

PROJECT:

DATE/TIME:

10/13/21 13:19

Page 237 of 317

Wet Chemistry by Method 9012B

L1407688-06,08,10,12

Method	Blank ((MB)
--------	---------	------

(MB) R3711547-1 10/02/2	1 01:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cvanide	U		0.0733	0.250

L1408072-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1408072-01 10/02/21 01:14 • (DUP) R3711547-3 10/02/21 01:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Cyanide	ND	ND	1	0.000		20	

(OS) L1408072-02 10/02/21 01:16 • (DUP) R3711547-8 10/02/21 01:33

(OS) L1408072-02 10/02/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Cyanide	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3711547-2 10/02/21 01:03

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.24	89.5	85.0-115	

L1408072-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408072-02 10/02/21 01:16 • (MS) R3711547-4 10/02/21 01:17 • (MSD) R3711547-5 10/02/21 01:18

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.54	0.953	92.4	57.2	1	75.0-125		<u>J3 J6</u>	47.0	20

L1409050-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1409050-01 10/02/21 01:30 • (MS) R3711547-6 10/02/21 01:31 • (MSD) R3711547-7 10/02/21 01:32

(03) [1409030-01 10/02/2	, ,	Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.48	1.58	89.0	95.0	1	75.0-125			6.46	20

Page 238 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1407688-02,04,06,08,10,12

Method Blank (MB)

Method Blank (MB	•				
(MB) R3712691-2 10/04/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acenaphthene	U		0.00539	0.0333	
Acenaphthylene	U		0.00469	0.0333	
Anthracene	U		0.00593	0.0333	
Benzidine	U		0.0626	1.67	
Benzo(a)anthracene	U		0.00587	0.0333	
Benzo(b)fluoranthene	U		0.00621	0.0333	
Benzo(k)fluoranthene	U		0.00592	0.0333	
Benzo(g,h,i)perylene	U		0.00609	0.0333	
Benzo(a)pyrene	U		0.00619	0.0333	
Bis(2-chlorethoxy)methane	U		0.0100	0.333	
Bis(2-chloroethyl)ether	U		0.0110	0.333	
2,2-oxybis(1-chloropropane)	U		0.0144	0.333	
4-Bromophenyl-phenylether	U		0.0117	0.333	
2-Chloronaphthalene	U		0.00585	0.0333	
4-Chlorophenyl-phenylether	U		0.0116	0.333	
Chrysene	U		0.00662	0.0333	
Dibenz(a,h)anthracene	U		0.00923	0.0333	
l,2-Dichlorobenzene	U		0.00987	0.333	
1,3-Dichlorobenzene	U		0.0101	0.333	
1,4-Dichlorobenzene	U		0.00991	0.333	
3,3-Dichlorobenzidine	U		0.0123	0.333	
2,4-Dinitrotoluene	U		0.00955	0.333	
2,6-Dinitrotoluene	U		0.0109	0.333	
Fluoranthene	U		0.00601	0.0333	
Fluorene	U		0.00542	0.0333	
Hexachlorobenzene	U		0.0118	0.333	
Hexachloro-1,3-butadiene	U		0.0112	0.333	
Hexachlorocyclopentadiene	U		0.0175	0.333	
Hexachloroethane	U		0.0131	0.333	
ndeno(1,2,3-cd)pyrene	U		0.00941	0.0333	
sophorone	U		0.0102	0.333	
l-Methylnaphthalene	U		0.00426	0.333	
2-Methylnaphthalene	U		0.00432	0.333	
Naphthalene	U		0.00836	0.0333	
Nitrobenzene	U		0.0116	0.333	
n-Nitrosodimethylamine	U		0.0494	0.333	
n-Nitrosodiphenylamine	U		0.0252	0.333	
n-Nitrosodi-n-propylamine	U		0.0111	0.333	
Phenanthrene	U		0.00661	0.0333	
Benzylbutyl phthalate	U		0.0104	0.333	

Page 239 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1407688-02,04,06,08,10,12

Method Blank (MB)

(MB) R3712691-2 10/04/2	21 12:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Bis(2-ethylhexyl)phthalate	U		0.0422	0.333	
Di-n-butyl phthalate	U		0.0114	0.333	
Diethyl phthalate	U		0.0110	0.333	
Dimethyl phthalate	U		0.0706	0.333	
Di-n-octyl phthalate	U		0.0225	0.333	
Pyrene	U		0.00648	0.0333	
Pyridine	U		0.0220	0.333	
1,2,4-Trichlorobenzene	U		0.0104	0.333	
4-Chloro-3-methylphenol	U		0.0108	0.333	
2-Chlorophenol	U		0.0110	0.333	
2-Methylphenol	U		0.0100	0.333	
3&4-Methyl Phenol	U		0.0104	0.333	
2,4-Dichlorophenol	U		0.00970	0.333	
2,4-Dimethylphenol	U		0.00870	0.333	
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	
2,4-Dinitrophenol	U		0.0779	0.333	
2-Nitrophenol	U		0.0119	0.333	
4-Nitrophenol	U		0.0104	0.333	
Pentachlorophenol	U		0.00896	0.333	
Phenol	U		0.0134	0.333	
2,4,6-Trichlorophenol	U		0.0107	0.333	
Quinoline	U		0.00861	0.333	
(S) Nitrobenzene-d5	51.1			10.0-122	
(S) 2-Fluorobiphenyl	62.8			15.0-120	
(S) p-Terphenyl-d14	73.6			10.0-120	
(S) Phenol-d5	63.8			10.0-120	
(S) 2-Fluorophenol	71.6			12.0-120	
(S) 2,4,6-Tribromophenol	72.2			10.0-127	

Laboratory Control Sample (LCS)

(LCS) R3712691-1 10/0	CS) R3712691-1 10/04/21 12:07									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Acenaphthene	0.666	0.370	55.6	38.0-120						
Acenaphthylene	0.666	0.380	57.1	40.0-120						
Anthracene	0.666	0.446	67.0	42.0-120						
Benzidine	1.33	0.346	26.0	10.0-120						
Benzo(a)anthracene	0.666	0.505	75.8	44.0-120						

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

QUALITY CONTROL SUMMARY

Page 240 of 317

L1407688-02,04,06,08,10,12

Laboratory Control Sample (LCS)

Laboratory Control	Sample (L	CS)			
(LCS) R3712691-1 10/04/2	1 12:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzo(b)fluoranthene	0.666	0.497	74.6	43.0-120	
Benzo(k)fluoranthene	0.666	0.498	74.8	44.0-120	
Benzo(g,h,i)perylene	0.666	0.500	75.1	43.0-120	
Benzo(a)pyrene	0.666	0.504	75.7	45.0-120	
Bis(2-chlorethoxy)methane	0.666	0.313	47.0	20.0-120	
Bis(2-chloroethyl)ether	0.666	0.293	44.0	16.0-120	
2,2-Oxybis(1-Chloropropane)	0.666	0.343	51.5	23.0-120	
4-Bromophenyl-phenylether	0.666	0.449	67.4	40.0-120	
2-Chloronaphthalene	0.666	0.366	55.0	35.0-120	
4-Chlorophenyl-phenylether	0.666	0.392	58.9	40.0-120	
Chrysene	0.666	0.478	71.8	43.0-120	
Dibenz(a,h)anthracene	0.666	0.506	76.0	44.0-120	
1,2-Dichlorobenzene	0.666	0.342	51.4	32.0-120	
1,3-Dichlorobenzene	0.666	0.338	50.8	30.0-120	
1,4-Dichlorobenzene	0.666	0.338	50.8	31.0-120	
3,3-Dichlorobenzidine	1.33	0.972	73.1	28.0-120	
2,4-Dinitrotoluene	0.666	0.442	66.4	45.0-120	
2,6-Dinitrotoluene	0.666	0.433	65.0	42.0-120	
Fluoranthene	0.666	0.472	70.9	44.0-120	
Fluorene	0.666	0.394	59.2	41.0-120	
Hexachlorobenzene	0.666	0.470	70.6	39.0-120	
Hexachloro-1,3-butadiene	0.666	0.294	44.1	15.0-120	
Hexachlorocyclopentadiene	0.666	0.350	52.6	15.0-120	
Hexachloroethane	0.666	0.351	52.7	17.0-120	
Indeno(1,2,3-cd)pyrene	0.666	0.512	76.9	45.0-120	
Isophorone	0.666	0.307	46.1	23.0-120	
1-Methylnaphthalene	0.666	0.325	48.8	34.0-120	
2-Methylnaphthalene	0.666	0.308	46.2	34.0-120	
Naphthalene	0.666	0.299	44.9	18.0-120	
Nitrobenzene	0.666	0.287	43.1	17.0-120	
n-Nitrosodimethylamine	0.666	0.354	53.2	10.0-125	
n-Nitrosodiphenylamine	0.666	0.425	63.8	40.0-120	
n-Nitrosodi-n-propylamine	0.666	0.347	52.1	26.0-120	
Phenanthrene	0.666	0.448	67.3	42.0-120	
Benzylbutyl phthalate	0.666	0.513	77.0	40.0-120	
Bis(2-ethylhexyl)phthalate	0.666	0.518	77.8	41.0-120	
Di-n-butyl phthalate	0.666	0.498	74.8	43.0-120	
Diethyl phthalate	0.666	0.433	65.0	43.0-120	
Dimethyl phthalate	0.666	0.419	62.9	43.0-120	
Di-n-octyl phthalate	0.666	0.505	75.8	40.0-120	

Page 241 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1407688-02,04,06,08,10,12

Laboratory Control Sample (LCS)

(LCS) R3712691-1 10/04/2	21 12:07					Ľ
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	2
Analyte	mg/kg	mg/kg	%	%		-
Pyrene	0.666	0.484	72.7	41.0-120		L
Pyridine	0.666	0.264	39.6	10.0-120		3
1,2,4-Trichlorobenzene	0.666	0.305	45.8	17.0-120		Ľ
4-Chloro-3-methylphenol	0.666	0.339	50.9	28.0-120		4
2-Chlorophenol	0.666	0.382	57.4	28.0-120		
2-Methylphenol	0.666	0.420	63.1	35.0-120		느
3&4-Methyl Phenol	0.666	0.449	67.4	42.0-120		5
2,4-Dichlorophenol	0.666	0.329	49.4	25.0-120		Ľ
2,4-Dimethylphenol	0.666	0.332	49.8	15.0-120		6
4,6-Dinitro-2-methylphenol	0.666	0.497	74.6	16.0-120		(
2,4-Dinitrophenol	0.666	0.353	53.0	10.0-120		_
2-Nitrophenol	0.666	0.342	51.4	20.0-120		7
4-Nitrophenol	0.666	0.448	67.3	27.0-120		Ľ
Pentachlorophenol	0.666	0.501	75.2	29.0-120		8
Phenol	0.666	0.359	53.9	28.0-120		1
2,4,6-Trichlorophenol	0.666	0.366	55.0	37.0-120		Ξ
Quinoline	0.666	0.426	64.0	30.0-120		9 5
(S) Nitrobenzene-d5			47.1	10.0-122		Ĺ
(S) 2-Fluorobiphenyl			55.9	15.0-120		
(S) p-Terphenyl-d14			70.3	10.0-120		
(S) Phenol-d5			56.2	10.0-120		
(S) 2-Fluorophenol			60.1	12.0-120		

L1408287-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

79.6

10.0-127

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.652	ND	0.205	0.199	31.4	30.4	1	18.0-120			2.97	32
Acenaphthylene	0.652	ND	0.215	0.203	33.0	31.0	1	25.0-120			5.74	32
Anthracene	0.652	ND	0.278	0.284	42.6	43.4	1	22.0-120			2.14	29
Benzidine	1.30	ND	ND	ND	7.05	7.29	1	10.0-120	<u>J6</u>	<u>J6</u>	4.06	40
Benzo(a)anthracene	0.652	ND	0.322	0.329	49.4	50.3	1	25.0-120			2.15	29
Benzo(b)fluoranthene	0.652	ND	0.313	0.316	46.4	46.7	1	19.0-122			0.954	31
Benzo(k)fluoranthene	0.652	ND	0.307	0.315	47.1	48.2	1	23.0-120			2.57	30
Benzo(g,h,i)perylene	0.652	ND	0.311	0.314	46.3	46.6	1	10.0-120			0.960	33
Benzo(a)pyrene	0.652	ND	0.320	0.328	48.1	49.2	1	24.0-120			2.47	30
Bis(2-chlorethoxy)methane	0.652	ND	ND	ND	26.7	26.5	1	10.0-120			0.576	34

(S) 2,4,6-Tribromophenol

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

QUALITY CONTROL SUMMARY

L1408287-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1407688-02,04,06,08,10,12	
----------------------------	--

(OS) L1408287-05 10/04/2	21 16:33 • (MS) F	R3712691-3 10/	04/21 16:54 •	(MSD) R371269	1-4 10/04/21	17:14						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Bis(2-chloroethyl)ether	0.652	ND	ND	ND	25.5	26.9	1	10.0-120			5.85	40
2,2-Oxybis(1-Chloropropane)	0.652	ND	ND	ND	26.8	26.5	1	10.0-120			1.15	40
4-Bromophenyl-phenylether	0.652	ND	ND	ND	42.2	42.0	1	27.0-120			0.000	30
2-Chloronaphthalene	0.652	ND	0.200	0.190	30.7	29.1	1	20.0-120			5.13	32
4-Chlorophenyl-phenylether	0.652	ND	ND	ND	36.5	35.3	1	24.0-120			2.99	29
Chrysene	0.652	ND	0.302	0.315	46.3	48.2	1	21.0-120			4.21	29
Dibenz(a,h)anthracene	0.652	ND	0.318	0.317	48.8	48.5	1	10.0-120			0.315	32
1,2-Dichlorobenzene	0.652	ND	ND	ND	27.1	27.1	1	10.0-120			0.000	38
1,3-Dichlorobenzene	0.652	ND	ND	ND	26.5	26.1	1	10.0-120			1.16	40
1,4-Dichlorobenzene	0.652	ND	ND	ND	26.2	25.2	1	10.0-120			3.57	39
3,3-Dichlorobenzidine	1.30	ND	0.469	0.493	36.1	37.6	1	10.0-120			4.99	34
2,4-Dinitrotoluene	0.652	ND	ND	ND	42.6	43.4	1	30.0-120			2.14	31
2,6-Dinitrotoluene	0.652	ND	ND	ND	40.5	40.2	1	25.0-120			0.380	31
Fluoranthene	0.652	ND	0.298	0.311	45.7	47.6	1	18.0-126			4.27	32
Fluorene	0.652	ND	0.236	0.232	36.2	35.5	1	25.0-120			1.71	30
Hexachlorobenzene	0.652	ND	ND	ND	42.9	44.5	1	27.0-120			3.85	28
Hexachloro-1,3-butadiene	0.652	ND	ND	ND	25.5	24.3	1	10.0-120			4.31	38
Hexachlorocyclopentadiene	0.652	ND	ND	ND	24.5	23.5	1	10.0-120			3.82	40
Hexachloroethane	0.652	ND	ND	ND	27.1	26.9	1	10.0-120			0.567	40
ndeno(1,2,3-cd)pyrene	0.652	ND	0.328	0.327	50.3	50.0	1	10.0-120			0.305	32
sophorone	0.652	ND	ND	ND	27.0	25.7	1	13.0-120			4.65	34
-Methylnaphthalene	0.652		ND	ND	27.6	26.5	1	10.0-120			3.81	36
2-Methylnaphthalene	0.652		ND	ND	25.5	23.6	1	10.0-120			6.98	37
Naphthalene	0.652	ND	0.167	0.161	24.0	23.0	1	10.0-120			3.66	35
Nitrobenzene	0.652	ND	ND	ND	24.4	23.5	1	10.0-120			3.19	36
n-Nitrosodimethylamine	0.652	ND	ND	ND	24.5	26.0	1	10.0-127			6.06	40
n-Nitrosodiphenylamine	0.652	ND	ND	ND	37.3	39.0	1	17.0-120			4.82	29
n-Nitrosodi-n-propylamine	0.652	ND	ND	ND	27.5	28.0	1	10.0-120			2.21	37
Phenanthrene	0.652	ND	0.280	0.289	42.9	44.2	1	17.0-120			3.16	31
Benzylbutyl phthalate	0.652	ND	0.354	0.359	54.3	54.9	1	23.0-120			1.40	30
Bis(2-ethylhexyl)phthalate	0.652	ND	0.343	0.354	52.6	54.1	1	17.0-126			3.16	30
Di-n-butyl phthalate	0.652	ND	ND	ND	42.6	43.6	1	30.0-120			2.14	29
Diethyl phthalate	0.652	ND	ND	ND	41.7	42.8	1	26.0-120			2.90	28
Dimethyl phthalate	0.652	ND	ND	ND	39.4	39.3	1	25.0-120			0.000	29
Di-n-octyl phthalate	0.652	ND	0.345	0.351	52.9	53.7	1	21.0-123			1.72	29
Pyrene	0.652	ND	0.314	0.322	48.2	49.2	1	16.0-121			2.52	32
Pyridine	0.652	ND	ND	ND	23.5	23.4	1	10.0-120			0.000	40
,2,4-Trichlorobenzene	0.652	ND	ND	ND	25.9	25.2	1	12.0-120			2.40	37
4-Chloro-3-methylphenol	0.652	ND	ND	ND	34.4	32.7	1	15.0-120			4.57	30
2-Chlorophenol	0.652	ND	ND	ND	31.6	32.1	1	15.0-120			1.92	37

Page 242 of 317

Page 243 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1407688-02,04,06,08,10,12

L1408287-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408287-05 10/04/21 16:33 • (MS) R3712691-3 10/04/21 16:54 • (MSD) R3712691-4 10/04/21 17:14

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
2-Methylphenol	0.652	ND	ND	ND	39.6	40.5	1	11.0-120			2.68	40	
3&4-Methyl Phenol	0.652	ND	ND	ND	37.9	41.9	1	12.0-123			10.4	38	
2,4-Dichlorophenol	0.652	ND	ND	ND	30.8	29.8	1	20.0-120			3.03	31	
2,4-Dimethylphenol	0.652	ND	ND	ND	27.5	26.3	1	10.0-120			3.99	33	
4,6-Dinitro-2-methylphenol	0.652	ND	0.335	0.350	51.4	53.5	1	10.0-120			4.38	39	
2,4-Dinitrophenol	0.652	ND	ND	ND	39.6	40.2	1	10.0-121			1.92	40	
2-Nitrophenol	0.652	ND	ND	ND	31.9	31.0	1	12.0-120			2.43	39	
4-Nitrophenol	0.652	ND	ND	ND	47.1	47.7	1	10.0-137			1.62	32	
Pentachlorophenol	0.652	ND	ND	ND	47.9	49.7	1	10.0-160			4.08	31	
Phenol	0.652	ND	ND	ND	28.8	30.1	1	12.0-120			4.68	38	
2,4,6-Trichlorophenol	0.652	ND	ND	ND	32.5	31.5	1	19.0-120			2.87	32	
Quinoline	0.652		ND	ND	44.3	43.0	1	20.0-122			2.81	32	
(S) Nitrobenzene-d5					26.9	25.5		10.0-122					
(S) 2-Fluorobiphenyl					31.0	29.7		15.0-120					
(S) p-Terphenyl-d14					46.0	46.8		10.0-120					
(S) Phenol-d5					31.3	33.6		10.0-120					
(S) 2-Fluorophenol					33.1	33.8		12.0-120					

51.1

(S) 2,4,6-Tribromophenol

50.8

10.0-127

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDI	Mathad Datastian Limit
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

times of preparation and/or analysis.

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

Ср

Pace Analy	vtical National	12065 Leban	on Rd Mount	· luliet	TN 37122
I ace Allai	yticai ivationai	12000 Leban		. Junet,	, 114 5/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
	AZ0612	New Hampshire	2975
Arizona			
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

ANALYSIS

LABORATORY

Released to Imaging: 11/23/2022 10:14:43 AM

Page 246 of 317
Hall Environmental Analysis Laboratory

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

J015

2840

5187 7995

Website: clients.hallenvironmental.com

SUB C	ONTRATOR: Pace	ΓN		COMPANY:	PACE	TN			PHONE:	(800) 76	57-5859	FAX	Ý:	(615)	758-585	9	
ADDR	12065	Lebano	n Rd						ACCOUNT #			EM	AIL:			1117	
CITY,	STATE, ZIP: Mt. Ju	ıliet, TN	37122												-74		
	127									#0							
TEM	SAMPLE	CLII	ENT SAMPI	LE ID		BOTTLE TYPE	MATRIX	F2.9	LECTION	ONTAINERS		NALY	TICA	L CON	MMEN	NTS	
1	2109C60-001B	SLP-BD-0	9222021			1. 4	MeOH (Soil)	9/22/2021		1 Total Col	iform and E.G	Coli in soil-	J and MI	DL	DIAC THE	1140	16880
2	2109C60-001C	SLP-BD-0	9222021	The second of th	u i i i i i i i i i i i i i i i i i i i	40ZGU	MeOH (Soil)	9/22/2021		1 Skinner L	ist SVOC,Cr6	, Total Cya	anide in s	oil- J and N		ere de la compania	oā
3	2109C60-003B	SLP-09					MeOH (Soil)	9/22/2021	8:30:00 AM	1 Total Col	iform and E.G	Coli in soil-	J and MI	DL .		a to state the	03
4	2109C60-003C	SLP-09		Nac 78		40ZGU	MeOH (Soil)	9/22/2021	8.30:00 AM	1 Skinner L	ist SVOC,Cr6	, Total Cya	anide in s	oil- J and N	MDL	Land Sugar	04
5	2109C60-004B	SLP-05					MeOH (Soil)	9/22/2021	9:25:00 AM	1 Total Col	iform and E.G	Coli in soil-	J and MI	DL			05
6	2109C60-004C	SLP-05				40ZGU	MeOH (Soil)	9/22/2021	9:25:00 AM	1 Skinner L	ist SVOC,Cr6	, Total Cya	anide in s	oil- J and N	MDL	14	06
7	2109C60-005B	SLP-06	3 3				MeOH (Soil)	9/22/2021	10:00:00 AM	1 Total Col	iform and E.G	Coli in soil-	J and MI	DL	*		07
8	2109C60-005C	SLP-06				40ZGU	MeOH	9/22/2021	10:00:00 AM	1 Skinner L	ist SVOC,Cr6	, Total Cya	anide in s	oil- J and N	MDL	- 56	08
9	2109C60-006B	SLP-08	15 193°		The second second	Bran Diese were	MeOH (Soil)	9/22/2021	10:30:00 AM	1 Total Col	iform and E.C	Coli in soil-	J and MI	DL			09
10	2109C60-006C	SLP-08				40ZGU	MeOH	9/22/2021	10:30:00 AM	1 Skinner L	ist SVOC,Cr6	, Total Cya	nide in s	oil- J and N	MDL		10
11	2109C60-007B	SLP-07	ē	5 (For 15 1 ,00 %) 2 15		2 E	MeOH	9/22/2021	11:15:00 AM	1 Total Col	iform and E.C	Coli în soil-	J and MI	DL		1 1 1 1 1 1 1	1)
12	2109C60-007C	SLP-07				40ZGU	MeOH (Soil)	9/22/2021	11:15:00 AM	1 Skinner L	ist SVOC,Cr6	, Total Cya	anide in s	oil- J and N	MDL		12
PECI	AL INSTRUCTIONS /	COMMENTS	i:				USAII)	and the second			d	m=12	- TB	=0	2	7-1=2 Cocs	L A6.
	ished By:		Date	Time		rts. Please e-m			Time: GU		return all coole			k you.	SIRED:		
lingt	ished By:	اد	9/22/2021 Date:	5:04 PM Time:	Received By:	W/60 130		ate:	Time:		HARDCOPY (extra cost)	□ FA	x 🗆	EMAIL	ONLINE	
	ished By:		Date:	Time:	Received By:		ı	ate:	Time:	Sales Contract			FOR LAB	USE ONLY			
	TAT:	Standar	d 🍂	RUSH	Next B	BD □ 2	nd BD	3rd BI			Temp of samples	-	C	Attempt	to Cool ?	A	-
										1	Comments:						

25.40

ATTACHMENT 1

	Region 5 Waste M Constituents of Concer	Region 5 Waste Management Branch "Skinner List" Constituents of Concern for Wastes from Petroleum Processes	ner List" eum Processes
Source			
Antimonija		1	
Amount		Canada	
Beriams	Covair		(
		1	

Volatile Organics

Semivolatile Organics			
	o-Cresol	Diethyl phthalate	Naphthalene
	m-Cresol	2,4 Dimethylphenol	4-Nitrophenol
Benzo(a)anthracene	p-Cresol	Dimethyl phthalate	Phenanthrene
Benzo(b)fluroranthene	Dibenz(a,h)anthracene	2,4 Dinitrophenol	Phenol
Benzo(k)fluoranthene	Di-n-butyl phthalate	Fluoranthene	Pyrene
Benzo(a)pyrene	1,2-Dichlorobenzene*	Fluorene	Pyridine
Bis(2-ethylhexyl) phthalate	1,3-Dichlorobenzene*	Indeno(1,2,3-cd)pyrene	Quinoline
	1,4-Dichlorobenzene*	Mathyl tartiary buttel other (Menty)	*- can be tested as a volatile

enzo(a)anthracene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene
enzo(b)fluoranthene	Benzo(a)pyrene	Chrysene*	

	naphthalene*	s not on these lis
	1-Methyli	Methylnanhthalene
	Dihenzis in in d	t of Amendix IX and is a CI P TCI organic 1-1
	700	and is nort of Annendiv D
Optional Semivolatile Organics	The fact	*Note that 2 Methylpsele

**Benzenethiol can be detected in certain petroleum refinery wastes. Its measurement must compensate for its instability at neutral and acid pH values during sample preparation and its unstable instrument calibration standards

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109C60** *13-Oct-21*

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-63078	SampType: MBLK			TestCode: EPA Method 300.0: Anions						
Client ID: PBS	Batch	ID: 63	078	F	RunNo: 8	1844				
Prep Date: 10/6/2021	Analysis Date: 10/6/2021			9	SeqNo: 2	895447	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30								
Chloride	ND	1.5								
Nitrogen, Nitrite (As N)	ND	0.30								
Nitrogen, Nitrate (As N)	ND	0.30								
Sulfate	ND	1.5								

Sample ID: LCS-63078	SampT	S	Tes	TestCode: EPA Method 300.0: Anions							
Client ID: LCSS	Batch	n ID: 63 0	078	F	RunNo: 8						
Prep Date: 10/6/2021	Analysis D	Analysis Date: 10/6/2021			SeqNo: 2	895448	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	1.6	0.30	1.500	0	104	90	110				
Chloride	15	1.5	15.00	0	96.7	90	110				
Nitrogen, Nitrite (As N)	3.3	0.30	3.000	0	109	90	110				
Nitrogen, Nitrate (As N)	7.6	0.30	7.500	0	101	90	110				
Sulfate	30	1.5	30.00	0	100	90	110				

Sample ID: MB-63078	SampT	ype: m l	olk	Tes						
Client ID: PBS	Batch	Batch ID: 63078			RunNo: 8					
Prep Date: 10/6/2021	Analysis Date: 10/6/2021			8	SeqNo: 2	895794	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30								
Chloride	ND	1.5								
Nitrogen, Nitrite (As N)	ND	0.30								
Nitrogen, Nitrate (As N)	ND	0.30								
Sulfate	ND	1.5								

Sample ID: LCS-63078	SampT	ype: Ics	;	TestCode: EPA Method 300.0: Anions						
Client ID: LCSS	Batch	1D: 63 0	078	F	RunNo: 8					
Prep Date: 10/6/2021	Analysis Date: 10/6/2021			8	SeqNo: 2	895795	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.6	0.30	1.500	0	104	90	110			
Chloride	14	1.5	15.00	0	95.5	90	110			
Nitrogen, Nitrite (As N)	3.0	0.30	3.000	0	99.9	90	110			
Nitrogen, Nitrate (As N)	7.6	0.30	7.500	0	101	90	110			
Sulfate	30	1.5	30.00	0	99.5	90	110			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 22

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

8.5

WO#: **2109C60** *13-Oct-21*

Client: Marathon

Sample ID: MB-62799

Surr: DNOP

Project: Sanitary Lagoon Investigation Phase II

Sample ID: LCS-62799 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 62799 RunNo: 81579 Prep Date: Analysis Date: 9/24/2021 SeqNo: 2883290 9/23/2021 Units: mq/Kq PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Diesel Range Organics (DRO) 48 10 50.00 0 95.0 68.9 135 Surr: DNOP 4.6 5.000 91.3 70 130

Client ID: PBS Batch ID: 62799 RunNo: 81579 Prep Date: Analysis Date: 9/24/2021 SeqNo: 2883293 9/23/2021 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 10 10.00 100 70 130

TestCode: EPA Method 8015M/D: Diesel Range Organics

130

Sample ID: MB-62827 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 62827 RunNo: 81612 Prep Date: 9/24/2021 Analysis Date: 9/27/2021 SeqNo: 2884266 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte Result HighLimit %RPD Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50

Sample ID: LCS-62827 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 62827 RunNo: 81612 Prep Date: 9/24/2021 Analysis Date: 9/27/2021 SeqNo: 2884267 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

85.5

 Diesel Range Organics (DRO)
 42
 10
 50.00
 0
 84.9
 68.9
 135

 Surr: DNOP
 4.1
 5.000
 81.5
 70
 130

10.00

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109C60**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882065 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1000 1000 104 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882066 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 26
 5.0
 25.00
 0
 105
 78.6
 131

 Surr: BFB
 1200
 1000
 115
 70
 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 22

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2109C60**

13-Oct-21

Client: Marathon

Sample ID: mb

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: LCSS	Batch ID: \$81575 Analysis Date: 9/24/2021			F	RunNo: 8	1575				
Prep Date:				SeqNo: 2882825 Units: mg/Kg						
Analyte	Result PQL SPK value		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.93	0.025	1.000	0	93.2	70	130			
Toluene	0.82	0.050	1.000	0	82.1	70	130			
Chlorobenzene	0.85	0.050	1.000	0	84.9	70	130			
Trichloroethene (TCE)	0.86	0.050	1.000	0	85.6	70	130			
Surr: Dibromofluoromethane	0.51		0.5000		102	70	130			
Surr: 1,2-Dichloroethane-d4	0.49		0.5000		98.4	70	130			
Surr: Toluene-d8	0.48		0.5000		96.9	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		97.8	70	130			

TestCode: EPA Method 8260B: Volatiles

Client ID: PBS	Batch ID: S81575 Analysis Date: 9/24/2021			F	RunNo: 81575					
Prep Date:				5	SeqNo: 2882837			Units: mg/Kg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Chlorobenzene	ND	0.050								
Chloroform	ND	0.050								
1,1-Dichloroethane	ND	0.050								
Styrene	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.49		0.5000		97.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		89.4	70	130			
Surr: Toluene-d8	0.52		0.5000		105	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		100	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109C60**

13-Oct-21

Client: Marathon

Sample ID: mb

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 100NG LCS	SampT	ype: LC	s	Tes	tCode: El					
Client ID: LCSW	Batch	1D: V8	1541	F	RunNo: 8	1541				
Prep Date:	Analysis Date: 9/23/2021			8	SeqNo: 28	881300	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.9	70	130	•		
Toluene	18	1.0	20.00	0	91.4	70	130			
Chlorobenzene	17	1.0	20.00	0	86.7	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	92.8	70	130			
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.3	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.6	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

TestCode: EPA Method 8260B: VOLATILES

· ·											
Client ID: PBW	Batch ID: V81541 Analysis Date: 9/23/2021			F	RunNo: 8	1541					
Prep Date:				5	SeqNo: 2	881302	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
1,2-Dichloroethane (EDC)	ND	1.0									
1,2-Dibromoethane (EDB)	ND	1.0									
2-Butanone	ND	10									
Carbon disulfide	ND	10									
Chlorobenzene	ND	1.0									
Chloroform	ND	1.0									
1,1-Dichloroethane	ND	1.0									
Styrene	ND	1.0									
Tetrachloroethene (PCE)	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
Trichloroethene (TCE)	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.4		10.00		94.0	70	130				
Surr: 4-Bromofluorobenzene	9.8		10.00		97.8	70	130				
Surr: Dibromofluoromethane	10		10.00		99.8	70	130				
Surr: Toluene-d8	9.8		10.00		98.4	70	130				

Sample ID: 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES

Client ID: LCSW Batch ID: R81575 RunNo: 81575

SampType: MBLK

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882818 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 22

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2109C60** *13-Oct-21*

Client: Marathon

Sample ID: mb

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R8	1575	F	RunNo: 8	1575				
Prep Date:	Analysis D	Analysis Date: 9/24/2021		8	SeqNo: 2882818					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	93.2	70	130			
Toluene	16	1.0	20.00	0	82.1	70	130			
Chlorobenzene	17	1.0	20.00	0	84.9	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	85.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.4	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.8	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.9	70	130			

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch	ID: R8	1575	F	RunNo: 8	1575				
Prep Date:	Analysis D	ate: 9/	24/2021	9	SeqNo: 2	882824	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Chlorobenzene	ND	1.0								
Chloroform	ND	1.0								
1,1-Dichloroethane	ND	1.0								
Styrene	ND	1.0								
Tetrachloroethene (PCE)	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.9		10.00		89.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.8		10.00		97.9	70	130			
Surr: Toluene-d8	10		10.00		105	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109C60** *13-Oct-21*

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62905 SampType: MBLK TestCode: EPA Method 7471B: Mercury

Client ID: PBS Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SegNo: 2887699 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LLLCS-62905 SampType: LCSLL TestCode: EPA Method 7471B: Mercury

Client ID: BatchQC Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SeqNo: 2887700 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0054 0.033 0.006660 0 80.4 70 130 J

Sample ID: LCS-62905 SampType: LCS TestCode: EPA Method 7471B: Mercury

Client ID: LCSS Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SeqNo: 2887701 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.14 0.033 0.1667 0 82.2 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 22

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#: **2109C60** *13-Oct-21*

Client: Marathon

Sample ID: LCS-62806

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62806	SampT	ype: MBLK TestCode: EPA Method					od 6010B: Soil Metals				
Client ID: PBS	Batch	ID: 62	806	R	tunNo: 8	1583					
Prep Date: 9/23/2021	Analysis D	ate: 9/	27/2021	SeqNo: 2883026			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony	ND	2.5									
Arsenic	ND	2.5									
Barium	ND	0.10									
Beryllium	ND	0.15									
Cadmium	ND	0.10									
Chromium	ND	0.30									
Cobalt	ND	0.30									
Iron	ND	2.5									
Lead	ND	0.30									
Manganese	ND	0.20									
Selenium	ND	2.5									
Silver	ND	0.25									
Vanadium	ND	2.5									
Zinc	ND	2.5									

		<i>)</i>	_								
Client ID: LCSS	Batch	n ID: 62	806	F	RunNo: 8	1583					
Prep Date: 9/23/2021	Analysis D	oate: 9/	27/2021	5	SeqNo: 28	883029	Units: mg/k	(g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Antimony	22	2.5	25.00	0	88.3	80	120	•			
Arsenic	22	2.5	25.00	0	88.5	80	120				
Barium	22	0.10	25.00	0	86.6	80	120				
Beryllium	23	0.15	25.00	0	91.6	80	120				
Cadmium	22	0.10	25.00	0	87.7	80	120				
Chromium	22	0.30	25.00	0	87.7	80	120				
Cobalt	22	0.30	25.00	0	86.6	80	120				
Iron	23	2.5	25.00	0	93.2	80	120				
Lead	22	0.30	25.00	0	88.4	80	120				
Manganese	22	0.20	25.00	0	86.8	80	120				
Selenium	20	2.5	25.00	0	80.2	80	120				
Silver	4.3	0.25	5.000	0	87.0	80	120				
Vanadium	22	2.5	25.00	0	88.3	80	120				
Zinc	21	2.5	25.00	0	84.8	80	120				

TestCode: EPA Method 6010B: Soil Metals

 Sample ID:
 MB-62806
 SampType:
 MBLK
 TestCode:
 EPA Method 6010B:
 Soil Metals

 Client ID:
 PBS
 Batch ID:
 62806
 RunNo:
 81583

 Prep Date:
 9/23/2021
 Analysis Date:
 9/27/2021
 SeqNo:
 2884034
 Units:
 mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109C60**

13-Oct-21

Client: Marathon

Nickel

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62806 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 62806 RunNo: 81583

Prep Date: 9/23/2021 Analysis Date: 9/27/2021 SeqNo: 2884034 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nickel ND 0.50

Sample ID: LCS-62806 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

25.00

Client ID: LCSS Batch ID: 62806 RunNo: 81583

0.50

22

Prep Date: 9/23/2021 Analysis Date: 9/27/2021 SeqNo: 2884036 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

89.4

80

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

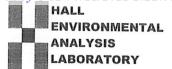
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 22

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Marathon	Work Order Number: 21	09C60		RcptNo:	1
Received By: Andy Freeman 9	/22/2021 4:40:00 PM		andrel		
Completed By: Desiree Dominguez 9	/22/2021 4:43:11 PM		THE		
Reviewed By: SGC 9 22/71			73		
Chain of Custody					
1. Is Chain of Custody complete?	Ye	s 🗸	No 🗌	Not Present	
2. How was the sample delivered?	Co	<u>urier</u>			
<u>Log In</u>					
3. Was an attempt made to cool the samples?	Ye	s 🗸	No 🗌	NA 🗌	
4. Were all samples received at a temperature of			No 🗹	NA 🗌	
5. Sample(s) in proper container(s)?	Samples were col			chilled.	
o. Sample(s) in proper container(s)?	Ye	s 🗸	No 🗌		
6. Sufficient sample volume for indicated test(s)?	Ye	s 🗸	No 🗌		
7. Are samples (except VOA and ONG) properly pr	eserved? Yes	· 🗸	No 🗌		
8. Was preservative added to bottles?	Yes	s 🗆	No 🗸	NA 🗌	
9. Received at least 1 vial with headspace <1/4" for	AQ VOA? Yes		No 🗌	NA 🗌	
10. Were any sample containers received broken?	Ye	s \square	No 🗸		_
4.5				# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	V	No 🗌	for pH:	>12 unless noted)
2. Are matrices correctly identified on Chain of Cus	todv? Yes	V	No 🗆	Adjusted?	712 unless noted)
3. Is it clear what analyses were requested?		V	No 🗆		1.00 N
4. Were all holding times able to be met? (If no, notify customer for authorization.)		✓	No 🗌	Checked by:	GARY 9
Special Handling (if applicable)					
15. Was client notified of all discrepancies with this	order? Ye	s 🗌	No 🗌	NA 🗸	
Person Notified:	Date:		CONTRACTOR COLOR		
By Whom:	is a second seco	∕lail □ P	hone Fax	In Person	
Regarding:				CONTRACTOR STATEMENT OF STATE	
Client Instructions:	CONTROL OF THE PROPERTY OF THE	A DESCRIPTION OF THE PARTY OF T	ORNAMORE PROCESSES AND MINISTER CONSISCION	MICHARD TO ARREST MANAGEMENT DESCRIPTIONS	
6. Additional remarks:					
17. Cooler Information					
Cooler No Temp °C Condition Seal II	ntact Seal No Seal I	Date	Signed By		
1 7.0 Good Yes					

TABLE 1. SOIL ANALYTE LIST MARATHON PETROLEM COMPANY GALLUP REFINING DEVISION, GALLUP, NEW MEXICO

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/3352 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020
Chloride	EPA Method 300
Fluoride	EPA Method 300
Nitrate	EPA Method 300
Nitrite	EPA Method 300.3
Sulfate	EPA Method 300.3
Total coliform	SM922SB
E, coli	SM92238
Skinner list VOC	SW-846 Method 8260
Skinner list SVOC	SW-846 Method 8270
TPH - GRO, DRO, and MRO	SW-846 Method 8015B

Notes:

EPA = Environmental Protection Agency

SW-846 = EPA Solid Waste Test Method

VOC = volitile organic componds

SVOC = Semi-volitile organic componds

TPH = Total petroleum hydrocarbons

GRO = Gasoline range organics (C5-C10)

DRO = Diesel range organics (>C10-C28)

MRO = Motor oil range organics (>C28-C36)

Total and dissoved metals will be analyzed

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 13, 2021

Brian McLoughlin Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: FAX

RE: Sanitary Lagoon Investigation Phase II OrderNo.: 2109D24

Dear Brian McLoughlin:

Hall Environmental Analysis Laboratory received 5 sample(s) on 9/23/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

CLIENT: Marathon

Analytical ReportLab Order **2109D24**

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: SLP-BD-09232021

Project: Sanitary Lagoon Investigation Phase II **Collection Date:** 9/23/2021

Lab ID: 2109D24-001 **Matrix:** MEOH (SOIL) **Received Date:** 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	5.6	4.9	10	J	mg/Kg	1	9/27/2021 6:04:22 PM	62827
Motor Oil Range Organics (MRO)	ND	50	50		mg/Kg	1	9/27/2021 6:04:22 PM	62827
Surr: DNOP	90.6	0	70-130		%Rec	1	9/27/2021 6:04:22 PM	62827
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.8	2.7		mg/Kg	1	9/25/2021 7:49:01 AM	B81560
Surr: BFB	101	0	70-130		%Rec	1	9/25/2021 7:49:01 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	3.8	1.5	1.5		mg/Kg	5	10/7/2021 1:11:04 AM	63078
Chloride	210	7.5	7.5		mg/Kg	5	10/7/2021 1:11:04 AM	63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 1:11:04 AM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 1:11:04 AM	63078
Sulfate	230	7.5	7.5		mg/Kg	5	10/7/2021 1:11:04 AM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0089	0.0026	0.032	J	mg/Kg	1	9/30/2021 10:08:41 AM	1 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.5		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Arsenic	ND	1.4	2.5		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Barium	140	0.059	0.098		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Beryllium	1.0	0.029	0.15		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Cadmium	ND	0.049	0.098		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Chromium	8.2	0.15	0.29		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Cobalt	4.6	0.059	0.29		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Iron	14000	250	250		mg/Kg	100	9/30/2021 1:47:00 PM	62888
Lead	3.5	0.26	0.29		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Manganese	460	1.6	2.0		mg/Kg	10	9/30/2021 1:45:01 PM	62888
Nickel	8.4	0.19	0.49		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Selenium	ND	2.2	2.5		mg/Kg	1	9/30/2021 1:42:46 PM	62888
Silver	ND	0.14	0.25		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Vanadium	14	0.11	2.5		mg/Kg	1	9/29/2021 4:31:44 PM	62888
Zinc	12	1.3	2.5		mg/Kg	1	9/29/2021 4:31:44 PM	62888
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.0052	0.014		mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Toluene	ND	0.0035	0.027		mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Ethylbenzene	ND	0.0066	0.027		mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Methyl tert-butyl ether (MTBE)	ND	0.015	0.027		mg/Kg	1	9/27/2021 4:13:51 PM	S81617
1,2-Dichloroethane (EDC)	ND	0.0062	0.027		mg/Kg	1	9/27/2021 4:13:51 PM	S81617
1,2-Dibromoethane (EDB)	ND	0.011	0.027		mg/Kg	1	9/27/2021 4:13:51 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-BD-09232021

Project: Sanitary Lagoon Investigation Phase II **Collection Date:** 9/23/2021

Lab ID: 2109D24-001 **Matrix:** MEOH (SOIL) **Received Date:** 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RA	Δ.
2-Butanone	ND	0.12	0.27	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Carbon disulfide	ND	0.011	0.27	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Chlorobenzene	ND	0.0049	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Chloroform	ND	0.0038	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
1,1-Dichloroethane	ND	0.0079	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Styrene	ND	0.0037	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Tetrachloroethene (PCE)	ND	0.0074	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
1,1,1-Trichloroethane	ND	0.0060	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Trichloroethene (TCE)	ND	0.0053	0.027	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Xylenes, Total	ND	0.014	0.054	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
1,4-Dioxane	ND	0.15	0.27	mg/Kg	1	9/27/2021 4:13:51 PM	S81617
Surr: Dibromofluoromethane	112		70-130	%Rec	1	9/27/2021 4:13:51 PM	S81617
Surr: 1,2-Dichloroethane-d4	108		70-130	%Rec	1	9/27/2021 4:13:51 PM	S81617
Surr: Toluene-d8	97.6		70-130	%Rec	1	9/27/2021 4:13:51 PM	S81617
Surr: 4-Bromofluorobenzene	92.8		70-130	%Rec	1	9/27/2021 4:13:51 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-EB-09232021

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 10:00:00 AMLab ID:2109D24-002Matrix: AQUEOUSReceived Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RA	A
Benzene	ND	0.23	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Toluene	ND	0.20	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Ethylbenzene	ND	0.21	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Methyl tert-butyl ether (MTBE)	ND	0.39	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
1,2-Dichloroethane (EDC)	ND	0.25	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
1,2-Dibromoethane (EDB)	ND	0.30	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
2-Butanone	ND	2.0	10	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Carbon disulfide	ND	0.59	10	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Chlorobenzene	ND	0.16	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Chloroform	ND	0.13	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
1,1-Dichloroethane	ND	0.27	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Styrene	ND	0.14	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Tetrachloroethene (PCE)	ND	0.36	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
1,1,1-Trichloroethane	ND	0.30	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Trichloroethene (TCE)	ND	0.20	1.0	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Xylenes, Total	ND	0.37	1.5	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
1,4-Dioxane	ND	7.0	10	μg/L	1	9/24/2021 9:58:43 PM	1 R81575
Surr: 1,2-Dichloroethane-d4	93.0	0	70-130	%Rec	1	9/24/2021 9:58:43 PM	1 R81575
Surr: 4-Bromofluorobenzene	99.2	0	70-130	%Rec	1	9/24/2021 9:58:43 PM	1 R81575
Surr: Dibromofluoromethane	103	0	70-130	%Rec	1	9/24/2021 9:58:43 PM	1 R81575
Surr: Toluene-d8	102	0	70-130	%Rec	1	9/24/2021 9:58:43 PM	1 R81575

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 20

Hall Environmental Analysis Laboratory, Inc. Date Reported: 10/13/2021

CLIENT: Marathon Client Sample ID: SLP-11

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 9:00:00 AMLab ID:2109D24-003Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

		- (,					
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: SB	
Diesel Range Organics (DRO)	250	4.0	8.0		mg/Kg	1	9/27/2021 6:16:44 PM	62827
Motor Oil Range Organics (MRO)	ND	40	40		mg/Kg	1	9/27/2021 6:16:44 PM	62827
Surr: DNOP	89.8	0	70-130		%Rec	1	9/27/2021 6:16:44 PM	62827
EPA METHOD 8015D: GASOLINE RANGE							Analyst: NSE	3
Gasoline Range Organics (GRO)	190	81	120		mg/Kg	50	9/25/2021 8:12:27 AM	B81560
Surr: BFB	109	0	70-130		%Rec	50	9/25/2021 8:12:27 AM	B81560
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	1.8	1.5	1.5		mg/Kg	5	10/7/2021 1:35:54 AM	63078
Chloride	26	7.5	7.5		mg/Kg	5	10/7/2021 1:35:54 AM	
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 1:35:54 AM	
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 1:35:54 AM	63078
Sulfate	ND	7.5	7.5		mg/Kg	5	10/7/2021 1:35:54 AM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.015	0.0027	0.035	J	mg/Kg	1	9/30/2021 10:15:03 AM	M 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	8.5	13		mg/Kg	5	9/29/2021 6:03:56 PM	62888
Arsenic	ND	7.3	13		mg/Kg	5	9/29/2021 6:03:56 PM	62888
Barium	810	0.31	0.52		mg/Kg	5	9/30/2021 1:49:03 PM	62888
Beryllium	0.56	0.15	0.78	J	mg/Kg	5	9/29/2021 6:03:56 PM	62888
Cadmium	ND	0.26	0.52		mg/Kg	5	9/29/2021 6:03:56 PM	62888
Chromium	3.7	0.78	1.6		mg/Kg	5	9/30/2021 1:49:03 PM	62888
Cobalt	2.6	0.31	1.6		mg/Kg	5	9/29/2021 6:03:56 PM	62888
Iron	8000	130	130		mg/Kg	50	9/30/2021 1:51:02 PM	62888
Lead	4.4	1.4	1.6		mg/Kg	5	9/29/2021 6:03:56 PM	62888
Manganese	2400	8.6	10		mg/Kg	50	9/30/2021 1:51:02 PM	62888
Nickel	3.9	1.0	2.6		mg/Kg	5	9/30/2021 1:49:03 PM	62888
Selenium	ND	11	13		mg/Kg	5	9/30/2021 1:49:03 PM	62888
Silver	1.3	0.75	1.3		mg/Kg	5	10/4/2021 2:32:28 PM	62888
Vanadium	16	0.59	13		mg/Kg	5	9/30/2021 1:49:03 PM	62888
Zinc	8.5	7.0	13	J	mg/Kg	5	9/29/2021 6:03:56 PM	62888
EPA METHOD 8260B: VOLATILES							Analyst: RAA	A
Benzene	1.1	0.047	0.12		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Toluene	5.4	0.031	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Ethylbenzene	1.9	0.059	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Methyl tert-butyl ether (MTBE)	ND	0.14	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	
1,2-Dichloroethane (EDC)	0.12	0.055	0.24	J	mg/Kg	10	9/27/2021 5:35:09 PM	
1,2-Dibromoethane (EDB)	ND	0.095	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-11

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 9:00:00 AMLab ID:2109D24-003Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	ND	1.1	2.4		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Carbon disulfide	ND	0.10	2.4		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Chlorobenzene	0.056	0.044	0.24	J	mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Chloroform	ND	0.034	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
1,1-Dichloroethane	ND	0.071	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Styrene	ND	0.033	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Tetrachloroethene (PCE)	ND	0.067	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
1,1,1-Trichloroethane	ND	0.054	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Trichloroethene (TCE)	ND	0.048	0.24		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Xylenes, Total	9.0	0.13	0.49		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
1,4-Dioxane	ND	1.4	2.4		mg/Kg	10	9/27/2021 5:35:09 PM	S81617
Surr: Dibromofluoromethane	102		70-130		%Rec	10	9/27/2021 5:35:09 PM	S81617
Surr: 1,2-Dichloroethane-d4	99.9		70-130		%Rec	10	9/27/2021 5:35:09 PM	S81617
Surr: Toluene-d8	95.9		70-130		%Rec	10	9/27/2021 5:35:09 PM	S81617
Surr: 4-Bromofluorobenzene	108		70-130		%Rec	10	9/27/2021 5:35:09 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 20

CLIENT: Marathon

Analytical ReportLab Order **2109D24**

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: SLP-02

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 9:30:00 AMLab ID:2109D24-004Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual U	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SB	
Diesel Range Organics (DRO)	ND	4.9	9.9	r	mg/Kg	1	9/27/2021 6:29:04 PM	62827
Motor Oil Range Organics (MRO)	ND	50	50	r	mg/Kg	1	9/27/2021 6:29:04 PM	62827
Surr: DNOP	90.8	0	70-130	Ç	%Rec	1	9/27/2021 6:29:04 PM	62827
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSB	
Gasoline Range Organics (GRO)	ND	1.9	2.8	r	mg/Kg	1	9/26/2021 1:33:21 PM	G81561
Surr: BFB	100	0	70-130	Ç	%Rec	1	9/26/2021 1:33:21 PM	G81561
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	3.7	1.5	1.5	r	mg/Kg	5	10/7/2021 2:25:32 AM	63078
Chloride	260	7.5	7.5		mg/Kg	5	10/7/2021 2:25:32 AM	63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 2:25:32 AM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 2:25:32 AM	63078
Sulfate	480	7.5	7.5		mg/Kg	5	10/7/2021 2:25:32 AM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	0.0038	0.0027	0.034	J r	mg/Kg	1	9/30/2021 10:17:11 AM	1 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.7	2.6	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Arsenic	ND	1.5	2.6	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Barium	120	0.062	0.10	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Beryllium	1.2	0.030	0.16	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Cadmium	ND	0.052	0.10	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Chromium	12	0.16	0.31	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Cobalt	5.6	0.063	0.31	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Iron	19000	260	260	r	mg/Kg	100	10/4/2021 2:34:06 PM	62888
Lead	2.3	0.28	0.31	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Manganese	400	1.7	2.1	r	mg/Kg	10	9/30/2021 1:55:19 PM	62888
Nickel	11	0.20	0.52	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Selenium	ND	2.3	2.6	r	mg/Kg	1	9/30/2021 1:53:04 PM	62888
Silver	ND	0.15	0.26	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Vanadium	20	0.12	2.6	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
Zinc	15	1.4	2.6	r	mg/Kg	1	9/29/2021 4:35:59 PM	62888
EPA METHOD 8260B: VOLATILES							Analyst: RAA	
Benzene	ND	0.0055	0.014	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Toluene	ND	0.0036	0.028	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Ethylbenzene	ND	0.0069	0.028	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Methyl tert-butyl ether (MTBE)	ND	0.016	0.028	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
1,2-Dichloroethane (EDC)	ND	0.0065	0.028	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
1,2-Dibromoethane (EDB)	ND	0.011	0.028	r	mg/Kg	1	9/27/2021 6:02:21 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-02

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 9:30:00 AMLab ID:2109D24-004Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: RAA	4
2-Butanone	ND	0.12	0.28	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Carbon disulfide	ND	0.012	0.28	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Chlorobenzene	ND	0.0051	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Chloroform	ND	0.0040	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
1,1-Dichloroethane	ND	0.0082	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Styrene	ND	0.0039	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Tetrachloroethene (PCE)	ND	0.0078	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
1,1,1-Trichloroethane	ND	0.0063	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Trichloroethene (TCE)	ND	0.0056	0.028	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Xylenes, Total	ND	0.015	0.057	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
1,4-Dioxane	ND	0.16	0.28	mg/Kg	1	9/27/2021 6:02:21 PM	S81617
Surr: Dibromofluoromethane	107		70-130	%Rec	1	9/27/2021 6:02:21 PM	S81617
Surr: 1,2-Dichloroethane-d4	96.5		70-130	%Rec	1	9/27/2021 6:02:21 PM	S81617
Surr: Toluene-d8	101		70-130	%Rec	1	9/27/2021 6:02:21 PM	S81617
Surr: 4-Bromofluorobenzene	96.3		70-130	%Rec	1	9/27/2021 6:02:21 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-04

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 10:00:00 AMLab ID:2109D24-005Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: SB	
Diesel Range Organics (DRO)	ND	4.9	9.9		mg/Kg	1	9/27/2021 6:41:17 PM	62827
Motor Oil Range Organics (MRO)	ND	50	50		mg/Kg	1	9/27/2021 6:41:17 PM	62827
Surr: DNOP	89.8	0	70-130		%Rec	1	9/27/2021 6:41:17 PM	62827
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: NSE	3
Gasoline Range Organics (GRO)	3.1	1.9	2.8		mg/Kg	1	9/26/2021 2:44:22 PM	G81561
Surr: BFB	104	0	70-130		%Rec	1	9/26/2021 2:44:22 PM	G81561
EPA METHOD 300.0: ANIONS							Analyst: VP	
Fluoride	9.0	1.5	1.5		mg/Kg	5	10/7/2021 2:50:22 AM	63078
Chloride	120	7.5	7.5		mg/Kg	5	10/7/2021 2:50:22 AM	63078
Nitrogen, Nitrite (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 2:50:22 AM	63078
Nitrogen, Nitrate (As N)	ND	1.5	1.5		mg/Kg	5	10/7/2021 2:50:22 AM	63078
Sulfate	11	7.5	7.5		mg/Kg	5	10/7/2021 2:50:22 AM	63078
EPA METHOD 7471B: MERCURY							Analyst: ags	
Mercury	ND	0.0025	0.031		mg/Kg	1	9/30/2021 10:19:19 AM	A 62905
EPA METHOD 6010B: SOIL METALS							Analyst: JLF	
Antimony	ND	1.6	2.4		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Arsenic	ND	1.4	2.4		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Barium	240	0.059	0.097		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Beryllium	0.76	0.028	0.15		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Cadmium	ND	0.049	0.097		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Chromium	8.0	0.15	0.29		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Cobalt	3.4	0.059	0.29		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Iron	13000	240	240		mg/Kg	100	10/4/2021 2:35:44 PM	62888
Lead	1.4	0.26	0.29		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Manganese	350	1.6	1.9		mg/Kg	10	9/30/2021 2:11:49 PM	62888
Nickel	6.7	0.19	0.49		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Selenium	ND	2.1	2.4		mg/Kg	1	9/30/2021 2:09:34 PM	62888
Silver	ND	0.14	0.24		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Vanadium	17	0.11	2.4		mg/Kg	1	9/29/2021 4:38:20 PM	62888
Zinc	11	1.3	2.4		mg/Kg	1	9/29/2021 4:38:20 PM	62888
EPA METHOD 8260B: VOLATILES							Analyst: RAA	\
Benzene	0.72	0.0054	0.014		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Toluene	0.0095	0.0036	0.028	J	mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Ethylbenzene	0.061	0.0068	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Methyl tert-butyl ether (MTBE)	0.021	0.016	0.028	J	mg/Kg	1	9/27/2021 6:29:28 PM	S81617
1,2-Dichloroethane (EDC)	ND	0.0064	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
1,2-Dibromoethane (EDB)	ND	0.011	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 20

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: SLP-04

Project:Sanitary Lagoon Investigation Phase IICollection Date: 9/23/2021 10:00:00 AMLab ID:2109D24-005Matrix: MEOH (SOIL)Received Date: 9/23/2021 2:40:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: RA	4
2-Butanone	0.24	0.12	0.28	J	mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Carbon disulfide	ND	0.012	0.28		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Chlorobenzene	ND	0.0050	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Chloroform	ND	0.0040	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
1,1-Dichloroethane	0.014	0.0081	0.028	J	mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Styrene	ND	0.0038	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Tetrachloroethene (PCE)	ND	0.0077	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
1,1,1-Trichloroethane	ND	0.0062	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Trichloroethene (TCE)	ND	0.0055	0.028		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Xylenes, Total	ND	0.015	0.056		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
1,4-Dioxane	ND	0.16	0.28		mg/Kg	1	9/27/2021 6:29:28 PM	S81617
Surr: Dibromofluoromethane	109		70-130		%Rec	1	9/27/2021 6:29:28 PM	S81617
Surr: 1,2-Dichloroethane-d4	105		70-130		%Rec	1	9/27/2021 6:29:28 PM	S81617
Surr: Toluene-d8	101		70-130		%Rec	1	9/27/2021 6:29:28 PM	S81617
Surr: 4-Bromofluorobenzene	94.4		70-130		%Rec	1	9/27/2021 6:29:28 PM	S81617

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 20

Pace Analytical® ANALYTICAL REPORT

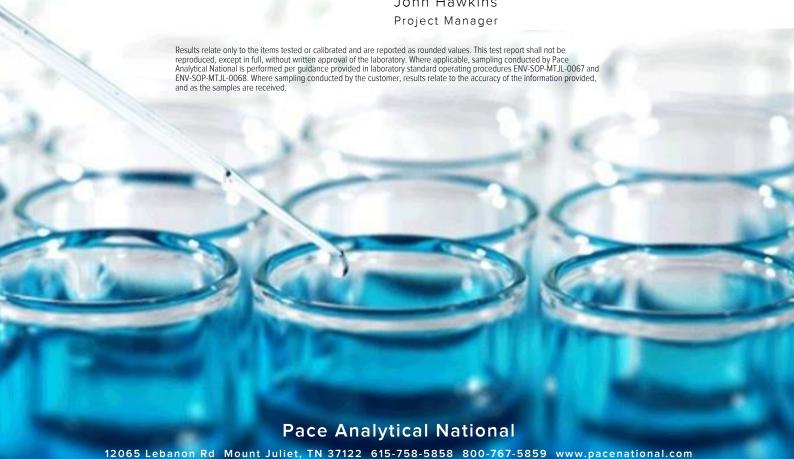
October 13, 2021

Hall Environmental Analysis Laboratory

L1408624 Sample Delivery Group: Samples Received: 09/24/2021

Project Number:

Description:


Report To: Andy Freeman

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

TABLE OF CONTENTS

1
2
3
5
6
6
7
9
10
12
13
15
16
18
18
19
20
26
27

28

Sc: Sample Chain of Custody

SAMPLE SUMMARY

	SAMPLE	3 O IVIII	MAKI			
2109D24-001B SLP-BD-09232021 L1408624-0	1 Solid		Collected by	Collected date/time 09/23/21 00:00	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1747276	1000	09/27/21 14:29	09/27/21 14:29	BGE	Mt. Juliet, TN
2109D24-001C SLP-BD-09232021 L1408624-0	2 Solid		Collected by	Collected date/time 09/23/21 00:00	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:34	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:23	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1751574	1	10/07/21 08:06	10/07/21 22:16	JNJ	Mt. Juliet, TN
2109D24-003B SLP-11 L1408624-03 Solid			Collected by	Collected date/time 09/23/21 09:00	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1747276	1000	09/27/21 14:29	09/27/21 14:29	BGE	Mt. Juliet, TN
2109D24-003C SLP-11 L1408624-04 Solid			Collected by	Collected date/time 09/23/21 09:00	Received da 09/24/2115:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:35	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:26	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1751574	1	10/07/21 08:06	10/07/21 22:58	JNJ	Mt. Juliet, TN
2109D24-004B SLP-02 L1408624-05 Solid			Collected by	Collected date/time 09/23/21 09:30	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Microbiology by Method 9223B-2004	WG1747276	1000	09/27/21 14:29	09/27/21 14:29	BGE	Mt. Juliet, TN
2109D24-004C SLP-02 L1408624-06 Solid			Collected by	Collected date/time 09/23/21 09:30	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:35	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:27	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1751574	1	10/07/21 08:06	10/07/21 21:55	JNJ	Mt. Juliet, TN
2109D24-005B SLP-04 L1408624-07 Solid			Collected by	Collected date/time 09/23/2110:00	Received da 09/24/21 15:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Microbiology by Method 9223B-2004

WG1747276

date/time

09/27/21 14:29

1000

date/time

09/27/21 14:29

BGE

Mt. Juliet, TN

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

2109D24-005C SLP-04 L1408624-08 Solid				09/23/21 10:00	09/24/21 15:4	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3060A/7196A	WG1748884	1	09/29/21 18:00	09/30/21 21:35	MRM	Mt. Juliet, TN
Wet Chemistry by Method 9012B	WG1749587	1	10/01/21 16:20	10/02/21 01:28	SDL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1751574	1	10/07/21 08:06	10/07/21 22:37	JNJ	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager

SDG:

L1408624

Page 275 of 317

SAMPLE RESULTS - 01

L1408624

Collected date/time: 09/23/21 00:00

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276
Coliform,Total	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276

Page 276 of 317

SAMPLE RESULTS - 02

Collected date/time: 09/23/21 00:00

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Chromium.Hexavalent	ND		2.00	1	09/30/2021 21:34	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:23	WG1749587

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/07/2021 22:16	WG1751574
Acenaphthylene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Anthracene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Benzidine	ND		1.67	1	10/07/2021 22:16	<u>WG1751574</u>
Benzo(a)anthracene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Benzo(b)fluoranthene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Benzo(k)fluoranthene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Benzo(g,h,i)perylene	ND		0.0333	1	10/07/2021 22:16	<u>WG1751574</u>
Benzo(a)pyrene	ND		0.0333	1	10/07/2021 22:16	WG1751574
Bis(2-chlorethoxy)methane	ND		0.333	1	10/07/2021 22:16	WG1751574
lis(2-chloroethyl)ether	ND		0.333	1	10/07/2021 22:16	WG1751574
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/07/2021 22:16	WG1751574
-Bromophenyl-phenylether	ND		0.333	1	10/07/2021 22:16	WG1751574
2-Chloronaphthalene	ND		0.0333	1	10/07/2021 22:16	WG1751574
-Chlorophenyl-phenylether	ND		0.333	1	10/07/2021 22:16	WG1751574
Chrysene	ND		0.0333	1	10/07/2021 22:16	WG1751574
ibenz(a,h)anthracene	ND		0.0333	1	10/07/2021 22:16	WG1751574
2-Dichlorobenzene	ND		0.333	1	10/07/2021 22:16	WG1751574
,3-Dichlorobenzene	ND		0.333	1	10/07/2021 22:16	WG1751574
4-Dichlorobenzene	ND		0.333	1	10/07/2021 22:16	WG1751574
,3-Dichlorobenzidine	ND		0.333	1	10/07/2021 22:16	WG1751574
,4-Dinitrotoluene	ND		0.333	1	10/07/2021 22:16	WG1751574
,6-Dinitrotoluene	ND		0.333	1	10/07/2021 22:16	WG1751574
·luoranthene	ND		0.0333	1	10/07/2021 22:16	WG1751574
luorene	ND		0.0333	1	10/07/2021 22:16	WG1751574
Hexachlorobenzene	ND		0.333	1	10/07/2021 22:16	WG1751574
Hexachloro-1,3-butadiene	ND		0.333	1	10/07/2021 22:16	WG1751574
Hexachlorocyclopentadiene	ND		0.333	1	10/07/2021 22:16	WG1751574
lexachloroethane	ND		0.333	1	10/07/2021 22:16	WG1751574
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/07/2021 22:16	WG1751574
sophorone	ND		0.333	1	10/07/2021 22:16	WG1751574
laphthalene	ND		0.0333	1	10/07/2021 22:16	WG1751574
-Methylnaphthalene	ND		0.333	1	10/07/2021 22:16	WG1751574
'-Methylnaphthalene	ND		0.333	1	10/07/2021 22:16	WG1751574
litrobenzene	ND		0.333	1	10/07/2021 22:16	WG1751574
-Nitrosodimethylamine	ND		0.333	1	10/07/2021 22:16	WG1751574
-Nitrosodiphenylamine	ND		0.333	1	10/07/2021 22:16	WG1751574
-Nitrosodi-n-propylamine	ND		0.333	1	10/07/2021 22:16	WG1751574
henanthrene	ND		0.0333	1	10/07/2021 22:16	WG1751574
enzylbutyl phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574
Di-n-butyl phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574
Diethyl phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574
Dimethyl phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574
Di-n-octyl phthalate	ND		0.333	1	10/07/2021 22:16	WG1751574

Cn

Collected date/time: 09/23/21 00:00

(S) p-Terphenyl-d14

Page 277 of 317

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

51.7

Result Qualifier	RDL	Dilution	Analysis	Batch
mg/kg	mg/kg		date / time	
ND	0.0333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
ND	0.333	1	10/07/2021 22:16	WG1751574
44.7	12.0-120		10/07/2021 22:16	WG1751574
44.4	10.0-120		10/07/2021 22:16	WG1751574
39.8	10.0-122		10/07/2021 22:16	WG1751574
39.5	15.0-120		10/07/2021 22:16	WG1751574
49.8	10.0-127		10/07/2021 22:16	WG1751574
	mg/kg ND ND ND ND ND ND ND ND ND N	mg/kg mg/kg ND 0.0333 ND 0.333 ND 0.032 ND 0.0333 ND 0.0333 ND 0.0333	mg/kg mg/kg ND 0.0333 1 ND 0.333 1 ND	mg/kg mg/kg date / time ND 0.0333 1 10/07/2021 22:16 ND 0.333 1 10/07/2021 22:16

10/07/2021 22:16

WG1751574

10.0-120

Page 278 of 317

SAMPLE RESULTS - 03

Collected date/time: 09/23/21 09:00

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	MPN/100ml			date / time	
E.Coli	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276
Coliform,Total	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276

Page 279 of 317

SAMPLE RESULTS - 04

Collected date/time: 09/23/21 09:00

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:35	WG1748884	

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:26	WG1749587

Analyte	Result mg/kg	Qualifier	RDL mg/kg	Dilution	Analysis date / time	Batch
Acenaphthene	0.0950		0.0333	1	10/07/2021 22:58	WG1751574
Acenaphthylene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Anthracene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Benzidine	ND		1.67	1	10/07/2021 22:58	WG1751574
Benzo(a)anthracene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Benzo(b)fluoranthene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Benzo(k)fluoranthene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Benzo(g,h,i)perylene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Benzo(a)pyrene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Bis(2-chlorethoxy)methane	ND		0.0333	1	10/07/2021 22:58	WG1751574
Bis(2-chloroethyl)ether	ND		0.333	1	10/07/2021 22:58	WG1751574
2,2-Oxybis(1-Chloropropane)	ND ND		0.333	1	10/07/2021 22:58	WG1751574 WG1751574
1-Bromophenyl-phenylether	ND ND		0.333	1	10/07/2021 22:58	WG1751574 WG1751574
2-Chloronaphthalene	ND ND		0.333	1	10/07/2021 22:58	WG1751574 WG1751574
4-Chlorophenyl-phenylether	ND ND		0.0333	1	10/07/2021 22:58	WG1751574 WG1751574
a-Chrysene Chrysene	ND ND		0.333	1	10/07/2021 22:58	WG1751574
Dibenz(a,h)anthracene	ND ND		0.0333		10/07/2021 22:58	WG1751574 WG1751574
,				1		
,2-Dichlorobenzene	ND		0.333	1	10/07/2021 22:58	WG1751574
,3-Dichlorobenzene	ND		0.333	1	10/07/2021 22:58	WG1751574
,4-Dichlorobenzene	ND		0.333	1	10/07/2021 22:58	WG1751574
3,3-Dichlorobenzidine	ND		0.333	1	10/07/2021 22:58	WG1751574
2,4-Dinitrotoluene	ND		0.333	1	10/07/2021 22:58	WG1751574
2,6-Dinitrotoluene	ND		0.333	1	10/07/2021 22:58	WG1751574
Fluoranthene 	ND		0.0333	1	10/07/2021 22:58	WG1751574
Fluorene	0.109		0.0333	1	10/07/2021 22:58	WG1751574
Hexachlorobenzene	ND		0.333	1	10/07/2021 22:58	WG1751574
Hexachloro-1,3-butadiene	ND		0.333	1	10/07/2021 22:58	WG1751574
Hexachlorocyclopentadiene	ND		0.333	1	10/07/2021 22:58	WG1751574
Hexachloroethane	ND		0.333	1	10/07/2021 22:58	<u>WG1751574</u>
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/07/2021 22:58	<u>WG1751574</u>
sophorone	ND		0.333	1	10/07/2021 22:58	<u>WG1751574</u>
Naphthalene	0.419		0.0333	1	10/07/2021 22:58	<u>WG1751574</u>
-Methylnaphthalene	0.832		0.333	1	10/07/2021 22:58	<u>WG1751574</u>
2-Methylnaphthalene	1.17		0.333	1	10/07/2021 22:58	<u>WG1751574</u>
Nitrobenzene	ND		0.333	1	10/07/2021 22:58	<u>WG1751574</u>
n-Nitrosodimethylamine	ND		0.333	1	10/07/2021 22:58	WG1751574
-Nitrosodiphenylamine	ND		0.333	1	10/07/2021 22:58	WG1751574
-Nitrosodi-n-propylamine	ND		0.333	1	10/07/2021 22:58	WG1751574
Phenanthrene	0.220		0.0333	1	10/07/2021 22:58	WG1751574
Benzylbutyl phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574
3is(2-ethylhexyl)phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574
Di-n-butyl phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574
Diethyl phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574
Dimethyl phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574
Di-n-octyl phthalate	ND		0.333	1	10/07/2021 22:58	WG1751574

Cn

Collected date/time: 09/23/21 09:00

(S) p-Terphenyl-d14

Page 280 of 317

SAMPLE RESULTS - 04

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

57.0

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Pyrene	ND		0.0333	1	10/07/2021 22:58	WG1751574
Pyridine	ND		0.333	1	10/07/2021 22:58	WG1751574
1,2,4-Trichlorobenzene	ND		0.333	1	10/07/2021 22:58	WG1751574
Quinoline	ND		0.333	1	10/07/2021 22:58	WG1751574
2-Methylphenol	ND		0.333	1	10/07/2021 22:58	WG1751574
3&4-Methyl Phenol	ND		0.333	1	10/07/2021 22:58	WG1751574
4-Chloro-3-methylphenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2-Chlorophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2,4-Dichlorophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2,4-Dimethylphenol	ND		0.333	1	10/07/2021 22:58	WG1751574
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2,4-Dinitrophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2-Nitrophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
4-Nitrophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
Pentachlorophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
Phenol	ND		0.333	1	10/07/2021 22:58	WG1751574
2,4,6-Trichlorophenol	ND		0.333	1	10/07/2021 22:58	WG1751574
(S) 2-Fluorophenol	62.6		12.0-120		10/07/2021 22:58	WG1751574
(S) Phenol-d5	60.3		10.0-120		10/07/2021 22:58	WG1751574
(S) Nitrobenzene-d5	60.6		10.0-122		10/07/2021 22:58	WG1751574
(S) 2-Fluorobiphenyl	53.3		15.0-120		10/07/2021 22:58	WG1751574
(S) 2,4,6-Tribromophenol	65.2		10.0-127		10/07/2021 22:58	WG1751574

10/07/2021 22:58

WG1751574

10.0-120

Collected date/time: 09/23/21 09:30

Page 281 of 317

SAMPLE RESULTS - 05

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276
Coliform,Total	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276

Page 282 of 317

SAMPLE RESULTS - 06

Collected date/time: 09/23/21 09:30

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:35	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:27	WG1749587

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Acenaphthylene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Anthracene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Benzidine	ND		1.67	1	10/07/2021 21:55	<u>WG1751574</u>
Benzo(a)anthracene	ND		0.0333	1	10/07/2021 21:55	<u>WG1751574</u>
Benzo(b)fluoranthene	ND		0.0333	1	10/07/2021 21:55	<u>WG1751574</u>
Benzo(k)fluoranthene	ND		0.0333	1	10/07/2021 21:55	<u>WG1751574</u>
Benzo(g,h,i)perylene	ND		0.0333	1	10/07/2021 21:55	<u>WG1751574</u>
Benzo(a)pyrene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Bis(2-chlorethoxy)methane	ND		0.333	1	10/07/2021 21:55	WG1751574
Bis(2-chloroethyl)ether	ND		0.333	1	10/07/2021 21:55	WG1751574
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/07/2021 21:55	WG1751574
I-Bromophenyl-phenylether	ND		0.333	1	10/07/2021 21:55	WG1751574
2-Chloronaphthalene	ND		0.0333	1	10/07/2021 21:55	WG1751574
-Chlorophenyl-phenylether	ND		0.333	1	10/07/2021 21:55	WG1751574
Chrysene	ND		0.0333	1	10/07/2021 21:55	WG1751574
ibenz(a,h)anthracene	ND		0.0333	1	10/07/2021 21:55	WG1751574
,2-Dichlorobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
,3-Dichlorobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
4-Dichlorobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
3,3-Dichlorobenzidine	ND		0.333	1	10/07/2021 21:55	WG1751574
2,4-Dinitrotoluene	ND		0.333	1	10/07/2021 21:55	WG1751574
2,6-Dinitrotoluene	ND		0.333	1	10/07/2021 21:55	WG1751574
luoranthene	ND		0.0333	1	10/07/2021 21:55	WG1751574
luorene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Hexachlorobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
Hexachloro-1,3-butadiene	ND		0.333	1	10/07/2021 21:55	WG1751574
Hexachlorocyclopentadiene	ND		0.333	1	10/07/2021 21:55	WG1751574
lexachloroethane	ND		0.333	1	10/07/2021 21:55	WG1751574
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/07/2021 21:55	WG1751574
sophorone	ND		0.333	1	10/07/2021 21:55	WG1751574
laphthalene	ND		0.0333	1	10/07/2021 21:55	WG1751574
-Methylnaphthalene	ND		0.333	1	10/07/2021 21:55	WG1751574
2-Methylnaphthalene	ND		0.333	1	10/07/2021 21:55	WG1751574
litrobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
-Nitrosodimethylamine	ND		0.333	1	10/07/2021 21:55	WG1751574
-Nitrosodiphenylamine	ND		0.333	1	10/07/2021 21:55	WG1751574
-Nitrosodi-n-propylamine	ND		0.333	1	10/07/2021 21:55	WG1751574
henanthrene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Senzylbutyl phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574
i-n-butyl phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574
Diethyl phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574
Dimethyl phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574
Di-n-octyl phthalate	ND		0.333	1	10/07/2021 21:55	WG1751574

(S) p-Terphenyl-d14

SAMPLE RESULTS - 06

Page 283 of 317

Collected date/time: 09/23/21 09:30

55.2

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

10.0-120

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Pyrene	ND		0.0333	1	10/07/2021 21:55	WG1751574
Pyridine	ND		0.333	1	10/07/2021 21:55	WG1751574
1,2,4-Trichlorobenzene	ND		0.333	1	10/07/2021 21:55	WG1751574
Quinoline	ND		0.333	1	10/07/2021 21:55	WG1751574
2-Methylphenol	ND		0.333	1	10/07/2021 21:55	WG1751574
3&4-Methyl Phenol	ND		0.333	1	10/07/2021 21:55	WG1751574
4-Chloro-3-methylphenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2-Chlorophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2,4-Dichlorophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2,4-Dimethylphenol	ND		0.333	1	10/07/2021 21:55	WG1751574
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2,4-Dinitrophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2-Nitrophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
4-Nitrophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
Pentachlorophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
Phenol	ND		0.333	1	10/07/2021 21:55	WG1751574
2,4,6-Trichlorophenol	ND		0.333	1	10/07/2021 21:55	WG1751574
(S) 2-Fluorophenol	62.9		12.0-120		10/07/2021 21:55	WG1751574
(S) Phenol-d5	57.1		10.0-120		10/07/2021 21:55	WG1751574
(S) Nitrobenzene-d5	54.5		10.0-122		10/07/2021 21:55	WG1751574
(S) 2-Fluorobiphenyl	52.7		15.0-120		10/07/2021 21:55	WG1751574
(S) 2,4,6-Tribromophenol	53.4		10.0-127		10/07/2021 21:55	WG1751574

10/07/2021 21:55

WG1751574

Collected date/time: 09/23/21 10:00

Page 284 of 317

SAMPLE RESULTS - 07

L1408624

Microbiology by Method 9223B-2004

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/100ml			date / time	
E.Coli	<1000	T8	1000	09/27/2021 14:29	WG1747276
Coliform,Total	<1000	<u>T8</u>	1000	09/27/2021 14:29	WG1747276

Page 285 of 317

SAMPLE RESULTS - 08

Collected date/time: 09/23/21 10:00

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.00	1	09/30/2021 21:35	WG1748884

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	10/02/2021 01:28	WG1749587

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Acenaphthylene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Anthracene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzidine	ND		1.67	1	10/07/2021 22:37	WG1751574
Benzo(a)anthracene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzo(b)fluoranthene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzo(k)fluoranthene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzo(g,h,i)perylene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzo(a)pyrene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Bis(2-chlorethoxy)methane	ND		0.333	1	10/07/2021 22:37	WG1751574
Bis(2-chloroethyl)ether	ND		0.333	1	10/07/2021 22:37	WG1751574
2,2-Oxybis(1-Chloropropane)	ND		0.333	1	10/07/2021 22:37	WG1751574
4-Bromophenyl-phenylether	ND		0.333	1	10/07/2021 22:37	WG1751574
2-Chloronaphthalene	ND		0.0333	1	10/07/2021 22:37	WG1751574
4-Chlorophenyl-phenylether	ND		0.333	1	10/07/2021 22:37	WG1751574
Chrysene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Dibenz(a,h)anthracene	ND		0.0333	1	10/07/2021 22:37	WG1751574
l,2-Dichlorobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
l,3-Dichlorobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
l,4-Dichlorobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
3,3-Dichlorobenzidine	ND		0.333	1	10/07/2021 22:37	WG1751574
2,4-Dinitrotoluene	ND		0.333	1	10/07/2021 22:37	WG1751574
2,6-Dinitrotoluene	ND		0.333	1	10/07/2021 22:37	WG1751574
Fluoranthene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Fluorene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Hexachlorobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
Hexachloro-1,3-butadiene	ND		0.333	1	10/07/2021 22:37	WG1751574
Hexachlorocyclopentadiene	ND		0.333	1	10/07/2021 22:37	WG1751574
Hexachloroethane	ND		0.333	1	10/07/2021 22:37	WG1751574
ndeno(1,2,3-cd)pyrene	ND		0.0333	1	10/07/2021 22:37	WG1751574
sophorone	ND		0.333	1	10/07/2021 22:37	WG1751574
Naphthalene	ND		0.0333	1	10/07/2021 22:37	WG1751574
l-Methylnaphthalene	ND		0.333	1	10/07/2021 22:37	WG1751574
2-Methylnaphthalene	ND		0.333	1	10/07/2021 22:37	WG1751574
Nitrobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
n-Nitrosodimethylamine	ND		0.333	1	10/07/2021 22:37	WG1751574
n-Nitrosodiphenylamine	ND		0.333	1	10/07/2021 22:37	WG1751574
n-Nitrosodi-n-propylamine	ND		0.333	1	10/07/2021 22:37	WG1751574
Phenanthrene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Benzylbutyl phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574
Bis(2-ethylhexyl)phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574
Di-n-butyl phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574
Diethyl phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574
Dimethyl phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574
Di-n-octyl phthalate	ND		0.333	1	10/07/2021 22:37	WG1751574

Collected date/time: 09/23/21 10:00

(S) p-Terphenyl-d14

Page 286 of 317

SAMPLE RESULTS - 08

10.0-120

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

52.3

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Pyrene	ND		0.0333	1	10/07/2021 22:37	WG1751574
Pyridine	ND		0.333	1	10/07/2021 22:37	WG1751574
1,2,4-Trichlorobenzene	ND		0.333	1	10/07/2021 22:37	WG1751574
Quinoline	ND		0.333	1	10/07/2021 22:37	WG1751574
2-Methylphenol	ND		0.333	1	10/07/2021 22:37	WG1751574
3&4-Methyl Phenol	ND		0.333	1	10/07/2021 22:37	WG1751574
4-Chloro-3-methylphenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2-Chlorophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2,4-Dichlorophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2,4-Dimethylphenol	ND		0.333	1	10/07/2021 22:37	WG1751574
4,6-Dinitro-2-methylphenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2,4-Dinitrophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2-Nitrophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
4-Nitrophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
Pentachlorophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
Phenol	ND		0.333	1	10/07/2021 22:37	WG1751574
2,4,6-Trichlorophenol	ND		0.333	1	10/07/2021 22:37	WG1751574
(S) 2-Fluorophenol	61.6		12.0-120		10/07/2021 22:37	WG1751574
(S) Phenol-d5	56.8		10.0-120		10/07/2021 22:37	WG1751574
(S) Nitrobenzene-d5	58.0		10.0-122		10/07/2021 22:37	WG1751574
(S) 2-Fluorobiphenyl	52.3		15.0-120		10/07/2021 22:37	WG1751574
(S) 2,4,6-Tribromophenol	58.6		10.0-127		10/07/2021 22:37	WG1751574

10/07/2021 22:37

WG1751574

Wet Chemistry by Method 3060A/7196A

QUALITY CONTROL SUMMARY

Page 287 of 317

L1408624-02,04,06,08

Method Blank (MB)

Metriod Blank (MB)

Analyte

(MB) R3711034-1 09/30/21 21:22

MB Result MB Qualifier MB MDL

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 mg/kg
 mg/kg
 mg/kg

Chromium, Hexavalent U 0.640 2.00

_____ ¹Cp

²Tc

3 Ss

L1402782-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1402782-01 09/30/21 21:23 • (DUP) R3711034-3 09/30/21 21:24

 Analyte
 mg/kg
 mg/kg
 %
 DUP RPD Limits

 Chromium, Hexavalent
 ND
 ND
 1
 0.000
 20

% 20 ^{*}Cn

600

L1408624-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1408624-02 09/30/21 21:34 • (DUP) R3711034-8 09/30/21 21:34

⁸Al

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3711034-2 09/30/21 21:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chromium, Hexavalent	24.0	24.3	101	80.0-120	

L1407688-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407688-02 09/30/21 21:25 • (MS) R3711034-4 09/30/21 21:27 • (MSD) R3711034-5 09/30/21 21:27

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chromium, Hexavalent	20.0	ND	ND	ND	8.72	8.24	1	75.0-125	J6	J6	5.71	20	

L1407688-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1407688-02 09/30/21 21:25 • (MS) R3711034-6 09/30/21 21:28

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/kg	mg/kg	mg/kg	%		%	
Chromium, Hexavalent	638	ND	613	96.0	50	75.0-125	

QUALITY CONTROL SUMMARY

Page 288 of 317

Wet Chemistry by Method 9012B

L1408624-02,04,06,08

Method Blank (MB)

(MR) D37115/17 1 10/02/21 01:02

(IVID) K3/1134/-1 IV	0/02/21 01.02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Cyanide	U		0.0733	0.250

L1408072-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1408072-01 10/02/21 01:14 • (DUP) R3711547-3 10/02/21 01:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Cyanide	ND	ND	1	0.000		20	

Cn

L1408072-02 Original Sample (OS) • Duplicate (DUP)

Analyte mg/kg mg/kg % % Cyanide ND ND 1 0.000 20	(OS) L1408072-02 10/02/2	Original Result				DUP Qualifier	DUP RPD Limits
Cyanide ND ND 1 0.000 20	Analyte	mg/kg	mg/kg		%		%
	Cyanide	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3711547-2 10/02/21 01:03

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Cyanide	2.50	2.24	89.5	85.0-115	

L1408072-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408072-02 10/02/21 01:16 • (MS) R3711547-4 10/02/21 01:17 • (MSD) R3711547-5 10/02/21 01:18

(,	Spike Amount		•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.54	0.953	92.4	57.2	1	75.0-125		<u>J3 J6</u>	47.0	20

L1409050-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 14/09/05/0 01 10/02/21 01:30 . (MS) P3711547 6 10/02/21 01:31 . (MSD) P2711547 7 10/02/21 01:22

(O5) L1409050-01 10/02/21 01.30 • (M5) R3/11547-6 10/02/21 01.31 • (M5D) R3/11547-7 10/02/21 01.32												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cyanide	1.67	ND	1.48	1.58	89.0	95.0	1	75.0-125			6.46	20

Page 289 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1408624-02,04,06,08

Method Blank (MB)

(MB) R3714512-2 10/07/2	1 21:34				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acenaphthene	U		0.00539	0.0333	
Acenaphthylene	U		0.00469	0.0333	
Anthracene	U		0.00593	0.0333	
Benzidine	U		0.0626	1.67	
Benzo(a)anthracene	U		0.00587	0.0333	
Benzo(b)fluoranthene	U		0.00621	0.0333	
Benzo(k)fluoranthene	U		0.00592	0.0333	
Benzo(g,h,i)perylene	U		0.00609	0.0333	
Benzo(a)pyrene	U		0.00619	0.0333	
Bis(2-chlorethoxy)methane	U		0.0100	0.333	
Bis(2-chloroethyl)ether	U		0.0110	0.333	
2,2-oxybis(1-chloropropane)	U		0.0144	0.333	
4-Bromophenyl-phenylether	U		0.0117	0.333	
2-Chloronaphthalene	U		0.00585	0.0333	
4-Chlorophenyl-phenylether	U		0.0116	0.333	
Chrysene	U		0.00662	0.0333	
Dibenz(a,h)anthracene	U		0.00923	0.0333	
1,2-Dichlorobenzene	U		0.00987	0.333	
1,3-Dichlorobenzene	U		0.0101	0.333	
1,4-Dichlorobenzene	U		0.00991	0.333	
3,3-Dichlorobenzidine	U		0.0123	0.333	
2,4-Dinitrotoluene	U		0.00955	0.333	
2,6-Dinitrotoluene	U		0.0109	0.333	
Fluoranthene	U		0.00601	0.0333	
Fluorene	U		0.00542	0.0333	
Hexachlorobenzene	U		0.0118	0.333	
Hexachloro-1,3-butadiene	U		0.0112	0.333	
Hexachlorocyclopentadiene	U		0.0175	0.333	
Hexachloroethane	U		0.0131	0.333	
ndeno(1,2,3-cd)pyrene	U		0.00941	0.0333	
sophorone	U		0.0102	0.333	
l-Methylnaphthalene	U		0.00426	0.333	
2-Methylnaphthalene	U		0.00432	0.333	
Naphthalene	U		0.00836	0.0333	
Nitrobenzene	U		0.0116	0.333	
n-Nitrosodimethylamine	U		0.0494	0.333	
n-Nitrosodiphenylamine	U		0.0252	0.333	
n-Nitrosodi-n-propylamine	U		0.0111	0.333	
Phenanthrene	U		0.00661	0.0333	
Benzylbutyl phthalate	U		0.0104	0.333	

Page 290 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1408624-02,04,06,08

Method Blank (MB)

	'/				111
(MB) R3714512-2 10/07/2	1 21:34				
, ,	MB Result	MB Qualifier	MB MDL	MB RDL	_
Analyte	mg/kg		mg/kg	mg/kg	
Bis(2-ethylhexyl)phthalate	U		0.0422	0.333	L
Di-n-butyl phthalate	U		0.0114	0.333	3
Diethyl phthalate	U		0.0110	0.333	
Dimethyl phthalate	U		0.0706	0.333	4
Di-n-octyl phthalate	U		0.0225	0.333	- '
Pyrene	U		0.00648	0.0333	ᆫ
Pyridine	U		0.0220	0.333	5
1,2,4-Trichlorobenzene	U		0.0104	0.333	
4-Chloro-3-methylphenol	U		0.0108	0.333	6
2-Chlorophenol	U		0.0110	0.333	
2-Methylphenol	U		0.0100	0.333	
3&4-Methyl Phenol	U		0.0104	0.333	7
2,4-Dichlorophenol	U		0.00970	0.333	L
2,4-Dimethylphenol	U		0.00870	0.333	8
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	
2,4-Dinitrophenol	U		0.0779	0.333	-
2-Nitrophenol	U		0.0119	0.333	9
4-Nitrophenol	U		0.0104	0.333	L
Pentachlorophenol	U		0.00896	0.333	
Phenol	U		0.0134	0.333	
2,4,6-Trichlorophenol	U		0.0107	0.333	
Quinoline	U		0.00861	0.333	
(S) Nitrobenzene-d5	54.1			10.0-122	
(S) 2-Fluorobiphenyl	51.7			15.0-120	
(S) p-Terphenyl-d14	64.0			10.0-120	
(S) Phenol-d5	53.5			10.0-120	
(S) 2-Fluorophenol	58.9			12.0-120	
(S) 2,4,6-Tribromophenol	57.2			10.0-127	

Laboratory Control Sample (LCS)

(LCS) R3714512-1 10/07	7/21 21:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Acenaphthene	0.666	0.401	60.2	38.0-120	
Acenaphthylene	0.666	0.447	67.1	40.0-120	
Anthracene	0.666	0.401	60.2	42.0-120	
Benzidine	1.33	0.337	25.3	10.0-120	
Renzo(a)anthracene	0.666	0.462	69 4	44 0-120	

SUMMARY Page 291 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1408624-02,04,06,08

Laboratory Control Sample (LCS)

Laboratory Control	Sample (L	<u> </u>			
(LCS) R3714512-1 10/07/21	21:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzo(b)fluoranthene	0.666	0.403	60.5	43.0-120	
Benzo(k)fluoranthene	0.666	0.403	60.5	44.0-120	
Benzo(g,h,i)perylene	0.666	0.387	58.1	43.0-120	
Benzo(a)pyrene	0.666	0.406	61.0	45.0-120	
Bis(2-chlorethoxy)methane	0.666	0.329	49.4	20.0-120	
Bis(2-chloroethyl)ether	0.666	0.527	79.1	16.0-120	
2,2-Oxybis(1-Chloropropane)	0.666	0.371	55.7	23.0-120	
4-Bromophenyl-phenylether	0.666	0.405	60.8	40.0-120	
2-Chloronaphthalene	0.666	0.385	57.8	35.0-120	
4-Chlorophenyl-phenylether	0.666	0.413	62.0	40.0-120	
Chrysene	0.666	0.411	61.7	43.0-120	
Dibenz(a,h)anthracene	0.666	0.396	59.5	44.0-120	
1,2-Dichlorobenzene	0.666	0.360	54.1	32.0-120	
1,3-Dichlorobenzene	0.666	0.351	52.7	30.0-120	
1,4-Dichlorobenzene	0.666	0.363	54.5	31.0-120	
3,3-Dichlorobenzidine	1.33	0.806	60.6	28.0-120	
2,4-Dinitrotoluene	0.666	0.479	71.9	45.0-120	
2,6-Dinitrotoluene	0.666	0.473	64.7	42.0-120	
	0.666				
Fluoranthene	0.666	0.436	65.5 59.8	44.0-120 41.0-120	
Fluorene		0.398			
Hexachlorobenzene	0.666	0.382	57.4	39.0-120 15.0.120	
Hexachloro-1,3-butadiene	0.666	0.337	50.6	15.0-120	
Hexachlorocyclopentadiene	0.666	0.510	76.6	15.0-120	
Hexachloroethane	0.666	0.413	62.0	17.0-120	
Indeno(1,2,3-cd)pyrene	0.666	0.424	63.7	45.0-120	
Isophorone	0.666	0.405	60.8	23.0-120	
1-Methylnaphthalene	0.666	0.328	49.2	34.0-120	
2-Methylnaphthalene	0.666	0.317	47.6	34.0-120	
Naphthalene	0.666	0.321	48.2	18.0-120	
Nitrobenzene	0.666	0.396	59.5	17.0-120	
n-Nitrosodimethylamine	0.666	0.364	54.7	10.0-125	
n-Nitrosodiphenylamine	0.666	0.385	57.8	40.0-120	
n-Nitrosodi-n-propylamine	0.666	0.468	70.3	26.0-120	
Phenanthrene	0.666	0.393	59.0	42.0-120	
Benzylbutyl phthalate	0.666	0.513	77.0	40.0-120	
Bis(2-ethylhexyl)phthalate	0.666	0.542	81.4	41.0-120	
Di-n-butyl phthalate	0.666	0.482	72.4	43.0-120	
Diethyl phthalate	0.666	0.485	72.8	43.0-120	
Dimethyl phthalate	0.666	0.446	67.0	43.0-120	
Di-n-octyl phthalate	0.666	0.510	76.6	40.0-120	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

QUALITY CONTROL SUMMARY

Page 292 of 317

L1408624-02,04,06,08

Laboratory Control Sample (LCS)

(LCS) R3714512-1 10/07/2	1 21:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Pyrene	0.666	0.439	65.9	41.0-120	
Pyridine	0.666	0.271	40.7	10.0-120	
1,2,4-Trichlorobenzene	0.666	0.315	47.3	17.0-120	
4-Chloro-3-methylphenol	0.666	0.419	62.9	28.0-120	
2-Chlorophenol	0.666	0.408	61.3	28.0-120	
2-Methylphenol	0.666	0.408	61.3	35.0-120	
3&4-Methyl Phenol	0.666	0.488	73.3	42.0-120	
2,4-Dichlorophenol	0.666	0.365	54.8	25.0-120	
2,4-Dimethylphenol	0.666	0.452	67.9	15.0-120	
4,6-Dinitro-2-methylphenol	0.666	0.510	76.6	16.0-120	
2,4-Dinitrophenol	0.666	0.471	70.7	10.0-120	
2-Nitrophenol	0.666	0.385	57.8	20.0-120	
4-Nitrophenol	0.666	0.464	69.7	27.0-120	
Pentachlorophenol	0.666	0.564	84.7	29.0-120	
Phenol	0.666	0.427	64.1	28.0-120	
2,4,6-Trichlorophenol	0.666	0.461	69.2	37.0-120	
Quinoline	0.666	0.471	70.7	30.0-120	
(S) Nitrobenzene-d5			55.6	10.0-122	
(S) 2-Fluorobiphenyl			61.6	15.0-120	
(S) p-Terphenyl-d14			58.9	10.0-120	
(S) Phenol-d5			65.2	10.0-120	
(S) 2-Fluorophenol			70.6	12.0-120	

L1408656-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

65.9

10.0-127

(OS) L1408656-01 10/08/	21 02:08 • (MS)	R3714512-3 10	/08/21 02:29 •	(MSD) R37145	12-4 10/08/21 (02:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.654	ND	0.277	0.307	42.4	47.2	1	18.0-120			10.3	32
Acenaphthylene	0.654	ND	0.339	0.378	49.3	55.6	1	25.0-120			10.9	32
Anthracene	0.654	ND	0.340	0.373	51.1	56.5	1	22.0-120			9.26	29
Benzidine	1.31	ND	ND	ND	6.89	8.08	1	10.0-120	<u>J6</u>	<u>J6</u>	15.2	40
Benzo(a)anthracene	0.654	ND	0.424	0.451	61.5	66.0	1	25.0-120			6.17	29
Benzo(b)fluoranthene	0.654	0.0682	0.464	0.515	60.5	68.7	1	19.0-122			10.4	31
Benzo(k)fluoranthene	0.654	ND	0.357	0.400	51.4	58.3	1	23.0-120			11.4	30
Benzo(g,h,i)perylene	0.654	0.0492	0.404	0.434	54.3	59.2	1	10.0-120			7.16	33
Benzo(a)pyrene	0.654	0.0444	0.436	0.501	59.9	70.2	1	24.0-120			13.9	30
Bis(2-chlorethoxy)methane	0.654	ND	ND	ND	33.3	38.9	1	10.0-120			14.9	34

(S) 2,4,6-Tribromophenol

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1408624-02,04,06,08

L1408656-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408656-01 10/08/2	21 02:08 • (MS)	R3714512-3 10	/08/21 02:29 •	(MSD) R37145	12-4 10/08/21	02:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Bis(2-chloroethyl)ether	0.654	ND	ND	0.335	45.7	51.5	1	10.0-120			11.4	40
2,2-Oxybis(1-Chloropropane)	0.654	ND	ND	ND	30.3	37.1	1	10.0-120			19.6	40
4-Bromophenyl-phenylether	0.654	ND	ND	0.350	47.2	53.8	1	27.0-120			12.4	30
2-Chloronaphthalene	0.654	ND	0.253	0.295	38.7	45.4	1	20.0-120			15.3	32
4-Chlorophenyl-phenylether	0.654	ND	ND	ND	44.0	48.3	1	24.0-120			8.64	29
Chrysene	0.654	ND	0.404	0.423	58.0	61.2	1	21.0-120			4.59	29
Dibenz(a,h)anthracene	0.654	ND	0.321	0.345	47.5	51.5	1	10.0-120			7.21	32
1,2-Dichlorobenzene	0.654	ND	ND	ND	29.1	35.5	1	10.0-120			19.5	38
1,3-Dichlorobenzene	0.654	ND	ND	ND	27.8	33.2	1	10.0-120			17.1	40
1,4-Dichlorobenzene	0.654	ND	ND	ND	28.4	34.3	1	10.0-120			18.1	39
3,3-Dichlorobenzidine	1.31	ND	0.508	0.550	38.8	42.3	1	10.0-120			7.94	34
2,4-Dinitrotoluene	0.654	ND	0.376	0.411	57.5	63.2	1	30.0-120			8.89	31
2,6-Dinitrotoluene	0.654	ND	ND	0.352	47.9	54.2	1	25.0-120			11.7	31
Fluoranthene	0.654	ND	0.422	0.442	59.5	62.9	1	18.0-126			4.63	32
Fluorene	0.654	ND	0.293	0.327	44.8	50.3	1	25.0-120			11.0	30
Hexachlorobenzene	0.654	ND	ND	ND	45.0	50.9	1	27.0-120			11.8	28
Hexachloro-1,3-butadiene	0.654	ND	ND	ND	32.3	35.8	1	10.0-120			9.91	38
Hexachlorocyclopentadiene	0.654	ND	ND	ND	13.5	17.1	1	10.0-120			22.4	40
Hexachloroethane	0.654	ND	ND	ND	28.6	36.6	1	10.0-120			24.0	40
Indeno(1,2,3-cd)pyrene	0.654	0.0532	0.448	0.478	60.4	65.4	1	10.0-120			6.48	32
Isophorone	0.654	ND	ND	ND	41.0	47.5	1	13.0-120			14.2	34
1-Methylnaphthalene	0.654	ND	ND	ND	34.7	39.4	1	10.0-120			12.0	36
2-Methylnaphthalene	0.654	ND	ND	ND	33.2	37.1	1	10.0-120			10.5	37
Naphthalene	0.654	ND	0.218	0.249	33.3	38.3	1	10.0-120			13.3	35
Nitrobenzene	0.654	ND	ND	ND	37.9	44.2	1	10.0-120			14.6	36
n-Nitrosodimethylamine	0.654	ND	ND	ND	32.0	35.7	1	10.0-127			10.4	40
n-Nitrosodiphenylamine	0.654	ND	ND	ND	43.3	48.2	1	17.0-120			10.1	29
n-Nitrosodi-n-propylamine	0.654	ND	ND	0.337	43.3	51.8	1	10.0-120			17.4	37
Phenanthrene	0.654	ND	0.336	0.367	49.8	54.8	1	17.0-120			8.82	31
Benzylbutyl phthalate	0.654	ND	0.482	0.504	73.7	77.5	1	23.0-120			4.46	30
Bis(2-ethylhexyl)phthalate	0.654	ND	0.481	0.509	73.5	78.3	1	17.0-126			5.66	30
Di-n-butyl phthalate	0.654	ND	0.394	0.434	60.2	66.8	1	30.0-120			9.66	29
Diethyl phthalate	0.654	ND	0.341	0.380	52.1	58.5	1	26.0-120			10.8	28
Dimethyl phthalate	0.654	ND	ND	0.352	48.0	54.2	1	25.0-120			11.4	29
Di-n-octyl phthalate	0.654	ND	0.488	0.520	74.6	80.0	1	21.0-123			6.35	29
Pyrene	0.654	ND	0.414	0.432	58.7	61.8	1	16.0-121			4.26	32
Pyridine	0.654	ND	ND	ND	33.5	38.3	1	10.0-120			12.8	40
1,2,4-Trichlorobenzene	0.654	ND	ND	ND	29.2	33.7	1	12.0-120			13.7	37
4-Chloro-3-methylphenol	0.654	ND	ND	0.352	50.6	54.2	1	15.0-120			6.15	30
2-Chlorophenol	0.654	ND	ND	ND	37.2	43.5	1	15.0-120			15.2	37

Page 293 of 317

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

Page 294 of 317

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1408624-02,04,06,08

L1408656-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408656-01 10/08/21 02:08 • (MS) R3714512-3 10/08/21 02:29 • (MSD) R3714512-4 10/08/21 02:51

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2-Methylphenol	0.654	ND	ND	0.361	47.9	55.5	1	11.0-120			14.2	40
3&4-Methyl Phenol	0.654	ND	ND	0.383	46.6	58.9	1	12.0-123			22.7	38
2,4-Dichlorophenol	0.654	ND	ND	ND	39.6	44.5	1	20.0-120			10.9	31
2,4-Dimethylphenol	0.654	ND	ND	ND	41.6	45.1	1	10.0-120			7.43	33
4,6-Dinitro-2-methylphenol	0.654	ND	0.362	0.396	55.4	60.9	1	10.0-120			8.97	39
2,4-Dinitrophenol	0.654	ND	0.347	0.356	53.1	54.8	1	10.0-121			2.56	40
2-Nitrophenol	0.654	ND	ND	ND	44.5	48.8	1	12.0-120			8.55	39
4-Nitrophenol	0.654	ND	0.395	0.409	60.4	62.9	1	10.0-137			3.48	32
Pentachlorophenol	0.654	ND	0.504	0.516	77.1	79.4	1	10.0-160			2.35	31
Phenol	0.654	ND	ND	ND	39.9	47.1	1	12.0-120			15.9	38
2,4,6-Trichlorophenol	0.654	ND	ND	0.361	50.5	55.5	1	19.0-120			8.97	32
Quinoline	0.654	ND	0.347	0.384	53.1	59.1	1	20.0-122			10.1	32
(S) Nitrobenzene-d5					38.8	41.8		10.0-122				
(S) 2-Fluorobiphenyl					40.4	48.9		15.0-120				
(S) p-Terphenyl-d14					50.5	54.8		10.0-120				
(S) Phenol-d5					41.9	50.2		10.0-120				
(S) 2-Fluorophenol					43.6	51.4		12.0-120				

66.6

58.1

10.0-127

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

, to bre trations are	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

times of preparation and/or analysis.

J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
T8	Sample(s) received past/too close to holding time expiration.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

LABORATORY

CHAIN OF CUSTODY RECORD PA

OF:
Or:

Hall Environmental Analysis Laboratory

Page 297 of 317 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

Website: clients.hallenvironmental.com

FAX: 505-345-4107

D073

SUB CO	ONTRATOR: Pace	TN COMPANY: PACI	E TN		PHONE:	(800) 767-5859 FAX: (615) 758-585	9
ADDRE	12065	Lebanon Rd			ACCOUNT #:	EMAIL:	
CITY, S	TATE, ZIP: Mt. Ju	uliet, TN 37122					
			BOTTLE		COLLECTION	# CONTAIL	14 08/24
TEM	SAMPLE	CLIENT SAMPLE ID	TYPE	MATRIX	DATE	ANALYTICAL COMMEN	NTS
1	2109D24-001B	SLP-BD-09232021		MeOH (Soil)	9/23/2021	1 Total Coliform and E.Coli in soil- J and MDL	61
2	2109D24-001C	SLP-BD-09232021	40ZGU	MeOH (Soil)	9/23/2021	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	02
3	2109D24-003B	SLP-11			9/23/2021 9:00:00 AM	1 Total Coliform and E.Coli in soil- J and MDL	00
4	2109D24-003C	SLP-11	40ZGU		9/23/2021 9:00:00 AM	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	04
5	2109D24-004B	SLP-02		MeOH (Soil)	9/23/2021 9:30:00 AM	1 Total Coliform and E.Coli in soil- J and MDL	65
6	2109D24-004C	SLP-02	40ZGU		9/23/2021 9:30:00 AM	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	04
7	2109D24-005B	SLP-04			9/23/2021 10:00:00 AM	1 Total Coliform and E.Coli in soil- J and MDL	0
8	2109D24-005C	SLP-04	40ZGU		9/23/2021 10:00:00 AM	1 Skinner List SVOC,Cr6, Total Cyanide in soil- J and MDL	06

COC Seal Present/Intact COC Signed/Acourate: Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr: SPECIAL INSTRUCTIONS/COMMI	Y N VO	If Appl A Zero Head es.Correct/	space: _Y_N Check: _Y_N			
Please include the LAB ID an	d the CLIENT S	SAMPLE ID on	all final reports. Please e-mail resul	ts to lab@halle	environmental.con	n. Please return all coolers and blue ice. Thank you.
Relinquished By:	Date: 9/23/2021	Time: 3:47 PM	Received By: - 9 Tuny	9124/2	Time: 15-5	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	Temp of samples 3.0 [= 2.9] Attempt to Cool?
TAT: St	andard 🔀	RUSH	Next BD 2nd BD 2] 3rd B	D []	Comments:

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-63078 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 63078 RunNo: 81844

Prep Date: 10/6/2021 Analysis Date: 10/6/2021 SeqNo: 2895447 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Fluoride ND 0.30

 Fluoride
 ND
 0.30

 Chloride
 ND
 1.5

 Nitrogen, Nitrite (As N)
 ND
 0.30

 Nitrogen, Nitrate (As N)
 ND
 0.30

 Sulfate
 ND
 1.5

Sample ID: LCS-63078 SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSS Batch ID: 63078 RunNo: 81844 Prep Date: 10/6/2021 Analysis Date: 10/6/2021 SeqNo: 2895448 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 1.6 0.30 1.500 0 104 90 110 Chloride 15 15.00 0 96.7 90 1.5 110 Nitrogen, Nitrite (As N) 3.3 0.30 3.000 0 109 90 110 Nitrogen, Nitrate (As N) 7.6 7.500 O 101 90 0.30 110 Sulfate 30 30.00 0 100 90 110

Sample ID: 2109D24-005AMS SampType: MS TestCode: EPA Method 300.0: Anions

Client ID: **SLP-04** Batch ID: **63078** RunNo: **81844**

Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2895472 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 3.0 99.0 85.9 Nitrogen, Nitrite (As N) 1.5 3.000 0 104 Nitrogen, Nitrate (As N) 6.4 1.5 7.500 0 85.1 64.4 122 Sulfate 34 7.5 30.00 10.85 77.5 42 2 138

Sample ID: 2109D24-005AMSD SampType: MSD TestCode: EPA Method 300.0: Anions

Client ID: **SLP-04** Batch ID: **63078** RunNo: **81844**

Prep Date: 10/6/2021 Analysis Date: 10/7/2021 SeqNo: 2895473 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit

PQL SPK value SPK Ref Val HighLimit %RPD **RPDLimit** 3.1 102 85.9 20 Nitrogen, Nitrite (As N) 1.5 3.000 104 3.28 0 Nitrogen, Nitrate (As N) 6.6 1.5 7.500 0 87.9 64.4 122 3.20 20 Sulfate 32 7.5 30.00 10.85 69.1 42 2 138 7.68 20

Sample ID: MB-63078 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: **PBS** Batch ID: **63078** RunNo: **81853**

Prep Date: 10/6/2021 Analysis Date: 10/6/2021 SeqNo: 2895794 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 20

Qual

Hall Environmental Analysis Laboratory, Inc.

ND

1.5

WO#: **2109D24**

13-Oct-21

Client: Marathon

Sulfate

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-63078	Sample ID: MB-63078 SampType: mbl				tCode: El	PA Method	300.0: Anion	S			
Client ID: PBS	Client ID: PBS Batch ID: 63078			RunNo: 81853							
Prep Date: 10/6/2021 Analysis Date: 10/6/2021				S	SeqNo: 28	895794	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	ND	0.30									
Chloride	ND	1.5									
Nitrogen, Nitrite (As N)	ND	0.30									
Nitrogen, Nitrate (As N)	ND	0.30									

Sample ID: LCS-63078	SampT	;	TestCode: EPA Method 300.0: Anions								
Client ID: LCSS	Batch ID: 63078			RunNo: 81853							
Prep Date: 10/6/2021	Analysis D	Analysis Date: 10/6/2021			SeqNo: 2895795			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	1.6	0.30	1.500	0	104	90	110				
Chloride	14	1.5	15.00	0	95.5	90	110				
Nitrogen, Nitrite (As N)	3.0	0.30	3.000	0	99.9	90	110				
Nitrogen, Nitrate (As N)	7.6	0.30	7.500	0	101	90	110				
Sulfate	30	1.5	30.00	0	99.5	90	110				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62827 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: PBS Batch ID: 62827 RunNo: 81612

Prep Date: 9/24/2021 Analysis Date: 9/27/2021 SeqNo: 2884266 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 10
Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 8.5 10.00 85.5 70 130

Sample ID: LCS-62827 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: LCSS Batch ID: 62827 RunNo: 81612

Prep Date: 9/24/2021 Analysis Date: 9/27/2021 SeqNo: 2884267 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 42
 10
 50.00
 0
 84.9
 68.9
 135

 Surr: DNOP
 4.1
 5.000
 81.5
 70
 130

Qualifiers:

Page 12 of 20

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit
POL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882065 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1000 1000 104 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: B81560 RunNo: 81560

Prep Date: Analysis Date: 9/24/2021 SeqNo: 2882066 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 105 78.6 131

Surr: BFB 1200 1000 115 70 130

Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: G81561 RunNo: 81561

Prep Date: Analysis Date: 9/26/2021 SeqNo: 2882163 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

 Gasoline Range Organics (GRO)
 ND
 5.0

 Surr: BFB
 1100
 1000
 107
 70
 130

Suil. BFB 1100 1000 107 70 130

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: G81561 RunNo: 81561

Prep Date: Analysis Date: 9/26/2021 SeqNo: 2882164 Units: mg/Kg

%RPD Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 24 5.0 25.00 n 97.5 78.6 131

Surr: BFB 1200 1000 118 70 130

Sample ID: 2109D24-004AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: **SLP-02** Batch ID: **G81561** RunNo: **81561**

Prep Date: Analysis Date: 9/26/2021 SeqNo: 2882169 Units: mg/Kg

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Result POL HighLimit Qual Analyte Gasoline Range Organics (GRO) 15 2.8 14.16 0 105 61.3 114

Surr: BFB 690 566.6 122 70 130

Sample ID: 2109d24-004amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: **SLP-02** Batch ID: **G81561** RunNo: **81596**

Prep Date: Analysis Date: 9/27/2021 SeqNo: 2883387 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 2109d24-004amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: **SLP-02** Batch ID: **G81561** RunNo: **81596**

Prep Date: Analysis Date: 9/27/2021 SegNo: 2883387 Units: mg/Kg

1.100 2010.	,a., o.o =			•			oto: ing/it	9			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	15	2.8	14.16	0	105	61.3	114	0.191	20		
Surr: BFB	700		566.6		123	70	130	0	0		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 14 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 100ng lcs2	Sampl	SampType: LCS			tCode: El					
Client ID: LCSS	Batcl	Batch ID: \$81617			RunNo: 81617					
Prep Date:	Analysis D	Analysis Date: 9/27/2021		5	SeqNo: 2884356 Units: mg/			(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	1.000	0	102	70	130			
Toluene	0.91	0.050	1.000	0	90.6	70	130			
Chlorobenzene	0.90	0.050	1.000	0	89.9	70	130			
Trichloroethene (TCE)	0.95	0.050	1.000	0	95.4	70	130			
Surr: Dibromofluoromethane	0.50		0.5000		100	70	130			
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		96.5	70	130			
Surr: Toluene-d8	0.48		0.5000		95.7	70	130			
Surr: 4-Bromofluorobenzene	0.47		0.5000		94.3	70	130			

Sample ID: 2109d24-001a ms	Sampi	ype: MS	5	les	tCode: El	PA Method	8260B: Volat	iles		
Client ID: SLP-BD-09232021				F	RunNo: 8	1617				
Prep Date:				8	SeqNo: 2884358 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.55	0.014	0.5414	0	101	70	130			
Toluene	0.51	0.027	0.5414	0	94.6	70	130			
Chlorobenzene	0.50	0.027	0.5414	0	92.2	70	130			
Trichloroethene (TCE)	0.55	0.027	0.5414	0	101	52.9	126			
Surr: Dibromofluoromethane	0.31		0.2707		114	70	130			
Surr: 1,2-Dichloroethane-d4	0.29		0.2707		105	70	130			
Surr: Toluene-d8	0.27		0.2707		101	70	130			
Surr: 4-Bromofluorobenzene	0.26		0.2707		94.8	70	130			

Sample ID: 2109d24-001a msc	I SampT	Гуре: МЅ	D	Tes	TestCode: EPA Method 8260B: Volatiles					·
Client ID: SLP-BD-09232021	Batch	h ID: S8	1617	R	RunNo: 8	1617				
Prep Date:	Analysis D)ate: 9/ 2	27/2021	S	SeqNo: 2884359 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.54	0.014	0.5414	0	100	70	130	0.494	20	
Toluene	0.49	0.027	0.5414	0	91.3	70	130	3.58	20	
Chlorobenzene	0.48	0.027	0.5414	0	89.1	70	130	3.48	20	
Trichloroethene (TCE)	0.55	0.027	0.5414	0	101	52.9	126	0.235	20	
Surr: Dibromofluoromethane	0.30		0.2707		112	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.28		0.2707		103	70	130	0	0	
Surr: Toluene-d8	0.27		0.2707		99.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.25		0.2707		93.2	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	tiles		
Client ID: PBS	Batc	h ID: S8	1617	F	RunNo: 81617					
Prep Date:	Analysis [Date: 9/	27/2021	S	SeqNo: 2884365 Un			Units: mg/Kg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Chlorobenzene	ND	0.050								
Chloroform	ND	0.050								
1,1-Dichloroethane	ND	0.050								
Styrene	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.52		0.5000		104	70	130			
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		96.1	70	130			
Surr: Toluene-d8	0.49		0.5000		98.9	70	130			
Surr: 4-Bromofluorobenzene	0.53		0.5000		106	70	130			

Qualifiers:

Page 16 of 20

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2109D24**

13-Oct-21

Client: Marathon

Sample ID: mb

Project: Sanitary Lagoon Investigation Phase II

Sample ID: 100ng lcs	SampT	SampType: LCS			estCode: EPA Method 8260B: VOLATILES					
Client ID: LCSW	Batch	Batch ID: R81575			RunNo: 81575					
Prep Date:	Analysis Date: 9/24/2021		8	SeqNo: 2882818 Units:						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	93.2	70	130			
Toluene	16	1.0	20.00	0	82.1	70	130			
Chlorobenzene	17	1.0	20.00	0	84.9	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	85.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.4	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.8	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.9	70	130			

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch	ID: R8	1575	F	RunNo: 8	1575				
Prep Date:	Analysis D	ate: 9/	24/2021	5	SeqNo: 2	882824	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Chlorobenzene	ND	1.0								
Chloroform	ND	1.0								
1,1-Dichloroethane	ND	1.0								
Styrene	ND	1.0								
Tetrachloroethene (PCE)	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.9		10.00		89.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.8		10.00		97.9	70	130			
Surr: Toluene-d8	10		10.00		105	70	130			

Qualifiers:

Page 17 of 20

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62905 SampType: MBLK TestCode: EPA Method 7471B: Mercury

Client ID: PBS Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SeqNo: 2887699 Units: mq/Kq

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LLLCS-62905 SampType: LCSLL TestCode: EPA Method 7471B: Mercury

Client ID: BatchQC Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SeqNo: 2887700 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0054 0.033 0.006660 0 80.4 70 130 J

Sample ID: LCS-62905 SampType: LCS TestCode: EPA Method 7471B: Mercury

Client ID: LCSS Batch ID: 62905 RunNo: 81691

Prep Date: 9/29/2021 Analysis Date: 9/30/2021 SeqNo: 2887701 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.14 0.033 0.1667 0 82.2 80 120

Qualifiers:

Page 18 of 20

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62888	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vietals		
Client ID: PBS	Batch	n ID: 62	888	F	RunNo: 8	1687				
Prep Date: 9/28/2021	Analysis D	ate: 9/	29/2021	S	SeqNo: 2	887627	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	2.5								
Arsenic	ND	2.5								
Barium	ND	0.10								
Beryllium	ND	0.15								
Cadmium	0.050	0.10								J
Chromium	ND	0.30								
Cobalt	ND	0.30								
Iron	ND	2.5								
Lead	ND	0.30								
Manganese	ND	0.20								
Nickel	ND	0.50								
Silver	ND	0.25								
Vanadium	ND	2.5								
Zinc	ND	2.5								

Sample ID: LCS-62888	SampT	ype: LC	s	TestCode: EPA Method 6010B: Soil Metals						
Client ID: LCSS	Batch	n ID: 62 8	388	R	RunNo: 81	1687				
Prep Date: 9/28/2021	Analysis D	ate: 9/ 2	29/2021	S	SeqNo: 28	387629	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	23	2.5	25.00	0	91.6	80	120			
Arsenic	22	2.5	25.00	0	86.7	80	120			
Barium	23	0.10	25.00	0	92.8	80	120			
Beryllium	24	0.15	25.00	0	94.1	80	120			
Cadmium	23	0.10	25.00	0	91.4	80	120			
Chromium	23	0.30	25.00	0	92.8	80	120			
Cobalt	23	0.30	25.00	0	90.0	80	120			
Iron	24	2.5	25.00	0	94.5	80	120			
Lead	23	0.30	25.00	0	90.4	80	120			
Manganese	23	0.20	25.00	0	93.3	80	120			
Nickel	23	0.50	25.00	0	90.6	80	120			
Silver	4.7	0.25	5.000	0	94.2	80	120			
Vanadium	24	2.5	25.00	0	94.1	80	120			
Zinc	21	2.5	25.00	0	85.8	80	120			

Sample ID: MB-62888 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals Client ID: PBS Batch ID: 62888 RunNo: 81708 Prep Date: 9/28/2021 Analysis Date: 9/30/2021 SeqNo: 2888314 Units: mg/Kg Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D24**

13-Oct-21

Client: Marathon

Project: Sanitary Lagoon Investigation Phase II

Sample ID: MB-62888 SampType: MBLK TestCode: EPA Method 6010B: Soil Metals

Client ID: PBS Batch ID: 62888 RunNo: 81708

Prep Date: 9/28/2021 Analysis Date: 9/30/2021 SeqNo: 2888314 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Selenium ND 2.5

Sample ID: LCS-62888 SampType: LCS TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS Batch ID: 62888 RunNo: 81708

Prep Date: 9/28/2021 Analysis Date: 9/30/2021 SeqNo: 2888316 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Selenium 20 2.5 25.00 0 80.7 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

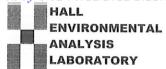
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank


E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 20

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Marathon	Work Order Number	210	∌D24		RcptNo	o: 1
Received By: Juan Rojas	9/23/2021 2:40:00 PM			Gran Eng		
Completed By: Desiree Dominguez	9/23/2021 2:52:33 PM			Juan Engl		
Reviewed By: O	7/23/eu			17-2		
Chain of Custody						
Is Chain of Custody complete?		Yes	V	No 🗌	Not Present	
2. How was the sample delivered?		Cou	rier			
Log In						
3. Was an attempt made to cool the samples?		Yes	V	No 🗌	NA 🗌	
,		100	ريا	110		
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes	V	No 🗌	NA 🗌	
	Samples were			the same day and	d chilled.	
5. Sample(s) in proper container(s)?		Yes	V	No 🗔		
6. Sufficient sample volume for indicated test(s)?		Yes	V	No 🗌		
7. Are samples (except VOA and ONG) properly		Yes	V	No 🗌		
8. Was preservative added to bottles?		Yes		No 🗸	NA 🗌	
9. Received at least 1 vial with headspace <1/4" f	for AO VOA?	Yes	V	No 🗌	NA 🗌	
10. Were any sample containers received broken?		Yes		No 🗸	1W. L	
,,		100		110	# of preserved bottles checked	
11. Does paperwork match bottle labels?		Yes	V	No 🗌	for pH:	
(Note discrepancies on chain of custody)	-1-10	v		N	(<2.o	12 unless noted)
2. Are matrices correctly identified on Chain of Cu 13. Is it clear what analyses were requested?	istody?	Yes Yes	V	No □ No □	/ isjuged :	1.05 AL
14. Were all holding times able to be met?			V	No 🗆	Checked by:	KP4 91
(If no, notify customer for authorization.)		103	٠			1.4.
Special Handling (if applicable)						,
15. Was client notified of all discrepancies with thi	s order?	Yes		No 🗌	NA 🗸	
Person Notified:	Date:	- Callery Co.		economica estada y astrogon		
By Whom:	Via:	eMa	ail 🗆	Phone Fax	In Person	
Regarding:						
Client Instructions:	PROCESSOR AND ADDRESS AND ADDRESS OF A STATE	NTEAN STATE OF THE		N. VII. ALEPAKTON TO CONTROL ON THE CONTROL OF	BECOMES ON A THE STATE OF THE S	
16. Additional remarks:						
17. <u>Cooler Information</u>						
	I Intact Seal No S	eal Da	ate	Signed By		
1 3.3 Good Yes						

				Romannia Mariano, etc.	
Client: Maratl	hon Petrol	Marathon Petroleum Company	X Standard		HALL ENVIRONMENTAL
			Project Name Sanitary Lagoon Investigation		WANN ballenvironmental com
Mailing Address:	92 Gian	92 Giant Crossing Rd.			
	Jamesto	Jamestown, 87343	Project #: 697-094-001		
Phone #:	808-640-1823	-1823	PO# 4500273020		Analysis Request
email or Fax#:					
QA/QC Package:			Jim Hagəman / Brian McLoughlin		
X Standard		☐ Level 4 (Full Validation)		T	
Accreditation:	□ Az Cc	npliance		SIT	
O NELAC	□ Other		On Ice: A-Yes D No	IED	
□ EDD (Type)			# of Coolers.	 	
			Cooler Temp(including CF): 5,241,153.3	ΑΤ	
Date Time	Matrix	Sample	Container Preservative HEAL No. Type and # Type	SEE VJ	
23/2021		SLP-BD-09232021	9		
9/23/2021 10:0	10:00 water	SLP-EB-09232021	HCI	×	
	9:00 soil	SLP-11		. ×	
9/23/2021 9:3	9:30 soil	SLP-02	Φ	×	
	10:00 soil	SLP-04	Φ	×	
	<u>:</u>				
123			Mia: Date Time	Remarks: \	
Jate: Time:	Relinduished by:		Received by: Via: Date Time		
If necessa	rv. samples sut	If necessary samples submitted to Hall Environmental may be subcontracted	Intracted to other accordited Laboratories. This canae as notice of this	noceibility Any	the state of the s

Released to Imaging: 11/23/2022 10:14:43 AM

TABLE 1. SOIL ANALYTE LIST MARATHON PETROLEM COMPANY GALLUP REFINING DEVISION, GALLUP, NEW MEXICO

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/3352 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020
Chloride	EPA Method 300
Fluoride	EPA Method 300
Nitrate	EPA Method 300
Nitrite	EPA Method 300.3
Sulfate	EPA Method 300.3
Total coliform	SM922SB
E. coli	SM92238
Skinner list VOC	SW-846 Method 8260
Skinner list SVOC	SW-846 Method 8270
TPH - GRO, DRO, and MRO	SW-846 Method 8015B

Notes:

EPA = Environmental Protection Agency

SW-846 = EPA Solid Waste Test Method

VOC = volitile organic componds

SVOC = Semi-volitile organic componds

TPH = Total petroleum hydrocarbons

GRO = Gasoline range organics (C5-C10)

DRO = Diesel range organics (>C10-C28)

MRO = Motor oil range organics (>C28-C36)

Total and dissoved metals will be analyzed

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2112B72

December 23, 2021

Brian McLoughlin Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: Sanitary Lagoon Investigation

Dear Brian McLoughlin:

Hall Environmental Analysis Laboratory received 1 sample(s) on 12/18/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

CLIENT: Marathon

Analytical Report

Lab Order 2112B72

Date Reported: 12/23/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: SL-05a

Project: Sanitary Lagoon Investigation Collection Date: 12/17/2021 2:45:00 PM

Lab ID: 2112B72-001 **Matrix:** SOIL **Received Date:** 12/18/2021 10:00:00 AM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst: T(OM
Diesel Range Organics (DRO)	150	4.9	10	mg/Kg	1	12/22/2021 11:35:08	3 A 64634
Motor Oil Range Organics (MRO)	120	50	50	mg/Kg	1	12/22/2021 11:35:08	3 A 64634
Surr: DNOP	90.8	0	70-130	%Rec	1	12/22/2021 11:35:08	3 A 64634

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 2

Hall Environmental Analysis Laboratory, Inc.

2112B72 23-Dec-21

WO#:

Client: Marathon

Project: Sanitary Lagoon Investigation

Sample ID: MB-64634 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: **PBS** Batch ID: **64634** RunNo: **84684**

Prep Date: 12/20/2021 Analysis Date: 12/21/2021 SeqNo: 2977779 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 10

Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 10 10.00 101 70 130

Sample ID: LCS-64634 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: LCSS Batch ID: 64634 RunNo: 84684

Prep Date: 12/20/2021 Analysis Date: 12/21/2021 SeqNo: 2977780 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 52
 10
 50.00
 0
 104
 68.9
 135

 Surr: DNOP
 4.3
 5.000
 86.0
 70
 130

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

Sample Log-In Check List

ANALYSIS LABORATORY

Client Name: Marathon	Work Order Nun	nber: 2112B72		RcptNo:	1
Received By: Isaiah Ortiz	12/18/2021 10:00:	00 AM	INO	4	
Completed By: Isaiah Ortiz	12/20/2021 8:59:0	4 AM	エ、〇		
Reviewed By: Tr 12/20					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗸	No 🗌	Not Present	
2. How was the sample delivered	?	Courier			
<u>Log In</u>					
3. Was an attempt made to cool t	he samples?	Yes 🗸	No 🗌	NA 🗌	
4. Were all samples received at a	temperature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in proper container(s	\$)?	Yes 🗸	No 🗌		
6. Sufficient sample volume for inc	ficated test(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and 0	ONG) properly preserved?	Yes 🗸	No 🗆		
8. Was preservative added to bottl	es?	Yes	No 🗹	NA 🗌	
9. Received at least 1 vial with hea	dspace <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sample containers re	ceived broken?	Yes	No 🗸 🗆		0
44 -				of preserved ottles checked	1 1
 Does paperwork match bottle lal (Note discrepancies on chain of 		Yes 🗸		or pH:	12/20/21
12. Are matrices correctly identified		Yes 🗸	No 🗆	Adjusted?	>12 unless noted)
13. Is it clear what analyses were re		Yes 🗹	No 🗆		
14. Were all holding times able to be	e met?	Yes 🗸	No 🗆	Checked by:	
(If no, notify customer for author					
Special Handling (if applical 15. Was client notified of all discrep		V □		🗔	
Person Notified:		Yes 📙	No 🗌	NA 🗹	
By Whom:	Date:				
Regarding:	Via:	eMail P	hone Fax	In Person	
Client Instructions:					
16. Additional remarks:			All and they were a profession		
17. Cooler Information					
	ndition Seal Intact Seal No	Seal Date	Signed By		
1 3.8 Good					

Received by OCD: 3/11/202	2 2:21:53 PM (N. 10) Y) səldduB iA				T T				Page 316 of 317
→ ≿	(14.20	2 X) 201441.9 3i A								
TAL						11			\dashv	
25										report
M 37		1817. OBO								alytical
Om Om 1410		OV-imə2) 0728								he and
/IRONN S LABO mental.com erque, NM 87 505-345-4107 Request		(AOV) 809S8								uo pe
S S Inner January 505		8081 Pesticides								, notat
IALL ENVIRONME NALYSIS LABOR Www.hallenvironmental.com ns NE - Albuquerque, NM 87109 5-3975 Fax 505-345-4107 Analysis Request	(pO2,pOq,sON,eC									clearly
		RCRA 8 Metals								will be
HALL ANAL www.hal kins NE - 345-3975		no 01£8) a'HA9								d data
A A Www. www. kins		EDB (Method 5								itracted
HALL ANAL www.ha Hawkins NE 505-345-3975		TPH (Method 4								np-cou
HAL ANA www.h 4901 Hawkins NE Tel. 505-345-3976	RO / DROJ MRO)	COLUMN PROGRAMMA ROCCO DE ENCORTEMBRE								S:.
	+ TMB's (8021) + TPH (Gas only)		_	\perp		1				Kemarks:
	(1508) SIBINIT +	ABTM + XATA	_	-	_	-		-		s poss
105	1, 5	1			9					000 e of thi
Inchestr	1 / 2 2/ 1	HEAL NO.	8						Ë	Time
2	100	C EAL	4							ves as
	2 2	5 ~							5	Date Date
Kush Lagan-		8 8		+	-					ries. T
Legal DSY-	Se se	ture: 3 servative Type								porato
	er:	Prese Ty								CO lifted la
Turn-Around Tim ☐ Standard Project Name: 2 Cantary Project #:	Project Manager:	9	+	++	+		+			accred
Urn-Around Turn-Around Turn-A	oject Man	Sample Ten Container Type and #							3	other by:
Turn-Arou □ Stand Project N Project #	Project M Sampler: On Ice:	ampl Cont ype							Received by:	Received by:
		S F		++	-		++	_	ă	Rec
	□ Level 4 (Full Validation)	Ω :								oe sub
COF	alida	Sample Request ID								may t
	>	Sedi	259							mental
Loleun Corp. Corp. VM	4 (F	l e F	0							V
Koleur Corp Cont Non	eve	amp	.75							Hall E
Custody le Folen 52 Cont		S	03						Š	Iby:
ST Cu	Other	·ξ							- Shell	submit
in-of-		Matrix	Š						Relinauished by:	Relinquished by:
hain-of-	age:	(e) (e)	3		\top					Sy. Sal
Chain-of-Custody Record Moraka letalan Cengral Corp. 19 Address: 72 Cort Corry Janeskan Mm 3#: 808 (80-1823	Packed dard tation AP	(Time	74:42						Time:	Time: Relinquished by: Received by: Received by: Received by: Received by: Received by: Time: Any sub-contracted data will be clearly notated on the analytical report
Chain-of Client: Heraffe. Cespee Mailing Address: Daneste	email or Fax#: QA/QC Package: Standard Accreditation DINELAP	Date Time	4				11			<u>a</u>
			17						Date:	Date:
Released to Imaging: 11/23/	2022 10:14:43 AM									

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 89742

CONDITIONS

Operator:	OGRID:
Western Refining Southwest LLC	267595
539 South Main Street	Action Number:
Findlay, OH 45840	89742
	Action Type:
	[UF-DP] Discharge Permit (DISCHARGE PERMIT)

CONDITIONS

Created	By Condition	Condition Date
scwel	Accepted for Record Retention Purposes-Only	11/23/2022