UICI - 11

FALL-OFF TEST

2022

UIC CLASS I FALL-OFF TEST REPORT

WESTERN REFINING SOUTHWEST LLC WASTE DISPOSAL WELL No. 2

API NO.: 30-045-35747 UIC PERMIT: UICI-011

LOCATION: BLOOMFIELD, NM

START DATE: 09/14/2022 FINISH DATE: 09/29/2022 PROJECT ID: MPC.FNM.22.01

PREPARED BY: DAVID ZOOK

APPROVED BY: BRANDON SCHULTE

REPORT DATE: 11/04/2022

STRATA, LLC
4151 SW FREEWAY, SUITE 345
HOUSTON, TX 77027
solutionsbystrata.com

CONTENTS

\mathbf{E}	XECU	JTIV	E SUMMARY	
1	SI	TE I	NFORMATION	2
	1.1	FAC	CILITY INFORMATION	2
	1.2	V	VELL INFORMATION	2
	1.3	C	GEOLOGY	2
	1.4	A	AREA OF REVIEW (AOR) AND OFFSET WELLS	3
2	TI	EST	ACTIVITY AND DATA	4
	2.1	I	NJECTION FLUID, RATE AND VOLUME	4
	2.2	P	PRESSURE FALL-OFF TEST ACTIVITY	4
3	FA	ALL-	OFF ANALYSIS	6
	3.1	P	PARAMETER ESTIMATION FOR INJECTION INTERVAL AND FLUID PROPERTIES	6
	3.2	S	EMI-LOG ANALYSIS – HORNER METHOD (CLASSIC)	6
	3.2		FLOW CAPACITY	
	3.2	2.2	PERMEABILITY	7
	3.2	2.3	TRANSMISSIVITY	8
	3.2	2.4	INITIAL RESERVOIR PRESSURE	8
	3.2	2.5	SKIN FACTOR	8
	3.2	2.6	PRESSURE DROP DUE TO SKIN	
	3.2	2.7	FLOW EFFICIENCY	9
	3.2	2.8	DRAINAGE AREA (RADIUS OF TEST INVESTIGATION)	10
	3.3	V	VASTE FRONT DISTANCE	10
	3.4	V	VASTE FRONT TIME	11
	3.5	ŀ	HOMOGENEOUS TYPE-CURVE (LOG-LOG) MODEL ANALYSIS	12
	3.6	R	RESULTS SUMMARY	13
4	C	ONC	CLUSIONS	15
	4.1	Ι	DISCUSSION OF RESULTS	15
	4.2	R	RECORD KEEPING	15
5	RI	EFEI	RENCES	16
G	ΛТ	DDE	NDICES	17

FIGURES

SEE APPENDIX A	A
TABLES	
TABLE 1. FACILITY INFORMATION.	2
TABLE 2. WELL INFORMATION	2
TABLE 3. PRESSURE AND TEMPERATURE FROM STATIONARY GRADIENT SURVEY ON S	9/14/225
TABLE 4. PRESSURE/TEMPERATURE GAUGE SPECIFICATIONS	5
TABLE 5. INPUT PARAMETERS	6
TABLE 6. FLUID PROPERTIES.	6
TABLE 8. SEMI-LOG ANALYSIS, HORNER METHOD (CLASSIC)	13
TABLE 9. HOMOGENOUS TYPE-CURVE (LOG-LOG) MODEL ANALYSIS	
TABLE 10 COMPARISON WITH PREVIOUS FALL-OFF TESTS	14

APPENDICES

APPENDIX A. FIGURES

APPENDIX B. TEST FIELD REPORT

APPENDIX C. INJECTION DATA

APPENDIX D. COPY OF ELECTRIC LOG

APPENDIX E. AREA OF REVIEW TABLE

APPENDIX F. INJECTION AND FORMATION FLUID ANALYSIS

APPENDIX G. TOOL CALIBRATION

EXECUTIVE SUMMARY

Strata, LLC completed a Pressure Fall-Off Test on Western Refining Southwest LLC Waste Disposal Well No. 2 (WDW-2) located near Bloomfield, NM. The test was conducted and analyzed according to OCD UIC Class I Well Fall-Off Test Guidance and the approved procedure submitted prior to the test.

Down-hole pressure gauges were set at the top of the injection interval and waste injection commenced on September 14, 2022. After 73.41 hrs of injection the well was shut in to monitor pressure falloff for 284.09 hrs (11.8 days).

Radial flow conditions were observed from 3.274 hrs to 12.58 hrs after shut-in. The permeability was measured to be 2.45 md, the transmissivity 643 md-ft / cp, and skin -4.03. The static gradient survey measured the average fluid gradient as 0.433 psi/ft. There were no anomalous temperature or pressure measurements. An update to the 2021 1-mile Area-of-Review found no new wells and no change to existing wells.

Brandon Schulte

11/4/2022

Test Supervisor:

Brandon Schulte, P.E. (NM License No. 25721)

Sr. Project Manager

Strata, LLC

1 SITE INFORMATION

Strata, LLC was contracted to plan and oversee injection pressure fall-off test on the subject well. The following sections provide site and well identification information, an updated Area-of-Review, and other data as required by *New Mexico Oil Conservation District UIC Class I Well Fall-Off Test Guidance*, December 3, 2007.

1.1 FACILITY INFORMATION

Facility information is given in **Table 1**.

Table 1. Facility information.

NAME	Western Refining Southwest LLC	
LOCATION	50 County Road 4990	
	Bloomfield, NM 87413	
OGRID NUMBER	267595	

1.2 WELL INFORMATION

Well information is given in **Table 2**. A schematic of the well is provided in **Appendix A, Figure 1**.

Table 2. Well Information.

OCD UIC Permit Number	UICI-011		
Well Classification	Class I Non-hazardous		
Well Name and Number	WDW No. 2		
API Number	30-045-35747		
Legal Location	2028' FNL		
	111' FEK		
	Unit Letter H of Section 27, T29N, R11W		

1.3 GEOLOGY

The geology is reproduced from the Fall-Off Test (William M. Cobb and Associates, Inc., 12/12/17).

"The injection zone is the Entrada sandstone formation. The formations occur in Waste Disposal Well No. 2 at the depths shown in the table below. The injection zone is shown in Waste Disposal Well No.2 logs in Appendix D.

Injection Zone Formation	Waste Disposal Well #2			
	(KB $elev = 5,550 ft$			
	MD below KB (ft) SS Depth (ft)			
Bluff Sandstone	Not completed	7031		
Entrada Sandstone	7312 to 7470	7308		

The Jurassic aged Entrada Sandstone is thought to be one of the best water disposal rock units in the San Juan Basin. The Entrada is the basal formation of the San Rafael Group which also

includes the Todilto and Wanakah Formations The Entrada Sandstone is present throughout the basin's subsurface and crops out along the it's margin as step cliffs. The Entrada unconformably overlies the Chinle Formation. The overlying Todilto Formation made up of limestone and anhydrite in dense and thought to an impermeable barrier or seal.

The Entrada Sandstone consists of mottled reddish-brown very fine to medium grained well sorted, silica cemented quartz sandstone interbedded with thinner reddish-brown siltstones. The sandstone units are assembled in high-angle, large-scale crossbeds indicating eolian environment deposition and with the siltstones representing interdue and sabkha deposition. The cross stratified sandstone is competent, laterally persistent and with homogenous reservoir properties. Entrada Sandstone gross thickness ranges 60 feet to 330 feet across the basin.

At the Water Disposal Well #2 location the Entrada is 158 feet thick. Based upon the nearby XTO Energy Ashcroft SWD #1 water disposal well density porosities are up to 18 percent with the most porous interval found in the upper 90 feet of the formation where the majority of the density porosities are more than 10 percent. Water Disposal Well #2 has a density porosity of 12.1 percent. The two intervals with the highest porosity are 20 feet from 7,333 feet to 7,353 feet with 14.1 percent porosity and 26 feet from 7,442 feet to 7,468 feet with 14.3 percent porosity.

Permeability for the well as measured by this falloff test is 3.29 md or less."

A section of the neutron density log, from 7200 ft. to 7532 ft., and a section of the dual induction log from 7200 ft. to 7532 ft., is provided in Appendix D. These logs were previously filed with the OCD.

1.4 AREA OF REVIEW (AOR) AND OFFSET WELLS

Federal Abstract Company conducted an Area-of-Review (AOR) search for new wells or changes to existing wells within one mile of WDW-2. The AOR search includes both new wells and changes to existing wells. Results of the search are summarized below. A complete AOR table is provided in Appendix E and an AOR map is shown in Figure 11.

New Wells

No new wells were drilled in the AOR since the previous AOR review.

Changes to Wells

No wells reported a change in status since the previous AOR review.

Wells Plugged and Abandoned

No wells were plugged and abandoned since the previous AOR review.

Wells Temporarily Abandoned

No wells were temporarily abandoned since the previous AOR review.

Offset Wells

Ashcroft SWD #001 (Record No. 48, API No. 30-045-30788) penetrates the Entrada injection zone. There are no reported changes to this well.

2 TEST ACTIVITY AND DATA

The pressure fall-off test and static fluid level measurement was conducted on September 14 - 29, 2022. A record of the daily well test activities is in **Appendix B**.

2.1 INJECTION FLUID, RATE AND VOLUME

The fluid injected for the falloff test is terminal-treated wastewater (effluent). An analysis of the effluent injectate is provided in **Appendix F**, along with a summary of an analysis of the formation water collected on January 25, 2017.

The cumulative volume injected into WDW-2 through the end of the falloff test is 9,089,116 gallons.

The rate history used in the falloff analysis begins at the shut-in of the previous falloff test and ends with the well shut-in during the current falloff test. The rate history is provided in **Appendix C**.

2.2 PRESSURE FALL-OFF TEST ACTIVITY

Activities for the pressure fall-off test were initiated Wednesday, September 14, 2022. Prior to starting pressure fall-off test activities, a Bradenhead Test was completed. The test was successful and witnessed by John Durham. The Bradenhead Test is reported separately.

The slickline unit and lubricator were rigged up. An impression block was descended into the well and tagged fill depth at 7,423 feet KB. The plug back total depth is noted from previous completion schematics at a depth of 7,490 feet bgs. Estimated fill in the well is 67 feet.

The pressure/temperature tool then was descended into the well and set to a depth of 7,312 feet below ground surface (bgs) at 11:32 AM. Fluid injection began at 11:40 AM. Terminal-treated wastewater (effluent) was utilized as injectate.

The total injected volume for the test was 133,132 gallons for a total period of 73.41 hrs. Waste was injected at an average flow rate of 44.82 gpm for 21.33 hrs followed by 25.56 gpm for 52 hrs. The injection rate was lowered after the initial rate resulted in pressure building too quickly.

Pressure and temperature were monitored during the pressure fall-off period for 284.09 hours. The pressure fall-off test was concluded on September 29th at 7:45 AM. **Figure 2** is a plot of the pressure and rate history recorded during the September 14 – 29, 2022 test. The final injection pressure was 4,419.98 psi. Final shut-in pressure at the end of 284.09 hours was 3,709.16 psi. The total absolute change in pressure for the shut-in period was a decrease of 710.83 psi. The final injection fluid temperature was 136.89°F. The final shut-in injection fluid temperature was 186.79°F, an increase of 49.89°F over the shut-in period.

Pressure and temperature measurements were made on ascent at 1,000-foot intervals after concluding the fall-off test period. The average hydrostatic pressure gradient was calculated from these measurements and found to be 0.433 psi/foot, as shown in **Table 3**.

Table 3. Pressure and temperature from stationary gradient survey on 9/14/22.

Station	Time	Depth	Pressure (psig)	Pressure Gradient (psi/ft.)	Temperature (F°)	Temperature Gradient (°F/ft.)
1	8:56 AM	0	570.03		66.80	
2	8:48 AM	1000	981.66	0.412	73.10	0.006
3	8:41 AM	2000	1435.65	0.454	95.33	0.022
4	8:34 AM	3000	1862.04	0.426	109.46	0.014
5	8:27 AM	4000	2328.02	0.466	132.18	0.023
6	8:21 AM	5000	2726.70	0.399	148.68	0.017
7	8:14 AM	6000	3153.46	0.427	171.94	0.023
8	8:06 AM	7000	3582.64	0.429	189.56	0.018
9	7:50 AM	7312	3709.16	0.406	186.79	-0.009
	Average Fluid Pressure Gradient 0.433 psi/ft					

Specifications for the pressure/temperature gauge tool utilized for the 2022 pressure fall-off test are provided in **Table 4.** The tool calibration file is located in Appendix G.

Table 4. Pressure/temperature gauge specifications.

Manufacturer	Spartek Systems
Model	SS2100
Pressure Range (psi)	0 - 15000
Accuracy	0.05% Full Scale
Resolution	0.0003% Full Scale
Gauge Serial Number	79785
Calibration Date	2/27/2022

3 FALL-OFF ANALYSIS

3.1 PARAMETER ESTIMATION FOR INJECTION INTERVAL AND FLUID PROPERTIES

Table 5 gives parameter estimations used for the WDW No. 2 pressure fall-off analysis. The parameters are based on injection zone characteristics of the Entrada Formation used in previous formation pressure fall-off tests for this well and described in Section 1.3. **Table 6** gives the fluid properties used in the pressure fall-off analysis.

Table	5.	Input	parameters.
-------	----	-------	-------------

Parameter	Unit	Symbol	Value
Injection Rate	gpm	q	25.56
	BPD	q	876.3
Interval Thickness	Feet	h	123
Final Injection Pressure	psi	P_{wf}	4419.98
Final Shut-in Pressure	psi	P_{si}	3709.16
Final Injection Temperature	°F	°F _{inj}	136.89
Final Shut-In Temperature	°F	°F _{si}	186.79
Wellbore Radius	feet	$r_{\rm w}$	0.3281
Injection Time	hour	t_{p}	73.41
Shut-in Time	hour	t_{si}	284.09
Formation Porosity	%	ф	14.9
Fluid Specific Gravity		Q	1.0
Formation Volume Factor	RB/STB	В	1.00

Table 6. Fluid properties.

Parameter	Unit	Symbol	Value
Fluid Viscosity	ср	μ	0.47
Water Compressibility	psi ⁻¹	C _w	2.0e-6
Formation Compressibility	psi ⁻¹	c_{f}	2.44e-6
Total Compressibility	psi ⁻¹	Ct	4.44e-6

3.2 SEMI-LOG ANALYSIS - HORNER METHOD (CLASSIC)

As noted in **Table 5**, the pressure fall-off portion of the test was monitored for 284.09 hours. **Figure 3** shows the Horner plot of the pressure fall-off data along with the straight line interpreted to be the result of radial flow, which was estimated from 3.274 hours to 12.58 hours into the shut-in period of the test.

Utilizing the straight-line analysis of the radial flow period estimates the initial pressure (P*) 3,734.87 psi. End of wellbore storage was achieved at 0.892 hours (53.52 minutes) into the pressure fall-off period.

The Semi-Log Analysis – Horner Method analysis including equations used, the equations with the appropriate parameters substituted in them, description of values used in calculations and equations and references for values used are described in the **Sections 3.2.1** to **3.2.8**. Analysis results are summarized in **Table 8** in Section 3.6

3.2.1 Flow Capacity

The product of formation permeability (k), and injection interval thickness (h), in an injection well is referred to as kh. Determination of the permeability product is the basis in pressure transient analysis. Calculation for a value for kh is obtained from deriving a value for m, the slope of the line in psi/log cycle in the radial flow period. The pressure data is shown in **Figure 3** shows the semi-log Horner plot where m was estimated at 221.4798 psi/cycle. Flow capacity is then calculated based on an injection rate, a fluid formation volume factor (B) (1.0), and fluid viscosity (μ) (0.47 cp).

The flow capacity (or permeability-thickness product) of the well can be calculated using the following equation:

$$kh = 162.6 \frac{q\mu B}{m} md - ft$$
 (Matthews and Russell, Eq. 3.5)

Where: *kh* = flow capacity of the well (millidarcy-feet) (md-ft)

K = Effective formation permeability, millidarcies (md)

q = Injection rate during the test

B = Formation volume factor, reservoir barrel per stock tank barrel (RB/STB)

 μ = Viscosity of injected fluid at reservoir temperature, centipoise (cp)

m = Slope of the radial flow transient portion of Horner Plot (psi/log cycle)

h = Net formation thickness, (ft.)

For this test (from **Figure 3**):

q = 876.3 bbls/day = 25.56 gpm

m = 221.4798 psi

h = 123 feet

 μ = 0.47 cp (After Matthews & Russell, data of Chestnut)

Therefore:

$$kh = 162.6 \frac{(876.3)(0.47)(1.00)}{221.4797} md - ft$$

$$kh = 302 \, md - ft$$

3.2.2 Permeability

Using the calculated flow velocity (kh) and solving for permeability by dividing the 525 feet of Arbuckle thickness gives:

$$k = \frac{302 \, md - ft}{123 \, ft}$$

$$k = 2.46 \, md$$

3.2.3 Transmissivity

Transmissivity is the ratio of flow capacity of an injection fluid over the viscosity of the injection fluid transmitted through a porous media.

The transmissivity of the well can be calculated by the following equation:

$$T = \frac{kh}{\mu}$$

Where; T = transmissivity of well, md-ft./cp

kh = flow capacity of well md-ft.

 μ = viscosity of injected fluid at reservoir temperature, cp

For this test: kh = 302 md-ft.

 $\mu = 0.47 \, \text{cp}$

Solving for transmissivity:

T = 643 md-ft/cp

3.2.4 Initial Reservoir Pressure

Extrapolated pressure (P*) of the straight-line portion of the Horner Plot to the shut-in of Horner time (10°) gives an indication of the initial reservoir pressure:

$$P^* = 3,734.40 \text{ psi at } 7,312 \text{ ft. bgs } (see Figure 3)$$

3.2.5 Skin Factor

The conventional skin equation utilized below assumes that the well is completed over the entire interval.

$$S = 1.151 \left[\left(\frac{(P_{wf} - P_{1hr})}{m} \right) - log \left(\frac{k}{\varphi \mu c_t r_w^2} \right) + 3.23 \right]$$
 (Matthews and Russell, Eq. 3.10)

Where: S = Skin factor

 P_{thr} = Pressure on straight line portion of Horner Plot at $\Delta t = 1$ hour

 P_{wf} = Pressure observed while injecting prior to shut-in

 μ = Formation porosity, percent (14.9%, same as previous tests)

 c_t = Total system compressibility (psi⁻¹)

 r_w = Wellbore radius, ft.

From test data:

 $P_{wf} = 4,419.98 \text{ psi}$

 $P_{thr} = 4,167.60 \text{ psi}$ (**Figure 4**)

 $m = 221.4797 \,\mathrm{psi/cycle}$

k = 2.46 md

 $\phi = 0.149$

 $\mu = 0.47 \, \text{cp}$

 $c_t = 4.44e^{-6} \text{ psi}^{-1}$

 $r_w = 0.3281 \, \text{ft.}$

Therefore:
$$S = 1.151 \left[\left(\frac{(4,419.98 - 4,167.60)}{221.4797} \right) - log \left(\frac{2.46}{(0.149)(0.47)(4.44e^{-6})(0.3281^2)} \right) + 3.23 \right]$$
$$S = -4.024$$

The resulting skin factor is -4.024. A negative skin factor (S<0) suggests flow conditions near the wellbore are enhanced.

3.2.6 Pressure Drop Due to Skin

Pressure drop across the skin at a rate (q) may be calculated by means of the following equation:

$$\Delta P_{skin} = 141.2 \frac{qB\mu}{kh} s$$
 (Earlougher, Eq. 2.9)

Where: ΔP_{skin} = Change in pressure due to skin factor

From the test data:

$$q = 876.3 \text{ bbls/day}$$

B = 1.00

 $\mu = 0.47$

kh = 302 md-ft

S = -4.024

Therefore: $\Delta P_{\text{skin}} = -774.02 \text{ psi}$

3.2.7 Flow Efficiency

The flow efficiency of the well (expressed as a percentage) is evaluated from the pressure fall-off data and is calculated using the following equation:

$$F_{eff} = \left(\frac{(P_{wf} - P_{av} - \Delta P_{skin})}{(P_{wf} - P_{av})}\right)$$
 (Matthews and Russell, Eq. 3.12)

Where: P_{av} = Average reservoir pressure at gauge depth (P* in this case)

From the test data:

 $P_{wf} = 4,419.98 \text{ psi}$

 $P_{av} = 3,734.40 \text{ psi}$

 $\Delta P_{\text{skin}} = -774.02 \text{ psi}$

Therefore:

$$F_{eff} = \left(\frac{(4,419.98 - 3,734.40 - (-774.02))}{(4,419.98 - 3,734.40)}\right)$$

$$F_{eff} = 2.129$$

3.2.8 Drainage Area (Radius of Test Investigation)

The radius of investigation, R_{inv} , is the distance a pressure transient has moved into a formation following a rate change in a well. The lateral extent that the reservoir test has covered can be calculated as follows:

$$R_{inv} = \sqrt{\frac{kt}{948\varphi\mu c_t}}$$
 (Lee, Eq 1.47)

Where: R_{inv} = radius of investigation, feet

t = Time after shut-in (end of radial flow, **Figure 3**, 12.59 hours)

From the test data:

k = 2.46 md

t = 12.59 hrs.

 $\phi = 0.149$

 $\mu = 0.47 \, \text{cp}$

 $c_t = 4.44e^{-6} \text{ psi}^{-1}$

Therefore: R_{inv} = 289 feet

3.3 WASTE FRONT DISTANCE

The travel time for a pressure transient to pass beyond the waste front was calculated to determine whether the viscosity utilized was valid. The radius of influence (R_{inv}) distance from the Horner Plot (Figure 3) was estimated to be from 3.274 to 12.58 hours, which equates to a radius distance of 148 and 289 feet respectively.

OCD Guideline Section VIII.5 states that calculating the travel time for a pressure transient to pass beyond the waste front may be necessary. The distance to the waste front is determined from the following equation:

$$R_{waste} = \left(\frac{0.13368 \, V}{\pi \, h \, \varphi}\right)^{\frac{1}{2}}$$

where,

 R_{waste} = radius to waste front, feet

V = total volume injected into the injection interval, gallons

h = formation thickness, feet

 ϕ = formation porosity, fraction

0.13368 = constant

$$R_{waste} = \left(\frac{(0.13368)(9,089,116)}{(\pi)(123)(0.149)}\right)^{\frac{1}{2}}$$

 $R_{waste} = 145.2 \text{ feet}$

The estimated distance to the waste front is 145.2 feet.

3.4 WASTE FRONT TIME

The time necessary for a pressure transient to traverse this distance is calculated from the following equation:

$$t_{waste} = 948 \left(\frac{\varphi \; \mu_{waste} \; c_t \, r_{waste}^2}{k} \right)$$

where,

 t_{waste} = time for pressure transient to reach waste front, hours

 ϕ = formation porosity, fraction

 μ_{waste} = viscosity of the waste at reservoir conditions, centipoise

 r_{waste} = radius to waste front, feet

c_t = total compressibility of the formation and fluid, psi

k = formation permeability, millidarcies

948 = constant

 $t_{waste} = 948 \left(\frac{(0.149)(0.47)(4.44e^{-6})(145.2^2)}{2.46} \right)$

 t_{waste} = 2.53 hours

The time required to reach the waste front is 2.53 hours, which is less than the time of 3.274 hours or the beginning of the radial flow period estimated in the Horner Plot (Figure 3).

3.5 HOMOGENEOUS TYPE-CURVE (LOG-LOG) MODEL ANALYSIS

In addition to the classical analysis described above, the test response was analyzed using a derivative analysis. The test data was analyzed using PIE, from Well-Test Solutions, Ltd., a well-test analysis software program commercially available for pressure transient analysis used in the oil and gas industry.

The log-log plot is used to identify flow regimes and get estimates for permeability, skin, and wellbore storage. The log-log plot analyzes both the change in log pressure (ΔP) during a given flow period and the log derivative of pressure over rate related to the change in log time (Δt). The derivative function is graphed on the log-log plot and is used to identify flow regimens, boundary effects, layering, or natural fractures. Using this approach allows flow regimes and boundaries to be identified. Use of the derivative plot for pressure fall-off test analysis is further described by Bourdet, 2002.

The type-curve model selected for analyzing the data in the log-log plot is a homogeneous reservoir with infinite radial flow geometry. The use of an analytical analysis program allows a comparison between the classical method described above and a derivative analysis of the data using a homogeneous type-curve model analysis.

The derivative plot model type-curves were derived from an iterative process in the PIE software matching the pressure fall-off responses with the infinite acting homogeneous model. The blue line (ΔP) and red line (derivative) are the homogeneous model, type-curve (best fit) model responses on the plot **(Figure 6)**. The derivative plot type-curves exhibit the characteristics of a homogeneous, infinite-acting, radial-flow-dominated reservoir.

The log-log pressure plot with type-curve matching model of the 2022 pressure fall-off test is shown in **Figure 6.** The ΔP type-curve was reasonably matched to the pressure change (ΔP) data for the transition phase from wellbore storage to radial flow. Radial flow developed shortly after the end of wellbore storage. The type-curve match in this period agrees relatively well with the radius of investigation for radial flow analysis in the Horner Plot (**Figure 3**).

The late-time upturn in the derivative data plot is indicative of a boundary condition of decreasing mobility away from the wellbore. This boundary condition develops following the radial flow period. The boundary condition is likely a result of decreasing permeability at a given distance from the wellbore.

The model predictions are also compared to the superposition plot (**Figure 7**). The superposition plot is more generalized equivalent to the Horner plot. The type-curve match to the data was reasonably correlated to the radial flow period identified in the Horner plot.

Pressure plot is shown in **Figure 8** showing pressure versus time with type-curve match.

Analysis using the predictive model generally provides the same permeability thickness and extrapolated pressure (P*) as calculated in the classical analysis results. The results for the straightline analysis (Horner) and homogeneous model derivative response are summarized in **Table 9**.

3.6 RESULTS SUMMARY

The following tables summarize the results of the pressure fall-off test measurements and calculations.

Table 7. Semi-Log Analysis, Horner Method (Classic)

Parameter	Unit	Symbol	Result
Transmissivity	md-ft/cp	T	643
Flow Capacity	md-ft	kh	302
Permeability	md	k	2.46
Skin Factor	(unitless)	S	-4.026
Pressure Drop Due to Skin	psi	ΔP_{skin}	-774.35
Flow Efficiency	%	$F_{\it eff}$	213.03
Radius of Investigation (distance)	feet	R _{inv}	289
Radius of Investigation (time)	hour	Δt	12.58
Semi-Log Slope	psi/cycle	m	221.4798
Extrapolated Pressure	psi	P*	3,734.87
Extrapolated Pressure @ 1-hour	psi	P1hr	4,167.60

Table 8. Homogenous Type-Curve (Log-Log) Model Analysis

Parameter	Unit	Symbol	Result
Transmissivity	md-ft/cp	Т	559
Flow Capacity	md-ft	kh	263
Permeability	md	k	2.13
Initial (Extrapolated) Pressure	psi	p_{i}	3696.86
Skin Factor	(unitless)	S	-4.264
Pressure Drop Due to Skin	psi	ΔP_{skin}	-944.41
Flow Efficiency	%	$F_{\it eff}$	230.60
Wellbore Storage	bbls/psi	С	.00176
Radius of Investigation (distance)	feet	Rinv	269
Radius of Investigation (time)	hour	Δt	12.58

Table 9. Comparison with previous fall-off tests.

Date of Test	Permeability (md)	Mobility- Thickness (kh/u)(md- ft/cp)	Skin (s)	False Extrapolated Pressure (p*)
10/3/17 - 10/13/17	3.30	1108	-5.37	3819
4/15/19 - 4/30/19	1.73	451	-3.80	3809.70
9/21/20 - 10/1/20	1.14	297.64	-5.05	3632.37
9/19/21 -9/29/21	1.03	269.75	-5.12	3735.42
9/14/22 -9/26/22	2.46	643	-4.03	3734.40

4 CONCLUSIONS

4.1 DISCUSSION OF RESULTS

This test was successful in generating sufficient pressure buildup and falloff data to complete a meaningful analysis of the injection well. A clear radial flow regime, or infinite acting period, is observed in the data. The classical Semi-Log, Horner analysis and the Log-Log analysis provided consistent calculations of wellbore and reservoir injection parameters. A late-time upturn in the derivative data indicates a boundary condition of decreasing mobility away from the wellbore.

The measured permeability, mobility thickness, skin, and false extrapolated pressure from the subject fall-off test are consistent with previous tests. The measured well performance and observed well health is consistent with the initial 2017 fall-off test conducted on the well. The injectivity is consistent with the nearby Ashcroft SWD #001 well, based on reported historical monthly volumes. The injection rates and pressure are within the expected range for disposal into the Entrada sandstone at this depth.

4.2 RECORD KEEPING

The raw test data generated by the test will be kept on file by the permittee (Western Refining Southwest LLC) for a period of not less than 3 years and will be made available to OCD upon request during this time period. The raw test data need not be submitted to OCD unless requested.

5 REFERENCES

Bourdet, Dominique, 2002, "Well Test Analysis: The Use of Advanced Interpretation Models" Amsterdam: Elsevier

Earlougher, Robert C., 1977, "Advances in Well Test Analysis", Monograph Series, Society of Petroleum Engineers, Dallas, Vol. 5

Lee, John, 1982, "Well Testing", SPE Textbook Series Vol. 1

Matthews, C.S. and Russell, D.G., 1967, "Pressure Buildup and Flow Tests in Wells", Monograph Series, Society of Petroleum Engineers, Dallas, Vol. 1

New Mexico Oil Conservation Division, 2007, "UIC Class I Well Fall-Off Test Guidance"

6 APPENDICES

APPENDIX A. FIGURES

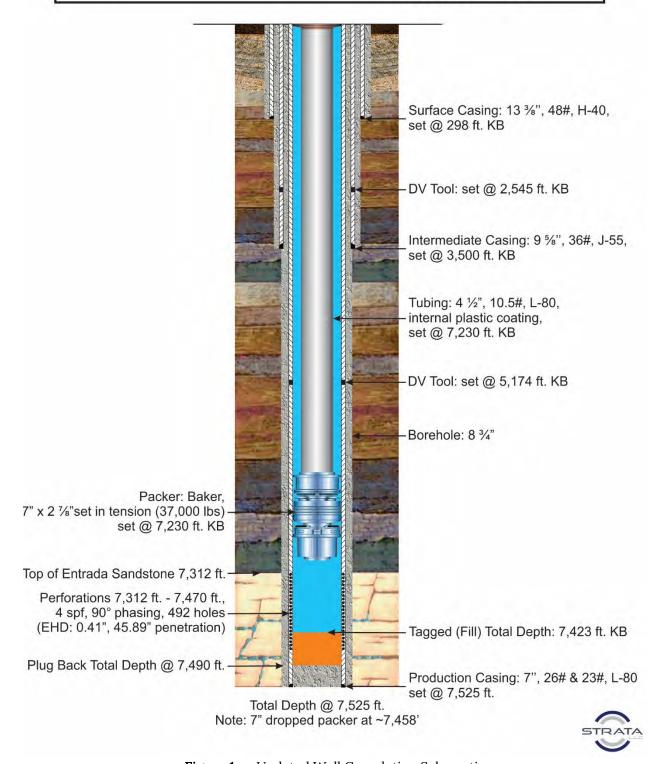
APPENDIX B. TEST FIELD REPORT

APPENDIX C. INJECTION DATA

APPENDIX D. COPY OF ELECTRIC LOG

APPENDIX E. AREA OF REVIEW TABLE

APPENDIX F. INJECTION AND FORMATION FLUID ANALYSIS


APPENDIX G. TOOL CALIBRATION

APPENDIX A. FIGURES

- Figure 1. Well Completion Schematic
- Figure 2. Pressure and Rate History
- Figure 3. Horner Plot
- **Figure 4**. Expanded Horner Plot
- Figure 5. Pressure and Temperature vs. Time Plot over the Test Period
- Figure 6. Log-Log Plot
- Figure 7. Superposition Plot
- Figure 8. Pressure versus Time Plot
- Figure 9. Cartesian Plot
- Figure 10. Static Pressure Gradient Survey
- Figure 11. Area of Review Map

Bloomfield, New Mexico Waste Disposal Well #2 OCD UIC Permit: UICI-011 API # 30-045-3547

Figure 1a – Updated Well Completion Schematic

FIGURE 1

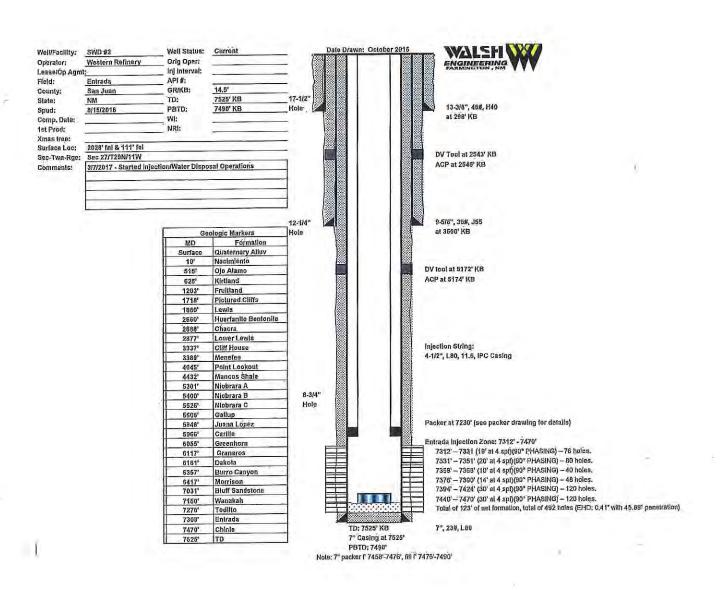


Figure 1b - Original Well Completion Schematic

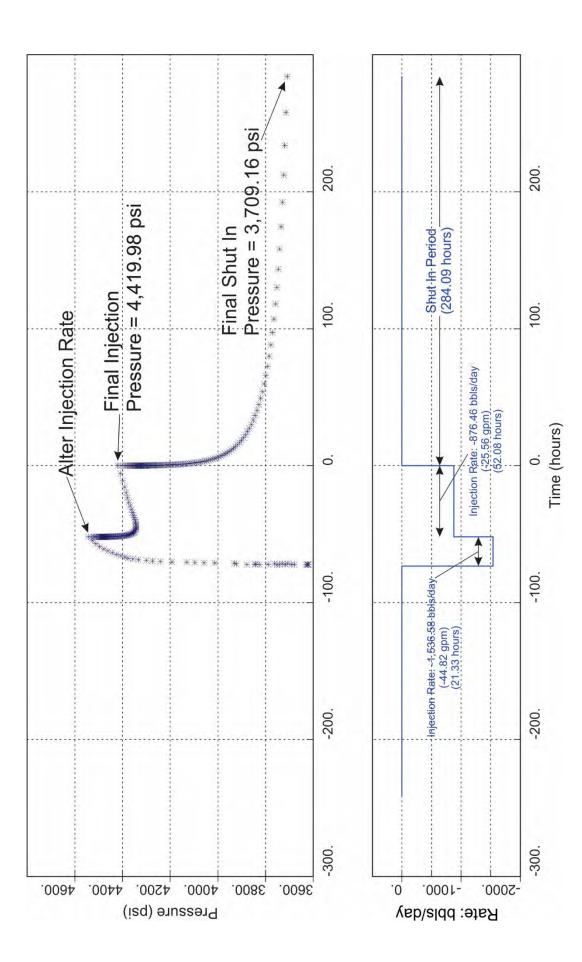


Figure 2 – Pressure and Rate History

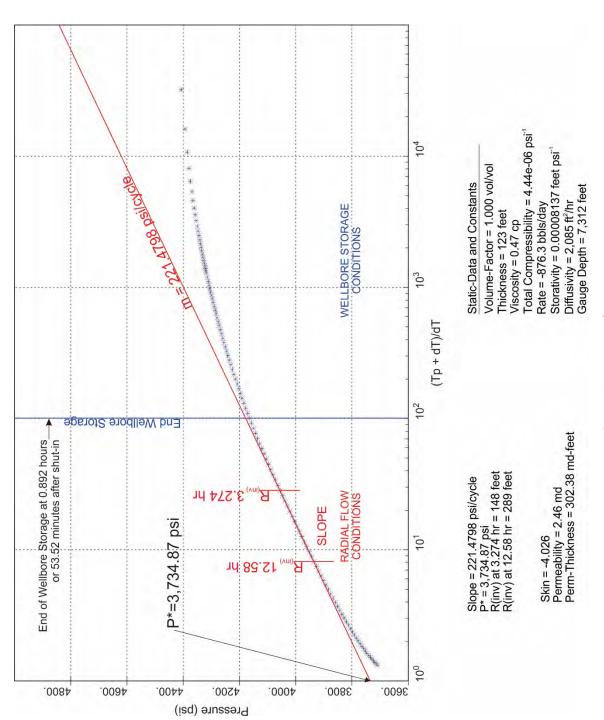


Figure 3 -Horner Plot

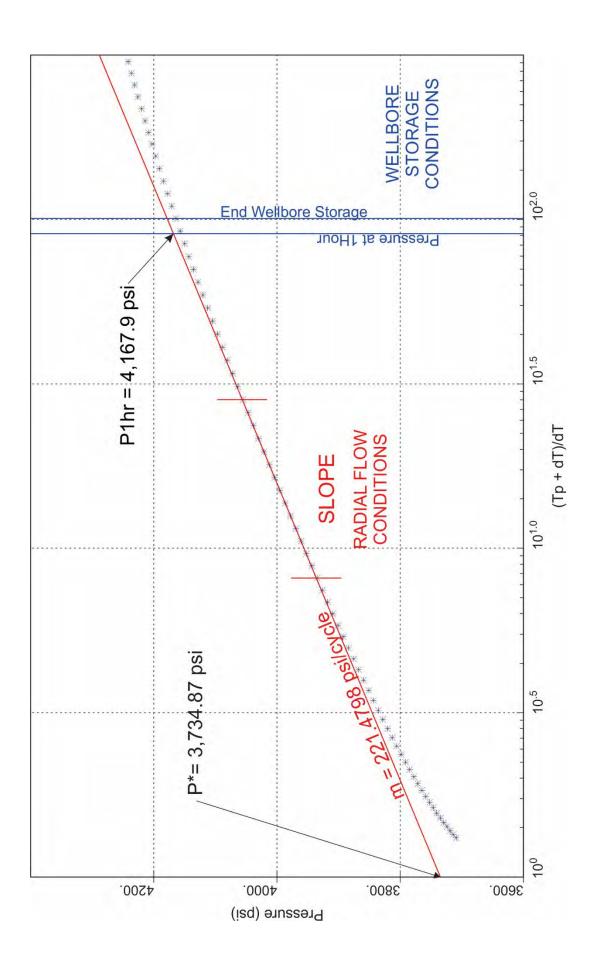
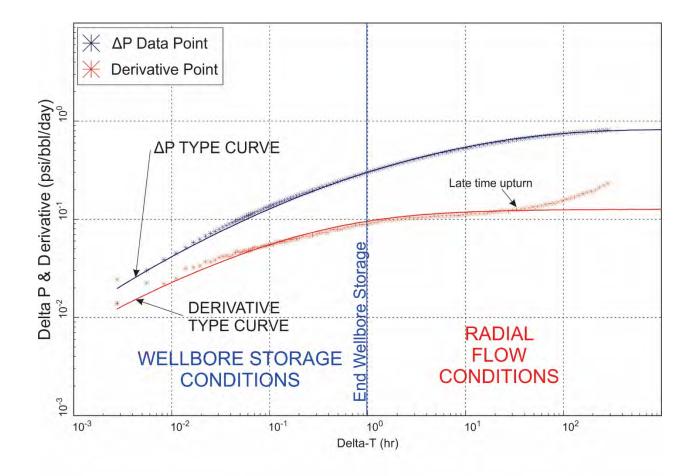



Figure 4 – Expanded Horner Plot

Figure 5 - Pressure and Temperature vs. Time Plot over the Test Period

Homogeneous Reservoir

** Simulation Data **

Well storage = 0.0017565 bbls/psi

Skin = -4.2635

Permeability = 2.1346 md

Areal Ky/Kx = 1.0000

Perm-Thickness = 262.55 md-feet

Initial Press. = 3,696.86 psi

Smoothing Coef = 0, 0

Static-Data and Constants

Volume-Factor = 1.000 vol/vol

Thickness = 123 feet

Viscosity = 0.47 cp

Total Compress = 4.44e⁻⁶ psi⁻¹

Rate = -876.5 bbls/day

Storativity = 0.00008127 feet psi⁻¹

Diffusivity = 1,810 ft²/hr

Gauge Depth = 7,312 feet

Figure 6 - Log-Log Plot

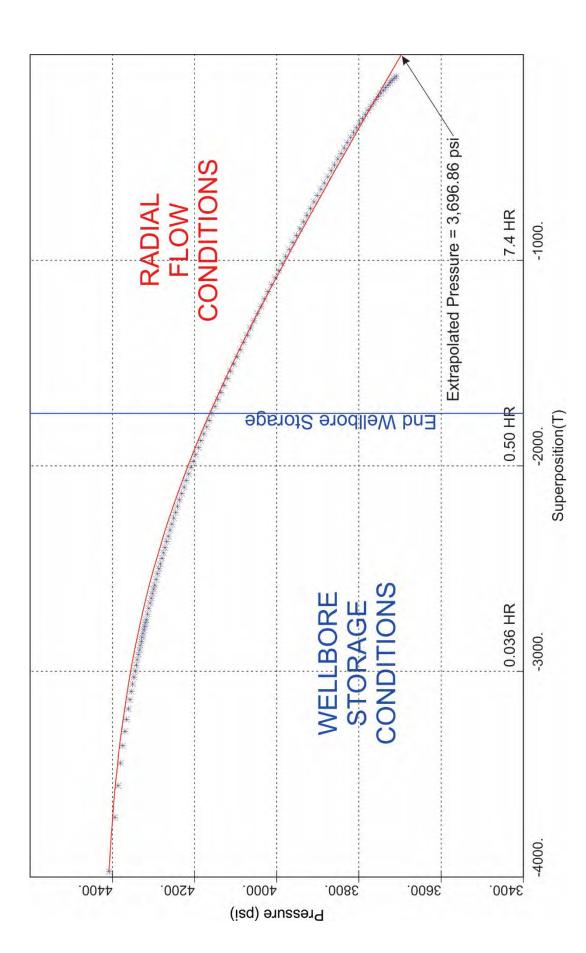


Figure 7 - Superposition Plot

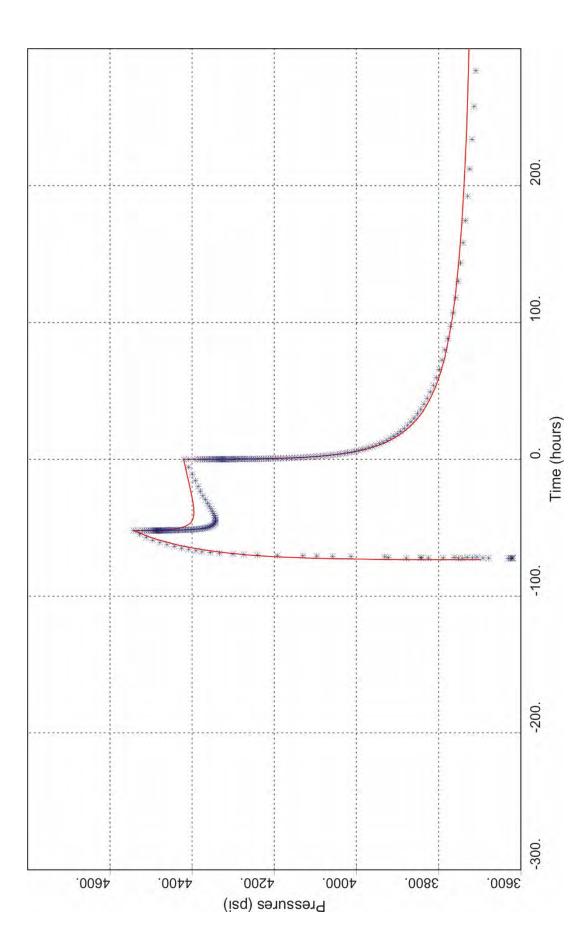


Figure 8 - Pressure versus Time Plot

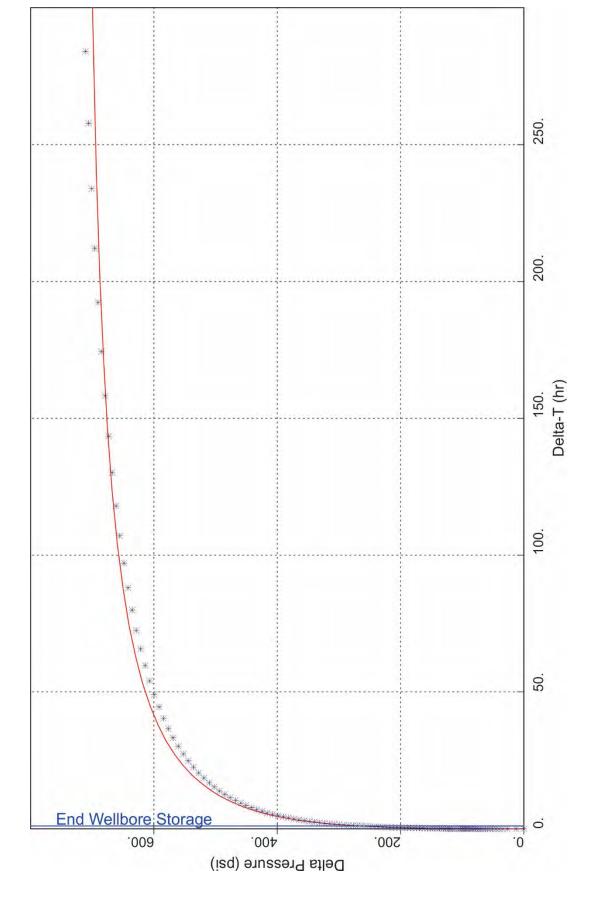


Figure 9 - Cartesian Plot

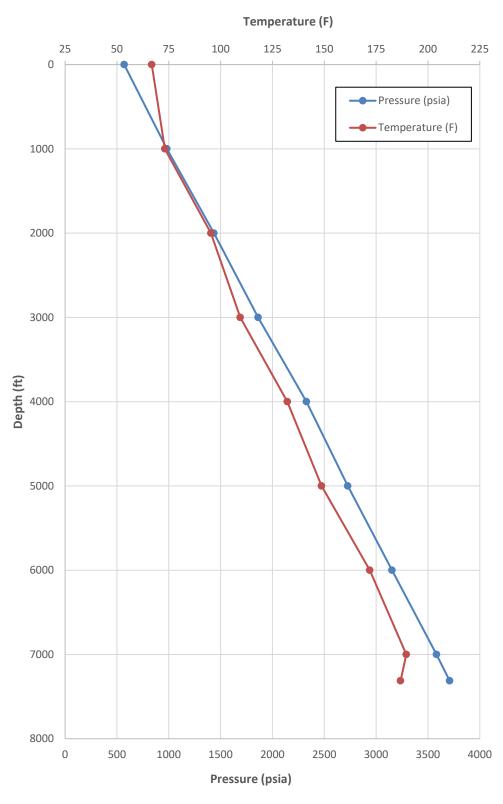


Figure 10 - Static Pressure Gradient Survey

OCD Well Locations

SEN30 045 23549 NNE 30-045-08034:

SEMINA SEMINA

F32453 PENE FAMILY SENE

SWNW, Sycamore ASENW

SWNE SENE (G 30-045-08027(H)

SWEW SENW 30.045-08025

Bloomfield

1-MILE AREA OF REVIEW

FIGURE 11

Western Refining Southwest, LLC WDW-2 (30-045-35747) Pressure Falloff Test

MSMN

30-045-25887

卆

30-045-24082

SW NESW (K) (C) 30-045;0798530-045-23550

NWSW

3

ESE (1)

NWSE (J)

NWSW W

Ξ

NWSE (J)

NESW (K)

Ferrand Ranch

30-045-24060

30 045 0795930-045-26721

30-045-13089pn St

30-045-31500

045.3058730-045-07974

030-045-07972

堪

E Cedar Ave

30-045

30-045-08

9/14/22 - 9/29/22 (L) 30-045-079873(

Strata, LLC 30-045-32705/WSW (M)

Project ID MPC.FNM.22.01

10/14/2022, 3:45:15 PM

Oil, Active Wells - Large Scale

Oil, Plugged

◁

Gas, Cancelled

Gas, Active

Gas, Plugged

PLSS Second Division Salt Water Injection, Active

Water, Plugged

PLSS First Division

PLSS Townships

Salt Water Injection, Plugged

Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources Department, San Juan County, NM, Bureau of

1.2 km

9.0

0.3

0.7 mi

1:20,876

0.35

0.17

APPENDIX B. TEST FIELD REPORT

Operator Western Defining	Ot	Toot Curamila	Dranda - Cale	t o		
Operator: Western Refining	Strata Test Supervisor				45111	00 045 0574
Waste Disposal Well No. 2		rata Project No.			API No.	30-045-35747
	TIME	TUBING PRESSURE	CASING PRESSURE	INTER. PRESSURE	BHF PRESSURE	INJECTION RATE
NOTE	24-HR	psig	psig	psig	psig	gpm
9/14/2022						
Arrive at site, safety orientation, get work permit	7:00					0
Arrive at well, take initial readings	8:00	488.0				
- Top WL connection under cap is 4" LTC						
NM OCD John Durham arrives	8:35					
Stand up lubricator, zero depth @ tubing hanger	8:45					
- Tubing hanger 1.5' from GL						
- RKB 14.5' GL = 13' correction						
Finish rigging up, PIT connected to lubricator	9:30					
- PIT later moved to WH TEE after WL BOP closed						
Start BHF Test - Initial Reading	9:36	477.0	32.0	96.0	28.0	0.0
Open BHF Valve - Gas, Quick Bleed-off	9:37		34.0	96.0	0.0	0.0
BHF Test - 5 Minute Reading	9:42:00		34.0	96.0	0.0	0.0
BHF Test - 10 Minute Reading	9:47:00	483.0	34.0	96.0	0.0	0.0
BHF Test - 15 Minute Reading	9:52:00	483.0	34.0	96.0	0.0	0.0
Open Intermediate Casing Valve - Gas, <1 minute, then 0	10:00:00		34.0	0.0	0.0	
Intermediate Test - 5 Minute Reading	10:10:00		34.0	1.0	0.0	
Intermediate Test - 10 Minute Reading	10:15:00		34.0	0.0	0.0	
Intermediate Test - 15 Minute Reading	10:20:00	484.0	34.0	0.0	0.0	
Start in hole w/ impression block to tag TD	10:25:00					
Tag TD @ 7423' RKB (7410' slickline mesurement)	10:37:00					
Change to PT tool, start tool	11:14:00					
Start in hole with downhole gauge	11:19:00					
Stop gauge at 7312' KB (7299' slickline measurement)	11:32:00					
Start injection	11:40:00	537.0				40-45
Take reading	11:59:00					
Trouble shoot pump - move PIT from lubricator to WH Tee	12:28:00					
Resume injection	12:48:00	800.0				40-45
Demobilize	1:00:00					
9/15/2022	1100.00					
Lower injection rate to 25 gpm	8:00:00	1370.0				25.0
9/17/2022	2.20.00	1270.0				
Shut in well.	11:56:00	1242.3				0.0
9/29/2022	11.00.00	12.12.0				0.0
Arrived at location	6:30:00					
Held Tailgate Safety Meeting, Site Safety video	7:00:00					
Received permit travel to well location	7:30:00					
Began coming out of well using procedure	7:45:00					
Completed Gradient stops, tool at surface	9:49:00					
Rig down slickline equipment	7.47.00					
Return well to Marathon. All off location	10:30:00	+				
Neturn wen to Marathon. All on location	10.30.00					

FALL-OFF TEST REPORT STRATA, LLC

APPENDIX C. INJECTION DATA

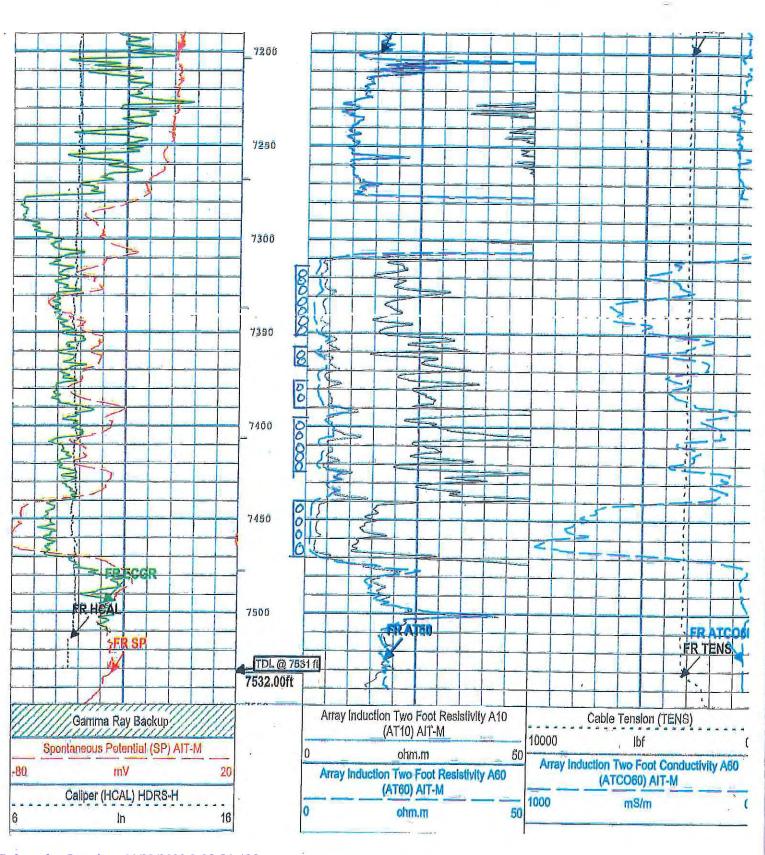
Western Refining Southwest, LLC WDW-2

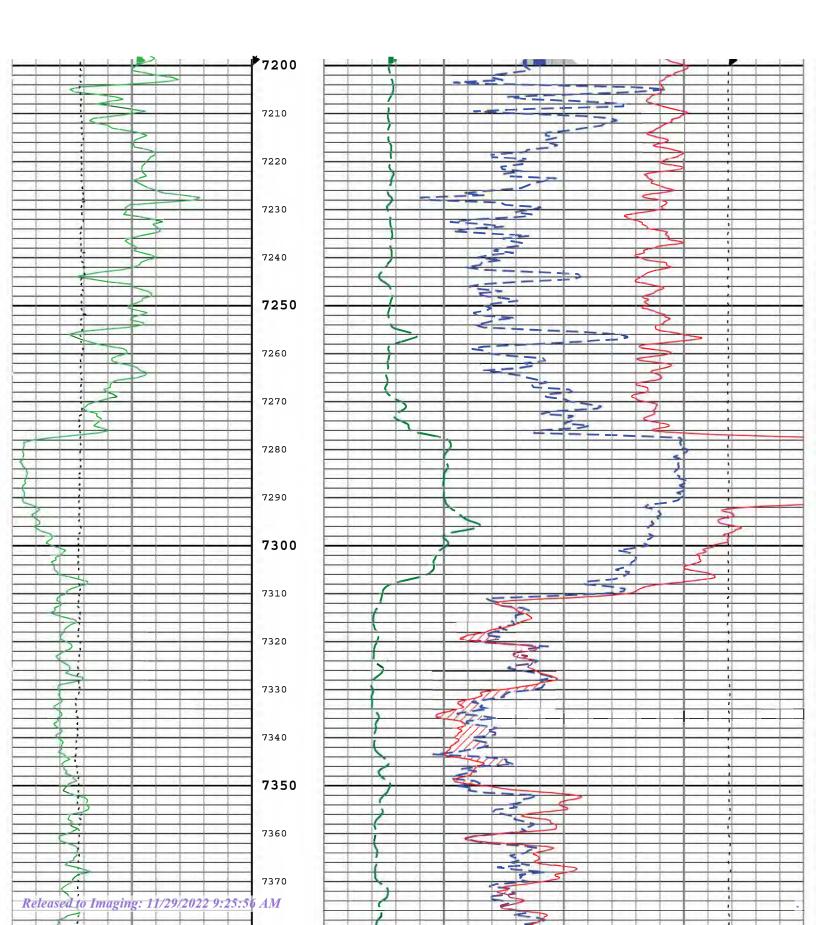
Table 1. Monthly Injected Volumes

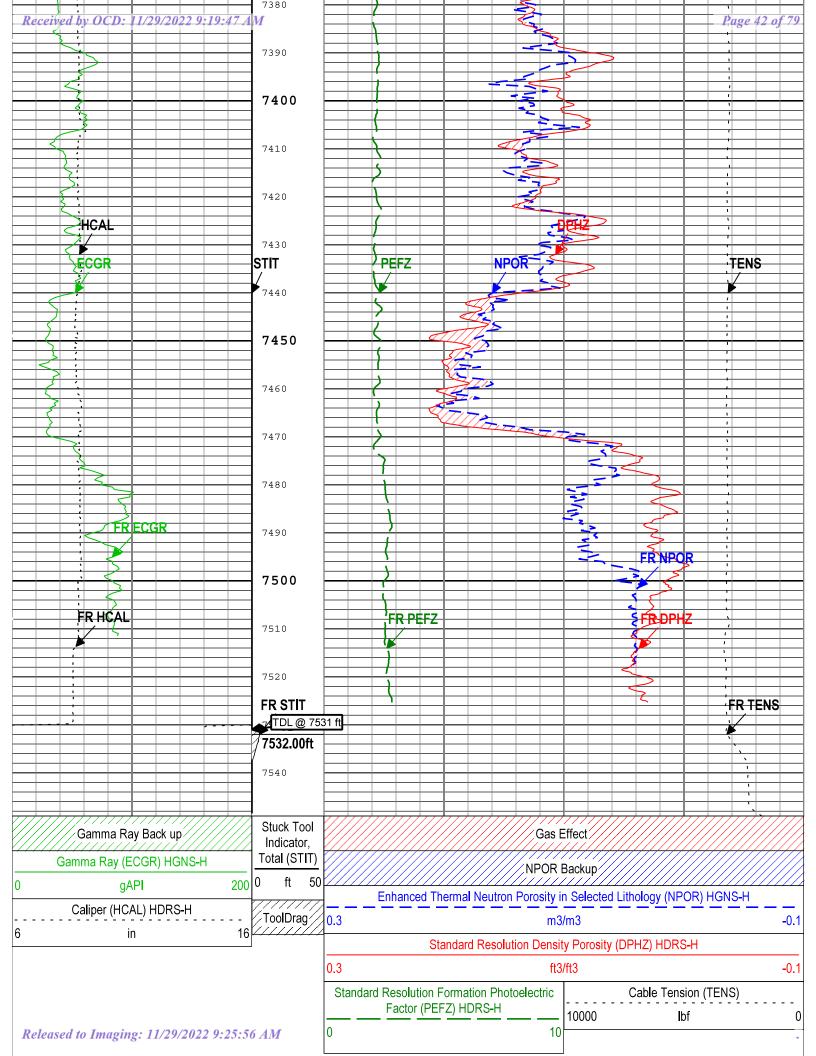
Month	Monthly Total
	(gpm)
Oct-21	4,410
Nov-21	0
Dec-21	2,226
Jan-22	1,051
Feb-22	0
Mar-22	16,632
Apr-22	126
May-22	3,066
Jun-22	0
Jul-22	42
Aug-22	0
Sep-22	137,787
Total	165,340

Table 2. Daily Volumes, Month of Falloff Test

Date	Cumulative Vol.
9/1/2022	0
9/2/2022	0
9/3/2022	0
9/4/2022	0
9/5/2022	0
9/6/2022	0
9/7/2022	4,665
9/8/2022	4,665
9/9/2022	4,665
9/10/2022	4,665
9/11/2022	4,665
9/12/2022	4,655
9/13/2022	4,655
9/14/2022	36,788
9/15/2022	82,775
9/16/2022	119,596
9/17/2022	137,787


FALL-OFF TEST REPORT STRATA, LLC


APPENDIX D. COPY OF ELECTRIC LOG


Dual Induction Log Sections from 7200 feet to 7532 feet

Porosity Log Sections from 7200 feet to 7532 feet

Table 1: A copy of the well log showing the Entrada interval to be tested.

FALL-OFF TEST REPORT STRATA, LLC

APPENDIX E. AREA OF REVIEW

Strata, LLC Project ID. MPC.FNM.22.01

ONE-MILE AREA OF REVIEWWestern Refining Southwest LLC Waste Disposal Well No. 2
9/29/2022

	14.	Well Wenn	TATAII Thun a	VAT-II Charters	DI CG I continue A II CHID)		1			
Kecord No.	API	Well Name	well Type	Well Status	PLSS LOCATION (ULSTR)	verdeal Depth	renetrates inj. zone	Enecuve Date	Fing Date	Kecord Last Edited Date
1	30-045-24573	GARLAND #003	Gas	Active	M-27-29N-11W	2,905	Z	8/20/2020		8/20/2020, 2:28 PM
2	30-045-21732	GARLAND B #001R	Gas	Plugged (site released)	M-27-29N-11W	1,810	Z	6/1/1975	8/9/2010	8/9/2010 3/6/2014, 1:28 PM
3	30-045-07903	PRE-ONGARD WELL #001	Gas	Plugged (site released)	M-27-29N-11W	1,747	Z	1/1/1900	7/1/1975	7/1/1975 3/6/2014, 1:28 PM
4	30-045-07896	PRE-ONGARD WELL #001	Gas	Plugged (site released)	C-27-29N-11W	0	Z	1/1/1900	11/27/1978	11/27/1978 3/6/2014, 1:28 PM
ıo	30-045-25707	SUMMIT #015	Gas	Active	C-34-29N-11W	6,216	Z	8/20/2020		8/20/2020, 2:28 PM
9	30-045-07835	MANGUM #001	Gas	Active	L-27-29N-11W	6,350	Z	1/6/2017		1/6/2017,1:08 PM
7	7 30-045-26731	MARY JANE #001	Gas	Active	N-22-29N-11W	2,845	Z	4/8/1986		3/6/2014, 1:28 PM
8	30-045-27361	LAUREN KELLY #001	Gas	Active	F-27-29N-11W	1,500	Z	3/29/1994		3/6/2014, 1:28 PM
6	9 30-045-24673	MANGUM #001E	Gas	Active	F-27-29N-11W	6,240	Z	8/4/2017		8/4/2017, 2:51 PM
10	10 30-045-13089	COOK #002	Gas	Active	N-22-29N-11W	1,440	Z	1/1/1900		3/6/2014, 1:28 PM
11	11 30-045-25673	CONGRESS #018	Oil	Active	K-27-29N-11W	6,150	Z	8/1/2017	-	8/1/2017, 12:30 PM
12	12 30-045-34312	ROYAL FLUSH #001	Gas	Active	N-22-29N-11W	2,045	Z	5/11/2007		3/6/2014, 1:28 PM
13	13 30-045-27365	MARIAN S #001	Gas	Active	F-27-29N-11W	2,840	Z	6/13/1989		3/6/2014, 1:28 PM
14	14 30-045-07940	COOK #001	Gas	Active	N-22-29N-11W	6,305	Z	3/28/1994		3/6/2014, 1:28 PM
15	15 30-045-34266	MANGUM #001S	Gas	Cancelled	F-27-29N-11W	0	Z	12/13/2007		3/6/2014, 1:28 PM
16	16 30-045-07959	GRACE PEARCE #001	Gas	Plugged (site released)	O-22-29N-11W	1,620	Z	1/1/1900	3/2/2000	3/2/2000 3/6/2014, 1:28 PM
71	17 30-045-29002	DISPOSAL #001	Salt Water Disposal	Plugged (site released)	I-27-29N-11W	3,601	Z	9/24/1993	10/29/2015	10/29/2015 3/30/2017, 3:34 PM
18	18 30-045-23554	DAVIS GAS COM G #001	Gas	Plugged (site released)	I-27-29N-11W	2,951	Z	1/1/1998	11/15/2011	11/15/2011 3/6/2014, 1:28 PM
19	19 30-045-24574	SUMMIT #009	Gas	Active	A-34-29N-11W	2,985	Z	8/1/2017		2/19/2018, 4:55 PM
20	20 30-045-07825	DAVIS GAS COM F #001	Gas	Plugged (site released)	I-27-29N-11W	6,365	Z	5/25/1994	1/19/1994	1/19/1994 3/6/2014, 1:28 PM
21	21 30-045-24084	DAVIS GAS COM F #001E	Gas	Active	H-27-29N-11W	6,392	Z	7/12/2018		7/12/2018, 4:33 PM
22	22 30-045-07812	PRE-ONGARD WELL #001	Gas	Plugged (site released)	I-27-29N-11W	1,804	Z	1/1/1900	11/3/1982	11/3/1982 3/6/2014, 1:28 PM
23	23 30-045-34463	JACQUE #001	Gas	Active	I-27-29N-11W	1,890	Z	10/18/2007	-	3/6/2014, 1:28 PM
24	24 30-045-25745	PRE-ONGARD WELL #1	Gas	Cancelled	E-26-29N-11W	0	Z	6/9/1983		3/6/2014, 1:28 PM
25	25 30-045-26721	NANCY HARTMAN #002	Gas	Active	P-22-29N-11W	2,824	Z	5/1/1987		3/6/2014, 1:28 PM
26	26 30-045-23553	PRE-ONGARD WELL #001	Gas	Plugged (site released)	H-27-29N-11W	0	Z	5/23/1979	12/31/1901	12/31/1901 3/6/2014, 1:28 PM
27	27 30-045-07961	HARTMAN #001	Gas	Plugged (site released)	P-22-29N-11W	6,310	Z	1/1/1900	6/14/1999	6/14/1999 3/6/2014, 1:28 PM
28	28 30-045-30833	DAVIS GAS COM F #001R	Gas	Active	I-27-29N-11W	6,700	N	7/12/2018		7/12/2018, 4:33 PM
29	29 30-045-35747	WASTE DISPOSAL WELL #002	Salt Water Disposal	Active	H-27-29N-11W	7,525	Y	6/16/2016		3/16/2017, 3:13 PM

Strata, LLC Project ID. MPC.FNM.22.01

ONE-MILE AREA OF REVIEWWestern Refining Southwest LLC Waste Disposal Well No. 2
9/29/2022

							Ī		
Record No. API	Well Name	Well Type	Well Status	PLSS Location (ULSTR)	Vertical Depth	Penetrates Inj. Zone	Effective Date	Plug Date	Record Last Edited Date
30 30-045-07776	PRE-ONGARD WELL #001	Gas	Plugged (site released)	M-26-29N-11W	0	Z	1/1/1900	12/31/1901	12/31/1901 3/6/2014, 1:28 PM
31 30-045-07883	PRE-ONGARD WELL #002	Gas	Plugged (site released)	H-27-29N-11W	0	Z	2/4/1953	12/31/1901	12/31/1901 3/6/2014, 1:28 PM
32 30-045-34409	JACQUE #002	Gas	Active	H-27-29N-11W	1,897	Z	8/29/2007		3/6/2014, 1:28 PM
33 30-045-25657	CONGRESS #016	Oil	Active	A-34-29N-11W	6,200	Z	8/1/2017		8/1/2017, 12:30 PM
34 30-045-24572	CONGRESS #009	Gas	Active	N-26-29N-11W	2,960	Z	8/20/2020	ş.	8/20/2020, 2:28 PM
35 30-045-07985	PEARCE GAS COM #001	Gas	Plugged (site released)	K-23-29N-11W	6,274	N	3/24/1994	3/12/1997	3/12/1997 3/6/2014, 1:28 PM
36 30-045-12003	CALVIN #001	Gas	Active	M-26-29N-11W	6,450	N	8/29/2017	\$	8/29/2017, 3:53 PM
37 30-045-24083	SULLIVAN GAS COM D #001E	Gas	Active	F-26-29N-11W	6,329	Z	7/12/2018		7/12/2018, 4:33 PM
38 30-045-24837	CONGRESS #004E	Gas	Active	E-35-29N-11W	6,508	Z	8/1/2017		8/1/2017, 12:30 PM
39 30-045-25329	DAVIS GAS COM J #001	Gas	Active	F-26-29N-11W	4,331	Z	7/1/2008		3/6/2014, 1:28 PM
40 30-045-20752	LEA ANN #001	Gas	Plugged (site released)	E-35-29N-11W	1,900	Z	1/1/1900	12/18/1999	12/18/1999 3/6/2014, 1:28 PM
41 30-045-25675	CONGRESS #015	Oil	Active	C-35-29N-11W	6,030	Z	8/1/2017		8/1/2017, 12:30 PM
42 30-045-08009	PRE-ONGARD WELL #001	Gas	Plugged (site released)	K-23-29N-11W	1,507	Z	9/30/1960	8/26/1980	8/26/1980 3/6/2014, 1:28 PM
43 30-045-23550	STATE GAS COM BS #001	Gas	Active	K-23-29N-11W	2,954	Z	10 /14 /2005		3/6/2014, 1:28 PM
44 30-045-23552	PRE-ONGARD WELL #1	Gas	Cancelled	F-26-29N-11W	0	Z	5/23/1979		3/6/2014, 1:28 PM
45 30-045-25612	CALVIN #003	Oil	Active	K-26-29N-11W	5,970	Z	8/1/2017	33	8/1/2017, 12:34 PM
46 30-045-23551	PRE-ONGARD WELL #1	Gas	Cancelled	O-23-29N-11W	0	Z	5/23/1979		3/6/2014, 1:28 PM
47 30-045-07733	SULLIVAN GAS COM D #001	Gas	Active	B-26-29N-11W	6,260	Z	7/12/2018		7/12/2018, 4:33 PM
48 30-045-30788	ASHCROFT SWD #001	Salt Water Disposal	Active	B-26-29N-11W	7,512	Y	7/12/2018		7/12/2018, 4:33 PM
49 30-045-31118	CALVIN #100	Gas	Active	N-26-29N-11W	1,970	Z	8/29/2017		8/29/2017, 3:53 PM
50 30-045-24082	PEARCE GAS COM #001E	Gas	Active	J-23-29N-11W	6,365	Z	7/12/2018	2,5	5/8/2019, 3:17 PM
51 30-045-24772	CALVIN #001E	Gas	Active	P-26-29N-11W	6,500	Z	8/14/2017		2/22/2019,10:48 AM
52 30-045-25738	PRE-ONGARD WELL #23	Gas	Cancelled	I-26-29N-11W	0	Z	6/3/1983		3/6/2014, 1:28 PM
53 30-045-23163	EARL B SULLIVAN #001	Gas	Active	B-26-29N-11W	2,861	Z	7/12/2018		7/12/2018, 4:33 PM
54 30-045-29107	PRE-ONGARD WELL #001X	Gas	Plugged (site released)	G-26-29N-11W	0	Z	1/1/1900	7/28/1955	7/28/1955 3/6/2014, 1:28 PM
55 30-045-07868	SULLIVAN #002	Gas	Active	H-26-29N-11W	1,478	Z	9/7/1994		3/6/2014, 1:28 PM
56 30-045-33093	CALVIN #001F	Gas	Active	J-26-29N-11W	6,525	Z	8/14/2017		8/14/2017, 12:04 PM
57 30-045-21457	DELO #010	Gas	Active	I-26-29N-11W	2,900	Z	8/20/2020	33	8/20/2020, 2:28 PM
58 30-045-25195	CALVIN #002	Oil	Active	P-26-29N-11W	5,950	Z	8/1/2017		8/1/2017, 12:30 PM

Strata, LLC Project ID. MPC.FNM.22.01

ONE-MILE AREA OF REVIEW
Western Refining Southwest LLC Waste Disposal Well No. 2
9/29/2022

3/53/5055									
Record No.	API	Well Name	Well Type	Well Status	PLSS Location (ULSTR) Vertical Depth Penetrates Inj. Zone Effective Date Plug Date	Vertical Depth	Penetrates Inj. Zone	Effective Date	Record Last Edited Date
iñ	9 30-045-22639 DELO #011	DELO #011	Gas	Plugged (site released)	P-26-29N-11W	1,945	Z	11/1/1981	7/30/2010 3/6/2014, 1:28 PM
19	0 30-045-25621	60 30-045-25621 EARL B SULLIVAN #002	Oil	Active	H-26-29N-11W	5,751	Z	7/1/2008	3/6/2014, 1:28 PM
9	30-045-07870	61 30-045-07870 PRE-ONGARD WELL #00X	Gas	Plugged (site released)	G-26-29N-11W	1,442	Z	1/1/1900	7/1/1953 3/6/2014, 1:28 PM

FALL-OFF TEST REPORT STRATA, LLC

APPENDIX F. INJECTION AND FORMATION FLUID ANALYSIS

WASTE DISPOSAL WELL No. 2 WESTERN REFINING SOUTHWEST LLC

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 27, 2022

Gary Russell

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4135

FAX

RE: Injection Well Quarterly OrderNo.: 2209735

Dear Gary Russell:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/15/2022 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued October 18, 2022.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Project:

Lab ID:

Analytical Report

Lab Order 2209735

Date Reported: 10/27/2022

9/22/2022 5:57:20 PM

70230

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well Quarterly

2209735-001 **Matrix:** AQUEOUS

Collection Date: 9/14/2022 2:00:00 PM **Received Date:** 9/15/2022 7:35:00 AM

Client Sample ID: Injection Well

Result **RL Oual Units DF** Date Analyzed Analyses **Batch EPA METHOD 8270C TCLP** Analyst: JME 2-Methylphenol ND 200 mg/L 1 9/22/2022 5:57:20 PM 70230 3+4-Methylphenol ND 200 mg/L 9/22/2022 5:57:20 PM 70230 1 2,4-Dinitrotoluene ND 0.13 mg/L 1 9/22/2022 5:57:20 PM 70230 Hexachlorobenzene ND 0.13 9/22/2022 5:57:20 PM 70230 mg/L 1 Hexachlorobutadiene ND 0.50 mg/L 9/22/2022 5:57:20 PM 70230 Hexachloroethane ND 3.0 mg/L 9/22/2022 5:57:20 PM 70230 1 Nitrobenzene ND 2.0 mg/L 9/22/2022 5:57:20 PM 70230 100 ND Pentachlorophenol mg/L 1 9/22/2022 5:57:20 PM 70230 ND 5.0 9/22/2022 5:57:20 PM Pyridine Ε mg/L 70230 400 2,4,5-Trichlorophenol ND mg/L 9/22/2022 5:57:20 PM 70230 2.4.6-Trichlorophenol ND 2.0 mg/L 9/22/2022 5:57:20 PM 70230 Cresols, Total ND 200 mg/L 1 9/22/2022 5:57:20 PM 70230 Surr: 2-Fluorophenol 49.7 18.1-88.9 %Rec 1 9/22/2022 5:57:20 PM 70230 Surr: Phenol-d5 37.3 17-61.5 %Rec 1 9/22/2022 5:57:20 PM 70230 Surr: 2,4,6-Tribromophenol 29.8-104 %Rec 1 9/22/2022 5:57:20 PM 70230 64.8 Surr: Nitrobenzene-d5 60.8 22.2-111 %Rec 1 9/22/2022 5:57:20 PM 70230 Surr: 2-Fluorobiphenyl 58.7 70230 24.6-96.3 %Rec 1 9/22/2022 5:57:20 PM

84.8

53.4-124

%Rec

NOTES:

Surr: 4-Terphenyl-d14

Pyridine recovery in the LCS was below the established limits. The MS/MSD had accceptable recoveries.

SPECIFIC GRAVITY						Analyst:	CAS
Specific Gravity	0.9971	0			1	10/3/2022 2:34:00 PM	R91481
EPA METHOD 300.0: ANIONS						Analyst:	JTT
Fluoride	0.55	0.50		mg/L	5	9/15/2022 6:01:27 PM	R91085
Chloride	910	50	*	mg/L	100	9/19/2022 10:41:45 AM	R91145
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	9/15/2022 6:01:27 PM	R91085
Bromide	2.6	0.50		mg/L	5	9/15/2022 6:01:27 PM	R91085
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	9/15/2022 6:01:27 PM	R91085
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	9/15/2022 6:01:27 PM	R91085
Sulfate	79	2.5		mg/L	5	9/15/2022 6:01:27 PM	R91085
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	JTT
Conductivity	4100	10		µmhos/c	1	9/19/2022 2:14:14 PM	R91160
SM2320B: ALKALINITY						Analyst:	JTT
Bicarbonate (As CaCO3)	540.8	20.00		mg/L Ca	1	9/19/2022 2:14:14 PM	R91160
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	9/19/2022 2:14:14 PM	R91160
Total Alkalinity (as CaCO3)	540.8	20.00		mg/L Ca	1	9/19/2022 2:14:14 PM	R91160

SM2540C MOD: TOTAL DISSOLVED SOLIDS

Analyst: SNS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Lim
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 18

Analytical Report

Date Reported: 10/27/2022

Lab Order 2209735

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well Quarterly

Collection Date: 9/14/2022 2:00:00 PM

Lab ID: 2209735-001 **Matrix:** AQUEOUS **Received Date:** 9/15/2022 7:35:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	SNS
Total Dissolved Solids	2330	40.0	*D	mg/L	1	9/20/2022 10:02:00 AM	70220
SM4500-H+B / 9040C: PH						Analyst:	JTT
рН	8.25		Н	pH units	1	9/19/2022 2:14:14 PM	R91160
EPA METHOD 200.7: DISSOLVED METALS						Analyst:	JRR
Calcium	49	5.0		mg/L	5	9/27/2022 3:53:32 PM	C91347
Magnesium	36	5.0		mg/L	5	9/27/2022 3:53:32 PM	C91347
Potassium	22	5.0		mg/L	5	9/27/2022 3:53:32 PM	C91347
Sodium	780	10		mg/L	10	10/3/2022 11:53:11 AM	A91479
EPA METHOD 7470A: MERCURY						Analyst:	VP
Mercury	ND	0.00020		mg/L	1	10/10/2022 3:33:36 PM	70693
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	JRR
Arsenic	ND	0.030		mg/L	1	9/21/2022 3:46:22 PM	70262
Barium	0.16	0.0020		mg/L	1	9/21/2022 3:46:22 PM	70262
Cadmium	ND	0.0020		mg/L	1	9/21/2022 3:46:22 PM	70262
Chromium	ND	0.0060		mg/L	1	9/21/2022 3:46:22 PM	70262
Lead	ND	0.020		mg/L	1	9/21/2022 3:46:22 PM	70262
Selenium	ND	0.050		mg/L	1	9/21/2022 3:46:22 PM	70262
Silver	ND	0.0050		mg/L	1	9/21/2022 3:46:22 PM	70262
EPA METHOD 8081: PESTICIDES						Analyst	JME
Chlordane	ND	1.0		μg/L	1	9/23/2022 11:21:47 AM	70310
Surr: Decachlorobiphenyl	89.7	40.9-111		%Rec	1	9/23/2022 11:21:47 AM	70310
Surr: Tetrachloro-m-xylene	63.4	15-107		%Rec	1	9/23/2022 11:21:47 AM	70310
TCLP VOLATILES BY 8260B						Analyst	CCM
Benzene	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
Toluene	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
Ethylbenzene	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
Xylenes, Total	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
2-Butanone	ND	200		mg/L	200	9/15/2022 10:48:00 PM	T91060
Carbon Tetrachloride	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
Chloroform	ND	6.0		mg/L	200	9/15/2022 10:48:00 PM	T91060
1,4-Dichlorobenzene	ND	7.5		mg/L	200	9/15/2022 10:48:00 PM	T91060
1,1-Dichloroethene	ND	0.70		mg/L	200	9/15/2022 10:48:00 PM	T91060
Tetrachloroethene (PCE)	ND	0.70		mg/L	200	9/15/2022 10:48:00 PM	T91060
Trichloroethene (TCE)	ND	0.50		mg/L	200	9/15/2022 10:48:00 PM	T91060
Vinyl chloride	ND	0.20		mg/L	200	9/15/2022 10:48:00 PM	T91060

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 18

Analytical Report

Lab Order 2209735

Client Sample ID: Injection Well

Collection Date: 9/14/2022 2:00:00 PM

Date Reported: 10/27/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

2209735-001 Lab ID: Matrix: AQUEOUS Received Date: 9/15/2022 7:35:00 AM

Analyses	Result	RL Qu	ıal Units	DF Date Analyzed	Batch
TCLP VOLATILES BY 8260B				Analys	t: CCM
Chlorobenzene	ND	100	mg/L	200 9/15/2022 10:48:00 PM	/ T91060
Surr: 1,2-Dichloroethane-d4	108	70-130	%Rec	200 9/15/2022 10:48:00 PM	/ T91060
Surr: 4-Bromofluorobenzene	90.2	70-130	%Rec	200 9/15/2022 10:48:00 PM	/I T91060
Surr: Dibromofluoromethane	107	70-130	%Rec	200 9/15/2022 10:48:00 PM	/I T91060
Surr: Toluene-d8	88.2	70-130	%Rec	200 9/15/2022 10:48:00 PM	/I T91060

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Limit

Page 3 of 18

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Client: Hall Environmental Analysis Lab

Address: 4901 Hawkins NE Suite D

Albuquerque, NM 87109

Attn: Andy Freeman

Work Order: MCI0695

Project: 2209735

Reported: 10/26/2022 15:55

Analytical Results Report

Sample Location: 2209735-001F (Injection Well)

Lab/Sample Number: MCI0695-01 Collect Date: 09/14/22 14:00

Date Received: 09/14/22 12:47 Collected By:

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
pH	8.24 @ 20.6°C	pH Units		9/22/22 14:02	CC	SM 4500-H-B	H5
Reactive sulfide	ND	mg/L	0.316	10/17/22 10:14	GPB	SW 846 Ch 7	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: 2209735-001F (Injection Well)

Lab/Sample Number: MCI0695-02 Collect Date: 09/14/22 14:00
Date Received: 09/14/22 12:47 Collected By: EJ Anderson

Matrix: WATER

Analyte	Result	Units	PQL	MCL	Analyzed	Analyst	Method	Qualifier
Inorganics								
Oxidation-Reduction Potential	182	millivolts			9/23/22 16:00	ARC	SM 2580 B	H1

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: 2209735-001F (Injection Well)

Lab/Sample Number: MCI0695-03 Collect Date: 09/14/22 14:00
Date Received: 09/14/22 12:47 Collected By: EJ Anderson

Matrix: WATER

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Flashpoint	>200°F	°F		10/26/22 15:55	TAZ	EPA 1010	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report

(Continued)

Sample Location: 2209735-001F (Injection Well)

Lab/Sample Number: MCI0695-04 Collect Date: 09/14/22 14:00

Date Received: 09/14/22 12:47 Collected By: EJ Anderson

Matrix: Water

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Inorganics							
Cyanide (reactive)	ND	mg/L	0.0100	9/28/22 15:30	MMC	SW 846 Ch 7	

Authorized Signature,

Todd Taruscio, Laboratory Manager

H1 Sample analysis performed past holding time.

H5 This test is specified to be performed in the field within 15 minutes of sampling; sample was received and

analyzed past the regulatory holding time.

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

* Not a state-certified analyte

RPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com
504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Quality Control Data

Inorganics

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BCI0806 - Inorganics										
Blank (BCI0806-BLK1)				Pre	pared: 9/23/	/2022 Analyzed	d: 10/17/20	22		
Reactive sulfide	ND		0.100	mg/L						
LCS (BCI0806-BS1)				Pre	pared: 9/23/	/2022 Analyzed	d: 10/17/20	22		
Reactive sulfide	0.220		0.100	mg/L	0.200	•	110	70-130		
Matrix Spike (BCI0806-MS1)		Source: M	ICI0695-01	Pre	epared: 9/23/	/2022 Analyzed	d: 10/17/20	22		
Reactive sulfide	0.758		0.316	mg/L	0.632	0.0632	110	60-130		
Batch: BCI0818 - W Wet Chem										
		Cauras N	ICI0695-02		Dropprod (& Analyzed: 9/	22/2022			
Duplicate (BCI0818-DUP1) Oxidation-Reduction Potential	180	Source: M	IC10695-02	millivolts	Prepareu d	3 Analyzeu: 9/ 182	23/2022		0.885	20
Oxidation-Reduction Potential	160			millivoits		102			0.005	
Batch: BCI0991 - Cyanide										
Blank (BCI0991-BLK1)					Prepared 8	& Analyzed: 9/	28/2022			
Cyanide (reactive)	ND		0.0100	mg/L	-	•				
LCS (BCI0991-BS1)					Prepared 8	& Analyzed: 9/	28/2022			
Cyanide (reactive)	0.511		0.0100	mg/L	0.500		102	85-115		
Matrix Spike (BCI0991-MS1)		Source: M	ICI0695-04		Prepared 8	& Analyzed: 9/	28/2022			
Cyanide (reactive)	0.421		0.0100	mg/L	0.500	ND	84.3	75-125		
Matrix Spike Dup (BCI0991-MSD1)		Source: M	ICI0695-04		Prepared 8	& Analyzed: 9/	28/2022			

Hall Environmental Analysis Laboratory (201 Hawking VE) MC10695	10/03/22			ANALYTICAL COMMENTS	
#	FAX	EMAIL		NALYTICA	
1 00:1	(208) 883-2830	(007 000 (007)		# CONTAINERS	
ECORD PAGE	PHONE	ACCOUNT #		COLLECTION	Aqueous 9/14/2022 2:00:00 PM 3 RCI, ORP
FODY R				MATRIX	Aqueous 9/
CHAIN OF CUSTODY RECORD PAGE	Anatek Labs, Inc.			BOTTLE TYPE	SOOHDPE
TAL	COMPANY	1282 Alturas Dr	w, ID 83843	CLIENT SAMPLE ID	injection Well
HALL ENVIRONMENTAL ANALYSIS LABORATORY	SUB CONTRATOR Anatek ID		CITY, STATE, ZIP Moscow, ID 83843	SAMPLE	1 2209735-001F Injection Well
	SUBCC	ADDRESS:	CITY, S	ITEM	-

Refinquished By: / M	Date: 9/15/2022	Time: 8:31 AM	Received By:	Date	Date 11. Fine 1111.	REPORT TRANSMITTAL DESIRED	
Relinquished By	Date	Time	Received By	Date	Firme		□ ONLINE
Relinquished By	Date:	Time	Received By	Date	e. Time.	FOR LAB USE ONLY	
TAT:	Standard 🗸	RUSH	Next BD	2nd BD	3rd BD	Temp of samples Cool?	
						Control	

Sample Receipt and Preservation Form

Due 10/03/22

Client Name: Hall Enu	
TAT: Normal RUSH: day	/s
Samples Received From: FedEx UP	S USPS Client Courier Other:
Custody Seal on Cooler/Box: Yes N	o Custody Seals Intact: Yes No N/A
Number of Coolers/Boxes: 3	Type of Ice: Wet Ice Ice Packs Dry Ice None
Packing Material: Bubble Wrap Bag.	s Foam/Peanuts Paper None Other:
Cooler Temp As Read (°C): 5,1	Cooler Temp Corrected (°C): Thermometer Used:
Onesday David and Literato	Comments:
Samples Received Intact?	(Yes) No N/A 2209735-001F analyst is
Chain of Custody Present?	Yes No N/A verifying out of had time
Samples Received Within Hold Time?	Yes No N/A
Samples Properly Preserved?	Yes No N/A
VOC Vials Free of Headspace (<6mm)?	Yes No N/A
VOC Trip Blanks Present?	Yes No N/A
Labels and Chains Agree?	Yes No N/A
Total Number of Sample Bottles Received	3
Chain of Custody Fully Completed?	Yes No N/A
Correct Containers Received?	Yes No N/A
Anatek Bottles Used?	Yes No Unknown
Record preservatives (and lot numbers, if k	(nown) for containers below:
Naon-CN- PSCOM	
2 A I Codina Wil	10x140-088 EE EK 9110/22
and received sources	1 - 2CI - P500M1
ZINC ACETATE SOCIUM h	ytroxide-PCI-PSOOMI
Notes, comments, etc. (also use this space	e if contacting the client - record names and date/time)
	gant show resolution and date/time)
*P/RCI - P 500m1	
H	4 1 40
Received/Inspected By:	Date/Time: 9-16-22 1416
Form F19.00 - Eff 8 Feb 2019	Done 4 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#: 2209735

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-C SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: C91347 RunNo: 91347

Prep Date: Analysis Date: 9/27/2022 SeqNo: 3269825 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte PQL LowLimit HighLimit Qual

Calcium ND 1.0 Magnesium ND 1.0 ND Potassium 1.0

SampType: LCSLL Sample ID: LLLCS-C TestCode: EPA Method 200.7: Dissolved Metals

Batch ID: C91347 Client ID: BatchQC RunNo: 91347

Prep Date: Analysis Date: 9/27/2022 SeqNo: 3269826 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0 50 Calcium ND 1.0 0.5000 108 150 Magnesium ND 1.0 0.5000 0 110 50 150 0 ND 1.0 0.5000 104 50 150 Potassium

Sample ID: LCS-C SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: C91347 RunNo: 91347

Prep Date: Analysis Date: 9/27/2022 SeqNo: 3269827 Units: mg/L

SPK value SPK Ref Val %REC **RPDLimit** Analyte Result PQL LowLimit HighLimit %RPD Qual Calcium 51 1.0 50.00 0 103 85 115 Magnesium 51 1.0 50.00 0 103 85 115 50 0 101 Potassium 1.0 50.00 85 115

Sample ID: 2209735-001DMS SampType: MS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: Injection Well Batch ID: C91347 RunNo: 91347

Prep Date: Analysis Date: 9/27/2022 SeqNo: 3269952 Units: mg/L LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual 49.25 103 70 Calcium 310 5.0 250.0 130 Magnesium 290 5.0 250.0 35.81 102 70 130 Potassium 270 5.0 250.0 21.84 100 70 130

Sample ID: 2209735-001DMSD SampType: MSD TestCode: EPA Method 200.7: Dissolved Metals

Client ID: Injection Well Batch ID: C91347 RunNo: 91347

Prep Date: Analysis Date: 9/27/2022 SeqNo: 3269953 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 20 Calcium 310 5.0 250.0 49.25 104 70 130 0.823 Magnesium 290 5.0 250.0 35.81 103 70 130 1 12 20 Potassium 280 5.0 250.0 21.84 101 70 130 1.02 20

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 4 of 18

Hall Environmental Analysis Laboratory, Inc.

2209735 27-Oct-22

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: A91479 RunNo: 91479

Prep Date: Analysis Date: 10/3/2022 SegNo: 3276375 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sodium ND 1.0

Sample ID: LLLCS-A SampType: LCSLL TestCode: EPA Method 200.7: Dissolved Metals

Client ID: BatchQC Batch ID: A91479 RunNo: 91479

Prep Date: Analysis Date: 10/3/2022 SeqNo: 3276376 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

134

150

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

0.5000

Client ID: LCSW Batch ID: A91479 RunNo: 91479

1.0

ND

Prep Date: Analysis Date: 10/3/2022 SeqNo: 3276377 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sodium 53 1.0 50.00 0 106 85 115

Qualifiers:

Sodium

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 18

Hall Environmental Analysis Laboratory, Inc.

0.50

0.50

ND

ND

WO#: **2209735 27-***Oct-***22**

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Phosphorus, Orthophosphate (As P

Sulfate

				_						
Sample ID: MB	Sampi	ype: ME	BLK	les	tCode: El	PA Method	300.0: Anions	5		
Client ID: PBW	Batch	ID: R9	1085	F	RunNo: 9	1085				
Prep Date:	Analysis D	ate: 9/	15/2022	9	SeqNo: 3	258177	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								

Sample ID: LCS	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batch	n ID: R9	1085	F	RunNo: 9	1085				
Prep Date:	Analysis D	ate: 9/	15/2022	\$	SeqNo: 3	258178	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	107	90	110			
Nitrogen, Nitrite (As N)	0.99	0.10	1.000	0	98.6	90	110			
Bromide	2.5	0.10	2.500	0	98.7	90	110			
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0	102	90	110			
Phosphorus, Orthophosphate (As P	4.5	0.50	5.000	0	90.5	90	110			
Sulfate	9.9	0.50	10.00	0	98.6	90	110			

Sample ID: MB	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID: PBW	Batch	ID: R9	1145	F	RunNo: 9	1145				
Prep Date:	Analysis Da	ate: 9/	19/2022	\$	SeqNo: 3	260946	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								

Sample ID: LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	300.0: Anions	\$		
Client ID: LCSW	Batch	ID: R9	1145	F	RunNo: 9	1145				
Prep Date:	Analysis D	ate: 9/	19/2022	S	SeqNo: 3	260947	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50	5.000	0	95.0	90	110			

Sample ID: MB	SampType: MBLK	TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R91145	RunNo: 91145
Prep Date:	Analysis Date: 9/19/2022	SeqNo: 3260983 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	ND 0.50	

Chiloride ND 0.30

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R91145 RunNo: 91145

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3260984 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.8 0.50 5.000 0 96.7 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Project: Injection	on Well Quarterly								
Sample ID: MB-70310	SampType: M I	BLK	Tes	tCode: El	PA Method	8081: PEST	CIDES		
Client ID: PBW	Batch ID: 70	310	F	RunNo: 9	1275				
Prep Date: 9/21/2022	Analysis Date: 9	/23/2022	S	SeqNo: 3	266323	Units: µg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND 1.0								
Surr: Decachlorobiphenyl	2.3	2.500		91.2	40.9	111			
Surr: Tetrachloro-m-xylene	1.8	2.500		73.8	15	107			
Sample ID: MB-70310	SampType: MI	BLK	Tes	tCode: El	PA Method	8081: PEST	CIDES		
Client ID: PBW	Batch ID: 70	310	F	RunNo: 9	1275				
Prep Date: 9/21/2022	Analysis Date: 9	/23/2022	S	SeqNo: 3	266326	Units: µg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND 1.0								
Surr: Decachlorobiphenyl	2.3	2.500		91.9	40.9	111			
Surr: Tetrachloro-m-xylene	1.8	2.500		73.9	15	107			
Sample ID: LCS-70310	SampType: LC	s	Tes	tCode: El	PA Method	8081: PEST	CIDES		
Client ID: LCSW	Batch ID: 70	310	F	RunNo: 9	1275				
Prep Date: 9/21/2022	Analysis Date: 9	/23/2022	S	SeqNo: 3	266329	Units: %Red	3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	2.2	2.500		86.4	40.9	111			
Surr: Tetrachloro-m-xylene	1.7	2.500		68.6	15	107			
Sample ID: LCS-70310	SampType: L0	Tes	tCode: El	PA Method	8081: PESTI	CIDES			
Client ID: LCSW	Batch ID: 70	310	F	RunNo: 9	1275				
Prep Date: 9/21/2022	Analysis Date: 9	/23/2022	S	SeqNo: 3	266330	Units: %Red	c		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	2.2	2.500		87.0	40.9	111			
Surr: Tetrachloro-m-xylene	1.7	2.500		67.9	15	107			
Sample ID: LCSD-70310	SampType: L 0	SD	Tes	tCode: El	PA Method	8081: PEST	CIDES		
Client ID: LCSS02	Batch ID: 70	310	F	RunNo: 9	1275				
Prep Date: 9/21/2022	Analysis Date: 9	/23/2022	S	SeqNo: 3	266331	Units: %Red	:		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	2.0	2.500		81.5	40.9	111	0	20	
Surr: Tetrachloro-m-xylene	1.5	2.500		59.7	15	107	0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: LCSD-70310 SampType: LCSD TestCode: EPA Method 8081: PESTICIDES

Client ID: LCSS02 Batch ID: 70310 RunNo: 91275

Prep Date: 9/21/2022 Analysis Date: 9/23/2022 SeqNo: 3266332 Units: %Rec

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	1.9		2.500		77.3	40.9	111	0	20	
Surr Tetrachloro-m-vylene	17		2 500		66.3	15	107	0	20	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735 27-***Oct-***22**

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: T	CLP Volatile	es by 8260B			
Client ID: PBW	Batcl	n ID: T9	1060	F	RunNo: 9	1060				
Prep Date:	Analysis D	oate: 9/	15/2022	\$	SeqNo: 3	258171	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
1,2-Dichloroethane (EDC)	ND	0.50								
2-Butanone	ND	200								
Carbon Tetrachloride	ND	0.50								
Chloroform	ND	6.0								
1,4-Dichlorobenzene	ND	7.5								
1,1-Dichloroethene	ND	0.70								
Tetrachloroethene (PCE)	ND	0.70								
Trichloroethene (TCE)	ND	0.50								
Vinyl chloride	ND	0.20								
Chlorobenzene	ND	100								
Surr: 1,2-Dichloroethane-d4	0.010		0.01000		104	70	130			
Surr: 4-Bromofluorobenzene	0.0088		0.01000		87.8	70	130			
Surr: Dibromofluoromethane	0.010		0.01000		104	70	130			
Surr: Toluene-d8	0.0090		0.01000		90.3	70	130			

Sample ID: 100ng Ics	Samp	Type: LC	S	Tes	tCode: T (CLP Volatil	es by 8260B			
Client ID: LCSW	Bat	ch ID: T9	1060	F	RunNo: 9	1060				
Prep Date:	Analysis	Date: 9/	15/2022	5	SeqNo: 3	258172	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.020	0.00023	0.02000	0	102	70	130			
1,1-Dichloroethene	0.019	0.00020	0.02000	0	94.7	70	130			
Trichloroethene (TCE)	0.019	0.00020	0.02000	0	97.4	70	130			
Chlorobenzene	0.020	0.00016	0.02000	0	98.3	70	130			
Surr: 1,2-Dichloroethane-d4	0.010		0.01000		104	70	130			
Surr: 4-Bromofluorobenzene	0.0092		0.01000		92.4	70	130			
Surr: Dibromofluoromethane	0.010		0.01000		100	70	130			
Surr: Toluene-d8	0.0090		0.01000		89.8	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-70230	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: PBW	Batch	n ID: 70 2	230	F	RunNo: 9	1245				
Prep Date: 9/16/2022	Analysis D	oate: 9/	22/2022	S	SeqNo: 3	265631	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								Е
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.066		0.2000		32.8	18.1	88.9			
Surr: Phenol-d5	0.050		0.2000		25.2	17	61.5			
Surr: 2,4,6-Tribromophenol	0.087		0.2000		43.5	29.8	104			
Surr: Nitrobenzene-d5	0.043		0.1000		42.7	22.2	111			
Surr: 2-Fluorobiphenyl	0.042		0.1000		41.7	24.6	96.3			
Surr: 4-Terphenyl-d14	0.073		0.1000		73.0	53.4	124			
· •										

SampType	e: LCS	Tes	tCode: EF	PA Method	8270C TCLP			
Batch ID): 70230	F	RunNo: 9′	1245				
Analysis Date	e: 9/22/2022	9	SeqNo: 32	265632	Units: mg/L			
Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.064 0.00	0.1000	0	63.6	19	106			
0.13 0.00	0.2000	0	67.0	16.3	112			
0.050 0.00	0.1000	0	50.4	15	99.6			
0.056 0.00	0.1000	0	56.1	41.8	111			
0.042 0.00	0.1000	0	41.7	15	91.5			
0.050 0.00	0.1000	0	50.0	15	87.5			
0.059 0.00	0.1000	0	58.7	19.3	114			
0.050 0.00	0.1000	0	50.3	29	103			
0.014 0.00	0.1000	0	14.3	15	92.6			SE
0.063 0.00	0.1000	0	63.3	25.2	114			
0.060 0.00	0.1000	0	60.2	25.7	112			
0.20 0.00	0.3000	0	65.8	15	145			
0.096	0.2000		48.1	18.1	88.9			
0.072	0.2000		36.2	17	61.5			
0.11	0.2000		54.0	29.8	104			
	Batch ID Analysis Date Result F 0.064 0.00 0.13 0.00 0.050 0.00 0.056 0.00 0.059 0.00 0.059 0.00 0.050 0.00 0.014 0.00 0.063 0.00 0.060 0.00 0.096 0.072	0.064 0.00010 0.1000 0.13 0.00010 0.2000 0.050 0.00010 0.1000 0.056 0.00010 0.1000 0.042 0.00010 0.1000 0.059 0.00010 0.1000 0.050 0.00010 0.1000 0.050 0.00010 0.1000 0.014 0.00010 0.1000 0.063 0.00010 0.1000 0.20 0.00010 0.3000 0.29 0.2000 0.072 0.2000	Batch ID: 70230 F Analysis Date: 9/22/2022 SPK value SPK Ref Val 0.064 0.00010 0.1000 0 0.13 0.00010 0.2000 0 0.050 0.00010 0.1000 0 0.056 0.00010 0.1000 0 0.042 0.00010 0.1000 0 0.050 0.00010 0.1000 0 0.059 0.00010 0.1000 0 0.050 0.00010 0.1000 0 0.054 0.00010 0.1000 0 0.059 0.00010 0.1000 0 0.050 0.00010 0.1000 0 0.063 0.00010 0.1000 0 0.060 0.00010 0.1000 0 0.200 0.2000 0 0.096 0.2000 0.2000	Batch ID: 70230 RunNo: 99 Analysis Date: 9/22/2022 SeqNo: 32 Result PQL SPK value SPK Ref Val %REC 0.064 0.00010 0.1000 0 63.6 0.13 0.00010 0.2000 0 67.0 0.050 0.00010 0.1000 0 50.4 0.056 0.00010 0.1000 0 56.1 0.042 0.00010 0.1000 0 41.7 0.050 0.00010 0.1000 0 58.7 0.059 0.00010 0.1000 0 58.7 0.050 0.00010 0.1000 0 50.3 0.014 0.00010 0.1000 0 63.3 0.063 0.00010 0.1000 0 63.3 0.060 0.00010 0.1000 0 65.8 0.096 0.2000 48.1 0 0.072 0.2000 36.2	Batch ID: 70230 RunNo: 91245 Analysis Date: 9/22/2022 SeqNo: 3265632 Result PQL SPK value SPK Ref Val %REC LowLimit 0.064 0.00010 0.1000 0 63.6 19 0.13 0.00010 0.2000 0 67.0 16.3 0.050 0.00010 0.1000 0 50.4 15 0.056 0.00010 0.1000 0 56.1 41.8 0.042 0.00010 0.1000 0 41.7 15 0.050 0.00010 0.1000 0 50.0 15 0.059 0.00010 0.1000 0 58.7 19.3 0.050 0.00010 0.1000 0 58.7 19.3 0.050 0.00010 0.1000 0 50.3 29 0.014 0.00010 0.1000 0 14.3 15 0.063 0.00010 0.1000 0 63.3 25.2 0.060 0.00010 0.1000 0 65.8 15 0.096 0.00010 0.2000 48.1 18.1 0.096 0.2000 0.2000 36.2 17	Batch ID: 70230 RunNo: 91245 Analysis Date: 9/22/2022 SeqNo: 3265632 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.064 0.00010 0.1000 0 63.6 19 106 0.13 0.00010 0.2000 0 67.0 16.3 112 0.050 0.00010 0.1000 0 50.4 15 99.6 0.056 0.00010 0.1000 0 56.1 41.8 111 0.042 0.00010 0.1000 0 41.7 15 91.5 0.050 0.00010 0.1000 0 50.0 15 87.5 0.059 0.00010 0.1000 0 58.7 19.3 114 0.050 0.00010 0.1000 0 50.3 29 103 0.014 0.00010 0.1000 0 63.3 25.2 114 0.060	RunNo: 91245 Analysis Date: 9/2/2022 SeqNo: 3265632 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.064 0.00010 0.1000 0 63.6 19 106 0.13 0.00010 0.2000 0 67.0 16.3 112 0.050 0.00010 0.1000 0 50.4 15 99.6 0.056 0.00010 0.1000 0 56.1 41.8 111 0.042 0.00010 0.1000 0 41.7 15 91.5 0.050 0.00010 0.1000 0 50.0 15 87.5 0.059 0.00010 0.1000 0 58.7 19.3 114 0.050 0.00010 0.1000 0 50.3 29 103 0.014 0.00010 0.1000 0 14.3 15 92.6 0.063 0.00010 0.1000 0 63.3 25.2 114 0.	Batch ID: 70230 RunNo: 91245 Analysis Date: 9/22/2022 SeqNo: 3265632 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.064 0.00010 0.1000 0 63.6 19 106 112 112 112 112 112 112 112 112 114 112 114

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: LCS-70230 SampType: LCS TestCode: EPA Method 8270C TCLP
Client ID: LCSW Batch ID: 70230 RunNo: 91245

Prep Date: 9/16/2022 Analysis Date: 9/22/2022 SeqNo: 3265632 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: Nitrobenzene-d5 0.062 0.1000 62.2 22.2 111

 Surr: Nitrobenzene-d5
 0.062
 0.1000
 62.2
 22.2
 111

 Surr: 2-Fluorobiphenyl
 0.057
 0.1000
 56.6
 24.6
 96.3

 Surr: 4-Terphenyl-d14
 0.071
 0.1000
 71.5
 53.4
 124

NOTES:

Pyridine recovery in the LCS was below the established limits. Pyridine recovery in the LCS was below the established limits.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: Ics-1 98.9uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261531 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 99 10 98.90 0 99.8 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 18

Hall Environmental Analysis Laboratory, Inc.

2209735 27-Oct-22

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-70693 SampType: MBLK TestCode: EPA Method 7470A: Mercury

Client ID: PBW Batch ID: 70693 RunNo: 91673

Prep Date: 10/10/2022 Analysis Date: 10/10/2022 SeqNo: 3284866 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-70693 SampType: LCSLL TestCode: EPA Method 7470A: Mercury

Client ID: BatchQC Batch ID: 70693 RunNo: 91673

Prep Date: 10/10/2022 Analysis Date: 10/10/2022 SeqNo: 3284867 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.00020 0.00020 0.0001500 0 135 50 150

Sample ID: LCS-70693 SampType: LCS TestCode: EPA Method 7470A: Mercury

Client ID: LCSW Batch ID: 70693 RunNo: 91673

Prep Date: 10/10/2022 Analysis Date: 10/10/2022 SeqNo: 3284868 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0051 0.00020 0.005000 0 102 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 2209735

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-70262 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 70262 RunNo: 91211

Prep Date: 9/19/2022 Analysis Date: 9/21/2022 SeqNo: 3263221 Units: mg/L

SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result PQL Qual Arsenic ND 0.030 Barium ND 0.0020 Cadmium ND 0.0020 Chromium ND 0.0060 Lead ND 0.020 ND 0.050 Selenium Silver ND 0.0050

Sample ID: LCS-70262 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals Client ID: LCSW Batch ID: 70262 RunNo: 91211 Prep Date: 9/19/2022 Analysis Date: 9/21/2022 SeqNo: 3263223 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.48 95.1 80 120 0.030 0.5000 O Arsenic 0.0020 0.5000 0 91.5 80 120 Barium 0.46 Cadmium 0.46 0.0020 0.5000 0 92.7 80 120 Chromium 0.0060 0.5000 0 91.2 80 120 0.46 Lead 0.47 0.020 0.5000 0 94.4 80 120 0 Selenium 0.47 0.5000 93.8 80 120 0.050 Silver 0.093 0.0050 0.1000 0 92.8 80 120

Sample ID: 2209735-001EMS	Samp [¬]	SampType: MS TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: Injection Well	Batc	h ID: 702	262	R	RunNo: 9	1211				
Prep Date: 9/19/2022	Analysis [Date: 9/2	21/2022	S	SeqNo: 32	263230	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.44	0.030	0.5000	0	88.7	75	125			
Barium	0.57	0.0020	0.5000	0.1610	82.4	75	125			
Cadmium	0.44	0.0020	0.5000	0	87.9	75	125			
Chromium	0.42	0.0060	0.5000	0	84.9	75	125			
Lead	0.44	0.020	0.5000	0	88.0	75	125			
Selenium	0.42	0.050	0.5000	0	84.7	75	125			
Silver	0.093	0.0050	0.1000	0	92.7	75	125			

Sample ID: 2209735-001EMSE	SampTy	/pe: MS	SD	Tes	tCode: El	PA 6010B: ¹	Total Recover	able Meta	als	
Client ID: Injection Well	Batch	ID: 70	262	F	RunNo: 9	1211				
Prep Date: 9/19/2022	Analysis Da	ate: 9/	21/2022	S	SeqNo: 3	263234	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.41	0.030	0.5000	0	81.5	75	125	8.40	20	

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 15 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: 2209735-001EMSI	S amp	Type: MS	SD	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Client ID: Injection Well	Bato	h ID: 702	262	F	RunNo: 9	1211				
Prep Date: 9/19/2022	Analysis I	Date: 9/2	21/2022	9	SeqNo: 3	263234	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.56	0.0020	0.5000	0.1610	79.7	75	125	2.41	20	
Cadmium	0.43	0.0020	0.5000	0	86.5	75	125	1.57	20	
Chromium	0.41	0.0060	0.5000	0	82.7	75	125	2.56	20	
Lead	0.43	0.020	0.5000	0	86.3	75	125	1.95	20	
Selenium	0.44	0.050	0.5000	0	87.2	75	125	2.92	20	
Silver	0.091	0.0050	0.1000	0	91.1	75	125	1.81	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735**

27-Oct-22

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: mb-1 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261497 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R91160 RunNo: 91160

Prep Date: Analysis Date: 9/19/2022 SeqNo: 3261498 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.00 20.00 80.00 0 97.5 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2209735 27-Oct-22**

Client: Western Refining Southwest, Inc.

Project: Injection Well Quarterly

Sample ID: MB-70220 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 70220 RunNo: 91147

Prep Date: 9/16/2022 Analysis Date: 9/20/2022 SeqNo: 3261025 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-70220 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 70220 RunNo: 91147

Prep Date: 9/16/2022 Analysis Date: 9/20/2022 SeqNo: 3261026 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

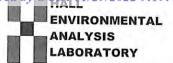
D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank


E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

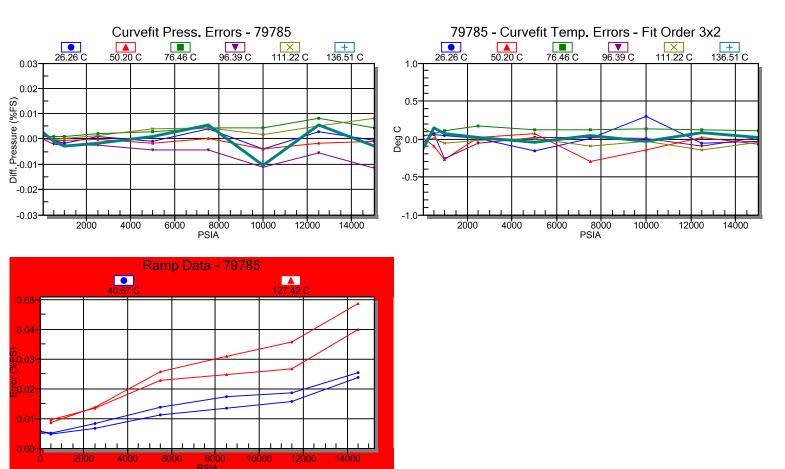
RL Reporting Limit

Page 18 of 18

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List


Client Name: Western Refining Work Order Number: 2209735 RcptNo: 1 Southwest, Inc. Received By: Juan Rojas 9/15/2022 7:35:00 AM Completed By: Cheyenne Cason 9/15/2022 8:24:35 AM Reviewed By: 1/19/22 Chain of Custody 1. Is Chain of Custody complete? Yes V No 📗 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? Yes V No 🗌 NA | 4. Were all samples received at a temperature of >0° C to 6.0°C No 📗 Yes V NA 🗌 5. Sample(s) in proper container(s)? Yes 🗸 No 🗌 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? No 🗌 Yes V 8. Was preservative added to bottles? No V Yes _ NA 🔲 9. Received at least 1 vial with headspace <1/4" for AQ VOA? No 🗌 Yes V NA 🗌 10. Were any sample containers received broken? Yes No V # of preserved bottles checked 11. Does paperwork match bottle labels? Yes V No 🗌 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) 12. Are matrices correctly identified on Chain of Custody? Yes V Adjusted? No 🗌 13. Is it clear what analyses were requested? Yes V No 14. Were all holding times able to be met? Checked by: 21 4/15/27 Yes 🗸 No _ (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No L NA V Person Notified: Date: By Whom: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: F. Hered OU.P for obsolved metely SU 9/15/22 Cooler No Temp °C Condition Seal No Seal Date Seal Intact 1 3.4 Good

5	I ulli-Alound Illie.	ie.			LAL	ENIVEDANME	
Client: Western Refining	✓ Standard	□ Rush			ANA	AALL ENVIKONMEN IAL ANAI YSTS I ABORATORY	200
	Project Name:	Injection Well	3 10 3		WW	www.hallenvironmental.com	by O
Mailing Address: 50 CR 4990		goorter	1 ~	4901	4901 Hawkins NE -	NE - Albuqueraue, NM 87109	
Bloomfield, NM 87413	Project #:		,	Tel.	Tel. 505-345-3975		
Phone #: 678-594-6377		PO # 4500305669	5669			ysis Red	
email or Fax: gfrussell@marathonpetroleum.com	Project Manager:	٠					22 9
QA/QC Package:	7	Gary Russell					0:19
Standard 🗆 Level 4 (Full Validation)				- 1	18		:47
Accreditation:	Sampler:				308		AM
□ NELAC □ Other	On Ice:	₽ Yes	oN □			L +	
□ EDD (Type)	# of Coolers:	1		!O i	tals	tsil	
	Cooler Temp(including cF):	Juling CF): 3-4	1.0=34	eoue	∍M :	d٦	
Date Time Matrix Sample Name	Container Type and #	Preservative Type	HEAL NO.	pH, Spe C/A Bala RCI and	RCRA 8	05260 TC 0728	
$Q + Q - Q (H : \partial O H_2O)$ Injection Well (1)	500ml P	none	100				
	1 - 125ml P 1 - 500ml P	none		×			
	3-500ml P	1- unpres, 1- NaOH, 1- NaOH/ZnAc		×			
	250ml P	HNO3			×		
	1L Amber G	none			×		
	3-40ml VOAs	HCL				×	
→	1L Anmer	none	4			×	
Date: Time: Relinquished by:	Received by:	lia:	Date Time	Remarks:			
Date: Time: Relinquished by: 14 22 (816 / MW / Macke	Received by:	ria: Dat	Date Time 9/15/27/5			Via: Date Time Jourise 9/15/22235	P

FALL-OFF TEST REPORT STRATA, LLC

APPENDIX G. TOOL CALIBRATION

79785 Cal Info

Ramp report: S	Serial # 79785, 2/	27/2022				
Gauge range =	15000.000 PSI. Max	x. DIFF. = 4.500				
Ramp check res	sult: FAIL, Max E:	rr = 0.049% F.S.				
DW Pressure	Gauge Pressure	Differential	%F.S.	RPM4 Press.	Oven Temp.	Gauge Temp.
14500.00	14503.59	3.59	0.0239	14499.20	40.67	40.47
11500.00	11502.34	2.34	0.0156	11499.20	40.58	40.49
8500.00	8502.02	2.02	0.0134	8499.00	40.36	40.49
5500.00	5501.66	1.66	0.0111	5498.80	40.43	40.51
2500.00	2501.00	1.00	0.0066	2498.60	40.45	40.49
499.90	500.58	0.68	0.0046	497.90	40.39	40.42
16.00	16.85	0.85	0.0056	13.80	40.49	40.46
500.00	500.75	0.75	0.0050	497.90	40.41	40.49
2500.00	2501.22	1.22	0.0082	2498.30	40.46	40.53
5500.00	5502.06	2.06	0.0138	5498.70	40.50	40.58
8500.00	8502.59	2.59	0.0173	8498.90	40.42	40.59
11500.00	11502.80	2.80	0.0187	11499.10	40.59	40.56
14500.00	14503.82	3.82	0.0255	14499.20	40.50	40.51
14500.00	14506.01	6.01	0.0401	14499.10	127.42	126.99
11500.00	11503.99	3.99	0.0266	11499.20	127.32	127.01
8500.00	8503.71	3.71	0.0247	8499.00	127.05	127.07
5500.00	5503.43	3.43	0.0229	5498.80	127.20	127.09
2500.00	2502.00	2.00	0.0134	2498.40	127.11	127.10
500.00	501.45	1.45	0.0097	498.10	127.25	127.14
500.00	501.27	1.27	0.0085	498.10	127.22	127.18
2500.00	2502.07	2.07	0.0138	2498.50	127.14	127.20
5500.00	5503.88	3.88	0.0258	5498.70	127.27	127.20
8500.00	8504.65	4.65	0.0310	8498.80	127.20	127.16
11500.00	11505.39	5.39	0.0359	11498.90	127.37	127.15
14500.00	14507.31	7.31	0.0487	14498.90	127.28	127.05

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 161983

COMMENTS

Operator:	OGRID:
Western Refining Southwest LLC	267595
539 South Main Street	Action Number:
Findlay, OH 45840	161983
	Action Type:
	[UF-DP] Discharge Permit (DISCHARGE PERMIT)

COMMENTS

Created By	Comment	Comment Date
cchavez	Fall-Off Test (FOT) 2022: Placement into the Administrative Record as Required by EPA	11/29/2022
cchavez	FOT is not considered by EPA to be a MIT.	11/29/2022

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 161983

CONDITIONS

Operator:	OGRID:
Western Refining Southwest LLC	267595
539 South Main Street	Action Number:
Findlay, OH 45840	161983
	Action Type:
	[UF-DP] Discharge Permit (DISCHARGE PERMIT)

CONDITIONS

С	created By	Condition	Condition Date
	cchavez	Fall-Off Test Currently under review by Reviewer Justin Wrinkle	11/29/2022