2RF-149 -Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] C-147 Application/ Modification

[371643] SOLARIS WATER MIDSTREAM LLC 03/13/2023

Volume 1 C-147 Permit Package for Eddy State AST Containment Section 2, T26S, R29E, Eddy County

- Transmittal Letter
- C-147 Form
- O&M Plan, and Closure Plan
- Siting Criteria Demonstration, Plates & Appendices.

Fold in an outcrop of the Gatuna Formation near the Pecos River. This outcrop is approximately 2.64 miles east of the site for the Eddy State Recycling Facility.

Prepared for: Solaris Midstream LLC 9811 Katy Freeway Suite 900 Houston, TX 77024

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW F-142 Albuquerque, New Mexico

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

January 20, 2023

Ms. Leigh Barr EMNRD - Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505 Via E-Mail Ms. Victoria Venegas NMOCD - District 2 811 S. First St. Artesia, NM 88210 Via E-Mail

RE: Solaris Water Midstream, LLC, Eddy State AST Containment Section 2 T26S R29E, Eddy County

Dear Ms. Barr and Ms. Venegas:

On behalf Solaris Water Midstream, LLC, R.T. Hicks Consultants is pleased to submit a C-147 permit application for the above-referenced project.

Volume 1 of the C-147 package contains:

- The C-147 Form
- Operations & Maintenance Plan (updated) and Closure Plan (previously approved)
- Siting Criteria Demonstration

Volume 2 is all material that OCD has previously approved:

- Design/Construction Plan
- Engineering Drawings and Liner Specifications
- Mustang Extreme Environmental Services, LLC SOP Manual
- Variances for AST Storage Containments

Solaris will upload this permit package to OCD via the OCD.Online portal. In compliance with 19.15.34.10 of the Rule, Solaris provided evidence that this C-147 was copied to the surface owner's representative.

Attached to this transmittal letter is a recent aerial photograph of the site, showing the location of the AST on the pad of the now plugged Eddy State SWD as well as the operational Eddy State Containments #1 and #2. The photograph also shows USGS-mapped surface water. As is apparent in this image, the USGS incorrectly mapped the watercourse, placing it about 225 feet southeast of the actual location of the drainage. Thus, as indicated in the approved registration for the in-ground containments, the in-ground containments are:

- outside of the 200-foot setback for a mapped watercourse and
- our field survey did not identify any next order tributaries that meet the definition of a watercourse

The Eddy State AST is more than 1200 feet distant from the mapped watercourse and no small gulley north of the AST meets the definition of an OCD watercourse. The siting criteria demonstration for the Eddy State AST Containment is the same as submitted for the

January 18, 2023 Page 2

in-ground containment registration. We are confident that it meets the needs for the AST as well.

If you have any questions or concerns regarding this permit or the attached C-147, please contact me. As always, we appreciate your work ethic and diligence.

Sincerely, R.T. Hicks Consultants

Randall T. Hicks PG Principal

Copy: Solaris Water Midstream, LLC, NM State Land Office

Recent air photograph showing Eddy State in-ground containments and Eddy State AST on the Eddy State SWD pad.

Statement Explaining Why the Applicant Seeks a Variance for Monitoring of Eddy State Above Ground Storage Tank (AST) Containment

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34

19.15.34.13 OPERATIONAL REQUIREMENTS FOR RECYCLING CONTAINMENTS: A. The operator shall inspect the recycling containment and associated leak detection systems <u>weekly</u> while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request.

With respect to storage of produced water for use in lieu of fresh water, Rule 34 is written for earthen, lined pits, not free-standing modular open top tanks that employ liners as their primary fluid containment system. The authors of the Rule, and some OCD staff, considered these large ASTs as process tanks, not storage "containments." Yet, the definition of a "containment" caused regulation of these ASTs under the Rule. No Rule is perfect.

With respect to this request for a variance:

- A modular impoundment does not exceed a capacity of 60,000 bbls.
- After E&P processes that employ ASTs are complete, the AST is typically
 - Removed and closed or
 - Placed in a "standby" mode with minimal residual fluid to keep the liner in place for future use

The applicant requests that the RANGER AST Containment when not in use be exempt from weekly inspections per 19.15.34.13(A) under the following conditions

- 1. After completion of stimulation, the operator will leave 1-foot or 2-feet of produced water from the AST to provide enough water weight to protect the liner system from wind damage.
- 2. Every two months after evacuation of most of the water, the operator will record in the inspection log
 - a. the fluid level in the AST Containment and
 - b. a reading of fluid in the leak detection system
- 3. The operator will provide a schedule for removal of the AST Containment or the next stimulation event that will use the AST Containment.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health, and the Environment

During what some call a standby period between stimulation events or closure, 1-2 feet of residual fluid in the AST is very small compared to the volume of fluid stored in above-ground containments, for which the Rule is written. Monitoring of the leak detection system every two months in and AST with only 1-2 feet of standing fluid to identify a loss of integrity of the

primary liner provides equal protection of fresh water versus weekly or monthly monitoring of a large in-ground containment. Fewer trips to monitor the leak detection system of a nearly empty AST minimizes travel, thereby providing better protection of public health (fewer road accidents) and the environment (less emissions).

In a typical in-ground containment (200,000+ bbls), weekly monitoring of leak detection is appropriate. In an AST with 1-foot of water weight (6000 bbls), monitoring leak detection every eight weeks provides an equal level of protection.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

EDDY STATE ABOVE-GROUND STORAGE TANK

Financial Assurance Cost Estimate For One Containment

Total estimated cost for closure, reclamation, and restoration of the facility (AST, fencing, etc.) pursuant to Rule 34 is **\$50,500** based upon the work elements in the spreadsheet (below). We used the same estimate as the approved cost estimates for other AST Containments. Items shown with "0" units are costs recommended for certain agencies (e.g. BLM) but are not required in a closure cost estimate for compliance with Rule 34. The estimate was generated by Solaris with input from Hicks Consultants and is equivalent to contractor bids for other AST containments.

ITEM				UNIT	Rule 34 TOTAL
NO.	ITEM DESCRIPTION	UNITS	QTY	PRICE	PRICE
	Eddy State				
	AST Containment				
1	Site Containment Removal of AST and Liner	0	1	\$1,000.00	\$0.00
2	Disposal	1	1	\$30,000.00	\$30,000.00
3	Removal of Weir Tanks	0	5	\$500.00	\$0.00
4	Removal of Chemical Trailer	0	1	\$50.00	\$0.00
5	Removal of Filter Pods	0	1	\$200.00	\$0.00
	Removal of pumps, generators, light				
6	towers	0	4	\$200.00	\$0.00
8	Clean Pumps, piping and equipment Remove Pumps, piping, and	0	1	\$1,500.00	\$0.00
9	equipment	0	3	\$1,500.00	\$0.00
11	Assess soil for impacts	1	1	\$2,500.00	\$2,500.00
12	Re-grade and Reclaim Site	1	1	\$16,000.00	\$16,000.00
,13	Misc. disposal and removal of fencing and cattle guards	0	1	\$1,000.00	\$1000.00
	<u>Facility Decommission Site</u> <u>Subtotal:</u>				\$50,500.00

•

C-147

Received by OCD: 2/27/2023 10:51:02 AM State of New Mexico Page 9 of Joint Conservation Energy Minerals and Natural Resources Form C-147 Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Santa Fe, NM 87505 https://www.emnrd.nm.gov/ocd/ocd-e-permitting/
Recycling Facility and/or Recycling Containment
Type of Facility: ✓ Recycling Facility ✓ Recycling Containment* Type of action: ✓ Permit ☐ Registration X Modification ☐ Extension Closure X Other (explain) AST Addition
* At the time C-147 is submitted to the division for a Recycling Containment, a copy shall be provided to the surface owner.
Be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
^{1.} Operator: Solaris Water Midstream LLC (For multiple operators attach page with information) OGRID #:371643 Address: 9811 Katy Freeway, Suite 900, Houston, Texas 77024
Facility or well name (include API# if associated with a well): Eddy State Water Treatment and Reuse Facility ID [fVV2105730365]
OCD Permit Number: (For new facilities the permit number will be assigned by the district office)
U/L or Qtr/Qtr I&P Section 2 Township 26S Range 29E County: Eddy
Surface Owner: Federal State Private Tribal Trust or Indian Allotment
2.
✓ <u>Recycling Facility</u> :
Location of recycling facility (if applicable): Latitude <u>32.07058</u> Longitude <u>-103.95627</u> NAD83
Proposed Use: 🗹 Drilling* 🗹 Completion* 🗹 Production* 🗹 Plugging *
*The re-use of produced water may NOT be used until fresh water zones are cased and cemented
Other, requires permit for other uses. Describe use, process, testing, volume of produced water and ensure there will be no adverse impact on
groundwater or surface water.
☑ Fluid Storage
Above ground tanks 🔽 Recycling containment 🗌 Activity permitted under 19.15.17 NMAC explain type
Activity permitted under 19.15.36 NMAC explain type: Other explain
For multiple or additional recycling containments, attach design and location information of each containment
Closure Report (required within 60 days of closure completion): Recycling Facility Closure Completion Date:
Recycling Containment:
Annual Extension after initial 5 years (attach summary of monthly leak detection inspections for previous year)
Center of Recycling Containment (if applicable): Latitude 3207058 Longitude103.95627 NAD83
For multiple or additional recycling containments, attach design and location information of each containment
\square Lined \square Liner type: Thickness $40 \& 30$ mil \square LLDPE \square HDPE \square PVC \square Other
String-Reinforced
Liner Seams: Velded Factory Other Volume: 60000 bbl Dimensions: L x W x D
Recycling Containment Closure Completion Date:

•

Bonding:

4.

Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells owned or

operated by the owners of the containment.)

Bonding in accordance with 19.15.34.15(A)(1). Amount of bond \$_\$50,500_

(work on these facilities cannot commence until

bonding amounts are approved)

☑ Existing Bond Includes Funds for AST Closure

Fencing:

 \Box Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify See Variance

6. Signs:

7.

12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

Variances:

Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, human health, and the environment.

Check the below box only if a variance is requested:

 \checkmark Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested, include the variance information on a separate page and attach it to the C-147 as part of the application.

If a Variance is requested, it must be approved prior to implementation.

Siting Criteria for Recycling Containment

Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application. Potential examples of the siting attachment source material are provided below under each criteria.

General siting

<u>Ground water is less than 50 feet below the bottom of the Recycling Containment.</u> NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	□ Yes 🛛 No □ NA
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; written approval obtained from the municipality 	□ Yes ☑ No □ NA
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division 	🗌 Yes 🔽 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map 	🗌 Yes 🛛 No
Within a 100-year floodplain. FEMA map	🗌 Yes 🔽 No
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; aerial photo; satellite image 	🗌 Yes 🔽 No
 Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site 	🗌 Yes 🗹 No
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No

Recycling Facility and/or Containment Checklist:

Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.

Design Plan - based upon the appropriate requirements.

 \boxtimes Operating and Maintenance Plan - based upon the appropriate requirements.

Closure Plan - based upon the appropriate requirements.

Site Specific Groundwater Data -

Siting Criteria Compliance Demonstrations –
 Certify that notice of the C-147 (only) has been sent to the surface owner(s)

Operator Application Certification:

10.

I hereby certify that the information and attachments submitted with this application are true, accurate and complete to the best of my knowledge and belief.

Name (Print):	Bradley Todd Carpenter	Title:	Operations Manager	<u> </u>
Signature:	Todd Carpenter	Date:	01/17/2023	
e-mail address	todd.carpenter@solarismidstream.com	Telephone:	432-413-0918	

OCD Representative Signature: Victoria Venegas	Approval Date: <u>03/13/2023</u>
Title: Environmental Specialist	OCD Permit Number: 2RF-149
 Additional OCD Conditions on Attachment 	

.

OPERATIONS AND MAINTENANCE PLAN & CLOSURE PLAN

Recycling containments may hold produced

water for use in connection with drilling,

completion, producing or processing oil or

(6) All releases from the recycling and re-use of produced water shall be handled in accordance with 19.15.29 NMAC.

19.15.34.10 B

gas or both.

19.15.34.8 A

General Specifications

This plan provides additional protocols to cause the proposed recycling containments (AST Containments) to conform to NMOCD Rules.

The operator will maintain and operate the recycling containments and facility in accordance with the following plan to contain liquids and maintain the integrity of the liner to prevent contamination of fresh water and protect public health and the environment.

- The operator will use the treated produced water in the containments for drilling, completion (stimulation), producing or processing oil or gas or both. If other uses are planned, the operator will notify the OCD though the submission of a modified C-147.
- For all exploration and production operations that use produced water, the operator will conduct these activities in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.
- The operator will address all releases from the recycling and re-use of produced water in accordance with 19.15.29 NMAC.

19.15.34.10 B

Recycling containments may hold produced water for use in connection with drilling, completion, producing or processing oil or gas or both. Such fluids may include fresh water, brackish water, recycled and treated water, fluids added to water to facilitate well drilling or completion, water produced with oil and gas, flowback from operations, water generated by an oil or gas processing facility or other waters that are gathered for well drilling or completion but may not include any hazardous waste.

19.15.34.8 A

(5) All operations in which produced water is used shall be conducted in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.

19.15.29.6

To prohibit releases and require persons who operate or control the release or the location of the release to report the unauthorized release of oil, gases, produced water, condensate or oil field waste including regulated NORM or other oil field related chemicals, contaminants or mixtures of those chemicals or contaminants that occur during drilling, producing, storing, disposing, injecting, transporting, servicing or processing and to establish procedures for reporting, site assessment, remediation, closure, variance and enforcement.

- The operator will not discharge into or store any hazardous waste in the recycling containments, but they may hold fluids such was freshwater, brackish water, recycled and treated water, water generated by oil or gas processing facilities, or other waters that are gathered for well drilling or completion. The recycling facility will not be used for the disposal of produced water. The operator will maintain the containments free of miscellaneous solid waste or debris.
- The operator will verify that no oil is on the surface of the contained fluid. If oil is observed, the oil shall be removed using an absorbent boom or other device and properly disposed at an approved facility. An absorbent boom or other device will be maintained on site.
- The operator will install and use a header and diverter described in the design/construction plan in order to prevent damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes during injection or withdrawal of liquids.
- The operator shall maintain at least three feet of freeboard at each containment.
- If the liner develops a leak or if any penetration of the liner occurs above the liquid's surface, then the operator will repair the damage or initiate replacement of the liner within 48 hours of discovery or will seek a variance from the division district office within this time period.
- If visible inspection suggests that the liner developed a leak or if any penetration of the liner occurs below the liquid's surface, then the operator will remove all liquid above the damage or leak line within 48 hours of discovery. The operator will also notify the district division office within this same 48 hours of the discovery and repair the damage or replace the liner.

19.15.34.9 G Recycling facilities may not be used for the disposal of produced water.

19.15.34.13 B

(1) The operator shall remove any visible layer of oil from the surface of the recycling containment

(7) The operator shall install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

19.15.34.13 B

(2) The operator shall maintain at least three feet of freeboard at each containment.

19.5.34.13 B

(4) If the containment's primary liner is compromised above the fluid's surface, the operator shall repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension of time from the division district office.

(5) If the primary liner is compromised below the fluid's surface, the operator shall remove all fluid above the damage or leak within 48 hours of discovery, notify the division district office and repair the damage or replace the primary liner.

- In the event of a leak due to a hole in the liner, the following steps will be followed:
 - 1. If the source of the fluid is uncertain, comparative field tests may need to be performed on both the water in the containment and that which may have been released (e.g. pH, conductance, and chloride).
 - 2. If the fluid is found to be coming from the containment, determine the location from which the leak is originating.
 - 3. Mark the point where the water is coming out of the tank.
 - 4. Locate the puncture or hole in the liner.
 - 5. Empty the containment to the point of damage in liner.
 - 6. Clean area of liner that needs to be repaired.
 - 7. Cut out piece of material (patch or tape) to overlay liner.
 - 8. Either weld the patch to the injured area in the liner or apply tape over the rupture.
 - 9. Make sure rupture is completely covered.
 - 10. Monitor as needed.

The operator will inspect and remove, as necessary, surface water run-on accumulated in the secondary containment

Monitoring, Inspections, and Reporting An inspection log will be maintained by the operator and

will be made available to the division upon request. Inspection will include: freeboard monitoring, leak detection, identifying potential hazards that may have developed, change in site conditions or if the contents of the containment change from the initial use.

Weekly inspections consist of:

- Reading and recording the fluid height of staff gauges and freeboard
- Recording any evidence of visible oil on surface

19.15.29.8 B.

Requirements. For all releases regardless of volume, the responsible party shall comply with 19.15.29.8 NMAC and shall remediate the release. For major and minor releases, the responsible party shall also comply with 19.15.29.9, 19.15.29.10, 19.15.29.11, 19.15.29.12 and 19.15.29.13 NMAC.

19.15.34.13

(6) The containment shall be operated to prevent the collection of surface water runon.

19.15.34.13 A.

The operator shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request.

- Visually inspecting the containments exposed liners
- Checking the leak detection system for any evidence of a loss of integrity of the primary liner
- Inspect any diversion ditches and berms around the containment to check for erosion and collection of surface water run-on.
- Inspect the leak detection system for evidence of damage or malfunction and monitor for leakage.
- Inspect netting (may not be used if Mega Blaster Pro avian deterrent is used) for damage or dead wildlife, including migratory birds. Operator shall report the discovery of a dead animal to the appropriate wildlife agency and to the district within 30 days of discovery. Further prevention measures may be required.

Additional monitoring to identify hazards that may have developed, changes in site conditions, tank use, and to enable early detection of structural issues such as uneven tank panel settlement, soil settlement, liner damage, insufficient liner slack or leaks. If changes are noted the AST contractor should be notified

• If observed conditions indicate a potential tank failure is imminent, the vicinity will be immediately cleared and the AST will be drained.

Monthly, the operator will:

- Report to the division, the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.
- Record sources and disposition of all recycled water.

Cessation of Operations

If less than 20% of the total fluid capacity is utilized every six months, beginning from the first withdraw, operation of the facility has ceased and the division district office will be

19.15.34.12 E

Netting. The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

19.15.34.9 E

The operator of a recycling facility shall keep accurate records and shall report monthly to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.

19.15.34.13 C

A recycling containment shall be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six

notified. The division district may grant an extension not to exceed six months to determine the cessation of operations.

The operator will remove all fluids from the recycling facility within 60 days of cessation of operations. An extension, not to exceed 2 months, may be granted by the district division for the removal of fluids from the facility.

The breakdown of the containments follows the reverse order of the setup steps presented in the set-up manual.

months following the first withdrawal of produced water for use. The operator must report cessation of operations to the appropriate division district office. The appropriate division district office may grant an extension to this determination of cessation of operations not to exceed six months.

19.15.34.14 A

Once the operator has ceased operations, the operator shall remove all fluids within 60 days and close the containment within six months from the date the operator ceases operations from the containment for use. The division district office may grant an extension for the removal of all fluids not to exceed two months.

© 2023 R.T. HICKS CONSULTANTS, LTD.

Closure Plan

The containments are expected to contain a small volume of solids, the majority of which will be windblown sand and dust with some mineral precipitates from the water.

The operator will notify the division district (phone or email) before initiating closure of the containments and/or facility.

Excavation and Removal Closure Plan – Protocols and

Procedures

- 1. Residual fluids in the containments will be sent to disposal at a division-approved facility.
- The operator will remove all solid contents and transfer those materials to the following division-approved facility: Disposal Facility Name: R360 Permit Number NM 01-0006
- 3. If possible, geomembrane textiles and liners that exhibit good integrity may be recycled for use as an under liner of tank batteries or other use as approved by OCD.
- 4. Disassemble the recycling containment infrastructure according to manufacturer's recommendations
- 5. After the disassemble of the containments and removal of the contents and liners, soils beneath the tanks will be tested as follows
 - a. Collect a five-point (minimum) composite from beneath the liner to include any obviously stained or wet soils, or any other evidence of impact from the containments for laboratory analyses for the constituents listed in Table I of 19.15.34.14 NMAC.
 - b. If any concentration is higher than the parameters listed in Table I, additional delineation may be required, and closure activities will not proceed without Division approval.
 - c. If all constituents' concentrations are less than or equal to the parameters listed in Table I, then the operator will backfill the facility as necessary using non-waste containing, uncontaminated, earthen material and proceed to reclaim the surface to pre-existing conditions.

19.15.34.14 B

The operator shall close a recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.

19.15.34.14 C

The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below. (1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

(2) If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator can proceed to backfill with non-waste containing, uncontaminated, earthen material.

© 2023 R.T. HICKS CONSULTANTS, LTD.

Closure Documentation

Within 60 days of closure completion, the operator will submit a closure report (Form C-147) to the District Division, with necessary attachments to document all closure activities are complete, including sampling results and details regarding backfilling and capping as necessary.

In the closure report, the operator will certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in the closure plan.

Reclamation and Revegetation

The operator will reclaim the surface to safe and stable pre-existing conditions that blends with the surrounding undisturbed area. "Pre-existing conditions" may include a caliche well pad that existed prior to the construction of the recycling containment and that supports active oil and gas operations.

Areas not reclaimed as described herein due to their use in production or drilling operations will be stabilized and maintained to minimize dust and erosion.

For all areas disturbed by the closure process that will not be used for production operations or future drilling, the operator will

- 1. Replace topsoils and subsoils to their original relative positions
- 2. Grade so as to achieve erosion control, long-term stability and preservation of surface water flow patterns
- 3. Reseed in the first favorable growing season following closure

Federal, state trust land, or tribal lands may impose alternate reclamation and revegetation obligations that provide equal or better protection of fresh water, human health, and the environment. Revegetation and reclamation plans imposed by the surface owner will be outlined in communications with the OCD.

The operator will notify the division when the site meets the surface owner's requirements or exhibits a uniform vegetative cover that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds. The operator will notify the Division when reclamation and revegetation is complete.

19.15.34.14 D

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

19.15.34.14 E

Once the operator has closed the recycling containment, the operator shall reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment. The operator shall substantially restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

19.15.34.14 G

The revegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

19.15.34.14 F

Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

Closure Plan

The containments are expected to contain a small volume of solids, the majority of which will be windblown sand and dust with some mineral precipitates from the water.

The operator will notify the division district (phone or email) before initiating closure of the containments and/or facility.

Excavation and Removal Closure Plan – Protocols and

Procedures

- 1. Residual fluids in the containments will be sent to disposal at a division-approved facility.
- The operator will remove all solid contents and transfer those materials to the following division-approved facility: Disposal Facility Name: R360 Permit Number NM 01-0006
- 3. If possible, geomembrane textiles and liners that exhibit good integrity may be recycled for use as an under liner of tank batteries or other use as approved by OCD.
- 4. Disassemble the recycling containment infrastructure according to manufacturer's recommendations
- 5. After the disassemble of the containments and removal of the contents and liners, soils beneath the tanks will be tested as follows
 - a. Collect a five-point (minimum) composite from beneath the liner to include any obviously stained or wet soils, or any other evidence of impact from the containments for laboratory analyses for the constituents listed in Table I of 19.15.34.14 NMAC.
 - b. If any concentration is higher than the parameters listed in Table I, additional delineation may be required, and closure activities will not proceed without Division approval.
 - c. If all constituents' concentrations are less than or equal to the parameters listed in Table I, then the operator will backfill the facility as necessary using non-waste containing, uncontaminated, earthen material and proceed to reclaim the surface to pre-existing conditions.

19.15.34.14 B

The operator shall close a recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.

19.15.34.14 C

The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below. (1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

(2) If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator can proceed to backfill with non-waste containing, uncontaminated, earthen material.

Closure Documentation

Within 60 days of closure completion, the operator will submit a closure report (Form C-147) to the District Division, with necessary attachments to document all closure activities are complete, including sampling results and details regarding backfilling and capping as necessary.

In the closure report, the operator will certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in the closure plan.

Reclamation and Revegetation

The operator will reclaim the surface to safe and stable pre-existing conditions that blends with the surrounding undisturbed area. "Pre-existing conditions" may include a caliche well pad that existed prior to the construction of the recycling containment and that supports active oil and gas operations.

Areas not reclaimed as described herein due to their use in production or drilling operations will be stabilized and maintained to minimize dust and erosion.

For all areas disturbed by the closure process that will not be used for production operations or future drilling, the operator will

- 1. Replace topsoils and subsoils to their original relative positions
- 2. Grade so as to achieve erosion control, long-term stability and preservation of surface water flow patterns
- 3. Reseed in the first favorable growing season following closure

Federal, state trust land, or tribal lands may impose alternate reclamation and revegetation obligations that provide equal or better protection of fresh water, human health, and the environment. Revegetation and reclamation plans imposed by the surface owner will be outlined in communications with the OCD.

The operator will notify the division when the site meets the surface owner's requirements or exhibits a uniform vegetative cover that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds. The operator will notify the Division when reclamation and revegetation is complete.

19.15.34.14 D

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

19.15.34.14 E

Once the operator has closed the recycling containment, the operator shall reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment. The operator shall substantially restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

19.15.34.14 G

The revegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

19.15.34.14 F

Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

GENERAL SITING CRITERIA DEMONSTRATION AND SITE-SPECIFIC GROUNDWATER DATA

Distance to Groundwater

Figure 1, Figure 1a, Figure 2, Figure 2a, and the discussion presented below demonstrate that groundwater (fresh water, as defined by NMOCD Rules) at the location is greater than the required 50 feet below the proposed Eddy State Recycling Facility and Containment.

Hydrogeology of Eddy State Recycling Facility and Containment

The site for the Eddy State Recycling Facility and Containment is located off Pipeline Road near the southern New Mexican border with Texas. It is roughly 2.7 miles east of the Pecos River. According to the geologic map of New Mexico (Seen in Figure 2), surface unit is Quaternary age older alluvium deposits (Qoa), which are described as follows:

Older alluvial deposits of upland plains and piedmont areas, and calcic soils and eolian cover sediments of High Plains region (middle to lower Pleistocene)—Includes scattered lacustrine, playa, and alluvial deposits of the Tahoka, Double Tanks, Tule, Blackwater Draw, and Gatuña Formations, the latter of which may be Pliocene at base; outcrops, however are basically of Quaternary deposits.

The Qoa in this area may include the Gatuña Formation beneath an upper veneer (5-20 feet) of sand and caliche. According to Ground-Water Report 3 by G.E. Hendrickson and R.S. Jones¹, the Gatuña Formation exists in large sink depressions east of the Pecos River. Powers and Holt² map outcrop and subcrop of the Gatuña Formation from the east side of the Pecos River to near the Eddy State Containment location. The Permian Quartermaster Formation is probably absent beneath the containment site due to Tertiary or later erosion. In this area, based on oil well data, we can assume that the underlying unit in the area is the Rustler formation. A majority of the USGS wells displayed in Figures 1 and 2 are wells whose principal water-bearing unit is Rustler and the depth to water in these wells is between 60 and 120 feet. The Rustler Formation consists of siltstone, anhydrite, gypsum, sandstone and dolomite. The Salado formation underlies the Rustler formation consistently on the east side of the Pecos River, and we can presume this is the case in the area local to the Eddy State Facility. The Salado is a halite and anhydrite unit that acts as a barrier to groundwater flow from higher aquifers to lower aquifers and vise versa. Based on well completion logs from a nearby well (Lusitano 27-34FEDCOM734H from Devon Energy), we can see that the contact between the Rustler and Salado is at 1490 feet from the surface at the location of the well.

Topography is relatively flat with some gentle upslopes in the area. Surface soil appears to be thin with underlying caliche which outcrops in some erosional channels throughout the area. Surface vegetation is sparse, consisting mainly of mesquite, catclaw, creosote, rabbitbrush, and some cacti. Majority of mesquite, catclaw, and creosote appears to be dead. Carlsbad Soil & Water Conservation District affirms that the area has been treated for invasive mesquite and creosote (See Image 1). Small patches of green moss are visible in areas that appear to experience ephemeral drainage.

¹ <u>https://geoinfo.nmt.edu/publications/water/gw/3/GW3.pdf</u>

 $^{^{2}\} https://nmgs.nmt.edu/publications/guidebooks/downloads/44/44_p0271_p0282.pdf$

[©] R.T. HICKS CONSULTANTS, LTD

Image 1 – Vegetation along an ephemeral drainage channel in the area of the facility. Caliche pieces can be seen in the foreground of the image.

Figure 1 and 1a is a topographic map of the state of New Mexico and associated legend that displays the following:

- The Eddy State Recycling Facility identified by a blue polygon labeled by a yellow callout box.
- Water wells from the USGS database as dark and light green, red, brown, and dark purple triangles, and green squares with an "X" through (indicating a nearby pumping well). The colors indicate the principle water bearing-unit for each well: Alluvium/Bolsom, Santa Rosa, Fourty-Niner Member of the Rustler Formation, Castle Formation, and Rustler Formation. The well number as defined in the USGS database, recorded depth to water value, and date the value was recorded is displayed next to the corresponding well point.
- Miscellaneous water wells from non-public databases that were identified by field inspection or other published documents are represented by yellow, blue, and green squares with black dots at the center. The colors correspond to the depth to water recorded in the RT Hicks database. The depth to water and date the depth to water value was recorded are also displayed.
- Water wells from the Office of the State Engineer WATERS database as light blue, light green, and dark blue circles with colored triangles that represent the depth to water. Well ID as documented in the OSE WATERS database, depth to water value, and the date the value was recorded.

Figure 2 and Figure 2a is a topographic map overlain by a transparent geologic map of the state of New Mexico and a potentiometric surface map and the associated legend that displays the following:

- The Eddy State Recycling Facility identified by a blue polygon labeled by a yellow callout box.
- Water wells from the USGS database as dark and light green, red, brown, dark purple, and light blue triangles. The colors indicate the principle water bearing-unit for each well: Alluvium/Bolsom, Santa Rosa, Fourty-Niner Member of the Rustler Formation, Castle Formation, Rustler Formation, and Not Defined. The well number as defined in the USGS database, recorded groundwater elevation value, and date the value was recorded is displayed next to the corresponding well point.
- Miscellaneous water wells from non-public databases that were identified by field inspection or other published documents are represented by yellow, blue, and green squares with black dots at the center. The colors correspond to the depth to water recorded in the RT Hicks database. The groundwater elevation and date the ground water elevation value was recorded are also displayed near the representative point on the map.
- Isocontours of a potentiometric surface from the RT Hicks database. USGS and Miscellaneous wells and their groundwater elevation values were used to create the potentiometric surface.

We queried the OSE database for nearby driller's logs of water wells to gain information regarding the depth to the uppermost water-bearing unit and the characteristics of the aquifer. We found the following information (see also Appendix A):

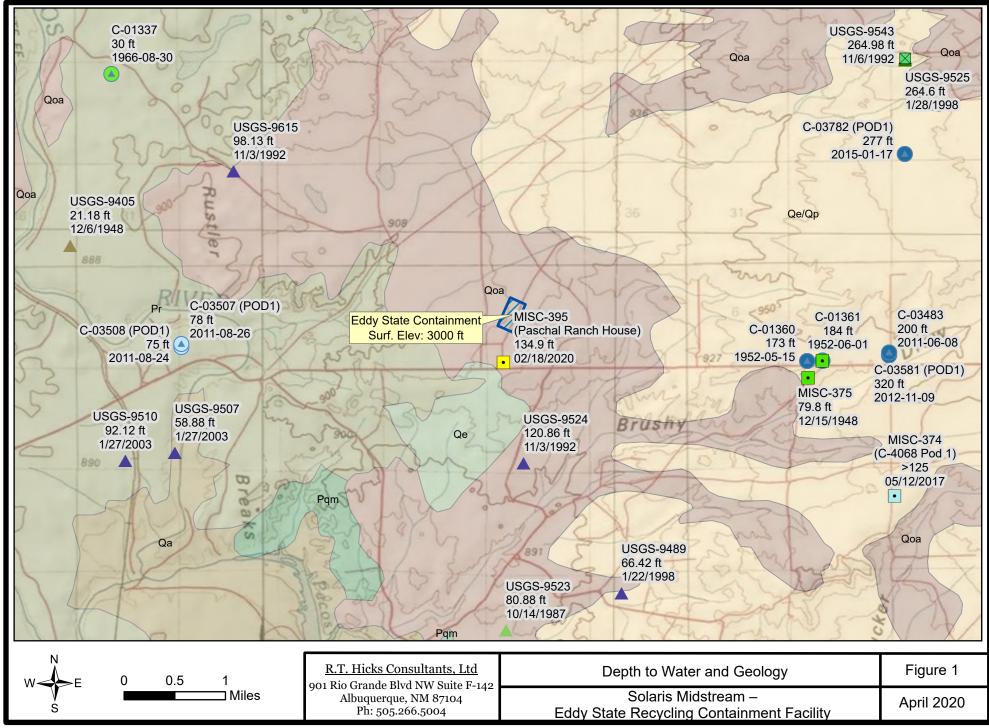
- Well C-3483 is about 3.75 miles east of the proposed containment and the well log indicates:
 - Dry sand, brown clay and sandstone appears to overlie the water-bearing unit from surface to 200 feet.
 - First encountered water is 200 feet below land surface in "hard sandstone fractures" that is underlain by gray shale
 - Below the gray shale that did not produce water is gray clay layers, gravel layers and hard sandstone with fractures, most of which produce water
- Well C-3782 was drilled in 2015, lies about 4 miles to the northeast and has a detailed well log. This well shows
 - The same dry, clayey brown sand as described above to a depth of 260 feet
 - Water is observed in brown, fine sand and silty sand from 260 feet to 380 feet
 - Saturated gray fine sandy clay or clayey sand exist from 380 feet
 - At 760 feet the lithology is dominantly clay and red.
- Well C-3507 is 3 miles east of the containment and west of the Pecos River. We did not employ this well in our evaluation

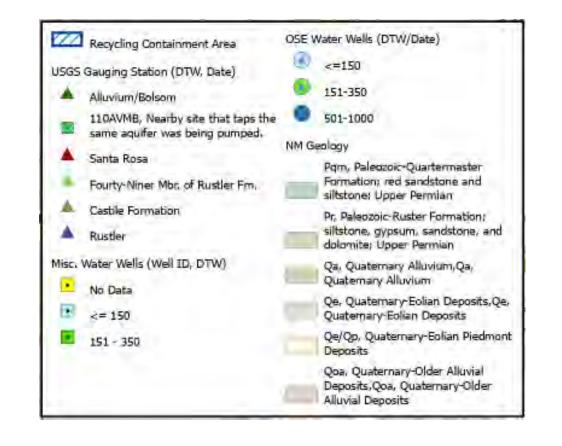
The data are too sparse to allow a confident conclusion, but these data and other data from nearby wells suggest that the Rustler is the aquifer beneath the containment and probably does not produce sufficient water for stock in this area. East of the containment it is possible

© R.T. HICKS CONSULTANTS, LTD

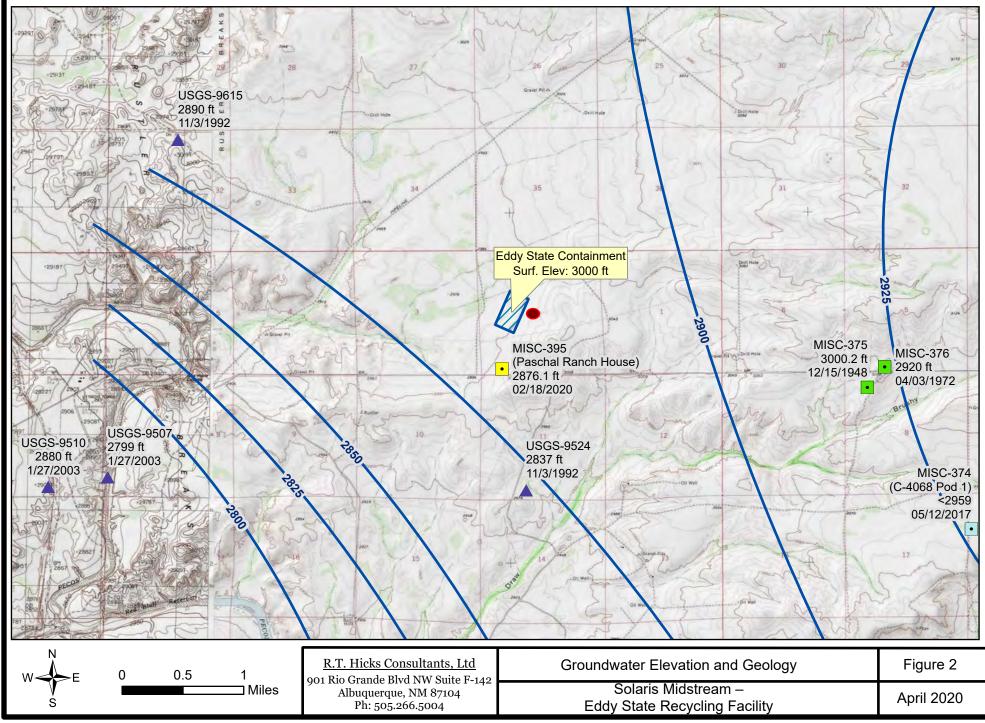
that the uppermost water bearing unit is the Gatuña Formation. Perhaps the Quartermaster is the gray silty sand/sandy clay unit observed from 320 feet 760 feet. The groundwater in this area does not appear to be under significant confining pressure based upon these available data.

Depth to Groundwater


We employed Google Earth and USGS topographic maps to identify locations of any nearby wells.


- We found no evidence of USGS-9524 in historic air photos or topographic maps
- We measured a depth to water of 134.9 feet in well just east of the ranch house to the south of the proposed containment. The grazing lessee indicated was recently drilled but did not produce sufficient water for stock and was not pumped as a result.
- We believe this well is USGS-9524 is mis-located in the USGS database and the correct location is an abandoned windmill at the ranch house.
- Figure 2 shows that the potentiometric surface beneath the containment is about 2880

The surveyed elevation of the Eddy State Containment is 3000 feet ASL. Thus, the estimated depth to water is (3000-2880) = 120 feet


Received by OCD: 2/27/2023 10:51:02 AM

$M: \label{eq:solaris} EddyState \label{eq:solaris} M: \label{eq:solaris} Solaris \label{eq:solaris} EddyState \label{eq:solaris} arcGIS proEddyState \label{eq:solaris} arcGIS proState \label{eq:solaris} arcGIS proStat$

<u>R.T. Hicks Consultants, Ltd</u>	Depth to Water and Geology	Figure 1a
901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Ph: 505.266.5004	Solaris Midstream – Eddy State Recycling Containment Facility	April 2020

 Alluvium/Bolsom Rustler 	Pqm, Paleozoic-Quartermaster Formation; red sandstone and siltstone; Upper Permian	
Misc, Water Wells (GW Elev, Date)	Pr. Paleozoic-Ruster Formation; siltstone, gypsum, sandstone, and dolomite; Upper Permian	
<= 150	Qa, Quaternary Alluvium,Qa, Quaternary Alluvium	
151 - 350	Qe, Quaternary-Eolian Deposits, Qe, Quaternary-Eolian Deposits	
Potentiometric Surface (ft msl)	Qe/Qp, Quaternary-Eolian Piedmont Deposits	
	Qoa, Quaternary-Older Alluvial Deposits, Qoa, Quaternary-Older Alluvial Deposits	

R.T. Hicks Consultants, Ltd	Groundwater Elevation and Geology	Figure 2a
901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Ph: 505.266.5004	Solaris Midstream – Eddy State Recycling Containment Facility	April 2020

Distance to Municipal Boundaries and Freshwater Fields

Figure 3 demonstrates that the area of interest is not within incorporated municipal boundaries or within defined municipal freshwater well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended

- The closest municipality is Malaga, NM, which is about 12 miles to the north west.
- The closest mapped well field is near Carlsbad, NM, which is approximately 21.5 miles to the northwest.

Distance to Subsurface Mines

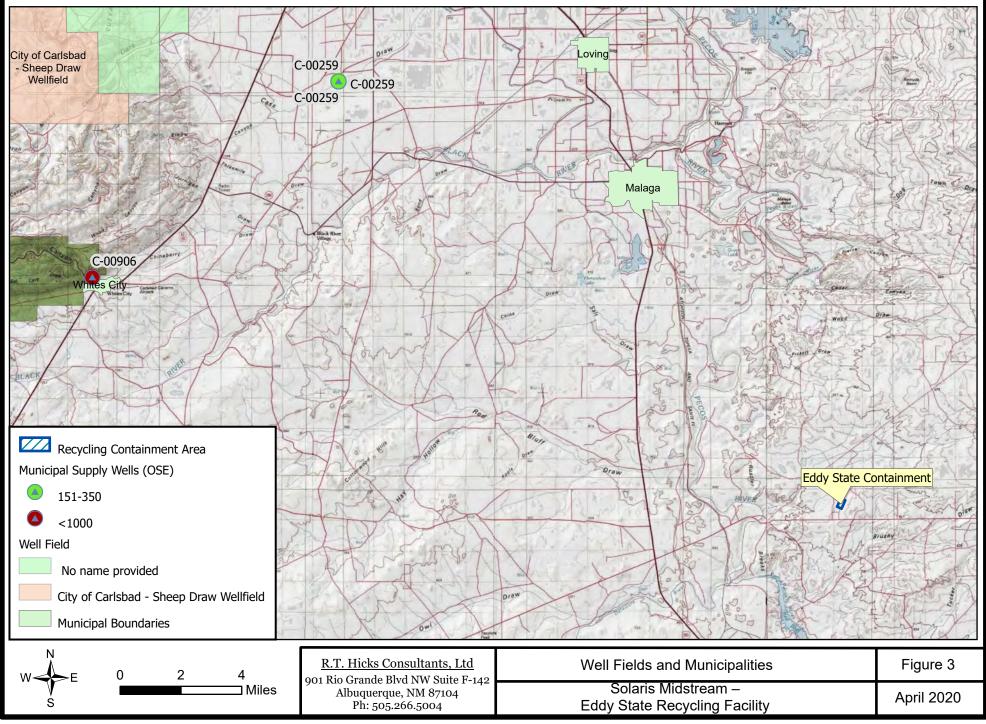
Figure 4 and our general reconnaissance of the area demonstrate the proximity of subsurface mines.

- The nearest mapped surface mine is a gravel pit and lies approximately 1.8 miles directly to the west.
- An unmapped, restored caliche pit is about 1.25 miles west-northwest of the proposed containment and is visible in Figure 8
- There are no subsurface mines in the area.

Distance to High or Critical Karst Areas

Figure 5 illustrates the Eddy State Recycling Facility's proximity to areas of high or critical karst potential.

- The proposed location for the recycling facility is wholly contained within an area considered medium karst potential by the Bureau of Land Management.
- Our field investigation identified caliche at the surface near the containment and this caliche layer is about 10 feet thick, based upon observations at the restored caliche pit mentioned above
- The well log for the adjacent Eddy State SWD shows the top of anhydrite at 1732 feet and the surface casing to protect fresh water set at 575 feet


We conclude that the soluble rock units of the Rustler that cause ground instability (e.g. anhydrite) or caverns are sufficiently deep that a classification of low karst potential may be warranted.

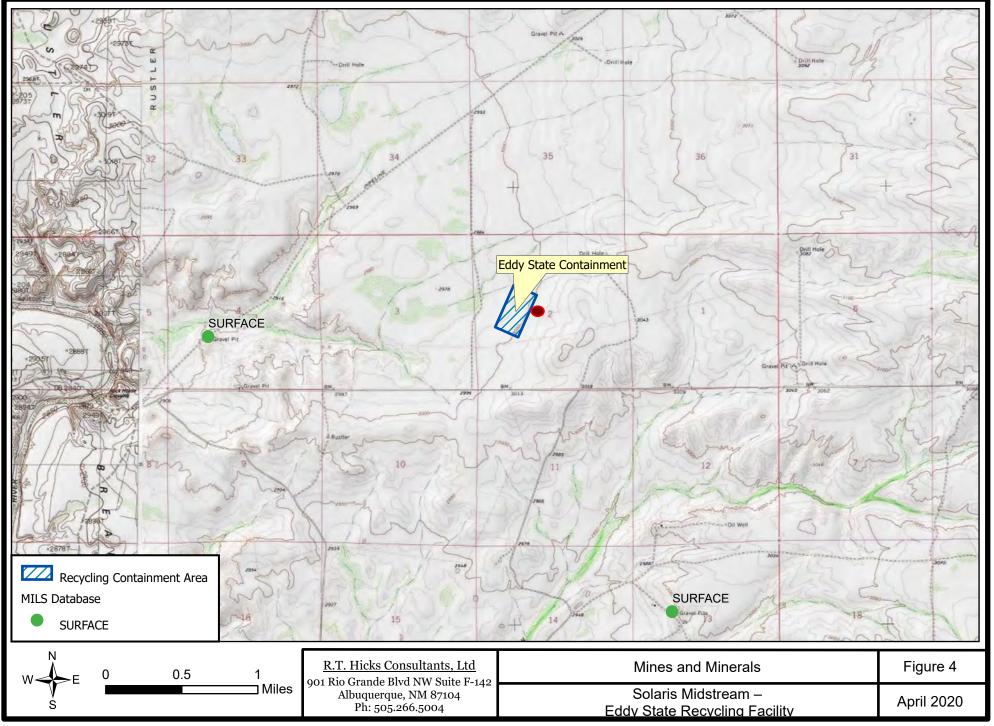
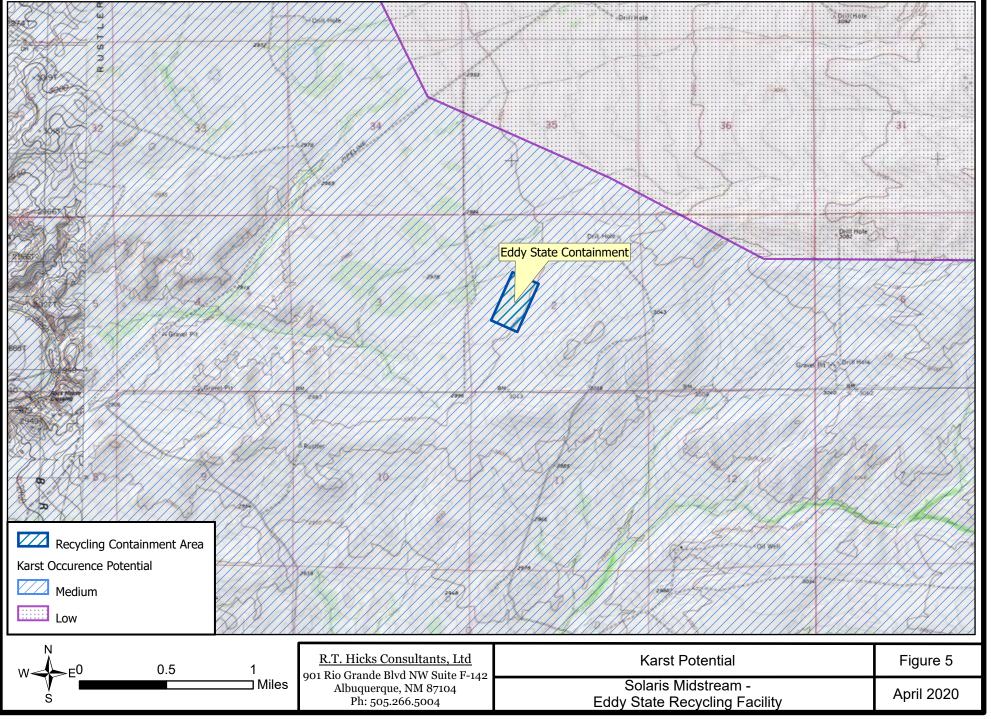
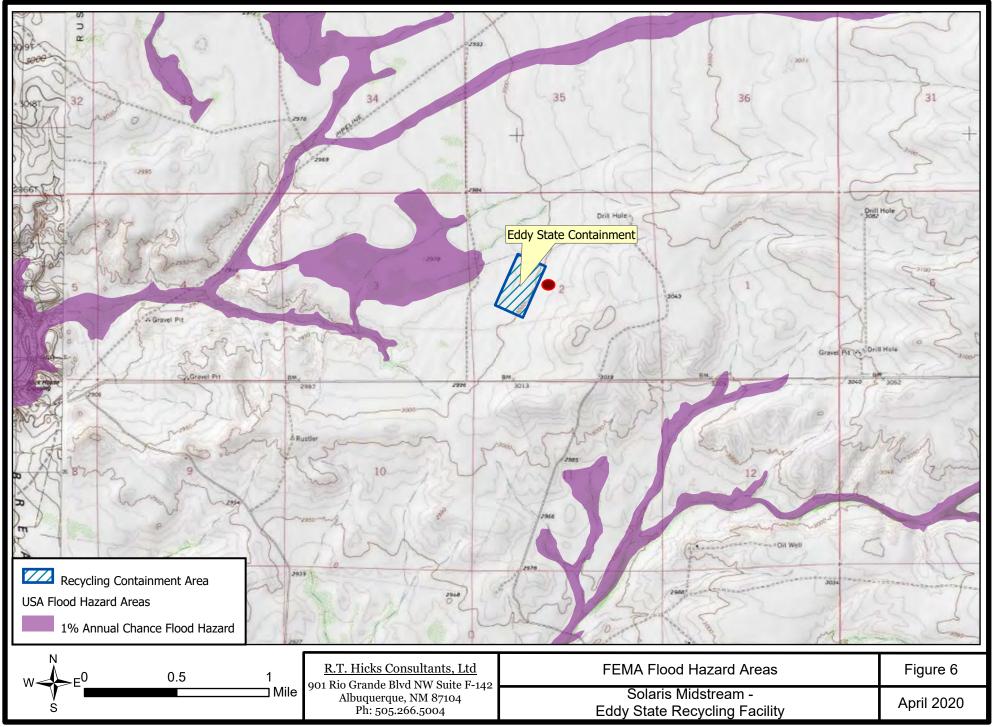

Distance to 100-Year Floodplain

Figure 6 demonstrates the proximity of 100-year flood plains with respect to the proposed location for the Eddy State Recycling Facility.


• The proposed location lies east of a 100-year flood plain the proposed location is not within a 100-year floodplain

$M:\Solaris\EddyState\arcGISproEddyState\arcGISproEddyState\arcGISproEddyState$



Released to Imaging: 3/13/2023 2:50:12 PM

Released to Imaging: 3/13/2023 2:50:12 PM

Released to Imaging: 3/13/2023 2:50:12 PM

Siting Criteria (19.15.34.11 NMAC)

Solaris Water Midstream- Eddy State Recycling Facility and Containment

Distance to Surface Water

Figure 7and 7a and the site visit demonstrate the proximity of the area of interest to a continuously flowing watercourse, lakebed, sinkhole, playa lake (measured from the ordinary high-water mark) or spring.

- The proposed location for the Eddy State Recycling Facility is about 260 feet from the nearest mapped intermittent streams
- As shown in the site photographs (Appendix X), numerous small drainages *without* a defined bed or bank flow into the mapped watercourse from within the footprint of the proposed containment.
- Many of the natural drainages shown in Google Earth images prior to August 8,2008 have been disturbed by
 - A pipeline installed prior to 5/8/2009
 - o Additional pipeline(s) installed prior to 11/5/2015
 - The lease road installed prior to the 4/22/2017 spud of the Eddy State SWD

All of these small channels that originate on a small alluvial fan at the foot of the small calichetopped hill to the east of the proposed containment become effectively "lost" as the slope decreases to the west and some small depressions with vegetation effectively capture the overland flow. Thus, there are no drainages with a defined bed and bank that connect to the mapped watercourse.

Regardless of the fact that these small drainages that exist within the footprint of the containments are not "significant watercourses " as defined by the Rule, the stamped plans of the NM Registered Engineer will provide for a diversion of overland flow via engineered swales and erosion of the levee around the containments is effectively mitigated.

Distance to Permanent Residences or Structures

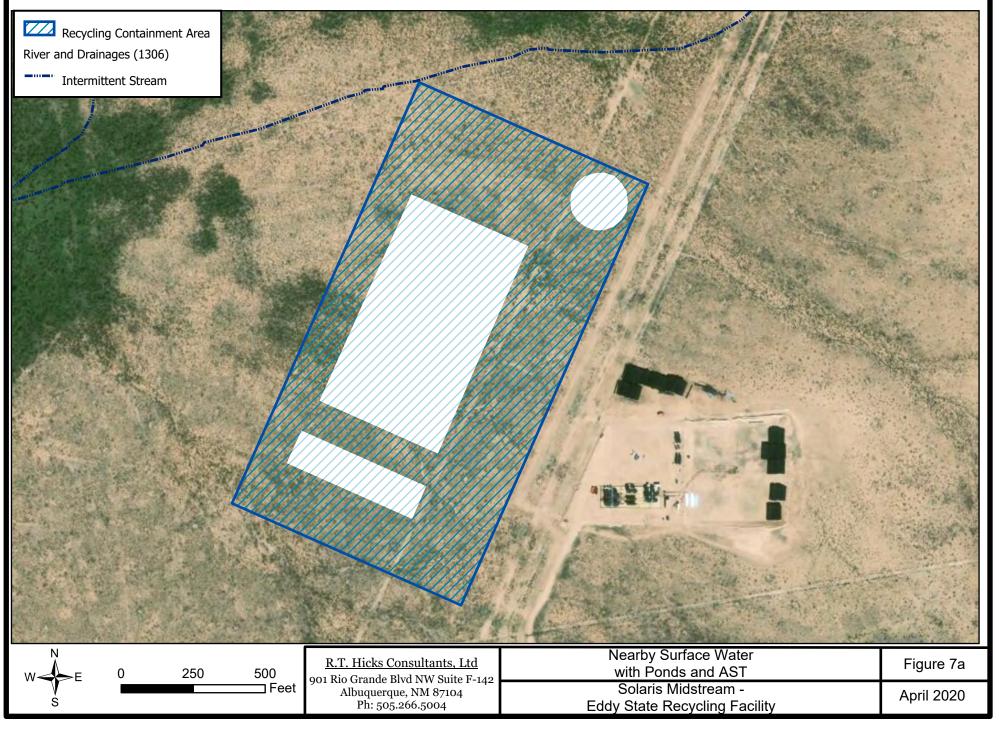
Figure 8 demonstrates the proximity of the proposed site for the Eddy State Recycling Facility to an occupied permanent residence, school, hospital, institution, church or other structure at the time of the initial application.

• The only structures near the proposed site are well pads and tank batteries.

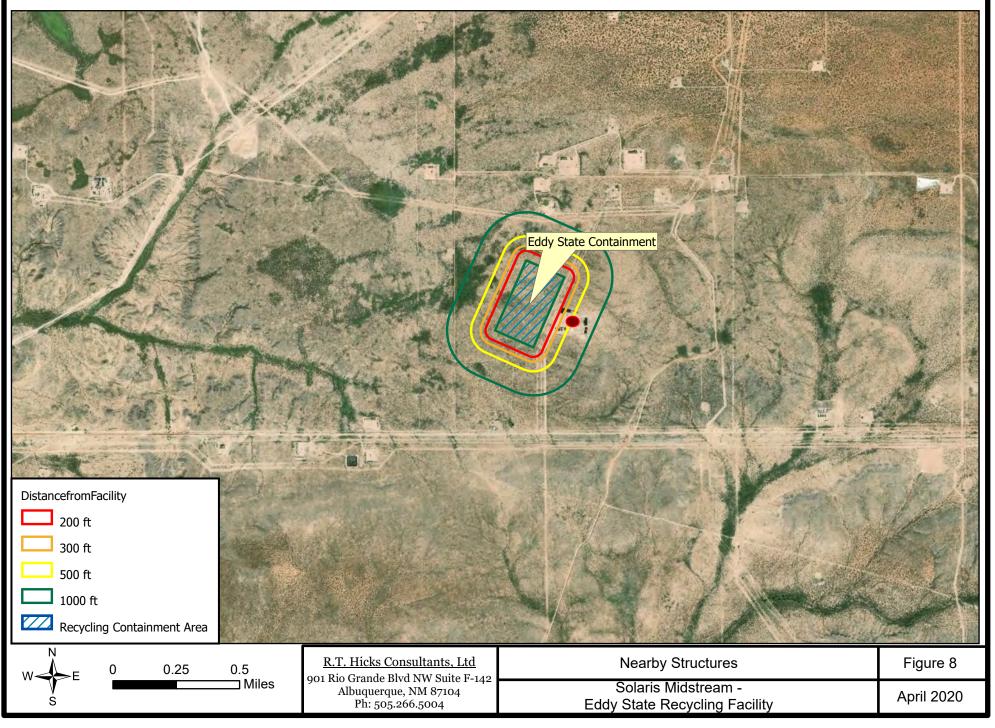

Distance to Non-Public Water Supply

Figures 1, 7, and 7a demonstrate the area of interest's proximity to a spring or freshwater well used for domestic or stock watering purposes, in existence at the time of initial application.

- Figure 1 shows the location of all area water wells. The nearest well is located just over 1700 feet to the south of the proposed site (MISC-395).
 - During the site visit, we encountered the lease owners and spoke with them about the well.
- No springs were identified in the area.


© R.T. HICKS CONSULTANTS, LTD

 $M:\Solaris\EddyState\arcGISpro$



Received by OCD: 2/27/2023 10:51:02 AM

M:\Solaris\EddyState\arcGISproEddyState\arcGISproEddyState.aprx

M:\Solaris\EddyState\arcGISproEddyState\arcGISproEddyState.aprx

Siting Criteria (19.15.34.11 NMAC) Solaris Water Midstream- Eddy State Recycling Facility and Containment

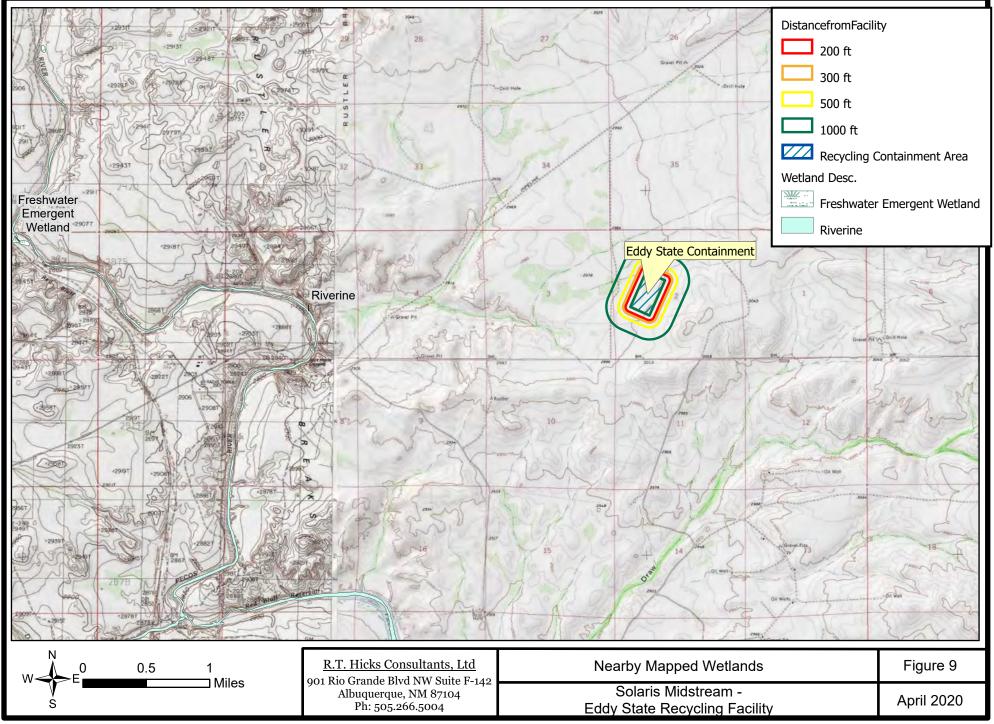

Distance to Wetlands

Figure 9 demonstrates the proximity of wetlands to the proposed site of the Eddy State Recycling Facility.

• The nearest mapped wetland is a riverine wetland that is approximately 2 miles due west from the proposed location of the recycling facility.

.

M:\Solaris\EddyState\arcGISproEddyState\arcGISproEddyState.aprx

.

APPENDIX OSE WELL LOGS

t.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

											<u> </u>	
								OSE FILE NUN				
NOI			- POD <u>1</u>	<u> </u>			_	C-3413				
AT	WELL OWN	ER NAME(S)	~ 1.	152 PANAR		. 00		PHONE (OPTI	ONAL)			
8	Ula	yory	Rockha	15 e refined	CAL	ØK	L/1].					
L L	WELL OWN	R MAILING	ADDRESS					CITY		STATE		ZIP
Ξ.	1)	0X U	u Deer	re CAN	spad,	pin 8	1220	CALS	had	nn	80	1220
10												
N	WELL			DEGREES	MINUTES	SECO						
٩L	LOCATIO	UA1	TUDE	32	03		Q N		REQUIRED: ONE TEN	VITH OF A SEC	OND	
GENERAL AND WELL LOCATION	(FROM GP	'S)	GITUDE	103	53	42.2	ø ^w	DATUM REG	QUIRED: WGS 84			
	DESCRIPTIC	ON RELATIN	G WELL LOCATIO	ON TO STREET ADDRES	S AND COM			500700	Cast of I	EDN/ 6	KOIT -	7224 =
<u>~</u>									145/ 0F 1	And a	· ~	/ /
	Well	LOCI	ated on	North Side	OF Pil	Peline	KOAD	, JUST	east of	0,1/94	<u>s Pac</u>	<u>d</u>
	(2.5 ACR)	5)	(IO ACRE)	(40 ACRE)	(160 A		SECTION		TOWNSHIP		RANGE	
	NE 14		E 1/4	SE 1/4	SE	14	0	5	265	NORTH S-SOUTH	30	East west
OPTIONAL	SUBDIVISIO						LOT NUM		BLOCK NUMBER	Dee ount	UNIT/TRA	
40	HYDROGRA	PHICSURVE	<u></u>	<u>.</u>			L	<u> </u>	MAP NUMBER		TRACT NL	IMBER
N	IIIDROOMA								Mai Moniber		TRACTING	AMBER
	LICENSE NUMBER NAME OF LICENSED DRILLER											
	WD-L DRILLING S	509		KOVBA (ED DEPTH OF COM	4K	CHAR	>0	AUREGA	ED BM	5 D.	RLG	-
			DRILLING END	ED DEPTH OF COM	LETED WEL	L (FT)	BORE HO	LE DÉPTH (FT)	DEPTH WATER FU			
z	06-03	3-11	06-08-1	מר ווי	o'		70	0'	200	/		
01					<u> </u>			<u> </u>	STATIC WATER LE	VEL IN COM	LETED WEL	L (FI)
INFORMATION	COMPLETEI	D WELL IS:	ARTESIAN	DRY HOLE	🔲 SHAI	LLOW (UNCO	ONFINED)		20			
OR	DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY;											
NF									1			
Ū,	DRILLING M	IETHOD:	ROTARY	HAMMER	HAMMER CABLE TOOL OTHER - SPECIFY:			R - SPECIFY:	TOPHI	DAE	DRI	<u>YE</u>
I I	DEPTH	I (FT)	BORE HOL	E 0	CASING			RECTION	INSIDE DIA.	CASING	WALL	SLOT
DRILLING	FROM	то	DIA. (IN)	M/	MATERIAL		TYPE	(CASING)	CASING (IN)	THICKN	ESS (IN)	SIZE (IN)
D P		700	12"	PV	PUC (SCA 40) G			IFD	0"	1/21		3000
		100			- (-)			<u> </u>	0			
}	┝╍╌──┝			<u>- }</u>					j			
				<u></u>								
											<u> </u>	
	DEPTH	I (FT)	THICKNES	8 FC					ATER-BEARING S		ļ	YIELD
ΤΛ	FROM	то	(FT)		(INCLUD	E WATER-	BEARING	CAVITIES O	R FRACTURE ZON	VES)		(GPM)
STRATA	200 .	255	55	SA	ND	STO	NE	WITT	+ FRAC	TUR	IES	35
S	285	320	45	4	- SA	NO						
WATER BEARING	7.20	360	40	XS	AMET		ATIN	NF	RACTU	REC		30
AR	5/0	<u>500</u>	140		GRA	-			AY .= N			
BE		050	1.10		-		115		ATION		La Lai	
LER.			L	WAT		340 10			·			
۲ <u>۷</u>	METHOD US	SED TO ESTU	MATE YIELD OF V	VATER-BEAR OF STRA		40 CD			TOTAL ESTIMATE	J WELL YIEL		
4. V	L I	1011	FR			<u>ZMENT</u>	oy ,				\mathcal{D}	
					INEES C	IF ENC	∛IS ──		· · · · · · · · · · · · · · · · · · ·			
	FOR OSE	INTERNAL	L USE		1 (12 and				WELL RECO	RD & LOG	(Version 6/	/9/08)
	·				PC	D NUMBE	RC-034	183-POD	1 TRN NUMBI	SR 47	6565	
	FILE NUMBER C-3483 POD NUMBER C-03483-POD1 TRN NUMBER 476565											
	LOCATIO	LOCATION 26.30.5.4442423 PAGE 1 OF 2										JI 2 I

	TYPE OF	7 PUMP-		SIBLE	☐ JET	NO PUMP - WELL NOT EQUIPPED					
IMU				E		OTHER – SPECIFY:	· · · · · · · · · · · · · · · · · · ·				
SEAL AND PUMP	ANNU	ILAR	DEPTH FROM	t (FT) TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METHO	-		
EAL	SEAL	AND	0	700	12"	3/8 ROUND GRAVEL		SHOW	EL		
5. SI	GRAVE	LPACK									
	DEPT	H (FT)	THICK			COLOR AND TYPE OF MATERIAL ENCOUNTE		WA1 BEAR			
	FROM	TO	(F))		(INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES)					
I	0	180	180	·	_SANO	ST BROWN CEAY		☐ YES	E NO		
		200	~ 0		Sauch	D STONE LAYER		VES.			
c	200	255	55		HARD	SAND STONE FRAC	TULES	VES			
-	<u>255</u>	265	10		GRAY		VES				
ELL.	265	275	10		SAN	O GRAYEL					
ΓŃ	215	285	_10		_GRA	GRAY CLAY WITH GRAVEL					
GOF	285	250	35	<u>,</u>	HARD	SAND STONE FRI	ACTURES	P YES			
c Log	<u>320</u>	360	40		<u> </u>	METORMATION		VES			
GEOLOGIC	<u>360</u>	445	<u>85</u> 65	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DRO	WN CLAY SHALE					
OLI	443	510		0	JF	AME FORMATION .	(and)				
6. GI	510	050	<u> </u>		GRAY	E MIXED WITH CL	AY GREEN				
-	650	100	50'		Proc	-C 101 - 260					
			FERF								
				. =	<u>280 TO 360</u> 500 TO 680	· •·					
	•				500 10 0000						
		<u> </u>									
			ATTACH		AL PAGES AS NI	EEDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL				
				BAILE		AIR LIFT OTHER - SPECIFY:					
INFO	WELL	. TEST	METHOD:				NCI UDING START TI		ME		
AL IN			AND A TAE	BLE SHOWN	CH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING START TIME, END TIME, NG DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.						
	ADDITION	NAL STATEM	IENTS OR EXPL	ANATIONS:							
7. TEST & ADDITION	Wo	II Lm	at an	Nort	C-de a	F Pipeline ROAD. D.S.	miler eas	t aE			
s AD	. C.		-411011	• •••••		Moune Road , 6.3	THES EAC				
ST &	L E	1 Pas	o Nay	ural	Gas Wo	11 (-1361.					
, TE			·	·							
	<u> </u>										
E	THE UN	DERSIGN	ED HEREBY (CERTIFIES 1 SOME DESCI	THAT, TO THE BI	EST OF HIS OR HER KNOWLEDGE AND BELIE D THAT HE OR SHE WILL FILE THIS WELL RE	F, THE FOREGOING IS CORD WITH THE STA	S A TRUE A ATE ENGINE	ND EER AND		
SIGNATURE	THE PE	BUIT HOU	DER WITHIN	2010AYS A	FTER COMPLET	ION OF WELL DRILLING:					
AND NO			ĩ۲ –	V		7-11/11					
8. SI	K K	NU	SIGNATU		EPac 1107 1	<u> </u>					
	<u> </u>				ERINC 110Z 1		··········				
				u na iti di	STATE ENGIN	\					
	FOR OS	E INTERN	DUI AL USEIGL	HEER OFF	IDNE ENCIN	v i	ELL <u>RECORD & LOG (</u>	Version 6/9/0)8)		
							N NUMBER 476	565			
	LOCATION 26-30-54442423 PAGE 2 OF 2										

•

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

STATE ENGINEER OFFICE ROSWELL MELATEXICO

Z	POD NUME			мвек) 7- <i>100_</i> 1				OSE FILE NUM	ABER(S) ZUII SE	P 12 F	> 2: 3	5	
GENERAL AND WELL LOCATION	WELL OW	VER NAM	1E(S)		•			PHONE (OPTIC	ONAL)				
ğ	M. BRA												
GLL	WELLOW			ADDRESS					,	state TX	70	ZIP 0710	
	F.O. BC		510		<u>_</u>						5710		
	WELL	.			DEGREES	MINUTES SECONDS							
VI'	LOCATI		LATI	TUDE	32	4	2.04 N	J	REQUIRED: ONE TEN	ITH OF A SEC	COND		
ER	(FROM G	iPS)	LON	GITUDE	104	0 5	60.52 W	• DATUM REC	UIRED: WGS 84				
1. GEI	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS												
<u> </u>	(2.5 ACF	LE)	((10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP		RANGE		
	NW >		N	W 14	SW 1/4	SW 1/4	5	5	26		29	EAST WEST	
OPTIONAL	<u> </u>	SUBDIVISION NAME						IBER	BLOCK NUMBER		UNIT/TRA		
2. OP	HYDROGR	APHIC SU	JRVE	Ŷ	<u>.</u>	······································	1		MAP NUMBER		TRACT NU	JMBER	
	LICENSE N				INSED DRILLER				NAME OF WELL DR				
Į		1058	1	CLINTON	_				KEYS DRILL	-		SVC.	
	DRILLING)	DRILLING END	DED DEPTH OF COM	PLETED WELL (FT)		LE DEPTH (FT)	DEPTH WATER FIR		TERED (FT)		
No 1	8/2	6/11		8/26/11		140		140		78			
DRILLING INFORMATION	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)							STATIC WATER LE	78 vel in com	PLETED WEI	եե(Բք) ։		
VFOH	DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY:												
10	DRILLING	METHOD):	ROTARY	HAMMER			ER – SPECIFY:					
- F	DEPT	H (FT)		BORE HOL		CASING		NECTION	INSIDE DIA.		I WALL	SLOT	
R I	FROM	ТО		. DIA. (IN)	M	ATERIAL	ТҮРЕ	(CASING)	CASING (IN)		ESS (IN)	SIZE (IN)	
~ i	-2	20		12 1/4	···	PVC			10"		/4		
}	-2	72	+	8 3/4		PVC			6" 6"		H40	BLANK	
ł	75 112	112 140		<u>8 3/4</u> 8 3/4		PVC PVC	· · ·		6"		H40 H40	.030 BLANK	
	<u> </u>		<u> </u>		<u> </u>		<u> </u>		·····				
2	FROM	H (FT) TO	-	THICKNES (FT)	S F	ORMATION DESCRIE (INCLUDE WATER		-				YIELD (GPM)	
	78	79		1		······································	GRA	Y SHALE				15	
ST	105	106		1				LOMERATE				20	
BEARING STRATA						<u></u>				,			
EAF													
									· · · · · · · · · · · · · · · · · · ·				
ATE	METHOD L	ISED TO H	ESTIN	ATE YIELD OF	WATER-BEARING STR	АТА			TOTAL ESTIMATED	WELL YIEL	D (GPM)		
4. WATER	AIR 35												
J J	· · · · · · · · · · · · · · · · · · ·			· · ·				· · · -					

 FOR OSE INTERNAL USE
 WELL RECORD & LOG (Version 6/9/08)

 FILE NUMBER
 C - 3507
 POD NUMBER
 C - 03507 - PoD 4
 TRN NUMBER
 482722

 LOCATION
 26.29.5
 331144
 PAGE 1 OF 2

L

. |

JMP	TYPE O	7 PUMP:	USUBMERSIBLE		D JET CYLINDER	☑ NO PUMP – WELL NOT EQUIPPED ☐ OTHER – SPECIFY:	`		
SEAL AND PUMP	ANNULAR		DEPTH (FT) FROM TO		BORE HOLE DIA, (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METHO PLACE	
SEAL	SEAL GRAVEI	AND .	0 ·	,20	12-1/4"	CEMENT		НА	ND
5.5						·			
	DEPTI		тніск	NESS		COLOR AND TYPE OF MATERIAL ENCOUNT	ERFD		
	FROM	то	(F		1	(INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES)			ING?
	0	5	5	5		TOP SOIL			
	5	10	Ę	5		RED SAND		S YES	Ø NO
	10	25	15			CALICHE		The second secon	NO 🖸
	25	50	25			RED CLAY		Q YES	Ø NO
ILL.	50	106	5			GRAY SHALE	•	🛛 YES	
W.E	106	110	4			GRAY CLAY		☐ YES	Ø NO
0 0	110	140	2	5		RED CLAY			
010								YES	
90010								TYES	
EOL								VES	
6. GEOLOGIC LOG OF WELL									
								YES	
								VES	
	ATTACH ADDITIONAL PAGES AS NEEDED TO FULLY DESCRIBE THE GEOLOGIC LOG OF THE WELL								
0		·	METHOD:	BAILE		AIR LIFT OTHER - SPECIFY:			
ADDITIONAL INFO	WELL	TEST	TEST RESU AND A TAE	LTS - ATTA BLE SHOWII	CH A COPY OF D NG DISCHARGE A	ATA COLLECTED DURING WELL TESTING, I ND DRAWDOWN OVER THE TESTING PERIO	NCLUDING START T	IME, END TI	ME,
ONA	ADDITION	AL STATEM	IENTS OR EXPL	ANATIONS:					
DITI									
& AD									
TEST 6									
7. TE									
SIGNATURE	CORREC	T RECOR	D QF THE AB	OVE DESCI	RIBED HOLE AND	ST OF HIS OR HER KNOWLEDGE AND BELIE) THAT HE OR SHE WILL FILE THIS WELL RE ON OF WELL DRILLING:			
NAT	THETEN	~				$\mathbf{\hat{\mathbf{A}}}$			
		\mathcal{O}	$v \sim r$		9-12-11				
8.			SIGNATUR	E OF DRILI	.er	DATE			

FOR OSE INTERNAL USE	WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER C-3507	POD NUMBER (-03507. POD TRN NUMBER 4	B2722
LOCATION 26.29.5. 331144	-	PAGE 2 OF 2

Locator Tool Report

General Information:

Application ID:29 Date: 10-19-2011 Time: 13:47:26

WR File Number: C-03507-POD1 Purpose: POINT OF DIVERSION

Applicant First Name: BRAD BENNETT Applicant Last Name: STOCK WELL #2 (WELL LOG COORDINATES)

> GW Basin: CARLSBAD County: EDDY

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

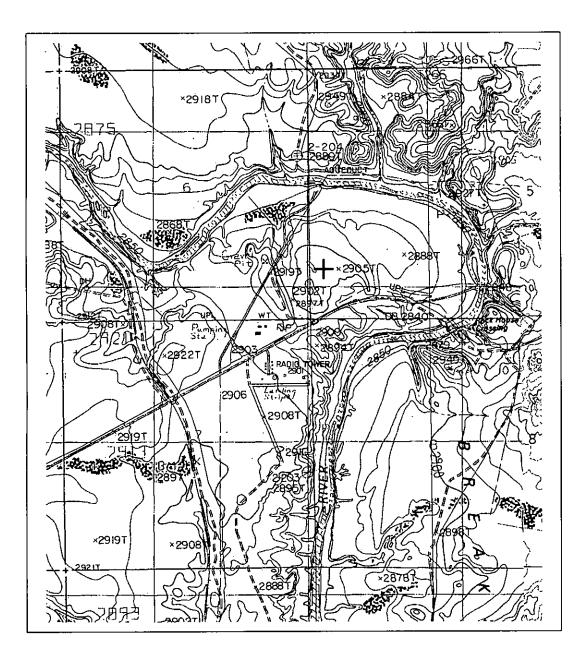
NW 1/4 of NW 1/4 of SW 1/4 of SW 1/4 of Section 05, Township 26S, Range 29E.

Coordinate System Details:

Geographic Coordinates:

Latitude: 32 Degrees 4 Minutes 2.0 Seconds N Longitude: 104 Degrees 0 Minutes 50.5 Seconds W

Universal Transverse Mercator Zone: 13N


NAD 1983(92) (Meters)	N: 3,548,313	E: 593,064
NAD 1983(92) (Survey Feet)	N: 11,641,424	E: 1,945,744
NAD 1927 (Meters)	N: 3,548,112	E: 593,112
NAD 1927 (Survey Feet)	N: 11,640,764	E: 1,945,901

State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 118,367	E: 195,147
NAD 1983(92) (Survey Feet)	N: 388,343	E: 640,245
NAD 1927 (Meters)	N: 118,350	E: 182,594
NAD 1927 (Survey Feet)	N: 388,286	E: 599,059

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

 WR File Number: C-03507-POD1
 Scale: 1:24,574

 Northing/Easting: UTM83(92) (Meter):
 N: 3,548,313
 E: 593,064

 Northing/Easting: SPCS83(92) (Feet):
 N: 388,343
 E: 640,245

 GW Basin: Carlsbad
 E: 640,245
 E: 640,245

Page 2 of 2

Print Date: 10/19/2011

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	1912						S	TATE ENGINE	ROFFI	CE.	
	POD NUME					· · · ·	OSE FILE NUN	ABER(S)			
Nö	1: 6	-03	508-POD	1			C 03508	2011 SEP 121	P 2: 3	35	
Εv	WELL OWN	NER NAME	(S)	•		· <u> </u>	PHONE (OPTIC				
ğ	M. BRA	D BEN	NETT					· · · ·			
רדו			NG ADDRESS								ZIP
WE	P.O. BC	DX 5151	10					•	X	79	9710
	WELL	L	_	DEGREES	MINUTES S	ECONDS					
AL /	LOCATI		LATITUDE	32	4	3.60 N		REQUIRED: ONE TEN	TH OF A SEC	COND	
GENERAL AND WELL LOCATION	(FROM G	GPS)	LONGITUDE	104	0	50.52 W		QUIRED: WGS 84			
GEI	DESCRIPT	10N RELA	TING WELL LOCATION	N TO STREET ADDRE	SS AND COMMON LA	NDMARKS					
÷											
	(2.5 ACI	RE)	(10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP	<u> </u>	RANGE	
LL I	NW,	4	NW 1/4	SW 1/2	SW 1/2	5		26		29	
NO	SUBDIVIŠI			<u> </u>		LOT NUN	ABER	BLOCK NUMBER	~~~	UNIT/TRA	
OPTIONAL											
2.0	HYDROGR	APHIC SUI	RVEY					MAP NUMBER		TRACT NU	JMBER
	LICENSE N		NAME OF LICEN								210
		1058	CLINTON K		PLETED WELL (FT)	L BORE HO	LE DEPTH (FT)	KEYS DRILL			300.
	DRILLING	4/11	8/24/11	DEPTHOPCOM	140		140	DEFIN WATER IN	75		
0E								STATIC WATER LEY	VEL IN COM	PLETED WEI	.l. (FT)
DRILLING INFORMATION	COMPLETE	ED WELL I	S: ARTESIAN	DRY HOLE	DRY HOLE SHALLOW (UNCONFINED)			75			
(FOI	DRILLING	FLUID:	✓ AIR			- SPECIFY:			<u>, , , , , , , , , , , , , , , , , , , </u>		
C D	DRILLING	METHOD:		HAMMER	CABLE TOO	. 🗌 отн	ER – SPECIFY:				
T	DEPT	H (FT)	BORE HOLE		CASING	CON	NECTION	INSIDE DIA.		G WALL	SLOT
DRI	FROM	TO	DIA. (IN)	м	ATERIAL	ТҮРЕ	(CASING)	CASING (IN)	THICKN	IESS (IN)	SIZE (IN)
mi	-2	20	12 1/4		PVC			10"		1/4	
	-2	65	8 3/4		PVC PVC		PLINE	6" 6"		:H40 H40	BLANK .030
	65 105	105 140	<u> </u>		PVC PVC			6"		H40	BLANK
		L	<u></u>			!		· · ·	t		
Y	FROM	TH (FT) TO	THICKNESS (FT)	F F				ATER-BEARING S R FRACTURE ZON			YIELD (GPM)
RAT	75	76	1			GRA	Y SHALE	· · · · · · · · · · · · · · · · · · ·	·. ·		40
5 ST			-								
SUN											
EAI											
CR B											
WATER BEARING STRATA	METHOD U	USED TO E	STIMATE YIELD OF W	ATER-BEARING STR	ATA			TOTAL ESTIMATED		.D (GPM)	
AIR 40											
L							· · · · · · · · · · · · · · · · · · ·			······	

FOR OSE INTERNAL USE		WELL RECORD & LOG (Version 6/9/08)
FILE NUMBER C-3508	POD NUMBER (-03508-POD1	TRN NUMBER 482723
LOCATION 26.29.5.33/123		PAGE 1 OF 2

5

•

ЧР	TYPE O	F PUMP:			D JET	OTHER - SPECIFY:				
SEAL AND PUMP		ANNULAR SEAL AND GRAVEL PACK -		DEPTH (FT) FROM TO		MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METH		
S. SEAL	SEAL			20	12-1/4"	CEMENT		НА	ND	
	DEPTH (FT)		THICKNESS			COLOR AND TYPE OF MATERIAL ENCOUNT	ERED		=	
	FROM	то	(FI			(INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES)				
	0	5	5	;		TOP SOIL		T YES	NO 🖸	
	5	10	5	5		RED SAND	<u> </u>	T YES	NO 🖸	
	10	20	1(<u> </u>		CALICHE		T YES	Ø NO	
	20	45	2	5		RED CLAY		T YES	Ø NO	
E	45	95	5			GRAY SHALE		VES YES		
* WELL	95	115	20	·		CONGLOMERATE				
G OF	115	140	2	5		RED CLAY		□ YES	NO NO	
GEOLOGIC LOG										
J DO										
501.0								VES		
6. GI			· · · ·							
			.				· · · · · · · · · · · · · · · · · · ·			
	[<u> </u>								
				_						
		<u> </u>						☐ YES		
		<u> </u>						I YES		
			ATTACH	ADDITION	AL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL	•		
	1		METHOD:		AIR LIFT OTHER - SPECIFY:			<u></u> ,		
T INFO	WELL	, TEST				ATA COLLECTED DURING WELL TESTING, AND DRAWDOWN OVER THE TESTING PERI		IME, END TI	ME,	
ADDITIONAL IN	ADDITION	NAL STATE	MENTS OR EXPL	ANATIONS:			· · · · · · · · ·			
DITIO										
& AD										
						· · ·				
7. TEST										
=	<u> </u>									
RE	CORREC	CT RECOR	D OF THE AB	OVE DESC	RIBED HOLE AND	ST OF HIS OR HER KNOWLEDGE AND BELI) THAT HE OR SHE WILL FILE THIS WELL R	EF, THE FOREGOING ECORD WITH THE ST.	IS A TRUE A ATE ENGINI	nd Eer and	
1 DI V	THE PER	RMIT HOL	DER WITHIN	20 DAYS A	FTER-COMPLETIC	ON OF WELL DRILLING:				
SIGNATURE			CV	\sim		9-9-11				
80 S			SIGNATUR	E OF DRIL	LER DATE					
	_ _						· · · · · · · · · · · · · · · · · · ·			

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER (~3508	POD NUMBER (- 03508 - POD_1	TRN NUMBER 482	.723
LOCATION 26.29.5. 33/123			PAGE 2 OF 2

Locator Tool Report

General Information:

Application ID:29 Date: 10-19-2011 Time: 13:51:29

WR File Number: C-03508-POD1 Purpose: POINT OF DIVERSION

Applicant First Name: BRAD BENNETT Applicant Last Name: STOCK WELL #1 (WELL LOG COORDINATES)

> GW Basin: CARLSBAD County: EDDY

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

NW 1/4 of NW 1/4 of SW 1/4 of SW 1/4 of Section 05, Township 26S, Range 29E.

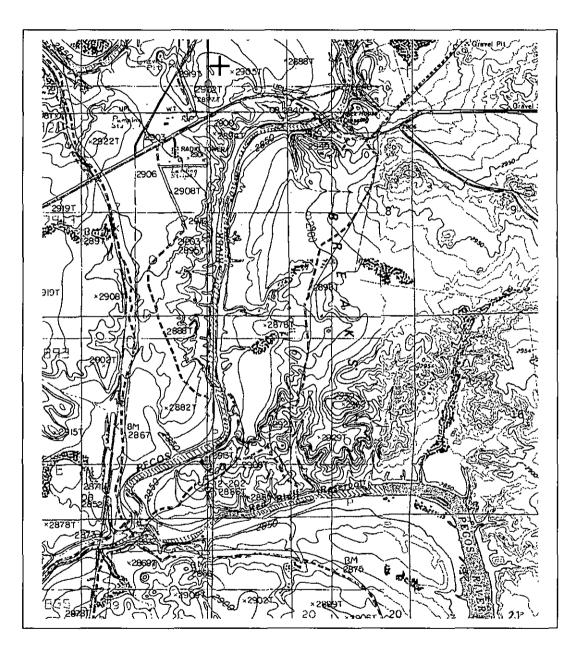
Coordinate System Details:

Geographic Coordinates:

Latitude:	32 Degrees	4 Minutes	3.6 Seconds	N
Longitude:	104 Degrees	0 Minutes	50.5 Seconds	W

Universal Transverse Mercator Zone: 13N

NAD 1983(92) (Meters)	N: 3,548,361	E: 593,063
NAD 1983(92) (Survey Feet)	N: 11,641,582	E: 1,945,742
NAD 1927 (Meters)	N: 3,548,160	E: 593,111
NAD 1927 (Survey Feet)	N: 11,640,922	E: 1,945,899


State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 118,415	E: 195,147
NAD 1983(92) (Survey Feet)	N: 388,501	E: 640,244
NAD 1927 (Meters)	N: 118,398	E: 182,594
NAD 1927 (Survey Feet)	N: 388,443	E: 599,059

.

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

 WR File Number: C-03508-POD1
 Scale: 1:30,245

 Northing/Easting: UTM83(92) (Meter):
 N: 3,548,361
 E: 593,063

 Northing/Easting: SPCS83(92) (Feet):
 N: 388,501
 E: 640,244

 GW Basin: Carlsbad
 E: 640,244
 E: 640,244

Page 2 of 2

Print Date: 10/19/2011

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

								and the second second				en diatente e e
. 7	OSE POD NU				e			OSE FILE NU		Penui) (mBere	d
IO	POD-1 WELLOWN	EP NAN	<u>enu</u>	mBered c	<u> </u>	002		PHONE (OPTI	Rx Ploratory	<u>) (</u>	-385	2
CAD	BOPCO,		ш(в)					(817) 390	•			
LC LC	WELL OWN		LING A	DDRESS				CITY		STATE		ZIP
GENERAL AND WELL LOCATION	201 N M	ain St	Suite		· .			Fort Wort	h	ТХ	761	D2
	WELL			DEGREES 32	MINUTES 05	SECONE 40.1	DS				~ ~ ~ ~	
AL.	LOCATIO	H	LATTI	UDE			<u>N</u>	-	' REQUIRED: ONE TEN QUIRED: WGS 84	H OF A SEU	JOND	
VER	(FROM GI			ITUDE 103	53	32.2	w					
E	DESCRIPTIO	N RELAT	ING WEL	LL LOCATION TO STREE	TADDRESS AND COMMO	N LANDMARKS - PLS	S (SECTION, T	OWNSHJIP, RANG	E) WHERE AVAILABLE			
	SW1/4SE	1/45	N1/49	SW1/4 of Sectio	n 28, Township :	25 South, Rang	ge 30 East	, in the NE (corner of a well p	ad.		
	LICENSE NU	MBER		NAME OF LICENSED		······································			NAME OF WELL DRI		ÍPANY	
	331			Joel H. Stewart					SBQ Drilling, LL			
	DRILLING S 01-16-15			DRILLING ENDED 1-17-15	DEPTH OF COMPLETE 805	ED WELL (FT)	BORE HOI ±805	LE DEPTH (FT)	DEPTH WATER FIRS	T ENCOUN	TERED (FT)
z	COMPLETE	D WELL	.1S: (ARTESIAN	C dry hole C	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COM	PLETED WI	ELL (FT)
CASING INFORMATION	DRILLING F	LUID:	(• MUD	ADDITIVES - SPI	ECIFY:		I			•
MA	DRILLING N): (ROTARY	C HAMMER C	CABLE TOOL	О отне	R - SPECIFY:				
FO	DEPTH				CASING MATE		1	SING	CASING			
Ц С	FROM	T		BORE HOLE DIAM	GRA	GRADE CO.			INSIDE DIAM.		G WALL KNESS	SLOT SIZE
SIN				(inches)	(include each can note sections		Т	YPE	(inches)	(inc	hes)	(inches)
& CA	0	270)	14.75	ASIM A53B		Welded	1	8.625	0.322		33
U V	270	805		14.75	304 Stainless S	teel	Welded	t	8.625	0.25	لداب المانية	∈ 17,16
2. DRILLING	0	15		19	ASIM A53B			•=	16	0.25	5	
DRI		 									<u> </u>	<u></u>
										ļ	-	
i i									· ·		<u>2 (</u> w	<u></u>
						······					1.00	
	DEPTH	(feet b	gl)	BORE HOLE		NULAR SEAL M			AMOUNT		METHO	
IAL	FROM	T	-	DIAM. (inches)		ACK SIZE-RANG	E BY INTE	RVAL	(cubic feet)		PLACE	
TER	0	120		14.75	Sand Mix Read	-			90.36			ie meas.
ANNULAR MATERIAL	120	170		14.75	Hydrated Bent				35.90 grav. trem			
AR	170	805		14.75	6/9 Silica Sand				455.95		emie Pip)ê
IN .												
eri												
			7017	ρ ρ	d from (-3	707 .0-	<u>.</u> 1					a/aa`
FOR • 117	USE INTER		JSE	<u>Kenumbere</u>	a trom C-3	POD NIMBED	<u> </u>	WR-2 די א פיד ר	0 WELL RECORD & NUMBER $\zeta \zeta \zeta$	د LOG (Ve	ersion 06/(18/2012)
1.00	ATION	<u> </u>	283	2. 28.334	~~		POD			125	PAGE	1 OF 2
200		45 .	50.	20.334	3						1 HOL	

•

	DEPTH (i	feet bgl) TO	THICKNESS (feet)	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)					
	υ	30	30	Cemented Sand	light tan, sub-angular					
· · · -	30	40	10		prown, sub-angular		OY ON			
1	40	60	20	Sandy Site, light L			OY ON			
-	60	80	20		prown, sub-angular					
.	80	250	170		Sand, light tan, sub-angular t	o rounded				
	250	250	10	Clayey Sand, bro		orounaca	$\begin{array}{c c} O & Y & O & N \\ \hline O & Y & O & N \\ \hline \end{array}$			
ELL	250	320	60	Fine Sand, light t			Navel Savel			
HYDROGEOLOGIC LOG OF WELL										
00	320	380	60		hish gray, sub-angular					
3	380	410	30	Fine Sand, dark g			NG/ No/			
GIC	410	530	120		, dark gray, sub-angular		New New Z			
0I0	530	590	60		gray, sub-angular					
B	590	600	10	Clayey Fine Sand	, dark gray, sub-angular		● Y O N			
DRC	600	630	30	Sandy Clay, dark	gray, sub-angular		● ^Y C ^N			
	630	650	20	Clayey Sand, dar	k gray, sub-angular		OY CN			
4	650	700	50	Sandy Clay, dark	gray, sub-angular		● Y C N			
	700	710	10	Clayey Sand, bro	wn and gray, sub-angular		● Y O N			
	710	760	50	Sandy Clay, dark	gray, sub-angular		● ^Y C ^N			
	760	770	10	Clay, 75% gray, 2	5% red		● ^Y C ^N			
	770	780	10	Clay, 50% gray, 5	0% red		● ^Y O ^N			
	780	790	10	Clay, 25% gray, 7	5% red		• Y C N			
	790	805	15	Sandy Clay, Gray	ish red, 10% white sand.		● ^Y C ^N			
·· . [METHOD U	ISED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA: 🔿 PUMP		TAL ESTIMATED	TBD		
		r C	BAILER 💽	OTHER - SPECIFY:	TBD by pump test	w	ELL YIELD (gpm):			
NO	WELL TES	T TEST STAR	RESULTS - ATT I TIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SI	TA COLLECTED DURING WELL T HOWING DISCHARGE AND DRA	TESTING, INCLU WDOWN OVER 1	DING DISCHARGE N HE TESTING PERIO	AETHOD, ST		
ISIA	MISCELLA	NEOUS INF	ORMATION:				h hann a bha sa sain inn ann an sa	a In		
ER	Pump tes	st will be p	performed at a	a later time.						
SUI	Hydrated	l Bentonit	e Chips and S	and Mix Ready Mix	were placed by gravity and	tagged with tre	emie pipe.			
TEST; RIC SUPERVISION										
:LSI	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:									
5. TI							t,	4		
	ッ Silverio Galindo, Gabriel Armijo, Pedro Pizano の の の の の の の の の の の の の の の の の の の									
THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING: 2 - 13 - 15										
GN		1 11	A		111 16 6	7	1			
6. S]										
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME		DATE			
FOR	OSE INTER	NAL USE	······································			WR-20 WELL F	ECORD & LOG (Ver	sion 06/08/2012)		
	NUMBER	(-383	2		POD NUMBER POD 2		555125	·····		
LOC	LOCATION 25.30.28.3343 PAGE 2 OF 2									

Received by OCD: 2/27/2023 10:51:02 AM

Locator Tool Report

General Information:

Application ID:27

Date: 05-28-2015

Time: 12:01:24

WR File Number: C-03782-POD1 Purpose: POINT OF DIVERSION

Applicant First Name: BOPCO EXPLORATORY WELL DRILLERS RECORD Applicant Last Name: RENUMBERED C-3832-POD2

> GW Basin: CARLSBAD County: EDDY

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

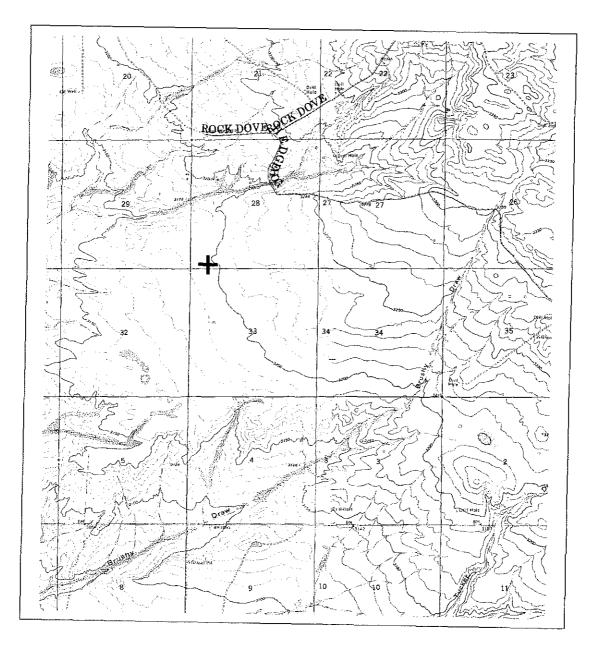
SW 1/4 of SE 1/4 of SW 1/4 of SW 1/4 of Section 28, Township 25S, Range 30E.

Coordinate System Details:

Geographic Coordinates:

Latitude:	32 Degrees	5 Minutes	40.1 Seconds	Ν
Longitude:	103 Degrees	53 Minutes	32.2 Seconds	W

Universal Transverse Mercator Zone: 13N


NAD 1983(92) (Meters)	N: 3,551,444	E: 604,526
NAD 1983(92) (Survey Feet)	N: 11,651,697	E: 1,983,348
NAD 1927 (Meters)	N: 3,551,243	E: 604,573
NAD 1927 (Survey Feet)	N: 11,651,036	E: 1,983,505

State Plane Coordinate System Zone: New Mexico East

NAD 1983(92) (Meters)	N: 121,428	E: 206,630
NAD 1983(92) (Survey Feet)	N: 398,385	E: 677,920
NAD 1927 (Meters)	N: 121,410	E: 194,077
NAD 1927 (Survey Feet)	N: 398,327	E: 636,734

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

 WR File Number: C-03782-POD1
 Scale: 1:47,832

 Northing/Easting: UTM83(92) (Meter):
 N: 3,551,444
 E: 604,526

 Northing/Easting: SPCS83(92) (Feet):
 N: 398,385
 E: 677,920

 GW Basin: Carlsbad
 E: 604,526
 E: 677,920

Page 2 of 2

Print Date: 05/28/2015

Received b	y O	CD:	2/27/	2023 1	0:51	:02 AM
------------	-----	-----	-------	--------	------	--------

NM OIL CONSERVATION ARTESIA DISTRICT

.

									AKIE	SIA	DISTRICT					
Submit To Appropr Two Copies	riate Distri	ct Office				State of Ne			IUN	3	0 2018					orm C-105
District I 1625 N. French Dr.	, Hobbs, N	IM 88240		Ene	ergy, l	Minerals and	d Natur	ral Re	esources	Image: Non-State State St				ugust 1, 2011		
District II 811 S. First St., Art	esia, NM 1	88210			0:	l Conservat	ian Di		RE	C		APING	-)15-44(001	
District III 1000 Rio Brazos Re	d. Aztec 1	NM 87410				20 South Si			л		2. Type of Le		_			
District IV 1220 S. St. Francis						Santa Fe, N			Jr.	ļ	3. State Oil 8				ED/IND	IAN
						ETION RE					J. 500000110			•		
4. Reason for fili		LEIIO		LEUC			PURI	AINL		_	5. Lease Nam	e or Unit	Agree	ment Na	me	
COMPLETI	ION REF	ORT (Fil	in boxes	#1 throu	gh #31 :	for State and Fee	e wells on	ly)					-	is Eddy		
C-144 CLOS #33; attach this ar	SURE AT	TACHM t to the C-	ENT (Fil 144 closur	linboxe report	s #1 thr in accor	ough #9, #15 Da rdance with 19.1	ute Rig Re 5.17.13.K	leased NMA	and #32 and/ .C)	/or	6. Well Numb	er:	No	. 2		
 Type of Comp NEW V 	letion: NELL [] WORK	over 🗆] DEEPE	ENING			FERE	NT RESERV	'OIR						
8. Name of Opera	tor										9. OGRID					
10. Address of O		olaris W	ater Mic	Istream	n, LLC				·	\rightarrow	11 De el		1643			
		11 Katy	Freeway	, Ste.9	00, Ho	uston, TX 770	024				11. Pool name			evonia	n (961	01)
12.Location	Unit Ltr			Towns		Range	Lot		Feet from the	he	N/S Line			E/W I		County
Surface:	К		2	26	j-S	29-E			2267′		FSL	24	6 9 ′	F	WL	Eddy
BH:																
13. Date Spudded 4/22/2017		ate T.D. R 12/26/2		15. E	Date Rig	Released 4/29/2018		16.	•		(Ready to Prod 29/2018	uce)				Fand RKB, 022' G.R.
18. Total Measure	ed Depth			19. P	lug Bac	k Measured Dep	oth	20.	Was Directi	ional N	Survey Made?	2	1. Тур	e Electri	ic and O	ther Logs Run BL, CNL
22. Producing Int			pletion - 1	I Fop, Bot										iuuiog,		
				-		563' to 16,87	_									
23. CASING SL	76		GHT LB./			ING REC	<u>OKD (</u>		Ort all str	ing						
			94.0#	<u> </u>		575'			26.0"		CEMENTING RECO			AN	NUUNI	PULLED
13.375"			68.0#	-		3177'			17.5"		1300 sx					
9.875″			62.8#			11,492'			12.25"		2300 sx					
7.625″			39.0#			13,940'			8.5″		525 sx					
24 SIZE	ТОР			гтом	LIN	ER RECORD		CREE		25.		UBING			DACK	ER SET
5.5″		13,622'		15,58	6'	380 sx		CREEF	<u> </u>	<u>SIZE</u> 5.5"		DEPTH SE 0-86			PACK	EKSEI
4.25" (Xpand)		15,539		15,65		50 sx					5.0"	8650'-13550'				
, <i>•</i>			·			· · · · · · · · · · · ·					3.5"	_	50'-1			15,530'
26. Perforation	record (i	nterval, siz	e, and nur	nber)						FR/	ACTURE, CE				ETC.	
	Per	fs: 15,66	3' to 15	.647' (6	5 ispf)		D	EPTH	INTERVAL		AMOUNT A	ND KIN	D MA	TERIAL	. USED	
		pen hole		•												
									·-··	•						- <u>~</u> ^
28.		-					PROD	DUC	TION							
Date First Produc N	tion I/A		Product	ion Metl	hod (Fla	owing, gas lift, p	umping -	Size an	ud type pump))	Well Status	(Prod. a		- <i>in)</i> ve SW	D	
Date of Test	Hour	s Tested	Cho	oke Size		Prod'n For Test Period	0	il - Bbl	1 	Gas	s - MCF	Wate	r - Bbl.		Gas -	Oil Ratio
Flow Tubing Press.	Casin	g Pressure		culated 2 or Rate	24-	 Oil - Bbl. 	l	Gas	- MCF	 	Water - Bbl.	- <u>-</u>	Oil Gra	vity - A	L PI - <i>(Co</i> i	r.)
29. Disposition of	f Gas <i>(So</i>	ld, used fo			I				<u> </u>			30. Tes	t Witne	ssed By		
31. List Attachme	ents												/			
					-	Mudlog	7	D- 1	Mud lo	4	Kec'd	10/	26	18	Ruf	>
32. If a temporary	/pitwas	used at the	well, atta	ch a plat	with th	e location of the	temporar	y pit.		1	· · · · ·		/			<u></u>
33. If an on-site burial was used at the well, report the exact location of the on-site burial:																
Latitude Longitude NAD 1927 1983																
I hereby certify that the information shown on both sides of this form is true and complete to the best of my knowledge and belief Printed																
Signature	. <	Sen X	én .			Name			Titl		• • •	_			Date	
E-mail Addre	ss <u>bè</u>	<u>n@s6sc</u>	<u>onsultin</u>	g.us		Ben S	tone		Age	enti	for Solaris W	/ater N	lidstr	eam, L	LC	6/29/2018

INSTRUCTIONS

This form is to be filed with the appropriate District Office of the Division not later than 20 days after the completion of any newly-drilled or deepened well and not later than 60 days after completion of closure. When submitted as a completion report, this shall be accompanied by one copy of all electrical and radio-activity logs run on the well and a summary of all special tests conducted, including drill stem tests. All depths reported shall be measured depths. In the case of directionally drilled wells, true vertical depths shall also be reported. For multiple completions, items 11, 12 and 26-31 shall be reported for each zone.

INDICATE FORMATION TOPS IN CONFORMANCE WITH GEOGRAPHICAL SECTION OF STATE

Southeaste	ern New Mexico	Northwester	n New Mexico
T. Anhy 1732'	T. Canyon 12800'	T. Ojo Alamo	T. Penn "A"
T. Salt	T. Strawn 13042'	T. Kirtland	T. Penn. "B"
B. Salt 2425'	T. Atoka 13326'	T. Fruitland	T. Penn. "C"
T. Yates	T. Miss 15330'	T. Pictured Cliffs	T. Penn. "D"
T. 7 Rivers	T. Devonian 15625'	T. Cliff House	T. Leadville
T. Queen	T. Silurian	T. Menefee	T. Madison
T. Grayburg	T. Montoya 17500' est	T. Point Lookout	T. Elbert
T. San Andres	T. Simpson	T. Mancos	T. McCracken
T. Glorieta	T. McKee	T. Gallup	T. Ignacio Otzte
T. Paddock	T. Ellenburger	Base Greenhorn	T.Granite
T. Blinebry	T. Gr. Wash	T. Dakota	
T.Tubb	T. Delaware Lime_3177'	T. Morrison	
T. Drinkard	T. Bone Springs 6932'	T. Todilto	
T. Abo	T. Morrow Lime_13618'	T. Entrada	
T. Wolfcamp 10160'	T. Chester Sh. 14520'	T. Wingate	
T. Penn	T. Barnett Sh. 14130'	T. Chinle	
T. Cisco (Bough C)	T. Woodford Sh. 15490'	T. Permian	

OIL OR GAS SANDS OR ZONES

No. 1, from	No. 3, fromtoto
No. 2, from	No. 4, from

IMPORTANT WATER SANDS

Include data on rate of water inflow and elevation to which water rose in hole.

No 1 from		feet
	4-	foot
No. 2, from		feet
No 3 from	to	feet

LITHOLOGY RECORD (Attach additional sheet if necessary)

From	То	Thickness In Feet	Lithology	From	То	Thickness In Feet	Lithology
13000	13330	330	LIMESTONE: OFF WH-BUF-GY				
13330	13380	50	LS/SS: WHT-CLR-MLKY-FRSTD-VFN/SLTY				
13380	13520	140	LS/SHALE: WHT-OFF WT-GY-LT GY/ BLK-DRK GY				
13520	13730	210	LIMESTONE: MOTT-LT GY-OFF WHT				
13730	14050	320	LS/SH: MOTT-WHT-OFF WT/ BLK-DRK GY-BRN				
14050	14110	60	LS/SS/SH: LT GY-OF WT-/CLR-TRNS/DRK GY-BLK				
14110	14320	210	SHALE/LS: CHRCL-BLK-DRK GY/MOTT-LT GY/BT				
14320	14360	40	SHALE/SS: DRK GR-DRK BRN/TRNSL-OFF WH			1	
14360	14520	160	SHALE/LS: BLK-DRK GY/OFF WHT-GY-BT		1		
14520	14760	240	SHALE: BLK-DRK GR-DRK GY-LT GY/VFN MICA				
14760	15100	340	SHALE/LS: LT GY-DRK GY/WHT-OFF WHT-CRM	1			
15100	15400	300	LS/SHALE: DRK GY-GY-OF WHT/BLK-DRK GY				
15400	15490	90	LIMESTONE: DRK GY-LT GY-OFF WHT/FN-VFN	1			
15490	15620	130	SHALE: BLK-DRK GR-DRK GY-LT GY/CRB-SLTY				
15620	LTD	30+	DOL: WHT-OFF WHT-TAN-BGE-CRMY/FN-VFN			_ <u></u>	

.

APPENDIX SITE PHOTOGRAPHS

Index of photograph locations.

Figure 1 – The mapped watercourse is more distinguished at slightly higher elevations. This view is to the west from the lease road/pipeline road north of the proposed containments. Maximum depth of the channel is 12 inches. Location is 32 4 29.73, -103 57 18.97

Figure 2 – About 1500 feet downhill from Figure 1, the mapped watercourse becomes braided. This image shows one of the more defined channels, which is a few inches deep. This channel may not meet the criteria of a "significant watercourse", but it does channel stormwater. Location: 32 4 26.57, -103 57 36.62

Figure 3 – View downhill, east-northeast showing "tributaries" of mapped watercourse. This dendritic pattern is typical throughout the area. Inspection was performed on a rainy day, but no water flowed through the mapped watercourse or these channels that we do not consider meeting the definition of a significant watercourse. Location:32 4 22.33, -103 57 37.94

Figure 4 – The drainage channel shown in Figure 5 becomes "lost" as the gradient changes and vegetation increases slightly. Green moss occupies small patches of the flat areas – suggesting puddling and stagnant water. Location: 32 4 9.64, -103 57 36.41

Figure 5 – A small drainage channel that appears to originate at a low spot of the 2-track/fence line (see 5/18/2011 Google Earth image). This view north shows the most-defined channel segment. As shown in Figure 4, this channel terminates approximately 150 feet northwest where topography flattens. Location: 32 4 7.54, -103 57 30.59

Figure 6 – View east-southeast from the center of a drainage channel that is disturbed due to pipeline construction. The tanks of the Eddy State SWD are at the right edge of the image. All along the pipeline, the small drainage channels have been disturbed with uphill channels appearing to carry more water than the extension of these channels downhill from the pipeline. Location: 32 4 20.60, -103 57 19.08

January 2023

Volume 2

C-147 Registration Package for Eddy State AST Containments Section 2, T26S, R29E, Eddy County

Design/Construction Plan Engineering Drawings and Liner Specifications Mustang Extreme Environmental Services LLC SOP Manual Variances for AST Storage Containments Applicability of Engineering Variances to Variety of Site Conditions in Permian Basin

Fold in an outcrop of the Gatuna Formation near the Pecos River. This outcrop is approximately 2.64 miles east of the site for the Eddy State Recycling Facility.

Prepared for: Solaris Midstream LLC 9811 Katy Freeway Suite 900 Houston, TX 77024

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW, Ste F-142 Albuquerque, New Mexico 87104

Box 9

DESIGN AND CONSTRUCTION PLAN

Recycling Facility and/or Containment Checklist:

Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.

- ☑ Design Plan based upon the appropriate requirements.
 ☑ Operating and Maintenance Plan based upon the appropriate requirements.
 ☑ Closure Plan based upon the appropriate requirements.
 ☑ Site Specific Groundwater Data ☑ Siting Criteria Compliance Demonstrations ☑ Certify that notice of the C-147 (only) has been sent to the surface owner(s)

General

Examination of the engineering drawings and the SOP for set-up (Appendix Engineering Drawings, Liner Specifications, Set Up) plus the history of solid performance of these AST Containments demonstrates that the AST Containment is designed and will be assembled to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall. As the AST Containments are generally less than 190 feet in diameter, wave action is not a meaningful consideration.

These AST Containments are constructed of 12-foot high steel panels and are netted or employ the Mega Blaster Pro avian deterrent system to prevent ingress of migratory birds. AST Containments will be enclosed by a 4-strand barbed wire fence. Thus, complies with the Rule to fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair.

The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in conspicuous places surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

Site Preparation

Foundation for AST Containment

Preparation of the soils on site is required to form a dependable base for the AST Containment in accordance with the SOP. If the location of the AST Containment is on an existing pad, the operator has stripped and stockpiled the topsoil for use as the final cover or fill at the time of closure. If the pad is new construction, the operator will strip and stockpile the soil for reclamation upon cessation of site activities.

19.15.34.12 A

(1) The operator shall design and construct a recycling containment to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall.

19.15.34.12 D

(1) The operator shall fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

19.15.34.12 C

Signs. The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in a conspicuous place on the fence surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

19.15.34.12 B Stockpiling of topsoil

Stockpiling of topsoil. Prior to constructing containment, the operator shall strip and stockpile the topsoil for use as the final cover or fill at the time of closure.

The foundation soils must be roller compacted smooth and free of loose aggregate over ½ inch. Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698.

Examination of the SOP shows that the AST Containment contractor will conform to the following mandates of the Rule:

- the AST Containment will have a properly constructed compacted earth foundation and interior slopes (vertical steel) consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear.
- Geotextile will be placed under the liner where needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity.
- If the AST Containment is within a levee, the inside grade is no steeper than two horizontal feet to one vertical foot (2H: 1V) and the outside grade no steeper than three horizontal feet to one vertical foot (3H: IV). The vertical steel walls of the AST Containment are the *subject of a requested variance*.

The Operator will ensure that at a point of discharge into or suction from the recycling containment, the liner is protected from excessive hydrostatic force or mechanical damage and external discharge or suction lines shall not penetrate the liner.

Liner and Leak Detection Materials

The liner and geotextile specifications show that all primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be *an equivalent liner [to that stated in Rule 34] approved by OCD pursuant to a variance.* The liner system is presented in an earlier section of this submission.

All secondary liners shall be an equivalent liner [to that stated in Rule 34] or approved by OCD pursuant to a

19.15.34.12 A

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.

19.15.34.12 A

(6) At a point of discharge into or suction from the recycling containment, the operator shall insure that the liner is protected from excessive hydrostatic force or mechanical damage. External discharge or suction lines shall not penetrate the liner.

19.15.34.12 A

(4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

variance. The liner system is presented in an earlier section of this submission.

Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The AST Containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage.

Install Secondary Liner, Leak Detection System and Secondary Containment

All AST containments holding produced water will have a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The rule states that the edges of all secondary liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep. *The lack of an anchor trench with an AST Containment is also the subject of requested variance.*

The AST Containment Contractor will cause the recycling containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection (see attached design sketch).

The presence of the secondary containment levee or pre-fabricated secondary containment meets the OCD Rule mandate that a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

AST Containment Setup

As with the secondary liner, AST Containment contractor will minimize liner seams and orient them up and down, as much as possible, not across, a slope. Factory welded seams shall be used where possible. AST Containment contractor will employ field seams in

19.15.34.12 A

(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

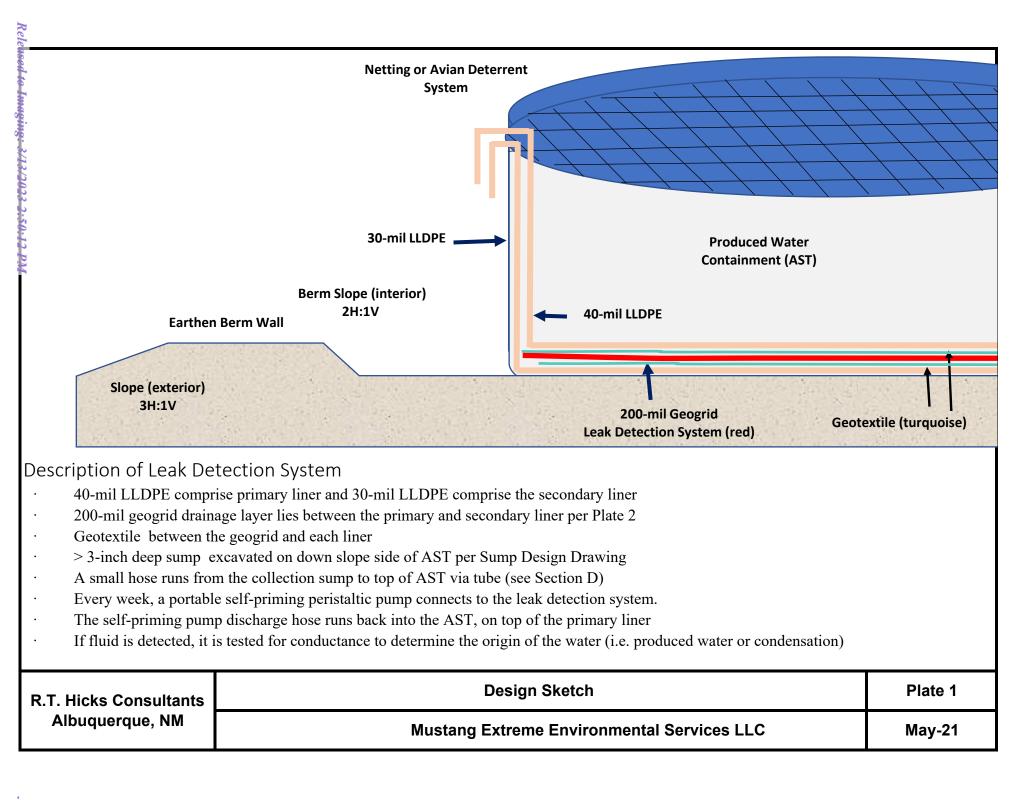
19.15.34.12 A

(7) The operator of a recycling containment shall place a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet or two feet of compacted soil with a saturated hydraulic conductivity of 1 x 10-5 cm/sec or greater to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection.

19.15.34.12 A

(8) The operator of a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

19.15.34.12 A

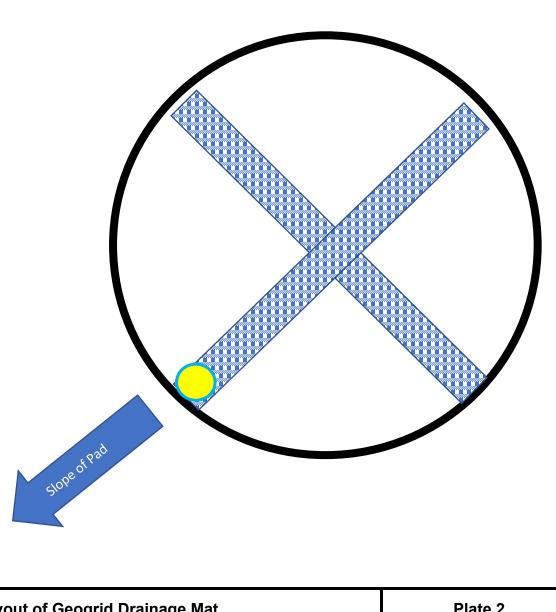

(5) The operator of a recycling containment shall minimize liner seams and orient them up and down, not across, a slope of the levee. Factory welded seams shall be used where possible. The

geosynthetic material that are thermally seamed. Prior to field seaming, AST Containment contractor shall overlap liners four to six inches and minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the AST Containment bottom. Qualified personnel shall perform field welding and testing.

Fluid Injection/Withdrawal Flow Diverter The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes. operator shall ensure field seams in geosynthetic material are thermally seamed. Prior to field seaming, the operator shall overlap liners four to six inches. The operator shall minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the slope's toe. Qualified personnel shall perform field welding and testing.

19.15.34.13 B

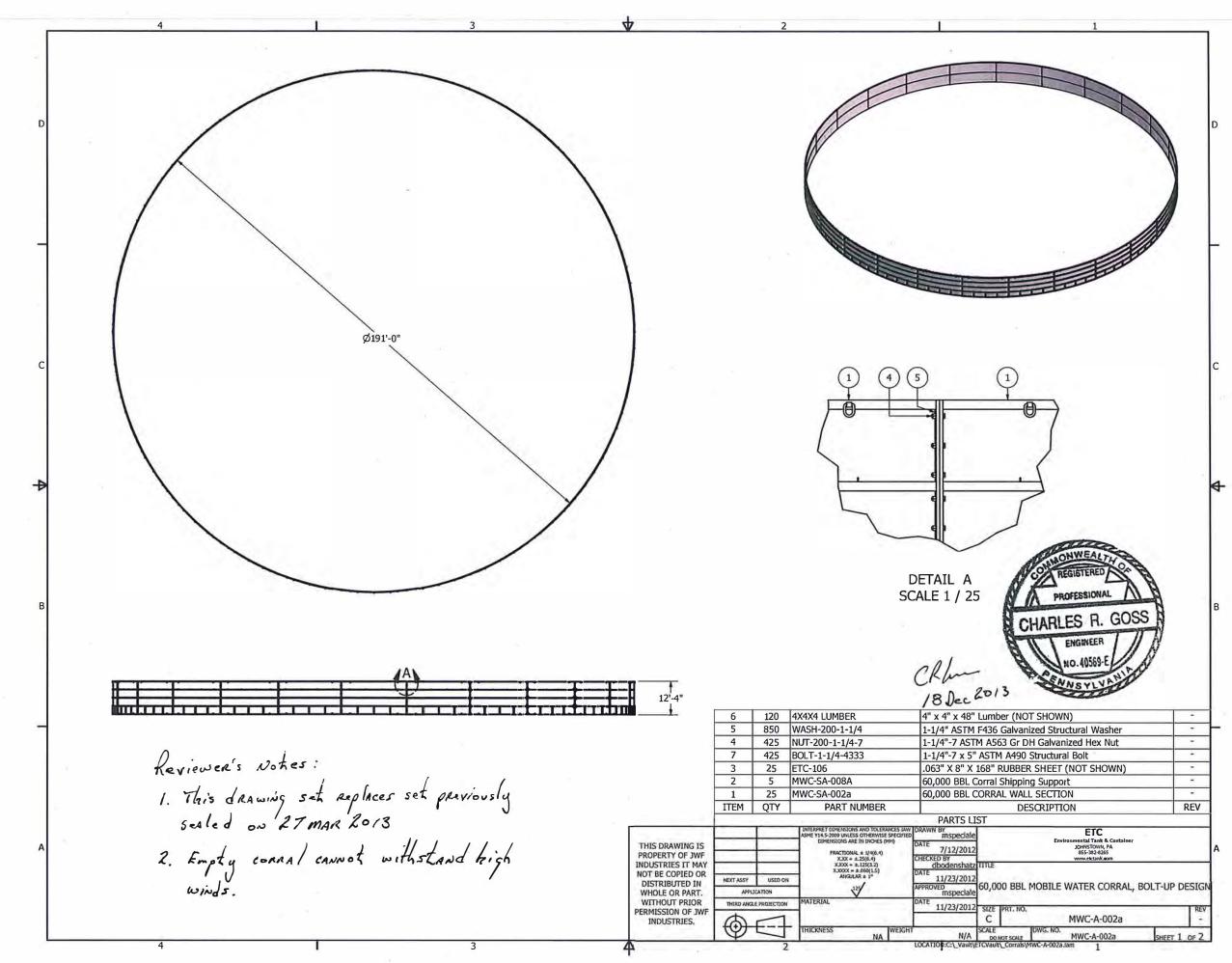
(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.


200 mil geogrid placed
above 8-oz geotextile and 30-mil secondary liner
inside of AST after set up, before install of primary liner
below 40-mil primary liner
8-oz geotextile is placed
over the 30-mil LLDPE liner inside the steel AST ring
under the 40-mil primary liner inside the AST

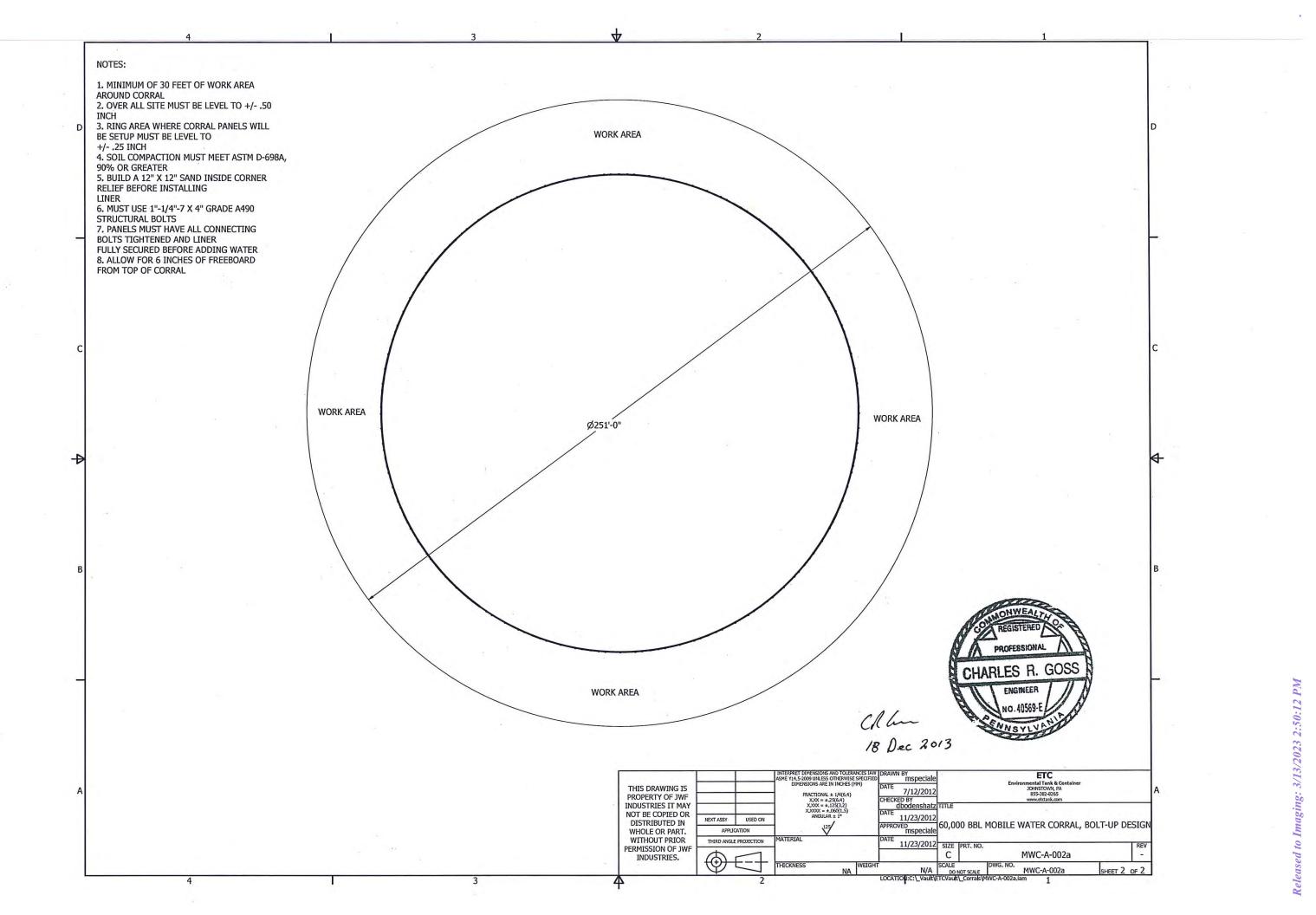
Sump at lowest point of the AST set up

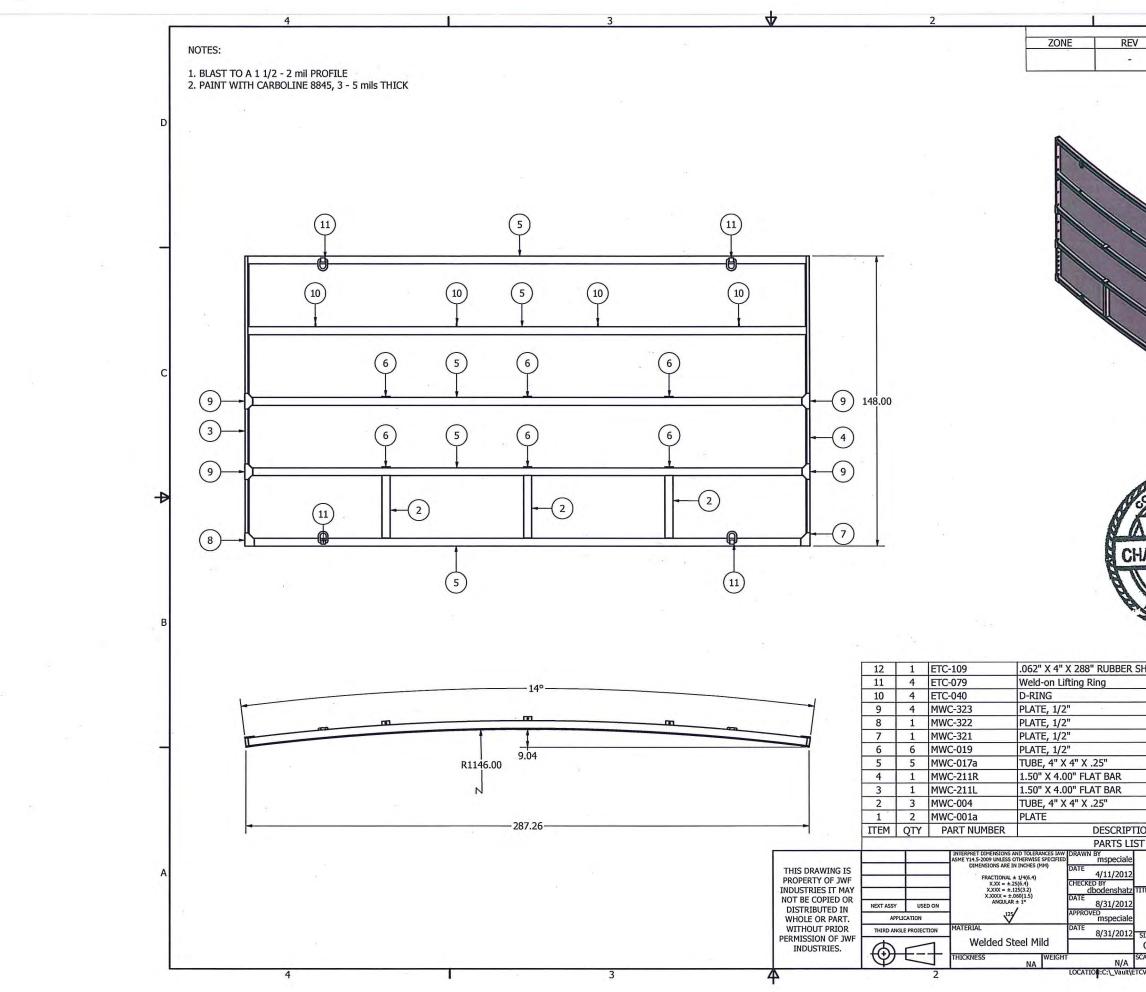
<u> 2 2007/21/</u>

ż



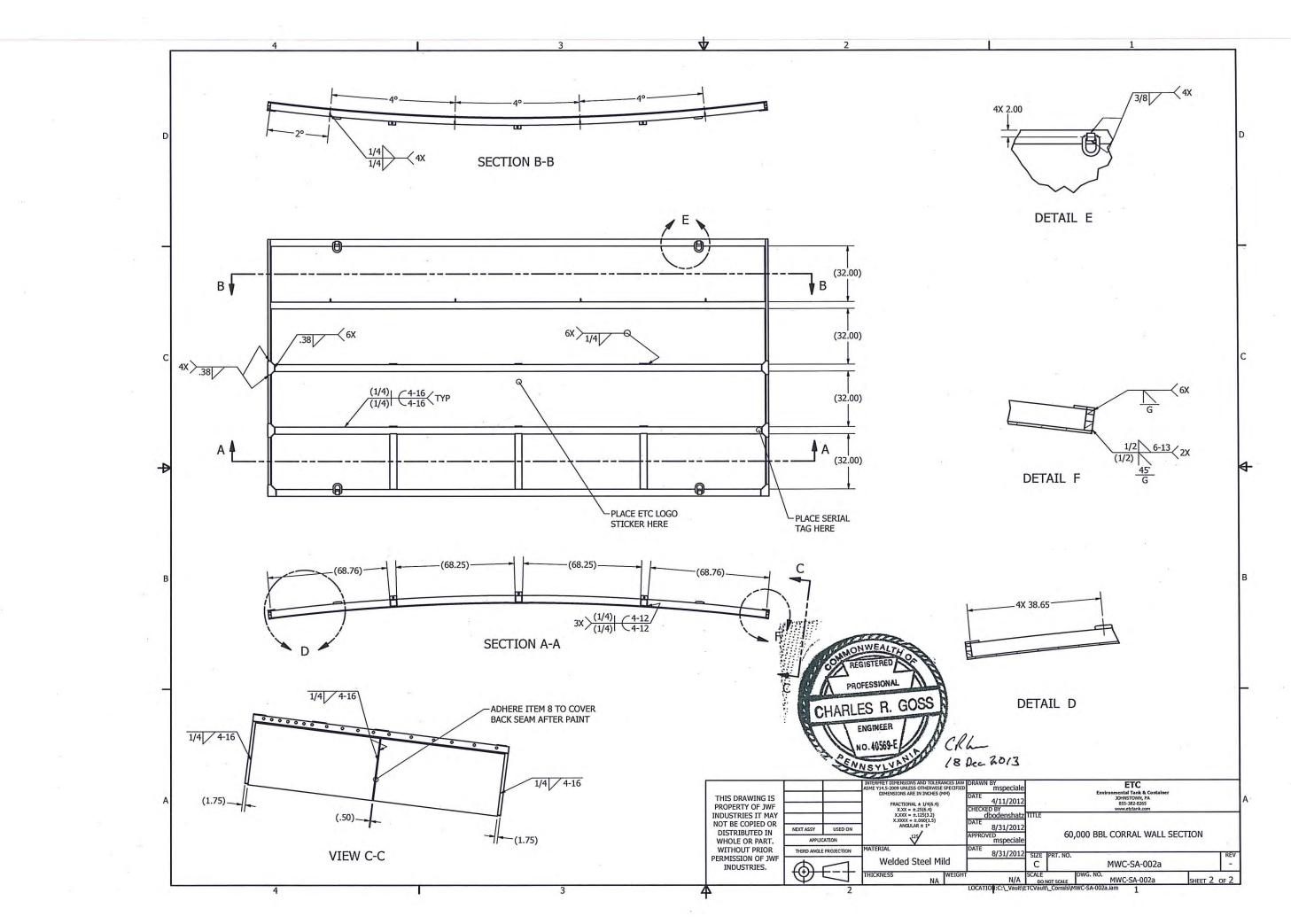
0 50 100


R.T. Hicks Consultants	Layout of Geogrid Drainage Mat	Plate 2
Albuquerque, NM	Mustang Extreme Environmental Services LLC- Eddy State AST	June 2021


C 147 – Box 3 Recycling Containment Design Drawings Set Up SOP Liner Specifications

Received by OCD: 2/27/2023 10:51:02 AM

Page 73 of 112

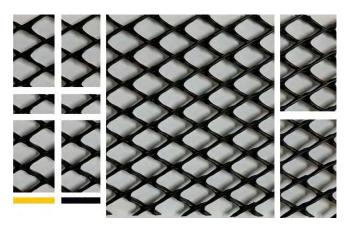

75 of 112

Page

Received by OCD: 2/27/2023 10:51:02 AM

	TOTON UTCTO	1			1
REV	/ISION HISTC DESCRIPTION	DATE		APPROVED	
-	INITIAL RELEASE	10/1/2012		MJS	
	KELLASE				D
					С
ARL	OFESSIONAL ES R. G ENGINEER IO. 40569-E	TIN .	4		
ARLI	ES R. G	CAL			₩ B
RL	ES R. G	TIN .	20	13	в
RL	ES R. G	IB Dec	20 A	NA	B
RL	ES R. G	IB Dec	A A	NA NA	E
RL	ES R. G	IB Dec	A A	NA NA NA	E
RL	ES R. G	- N. - N.	A A	NA NA	E
RL	ES R. G	- N - N	- 20 A A A	NA NA NA 1 1 1	
RL	ES R. G	- NI - NI - NI - 010	A A A 5558	NA NA 1 1 23.43 lbs	
RL	ES R. G	- N. - N. - N. - N. - N. - N. - N. - N.	A A A A 5558 227	NA NA 1 1 23.43 lbs 120 ft	
RL	ES R. G	- N. - N. - N. - N. - N. - N. - 010. - 030.	A A A A 558 227 172	NA NA 1 1 23.43 lbs	
RL	ES R. G	- N. - N. - N. - N. - N. - N. - N. - N.	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 8 ft	
	ES R. G	- N. - N. - N. - N. - N. - N. - N. - N.	A A A A 558 227 172 172 172 068 013	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 8 ft 5880.72 lbs	
	ES R. G	- N. - N. - N. - N. - N. - N. - N. - N.	A A A A 558 227 172 172 172 068 013	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 8 ft	
	ES R. G	- N. - N. - N. - N. - N. - N. - N. - 010. - 020 - 00 - 0	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 8 ft 5880.72 lbs	
	ES R. G	- N. - N. - N. - N. - N. - N. - N. - 010. - 020 - 020	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 8 ft 5880.72 lbs	
	ES R. G	- N. - N. - N. - N. - N. - N. - 010. - 020. - 020.	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 5880.72 lbs UNIT QTY	
	ES R. G	- N. - N. - N. - N. - N. - N. - N. - N. - 010. - 020. - 020. - 020. - 020. - 020. - 020. - 020. - 030. - 020. - 020. - 030. - 020. - 020. - 020. - 030. - 020. - 030. - 020. - 020. - 020. - 020. - 020. - 030. - 020. - 020. - 030. - 030. - 020. - 030. - 030. - 020. - 030. - 030.	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 5880.72 lbs UNIT QTY	
	ES R. G ENGENEER IO. 40569-E VSYLVAN VSYLVAN Enviro 60,000 BBL	- N. - N. - N. - N. - N. - N. - N. - N. - 010. - 020. - 020. - 020. - 020. - 020. - 020. - 020. - 030. - 020. - 020. - 030. - 020. - 020. - 020. - 030. - 020. - 030. - 020. - 020. - 020. - 020. - 020. - 030. - 020. - 020. - 030. - 030. - 020. - 030. - 030. - 020. - 030. - 030.	A A A A A A A A A A A A A A A A A A A	NA NA 1 1 23.43 lbs 120 ft 12.33 ft 12.33 ft 5880.72 lbs UNIT QTY	

Released to Imaging: 3/13/2023 2:50:12 PM


SKAPS TRANSNET[™] geonet consists of SKAPS Geonet made from HDPE resin.

PROPERTY	TEST METHOD	UNIT	VALUE	QUALIFIER
Thickness	ASTM D 5199	mil	200	MAV ⁽³⁾
Carbon Black	ASTM D 4218	%	2.0	MAV
Tensile Strength	ASTM D 7179	lb/in	45	MAV
Melt Flow	ASTM D 1238 ⁽²⁾	g/10 min	1.0	Maximum
Density	ASTM D 1505	g/cm ³	0.94	MAV
Transmissivity ⁽¹⁾	ASTM D 4716	gal/min/ft (m ² /sec)	9.67 (2.0 x 10 ⁻³)	MAV

Notes:

(1) Transmissivity measured using water at 21 \pm 2 °C (70 \pm 4 °F) with a gradient of 0.1 and a confining pressure of 10,000 psf between steel plates after 15 minutes. Values may vary with individual labs.

- (2) Condition 190/2.16
- (3) Minimum average value

This information is provided for reference purposes only and is not intended as a warranty or guarantee. SKAPS assumes no liability in connection with the use of this information.

TECHNICAL DATA SHEET

LLDPE Series, 40 mils

White Reflective, Smooth

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America:1-800-571-3904 www.Solmax.com www.solmax.com

PROPERTY	TEST METHO	D FREQUENCY(1)	UNIT Imperial	
SPECIFICATIONS				
Thickness (min. avg.)	ASTM D5199	Every roll	mils	40.0
Thickness (min.)	ASTM D5199	Every roll	mils	36.0
Melt Index - 190/2.16 (max.)	ASTM D1238	1/Batch	g/10 min	1.0
Sheet Density (8)	ASTM D792	Every 10 rolls	g/cc	≤ 0.939
Carbon Black Content	ASTM D4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	Every 10 rolls	Category	Cat. 1 & Cat. 2
OIT - standard (avg.)	ASTM D3895	1/Batch	min	100
Tensile Properties (min. avg) (2)	ASTM D6693	Every 2 rolls		
Strength at Break			ррі	168
Elongation at Break			%	800
2% Modulus (max.)	ASTM D5323	Per formulation	ррі	2400
Tear Resistance (min. avg.)	ASTM D1004	Every 5 rolls	lbf	22
Puncture Resistance (min. avg.)	ASTM D4833	Every 5 rolls	lbf	62
Dimensional Stability	ASTM D1204	Certified	%	± 2
Multi-Axial Tensile (min.)	ASTM D5617	Per formulation	%	30
Oven Aging - % retained after 90 days	ASTM D5721	Per formulation (5)		
STD OIT (min. avg.)	ASTM D3895		%	35
HP OIT (min. avg.)	ASTM D5885		%	60
UV Resistance - % retained after 1600 hr	ASTM D7238	Per formulation (5)		
HP-OIT (min. avg.)	ASTM D5885		%	35
Low Temperature Brittleness	ASTM D746	Certified	°F	- 106
SUPPLY SPECIFICATIONS (Roll	dimensions may vary ±1	%)		
Color (one side) (4)		-		White

NOTES

1. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).

2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction. 4. Smooth edge may not have the same consistent shade of color as the membrane itself. The colored layer may cause the carbon black content results to be higher than 3%.

5. Certified by core (black) formulation on geomembrane roll or molded plaque.

8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.

* All values are nominal test results, except when specified as minimum or maximum.

* The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

	Mustang Extreme Environmental Services, I	LC	
environmental services	MEES-003	Rev: 01	Pg. 1 of 5

Policy Template

APPROVALS

All approvals are maintained and controlled By **<u>OPERATIONS MANAGEMENT</u>** *Please refer to the* **<u>SOP MANUAL</u>** *for the current controlled revision and approval records.*

REVISION HISTORY

AUTHOR	REVISED SECTION/PARAGRAPH	REV	RELEASED
Jeff Anderson	INITIAL RELEASE	02	

Draft and Archived/Obsolete revisions are not to be used.

	Mustang Extreme Environmental Services, I	LC	
environmental services	MEES-003	Rev: 01	Pg. 2 of 5

Table of Contents

1.	PURPOSE	
2.	SCOPE	
3.	DEFINITIONS	
4.	RESPONSIBILITIES	
5.	POLICY	
	5.1 PREPARE SURFACE AREA	
	5.2 GROUND COVER INSTALLATION	4
	5.3 TANK WALL ASSEBLY	4
	5.4 TANK LINER INSTALLATION	4
	5.5 FINAL INSTALLATION	5
	5.6 FINAL INSPECTION	5
6.	APPLICABLE REFERENCES	5

	Mustang Extreme Environmental Services, I	LLC	
environmental services	MEES-003	Rev: 01	Pg. 3 of 5

1. PURPOSE

This procedure is being implemented to standardize the process for installing Epic 360 Tanks and to ensure the quality from a standardized plan.

2. SCOPE

This procedure applies to the installations of 10,000bbl, 22,000bbl, 40,000bbl, and 60,000bbl Epic Tanks

3. **DEFINITIONS**

- <u>Epic 360 Tank</u> Above ground tank used for water containment. Permanent or temporary structure used in industrial processes where large volumes of water are needed.
- <u>Secondary Containment</u> Usually a "steel wall" type of containment that surrounds the perimeter of the Epic tank and serves as safeguard if leaks were to occur.

4. **RESPONSIBILITIES**

- <u>SOP process owner</u> –On-Site Epic Supervisor designated by management
- <u>On-site Epic Supervisor</u> Ensure that SOP is strictly followed as the source for correct assembly and installation of Epic Tanks and their secondary containments.
- <u>Crew Leader</u> Follow direction given by the On-Site Supervisor and managing their crew in a safe and productive manner
- <u>Crew</u> Labor portion of the assembly/installation process
- <u>Safety Coordinator</u> Ensuring that safety standards are being followed by the On-Site Supervisor, Crew Leader, and Crew. This is attained through audits and evaluation.
- <u>Quality Director</u> Performs a post-completion inspection and ensures that the tank was built to customer specifications.
- <u>Regulatory/Document Coordinator</u> Compile and file appropriate inspections and quality control documentation.

5. POLICY

Procedure for installing Epic 360 Tanks.

5.1 Prepare Surface Area

- Assure ground surface is within 1" of level grade. This is checked by the On-Site Epic Supervisor.
- If level, find the center of tank location and mark ground with paint. Determine radius of tank and mark ground for footprint of the tank.
- Obtain textile and appropriate liner, as determined by customer or internal specifications.

5.2 Ground Cover Installation

• Determine whether the tank requires a secondary containment to achieve 110% containment, spill containment, or tank only installation.

	Mustang Extreme Environmental Services, LLC		
environmental services	MEES-003	Rev: 01	Pg. 4 of 5

- Apply textile to the entire footprint of the tank, including secondary tank if applicable. Re-mark the painted footprint on top of the textile to serve as a guide for the wall panel placement.
- Apply liner material over the textile extending it 15 feet past the edge of the tank footprint.
- Fold the liner back toward the center of the tank footprint allowing sufficient space to place the wall panels.

5.3 Tank Wall Assembly

- Panels weight 8,600 lbs. each. A 10,000--11,000 lb Telehandler or greater must be used when handling and installing these panels. Use **Extreme Caution** when performing this process.
- Wall Assembly cannot take place if winds exceed 15 mph.
- Hold a safety meeting to determine who the signal person will be. The designated signal person will be the **ONLY** person to give direction to the Telehandler operator. However, anyone can give the **STOP** signal.
- Using rate and certified lift chains, attach two (2) hooks to the top of the wall panel.
- Attach tag lines to the bottom of the wall panel to assist in guiding the panel during installation.
- Equipment operator will place the wall panel in its designated location. While still supported by chains and the telehandler, install six (6) braces on the wall panel three (3) braces on the inside of the wall and three (3) on the outside of the wall. Once the braces are installed, the lift chains can be removed.
- Install second wall panel following the same process. Once the second wall panel is in place, bolt the panels together. Be sure to leave the braces in place until at least half of the panels are installed.
- Repeat this process until the entire circumference is complete.

5.4 Tank Liner Installation

- The On-Site Supervisor and Safety Coordinator will determine if entry into the tank would be considered "confined space entry". If designated as such, a confined space permit will be obtained and only those designated personnel will be permitted to enter.
- Liner install cannot take place if winds are over 10-15 mph.
- Attach pull line to the edge of the liner and pull line over top of the wall panels.
- Secure liner to the top of the wall panels using the (3) clamps per panel. While clamping, inspect the liner to ensure it is not in a "stressed" condition and be sure to leave enough slack so that the liner can conform to the walls once the tank is filled with water.
- Trim any excess liner material from the outer edge of the tank wall

5.5 Final Installation

- The tank is now ready for the necessary access ladders and discharge hoses to be installed.
- Remove all excess material from the property and dispose of appropriately.

	Mustang Extreme Environmental Services, I	LLC	
environmental services	MEES-003	Rev: 01	Pg. 5 of 5

5.6 Final Inspection

• The Quality Director will inspect the completed build to ensure that it was built to the customer specifications.

6. APPLICABLE REFERENCES

• Epic Tank Supervisor

January 2023

Variances and/or Equivalency Demonstrations for:

1) Above Ground Steel Tank Modular Recycling Storage Containments (AST) Primary and Secondary Liners

2) Slope and Anchor Variance Request for Above Ground Steel Tank Modular Recyclingg Storage Containments

3) Alternative Testing Variance Request

4) Fencing Variance Request

Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico 40-mil Non-reinforced LLDPE Liner as Alternate Primary and 30-mil Non-reinforced LLDPE as Secondary Liner for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR 40 MIL NON-REINFORCED LLDPE GEOMEMBRANE AS AN ALTERNATIVE PRIMARY AND 30 MIL NON-REINFORCED AS ALTERNATIVE SECONDARY LINER FOR MODULAR STEEL AST CONTAINMENT

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of 19.15.34.12

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT
 (4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The applicant proposes one layer of 40-mil LLDPE non-reinforced as a primary liner and a secondary liner comprised of one layer of 30-mil LLDPE non-reinforced material

Rule 34 did not consider Above Ground Steel Storage Tanks that employ liners as a primary and secondary containment method.

This material is more readily available than the prescribed liners in the Rule and provides superior flexibility and conformity characteristics. Due to the vertical steel walls, 60-mil HDPE, 45 or 30-mil LLDPE string reinforced liners and 30-mil PCV liners are not sufficiently flexible for use in these modular containments.

All liners will have a hydraulic conductivity no greater than 1 x 10 -9 cm/sec and meet or exceed EPA SW-846 method 9090A.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical documents provide supportive data to demonstrate that this liner system *(with integrated leak detection system)* provides equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection. Attached is a technical comparison of the proposed material is compared to what is advised through Rule 34. A second memorandum provides clarification that the engineering requirements for site preparation, which ensures functionality of the liner system, is crosscutting to varied locations/sites within the Permian Basin. Liner specifications are also included in submission.

Technical Memorandum: 40-mil LLDPE as Alternative Primary with 30mil LLDPE as Alternative Secondary Liner System for Modular Steel AST Recycling Containment NMAC 19.15.34.12 A (4)

In consideration of the liner application for modular AST impoundments, size and depth of the AST, design details for modular tanks as well as estimated length of at least five years of service time, it is my professional opinion that a 40 mil LLDPE (non-reinforced) and a 30 mil LLDPE (non-reinforced) geomembrane system will provide the requisite barrier against produced water loss as an alternative primary and secondary liner system. *The two proposed liners, 40 mil LLDPE as Primary liner and 30 mil LLDPE Secondary liner, will function equal to or better than 45 mil String Reinforced LLDPE, 30 mil PVC, or 60 mil HDPE liners as a primary liner and 30 mil LLDPE string reinforced as a secondary liner system. Additionally, this two-layer system with integrated leak detection system, will provide requisite protection for the environment that is equal to or better than the above primary and secondary liner systems referenced in OCD rule 34. The following are discussion points that will exhibit the attributes of a 40 mil/30 mil LLDPE lining system:*

<u>The nature and formulation of LLDPE resin is very similar to HDPE</u>. The major difference is that LLDPE is lower density, lower crystallinity (more flexible and less chemical resistant). However, LLDPE will resist aging and degradation and remain intact for many years in exposed conditions. The LLDPE resin is virtually the same for non-reinforced 30 or 40 mil LLDPE and string reinforced 30 or 45 mil LLDPE geomembranes and both will provide requisite containment and be equally protective for this application, enduring UV and chemical degradation in the produced water environment.

<u>Flexibility Requirements.</u> Non-reinforced LLDPE geomembranes are less stiff and far more flexible than string reinforced geomembranes as well as 60 mil HDPE and in this regard are preferred for installations in vertical wall tanks such as this proposed installation. LLDPE provides a very flexible sheet that enables it to be fabricated into large panels, folded for shipping and installed on vertical walls transitioned to flat bottom. Non-reinforced LLDPE sheet will conform better than a string reinforced LLDPE to the tank dimensions under hydrostatic loading and will exhibit less wrinkling and creasing during and after installation.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Both dual wedge and single wedge thermal fusion welding is commonly used on LLDPE and QC testing by air channel (ASTM D 5820) or High Pressure Air Lance (ASTM D 4437) is fully acceptable and recognized as industry standards. In this regard, either non-reinforced LLDPE or string-reinforced LLDPE will be acceptable as far as QC and thermal fusion seaming methods are concerned.

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

<u>Potential for Leakage through the Primary and Secondary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The geonet drainage media between the primary and secondary LLDPE geomembranes at the base of the AST in this application provides immediate drainage to a low point or outside the Modular AST Impoundment and thus no hydrostatic head or driving gradient is available to push leakage water through a hole in the Secondary LLDPE liner.

Leakage through any Primary geomembrane is driven by size of hole and depth and will be detected by the increase of water in the drainage system and the volume being pumped out of the secondary containment. In this regard and for this variance, the Primary consists of 40 mil LLDPE geomembrane which will perform equal to or better than a single layer of string reinforced LLDPE for potential leakage. Thus, if a leak occurs through the top layer, it will be effectively contained by the second layer of 30 mil LLDPE geomembrane. If required, location of holes in the Primary can be found by Electrical Leak Location Survey (ELLS) using a towed electrode (ASTM D 7007). Holes found can then be repaired and thus water seepage into the leakage collection and drainage system will be kept to a minimum. Dependent on OCR requirements for Action Leakage Rate (ALR), the leakage volumes may only be monitored. For example, a typical ALR is < 20 gpad whereas a rapid and large leak (RLL) may be > 100 gpad. Most states specify maximum ALR values for waste and process water impoundments usually in the range of 100 to 500 gpad. However, New Mexico does not specify an ALR for waste or process water impoundments (GRI Paper No. 15).

LLDPE (and string reinforced LLDPE) can be prefabricated into large panels and thus both types offer the following for Containment:

- Prefabrication in factory-controlled conditions into very large panels (up to 30,000 sf) results in ease of installation, less thermal fusion field seams and less on site QC and CQA. (It should be noted that HDPE cannot be prefabricated into panels and requires considerably more on-site welding and QC).
- Large prefabricated panels will provide better control of thermal fusion welding in a factory environment that will improve the liner system integrity for the long term. Ease of installation of large prefabricated custom size panels results in a greater reduction of installation time and associated installation and QC costs
- <u>The Non-reinforced LLDPE geomembrane provides superior lay flat</u> <u>characteristics and conformability</u> which allows for more intimate contact with the underlying soil, geonet, or geotextile and tank walls as well as overlying materials thus providing better flow characteristics for drainage of water. String reinforced LLDPE exhibits more wrinkling and when overlaid or in contact with a geonet drain, wrinkles tend to form pockets and dams affecting drainage of any leakage water to the exterior of the Modular AST Impoundment.

 Both types of LLDPE geomembrane are easily repaired using the same thermal fusion bonding method without the need for special surface granding preparation for extrusion welding as is typically used in repair of HDPE geomembranes. <u>However, string reinforced LLDPE requires that all cut edges with exposed scrim</u> <u>must be encapsulated with extrusion bead</u>. No encapsulation is required on nonreinforced LLDPE.

In summary, it is no professional opinion that the liner system of 40 mil non-reinforced LLDPE geomembrane as Primary liner and 30 mil non-reinforced LLDPE Secondary liner, with integrated leak detection system, will provide protection that is equal to or better than 45 mil strong reinforced LLDPE. 30 mil PVC, 60 mil HDPE (primary liner) and 35 mil LLDPEr (secondary liner) and meets requirements as defined by the rule as an alternative liner system (resistance to UV and chemical exposure and required hydraulic conductivity). Additionally, this liner system will provide a superior installation in the AST environment and function better than liners referenced in the OCD rule and will provide the requisite protection of fresh water, public health and the environment for at least 5 years in the produced water recycling environment.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email geosynthetics@jusn.com

Sincerely Yours.

RK Finan

Ronald K. Frobel, MSCE, PE

References;

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

Geosynthetic Research Institute (GRI) Published Standards and Papers 2018

ASTM Standards 2018

Attachments:

R. K. Frobel C.V.

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR 40 MIL NON-REINFORCED LLDPE GEOMEMBRANE AS AN ALTERNATIVE PRIMARY AND SECONDARY LINER FOR MODULAR STEEL AST CONTAINMENT

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of 19.15.34.12

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT
 (4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The applicant proposes one layer of 40-mil LLDPE as a primary liner and a secondary liner comprised of one layer of 40-mil LLDPE material.

Rule 34 did not consider Above Ground Steel Storage Tanks that employ liners as a primary and secondary containment method.

This material is more readily available than the prescribed liners in the Rule and provides superior flexibility and conformity characteristics. Due to the vertical steel walls, 60-mil HDPE, 45 or 30-mil LLDPE string reinforced liners and 30-mil PCV liners are not sufficiently flexible for use in these modular containments.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical documents provide supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection. Technical comparison of the proposed material is compared to what is advised through Rule 34 is discussed. A second memorandum provides clarification that the engineering requirements for site preparation, which ensures functionality of the liner system, is crosscutting to varied locations within the Permian Basin. Stamped plans from design engineer confirm applicability of this liner system to this specific site.

Technical Memorandum: 40-mil LLDPE as Alternative Primary/Secondary Liner System for Modular Steel AST Recycling Containment NMAC 19.15.34.12 A (4)

In consideration of the Primary lining application (modular AST impoundment), size of the AST and depth, design details for modular tanks as well as estimated length of up to five years of service time, it is my professional opinion that a 40 mil LLDPE geomembrane will provide the requisite barrier against processed water loss. It should be noted that the 40 mil LLDPE exceeds the OCD mandate for a Secondary lining system. *The two proposed 40 mil LLDPE liners will function equal to or better than 45 mil String Reinforced LLDPE, 30 mil PVC, or 60 mil HDPE liners as a primary liner and 30 mil LLDPE string reinforced as a secondary liner system. Additionally, the 40 mil LLDPE in a two-layer system will provide requisite protection for the environment that is equal to or better than the above primary and secondary liner systems referenced in OCD rule 34. The following are discussion points that will exhibit the attributes of a 40 mil LLDPE lining system:*

<u>The nature and formulation of LLDPE resin is very similar to HDPE</u>. The major difference is that LLDPE is lower density, lower crystallinity (more flexible and less chemical resistant). However, LLDPE will resist aging and degradation and remain intact for many years in exposed conditions. The LLDPE resin is virtually the same for non-reinforced 40 mil LLDPE and string reinforced 45 mil LLDPE geomembranes and both will provide requisite containment and be equally protective for this application.

<u>Flexibility Requirements.</u> Non-reinforced LLDPE geomembranes are less stiff and far more flexible than string reinforced geomembranes as well as 60 mil HDPE and in this regard are preferred for installations in vertical wall tanks such as this proposed installation. LLDPE provides a very flexible sheet that enables it to be fabricated into large panels, folded for shipping and installed on vertical walls transitioned to flat bottom. Non-reinforced LLDPE sheet will conform better than a string reinforced LLDPE to the tank dimensions under hydrostatic loading and will exhibit less wrinkling and creasing during and after installation.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Both dual wedge and single wedge thermal fusion welding is commonly used on LLDPE and QC testing by air channel (ASTM D 5820) or High Pressure Air Lance (ASTM D 4437) is fully acceptable and recognized as industry standards. In this regard, either non-reinforced LLDPE or string-reinforced LLDPE will be acceptable as far as QC and thermal fusion seaming methods are concerned.

<u>Potential for Leakage through the Primary and Secondary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The geonet drainage media between the primary and secondary LLDPE

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

geomembranes at the base of the AST in this application provides immediate drainage to a low point or outside the Modular AST Impoundment and thus no hydrostatic head or driving gradient is available to push leakage water through a hole in the Secondary LLDPE liner.

Leakage through any Primary geomembrane is driven by size of hole and depth and will be detected by the increase of water in the drainage system and the volume being pumped out of the secondary containment. In this regard and for this variance, the Primary consists of 40 mil LLDPE geomembrane which will perform equal to or better than a single layer of string reinforced LLDPE for potential leakage. Thus, if a leak occurs through the top layer, it will be effectively contained by the second layer of 40 mil LLDPE geomembrane. If required, location of holes in the Primary can be found by Electrical Leak Location Survey (ELLS) using a towed electrode (ASTM D 7007). Holes found can then be repaired and thus water seepage into the leakage collection and drainage system will be kept to a minimum. Dependent on OCR requirements for Action Leakage Rate (ALR), the leakage volumes may only be monitored. For example, a typical ALR is < 20 gpad whereas a rapid and large leak (RLL) may be > 100 gpad. Most states specify maximum ALR values for waste and process water impoundments usually in the range of 100 to 500 gpad. However, New Mexico does not specify an ALR for waste or process water impoundments (GRI Paper No. 15).

Both non-reinforced LLDPE and string reinforced LLDPE can be prefabricated into large panels and thus both types offer the following for Containment:

- Prefabrication in factory-controlled conditions into very large panels (up to 30,000 sf) results in ease of installation, less thermal fusion field seams and less on site QC and CQA. (It should be noted that HDPE cannot be prefabricated into panels and requires considerably more on-site welding and QC).
- Large prefabricated panels will provide better control of thermal fusion welding in a factory environment that will improve the liner system integrity for the long term. Ease of installation of large prefabricated custom size panels results in a greater reduction of installation time and associated installation and QC costs
- <u>The Non-reinforced LLDPE geomembrane provides superior lay flat</u> <u>characteristics and conformability</u> which allows for more intimate contact with the underlying soil, geonet, or geotextile and tank walls as well as overlying materials thus providing better flow characteristics for drainage of water. String reinforced LLDPE exhibits more wrinkling and when overlaid or in contact with a geonet drain, wrinkles tend to form pockets and dams affecting drainage of any leakage water to the exterior of the Modular AST Impoundment.
- Both types of LLDPE geomembrane are easily repaired using the same thermal fusion bonding method without the need for special surface grinding/preparation for extrusion welding as is typically used in repair of HDPE geomembranes.

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

However, string reinforced LLDPE requires that all cut edges with exposed scrim must be encapsulated with extrusion bead. No encapsulation is required on nonreinforced LLDPE.

In summary, it is my professional opinion that the two layers of 40 mil non-reinforced LLDPE geomembranes will provide a Primary/Secondary liner system that is equal to or better than 45 mil string reinforced LLDPE, 30 mil PVC, 60 mil HDPE (primary liner) and 35 mil LLDPEr (secondary liner). Additionally, the two layers of 40 mil LLDPE will provide a superior installation and function better than liners referenced in the OCD rule. The two layers of 40 mil non- reinforced LLDPE will provide the requisite protection of fresh water, public health and the environment for at least 5 years in the frack water environment.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email geosynthetics@msn.com

Sincerely Yours.

RK Frobel

Ronald K. Frobel, MSCE, PE

References:

Geosynthetic Research Institute (GRI) Published Standards and Papers 2018

ASTM Standards 2018

Attachments

R. K. Frobel C.V.

32156 Castle Court / Sulte 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

0.

Slope and Anchor Variance Request for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR SLOPE AND ANCHOR FOR MODULAR STEEL AST CONTAINMENT

Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34.12.

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT:

A. An operator shall design and construct a recycling containment in accordance with the following specifications.

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. *The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot rench and provide adequate room for inspection and maintenance.*(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner

and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

The applicant requests a variance to prescribed slope and anchor in the setting of above ground modular steel containments.

With respect to storage of produced water for use in lieu of fresh water, Rule 34 is written for earthen, lined pits, not free-standing modular impoundments that employ liners as their primary fluid containment system. A modular impoundment consists of a professionally designed steel tank ring with vertical walls. There is no slope to consider as the segmental steel sections are set vertical.

There is no anchor trench as envisioned by the Rule, liners are anchored to the top of the steel walls with clips, no anchor trench is required.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical memorandum provides supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection.

Technical Memorandum: Slope and Anchor Trench Variance for Above Ground Steel Modular Containments NMAC 19.15.34.12 A (2), (3)

Side Slope

The design of soil side slope (inclination) is a geotechnical engineering design consideration. Liquid impoundments such as fresh water or process water containments are usually built within an excavation or with raised earthen embankments. For a liquid impoundment with an exposed liner system, the slope soils and construction dictate slope inclination and very detailed slope stability analysis may be required to determine if slope failure within the embankment will occur once loaded with impounded water. Slope failure may also occur during construction or when the impoundment is empty. A maximum slope is usually specified and is dependent on soil type and cohesive strength, saturated or unsaturated conditions, etc. Detailed analysis for slope stability can be found in "Designing with Geosynthetics" by R.M Koerner as well as many geotechnical books.

A modular impoundment, on the other hand, consists of a professionally designed steel tank ring with vertical walls. *There is no slope to consider as the segmental steel sections are set vertical.* Design of steel tanks, in regard to hydrostatic loading, wind loading, seismic loads, etc. are thoroughly referenced with detailed procedures in the design code - American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage". *There are no requirements for maximum slope inclination other than perhaps 90 degrees or vertical wall.*

Anchor Trench

All earthen impoundments with a geomembrane lining system require some form of top of slope anchor, the most common of which is an excavated and backfilled anchor trench usually set back at least 3 ft from the top of slope. Again, there are detailed procedures for anchor trench design in "Designing with Geosynthetics" by R.M Koerner.

A Modular Impoundment requires mechanical anchoring of the geomembrane at the top of the vertical steel wall using standard liner clips that prevent the geomembrane or geomembrane layers from slipping down the side wall. These are detailed in the Tank Installation Manual. There are no requirements for an "anchor trench" as this is not an in-ground impoundment.

In summary, based on the design and specifications of a modular steel impoundment, there is no requirement for a maximum interior slope angle of 2H:1V due to the fact that this impoundment is a steel tank with vertical walls. Additionally, there is no requirement for an anchor trench as the geomembrane is attached to the top of the Modular Impoundment vertical walls with large steel clips. This provides the requisite protection of fresh water, public health and the environment for many years.

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage"

Koerner, R.M., 2005 "Designing With Geosynthetics" Prentice Hall Publishers

Attachments:

R. K. Frobel C.V.

Additional VARIANCE FOR RECYCLING STORAGE CONTAINMENTS (Inground and AST)

• Alternative Testing Methods

Request for OCD Approval of Alternative Test Methods to Analyze Concentrations of TPH and Chloride

The prescriptive mandates of the Rule that are the subject of this request are the following subsections of NMAC 19.15.17.13 [emphasis added], 19.15.34.14 and 19.15.29. 12 D

19.15.17.13 CLOSURE AND SITE RECLAMATION REQUIREMENTS:

D.(5) The operator shall collect, at a minimum, a five point composite of the contents of the temporary pit or drying pad/tank associated with a closed-loop system to demonstrate that, after the waste is solidified or stabilized with soil or other non-waste material at a ratio of no more than 3:1 soil or other non-waste material to waste, the concentration of any contaminant in the stabilized waste is not higher than the parameters listed in Table II of 19.15.17.13 NMAC.

The referenced Table II, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

	Closure Criteria fo	able II or Burial Trenches and ace in Temporary Pits	
Depth below bottom of pit to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**
	Chloride	EPA Method 300.0	20,000 mg/kg
25-50 feet	TPH	EPA SW-846 Method 418.1	100 mg/kg

19.15.34.14 CLOSURE AND SITE RECLAMATION REQUIREMENTS FOR RECYCLING CONTAINMENTS:

C. The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below.

(1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

The referenced Table I, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

Table I Closure Criteria for Recycling Containments					
Depth below bottom of containment to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**		
51 feet - 100 feet	Chloride	EPA 300.0	10,000 mg/kg		
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg		

After sampling solids of more than 50 drilling pits in the Permian Basin, we have observed and reported to OCD on numerous occasions significant problems with non-petroleum drilling additives (e.g. starch) interfering with the laboratory method 418.1. It is not surprising that in many instances we found no correlation between the laboratory results using 418.1 and the results using Method 8015.

We request approval of Method 8015 (GRO + DRO + MRO) for Method 418.1.

19.15.29.12 D. CLOSURE REQUIREMENTS. The responsible party must take the following action for any major or minor release containing liquids.

(1) The responsible party must test the remediated areas for contamination with representative five-point composite samples from the walls and base, and individual grab samples from any wet or discolored areas. The samples must be analyzed for the constituents listed in Table I of 19.15.29.12 NMAC or constituents from other applicable remediation standards.

	and the second se	Fable I foils Impacted by a Release	
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l TDS	Constituent	Method*	Limit**
≤ 50 feet	Chloride***	EPA 300.0 or SM4500 C1 B	600 mg/kg
elease to ground water ess than 10,000 mg/l DS 50 feet Cl B'	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg

The referenced Table I, is reproduced in part below.

We request approval of EPA 300.0 or SM4500 for the analysis of chloride.

Demonstration that OCD Approval Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The purpose of TPH analyses in the Pit Rule is to measure total petroleum hydrocarbons not all non-polar compounds, such as starch or cellulose that can interfere with Method 418.1. While Method 418.1 may provide some useful data for transportation of crude oil or condensate spills to disposal, the addition of non-polar organic materials in drilling fluids, especially for horizontal wells, renders Method 418.1 highly problematic to determine compliance with the Rule. Using Method 8015 for TPH (GRO+DRO+MRO) provides a better measurement of what we believe the Commission intended operators to measure.

In hearings before the Oil Conservation Commission technical arguments were presented regarding the use of SM4500 in lieu of EPA 300.00 for chloride analysis for Rule 29. The Division and the Commission agreed that these two methods provide equal or better protection of fresh water, public health and the environment.

.

January 2023

Variance Request for Fencing Requirement

Released to Imaging: 3/13/2023 2:50:12 PM

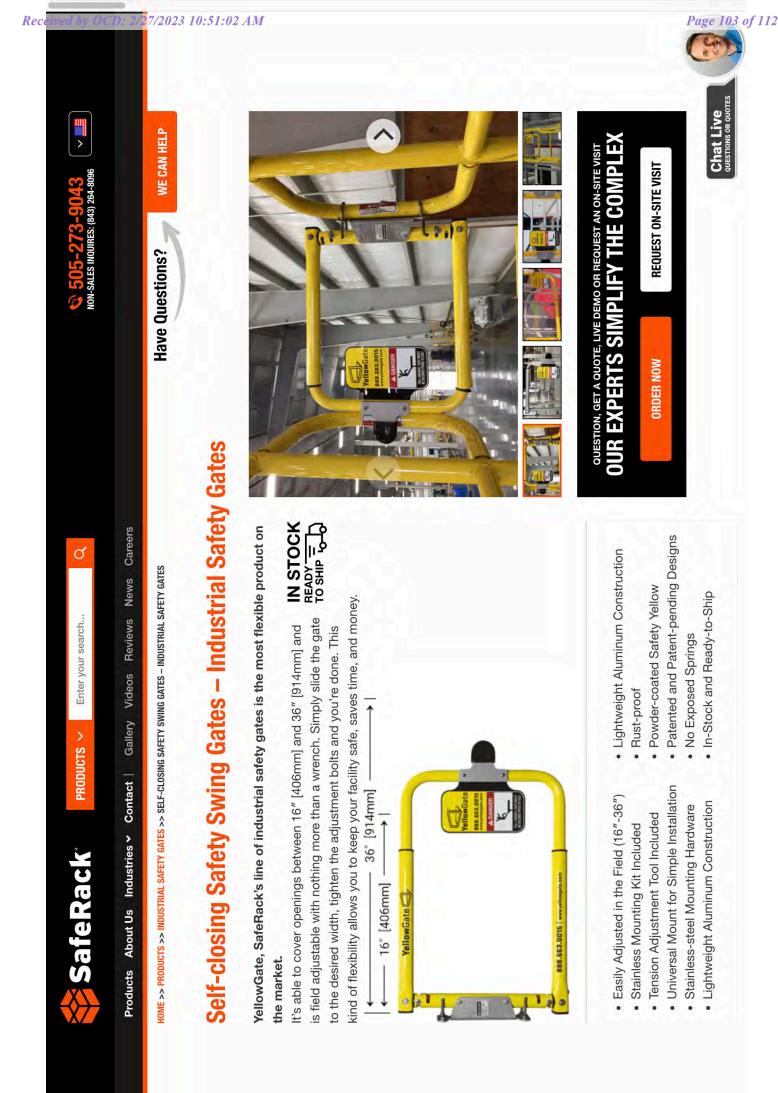
Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are presented below with <u>emphasis **added**</u>:

D. Fencing.

(1) The operator shall <u>fence or enclose</u> a recycling containment <u>in a manner that deters unauthorized</u> wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.
(2) Recycling containments <u>shall be fenced with a four foot fence that has at least four strands of barbed</u> wire evenly spaced in the interval between one foot and four feet above ground level.
E. Netting. The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

The subject AST employs netting or sonic bird hazing (Mega Bird X with bird calls specific to the Permian Basin). These methods effectively protect avian species such as waterfowl and bats. OCD and BLM have approved both methods per Rule 34 and by BLM Rules respectively.


The steel structure of the AST is 11-feet high, which obviously encloses the containment "in a manner that deters...[terrestrial] wildlife." Thus, the steel structure meets the mandate of the Rule for enclosure. Thus, netting and the steel structure meet the mandate of Rule 34 for deterring/protecting avian and terrestrial wildlife.

Because AST Containments have a steel stairway between ground surface and the open top, the operator proposes the following deterrent to unauthorized human access:

- 1. Install gate (e.g. <u>https://www.saferack.com/produ oct/industrial-safety-gates/safety-swing-gates/</u>) or chain across the stairway
- 2. Place an appropriate sign on the gate or chain to help deter unauthorized human access to the open top of the containment
- 3. Provide for a mechanism to lock the gate when responsible personnel are not onsite.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

We believe the proposed protocol provides equal protection of Public Health as a 4-strand barbed wire fence.

January 2020

Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico

Technical Memorandum: Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico NMAC 19.15.34.12 A (2)

I have reviewed the most recent historical variances for AST Containments in the document titled "Variances for C-147 Registration Packages Permian Basin of New Mexico" (January 2020) and examined the applicable design drawings and permits for the following modular AST containments located in the Permian Basin of New Mexico.

- C-147 Registration Package for Myox Above Ground Storage Tank Section 32, T25S, R28E, Eddy County (January 20, 2020)
- C-147 Registration Package for Fez Recycling Containment and Recycling Facility Area (100+ acres) Section 8, T25-S, R35-E, Lea County, Volume 2 – Above-Ground Storage Tank Containments
- Hackberry 16 Recycling Containments and Recycling Facility Section 16, T19S, R31E, Eddy County

Locations of the modular containments range from west of the Pecos River to slightly west of Jal, NM. All locations exhibit different surface and subsurface geology, different topography and are of various sizes and volumes. *However, in regard to structural integrity of the base soils that support the AST and in particular the geomembrane containment system, the specification requirements are the same*. The foundation soils must be roller compacted smooth and free of loose aggregate over ½ inch. Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698. This specification requirement is specific and causes the general or earthworks contractor to meet this standard regardless of the site- specifications call out the minimum requirements for subsoils compaction (i.e., 95% Standard Proctor Density – ASTM D 698), the design engineer or owners representative will carry out soils testing on the foundation materials to provide certainty to the AST containment owner that the earthworks contractor has met these obligations.

Thus, provided that the contractor meets the minimum specified requirements for foundation soils preparation and density, the location, geology or depth to groundwater will make no difference in regard to geomembrane liner equivalency as demonstrated by the AST variances presented in this volume and are considered valid for meeting NMOCD Rule 34 requirements for all locations within the Permian Basin of New Mexico.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email <u>geosynthetics@msn.com</u>

3

R.K. FROBEL & ASSOCIATES Consulting Engineers

Sincerely Yours,

27 France

Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

ASTM Standards 2019

RONALD K. FROBEL, MSCE, P.E.

CIVIL ENGINEERING GEOSYNTHETICS EXPERT WITNESS FORENSICS

FIRM: R. K. FROBEL & ASSOCIATES Consulting Civil / Geosynthetics Engineers

TITLE: Principal and Owner

PROFESSIONAL AFFILIATIONS:

American Society for Testing and Materials (ASTM) -Founding member of Committee D 35 on Geosynthetics Chairman ASTM D35 Subcommittee on Geomembranes 1985-2000 ASTM Award of Merit Recipient/ASTM Fellow - 1992 ASTM D18 Soil and Rock - Special Service Award - 2000 Transportation Research Board (TRB) of The National Academies Appointed Member A2K07 Geosynthetics 2000 - 2003 National Society of Professional Engineers (NSPE) - Member American Society of Civil Engineers (ASCE) - Member Colorado Section - ASCE - Member International Society of Soil Mechanics and Foundation Engineers (ISSMFE) - Member International Geosynthetics Society (IGS) - Member North American Geosynthetics Society (NAGS) - Member International Standards Organization (ISO) - Member TC 221 Team Leader - USA Delegation Geosynthetics 1985 - 2001 European Committee for Standardization (CEN) - USA Observer EPA Advisory Committee on Geosynthetics (Past Member) Association of State Dam Safety Officials (ASDSO) - Member U. S. Committee on Irrigation and Drainage (USCID) - Member Technical Advisory Committee - Geosynthetics Magazine Editorial Board - Geotextiles and Geomembranes Journal Fabricated Geomembrane Institute (FGI) – Board of Directors Co-Chairman International Conference on Geomembranes Co-Chairman ASTM Symposium on Impermeable Barriers U.S. Naval Reserve Officer (Inactive) Registered Professional Engineer - Civil (Colorado) Mine Safety Health Administration (MSHA) Certified

ACADEMIC

BACKGROUND:

University of Arizona: M.S. - Civil Engineering - 1975 University of Arizona: B. S. - Civil Engineering – 1969 Wentworth Institute of Technology: A.S. Architecture – 1966

RONALD K. FROBEL, MSCE, P.E.

PROFESSIONAL EXPERIENCE:	R. K. Frobel & Associates - Consulting Engineers Evergreen, Colorado, Principal and Owner, 1988 - Present		
	Chemie Linz AG and Polyfelt Ges.m.b.H., Linz, Austria U. S. Technical Manager Geosynthetics, 1985 - 1988		
	U.S. Bureau of Reclamation, Engineering and Research Center Denver, Colorado, Technical Specialist in Construction Materials Research and Application, 1978 - 1985		
	Water Resources Research Center (WRRC), University of Arizona Tucson, AZ, Associate Research Engineer, 1975 - 1978		
	Engineering Experiment Station, University of Arizona Tucson, AZ, Research Assistant, 1974 - 1975		
	United States Navy, Commissioned Naval Officer, 1970 - 1973		

REPRESENTATIVE EXPERIENCE:

<u>R.K. Frobel & Associates</u>: Civil engineering firm specializing in the fields of geotechnical, geo-environmental and geosynthetics. Expertise is provided to full service civil/geotechnical engineering firms, federal agencies, municipalities or owners on a direct contract, joint venture or sub-consultant basis. Responsibilities are primarily devoted to specialized technical assistance in design and application for foreign and domestic projects such as the following:

Forensics investigations into geotechnical and geosynthetics failures; providing expert report and testimony on failure analysis; providing design and peer review on landfill lining and cover system design, mine waste reclamation, water treatment facilities, hydro-technical canal, dam, reservoir and mining projects, floating reservoir covers; oil and gas waste containment; design of manufacturers technical literature and manuals; development and presentation of technical seminars; new product development and testing; MQA/CQA program design and implementation.

<u>Polyfelt Ges.m.b.H., Linz, Austria and Denver Colorado</u>: As U.S. technical manager, primary responsibilities included technical development for the Polyfelt line of geosynthetics for the U.S. civil engineering market as well as worldwide applications.

Page 2

RONALD K. FROBEL, MSCE, P.E.

<u>U.S. Bureau of Reclamation, Denver, Colorado</u>: As technical specialist, responsibilities included directing laboratory research, design and development investigations into geosynthetics and construction materials for use on large western water projects such as dams, canals, power plants and other civil structures. Included were material research, selection and testing, specification writing, large scale pilot test programs, MQA/CQA program design and supervision of site installations. Prime author or contributor to several USBR technical publications incorporating geosynthetics.

<u>University of Arizona, Tucson, Arizona</u>: As research engineer at the Water Resources Research Center, responsibilities included research, design and development of engineering materials and methods for use in construction of major water projects including potable water reservoirs, canals and distribution systems. Prime author or contributor to several WRRC technical publications.

<u>Northeast Utilities, Hartford, Connecticut</u>: As field engineer for construction at Northeast Utilities, responsibilities included liason for many construction projects including additions to power plants, construction of substations, erection of fuel oil pipelines and fuel oil storage tanks. Responsibilities also included detailed review, inspection and reporting on numerous construction projects.

U.S. Navy: Commissioned Naval Officer - Nuclear Program

PUBLICATIONS: Over 85 published articles, papers and books.

CONTACT DETAILS:

Ronald K. Frobel, MSCE, P.E. R. K. Frobel & Associates Consulting Civil/Geosynthetics Engineers PO Box 2633 Evergreen, Colorado 80439 USA Phone 720-289-0300 Email: geosynthetics@msn.com Page 109 of 112

Venegas, Victoria, EMNRD

From:	Venegas, Victoria, EMNRD	
Sent:	day, March 13, 2023 2:39 PM	
То:	'Chad Gallagher'	
Subject:	2RF-149 - Eddy State Water Treatment and Reuse Facility ID [fVV2105730365]. Modification.	
Attachments:	C-147 Modification. 2RF-149 Solaris Eddy State 03.13.2023.pdf	

2RF-149 - Eddy State Water Treatment and Reuse Facility ID [fVV2105730365]

Good afternoon Mr. Gallagher,

NMOCD has reviewed the permit modification application request submitted by SOLARIS WATER MIDSTREAM, LLC [371643] on February 27, 2023, Application ID 190892, for 2RF-149 - Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] in K-02-26S-29E, Eddy Count New Mexico. This application is approved with the following conditions of approval:

The following variances have been approved:

- The variance to 19.15.34.14 NMAC Table I for the use of alternate analytical method 8015/8015M for total petroleum hydrocarbons (TPH) is approved.
- The variance to 19.15.34.14 NMAC Table I for the use of alternate analytical method EPA 300.0 or SM4500 for the analysis of chloride is approved.
- The variance to 19.15.34.12.A.(2) NMAC for the no side-slope requirement for the AST containment with vertical walls is approved.
- The variance to 19.15.34.12.A.(3) NMAC for the liners to be anchored to the top of the AST steel walls and no anchor trenches is approved.
- The variance to 19.15.34.12.A.(4) NMAC for the installation on the AST containment of a 40-mil non-reinforced LLDPE primary liner and a 30-mil non-reinforced LLDPE secondary liner with a 200-mil geogrid drainage layer is approved.
- The variance to 19.15.34.12 A (4) NMAC for the installation on the AST containment of a 40-mil non-reinforced LLDPE primary liner and a 40-mil non-reinforced LLDPE secondary liner with a 200-mil geogrid drainage layer is approved.
- The variance to NMAC 19.15.34.12.D to install a gate or chain across the stairway between the ground surface and the open-top of the AST containment is approved. The operator shall place an appropriate sign on the gate or chain to prevent unauthorized human access to the open top of the containment and provide a mechanism to lock the gate when responsible personnel are not onsite.

The following variances have been denied:

- The requested variance that the 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365], when not in use, be exempt from weekly inspections per 19.15.34.13(A) is denied.
- [371643] SOLARIS WATER MIDSTREAM LLC must inspect the 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] recycling containment and associated leak detection systems weekly while it contains fluids per 19.15.34.13(A). [371643] SOLARIS WATER MIDSTREAM LLC shall maintain a current log of such inspections and make the log available for review by the division upon request.

The form C-147 and related documents for 2RF-149 - Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] is approved with the following conditions of approval:

- [371643] SOLARIS WATER MIDSTREAM LLC will continue to operate, maintain, close, and reclaim 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] in compliance with NMAC 19.15.34 NMAC.
- Per Rule 19.15.34.15.A.(1) operators without existing financial assurance pursuant to 19.15.8 NMAC shall furnish financial assurance acceptable to the division in the amount of the recycling containment's estimated closure cost. The closure cost estimate, specific to the addition of one (1) AST tank of 60,000 BBL of capacity, to 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] in the amount of \$50,500.00 meets the requirements of NMAC 19.15.34.15.A.(1).
- The financial assurance should be mailed to Oil Conservation Division; Bonding and Compliance; 1220 South St Frances Drive; Santa Fe, NM 87505.
- A minimum of 3-feet freeboard must be maintained at 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] at all times during operations.
- If less than 20% of the total fluid capacity is utilized every six months, beginning from the first withdrawal, operations are considered ceased and a notification of cessation of operations should be sent electronically to <u>OCD Permitting</u>. A request to extend the cessation of operation, not to exceed six months, may be submitted using a C-147 form through <u>OCD Permitting</u>.
- If after that 6-month extension period, the 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] is not utilized at a minimum of 20% fluid capacity, no additional extensions would be granted, and the operator would be directed to remove all fluids and proceed with the closure requirements.
- [371643] SOLARIS WATER MIDSTREAM LLC shall submit monthly reports of recycling and reuse of produced water, drilling fluids, and liquid oil field waste on OCD form C-148 via <u>OCD Permitting</u> even if there is zero activity.
- [371643] SOLARIS WATER MIDSTREAM LLC shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request as per 19.15.34.13.A.
- [371643] SOLARIS WATER MIDSTREAM LLC shall comply with 19.15.29 NMAC Releases in the event of any release of produced water or other oil field waste at 2RF-149 Eddy State Water Treatment and Reuse Facility ID [fVV2105730365].

Regards,

Victoria Venegas • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division (575) 909-0269 | <u>Victoria.Venegas@emnrd.nm.gov</u> https://www.emprd.pm.gov/ocd/

https://www.emnrd.nm.gov/ocd/

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

CONDITIONS

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
SOLARIS WATER MIDSTREAM, LLC	371643
907 Tradewinds Blvd, Suite B	Action Number:
Midland, TX 79706	190892
	Action Type:
	[C-147] Water Recycle Long (C-147L)

	Created By	Condition	Condition Date
	vvenegas	NMOCD has reviewed and approved the permit modification application request submitted by SOLARIS WATER MIDSTREAM, LLC [371643] on February 27, 2023, Application ID 190892, for 2RF-149 - Eddy State Water Treatment and Reuse Facility ID [fVV2105730365] in K-02-26S-29E, Eddy Count New Mexico.	3/13/2023

CONDITIONS

Action 190892