

2901 Via Fortuna Suite 600 • Austin, Texas 78746 • Phone (737) 300-4700

September 28, 2023

NM Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr. Santa Fe, NM 87505

RE: NW, SW, and NE Recycling ASTs
Ike's Containment #1 and Recycling Facility
1 RF-508; Facility ID fVV2326835427
UL D Section 27 T26S R36E, Lea County

Ameredev Operating respectfully submits attached modification to the Ike's Containment #1 permit, 1RF-508. This modification describes 3 AST containments which are associated with this recycling facility, identified as NW AST, SW AST, and NE AST.

Dates of operation:

NW AST: 8/2018 - 9/2023
SW AST: 6/2019 - 4/2021
NE AST: 5/2018 - 6/2019

This registration package includes:

- C 147
- Site Specific Information
- Plat of new pad
- Design and Construction Plan
- Operations and Maintenance Plan
- Closure Plan
- Appendix A: Technical Specifications
- Appendix B: Well Logs
- Appendix C: Variance requests
 - o Fencing
 - o Levee Slope
 - o Anchor Trench
 - o Primary Liner Dual 40-mil LLDPE
 - o Secondary liner 60-mil HDPE

The ASTs have been deconstructed, according to the Closure Plan, and site closure is expected to commence in the next few weeks. The site will remain in-use for oil and gas operations. Closure report for the recycling ASTs will be submitted following completion of site closure activities.

A prior release was located south of the NW AST (Incident ID# NCS2003549670) and deferral was approved by NMOCD. Final remediation and restoration to an in-use site will occur in accordance with 19.15.29.12 and ultimately 19.15.29.13 when the site is no longer in use for oil and gas operations. Closure activities and confirmation sampling of this incident will be provided under separate cover, some confirmation samples may be used both for closure of the release and of AST sites.

The legacy C-148s for both the Ike's inground and AST containments will be submitted via the online portal process for C-148 forms.

Please contact me with any questions.

Sincerely,

Shane McNeely

Ameredev II, LLC

Shane McNeely

Page 3 of 69

State of New Mexico
Energy Minerals and Natural Resources
Department Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-147 Revised October 11, 2022

https://www.emnrd.nm.gov/ocd/ocd-e-permitting/

Recycling Facility and/or Recycling Containment
Type of Facility:
At the time C-147 is submitted to the division for a Recycling Containment, a copy shall be provided to the surface owner.
Be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. For does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
Operator: Ameredev Operating, LLC (For multiple operators attach page with information) OGRID #: 372224 Address: 2901 Via Fortuna #600, Austin, TX 78746
Facility or well name (include API# if associated with a well): Ike's Containment #1 and Recycling Facility
OCD Permit Number: 1RF-508 (For new facilities the permit number will be assigned by the district office) U/L or Qtr/Qtr D Section 27 Township 26S Range 36E County: Lea Surface Owner: Federal State Private Tribal Trust or Indian Allotment
2.
Recycling Facility:
Location of recycling facility (if applicable): Latitude Longitude NAD83
Proposed Use: Drilling* Completion* Production* Plugging *
*The re-use of produced water may NOT be used until fresh water zones are cased and cemented
Other, requires permit for other uses. Describe use, process, testing, volume of produced water and ensure there will be no adverse impact on
groundwater or surface water.
☐ Fluid Storage
☐ Above ground tanks ☐ Recycling containment ☐ Activity permitted under 19.15.17 NMAC explain type
Activity permitted under 19.15.36 NMAC explain type: Other explain
☐ For multiple or additional recycling containments, attach design and location information of each containment
Closure Report (required within 60 days of closure completion): Recycling Facility Closure Completion Date:
3. ✓ Recycling Containment: NW AST
Annual Extension after initial 5 years (attach summary of monthly leak detection inspections for previous year)
Center of Recycling Containment (if applicable): Latitude 32.0209189 Longitude -103.2607928 NAD83
✓ For multiple or additional recycling containments, attach design and location information of each containment
✓ Lined ☐ Liner type: Thicknessmil ☐ LLDPE ☐ HDPE ☐ PVC ☐ Other
☐ String-Reinforced Primary liner: Dual (2) 40 mil LLDPE; Secondary liner: 60 mil HDPE
Liner Seams: ✓ Welded ☐ Factory ☐ Other Volume: 60 K bbl Dimensions: L x W x D 12 ft 3.5 in
Recycling Containment Closure Completion Date: Diameter 191 ft

Recycling Containment: SW AST
Annual Extension after initial 5 years (attach summary of monthly leak detection inspections for previous year)
enter of Recycling Containment (if applicable): Latitude 32.0191416 Longitude -103.2608087 NAD83
☑ For multiple or additional recycling containments, attach design and location information of each containment
Lined Liner type: Thicknessmil LLDPE HDPE PVC Other
String-Reinforced Primary liner: Dual (2) 40 mil LLDPE; Secondary liner: 60 mil HDPE
iner Seams: Welded Factory Other Volume: 60 K bbl Dimensions: L x W x D 12 ft 3.5 in
Recycling Containment Closure Completion Date: Diameter 191 ft.

Annual Extension after initial 5 years (attach summary of monthly leak detection inspections for previous year)	
Center of Recycling Containment (if applicable): Latitude 32.0209202 Longitude -103.2598617 NAD83	
For multiple or additional recycling containments, attach design and location information of each containment	
☐ Liner type: Thicknessmil ☐ LLDPE ☐ HDPE ☐ PVC ☐ Other	
☐ String-Reinforced Primary liner: Dual (2) 40 mil LLDPE; Secondary liner 60 mil HDPE	
Liner Seams: ✓ Welded ☐ Factory ☐ Other Volume: 60 K _bbl Dimensions: L x W x	_{CD} 12 ft 3.5 in
☐ Recycling Containment Closure Completion Date: Diameter 191 ft	

Bonding: Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells operated by the owners of the containment.) Bonding in accordance with 19.15.34.15(A)(1). Amount of bond \$	
Fencing: ☐ Four foot height, four strands of barbed wire evenly spaced between one and four feet ☐ Alternate. Please specify 8-foot game fence topped with a single strand of barbed wire.	
 Signs: ✓ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers ☐ Signed in compliance with 19.15.16.8 NMAC 	
Variances: Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, hur environment. Check the below box only if a variance is requested: □ Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested variance information on a separate page and attach it to the C-147 as part of the application. If a Variance is requested, it must be approved prior to implementation.	
8. Siting Criteria for Recycling Containment Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application examples of the siting attachment source material are provided below under each criteria.	ution. Potential
General siting	
Ground water is less than 50 feet below the bottom of the Recycling Containment. Plate 2 NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☑ No ☐ NA
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Plate 3 - Written confirmation or verification from the municipality; written approval obtained from the municipality	☐ Yes ☑ No ☐ NA
Within the area overlying a subsurface mine. Plate 7 - Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division	☐ Yes ☑ No
Within an unstable area. Plate 8 - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map	☐ Yes ☑ No
Within a 100-year floodplain. FEMA map. Plate 9	☐ Yes ☑ No
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Plate 4 - Topographic map; visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; aerial photo; satellite image. Plate 5	☐ Yes ☑ No
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. Plate 3 - NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 500 feet of a wetland. Plate 6 - US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site	☐ Yes ☑ No

Title: Environmental Specialist

CD Conditions
Additional OCD Conditions on Attachment

9. Recycling Facility and/or Containment Checklist: Instructions: Each of the following items must be attached to the application. Indic	ate, hy a check	mark in the box, that the documents are attached.
	, . ,	
Design Plan - based upon the appropriate requirements.		
Operating and Maintenance Plan - based upon the appropriate requirements.		
Closure Plan - based upon the appropriate requirements.		
✓ Site Specific Groundwater Data -		
Siting Criteria Compliance Demonstrations –		
✓ Certify that notice of the C-147 (only) has been sent to the surface owner(s)		
10.		
Operator Application Certification:		
I hereby certify that the information and attachments submitted with this application as	re true, accurate	e and complete to the best of my knowledge and belief.
Oleses Manley I		
Name (Print): Shane McNeely	Title:	Engineer
Signature: Shane McNeely	Date:	September 28, 2023
e-mail address: smcneely@ameredev.com	Telephone:	737-300-4729
c-man address.	receptione.	-
11.		
OCD Representative Signature: Victoria Venegas		Approval Date: <u>10/10/2023</u>

OCD Permit Number: 1RF-508

Site Specific Information and Compliance Demonstration

Siting Requirements

The following sections address items as described in 19.15.34.11. Please refer to the C-147 General Siting Criteria checklist (Section 8) for additional setback criteria and further demonstration on attached Plates 2-9.

1.1. Site Map

Plate 1 shows the location of the NW, SW, and NE ASTs in relation to the lke's inground recycling containment, production equipment, pipelines, and utilities. A prior release extent (Incident ID# NCS2003549670), with NMOCD approved deferral is located south of the NW AST. Closure of this incident will be provided under separate cover.

1.2. Depth to Ground Water

Depth to groundwater is greater than 50 feet below ground surface (and bottom of containments) where the AST containments are located. The nearest depth-to-water borehole is mapped on Plate 2.

MISC-425 (J-00062 POD 1) is located approximately 0.17 miles to the south of the NW AST, 0.04 miles to the south of the SW AST, and 0.2 miles southwest of the NE AST. Depth of the water is noted as >101-feet. This borehole has been plugged. The well log is in Appendix B.

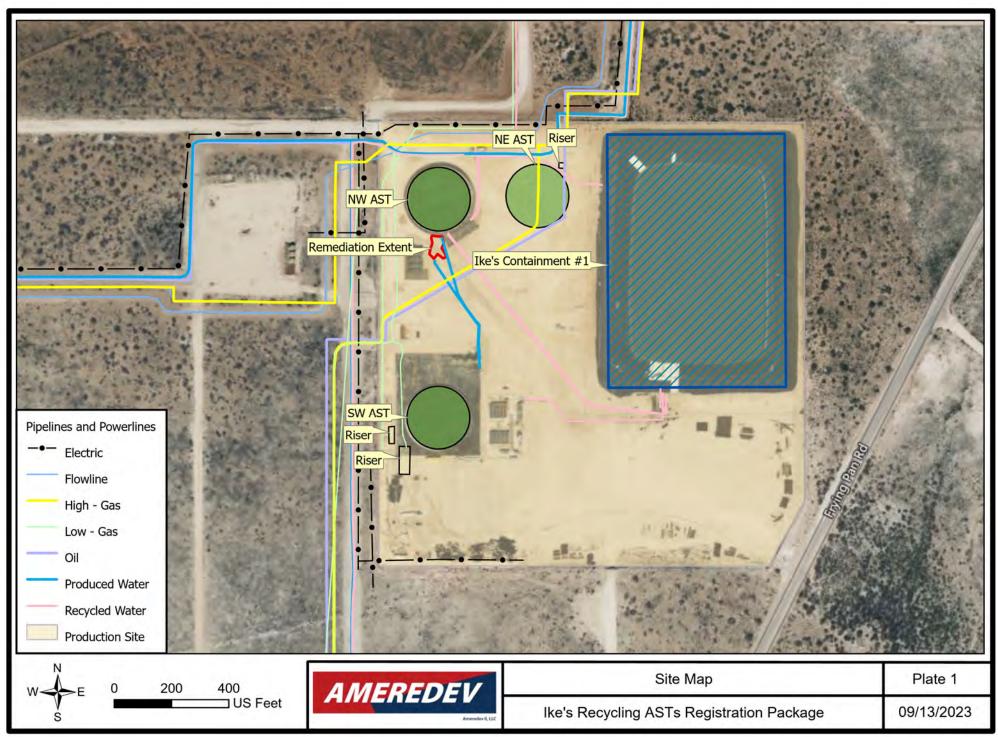
1.3. Wellhead Protection Area

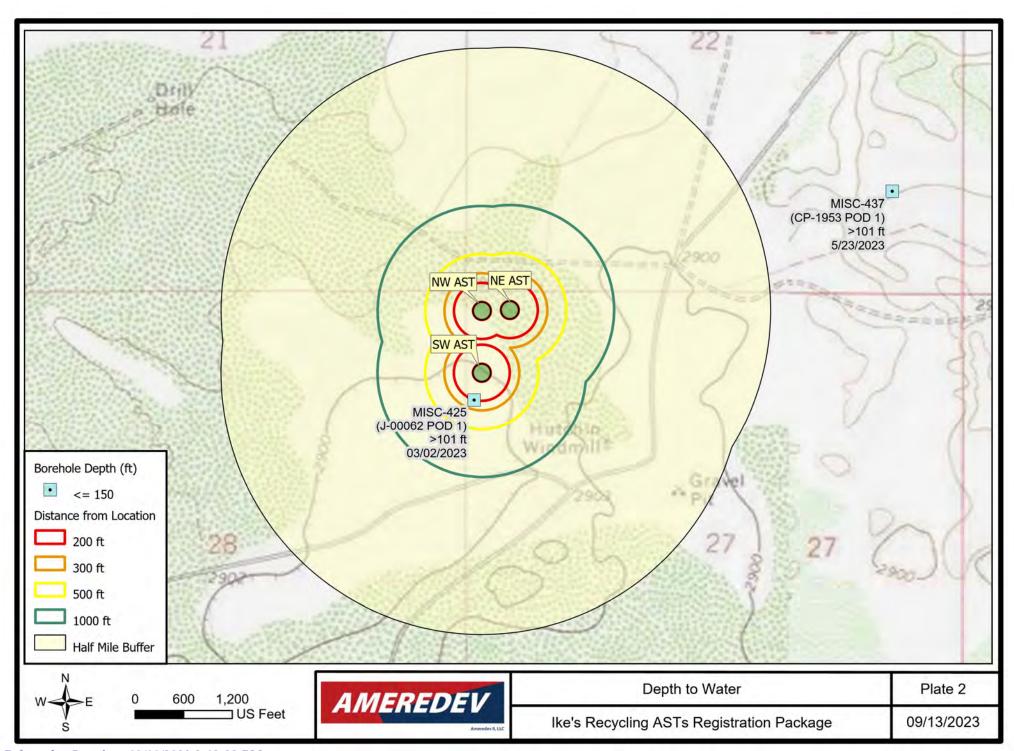
Plate 3 shows that the AST containments are:

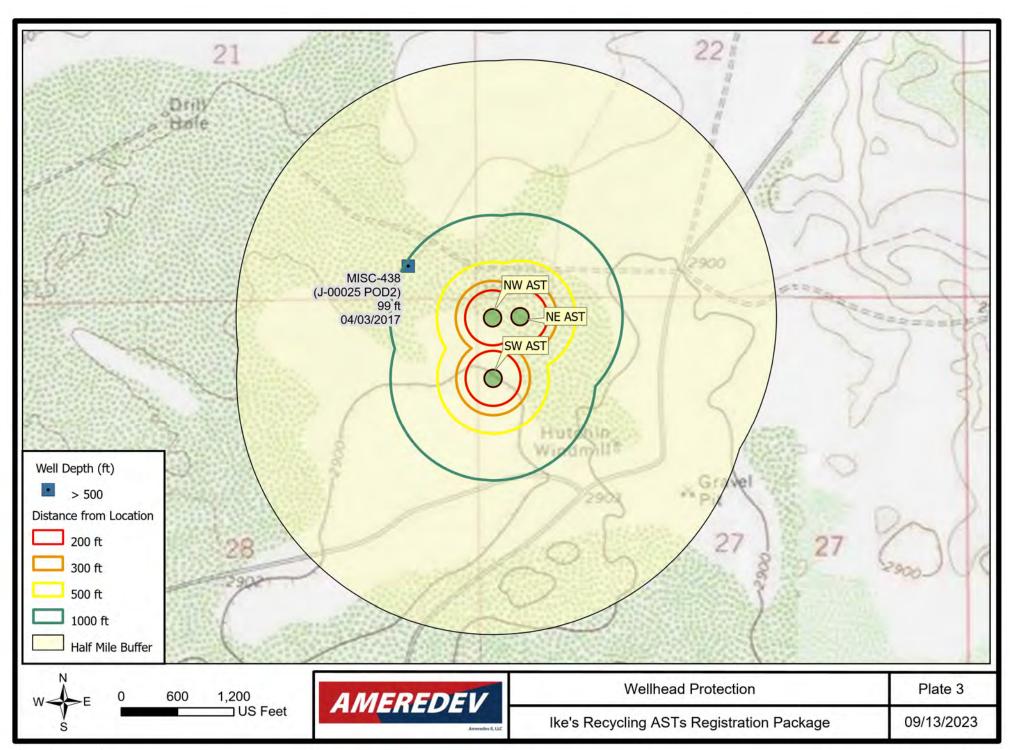
- Not within incorporated municipal boundaries or within a defined municipal fresh water well field.
- Not within 500 horizontal feet of a spring or a private domestic fresh water well used for domestic or stock watering purposes.
- The nearest freshwater well is J-00025 (POD 2). Location correction from OSE records done with aerial imagery and visual confirmation. It is located approximately 950 ft northwest of NW AST, 1400 ft northwest of SW AST, and 1200 ft northwest of NE AST. Well log is included in Appendix B and indicates it is an artesian well. The driller's log notes that the upper 600-feet is unsaturated and describes a sand and gravel layer 600 feet below ground surface (bgs). This sand and gravel layer is likely within the saturated zone. The overlying sand and clay layer is representative of a confining layer. Assuming the sand and clay layer acts as an aquitard, depth to water is 600-feet bgs with 501-feet of pressure head; yielding a static depth to water at 99 ft (=600 ft -501 ft). An

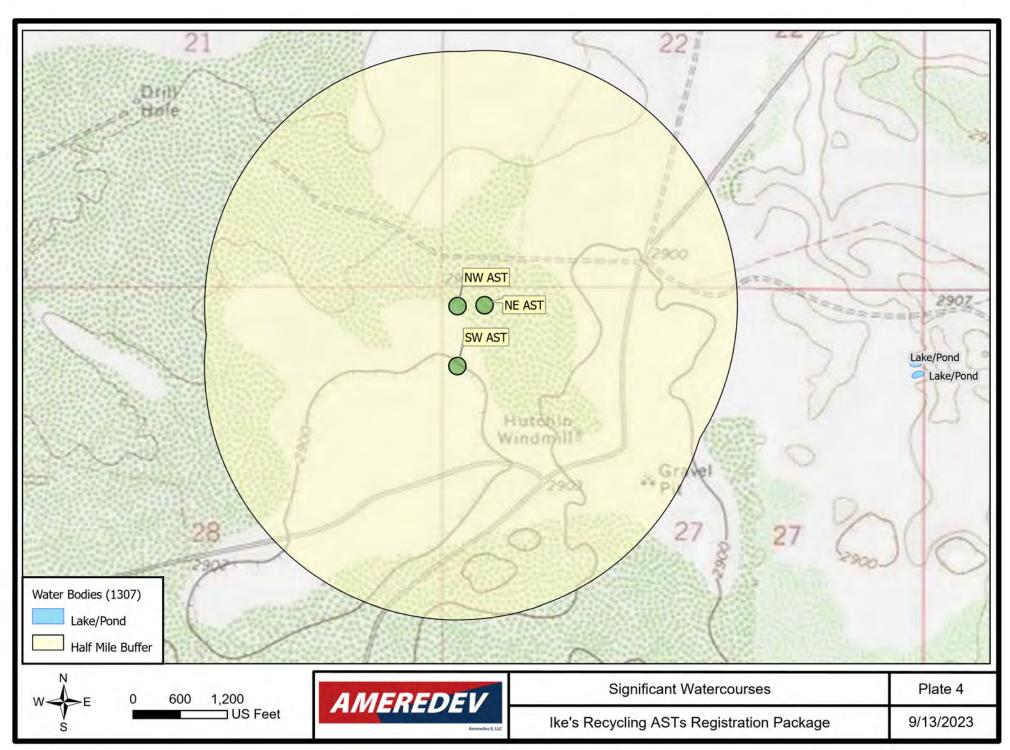
Ameredev II, LLC

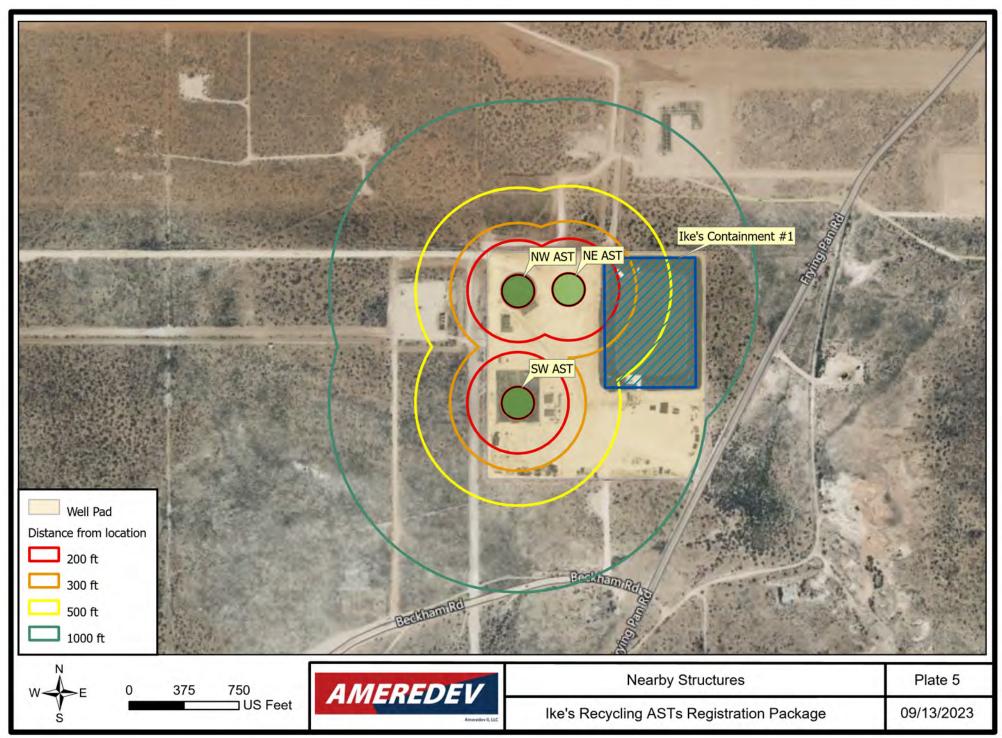
abandoned windmill is located > 1000 ft to the southeast of the containments and is identified on the USGS Topographic map as "Hutchin Windmill"

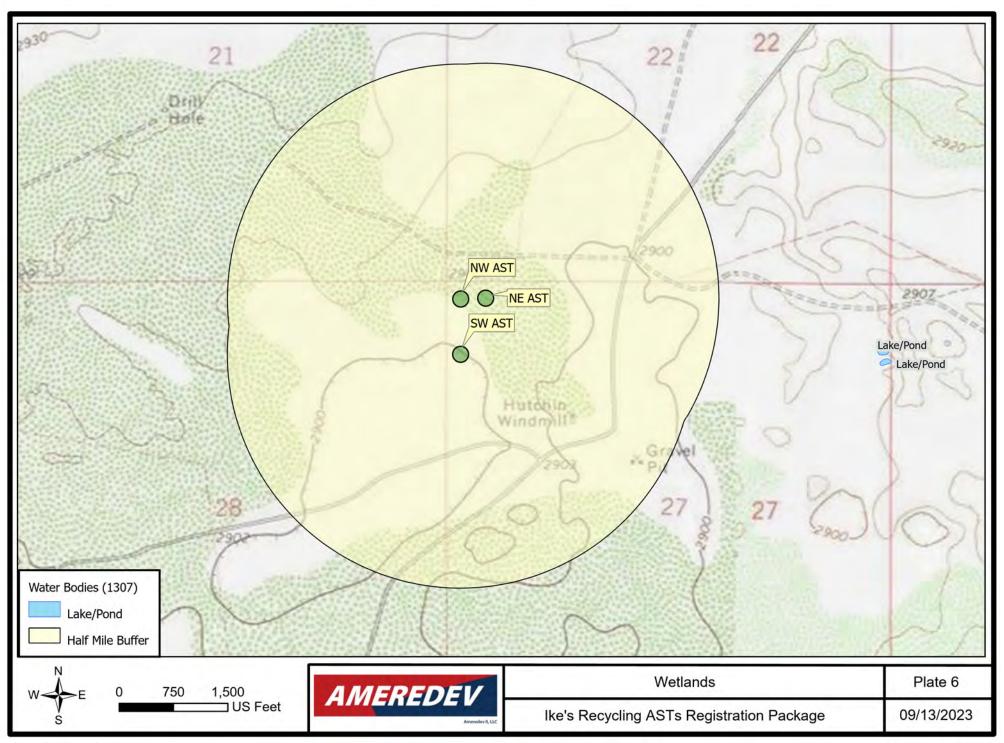

1.4. Distance to Nearest Significant Water Course

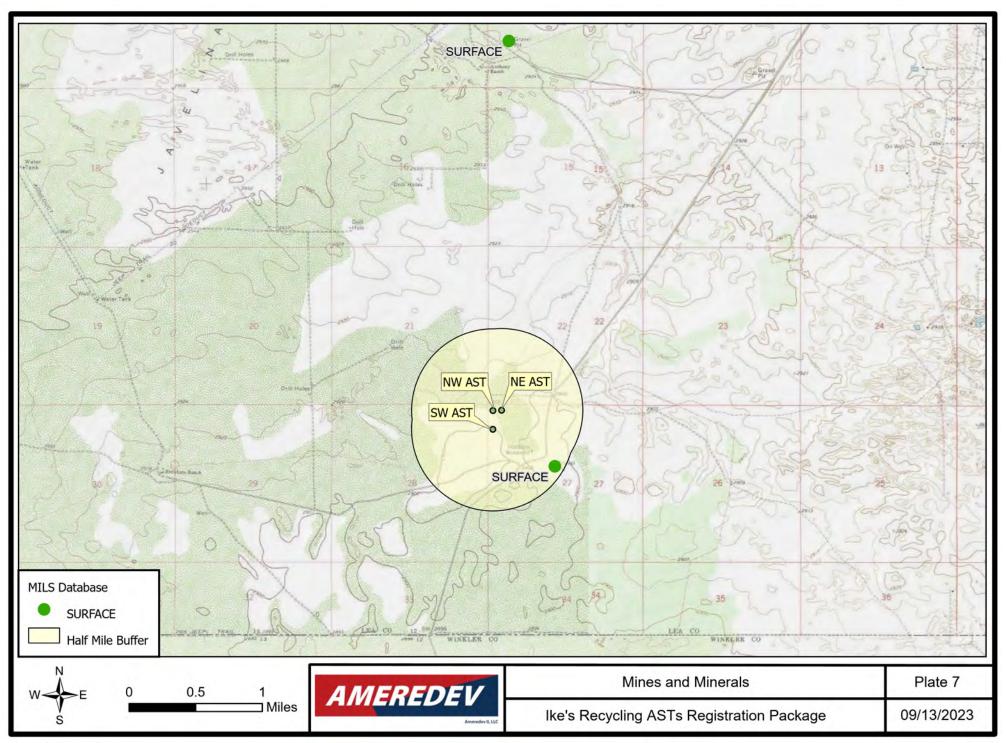

Plate 4 shows that the AST containments are:

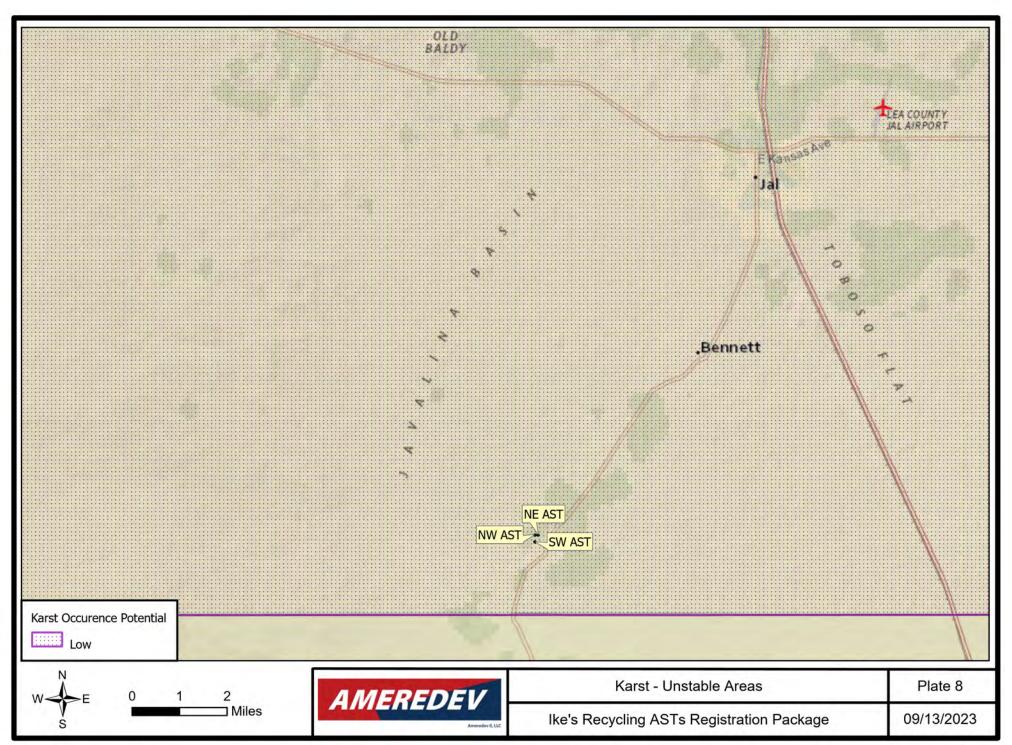

- Not within ½ mile of any significant water course.
- Not within 300 feet of a continuously flowing watercourse or any other significant watercourse.
- Not within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).

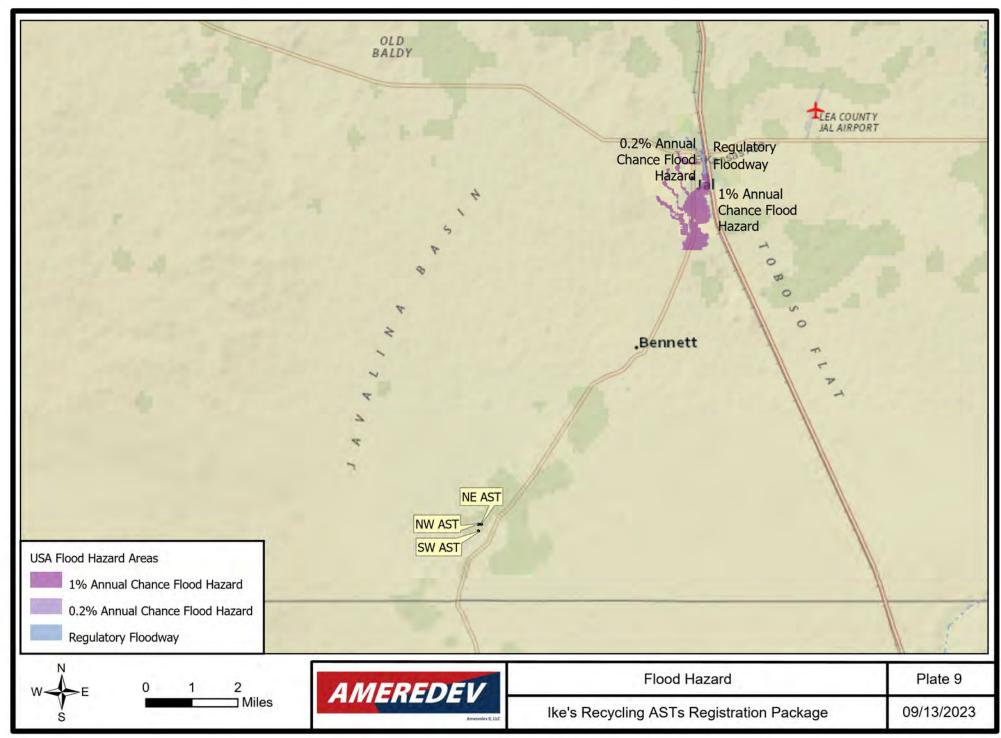

The nearest significant water courses are 2 lake/ponds located approximately 1 mile east of the AST containments and appear as dry depressions on aerial imagery.


Ameredev II, LLC









Design and Construction Plan Operations and Maintenance Plan Closure Plan

Design and Construction Plan

General

Ike's recycling ASTs are designed and constructed to confine produced water, to prevent releases and to prevent overtopping due to wave action or rainfall to meet or exceed standards put forth by 19.15.34.12 NMAC.

A Tank Tech, LLC Model 600 above ground water storage tank were used at this site. Tank Tech specifications are attached in Appendix A.

Solmax is the manufacturer for the geomembrane liners and leak detection geogrid materials. Liner specifications are attached in Appendix A.

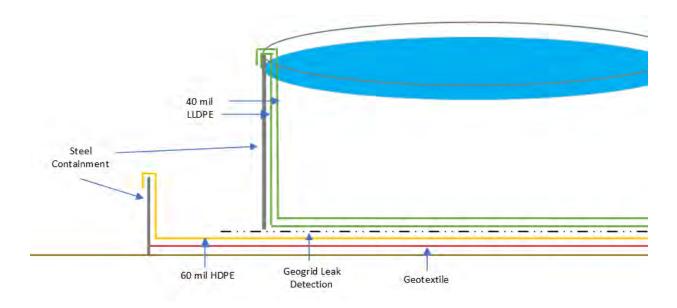
The ASTs were constructed as described in this Design and Construction Plan and in accordance with 19.15.34.12 NMAC, supported by variance requests where the design of the ASTs diverges from the rule, which was written pertaining to inground containments.

Foundation for AST Containment

Ike's recycling ASTs are constructed on a new pad, northwest of the existing pad for the associated recycling facility. Plate 1 shows the Site Map, followed by plat of surface extension site.

The foundation consists of a firm, unyielding base, smooth and free of rocks, debris, sharp edges, or irregularities to prevent the liner's rupture or tear. A geotextile was placed under the secondary liner to reduce stress-strain that may compromise liner's integrity. Any stripped topsoil has been stockpiled for reuse during closure activities.

Containment construction


Ike's recycling ASTs are constructed of upright steel panels 12 ft 3.5 inches in height. The structure's diameter is 191 ft with a capacity of 62,719 barrels.

The ASTs are constructed of upright steel panels which preclude any risk of surface run-on. Additionally, the secondary liner is attached to upright steel panels as used for tank battery secondary containments. Adequate access is provided for inspection and maintenance. A variance request from the defined levee slope requirement is provided in Appendix C.

Liner and Leak Detection System:

The liner and leak detection system for the recycling ASTs meets or exceeds specifications put forth in the 19.15.34.12. A (4).

Schematic for liner system is as follows (not to scale).

- Primary Liner: Dual (2 layers) 40 mil LLDPE attached to steel containment wall with clips.
- Leak Detection: 200 mil Geogrid placed between primary and secondary liners.
- Secondary Liner: 60 mil HDPE
- Steel wall containment with secondary liner attached with clips.
- Geotextile underlayment
- Employed bird netting on top of containment is not depicted in this schematic.

Per 19.15.34.12 A. (4) NMAC. "All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Liner compatibility will meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications."

For Ike's recycling ASTs a dual (double layer) 40 mil LLDPE is used as the primary liner. Variance request attached in Appendix C

Per 19.15.34.12 A. (4) NMAC. "Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility will meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications."

For Ike's recycling ASTs the secondary liner is a 60 mil HDPE. *Variance request attached in Appendix C.*

Unlike inground containments, the build of these ASTs requires that the primary and secondary liners are attached to the upright steel walls of the AST with clamps. As the build of the AST system does not allow for the anchor trench as described in the Rule for inground containments, a variance request from anchor trench for securing liner systems is attached in Appendix C.

The leak detection system, appropriate for site's condition, is constructed with a properly designed drainage and collection system with a **200 mil geonet** placed between the primary (dual upper 40 mil LLDPE) liners and secondary (lower 60 mil HDPE) liner. This geonet extends beyond the 12 ft steel walls of the AST. The slope is such to facilitate the flow of any fluids along the geonet where it can be visibly seen within the secondary liner containment, to allow the earliest possible leak detection. Any visible or pooling fluids resulting from a leak would be removed with a hydrovac or sump pump for disposal to an NMOCD approved facility. This system meets NMOCD requirements.

Liner seams have been minimized and oriented up and down, not horizontally on the wall of the ASTs. Factory welded seams were used as much as possible. Minimal field seams were employed in both the primary and secondary liners and both were overlapped 4-6 inches and thermally sealed and tested by qualified personnel.

The injection or withdrawal of fluids from the containment is accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes (or other hydrostatic force or mechanical damage). These lines will not penetrate the liner system.

Signs

Ameredev has posted signs, not less than 12 inches by 24 inches with lettering 2 inches or greater in height in conspicuous places along the fence surrounding the container, where they can be easily read. It contains the operator's name, the location of the site by quarter-quarter unit letter, section, township and range and emergency numbers.

Fencing

Ameredev has fenced the recycling containment and facilities in a manner to deter unauthorized human access and wildlife and shall maintain the fences in good repair. All gates are closed and locked when responsible personnel are not onsite. This AST is enclosed by 8-foot game fence topped with a single strand of barbed wire. A variance request is attached in Appendix C.

Netting

The Ike's recycling ASTs are netted to be protective of wildlife, including migratory birds. On at least a monthly basis, Ameredev shall inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

Operations and Maintenance Requirements

General

Ameredev will maintain and operate the recycling containments in accordance 19.15.34.11 NMAC with the following plan to contain liquids to prevent contamination of fresh water and protect public health and the environment.

The recycling containments may hold produced water for use in connection with drilling, completions, producing or processing oil and/or gas. Such fluids may include freshwater, brackish water, recycled and treated water, fluids added to water to facilitate well drilling or completion, water produced with oil and gas, flowback from operations, water generated by an oil or gas processing facility or other waters that are gathered for well drilling or completion. They may not include hazardous waste or be used for disposal of produced water or other oilfield waste.

Any releases from the recycling and re-use of produced water shall be remediated in accordance with 19.15.29 NMAC. An oil absorbent boom or other device is maintained on site to contain any unanticipated release.

Ameredev will monitor for and remove any visible oil from the surface of the ASTs with an oil absorbent boom or other device, which will be maintained on site. Removed fluid shall be transported off-site to a division approved disposal facility.

At least three feet of freeboard shall be always maintained.

The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses and/or pipes.

The facility will be operated to prevent the collection of surface run-on.

These activities shall occur in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.

Ike's recycling ASTs will be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six months following the first withdrawal of produced water for use. Cessation of operations must be reported to the appropriate division district office. An extension to this determination of cessation of operations, not to exceed 6 months, may be requested from NMOCD via OCD Permitting portal using a C 147 long form with cover letter describing request.

Inspections:

- Must occur weekly when any volume of fluid is present within the containment.
- A log of these inspections should be maintained and available for review on request per NMOCD.
- Inspections to include:
 - o Leak detection system and for evidence of fluid in secondary containment.
 - Visible liner integrity/potential compromise by fluid jets or impact from installation and removal of hoses or pipes.
 - o Liner secured with clips.
 - o Freeboard/fluid levels
 - Noting and removal/appropriate disposal of visible oil on surface.
 - Integrity of berms/prevention of surface run-on.
 - Integrity of netting
 - Presence of wildlife/birds (any found must be reported to appropriate wildlife agency.)
 - Integrity of fencing
 - Assessment of tank panels/compromise of the steel structure.
 - Presence of H2S

Leak Detection

If the liner develops a leak or is compromised above the liquid's surface, then Ameredev will repair the damage or initiate replacement of the primary liner within 48 hours of discovery or will seek an extension from NMOCD.

If the primary liner is compromised below the fluid's surface, determined by inspection of the liner or from evidence of produced water in the leak detection system, all fluid shall be removed above the damage or leak and Ameredev will notify NMOCD within 48 hours of discovery. The liner shall then be cleaned and repaired or replaced by qualified personnel.

Reporting of identified leaks/damage to liner integrity:

There is no allowable volume for leaks. Any volume of fluid identified with the leak
detection system (that is not proven through testing to be unimpacted fluid, i.e.
condensation) must be reported within 48 hours. A plan for intervention, including
dropping the fluid level to below the leak and a plan for repair and/or extension request,
if indicated, should be included in report.

- Liner damage *above* fluid level is expected to be repaired within 48 hours of discovery or seek extension from NMOCD.
- Communication should be via the OCD Permitting Portal using the C 147 long form with an explanatory cover letter.

Reporting of water transfer and usage:

- Monthly report of volumes of water received (fresh and produced water separately) and volumes leaving facility via online permitting portal using C 148 form (updated January 2022). Use one C 148 per facility, current forms have place for reporting volumes for inground and AST containments.
- Records of sources and disposition of water must be kept and available for NMOCD review upon request.

Containments may be used for 5 years from the date the registration is initially filed with NMOCD. This may or may not correlate with the date of start of use. Annual extension may be requested by online submission of C-147 (long form) with an attached summary of inspections 30 days prior to registration expiration.

Closure Plan

Once operations have ceased, Ameredev will remove all fluids within 60 days and close the containment within six months from the date operations are ceased. An extension for the removal of fluids, not to exceed 2 months may be requested. An extension to close the containment may be requested, not to exceed six months. Extensions will be requested through the OCD online process using a C-147 long form with an explanatory cover letter.

Containment Deconstruction

Residual fluids in the containments will be removed and sent to disposal at a division-approved facility.

Following removal of fluids, all solid contents, synthetic liners, and leak detection materials will be removed and transported to a division-approved facility.

Deconstruction of the steel walls and other infrastructure will occur according to the manufacturer's recommendations (Tank Tech).

Soil Sampling

After removal of containments, Ameredev will test the soils beneath the containment for contamination with a five-point composite sample to include any areas which may have been impacted as observed by stained or wet soils. Soil samples will be analyzed for the constituents of concern as listed in Table I of 19.15.34.14 NMAC.

If all contaminant concentrations are less than or equal to the parameters listed in Table I, then Ameredev can proceed to backfill with non-waste containing, uncontaminated, earthen material.

If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and Ameredev must receive NMOCD approval before proceeding with closure.

Closure Report

Within 60 days of completion of closure, Ameredev will submit a closure report to document all closure activities, including required attachments, demonstrating sampling results with laboratory certificate of analysis, details of any remediation, backfilling, capping or covering as necessary. The closure report shall certify that all information in the report and attachments are correct and that Ameredev has complied with all applicable closure requirements and conditions specified in division rules or directives. All pertinent communications with NMOCD will be included in the report. Closure report to be submitted through the OCD permitting portal using a C-147 long form with explanatory cover letter.

Remediation, Restoration, & Reclamation

If constituents of concern exceed Closure Criteria per Table 1 of 19.15.34 NMAC, NMOCD may require remediation prior to restoration and reclamation activities. Please refer to the above section "Soil Sampling" for additional details.

If Closure Criteria is met per Table 1 of 19.15.34 NMAC, Ameredev will:

- If the location remains in-use for oil and gas production, the location will be restored to an active production site.
- If the location will not be in-use for oil and gas production, the site will be restored and reclaimed to the condition that existed prior to the construction of the recycling containment.
 - ✓ Reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area.
 - ✓ Topsoils and subsoils shall be replaced to their original relative positions and contoured to achieve erosion control, long-term stability, and preservation of surface water flow patterns.
 - ✓ The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment.
 - Reclamation will be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of pre-disturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

The re-vegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions provided they provide equal or better protection of fresh water, human health, and the environment.

Ameredev will notify NMOCD when this process is complete via OCD online using form C 147.

Inspection Log

Ike's Recycling ASTs

	Ike's AST's										
	Leak										
Date	Detection	Liner	Clips	Oil Visibility	Containment	Netting	Wild Life	Fencing	Tank Panels	H2S Present	
11/2/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/9/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/16/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/23/2018 11/30/2018	Dry	Good Good	Yes Yes	Minimal Minimal	Good Good	Good Good	None None	Good Good	Good Good	0 PPM 0 PPM	
12/7/2018	Dry Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/14/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/21/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/28/2018	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/4/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/11/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/18/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/25/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/1/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/8/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/15/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/22/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/1/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/8/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/15/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/22/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/29/2019 4/5/2019	Dry	Good Good	Yes Yes	Minimal	Good Good	Good Good	None	Good	Good Good	0 PPM	
4/12/2019	Dry Dry	Good	Yes	Minimal Minimal	Good	Good	None None	Good Good	Good	0 PPM 0 PPM	
4/12/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/26/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/3/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/10/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/17/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/24/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/31/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/7/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/14/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/21/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/28/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/5/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/12/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/19/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/26/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/2/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/9/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/16/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/23/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/30/2019 9/6/2019	Dry Dry	Good Good	Yes Yes	Minimal Minimal	Good Good	Good Good	None None	Good Good	Good Good	0 PPM 0 PPM	
9/13/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/20/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/27/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/4/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/11/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/11/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/18/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/1/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/8/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/15/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/22/2019	Ţ.	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/22/2019	Dry	Good	Yes	Minimal	Good			Good		0 PPM	
12/6/2019	Dry	Good		Minimal	Good	Good Good	None None	Good	Good Good	0 PPM	
12/0/2019	Dry	Good	Yes	iviiiIIIIdi	GUUU	Good	NOTIE	Good	Good	UPPIVI	

Ameredev II, LLC 1/5

	lke's AST's										
	Leak										
Date	Detection	Liner	Clips	Oil Visibility	Containment	Netting	Wild Life	Fencing	Tank Panels	H2S Present	
12/20/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/27/2019	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/3/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/10/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/17/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/24/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/31/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/7/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/14/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/21/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/28/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/6/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/13/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/20/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/27/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/3/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/10/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/17/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/24/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/1/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/8/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/15/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/22/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/29/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/5/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/12/2020 6/19/2020	Dry	Good Good	Yes Yes	Minimal	Good	Good	None	Good	Good Good	0 PPM	
6/19/2020	Dry	Good	Yes	Minimal Minimal	Good Good	Good	None None	Good Good	Good	0 PPM 0 PPM	
7/3/2020	Dry Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/10/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/10/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/24/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/31/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/7/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/14/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/21/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/28/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/4/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/11/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/18/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/25/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/2/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/9/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/16/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/23/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/30/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/6/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/13/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/20/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/27/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/4/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/11/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/18/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/25/2020	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/1/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/8/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	

Ameredev II, LLC 2/5

	Ike's AST's										
	Leak										
Date	Detection	Liner	Clips	Oil Visibility	Containment	Netting	Wild Life	Fencing	Tank Panels	H2S Present	
1/15/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/22/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/29/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/5/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/12/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/19/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/26/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/5/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/12/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/19/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
3/26/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/2/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/9/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/16/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/23/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
4/30/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/7/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/14/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/21/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
5/28/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/4/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/11/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/18/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
6/25/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/2/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/9/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/16/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/23/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
7/30/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/6/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/13/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/20/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
8/27/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/3/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
9/10/2021 9/17/2021	Dry Dry	Good Good	Yes	Minimal Minimal	Good Good	Good Good	None	Good	Good Good	0 PPM	
			Yes	1			None	Good		0 PPM	
9/24/2021 10/1/2021	Dry Dry	Good Good	Yes Yes	Minimal Minimal	Good Good	Good	None	Good	Good	0 PPM 0 PPM	
10/1/2021	Dry	Good	Yes	Minimal	Good	Good Good	None None	Good Good	Good Good	0 PPM	
10/8/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/13/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
10/22/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/5/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/12/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/12/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
11/26/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/3/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/10/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/17/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/24/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
12/31/2021	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/7/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/14/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/21/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
1/28/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	
2/4/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM	

Ameredev II, LLC 3/5

	Ike's AST's									
	Leak									
Date	Detection	Liner	Clips	Oil Visibility	Containment	Netting	Wild Life	Fencing	Tank Panels	H2S Present
2/11/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/18/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/25/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/4/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/11/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/18/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/25/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/1/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/8/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/15/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/22/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/29/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/6/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/13/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/20/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/27/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/3/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/10/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/17/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/24/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/1/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/8/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/15/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/22/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/29/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/5/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/12/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/19/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/26/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/2/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/9/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/16/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/23/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/30/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
10/7/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
10/14/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
10/21/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
10/28/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
11/4/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
11/11/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
11/18/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
11/25/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
12/2/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
12/9/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
12/16/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
12/23/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
12/30/2022	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
1/6/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
1/13/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
1/20/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
1/27/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/3/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/10/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/17/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
2/24/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/3/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5,5,2025			. 55		2224	2004				1 2**

Ameredev II, LLC 4/5

September 12, 2023 Inspection Log Ike's Recycling ASTs

					lke's	AST's				
Data	Leak	lin en	Clina	Oil Mielbille.	Cantainmant	NI attion o) A /: L d 1 : £ -	Famaina	Tauli Danala	U2C Dunnand
Date	Detection	Liner	Clips	Oil Visibility	Containment	Netting	Wild Life	Fencing	Tank Panels	H2S Present
3/10/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/17/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/24/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
3/31/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/7/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/14/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/21/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
4/28/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/5/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/12/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/19/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
5/26/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/2/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/9/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/16/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/23/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
6/30/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/7/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/14/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/21/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
7/28/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/4/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 ppm
8/11/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/18/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
8/25/2023	Dry	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM
9/1/2023	Drv	Good	Yes	Minimal	Good	Good	None	Good	Good	0 PPM

Ameredev II, LLC 5/5

Appendix A

Technical Specifications

Tank Tech, LLC can provide
engineering services and fabrication
for any custom size above
ground storage tank.

Tank Tech, LLC is a Fort Worth, Texas based company that provides high capacity industrial modular fluid storage tanks throughout the United States. Our mission is to provide the highest quality tank to mitigate your environmental risk and decrease your overall footprint. This is the solution to earthen pits for drilling fluids, water reclamation and water storage.

Tank Tech Tanks are designed and certified by a professional structural engineer and fabricated by our sister steel company to the strictest quality standards. Our rolled steel panels are made of high quality grade 50 domestic (U.S.A.) steel that should exceed the customers expectations.

In addition, our tanks will be equipped with supply and discharge lines that can be manufactured to fit any application.

Tank Tech offers leasing and the sale of our tanks. Our operations team will erect and dismantle your tank and our VP of operations has over 30 years of experience in the construction industry.

TANK TECH MODELS & SPECS

TANK TECH MODEL	400	425	600
Capacity (Barrels)	40,290	43,555	62,719
Capacity (Barrels) w/8" Freeboard	38,276	41,193	59,317
Capacity (Gallons)	1,692,180	1,829,298	2,634,198
Structure Diameter (ft)	160'-0"	159'-2"	191'-0"
Excavation Diameter (ft)	180'	190'	221'
Panel Height (ft)	11'-3"	12'-3 1/2"	12'-3 1/2"
Number of Panels	16	25	20
Truck Loads	3	3	3

Why Tank Tech, LLC should be incorporated into your operation

- Designed and certified by a licensed Professional Engineer with over 25 years of structural engineering experience.
- We offer the highest quality tanks to mitigate your environmental risk and decrease your overall footprint.
- Our tank height of 11' & 12' minimizes wildlife encroachment and transport.
- Each tank utilizes a geotextile mat and liner customized for the installation.
- Perfect alternative to earthen pits for fracking, drilling, water reclamation and water storage.
- Tank Tech can custom design, engineer, and fabricate any size/type tank to accommodate the customers needs.
- Mobility allows the tank to be installed on the most effective area of the job site.

Side view of Model 600 with 6" fill line.

Front view of Tank Tech Model 600.

Tank Tech uses High Density Polyethylene for all mechanical applications.

Tank Tech employee checking water level on Model 425.

An example of a Water Reclamation Project/Tank Farm.

Typical supply/discharge mechanical system.

Tank Tech's Bird netting system with cabling/center pole/netting.

Example of safety clamps on Tank Tech Model 600 tank.

December 12, 2018

Washington Crossing Field Services, LLC 5707 Southwest Parkway Suite 1-275 Austin, Texas 78735

Re:

Desoto Springs Containment – 32.076, -103.282844

To whom it may concern,

It is proposed to use a Tank Tech, LLC Model 600 above ground water storage tank to store water at the above referenced site. The Model 600 is 12'-3 1/2" tall with a diameter of 190'-11 7/8". It has a storage capacity of 62,719 barrels or 2,634,189 gallons.

The Model 600 tank was designed for loads in accordance with the International Building Code, 2015 Edition. The capacity of the various structural components was determined in accordance with the International Building Code, 2015 Edition and its various referenced Standards.

If there is any additional information that we may be able to provide at this time, please feel free to contact me at your convenience.

Sincerely.

David L. Hartmann, P.E., S.E.

Principal

dhartmann@fwna-eng.com

Released to Imaging: 10/11/2023 2:12:28 PM

TECHNICAL DATA SHEET

LLDPE Series, 40 mils

White Reflective, Smooth

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America:1-800-571-3904 www.Solmax.com www.solmax.com

PROPERTY	TEST METHO	D FREQUENCY(1)	UNIT Imperial	
SPECIFICATIONS			Į. s	
Thickness (min. avg.)	ASTM D5199	Every roll	mils	40.0
Thickness (min.)	ASTM D5199	Every roll	mils	36.0
Melt Index - 190/2.16 (max.)	ASTM D1238	1/Batch	g/10 min	1.0
Sheet Density (8)	ASTM D792	Every 10 rolls	g/cc	≤ 0.939
Carbon Black Content	ASTM D4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	Every 10 rolls	Category	Cat. 1 & Cat. 2
OIT - standard (avg.)	ASTM D3895	1/Batch	min	100
Tensile Properties (min. avg) (2)	ASTM D6693	Every 2 rolls		1
Strength at Break			ppi	168
Elongation at Break			%	800
2% Modulus (max.)	ASTM D5323	Per formulation	ppi	2400
Tear Resistance (min. avg.)	ASTM D1004	Every 5 rolls	lbf	22
Puncture Resistance (min. avg.)	ASTM D4833	Every 5 rolls	lbf	62
Dimensional Stability	ASTM D1204	Certified	%	± 2
Multi-Axial Tensile (min.)	ASTM D5617	Per formulation	%	30
Oven Aging - % retained after 90 days	ASTM D5721	Per formulation (5)		1
STD OIT (min. avg.)	ASTM D3895		%	35
HP OIT (min. avg.)	ASTM D5885		%	60
UV Resistance - $\%$ retained after 1600 hr	ASTM D7238	Per formulation (5)		
HP-OIT (min. avg.)	ASTM D5885		%	35
Low Temperature Brittleness	ASTM D746	Certified	°F	- 106
SUPPLY SPECIFICATIONS (Roll of	dimensions may vary ±1	.%)		
Color (one side) (4)		-		White

NOTES

- 1. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).
- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.
- 4. Smooth edge may not have the same consistent shade of color as the membrane itself. The colored layer may cause the carbon black content results to be higher than 3%.
- 5. Certified by core (black) formulation on geomembrane roll or molded plaque.
- 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
- * All values are nominal test results, except when specified as minimum or maximum.
- * The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

LIST OF GEOMEMBRANE ROLLS

PO 3292-2 - Odessa, TX

Project Number: 3292-2

Project Name

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tél.: 1-450-929-1234 • Fax.: 1-450-929-2547 • www.solmax.com

Reference Number:

111550

Packing Slip Number:

224726

Roll Number	Product Code	Resin Lot Number	Manufactured Date	Resin Melt Index 190/2.16 g/10 min D1238	Resin Density g/cc D1505	OIT Spec Result min D3895	HPOIT Spec Result min D5885	ESCR SP-NCTL Spec Roll Tested hours D5397
LLDPE 40 r	mils White Reflective Si							
5-35524	1008348-56350-1	CJB810750	23-mars-18	0.32	0.919	100 > 120		N/A
5-35539	1008348-56350-1	CJB810750	24-mars-18	0.32	0.919	100 > 120		N/A
5-35540	1008348-56350-1	CJB810750	24-mars-18	0.32	0.919	100 > 120		N/A
5-35542	1008348-56350-1	CJB810500	24-mars-18	0.36	0.919	100 > 120		N/A
5-35543	1008348-56350-1	CJB810500	24-mars-18	0.36	0.919	100 > 120		N/A
5-35550	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35551	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35552	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35553	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35554	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35556	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A
5-35557	1008348-56350-1	CJB810500	25-mars-18	0.36	0.919	100 > 120		N/A

Quantity (rolls):

12

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

26-mars-18 Released to Imaging: 10/11/2023 2:12:28 PM

MANUFACTURING QUALITY CONTROL

Test Results - Rolls

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tél.: 1-450-929-1234 • Fax.: 1-450-929-2547 • www.solmax.com

Project Name PO 3292-2 - Odessa, TX

Project Number: 3292-2

Reference Number: 111550

Packing Slip Number: 224726

Product 1008348-56350-1

LLDPE 40 mils White Reflective Smooth

CE Certificate = LL-40-SS-WB

Properties	Thickness ave / min.	Geo- membrane Density	Carbon Black Content	Carbon Black Dispersion	Yie Strength		Bre		Tear Resist.	Puncture Resist.	Dimension. Stability	Asperity Height in / out
Unit	mils	g/cc	%	Cat. 1 and 2	ppi	%	ppi	%	lbs	lbs	%	mils
Test Method	D5199	D1505/D792	D4218 / D1603	D5596		D66	93		D1004	D4833	D1204	
Frequency	Each roll		1/2 ro	1/10 ro		1/2	ro		1/5 ro	1/5 ro	Certied	N/A
Specification	40.0 / 36.0	≤ 0.939	2.0 - 3.0	Cat. 1 _ Cat. 2			168	800	22	62	± 2	
5-35524 MD XD	40.6 / 39	0.937	2.68	10 /10 Views			211 214	873 980	25.7 27.1	92.9		/
5-35539 MD XD	40.1 / 39	0.937	2.25	10 /10 Views			211 197	864 915	25.6 26.9	90.4		/
5-35540 MD XD	40.4 / 39	0.937	2.25	10 /10 Views			211 197	864 915	25.1 27.3	88.9		/
5-35542 MD XD	40.6 / 39	0.937	2.39	10 /10 Views			210 206	860 939	25.1 27.3	88.9		/
5-35543 MD XD	40.6 / 39	0.937	2.23	10 /10 Views			213 209	866 942	25.1 27.3	88.9		/
5-35550 MD XD	41.4 / 40	0.936	2.59	10 /10 Views			221 217	913 1011	25.9 27.7	88.6		/
5-35551 MD XD	40.7 / 39	0.936	2.68	10 /10 Views			215 222	878 1031	25.9 27.7	88.6		/
5-35552 MD XD	40.9 / 39	0.936	2.68	10 /10 Views			215 222	878 1031	25.9 27.7	88.6		/
5-35553 MD XD	40.8 / 39	0.937	2.83	10 /10 Views			218 220	894 1028	25.0 27.2	90.9		/
5-35554 MD XD	40.9 / 40	0.937	2.83	10 /10 Views			218 220	894 1028	25.0 27.2	90.9		/
5-35556 MD XD	40.6 / 39	0.937	2.59	10 /10 Views			210 216	855 1021	25.0 27.2	90.9		/
5-35557 MD XD	40.8 / 40	0.937	2.51	10 /10 Views			225 216	926 1001	25.0 27.2	90.9		/

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

26-mars-18 Released to Imaging: 10/11/2023 2:12:28 PM

Page 2 of 4

CoA Date: 02/13/2018

Certificate of Analysis

Shipped To: SOLMAX

2801 BOUL MARIE-VICTORIN

VARENNES QC J3X 1P7

CANADA

Recipient: Marcotte

Fax:

Delivery #: 89611704 PO #: 116755-0 Weight: 188300.000 LB Ship Date: 02/13/2018

Package: BULK
Mode: Hopper Car
Car #: CPCX815050
Seal No: 110664

Product:

MARLEX 7104 POLYETHYLENE in Bulk

Additive levels have been tested and meet minimum the specification for this lot.

As a result, Standard OIT (by ASTM D 3895) is greater than 120 minutes (nominal value, not tested on every lot).

Lot Number: CJB810500

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.36	g/10min
Density	D1505	0.919	g/cm3

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

KEVIN AYRES

QUALITY ASSURANCE SUPERINTENDENT

For CoA questions contact Melissa Alexander at +-832-813-4244

Page 1 of 1

26-mars-18 Page 3 of 4

CPChem

CoA Date: 02/14/2018

Certificate of Analysis

Shipped To: SOLMAX

2801 BOUL MARIE-VICTORIN VARENNES QC J3X 1P7

VARENNES QC J3X 1P7

CANADA

Recipient: Marcotte

Fax:

Delivery #: 89612650 PO #: 116787-0 Weight: 196150.000 LB Ship Date: 02/14/2018 Package: BULK

Mode: Hopper Car Car #: NAHX620433 Seal No: 122023

Product:

MARLEX 7104 POLYETHYLENE in Bulk

Additive levels have been tested and meet minimum the specification for this lot.

As a result, Standard OIT (by ASTM D 3895) is greater than 120 minutes (nominal value, not tested on every lot).

Lot Number: CJB810750

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.32	g/10min
Density	D1505	0.919	g/cm3

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

KEVIN AYRES

QUALITY ASSURANCE SUPERINTENDENT

For CoA questions contact Melissa Alexander at +-832-813-4244

Page 1 of 1

26-mars-18 Page 4 of 4

Laura Parker

From: Jorge Hernandez < jhernandez@solmax.com>

Sent: Monday, March 27, 2023 12:45 PM

To: Laura Parker

Subject: [EXTERNAL] Re: AST liner information Ameredev II, LLC

Laura,

This is what I got from our internal technical manager:

40-mil unreinforced LLDPE is similar to string-reinforced material, but does not contain tensile elements that create stress concentrations under certain types of loads. While reinforced products attempt to resist puncture and tear by tensile strength, unreinforced LLDPE was developed to maintain barrier performance under higher loads than can be resisted by tensile elements under extreme geotechnical loads. By providing much better linear and multi-axial elongation capacity, tensile stresses are relieved, stopping the poisson effect deformation that can lead to puncture in reinforced products. Unreinforced LLDPE thereby provides equal or better groundwater protection than string-reinforced products under extreme loads such as tank foundations and hydrostatic conditions.

Regards,

Jorge Hernandez

Value Engineer

(m) +1 713 828 7653 | jhernandez@solmax.com 19103 Gundle Road, Houston, Texas, 77073, USA

Please consider the environment before printing this email.

On Mar 16, 2023, at 09:49, Laura Parker < lparker@ameredev.com> wrote:

You don't often get email from lparker@ameredev.com. Learn why this is important

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good Morning Mr. Hernandez,

I wanted to follow up regarding the information requested below to compare 40 mil LLDPE liners with NMOCD regulatory requirements and EPA testing. Please let me know if you can obtain this technical information for us to use in writing variance request.

Thank you,

TECHNICAL DATA SHEET

HDPE Series, 60 mils

Black, Smooth

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America:1-800-571-3904 www.Solmax.com www.solmax.com

PROPERTY	TEST METHOD	FREQUENCY(1)	UNIT Imperial	
SPECIFICATIONS				
Thickness (min. avg.)	ASTM D5199	Every roll	mils	60.0
Thickness (min.)	ASTM D5199	Every roll	mils	54.0
Melt Index - 190/2.16 (max.)	ASTM D1238	1/Batch	g/10 min	1.0
Sheet Density (8)	ASTM D792	Every 10 rolls	g/cc	≥ 0.940
Carbon Black Content	ASTM D4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	Every 10 rolls	Category	Cat. 1 & Cat. 2
OIT - standard (avg.)	ASTM D3895	1/Batch	min	100
Tensile Properties (min. avg) (2)	ASTM D6693	Every 2 rolls		
Strength at Yield			ppi	132
Elongation at Yield			%	13
Strength at Break			ppi	243
Elongation at Break			%	700
Tear Resistance (min. avg.)	ASTM D1004	Every 5 rolls	lbf	42
Puncture Resistance (min. avg.)	ASTM D4833	Every 5 rolls	lbf	120
Dimensional Stability	ASTM D1204	Certified	%	± 2
Stress Crack Resistance (SP-NCTL)	ASTM D5397	1/Batch	hr	500
Oven Aging - % retained after 90 days	S ASTM D5721	Per formulation		
HP OIT (min. avg.)	ASTM D5885		%	80
UV Res % retained after 1600 hr	ASTM D7238	Per formulation		l
HP-OIT (min. avg.)	ASTM D5885		%	50
Low Temperature Brittleness	ASTM D746	Certified	°F	- 106

SUPPLY SPECIFICATIONS (Roll dimensions may vary ±1%)

NOTES

- 1. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).
- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.
- 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
- st All values are nominal test results, except when specified as minimum or maximum.
- * The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

Mustang Extreme Environmental Services

July 22, 2020

Attn: Alex Skousen | Operations Manager

Re: Hydraulic Conductivity – Solmax HDPE 60 mil

Dear Mr. Skousen:

Solmax International Inc. hereby certifies that the HDPE geomembrane 60 mil, black smooth, has a hydraulic conductivity (ATMD E 96) lower than 1×10^{-12} cm/s.

Hoping the above information will be satisfactory.

Sincerely,

Mauricio Ossa

Global Technical Engineering Manager

T +1 800 435-2008

Page 53 of 69

Appendix B

Well Logs

2904 W 2nd St. Roswell, NM 88201 voice: 575.624.2420 fax; 575.624.2421 www.atkinseng.com

March 9, 2023

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record J-00062 POD-1

To whom it may concern:

Attached please find a well log & record and a plugging record, in duplicate, for a one (1) soil borings, J-0062 POD-1

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Lucas Middleton

Enclosures: as noted above

Groon Modelin

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

WELL OWNER NAME(S) Ameredev Operating, LLC WELL OWNER MAILING ADDRESS 2901 Via Fortuna Suite 600 WELL OWNER MAILING ADDRESS 2901 VIA FORTUNA SUITE 600 **ACCURACY REQUIRED: WGS 84 **DATUM REQUIRED: WGS 84 DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHIJIP, RANGE) WHERE AVAIL	ZIP	
WELL OWNER MAILING ADDRESS 2901 Via Fortuna Suite 600 DEGREES MINUTES SECONDS WELL 32 1 5 08	711	
WELL DEGREES MINUTES SECONDS	78746	
LOCATION LATITUDE 32 1 3.98 N * ACCURACY REQUIRED: ONE TENTH OF A SEC	COND	
(FROM GPS) LONGITUDE 103 15 39.71 W * DATUM REQUIRED: WGS 84		
DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAIL SW NW NW Sec.27 T26S R36E NMPM	ABLE	
LICENSE NO. NAME OF LICENSED DRILLER 1249 1249 1249 1249 1240 NAME OF WELL DRILLING COM Atkins Engineering A		
DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) 2/21/23 DEPTH WATER FIRST ENCOUN 1/2 DEPTH WATER FIRST ENCOUN	ITERED (FT)	
COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) IN COMPLETED WELL 1/2	ATE STATIC MEASURED 3/2/2023	
DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY:		
DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER-SPECIFY: Hollow Stem Auger CHECK HERE IF PT	TLESS ADAPTER IS	
DEPTH (feet bgl) BORE HOLE CASING MATERIAL AND/OR CASING CASING CASING	CASING WALL SLOT	
FROM TO DIAM GRADE CONNECTION INSIDE DIAM. THICK	KNESS SIZE (inches)	
0 101 6.25" Soil Borning		
DELITING OF THE PROPERTY OF TH		
7. 0		
DEPTH (feet bgl) BORE HOLE LIST ANNULAR SEAL MATERIAL AND AMOUNT	METHOD OF	
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet)	PLACEMENT	
FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet)		
X X		
nra		
AN A		
ri l		
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Vo	01/20/2022	
ECOLOGE INTERDIAL HEE	ersion 01/28/2022)	
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Vo. FILE NO. POD NO. TRN NO.		

										DOWN ALMED
	DEPTH (f	TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL E R-BEARING CAVITIES O plemental sheets to fully d	R FRAC	TURE ZONES	BEA	ATER RING? S / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	24	24	Sand, very fine-gr	rained, poorly graded, uncon	solidated	L Brown /Tan	Y	✓ N	The state of the s
	24	45	21	, , ,	-grained, poorly graded, slig	_		Y	√ N	
	45	101	56		grained, poorly graded, unco			Y	√ N	
	43	101	30	Build, Illie	gramou, poorty gradou, and	7115011441	ou, run	Y	N	
								Y	N	
								Y	N	
ELL								Y	N	
F W								Y	N	
0 00				1				Y	N	
CLC								Y	N	
OGI								Y	N	
TOE		-						Y	N	
DO:								Y	N	
4. HYDROGEOLOGIC LOG OF WELL								Y	N	
4. H								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
				Y.				Y	N	
				OF WATER-BEARING				TOTAL ESTI WELL YIEL		0.00
	PUMP		AIR LIFT	BAILER OT	HER – SPECIFY:			WEEL TIES	(Spin).	0.00
SION	WELL TEST	TEST	RESULTS - ATT. RT TIME, END TIME	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING IOWING DISCHARGE AN	WELL T D DRAV	ESTING, INC WDOWN OVE	LUDING DISC R THE TESTI	CHARGE I NG PERIC	METHOD, DD.
TEST; RIG SUPERVIS	MISCELLA	NEOUS IN	be rec	emoved temporary we low ground surface, to cord. FW-17	ll material from soil bori hen placed hydrated bent	ng, back onite fro	cfilled with dom 10 feet to	rill cutting fro ground surfac	om total de ce. See att	epth to 10 feet ached plugging
EST	PRINT NAM	E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERVI	SION OF	F WELL CONS	STRUCTION (OTHER TH	IAN LICENSEE:
5. T	Shane Eldric			.,						
SIGNATURE	CORRECT F	ECORD C	OF THE ABOVE D	ESCRIBED HOLE AN	EST OF HIS OR HER KNO D THAT HE OR SHE WIL PLETION OF WELL DRIL	L FILE	GE AND BELI THIS WELL R	EF, THE FOR ECORD WITI	EGOING I	S A TRUE AND ATE ENGINEER
SIGN	Jack A	tkins		Jac	ckie D. Atkins			3/9	9/2023	
.6		SIGNAT	TURE OF DRILLE	R / PRINT SIGNEE	NAME				DATE	
FOI	R OSE INTERI	NAL USE					WR-20 WEI	L RECORD 8	LOG (Ve	rsion 01/28/2022)
	E NO.				POD NO.		TRN NO.			
LOCATION WELL TAG ID NO.								PAGE 2 OF 2		

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	ENERAL / WELL OWN				
State 1	Engineer Well Number:	J-00062 POD-1			
Well	owner: Ameredev Opera	ting, LLC		Phone No.:	737-300-4700
Mailiı	ng address: 2901 Via For	tuna Suite 600			-
City:	Austin		State:	Texas	Zip code:
II. W	ELL PLUGGING INFO	DRMATION:			
1)	Name of well drilling	company that plugg	ed well: _Jackie [). Atkins (Atkins Engine	ering Associates Inc.)
2)	New Mexico Well Dri				xpiration Date: 04/30/23
3)	Well plugging activitie Shane Eldridge, Came		by the following v	ell driller(s)/rig supervi	sor(s):
4)	Date well plugging be	gan: 3/2/2023	Da	te well plugging conclu	ded: 3/2/2023
5)	GPS Well Location:	Latitude: Longitude:			98 sec 3.71 sec, WGS 84
6)	Depth of well confirmed by the following mann	ed at initiation of pl er: water level prob	ugging as:10 e	1 ft below ground le	vel (bgl),
7)	Static water level mean	sured at initiation of	f plugging:n/	a ft bgl	
8)	Date well plugging pla				
9)	Were all plugging acti- differences between th	vities consistent wit e approved pluggin	h an approved plug plan and the we	gging plan? Yes Il as it was plugged (atta	If not, please describe ch additional pages as needed):
					41.01 vett2020vd.1

Version: September 8, 2009

Page 1 of 2

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
-	0-10' Hydrated Bentonite	Approx. 15 gallons	15 gallons	Boring	
_	10'-101' Drill cuttings	Approx. 145 gallons	145 gallons	Boring	
-					
-					
-					
_					
-					
_				Cp. CT. IT.	v=102037#4331
. =				with an investigating and a public	J. Strand Control
_					
		MULTIPLY E cubic feet x 7.4 cubic yards x 201.9	BY AND OBTAIN 1805 = gallons 37 = gallons		

III. SIGNATURE:

I, Jackie D. Atkins	, say that I										
Engineer pertaining to the plugging of wells and that	each and all o	f the	e stateme	nts in	this	Plugg	ing R	ecord a	nd a	ittachi	ments
are true to the best of my knowledge and belief.											

Signature of Well Driller Date

Version: September 8, 2009

Page 2 of 2

17-Well Record and Log-packet-forsign

Final Audit Report 2023-03-09

Created: 2023-03-09

By: Lucas Middleton (lucas@atkinseng.com)

Status: Signed

Transaction ID: CBJCHBCAABAAzXuzWP53KQ1xK_g3D901wUVwqrF0rJrW

"17-Well Record and Log-packet-forsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2023-03-09 5:46:44 PM GMT- IP address: 64.17.82.146
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2023-03-09 5:49:37 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com)
 2023-03-09 7:24:12 PM GMT- IP address: 64,90.153,232
- Document e-signed by Jack Atkins (jack@atkinseng.com)

 Signature Date: 2023-03-09 7:24:27 PM GMT Time Source: server- IP address: 64.90.153.232
- Agreement completed. 2023-03-09 - 7:24:27 PM GMT

PAGE 1 OF 2

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

20 M - 7 M 73 57

								OCC ENT PART	MDED/G)	10			
7	OSE POD NUMBER (WELL NUMBER)					OSE FILE NUMBER(S) WHIT							
ŢĬŌĬ	J-25 Podyt 2 WELL OWNER NAME(S)					0							
CYJ	WELL OWN Brad Beck		S)					PHONE (OPTIONAL)					
10			NG ADDRESS					CITY		STATE	ZIP		
ELL	po box 120		NU ADDRESS					Jai		NM 88252			
W.	po 60x 120				LADA	pp.co.ir.a		1					
ANE	WELL		D	EGREES MINUTES SECONDS 32 01 18 N				* ACCURACY REQUIRED: ONE TENTH OF A SECOND					
AL	LOCATIO	<u> ⊢</u> "	ATITUDE				N	1	QUIRED: WGS 84	of A BLOOM			
GENERAL AND WELL LOCATION	(FROM GP	L	ONGITUDE	103									
			ING WELL LOCATION T			N LANDMARI	S – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE			
- -i	sw/4se/4se	/4 sec 2	1 T26s 36e 1/4 mile	south of exist	ing oil well								
	LICENSE NU	MBER	NAME OF LICENSE	D DRILLER					NAME OF WELL DR	ILLING COMPANY			
	WD-				Joel Stewart				Stewart	Brothers Drilling Co			
	DRILLING S	TARTED	DRILLING ENDED	DEPTH OF COM	MPLETED WELL (F	T) BO	RE HO	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	1		
	3-16	-17	4-3-17		800			810		unk			
	•				ione-				STATIC WATER LEV	EL IN COMPLETED WE	ELL (FT)		
Z	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)								99				
TIO	DRILLING F	LUID:	AIR	✓ MUD	ADDITIV	ES – SPECIFY	/:				,		
CASING INFORMATION	DRILLING M		✓ ROTARY	HAMMER	CABLE			ER – SPECIFY:	-				
FOR					MATERIAL ANI					l			
ZI.	DEPTH	TO	BOKETOLE	CASINO	GRADE	D, OK		ASING NECTION	CASING INSIDE DIAM.	CASING WALL THICKNESS	SLOT SIZE		
SINC	FROM	10	DIAM (inches)		ach casing string ections of screen			TYPE	(inches)	(inches)	(inches)		
CA	0	20	26	Hote s	steel	,		n/a	20	.250			
y D	0	287		 	steel			/elded	.12	.312			
2. DRILLING	287	800		stee	el slotted screen			/elded	12	.312	.050		
RIL		- 550					•						
2. D						1							
		<u> </u>											
											ļ		
		<u> </u>							<u> </u>				
	DEPTH	(feet bgl	BORE HOLE	LIS	ST ANNULAR S	EAL MATE	RIAL	AND	AMOUNT	метно			
AL	FROM	то	DIAM (inches)		VEL PACK SIZE				(cubic feet)	PLACE	MENT		
ERI,	810	260		<u> </u>	8-16 silica sand			540		trem	tremie		
ANNULAR MATERIAL	260	250			bento	nite pellets			8	trem	iie		
R	250	0	171/2		neat	t cement			250	trem	ie		
ULA													
Z													
3. A								-,					
FOF	R OSE INTER	RNAL US	SE					WR-2	20 WELL RECORD	& LOG (Version 10/2	29/15)		
	E NUMBER]	<u>-</u> 26		POD N	UMBER	2		NUMBER 5 K	5820			

LOCATION

					10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	DEPTH (f	eet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATED YIELD FOR			
	FROM	то	THICKNESS (feet)	THICKNESS INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES		WATER- BEARING ZONES (gpm)			
. }		105	105	red brown silt and sand	Y VN				
·	0	120	15	tan siltstone	Y ✓N				
}	105		370	red brown silt and fine sand	Y ✓N				
-	120	490	110	brown sand and clay	y ✓n	.,,,,,			
	490	600	ļ. ————————————————————————————————————	tan sand and gravel	Y N				
. -	600	760	160	gray clay	Y N				
II	760	800	40	erd brown clay	Y N				
M.	800	810	10	red blown cay	Y N				
4. HYDROGEOLOGIC LOG OF WELL					Y N				
9					Y N				
GIC					YN				
0.0					YN				
Ğ					YN				
DRC		<u></u>			YN				
H	<u> </u>				Y N				
4		<u></u>	,		YN				
ļ		<u> </u>			YN				
					Y				
					YN				
		ļ			YN				
" .					Y N				
		<u> </u>							
	METHOD	JSED TO E	STIMATE YIELD	OF WATER-BEARING STRATA:	TOTAL ESTIMATED WELL YIELD (gpm):	0.00			
	PUMP AIR LIFT BAILER OTHER - SPECIFY:								
z	WELL TEST WELL TEST WELL TEST WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.								
NOISI	MISCELLA	NEOUS IN	IFORMATION:			1			
ERV	WIIGCELLI	LIALOUD II	i olamitio.						
SUP									
RIG									
5. TEST; RIG SUPERVI			anni pio diece	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CON	ISTRUCTION OTHER T	HAN LICENSEE:			
S. TE	1		JKILL KIG SUPEI	TVIDORGJ HIMI INOVIDED GRAHE GOLDIN IDEA. GE DEED GO.					
4,	W LBruns								
TURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:								
SIGNATURE		M	Burn	W L Brunson	4717				
9		SIGNA		ER / PRINT SIGNEE NAME	DATE				
	<u> </u>			VD 00 W	TI DECORD & LOG (V	arrion 10/29/2015)			

SIGNATURE OF DRILLER / TRIE	VI SIGNED TOTAL	
FOR OSE INTERNAL USE FILE NUMBER - 25	WR-20 WELL RECORD & LOG (V	/ersion 10/29/2015)
LOCATION (OM	265.36E.21.443	PAGE 2 OF 2

Appendix C

Variance Requests

Ike's Containment #1 and Recycling Facility
Recycling ASTs Registration

Variance Requests

Ameredev respectfully requests the following variances to 19.15.34.16 NMAC as listed below. A variance to fencing is requested as the utilized fence is felt to be better than what is prescribed. Variance requests for levee slopes, anchor trench, primary and secondary liners are requested due the nature of the build of an above ground steel tanks (ASTs) with vertical walls as compared to inground containments.

Fencing

9.15.34.12. D (2) NMAC prescribes that recycling containments are fenced with a four-foot fence that has at least four strands of barbed wire evenly spaced in the interval between one foot and four feet above ground level.

Ameredev used an 8-foot game fence with a single strand of barbed wire attached above the game fencing. This will more effectively deter wildlife or human intrusion which may otherwise go under or climb over prescribed fencing, therefore, meeting or exceeding above requirements to provide equal or better protection of fresh water; public health; and the environment.

Levee Slopes

9.15.34.12. A **(2) NMAC.** ... The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.

The prescribed slopes apply to a lined inground containment. The Ike's Recycling ASTs are modular fluid storage tanks which have upright steel walls that provide the structure for the containment, prevents surface run-on, and allows for inspection and maintenance between the 12-foot high tank wall which support the primary liners and the secondary vertical steel wall which supports the secondary liner (see schematic in Design and Construction Plan). These AST tanks were designed and certified by a professional structural engineer (see Tank Tech technical specifications and letter from professional engineer in Appendix A) and provide an alternative to inground containments for produced water storage. This structure provides equal or better protection of fresh water, public health, and the environment than the prescribed inside and outside levee slopes.

Ike's Containment #1 and Recycling Facility
Recycling ASTs Registration

Anchor Trenches

9.15.34.12. A **(3)** NMAC. ... The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

The prescribed anchor trench for securing the liner system pertains to inground containments. The Ike's Recycling ASTs are above ground modular fluid storage tanks which have upright steel walls and therefore no anchor trench can be utilized. The liner system is anchored to the steel walls by clips or clamps. (Please see schematic in Design and Construction Plan). This system has been engineered and installed in a manner to provide equal protection of fresh water, public health, and the environment.

Primary Liners

9.15.34.12. A **(4) NMAC.** All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

Ameredev has utilized a dual 40-mil LLDPE liner as the primary liner. The primary liner of a produced water containment is meant to act as the primary protective barrier, withstanding UV and chemical insult, to protect from any potential impact to fresh water, public health, or the environment. The prescribed liners do not take into consideration the upright steel walls of an AST containment.

40-mil LLDPE is more flexible and will more readily conform to the structure of the above ground tank. While reinforced products attempt to resist puncture and tear by tensile strength, unreinforced LLDPE was developed to maintain barrier performance under higher loads than can be resisted by tensile elements under extreme geotechnical loads. By providing much better linear and multi-axial elongation capacity, tensile stresses are relieved, stopping the poisson effect deformation that can lead to puncture in reinforced products. Unreinforced LLDPE thereby provides equal or better groundwater protection than string-reinforced products under extreme loads such as tank foundations and hydrostatic conditions (see email from Solmax technical support in Appendix A). Field seaming is reduced as it is produced in large sheets. The dual liner will require that a leak penetrate 2 40-mil LLDPE liners prior to reaching the secondary liner. Technical specifications and email from technical support for the Solmax 40 mil LLDPE liners are included in Appendix A. This primary liner system will provide equal protection of fresh water, public health, and the environment.

Ike's Containment #1 and Recycling Facility
Recycling ASTs Registration

Secondary Liners

9.15.34.12. A **(4) NMAC.** Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1×10 -9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

Ameredev has utilized a 60-mil HDPE liner as the secondary liner, which is attached to an outer steel wall containment with clamps (see schematic in Design and Construction Plan). The purpose of a secondary liner is to contain any produced water fluids that may leak through the primary liner. Liner thickness and hydraulic conductivity are important to this purpose. The 60-mil HDPE liner provides a better barrier as it is thicker and denser than the prescribed 30-mil LLDPE. A letter from the Technical Engineering Manager for the liner manufacturer certifies that the 60-mil HDPE liner has a hydraulic conductivity less than 1 x 10⁻¹². (Please refer to liner specifications and above letter in Appendix A). The 60 mil HDPE liner provides superior protection from UV and chemical exposure (thus an NMOCD approved primary liner) than the prescribed liners. This liner provides equal or better protection of fresh water, public health, and the environment than the prescribed 30-mil string reinforced LLDPE.

Venegas, Victoria, EMNRD

From: Venegas, Victoria, EMNRD

Sent: Tuesday, October 10, 2023 2:42 PM **To:** 'Shane McNeely'; Andrew Parker

Subject: 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427]
Attachments: C-147 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427]

Modification.pdf

1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427]

Ms. McNeely,

NMOCD has reviewed the recycling containment permit modification and related documents, submitted by [372224] AMEREDEV OPERATING, LLC, Application ID: 270110, for 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427] in Unit Letter D, Section 27, Township 26S, Range 36E, Lea County, New Mexico.

This modification describes three (3) AST containments which are associated with 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427], identified as NW AST, SW AST, and NE AST.

Dates of operation:

NW AST: 8/2018 - 9/2023 SW AST: 6/2019 - 4/2021 NE AST: 5/2018 - 6/2019

The form C-147 and related documents for the modification of permit 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427] is approved with the following conditions of approval:

- [372224] AMEREDEV OPERATING, LLC will close 1RF-508 IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427] as proposed in the original application.
- The variance to 19.15.34.12.A.(2) NMAC for the no side-slope requirement for the AST containment with vertical walls is approved.
- The variance to 19.15.34.12.A.(3) NMAC for the liners to be anchored to the top of the AST steel walls and no anchor trenches is approved.
- The variance to 19.15.34.12 A (4) NMAC for the installation on the AST containment of a 40-mil non-reinforced LLDPE primary liner and a 60-mil non-reinforced LLDPE secondary liner with a 200-mil geogrid drainage layer is approved.
- The variance to NMAC 19.15.34.12.D to install an 8-foot game fence topped with a single strand of barbed wire is approved.
- Per 19.15.34.14. A: CLOSURE AND SITE RECLAMATION REQUIREMENTS FOR RECYCLING CONTAINMENTS: If the
 operator wants to use the containment for a purpose other than recycling, then the operator must have that use
 approved or permitted by the division in accordance with the appropriate rules. The closure plan included in
 Appendix D of the application is approved. [372224] AMEREDEV OPERATING, LLC will close 1RF-508 IKE's
 CONTAINMENT #1 FACILITY ID [fVV2326835427] as proposed in the original application.
- At such time the operator decides to use the containment for produced water recycling purposes, [372224]
 AMEREDEV OPERATING, LLC must provide an inspection certified by a PE on the liner's design and integrity, use
 1RF-508 to submit the C-148 monthly reports, recycle at a minimum of 20% of the total fluid capacity every six
 months, resume operation and inspections as required by 19.15.34.13 NMAC, and notify the OCD that the
 containment is no longer being utilized for only fresh water storage.

Victoria Venegas • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division

506 W. Texas Ave. Artesia, NM 88210 (575) 909-0269 | Victoria.Venegas@emnrd.nm.gov

https://www.emnrd.nm.gov/ocd/

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 270110

CONDITIONS

Operator:	OGRID:
AMEREDEV OPERATING, LLC	372224
2901 Via Fortuna	Action Number:
Austin, TX 78746	270110
	Action Type:
	[C-147] Water Recycle Long (C-147L)

CONDITIONS

L	Created By	Condition	Condition Date
	vvenegas	This modification describes three (3) AST containments which are associated with 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427]. Dates of operation: NW AST: 8/2018 - 9/2023; SW AST: 6/2019 - 4/2021; NE AST: 5/2018 - 6/2019 • Per 19.15.34.14. A: CLOSURE AND SITE RECLAMATION REQUIREMENTS FOR RECYCLING CONTAINMENTS: If the operator wants to use the containment for a purpose other than recycling, then the operator must have that use approved or permitted by the division in accordance with the appropriate rules. The closure plan included in Appendix D of the application is approved. [372224] AMEREDEV OPERATING, LLC will close 1RF-508 - IKE's CONTAINMENT #1 FACILITY ID [fVV2326835427] as proposed in the original application. • At such time the operator decides to use the containment for produced water recycling purposes, [372224] AMEREDEV OPERATING, LLC must provide an inspection certified by a PE on the liner's design and integrity, use 1RF-508 to submit the C-148 monthly	10/11/2023