

November 8, 2023

New Mexico Oil Conservation Division 506 W. Texas Ave. Artesia, NM 88210

Via Electronic Submittal

RE: Chevron USA Incorporated Temporary Pit Application

Cotton Draw 34 27 Federal Com Section 3 of T25S, R32E, Lea County

Ms. Victoria Venegas,

Enclosed is a complete C-144 permit application for a Temporary Pit with non-low chloride drilling fluid located at an existing Chevron USA Inc. BLM lease #USA NMLC 061936 located in Section 3, T25S R32E. This package includes the following documentation:

- C-144 for Non-Low Chloride Temporary Pit
- Siting Criteria Demonstration
- Siting Criteria Figures 1-11
- Variance Requests
- Appendix A USGS Groundwater Data
- Appendix B NMOSE Water Data
- Appendix C Hydrogeologic Data
- Appendix D Design Plan
- Appendix E Operating and Maintenance Plan
- Appendix F Closure Plan
- Appendix G Evaluation of Unstable Conditions
- Attachments 1 3

Please do not hesitate to contact us if you require any additional information or clarification supporting the approval of this application.

Sincerely,

Tony Vallejo Sr. Workforce Safety & Environment Specialist - Factory

jvallejo@chevron.com

Chinedu Akwukwaegbu Wells Engineer

cawq@chevron.com

Chas Holder

Biology and Environmental Monitoring Team Leader (Arcadis

U.S., Inc.)

Charles.Holder@arcadis.com

Chevron USA Incorporated

Chevron USA Inc. 6301 Deauville Blvd Midland, TX 79706 Tel 325-450-1413

C-144 Permit Package Cotton Draw 34 27 FEDERAL COM, Temporary Pit Section 3 of T25S, R32E, Lea County

CO 34 27 FEDERAL COM #707H
CO 34 27 FEDERAL COM #207H
CO 34 27 FEDERAL COM #307H
CO 34 27 FEDERAL COM #708H
CO 34 27 FEDERAL COM #208H
CO 34 27 FEDERAL COM #709H
CO 34 27 FEDERAL COM #308H
CO 34 27 FEDERAL COM #209H
CO 34 27 FEDERAL COM #309H
CO 34 27 FEDERAL COM #807H
CO 34 27 FEDERAL COM #807H
CO 34 27 FEDERAL COM #808H
CO 34 27 FEDERAL COM #809H

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-144 Revised April 3, 2017

For temporary pits, below-grade tanks, and multi-well fluid management pits, submit to the appropriate NMOCD District Office.

For permanent pits submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

Pit, Below-Grade Tank, or Dranged Alternative Method Permit or Closure Plan Application

Proposed Atternative Method Ferritt of Closure Fran Application
Type of action: Below grade tank registration Permit of a pit or proposed alternative method Closure of a pit, below-grade tank, or proposed alternative method Modification to an existing permit/or registration Closure plan only submitted for an existing permitted or non-permitted pit, below-grade tank, or proposed alternative method
Instructions: Please submit one application (Form C-144) per individual pit, below-grade tank or alternative request
Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances
Operator:Chevron USA Inc OGRID #:4323
Address: 6301 Deauville Blvd., Midland, TX 79706
Facility or well name: _Cotton Draw Pad 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H)_
API Number: Pending OCD Permit Number: [fVV2331238093]
U/L or Qtr/Qtr A Section 3 Township 25S Range 32E County: Lea
Center of Proposed Design: Latitude 32.16557 Longitude -103.65575 NAD83
Surface Owner: Federal State Private Tribal Trust or Indian Allotment
2.
☑ Pit: Subsection F, G or J of 19.15.17.11 NMAC Temporary: ☑ Drilling ☐ Workover ☐ Permanent ☐ Emergency ☐ Cavitation ☐ P&A ☐ Multi-Well Fluid Management Low Chloride Drilling Fluid ☐ yes ☒ no ☒ Lined ☐ Unlined Liner type: Thickness _40mil ☐ LLDPE ☒ HDPE ☐ PVC ☐ Other ☐ String-Reinforced Liner Seams: ☒ Welded ☐ Factory ☐ Other Volume: 1x 17,900 bbl, 1x 10,800 bbl Dimensions: L _291 ft x W _196 ft x D _8 ft
Below-grade tank: Subsection I of 19.15.17.11 NMAC
Volume:bbl Type of fluid:
Tank Construction material:
Secondary containment with leak detection Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off
☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other
Liner type: Thickness mil
4. Alternative Method:
Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.
5. Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)
Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)
Four foot height, four strands of barbed wire evenly spaced between one and four feet
Alternate. Please specify

Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen □ Netting □ Other □ Monthly inspections (If netting or screening is not physically feasible)	
7. Signs: Subsection C of 19.15.17.11 NMAC ☐ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers ☑ Signed in compliance with 19.15.16.8 NMAC	
8. Variances and Exceptions: Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance. Please check a box if one or more of the following is requested, if not leave blank: □ Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. See Variance Request □ Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.	is.
9. Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptate are provided below. Siting criteria does not apply to drying pads or above-grade tanks.	ptable source
General siting	
Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No ☑ NA
Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit. - □ NM Office of the State Engineer - iWATERS database search; □ USGS; □ Data obtained from nearby wells See Appendices A, B, Figure 7	☐ Yes ⊠ No ☐ NA
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks) - Written confirmation or verification from the municipality; Written approval obtained from the municipality See Figures 2 & 7	☐ Yes ⊠ No
Within the area overlying a subsurface mine. (Does not apply to below grade tanks) - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division See Figure 4	☐ Yes ☒ No
Within an unstable area. (Does not apply to below grade tanks) - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map See Figures 6, 8, 9, Appendix G	☐ Yes ☒ No
Within a 100-year floodplain. (Does not apply to below grade tanks) - FEMA map See Figure 3	☐ Yes ⊠ No
Below Grade Tanks	
Within 100 feet of a continuously flowing watercourse, significant watercourse, lakebed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter)	
Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.) - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application.	☐ Yes ☐ No
- Visual inspection (certification) of the proposed site: Aerial photo: Satellite image	

Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No	
Within 100 feet of a wetland US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No	
Temporary Pit Non-low chloride drilling fluid		
Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site See Figure 6		
 Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image See Figure 2 	☐ Yes ⊠ No	
Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application; - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site See Appendices A, B, and Figures 1 & 2	☐ Yes ⊠ No	
 Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site See Figures 2, 5, & 6 	☐ Yes ⊠ No	
Permanent Pit or Multi-Well Fluid Management Pit		
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site		
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No	
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No	
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No	
Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. ☐ Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC ☐ Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC ☐ See Appendix C ☐ Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Attached ☐ Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC See Appendix D ☐ Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC See Appendix E ☐ Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC See Appendix F ☐ Previously Approved Design (attach copy of design) API Number: or Permit Number:		
11. Multi-Well Fluid Management Pit Checklist: Subsection B of 19.15.17.9 NMAC		
Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the doc attached. □ Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC □ Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC □ A List of wells with approved application for permit to drill associated with the pit. □ Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 and 19.15.17.13 NMAC □ Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC □ Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC		

Previously Approved Design (attach copy of design) API Number: or Permit Number:	
Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan Emergency Response Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Erosion Control Plan Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC	documents are
Proposed Closure: 19.15.17.13 NMAC See Appendix F Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan. Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well F Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) In-place Burial On-site Trench Burial Alternative Closure Method	Fluid Management Pit
Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be closure plan. Please indicate, by a check mark in the box, that the documents are attached. □ Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC □ Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC □ Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) □ Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC □ Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable sou provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. 19.15.17.10 NMAC for guidance.	
Ground water is less than 25 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells See Appendices A & B, and Figure 7	☐ Yes ⊠ No ☐ NA
Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells See Appendices A & B, and Figure 7	☐ Yes ⊠ No ☐ NA
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells See Appendices A & B, and Figure 7	⊠ Yes □ No □ NA
Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site See Figure 6	☐ Yes ⊠ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image See Figure 2	☐ Yes ⊠ No
Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application.	☐ Yes ⊠ No

- NM Office of the State Engineer - iWATERS database; Visual inspection See Appendices A & B, and Figure 7	(certification) of the proposed site		
Written confirmation or verification from the municipality; Written approval obtain	ined from the municipality	☐ Yes ⊠ No	
Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspe See Figures 2, 5 & 6	☐ Yes ⊠ No		
Within incorporated municipal boundaries or within a defined municipal fresh was adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approve See Figure 2	☐ Yes ⊠ No		
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Minin See Figure 4	ng and Mineral Division	☐ Yes ⊠ No	
Within an unstable area. - Engineering measures incorporated into the design; NM Bureau of Geolog Society; Topographic map See Figures 6, 8, & 9, Appendix G	gy & Mineral Resources; USGS; NM Geological	☐ Yes ⊠ No	
Within a 100-year floodplain. FEMA map See Figure 3		☐ Yes ⊠ No	
16. On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Attached Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection E of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19.15.17.11 NMAC See Appendix D Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC See Appendix F Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13 NMAC See Appendix F Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13 NMAC See Appendix F Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved) See Appendix F Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC See Appendix F Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC See Appendix F Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC See Appendix F			
Operator Application Certification: I hereby certify that the information submitted with this application is true, accura	ate and complete to the best of my knowledge and beli	ief.	
Name (Print): _Tony Vallejo	Title: Sr. Workforce Safety & Environmental Sp	ecialist - Factory	
Signature: Tony Vallejo	Date:11/8/2023		
e-mail address:jvallejo@chevron.com	Telephone: <u>325-450-1413</u>		
18. OCD Approval: X Permit Application (including closure plan) Closure Pl			
OCD Representative Signature: Victoria Venegas	Approval Date:11/08	3/2023	
Title: Environmental Spcialist	OCD Permit Number: [fVV2331238093]		
Closure Report (required within 60 days of closure completion): 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report. The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not complete this section of the form until an approved closure plan has been obtained and the closure activities have been completed.			
	☐ Closure Completion Date:		
20. Closure Method: Waste Excavation and Removal □ On-Site Closure Method □ Alterna □ If different from approved plan, please explain.	ative Closure Method Waste Removal (Closed-lo	oop systems only)	

21. <u>Closure Report Attachment Checklist</u> : Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check	
mark in the box, that the documents are attached.	
Proof of Closure Notice (surface owner and division)	
Proof of Deed Notice (required for on-site closure for private land only)	
Plot Plan (for on-site closures and temporary pits)	
Confirmation Sampling Analytical Results (if applicable)	
Waste Material Sampling Analytical Results (required for on-site closure)	
Disposal Facility Name and Permit Number	
Re-vegetation Application Rates and Seeding Technique	
Site Reclamation (Photo Documentation)	
On-site Closure Location: Latitude Longitude NAD: \[\begin{align*} \text{1927} \extstyle \text{1983} \]	
22.	
Operator Closure Certification:	
I hereby certify that the information and attachments submitted with this closure report is true, accurate and complete to the best of my knowledge and	
belief. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan.	
benefit. I also certary that the closure complies with an apprecione closure requirements and containous specified in the approved closure plan.	
Name (Print): Title:	
Simple State of the State of th	
Signature: Date:	
e-mail address: Telephone:	

Siting Criteria Demonstration (19.15.17.10)

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Depth to Groundwater, 19.15.17.10.3(a)

Figure 7, Appendices A & B, and the discussion presented below demonstrate that the groundwater within the broader area of the proposed site ranges from 34 to 314 feet near the Temporary Pit.

Figure 7 depicts the location of the pit relative to the locations of water wells within 5 miles of the pit for which water level data are available. Depth to water for the most recent, reliable measurement and the well identification number are shown adjacent to each well on **Figure 7**. The approximate boundary of the Pecos River Basin alluvial aquifer is located ~7.5 miles to the west of the Temporary Pit (**Figure 7**). Water well data, including gauging dates, are detailed in **Appendix A** (USGS) and **Appendix B** (NMOSE).

All USGS-gauged water wells located within 5 miles of the temporary pit have depth to water > 30 ft bgs.

- The nearest USGS-gauged water well to the pit location is located approximately 1.0 mile to the northwest and is completed in the Chinle Formation. Water level was measured at 290 ft bgs in 2012 (3,209 ft above NGVD29).
- To the north, another USGS-gauged well is located 4.1 miles away and is completed in the Chinle Formation (Triassic Dockum). Water level in the well was measured at 34 ft bgs (3,556 ft above NAVD88) in 2012.
- To the east, the nearest well is located 3.5 miles away and is completed in the Santa Rosa Formation (Triassic Dockum). Water level was measured at 119 ft bgs (3,353 ft above NAVD88) in 2013.
- Farther to the east, a USGS-gauged water well is located approximately 4.7 miles from the proposed pit. It had a depth to water of 94.3 ft. Bgs in 1996. This well is completed in the Alluvium / Ogallals Aquifer.
- No USGS water wells were found to the south of the proposed pit location within the 5-mile radius.

A NMOSE-gauged water well is located approximately 1.3 miles northwest of the proposed pit had a depth to water level of 314 ft bgs. This well is 500 feet deep and likely completed in the Triassic Dockum.

A NMOSE well is located 4.2 miles farther to the north of the proposed pit location. The reported depth to water in this well is 133 ft bgs. The well is 541 feet deep and is likely completed in the Triassic Dockum.

A NMOSE-gauged well is reported at approximately 3.5 miles east of the proposed pit location. The well is 150 feet deep and the reported depth to water is 90 ft. Bgs. Based on the well depth, it is likely completed in the Alluvium / Ogallala aquifer.

A layer of Quaternary alluvium is present at surface in the vicinity of the proposed location and is composed of unconsolidated to partially consolidated sand, silt, gravel, clay and caliche. The alluvium & underlying Ogallala formation generally ranges from 100 to 200 feet thick in this area (Arcadis 2020¹). The Quaternary deposits / Ogallala formation are underlain by the Triassic Dockum Group including the Chinle and Santa Rosa formations and deeper, Permian-age strata (Figure 9). The Chinle Formation outcrops several miles to the east of the proposed location and the Permian strata outcrop several miles to the west along the course of the Pecos River.

Geotechnical report and boring log were obtained at the proposed pit location (**Attachment 2**). On February 3rd, 2021, one (1) boring, B-4, was installed to a depth of 112-feet. Groundwater was not encountered in the boring during drilling.

Proximity to Surface Water, 19.15.17.10.3(b)

Figure 6 visualizes USGS contour lines and the USGS National Hydrography Dataset. The map demonstrates that the location is not within 1,000 feet of a continuously flowing waterway course, any other significant watercourse or lakebed, sinkhole, or playa lake.

• The nearest surface water feature (Pecos River) is in excess of 17 miles west of the pit location.

¹ Arcadis 2020. Cotton Draw Development Area Environmental Field Survey. Prepared for Chevron.

 There is one (ephemeral) water feature in excess of 5 miles south of the pit location.

<u>Proximity to Occupied Residences, Schools, Hospitals, Institutions or Churches, 19.15.17.10.3(c)</u>

The ESRI aerial imagery in **Figure 2** demonstrates that the location is not within 300 feet of occupied residences, schools, hospitals, institutions or churches.

There are no structures within 1,000 feet of the pit location.

<u>Proximity to springs and/or Domestic Freshwater Wells</u> 19.15.17.10.3(d)

No springs or domestic freshwater wells have been mapped within 300 ft of the pit locations.

<u>Proximity to Incorporated Municipal Boundaries and Fresh Water Well Fields 19.15.17.10.3(e)</u>

Figure 1 demonstrates that the location is not within incorporated municipal boundaries or defined municipal fresh water well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.

 The closest municipality is the city of Malaga, approximately 23 miles to the west.

Proximity to Wetlands, 19.15.17.10.3(f)

Utilizing USFWS wetland data, **Figure 5** demonstrates that the proposed location is not located within 300 feet of a wetland.

Proximity to Subsurface Mines, 19.15.17.10.3(g)

Analysis of aerial imagery in the vicinity of the proposed temporary pit show that the nearest mines are all surficial caliche pits. There are no subsurface mines in the area as indicated in **Figure 4**.

Proximity to Unstable Area, 19.15.17.10.3(h)

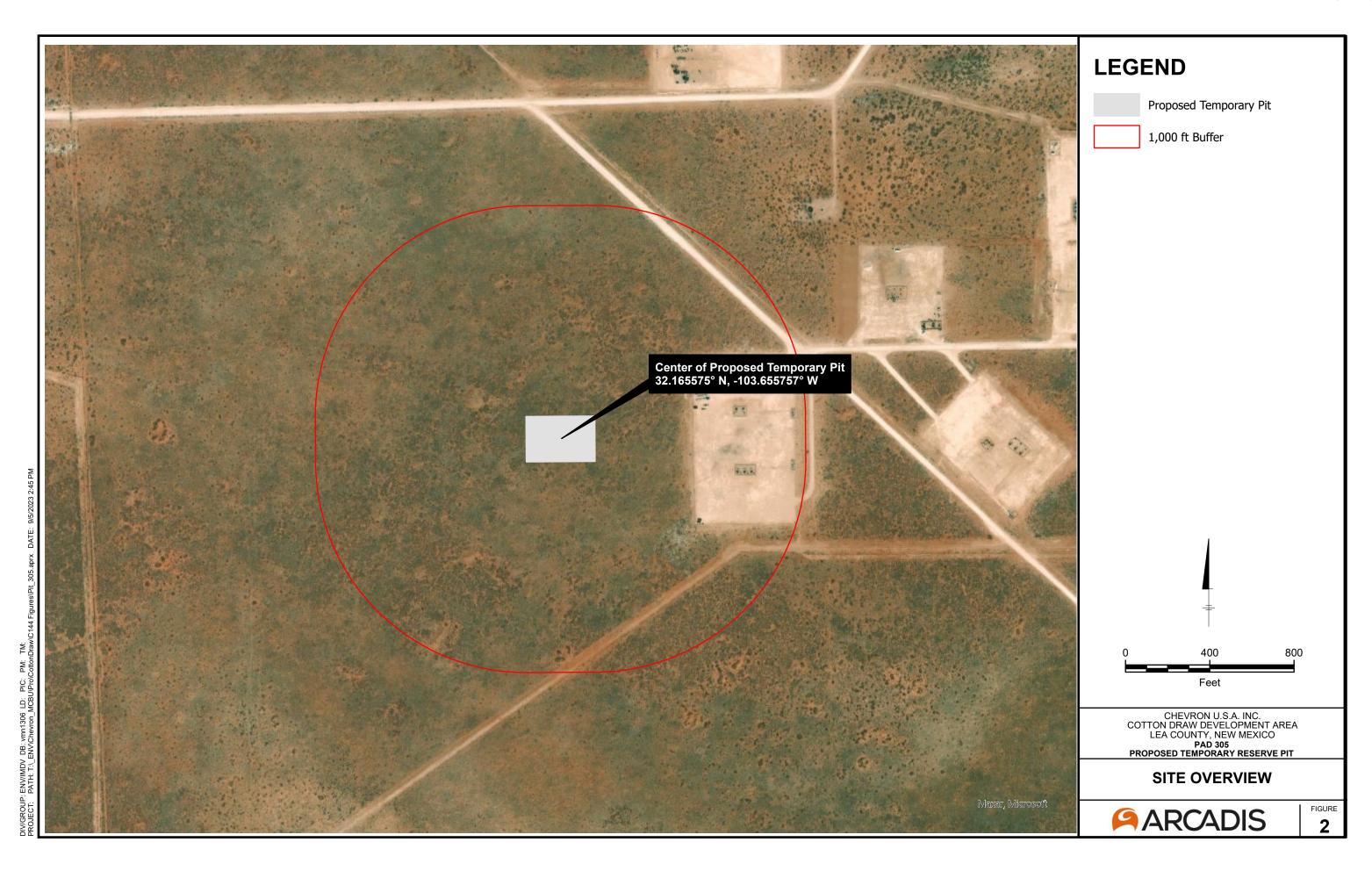
Figure 8 identifies the location of the proposed temporary pit with respect to BLM Karst areas. The proposed Temporary Pit is mapped in a "Low Potential" karst area. The area lies near the western end of the Delaware Basin, and is situated north of the Gypsum Plain (Hill 1996²). Bedrock cropping out beneath the proposed project area is comprised of the Rustler Formation, a roughly 50-meter-thick sequence of limestone, siltstone, and sandstone with interbedded clay and gypsum (Land and Veni 2014³). There are, however, no indications that voids or other karst features are present or are likely to form in the vicinity of the proposed location. Therefore, local karst potential is likely to be low. An Evaluation of Unstable Conditions is presented in Appendix G that details several lines of evidence in support of this position. In summary:

- 1. There are no dissolution features within 5-miles of the proposed location (**Figure 11**),
- 2. Karst forming strata are over ~1,000-feet deep beneath the proposed location (**Appendix G Figure G.1**),
- 3. An Arcadis field study of the area indicated no karst features were identified (**Attachment 1**),
- 4. Tetra Tech geotechnical report and boring log from the proposed Grizzly Pad reserve pit location indicated low karst potential (**Attachments 2**),
- 5. The Bureau of Land Management, Paul Murphy prepared the Environmental Assessment (EA), document number DOI-BLM-NM-P020-2018-0846-EA, evaluating CO Grizzly 3 27 Fed. This EA notes that karst were evaluated but determined to have no impacts and therefore not evaluated in the EA. (Section 1.6, Attachment 3).

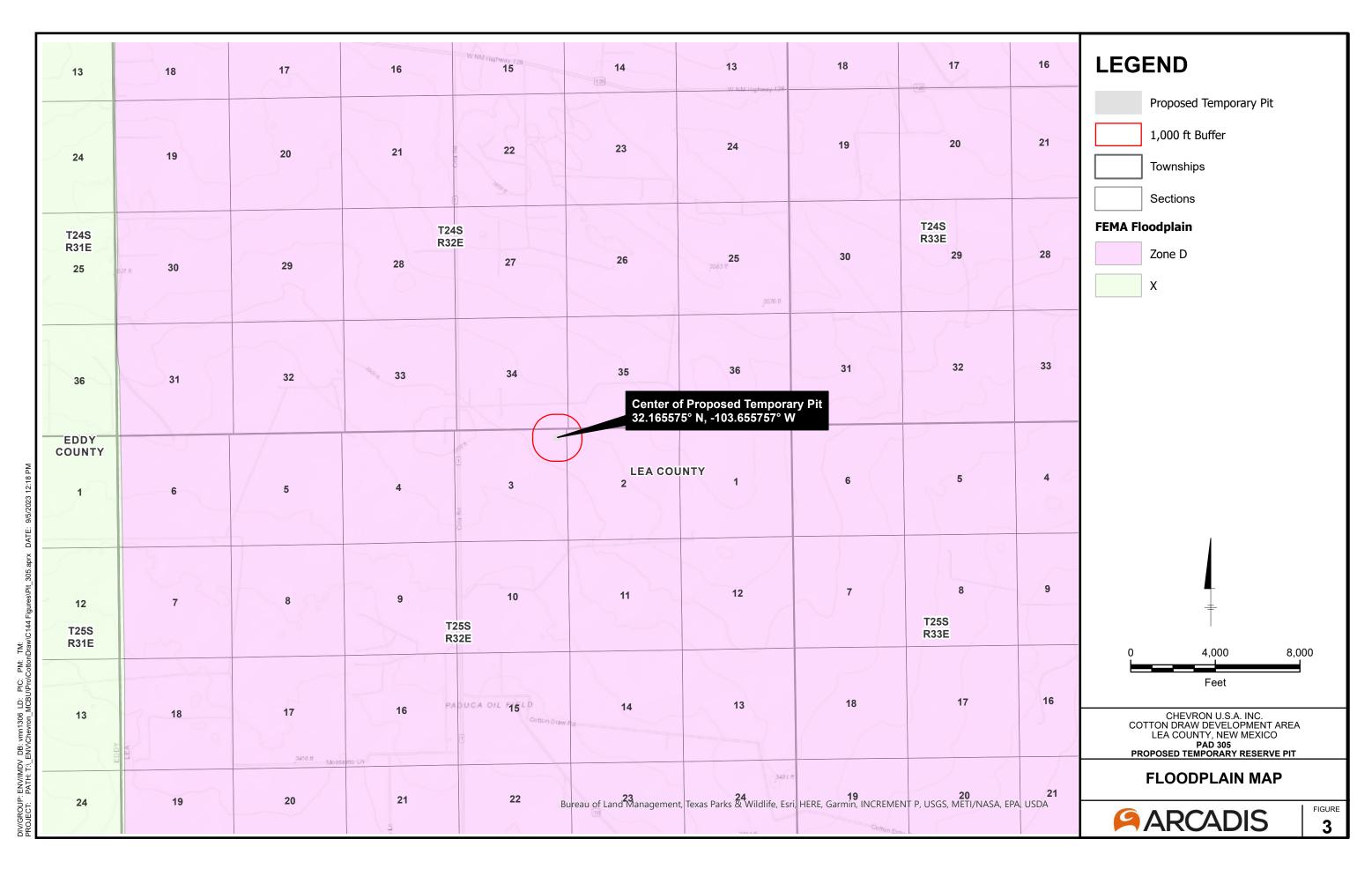
In the unlikely event that a void occurs during construction or operation activities, all activities must stop immediately, and the BLM should then be contacted within 24 hours to devise the best management plan to protect the environment and human safety.

² Hill, C.A. 1996 Geology of the Delaware Basin, Guadalupe, Apache and Glass Mountains: New Mexico and West Texas: Permian Basin Section: Midland, Texas, SEPM, 480 pp.

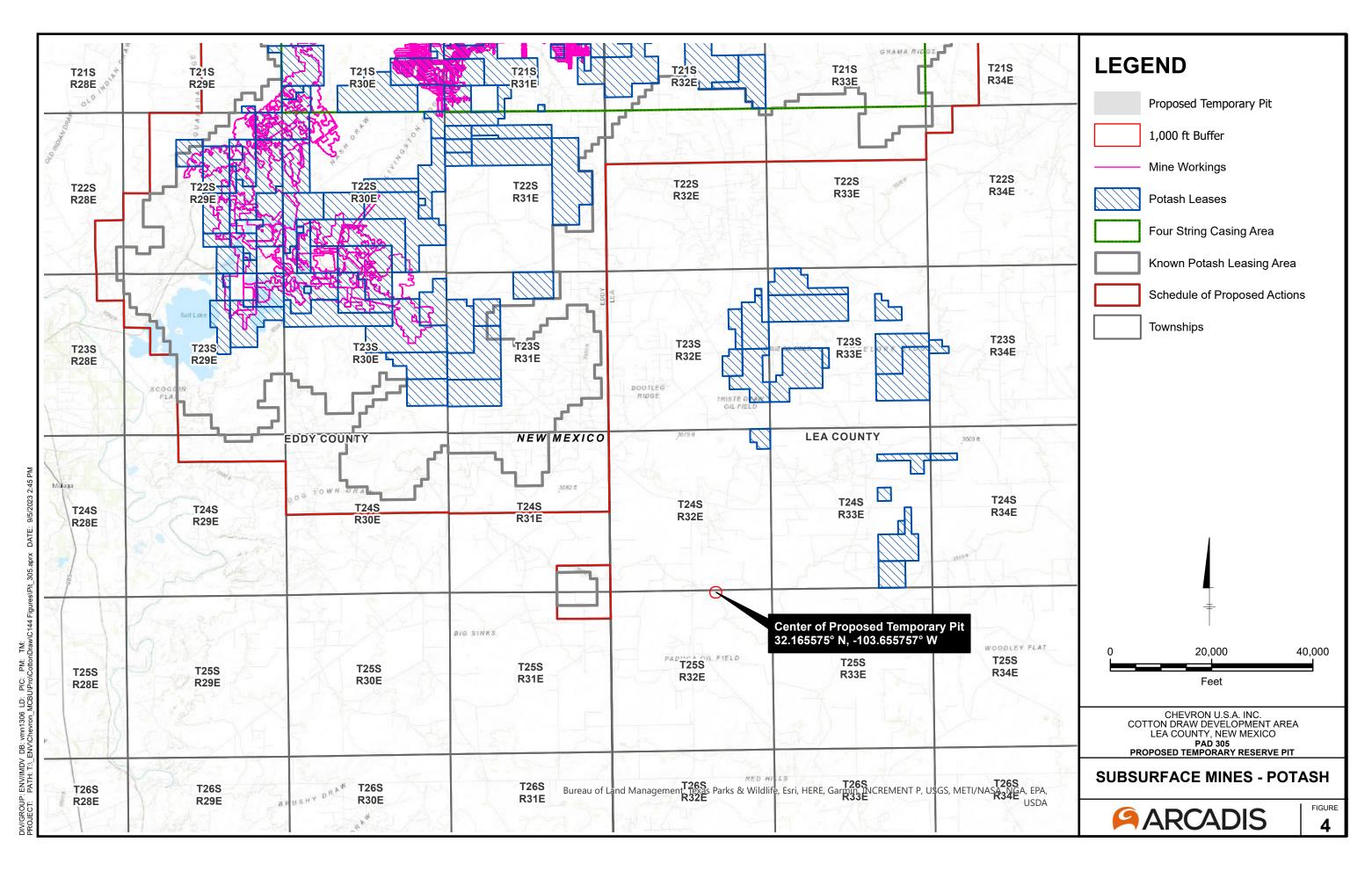
³ Land, Lewis and George Veni. 2014. Electrical resistivity surveys, Johnson Estate drill site, Loving County, Texas. National Cave and Karst Research Institute Report of Investigation 5, Carlsbad, NM. March 2014.

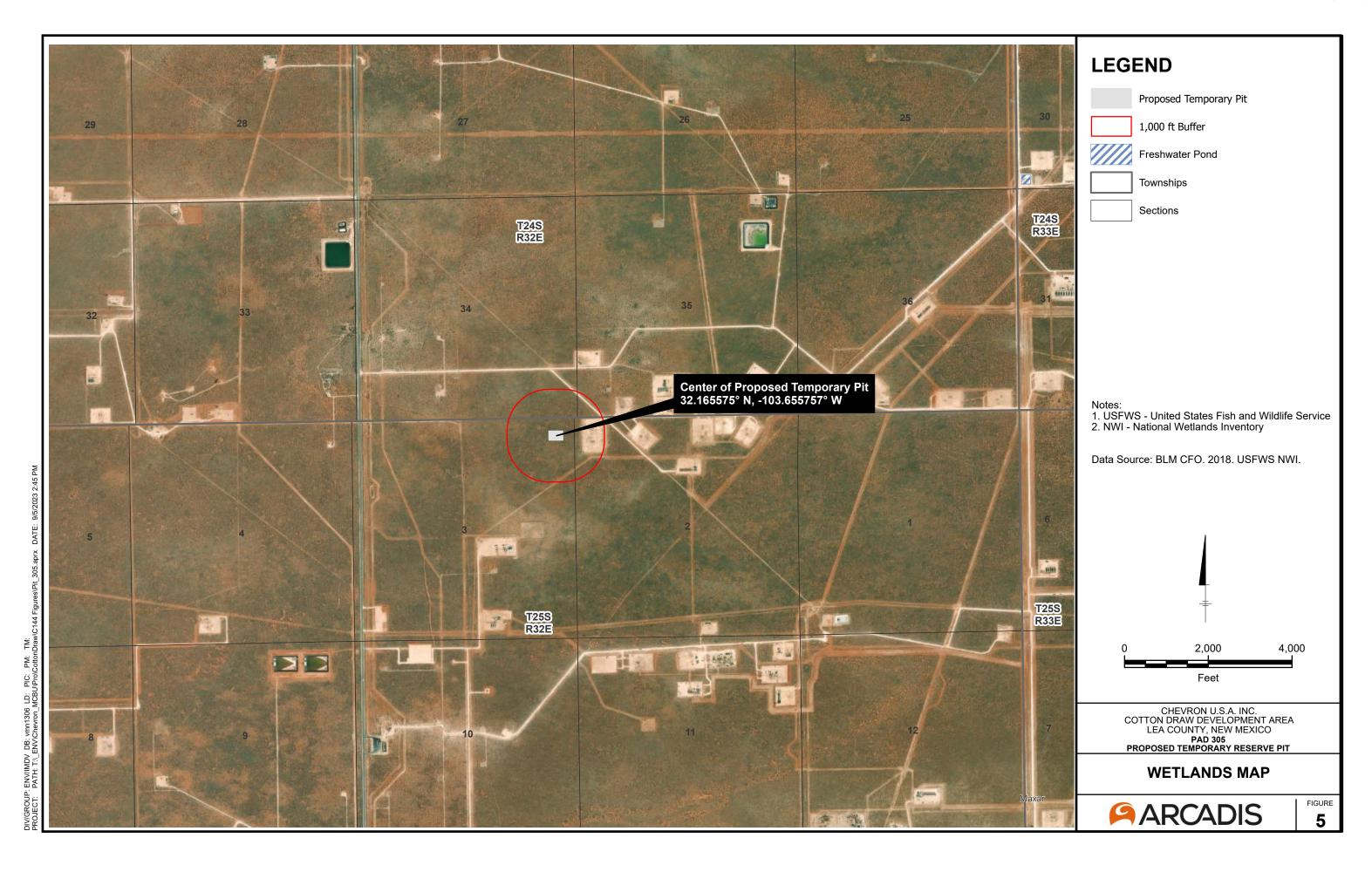

Proximity to Floodplains, 19.15.17.10.3(i)

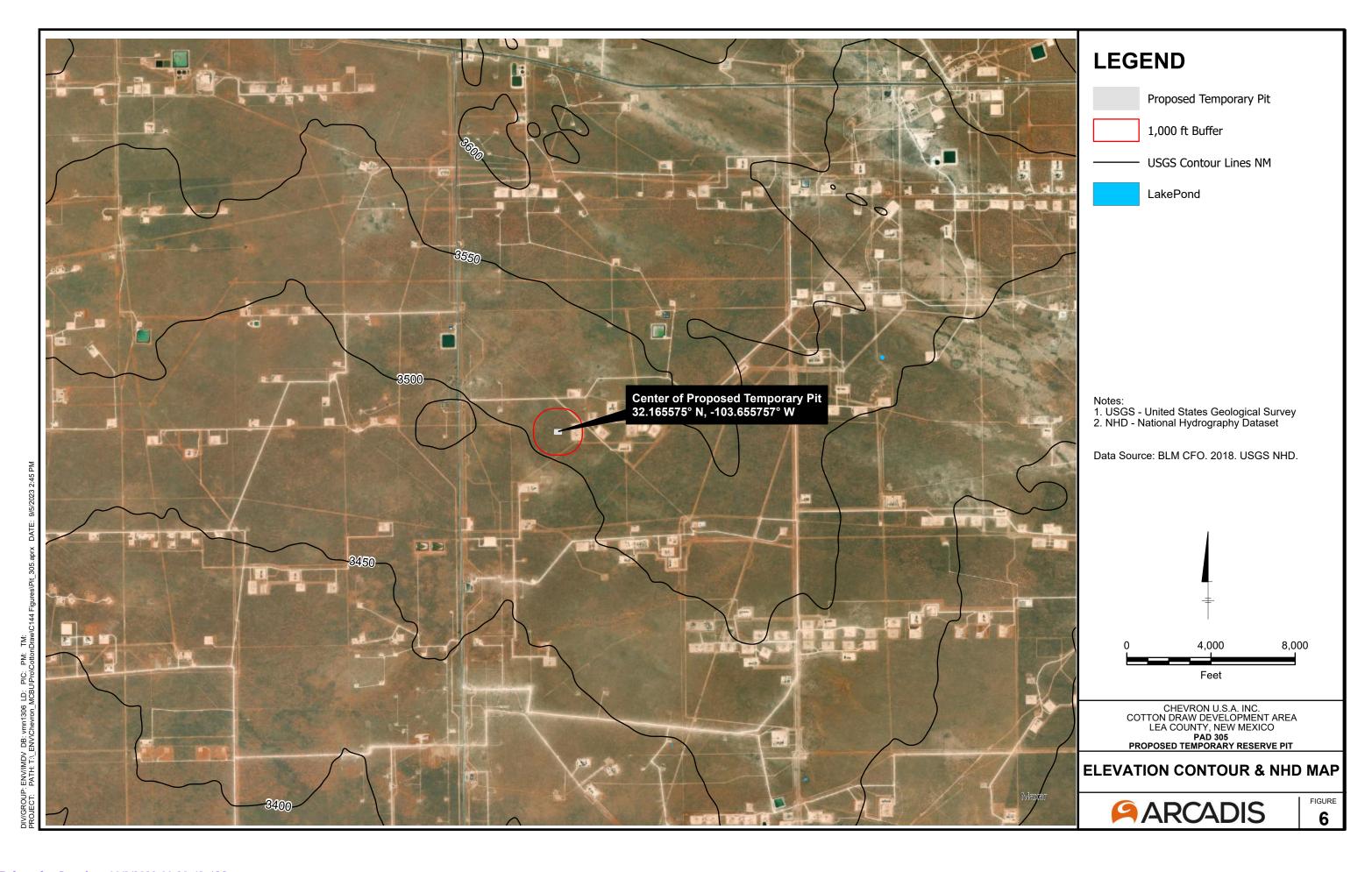
The location is within an area that has been mapped as Zone D by the Federal Emergency Management Agency with respect to the Flood Insurance Rate 100-Year Floodplain (**Figure 3**).

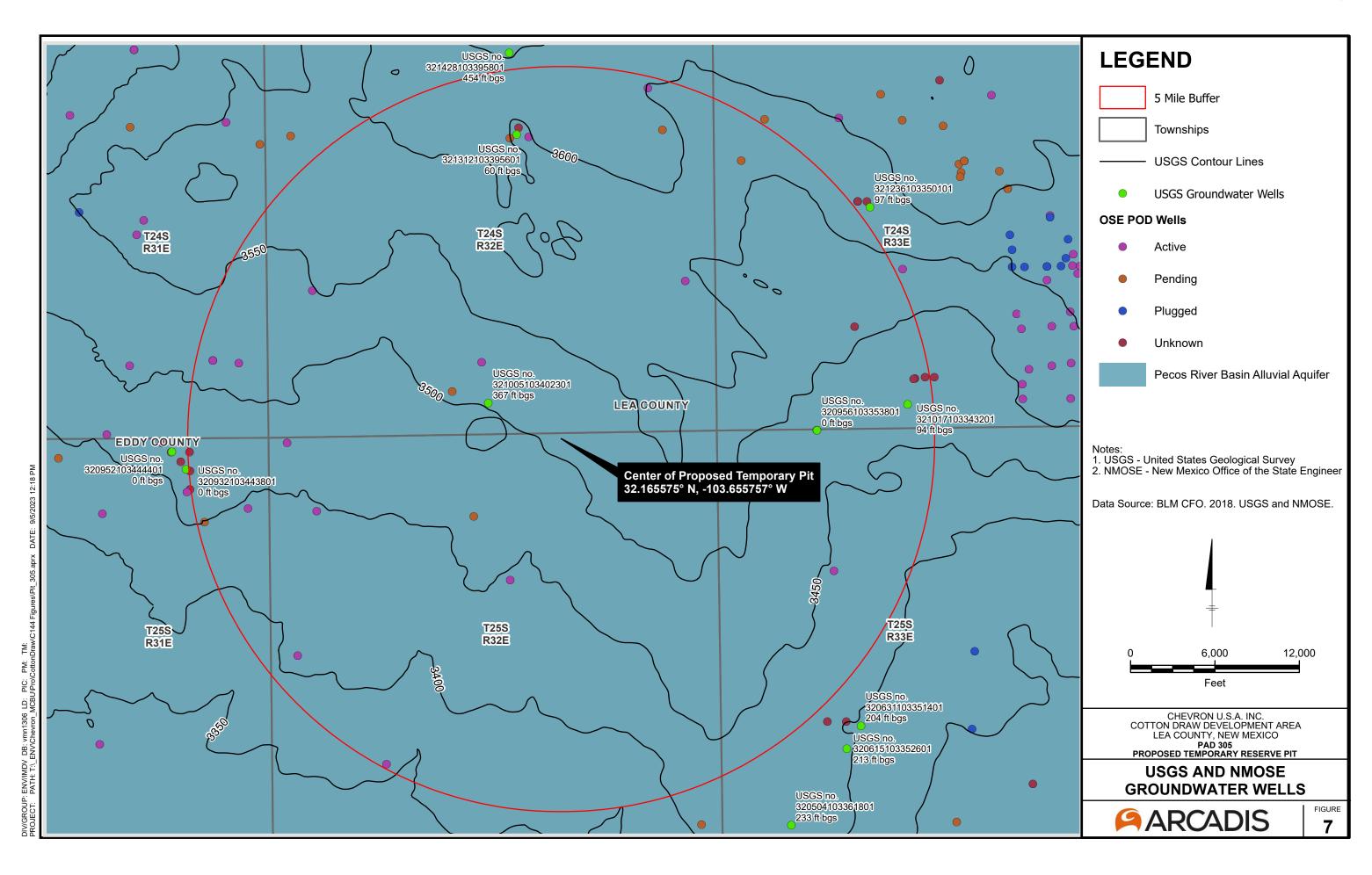

Site Specific Information, Figures 1-11

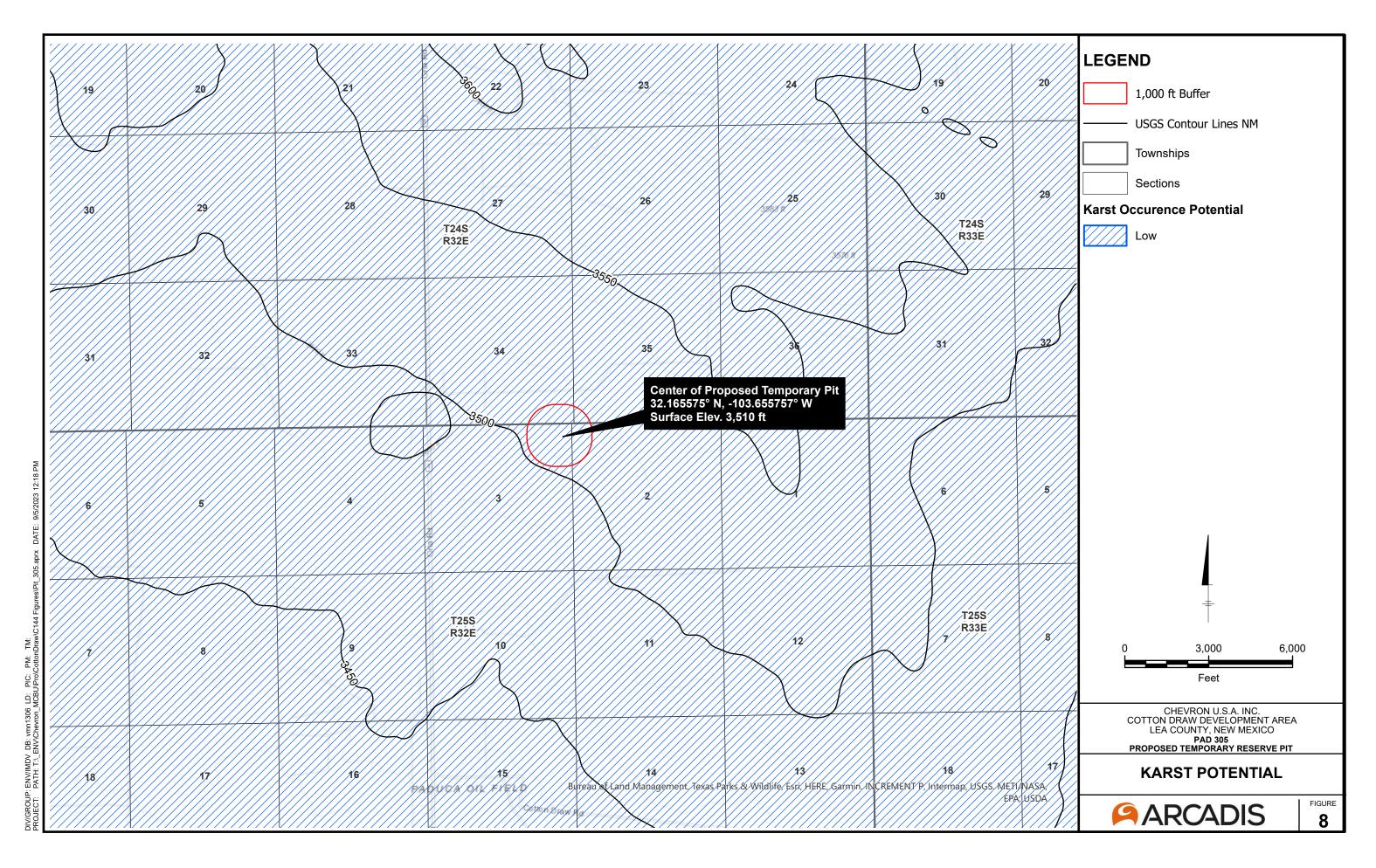
Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

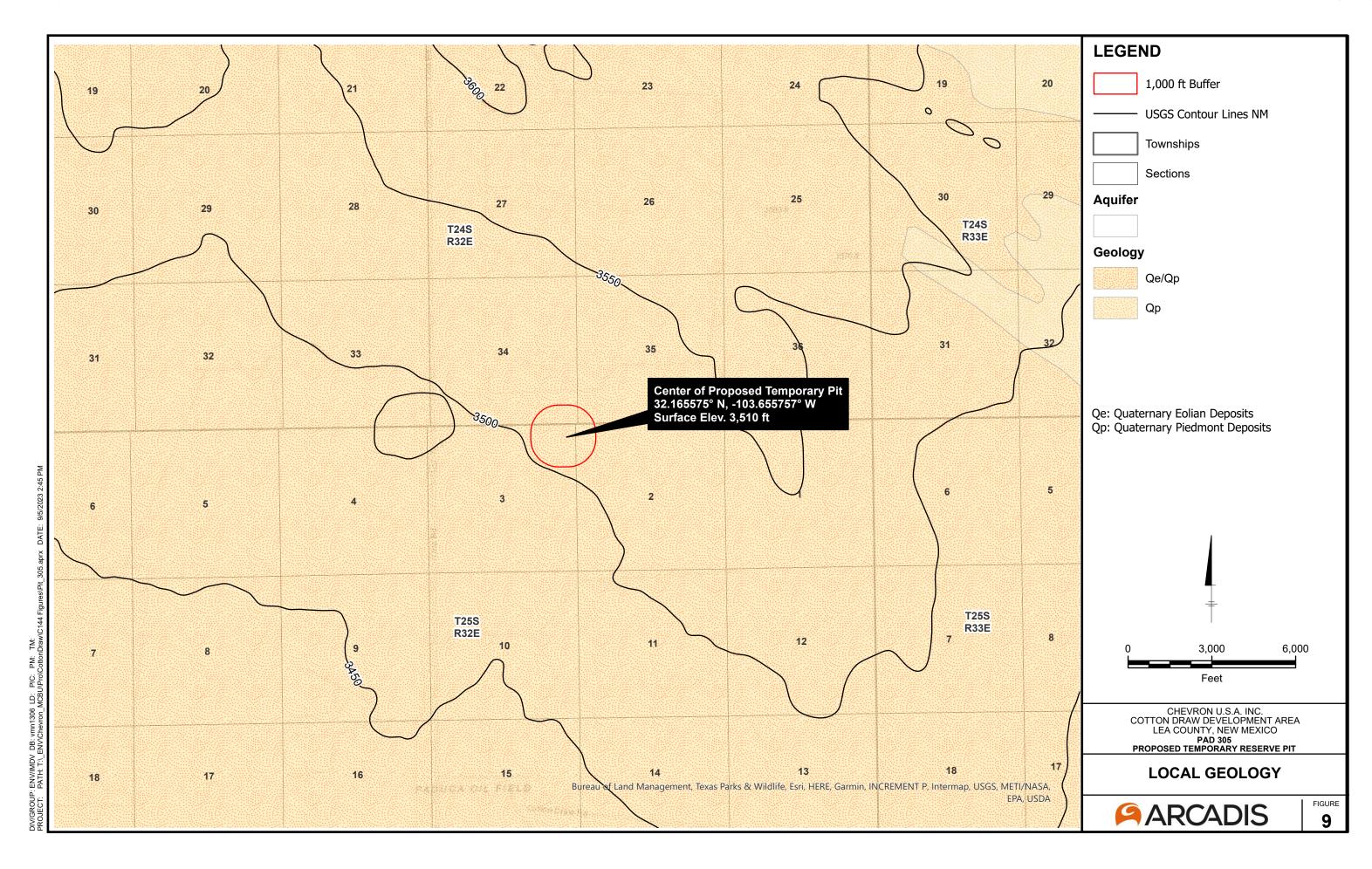


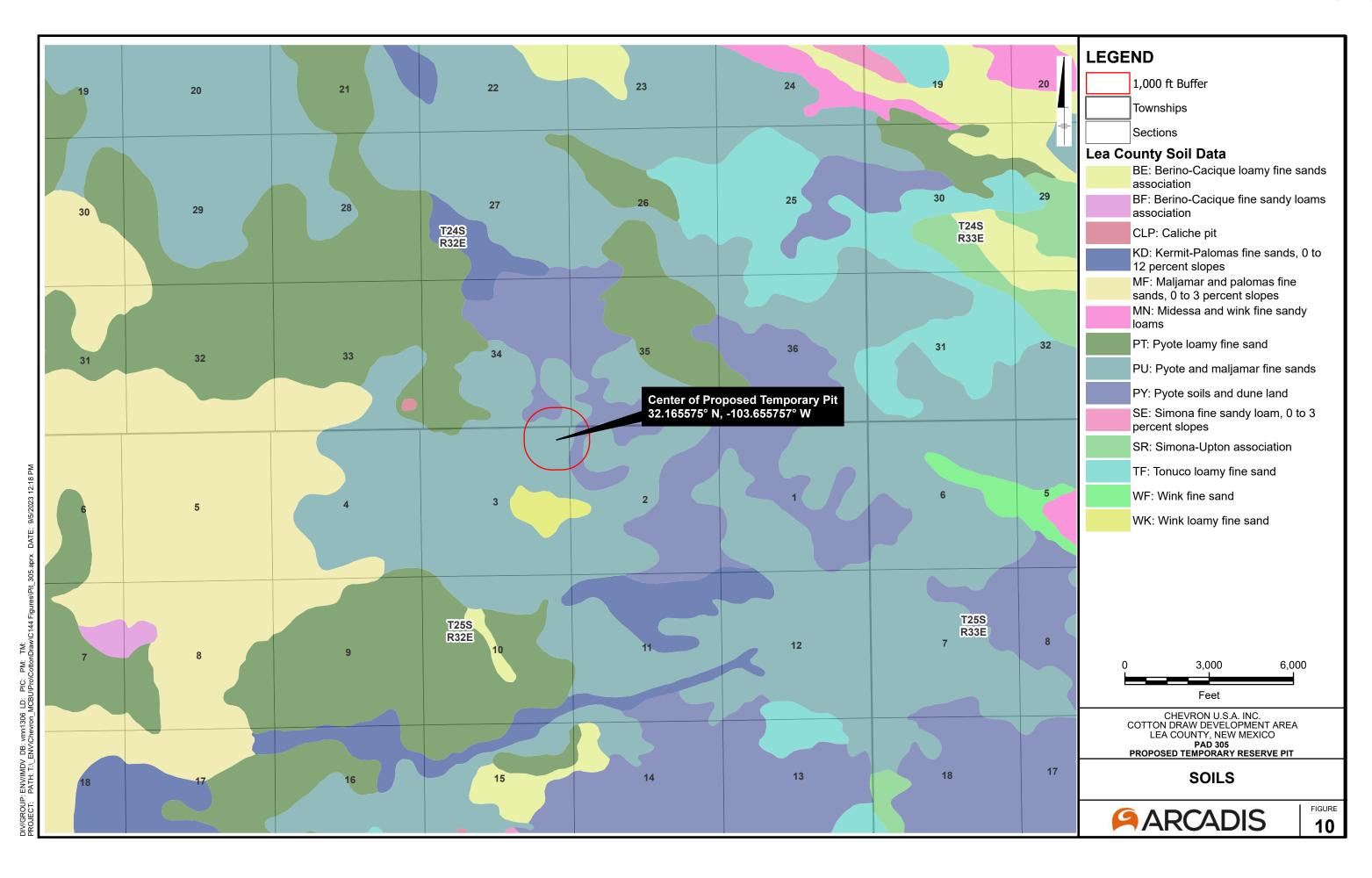


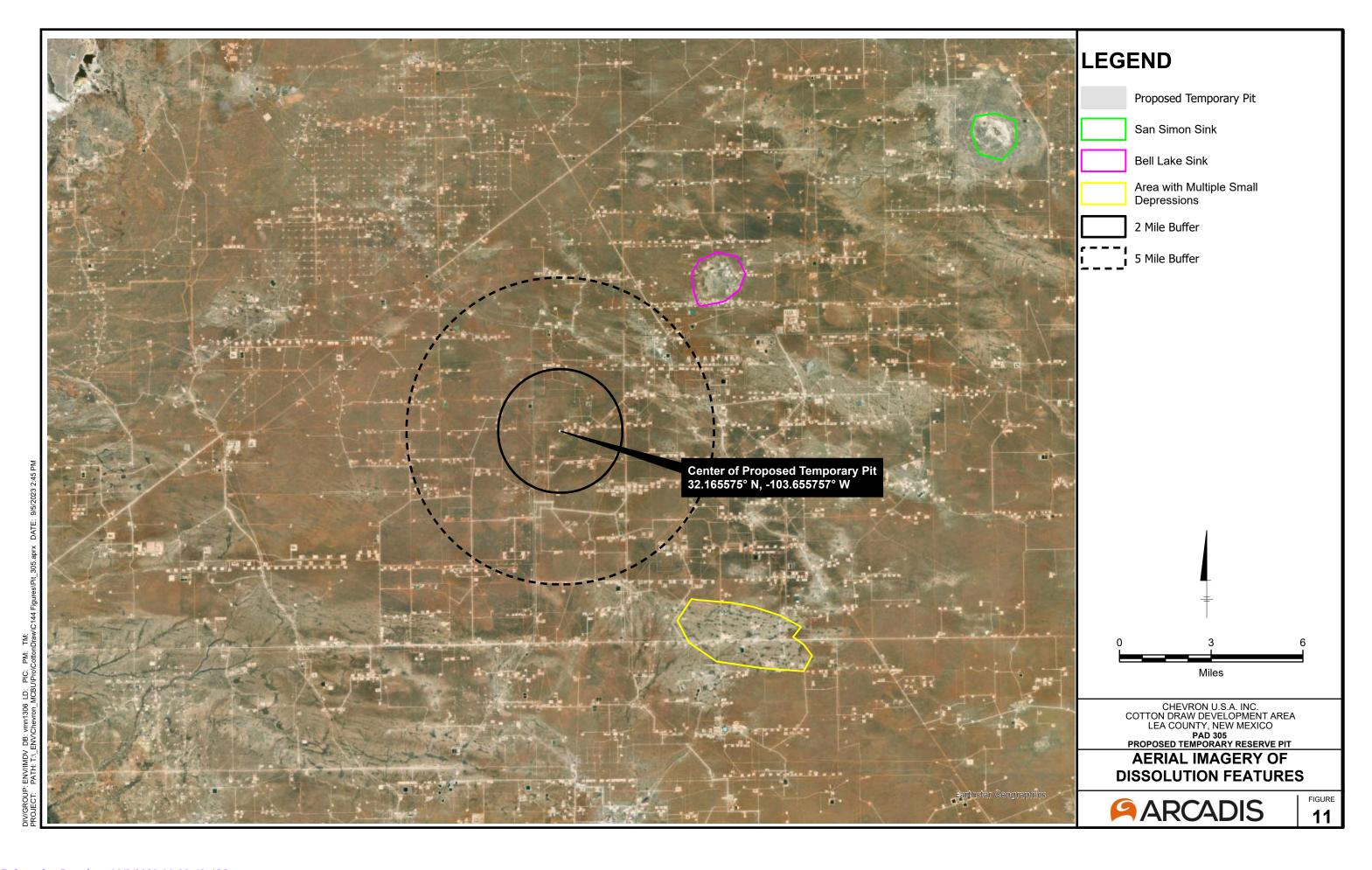

Released to Imaging: 11/8/2023 11:30:49 AM




Released to Imaging: 11/8/2023 11:30:49 AM







Variance Requests

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Variance Requests Cotton Draw 34 27 FEDERAL COM Temporary Pit

Variance Request 1 of 2 - Extension of Closure Timeline for Temporary Pit

Reason for the requested variance

The Operator wishes to standardize closure practices and procedures across all active development areas where Temporary Pits are used. A closure timeline extension allows for improved flexibility in managing closure operations and would improve efficiency by allowing the closure of multiple pits during a single campaign.

The closure timeline is stated with the definition of a Temporary Pit, in that a pit "must be closed within six months from the date the operator releases the drilling or workover rig from the first well using the pit".

For purposes of this variance, the Operator proposes a timeline based on the date of the first occurrence of Rig Down Move Out (RDMO). RDMO is defined as the activity when the drilling rig is moved off location. Typically, RDMO occurs after the completion of drilling the last well on the pad. On pads where the Operator plans to return to the pad, multiple RDMO dates occur. This variance does not consider subsequent RDMO affecting the closure timeline dates after the first RDMO. The Operator proposes dewatering the pit within 30 days of RDMO and proposes closing the pits within 1 year of RDMO.

The Operator uses a batch drilling process for drilling multiple wells on a single pad. The common procedure is to drill all the surface hole sections first followed by intermediate hole sections and finally production hole sections. The drilling rig skid moves to the next well without performing rig down activities when batch drilling. For the proposed four-well pad, the rig drills surfaces in the order of wells one to four, then intermediates in the order of wells four to one, and finally productions in the order of one to four. Note that specific orders may change based off well design and location specific factors, but the process of skidding and batch drilling is consistent throughout.

If the Operator ceases operations before drilling is complete and the rig is moved off the pad location, this constitutes a RDMO date and the 1-year closure criteria is based off the earliest RDMO date.

The Operator may utilize a shallow rig for drilling of only the surface and/or intermediate hole sections, if permitted to do so. The rig down and move out of the shallow rig does not constitute an RDMO date if the larger rig intending to drill production holes arrives within 3 months.

Variance Requests 1

Demonstration that the variance will provide equal or better protection of fresh water, public health and the environment.

In order to uphold the Operator's commitment to people and the environment, the following assurances will be provided in excess of the baseline requirements of 19.15.17 NMAC.

- The Operator will dewater the Temporary Pit within 30 days after RDMO.
- The Operator will utilize a 40-mil HDPE liner, as proposed in **Variance 2**.
- No fluid will be stored in the pit for any purpose after the completion of drilling activities other than in the event of emergency actions as described in 19.15.17.14 NMAC.
- The pits will be visually inspected on a monthly basis between RDMO and closure.
- If fluid is seen in the pit during inspection, then the Operator will mobilize equipment to have the pits drained within 7 days.
- The operator will maintain a fence around the perimeter of the pits and ensure it remains in good repair until closure.

Variance Requests 2

Variance Request 2 of 2 - Proposed Use of High-Density Polyethylene (HDPE) Liner for Temporary Pit in lieu of Linear Low-Density Polyethylene (LLDPE) Liner

Memorandum

To: New Mexico Oil Conservation Division (NMOCD)

From: Chevron MCBU - Facilities Engineering Group

Variance Request for Use of HDPE Liner Material for Temporary Reserve Pits in New Mexico Subject:

Date: 7/23/2020

Chevron reguests a variance to NMAC 19.15.17.11 (F) for use of high-density polyethylene (HDPE) geomembrane for the lining of temporary drilling reserve pits. HDPE is a preferred material which Chevron will install during drilling reserve pit construction. Chevron will utilize an HDPE geomembrane which offers equal or better performance than a typically available 20-mil string reinforced linear low-density polyethylene (LLDPE) material detailed in 19.15.17.11 (F), NMAC. An HDPE liner of equivalent thickness or greater than the 20-mil LLDPE will be installed. The following are considered in the design for implementation of the HDPE material to ensure the product is an equivalent, to the LLDPE material described, for temporary reserve drilling pits in New Mexico.

- An HDPE liner that has a thickness of less than 30-mils will be installed in a reserve pit as a shop-fabricated, extruded liner, and will not be field welded. Only HDPE liners of 30-mils in thickness or greater will be field welded for use in the temporary reserve pits.
- HDPE has lower permeability compared to LLDPE. This provides high barrier protection for soils during drilling operations and usage of the pits.
- HDPE may be installed with an underlying geotextile or similar material to provide additional protection from puncture or stress cracking. The subgrade for the liner system will be screened of deleterious materials and rocks and will be suitable for the liner installation. The use of geotextile or similar material will be evaluated on a specific case-by-case basis by Chevron.
- The HDPE liner used in Chevron's temporary reserve pits will have an equivalent or higher tear resistance and puncture resistance than that of a typical 20-mil string reinforced liner.
- HDPE material properties and liner has improved UV resistance to degradation when compared to LLDPE. This allows for extended life and improved long-term durability in pit liner applications.

All requirements for temporary pits' design and construction will be met in accordance with NMAC 19.15.17.11 and liner compatibility will comply with EPA SW-846 Method 9090A. Any requirements that may not be able to be adequately addressed, will be addressed under a separate variance request on a case-by-case basis.

Disclaimer: Tetra Tech, Inc. has not evaluated the full design of temporary reserve pits for Chevron and is not involved in the construction or operation of Chevron's lined, temporary reserve pits. Chevron understands that they will ensure that specific pit designs meet the criteria and intent of the NMAC and applicable codes for each pit location and construction.

7/23/2020

Nathan Langford, P.E.

Tetra Tech, Inc.

TECHNICAL DATA SHEET

HDPE Series, 40 mils

Black, Smooth

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America: I-800-571-3904 www.Solmax.com www.solmax.com

PROPERTY	TEST METHOD FREQUENCY(1)		UNIT Imperial	
SPECIFICATIONS				
Thickness (min. avg.)	ASTM D5199	Every roll	mils	40.0
Thickness (min.)	ASTM D5199	Every roll	mils	36.0
Melt Index - 190/2.16 (max.)	ASTM D1238	I/Batch	g/10 min	1.0
Sheet Density (8)	ASTM D792	Every 10 rolls	g/cc	≥ 0.940
Carbon Black Content	ASTM D4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	Every 10 rolls	Category	Cat. I & Cat. 2
OIT - standard (avg.)	ASTM D3895	I/Batch	min	100
Tensile Properties (min. avg) (2)	ASTM D6693	Every 2 rolls		
Strength at Yield			ррі	88
Elongation at Yield			%	13
Strength at Break			ррі	162
Elongation at Break			%	700
Tear Resistance (min. avg.)	ASTM D1004	Every 5 rolls	lbf	28
Pun ture Resis ance (min. avg.)	ASTM D4833	Every 5 rolls	lbf	80
Dimensional Stability	ASTM D1204	Certified	%	± 2
Stress Crack Resistance (SP-NCTL)	ASTM D5397	I/Batch Per	hr	500
Oven Aging - % retained after 90 days	S ASTM D5721	formulation		
HP OIT (min. avg.)	ASTM D5885		%	80
UV Res % retained after 1600 hr	ASTM D7238	Per formulation		l .
HP-OIT (min. avg.)	ASTM D5885		%	50
Low Temperature Brittleness	ASTM D746	Certified	°F	- 106
SUPPLY SPECIFICATIONS (R	oll dimensions may vary ±1	%)		

NOTES

- I. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).
- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.
- 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

^{*} All values are nominal test results, except when specified as minimum or maximum.

^{*} The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

TECHNICAL DATA SHEET

HDPE Series, 40 mils

Black, Top Side Single Textured

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America: I-800-571-3904 www.Solmax.com www.solmax.com

		Imperial	
	-	mils	40
ASTM D5994	Every roll	mils	38.0
		mils	36.0
		mils	34.0
ASTM D7466	Every roll	mils	16
	-		Тор
ASTM D1238	I/Batch	g/10 min	1.0
ASTM D792	Every 10 rolls	g/cc	≥ 0.940
ASTM D4218	Every 2 rolls	%	2.0 - 3.0
ASTM D5596	Every 10 rolls	Category	Cat. I & Cat. 2
ASTM D3895	I/Batch	min	100
ASTM D6693	Every 2 rolls		
		ррі	88
		%	13
		ррі	88
		%	150
ASTM D1004	Every 5 rolls	lbf	30
ASTM D4833	Every 5 rolls	lbf	90
ASTM D1204	Certified	%	± 2
ASTM D5397	I/Batch Per	hr	500
ASTM D5721	formulation		
ASTM D5885		%	80
ASTM D7238	Per formulation		
ASTM D5885		%	50
ASTM D746	Certified	°F	- 106
	ASTM D7466 ASTM D1238 ASTM D792 ASTM D4218 ASTM D5596 ASTM D3895 ASTM D6693 ASTM D6693 ASTM D6693 ASTM D4833 ASTM D4833 ASTM D4833 ASTM D5397 ASTM D5721 ASTM D5721 ASTM D5885 ASTM D7238 ASTM D7238 ASTM D746	ASTM D7466 Every roll ASTM D1238 I/Batch ASTM D792 Every 10 rolls ASTM D4218 Every 2 rolls ASTM D5596 Every 10 rolls ASTM D3895 I/Batch ASTM D6693 Every 2 rolls ASTM D6693 Every 2 rolls ASTM D4833 Every 5 rolls ASTM D4833 Every 5 rolls ASTM D5397 I/Batch Per ASTM D5721 formulation ASTM D5885 ASTM D7238 Per formulation ASTM D5885	ASTM D7466 Every roll mils ASTM D7466 Every roll mils ASTM D1238 I/Batch g/10 min ASTM D792 Every 10 rolls g/cc ASTM D4218 Every 2 rolls % ASTM D5596 Every 10 rolls Category ASTM D3895 I/Batch min ASTM D6693 Every 2 rolls Ppi % ASTM D6693 Every 5 rolls Ibf ASTM D4833 Every 5 rolls Ibf ASTM D4833 Every 5 rolls Ibf ASTM D5397 I/Batch Per ASTM D5721 formulation ASTM D5885 % ASTM D7238 Per formulation ASTM D5885 % ASTM D7466 Certified °F

NOTES

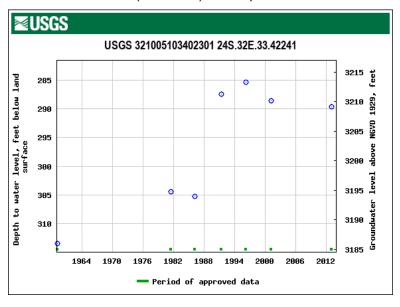
- 1. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).
- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.
- 3. Lowest individual and 8 out of 10 readings as per GRI-GM13 / 17, latest version.
- 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.

Appendix A

United States Geological Survey Groundwater Data

USGS 321005103402301 24S.32E.33.42241

Latitude 32°10'21.6", Longitude 103°40'18.9" NAD83


Lea County, New Mexico Hydrologic Unit 13070001

Well depth: 367 feet

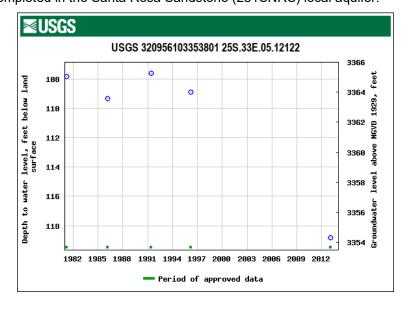
Land surface altitude: 3,499.00 feet above NGVD29.

Well completed in "Other aquifers" (N9999OTHER) national aquifer.

Well completed in "Chinle Formation" (231CHNL) local aquifer.

USGS 320956103353801 25S.33E.05.12122

Lea County, New Mexico


Hydrologic Unit Code 13070007

Latitude 32°09'59.4", Longitude 103°35'47.2" NAD83

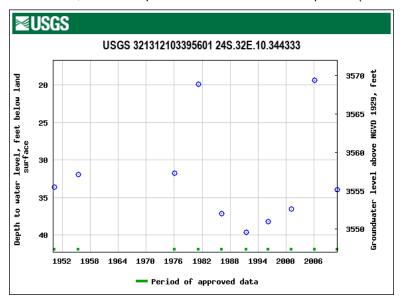
Land-surface elevation 3,473.00 feet above NGVD29

This well is completed in the Other aguifers (N9999OTHER) national aguifer.

This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

USGS 321312103395601 24S.32E.10.344333

Latitude 32°13'30.4", Longitude 103°39'52.7" NAD83


Lea County, New Mexico Hydrologic Unit 13070007

Well depth: 60 feet

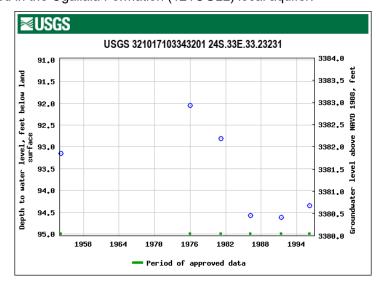
Land surface altitude: 3,589.00 feet above NGVD29.

Well completed in "Other aquifers" (N9999OTHER) national aquifer.

Well completed in "Alluvium, Bolson Deposits and Other Surface Deposits" (110AVMB) local aquifer.

USGS 321017103343201 24S.33E.33.23231

Lea County, New Mexico


Hydrologic Unit Code 13070007

Latitude 32°10'17", Longitude 103°34'32" NAD27

Land-surface elevation 3,475 feet above NAVD88

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Appendix B

New Mexico Office of the State Engineer
Water Column/Average Depth to Water Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

water right file.)	closed)	(0	quai	ters	s a	re sr	nalles	t to large	st) (N	IAD83 UTM in me	eters)	(1	n feet)	
POD Number	POD Sub- Code basin C	County		Q 16		Sec	Twe	Rna	Х	Y	Distance	•	Depth Water	Water Column
C 04536 POD1	C	LE					248	_	625019	3561244	2441	500	314	186
C 04634 POD1	CUB	LE	4	3	3	10	25S	32E	625643	3556522	3306	55		
C 04622 POD1	CUB	LE	3	3	4	24	24S	32E	629436	3563006 🌑	4282			
C 02312	CUB	LE	1	2	1	05	25S	33E	632292	3559772 🌍	5462	150	90	60
C 04620 POD1	CUB	LE	4	3	4	06	25S	32E	621445	3558018 🌕	5616	55		
C 04665	CUB	LE	1	1	2	30	24S	32E	621350	3562798 🌑	6342	120		
C 04627 POD1	CUB	LE	3	3	4	80	25S	33E	632665	3556725 🌑	6506			
C 03528 POD1	С	LE	1	1	2	15	24S	32E	626040	3566129 🌑	6569	541	133	408
<u>C 02890</u>	С	LE		2	4	29	24S	33E	633114	3562012* 🌍	6726	500		
<u>C 02350</u>	CUB	ED		4	3	10	24S	32E	625826	3566333* 🌍	6800	60		
C 04635 POD1	CUB	ED	4	3	4	01	25S	31E	619958	3558078 🌕	7042	55		
C 04654 POD1	CUB	ED	3	3	4	25	24S	31E	619764	3561226 🌍	7250	55		
C 04618 POD1	CUB	LE	3	4	3	18	25S	32E	621041	3554886 🎒	7471	55		
<u>C 02311</u>	CUB	LE	2	3	2	33	24S	33E	634391	3560877 🌍	7665	120	70	50
C 02310	CUB	LE	2	4	2	33	24S	33E	634420	3560893 🌕	7696	120	70	50
<u>C 02568</u>	CUB	ED	4	3	1	01	25S	31E	619103	3558892*	7761	1025		
C 01932	С	ED		3	1	12	24S	32E	628633	3567188*	7791	492		
C 04636 POD1	CUB	ED	3	4	3	25	24S	31E	619200	3561279 🌑	7812			
C 04643 POD1	С	ED	4	2	2	05	23S	27E	619200	3561279 🌑	7812	305	135	170
C 02563	CUB	LE	1	4	2	33	24S	33E	634639	3560923*	7917	120		

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 11/7/2023 12:10:53 PM

Page 38 of 126

Average Depth to Water: 135 feet

Minimum Depth: 70 feet

Maximum Depth: 314 feet

Record Count: 20

UTMNAD83 Radius Search (in meters):

Easting (X): 626831.63 **Northing (Y):** 3559607.68 **Radius:** 8045

Appendix C – Hydrogeologic Data

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Appendix C – Hydrogeologic Data Cotton Draw 34 27 Federal Com Temporary Pit

Topography and Surface Hydrology

The location of the proposed temporary pit is in southwestern Lea County, New Mexico between the Mescalero Ridge and the Pecos River in the Pecos Valley section of the Great Plains physiographic province. The pit lies at an elevation of 3,510 ft above sea level and the general area in the vicinity of the pit is characterized by bluffs surrounded by relatively flat to gentle sloping terrain (**Figure 7**). The land surface slopes gently to the southwest at approximately 25 feet per mile.

Surface water within the survey area is affected naturally by geology, precipitation, and water erosion. The area is located in the semi-arid southwest on the northern edge of the Chihuahuan Desert where annual precipitation averages 10.5 inches with the greatest rainfall occurring as monsoonal storms in late summer (July – September). About half of the annual precipitation is received during this period via brief, intense storms that can cause large amounts of runoff and potential flooding (NM OSE 2010).

Southwestern Lea County, including the temporary pit area, lies within the Lower Pecos River Basin. The major stream flowing through this basin is the Pecos River which is located approximately 17 miles to the west of the survey area in southeastern Eddy County. Surface water in the Lower Pecos River Basin comes from three main sources: inflow from the Upper Pecos River Basin, flood inflow from storm events, and groundwater base inflow. The Pecos River bisects Eddy County and runs through the center of the City of Carlsbad. The Pecos River is dammed by Brantley Dam and by Avalon Dam 10-miles northwest and 5-miles north of Carlsbad, respectively, and by Red Bluff Dam located just across the New Mexico – Texas State line.

There are no streams or other tributaries to the Pecos River in the vicinity of the proposed location for the temporary pit. Anthropogenic activities that could affect surface water resources in the area include livestock grazing management and oil and gas development. Surface water flow direction for various parts of the area depends on the slope of the land which is generally to the southwest. Surface drainage flows ephemerally during precipitation events and collects in depressions, infiltrates soil, or evaporates. At its closest point, the Pecos River is located approximately 17 miles west of the survey area.

Soils

The majority of the soil complexes mapped within the survey area are the Pyote soils and dune land (Py) and the Pyote and Maljamar fine sands (Pu). The Py soil is summarized by the USDA as occurring mainly in depressions and dunes. The Pu soil is summarized by the USDA as mainly occurring on nearly level to gently undulating uplands.

The soils within the survey area are listed below in the following table. A map depicting the soils mapped within the survey area is provided in **Figure 10**.

Table 1 Soils Within the Survey Area

Soil Abbreviation and Name	Slope	Soil Type
Py – Pyote soils and dune land	0 to 3 percent slope	Deep, well drained
Pu - Pyote and maljamar fine sands	0 to 3 percent slope	Deep, well drained

Loamy Sand Soil Type Description

The majority of the soil complexes mapped within the area of the proposed temporary pit are Pyote and maljamar fine sands (Pu) which are classified as loamy sand soils. These soils are typically moderately deep or very deep soils that consist of loamy sand underlain by fine sands. Slopes range from 0 to 3 percent within these loamy sand soils. If these soils are unprotected by plant cover, they are easily wind blown into low hummocks. These soils have rapid permeability and are well drained. These soils support grassland vegetative communities dominated by species such as sand bluestem, yellow Indiangrass, black grama, dropseed species, and little bluestem. Dominant shrub species observed within these soils were creosote bush (*Larrea tridentate*), mesquite (*Prosopis glandulosa*), rubber rabbitbrush (*Ericameria nauseosa*), and yucca sp. (*Yucca sp.*). The annual grasses and forbs population will fluctuate with the variation of amount of rainfall annually and with the seasons. Without brush and graze control the vegetative communities within these soils will become shrub dominate, and there will be a loss of grass cover and increased surface soil erosion (USDA 2016).

Geology

The area in the vicinity of the proposed pit location is underlain by recent eolian deposits consisting of drift sand a few feet in thickness and local occurrences of sand dunes (**Figure 9**). The eolian deposits are underlain by Pleistocene to recent alluvial deposits consisting of unconsolidated to partially consolidated sand, silt, gravel, clay and caliche. A thin layer of Tertiary Ogallala Formation may underlie the alluvium. Alluvium / Ogallala thickness in this area appears to be approximately 100 to 200 feet. Triassic Dockum strata outcrop along Paduca Breaks to the southeast of the survey area. Triassic Dockum strata underlie the alluvium / Ogallala deposits and its thickness appears to be approximately 400 to 500 feet. The Dockum Group has been divided into three formations: lower red shale, siltstone, and very fine-grained sandstone called the Tecovas Formation (or Pierce Canyon redbeds); middle reddish-brown and gray sandstone called the Santa Rosa sandstone; and upper brick-red to maroon and purple shale with thin beds of fine red or gray sandstone and siltstone called the Chinle Formation.

 The Tecovas or Pierce Canyon redbeds (considered Permian by some geologists and sometimes correlated with the Dewey Lake redbeds) overlie the Rustler Formation. The Tecovas' thickness is approximately 350 feet and it consists of red sandy shale and fine-grained sandstones with greenish—gray inclusions.

Appendix C – Hydrogeologic Data

- The Santa Rosa sandstone consists of reddish-brown and gray, medium- to coarsegrained, micaceous, well-cemented sandstone and conglomerate. The sandstone is typically cross-bedded and is interbedded with red shale and siltstone. The thickness of the Santa Rosa sandstone generally ranges from approximately 200 to 300 feet over most of the area where it occurs.
- The Chinle Formation consists of a series of red shales and thin interbedded sandstones and appears to be about 200 feet thick in this area but can be as much as several hundred feet thick in other parts of southern Lea County.

Dewey Lake redbeds (sometimes correlated with the Tecovas Formation) underlie the Triassic Dockum and overlie the Rustler Formation. Dewey Lake is a series of red beds consisting of micaceous red siltstone, shale, and sandstone with gypsum cementation

The Rustler Formation consists largely of anhydrite, gypsum, interbedded sandy clay and shale, and dolomitic limestone near the upper part of the formation. The Rustler overlies the Salado Formation and is approximately 400 feet thick in this area (Nicholson and Clebsch 1961). The Rustler typically consists of a lower clastic unit composed mainly of red and gray shale and some interbedded anhydrite and an upper anhydrite unit containing dolomitic limestone beds of varying thicknesses.

Geologic units in the general area which potentially contain usable groundwater are the Alluvium/Ogallala, the Dockum Group, and possibly the Rustler Formation.

Groundwater

In the vicinity of the proposed pit, the Rustler Formation, Dockum Group and the Alluvium / Ogallala have the potential to provide small quantities of water to water supply wells. However, no water wells were found at in the immediate vicinity of the proposed site (**Figure 7**). Several water wells have been identified within 2 to 5 miles of the site) which are used primarily to support domestic, livestock and / or oil and gas exploration and development water needs. The depths of the wells indicate that some are completed in the Alluvium/Ogallala and some in the Triassic Dockum.

<u>Depth to Water</u>: An analysis of publicly available data from the NMOSE and USGS indicate that the depth to groundwater beneath the proposed location is in excess of 100 feet based on the closest USGS-gauged well which is located 1.0 mile northwest from the proposed site. The depths to water within a 5-mile radius of the proposed site range from 34 feet (approximately 4.1 miles north of the proposed site) to 314 feet in a Triassic Dockum well located approximately 1.3 miles northwest of the proposed site.

Groundwater within 5 miles of the proposed location appears to be present in the Pecos River Basin Alluvial aquifer contained within Quaternary deposits present at surface and underlain by the Ogallala aquifer. This part of Lea County appears to be situated at or near the northern edge of the Pecos River Basin Alluvium aquifer. In this area, the Alluvium/Ogallala appears to be 200 feet in thickness or less and contains water based on data from the USGS and NMOSE database. The proposed location, however, is not located above the mapped extent of the Pecos River Basin Alluvial aquifer. The Triassic

Appendix C – Hydrogeologic Data

Dockum formations which underlie the Alluvium/Ogallala are also sources of potable water. There are several water wells within 5 miles of the location based on the USGS and NMOSE data and one water well within 1 mile of the location. Reported well yields in the NMOSE database for the water wells in the general area range from 3 gallons per minute (gpm) to 60 gpm.

Recharge:

Recharge is by direct precipitation and infiltration from intermittent streamflow and subsurface groundwater flow from upgradient areas. The region is characterized by an annual precipitation of 10 to 20 inches and high average annual evaporation rates. Most recharge is episodic and associated with periods of heavy rainfall. Recharge is most likely to occur during long-duration rainfall events or periods of frequent, smaller rainfall events. Otherwise the water is has a high likelihood of being lost to evapotranspiration. The average annual recharge rate for the Pecos River Basin aquifer in Lea Co., NM is between 0 and 0.5 inches/year (Hutchison et al., 2011).

References

Hutchison, W. R., I. C. Jones and R. Anaya. 2011. Update of the groundwater availability model for the Edwards-Trinity (plateau) and Pecos Valley aquifers of Texas.

New Mexico Office of the State Engineer (NMOSE). 2010. New Mexico Water Rights Reporting System Water Column/Average Depth to Water Report. [Web page]. Located at http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html. Accessed: February 2021.

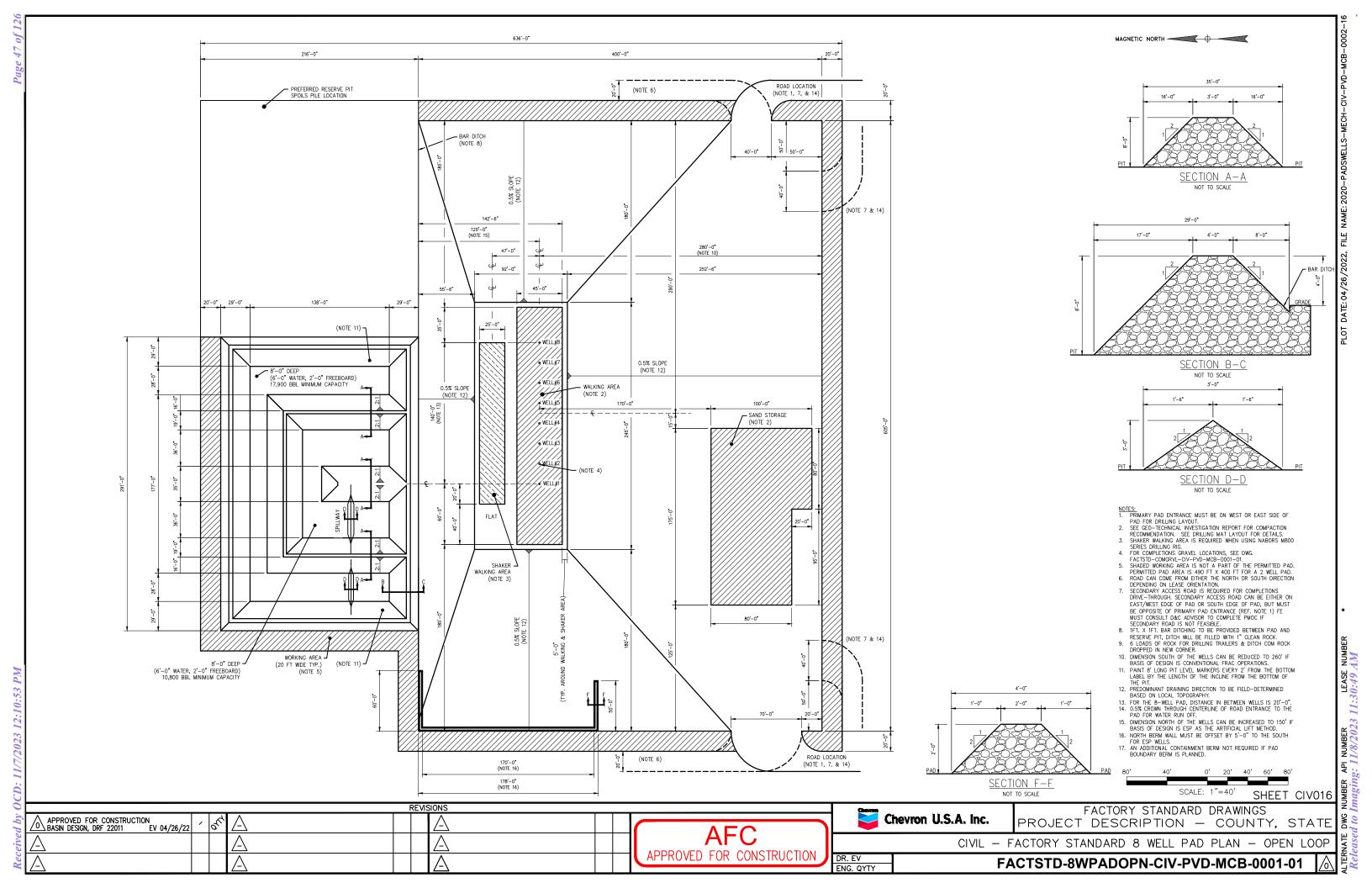
Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr. 1961. Ground-Water Report 6 – Geology and Ground-Water Conditions in Southern Lea County, New Mexico. United States Geological Survey in cooperation with the New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources Division and the New Mexico State Engineer.

U.S. Department of Agriculture (USDA). 2013. Natural Resources Conservation Service. Soil Surveys by State available at www.nrcs.usda.gov.

USDA. 2016. Sandy Ecological Site Characteristics. [Web page]. Located at https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?approved=yes&repType=regular&id=R042XA051NM. Accessed: September 2017.

Appendix D – Design Plan

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E


Appendix D – Design Plan Cotton Draw 4 33 Federal Pit Temporary Pit

The Operator will design and construct the temporary pit to contain liquids and solids; prevent contamination of fresh water; and protect public health and the environment. The Design and Construction will follow the requirements listed below:

- The topsoil will be stripped and stockpiled prior to construction for use as the final cover during closure.
- A sign, consistent the requirements of 19.15.16.8 NMAC, will be utilized and made viewable atthe location of the pit.
- Fencing will be in place around the perimeter of the pits and the Operator will ensure it remains in good repair until closure.
- Netting will not be installed on the temporary pit; however, the operator will inspect for and report any discovery of dead migratory birds or other wildlife while the pit contains fluid and isin use.
- The design of the pit, including the berms, geomembrane material, and construction notes below, is intended to ensure the confinement of liquids to prevent releases.
- The subgrade and interior slopes will be screened for deleterious materials and rocks and will be suitable for the liner installation. An underlying geotextile may be used to provide additional protection from puncture or stress cracking.
- The slopes of the pit will be constructed at a two horizontal to one vertical foot ratio.
- A 40-mil HDPE liner resistant to petroleum hydrocarbons, salts and acidic and alkaline solutions, and ultraviolet light will be installed in the pit. Liner compatibility will comply with EPA SW-846 Method 9090A. Technical data sheets for the liner material can be found in *Variance Request 2 of 2 Proposed Use of High-Density Polyethylene (HDPE) Liner for Temporary Pit in lieu of LinearLow-Density Polyethylene (LLDPE) Liner.*
- Liner seams will be minimized as is practical during construction and will
 only be oriented up and down a slope. When field welding the liner
 seams, the liner will overlap a minimum of 4 inches and a maximum of 6
 inches. Welds will be minimized in corners and irregularly shaped area.

Welds will only be performed by qualified personnel.

- Construction will avoid excessive stress-strain on the liner by screening the subgrade for deleterious materials and rock and using geotextile where needed, utilized experienced personnel for the installation of the liner, taking care when unrolling liner material and limiting the use of any machinery that could damage the liner.
- The edged of the liner will be anchored in the bottom of a compacted earth field trench that is 18 inches deep.
- Impingement of liquids onto the liner will be prevented by use of a loose hose discharge method. The design ensures fluid enters a malleable section of hose laying on the pit berm prior to entering the pit preventing direct impingement.
- The design includes a 4 foot berm and bar ditch around the entirety of the pit to prevent run onof surface water. The berm will be maintained from construction to closure.
- The volume of the temporary pit does not exceed 10 acre-ft, including freeboard.
- No venting or flaring of gas will take place during the construction, use, and closure of the pit and, as such, the entirety of the pit will be lined.

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE:

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nm811.org

PROPOSED PIT					
Line	Bearing	Distance			
L1	SOUTH	216.00'			
L2	WEST	327.00'			
L3	NORTH	216.00'			
L4	EAST	327.00'			

PROPOSED PAD					
Line	Bearing	Distance			
L5	SOUTH	500.00'			
L6	WEST	625.00'			
L7	NORTH	500.00'			
L8	EAST	625.00'			

CENTERLINE PROPOSED ACCESS ROAD						
Line	ine Bearing Distance					
L9	EAST	1002.35'				
L10	N 43° 49' 43" E	160.79'				
L11	EAST	47.21'				

FENSTERMAKER	C. H. Fenstermaker & Associates, L.L.C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299
REVISIONS	
TEVIOIONO	

REVISIONS						
Revised	Revised Well Names					
Shifted Pad, Pit, Access, & Wells						
Added clear limits						
Updated	to Latest Plat Standards					
R	PROJ. MGR.: AMR					
DATE: 03/11/2023						
00	SHEET 2 OF 2					
	Revised Shifted I Added o Updated R					

CENTERLINE PROPOSED ACCESS ROAD					
Line	Bearing	Distance			
L12	EAST	837.57'			
L13	N 51° 14' 15" E	48.82'			
L14	NORTH	66.35'			
L15	N 63° 22' 56" W	42.58'			
L16	WEST	67.87'			

NW PIT CORNER X = 709.653.04' (NAD27 NM E)

Y = 424,681.18' LAT. 32.165751° N (NAD27) LONG. 103.655807° W X = 750,838.13' (NAD83/2011 NM E) Y = 424,739.34LAT. 32.165875° N (NAD83/2011) LONG. 103.656284° W ELEV. +3510' (NAVD88)

SW PIT CORNER

X = 709.653.04' (NAD27 NM E) Y = 424,465.18LAT. 32.165158° N (NAD27) LONG. 103.655811° W X = 750,838.14' (NAD83/2011 NM E) Y = 424,523.33'LAT. 32.165281° N (NAD83/2011) LONG. 103.656288° W ELEV. +3509' (NAVD88)

CLEAR LIMITS CORNER #1

X = 709.633.04' (NAD27 NM E) Y = 424.701.18' LAT. 32.165807° N (NAD27) LONG. 103.655871° W X = 750.818.12' (NAD83/2011 NM E) Y = 424,759.34LAT. 32.165930° N (NAD83/2011)

CLEAR LIMITS CORNER #5

LONG. 103.656348° W

LONG. 103.654659° W

X = 710.159.04' (NAD27 NM E) Y = 424,175.18'LAT. 32.164352° N (NAD27) LONG. 103.654182° W X = 751,344.15' (NAD83/2011 NM E) Y = 424.233.32' LAT. 32.164475° N (NAD83/2011)

SE PIT CORNER

NE PIT CORNER

Y = 424,681.18'

Y = 424,739.33'

X = 709.980.04' (NAD27 NM E)

LAT. 32.165869° N (NAD83/2011)

LAT. 32.165746° N (NAD27)

LONG. 103.654750° W

LONG. 103.655227° W

ELEV. +3511' (NAVD88)

X = 709,980.04' (NAD27 NM E) Y = 424,465.18LAT. 32.165152° N (NAD27) LONG. 103.654755° W Y = 424.523.33' LAT. 32.165276° N (NAD83/2011) LONG. 103.655232° W ELEV. +3510' (NAVD88)

CLEAR LIMITS CORNER #2

X = 710.134.04' (NAD27 NM E) Y = 424,701.18'LAT. 32.165798° N (NAD27) LONG. 103.654252° W Y = 424,759.33'LAT. 32.165922° N (NAD83/2011) LONG. 103.654729° W

CLEAR LIMITS CORNER #6

X = 710.149.04' (NAD27 NM E) Y = 424,175.18'LAT. 32.164352° N (NAD27) LONG. 103.654214° W Y = 424,233.32'LAT. 32.164475° N (NAD83/2011) LONG. 103.654691° W

CLEAR LIMITS CORNER #9 X = 709.484.04' (NAD27 NM E)

LAT. 32.165215° N (NAD27) LONG. 103.656357° W Y = 424,543.33'LAT. 32.165339° N (NAD83/2011) LONG. 103.656834° W

Y = 424,485.18'

NW PAD CORNER

X = 709.504.04' (NAD27 NM E) Y = 424,465,18' LAT. 32.165160° N (NAD27) LONG. 103.656293° W X = 751,165.13' (NAD83/2011 NM E) X = 750,689.13' (NAD83/2011 NM E) Y = 424,523.33'LAT. 32.165284° N (NAD83/2011) LONG. 103.656770° W ELEV. +3508' (NAVD88)

NE PAD CORNER

LONG. 103.654273° W

LONG. 103.654750° W

SE PAD CORNER

LONG. 103.654283° W

LONG. 103.654760° W

ELEV. +3508' (NAVD88)

ELEV. +3511' (NAVD88)

Y = 424.465.18'

Y = 424,523.33'

Y = 423,965.18'

Y = 424.023.32'

Y = 424.465.18'

Y = 424.523.33'

X = 710,129.04' (NAD27 NM E)

X = 751,314.14' (NAD83/2011 NM E)

LAT. 32.165273° N (NAD83/2011)

X = 710,129.04' (NAD27 NM E)

X = 751,314.16' (NAD83/2011 NM E)

LAT. 32.163899° N (NAD83/2011)

CLEAR LIMITS CORNER #4

X = 751,344.14' (NAD83/2011 NM E)

CLEAR LIMITS CORNER #8

X = 750,669.16' (NAD83/2011 NM E)

leased to Imaging: 11/8/2023

LAT. 32.163855° N (NAD83/2011)

X = 709.484.04' (NAD27 NM E)

LAT. 32.163731° N (NAD27)

LONG. 103.656368° W

LONG. 103.656845° W

LAT. 32.165272° N (NAD83/2011)

X = 710,159.04' (NAD27 NM E)

LAT. 32.165149° N (NAD27)

LONG. 103.654176° W

LONG. 103.654653° W

Y = 423,945.18'

Y = 424.003.32'

LAT. 32.163775° N (NAD27)

LAT. 32.165149° N (NAD27)

SW PAD CORNER

X = 709,504.04' (NAD27 NM E) Y = 423,965.18'LAT. 32.163786° N (NAD27) LONG. 103.656303° W X = 751,165.14' (NAD83/2011 NM E) X = 750,689.16' (NAD83/2011 NM E) Y = 424.023.32'LAT. 32.163909° N (NAD83/2011) LONG. 103.656780° W ELEV. +3505' (NAVD88)

CLEAR LIMITS CORNER #3

X = 710.134.04' (NAD27 NM E) Y = 424.465.18' LAT. 32.165149° N (NAD27) LONG. 103.654257° W X = 751.319.13' (NAD83/2011 NM E) X = 751.319.14' (NAD83/2011 NM E) Y = 424.523.33' LAT. 32.165273° N (NAD83/2011) LONG. 103.654734° W

CLEAR LIMITS CORNER #7

X = 710.149.04' (NAD27 NM E) Y = 423,945.18'LAT. 32.163720° N (NAD27) LONG. 103.654219° W X = 751,334.15' (NAD83/2011 NM E) X = 751,334.16' (NAD83/2011 NM E) Y = 424.003.32' LAT. 32.163843° N (NAD83/2011) LONG. 103.654696° W

CLEAR LIMITS CORNER #10

X = 709.633.04' (NAD27 NM E) X = 750,669.13' (NAD83/2011 NM E) X = 750,818.13' (NAD83/2011 NM E) Y = 424,543.33'

> PAD PLAT **COTTON DRAW PAD 305** CHEVRON U.S.A. INC.

SITUATED IN SECTION 3, T25S-R32E LEA COUNTY, NEW MEXICO

Y = 424,485.18'LAT. 32.165213° N (NAD27) LONG. 103.655875° W LAT. 32.165337° N (NAD83/2011)

LONG. 103.656353° W

FOR THE EXCLUSIVE USE OF opert L. Lasmapes, Professional

Surveyed, do bereby state the above plat to be true and correct to the best of my knowledge. 08/16/2023

Profesional Silveyor Registration No. 23006

Appendix E – Operating and Maintenance Plan

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Appendix E – Operating and Maintenance Plan

Cotton Draw 34 27 Federal Com Temporary Pit

The Operator and Rig Contractor will operate and maintain the Temporary Pit to contain liquids and solids, maintain the integrity of the liner system in a manner that prevents contamination of fresh water and protects public health and the environment as described below.

The operation of the Temporary Pit is summarized below.

Prior to arrival of the drilling rig, the separate pit sections are filled with the fluid required for drilling operations of the wells on the well pad. Typically, these fluids are a low chloride brackish water and a high chloride saturated brine.

During open loop drilling operations, fluid is pulled from one end of the Temporary Pit and sent to the rig pumps to be transferred downhole as the drilling fluid. Upon returning to the surface, the fluid and associated drilled solids flow to the opposite end of the Temporary Pit.

When conducting Closed Loop drilling activities, the Temporary Pit may be utilized for cuttings disposal for purposes of maintaining mud weight, mitigating downhole hazards, and managing other unforeseen circumstances. The Temporary Pit is only to be utilized in conjunction with Closed Loop drilling when drilling activities are done using Water Based Drilling Fluids. In this circumstance, drilled solids are separated from the drilling fluid with solids control equipment and then moved to the Temporary Pit.

During well cementing operations, if the low chloride fluid in the Temporary Pit meets specifications set by the Operator and Cementing Contractor, that fluid will be used as mix water for the blending of the cement slurry. During cementing operations, excess cement returns may be placed in the Temporary Pit.

Throughout well construction, if the fluid in the Temporary Pit meets the specifications set by the Operator and Rig Contractor, that fluid may be used as rig water for component cleaning and engine cooling.

If downhole problems occur during drilling operations, such as fluid losses or waterflows, the Temporary Pit is used to assist with fluid management into and out of the well. Transfer pumps and hoses are used to move these fluids.

After the drilling rig is mobilized off the well pad, any remaining fluids in the Temporary Pit will be removed and reused, recycled, or disposed of in a manner consistent with Division rules.

The operation of the Temporary Pit will follow the requirements listed below:

- All cuttings placed into the Temporary Pit will be produced and disposed of within the boundaries of one single lease, pursuant to the Pit Rule definition of "Onsite".
- The Operator will not discharge into or store any hazardous waste (as defined by 40 CFR 261 and NMAC 19.15.2.7.H.3) in the pits.
- If the pit liner's integrity is compromised above the water line, then the Operator will repair the damage within 48 hours of discovery.
- If the pit develops a leak, or if any penetration of the pit liner occurs below the liquid's surface, then the Operator shall notify the appropriate division office pursuant to the requirements of 19.15.29 NMAC, remove all liquid above the damage or leak within 48 hours of discovery, and repair the damage or replace the pit liner as applicable.
- The injection or withdrawal of liquids from a pit is accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.
- Engineering drawings demonstrate that the elevation and slopes of the pit prevent the collection of surface water run-on.
- The Operator will maintain on site an oil absorbent boom to contain and remove oil from the pit's surface.
- The Operator will maintain the pit free of miscellaneous solid waste or debris.
- The Operator will maintain at least two feet of freeboard for the Temporary Pit. If, during extenuating circumstances, a freeboard of less than two feet is required, then a log will be maintained describing such circumstances.
- The Operator will remove all free liquids from the surface of a temporary pit within 30 days from the date the Operator releases the last drilling or workover rig associated with the relevant pit permit. The Operator will note the date of the drilling or workover rig's release on form C-105 or C-103 upon well or workover completion.

Appendix F - Closure Plan

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Appendix F – Closure Plan Cotton Draw 34 27 FEDERAL COM Temporary Pit

Discussion of Onsite Cuttings Disposal

The proposed Temporary Pit will contain drill cuttings from the vertical sections of wells 707H, 207H, 307H, 708H, 208H, 709H, 308H, 209H, 309H, 807H, 808H, 809H. All cutting from vertical drilling will be produced and disposed of within the boundaries of one single lease, pursuant to the Pit Rule definition of "Onsite". The disposal and closure activities will take place within the design footprint of the Temporary Pit. Proposed closure operations will be conducted in accordance with the Closure and Site Reclamation Requirements detailed in 19.15.17.13 NMAC.

Closure Notice

If planned activities deviate from this Closure Plan, an updated Closure Plan will be submitted to the Division for approval prior to initiating any closure activities.

The Operator will notify the Bureau of Land Management at least 72 hours, but not more than one week, prior to any closure activities as per approved sundry Conditions of Approval. This notice will include the project name and location description.

The Operator shall additionally notify the district office verbally and in writing at least 72 hours, but not more than one week, prior to any closure operation. This noticed will include the Operator's name and the location to be closed by unit letter, section, township, and range.

Protocols and Procedures

- 1. The Operator will remove all liquids from the Temporary Pit and either:
 - a. Dispose of the liquids in a division-approved facility, or
 - b. Recycle, reuse or reclaim the water for reuse in drilling and stimulation.
- 2. A five-point (minimum) composite sample will be collected from the contents of the Temporary Pit and sent to an accredited laboratory for analysis of the constituents listed in Table 2 of 19.15.17.13 NMAC.
 - a. If any concentration is higher than limits listed in Table 2, blending calculations will be used to determine the amount of soil or non-waste material needed to blend with the pit contents to achieve the Table 2 limit. The mixing ratio of soil or non-waste material to pit contents shall not exceed 3:1.
 - b. If all constituent concentrations are less than or equal to the parameters listed in Table 2 of 19.15.17.13 NMAC, no mixing shall occur.

- 3. The Operator will conduct blending operations, as required, and conduct a paint filter liquids test to ensure that the contents of the former pit are sufficiently stabilized to support the cover materials.
- 4. Cover materials will be installed as described in 'Cover Design' (below).
- 5. Following the implementation of the cover design, the Operator will revegetate the area as outlined in 'Reclamation and Revegetation' (below).

Soil Cover Design

After blending with non-waste containing, uncontaminated, earthen material, the Operator will cover the former Temporary Pit according to the following procedure.

- 1. The contents of the former pit will be positively contoured ('turtle-backed') to promote drainage away from the former pit contents and reduce infiltration. Compaction of pit materials over time and as a result of placement of overburden will be taken into consideration.
- 2. A 20-mil string reinforced LLDPE geomembrane liner will be installed above the pit materials.
- 3. At least 4-feet of compacted, uncontaminated, non-waste containing earthen fill with chloride concentrations less than 600 mg/kg will be placed above the liner.
- 4. Either the background thickness of topsoil or 1-foot of suitable material to establish vegetation at the site, whichever is greater, will be placed over the earthen fill.
- 5. The location will be recontoured to match the pre-disturbance topography and prevent surface erosion and ponding.
- 6. The Operator will revegetate the area as described below in 'Reclamation and Revegetation'.

Closure Report

- 1. Within 60 days of closure completion, the Operator will submit a closure report on form C-144, with necessary attachments to document all closure activities including sampling results, information required by 19.15.17 NMAC, a plot plan including the exact location of the former pit, details of the cover design, and photographs.
- 2. In the closure report, the Operator will certify that all information in the report and attachments is correct and that the Operator has complied with all applicable closure requirements and conditions specified in the approved closure plan.
- 3. A steel marker will be placed at the location per the requirements in Subsection F of 19.15.17.13 NMAC.

Closure Timing

As discussed in **Variance 1**, the Operator proposes closure activities will be completed within a timeline not to exceed 1 year from the rig down move out (RDMO) date. This date will be noted on form C-105 or C-103, filed with the Division upon the well's completion.

Reclamation and Revegetation

The Operator will reclaim the disturbed area to a safe and stable condition that existed prior to oil and gas operations and that blends with the surrounding undisturbed area. Areas with ongoing production or drilling operations will not be reclaimed as described herein, but will be stabilized and maintained to minimize dust and erosion

For all areas relevant to the closure process that will not be used for production operations or future drilling, the Operator will:

- Replace topsoils and subsoils to their original relative positions and regrade the area to achieve erosion control, long-term stability, preservation of surface water flow patterns, and prevent ponding.
- 2. Notify the Division when the surface grading work is complete.
- Reseed the area with an appropriate seed mix in the first favorable growing season following closure. Reseeding and weed control measures will be taken, if necessary.
- 4. Notify the Division when reclamation is complete: vegetative cover has been established that reflects a life-form ratio of plus or minus 50 % of pre-disturbance levels and a total percent plant cover of at least 70 % of pre-disturbance levels, excluding noxious weeds.

Alternative to Closure in Place

In the event the concentration of any contaminant in the contents, after mixing with soil or non-waste material, is higher than constituent concentrations shown in 19.15.17.13 NMAC, then the waste shall be removed from the Temporary Pit and disposed of at one of the following Division approved off-site facilities.

Sundance Services (Parabo, Inc.) M-29-21S-38E Permit No. NM-01-003 R360 Permian Basin, LLC 4507 W. Carlsbad Hwy, Hobbs, NM 88240 Permit No. NM-01-0006

Appendix G – Evaluation of Unstable Conditions

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Appendix G – Evaluation of Unstable Conditions Cotton Draw 34 27 Federal Com Temporary Pit

Summary

Figure 8 identifies the location of the proposed temporary pit with respect to BLM Karst areas. The BLM categorizes all areas within the Carlsbad Field Office (CFO) as having either low, medium, high or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers. The proposed Temporary Pit is mapped by BLM CFO in a "Low Potential" karst area.

The proposed Temporary Pit lies near the western end of the Delaware Basin, and is situated north of the Gypsum Plain (Hill 1996). Bedrock cropping out beneath the proposed project area is comprised of the Rustler Formation, a roughly 50-meter-thick sequence of limestone, siltstone, and sandstone with interbedded clay and gypsum (Land and Veni 2014). The Rustler Formation is underlain by the Castile Formation. which is composed chiefly of anhydrite and is more prone to karst formation than the Rustler Formation. The Castile and Rustler formations are highly soluble and karst development in them (i.e., sinkholes and associated caves) is well recognized, particularly in the Gypsum Plain. Stafford et al. (2008) prepared a karst potential map for the Castile Formation outcrop that shows the two densest regions of karst development occur west of the proposed Temporary Pit; however, the proposed Temporary Pit is situated in an area where karst development is expected to be less intense. Karst potential is classified as low potential as shown in Figure 8. There are no indications that voids or other karst features are present or are likely to form in the vicinity of the proposed location. Therefore, local karst potential is likely to be low. The following lines of evidence, detailed in the sections below, support this position:

- 1. There are no dissolution features within 5-miles of the proposed location (**Figure 11**),
- 2. An Arcadis field study of the area indicated no closed depressions, caves, or fissures in the immediate vicinity and general area of the proposed pit (Attachment 1),
- TetraTech geotechnical report and boring log were obtained at the proposed pit location. On February 3rd, 2021, one (1) boring, B-4, was installed to a depth of 112-feet. Groundwater was not encountered in the boring during drilling (Attachments 2).
- 4. The Bureau of Land Management, Paul Murphy prepared the Environmental Assessment (EA), document number DOI-BLM-NM-P020-2018-0846-EA, evaluating CO Grizzly 3 27 Fed. This EA notes that karst were evaluated but determined to have no impacts and therefore not evaluated in the EA. (Section 1.6, Attachment 4).

Structurally, the region surrounding the proposed pit location is relatively undeformed, with a 0 to 3 percent slope, and the nearest mapped fault is 25-miles to the southwest (**USGS 2021**).

Dissolution Features Evident on Aerial Imagery

The nearest apparent dissolution features to the proposed location are (Figure G.1):

- ~7 miles southeast of the proposed pit location is an area with small (<500-feet in diameter) depressions.
- Bell Lake Sink and three other unnamed sinks, each ~2-miles in diameter, are present approximately 6-miles northeast of the proposed location.
- San Ramon Sink are present ~16-miles northeast of the proposed location.

Depth to Karst-Forming rocks

Figure G.1 shows a stratigraphic section of the formations beneath the proposed pit. The upper 1,000-feet of subsurface consists of insoluble, clastic material. These deposits are underlain by soluble, karst-forming strata.

Surface to ~1,000-feet: Based on a review of available literature for the region, no significant intervals of soluble rocks are present in the Quaternary and Triassic deposits that constitute the upper ~1,000-feet of subsurface. Because this material is largely insoluble, the potential for karst features to form within this interval is very low (Lucas and Anderson, 1993). Deeper formations at >1,000-feet: The top of the Rustler Formation is approximately 400 feet thick beneath the surface at the location of the proposed pit (Nicholson and Clebsch 1961. The Rustler Formation overlies the Salado Formation. These formations both contain thick, highly soluble beds of anhydrite and halite. The Bell Lake Sink, San Simon Swale, and San Simon Sink formed by the dissolution of salt from these deep formations. The resulting surface subsidence (as a result of deep dissolution) is a very slow process that has been ongoing for millions of years to form these large depressions (Bachman, 1973 and Berg, 2012).

Period	Formation	Thickness (ft)	Description
Quaternary		100	Unconsolidated eolian and unconsolidated to partially consolidated alluvial deposits
Triassic	Chinle	200	Red shales and thinly interbedded sandstone
	Santa Rosa	200 - 300	Sandstone and interbedded siltstone and red shale
Permotriassic	Quartermaster (Dewey Lake)	560	Mudstone, siltstone, claystone, and interbedded standstone
Permian	Rustler	400	Anydrite, halite, dolomite, sandy siltstone, and polyhalite

Figure G.1: Stratigraphic section beneath the location of the proposed temporary pit (Nicholson and Clebsch 1961 as cited in Arcadis 2020)

Arcadis Environmental Field Survey

An environmental field survey was conducted by Arcadis in February 2020 in the area surrounding the location of the proposed pit (**Figure 8 and Attachment 1**). The on-site survey did not identify any closed depressions, caves, or fissures. The survey determined that the occurrence of voids in the surveyed area was "unlikely" based on a review of the literature, aerial photography, and an assessment of on-site conditions.

Tetra Tech Geotechnical Report and Boring Log

Geotechnical reports from February 3, 2021, identified that one (1) boring, B-4, was installed to a depth of 112-feet (**Attachment 2 – Figure 1**). Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling. Standard Penetration Tests SPTs were performed at two-to-five-foot intervals in the upper 25 feet for understanding the relative density of the soils for a future geotechnical investigation.

Mitigation of Karst Potential

While the BLM did not apply karst mitigation requirements for APDs near the temporary pit location, the following commitments will be applied as a best practice in development of the proposed pit.

General Construction:

- No blasting
- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction, and no additional construction shall occur until clearance has been issued by the Authorized Officer.
- All linear surface disturbance activities will avoid sinkholes and other karst features, if they are identified during construction, to lessen the possibility of encountering near surface voids during construction, minimize changes to runoff, and prevent untimely leaks and spills from entering the karst drainage system.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

Pad Construction:

- •The pad will be constructed and leveled by adding the necessary fill and caliche –no blasting.
- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with

impermeable mineral material (e.g., caliche).

- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised (i.e. an access road crossing the berm cannot be lower than the berm height).
- Following a rain event, all fluids will be vacuumed off of the pad and hauled offsite and disposed at a proper disposal facility.

References

Arcadis 2020. Cotton Draw Final Environmental Field Survey Report. Prepared for Chevron.

Hill, C.A. 1996. Geology of the Delaware Basin, Guadalupe, Apache and Glass Mountains: New Mexico and West Texas: Permian Basin Section: Midland, Texas, SEPM, 480 pp.

Land, Lewis and George Veni. 2014. Electrical resistivity surveys, Johnson Estate drill site, Loving County, Texas. National Cave and Karst Research Institute Report of Investigation 5, Carlsbad, NM. March 2014.

Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr. 1961. Ground-Water Report 6 - Geology and Ground-Water Conditions in Southern Lea County, New Mexico, United States Geological Survey in cooperation with the New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources Division and the New Mexico State Engineer.

Stafford, Kevin W., Laura Rosales-Lagarde, and Penelope J. Boston. 2008. Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison. Journal of Cave and Karst Studies 70 (1): 35-46.

U.S. Geological Survey (USGS) 2021. New Mexico Faults, from the USGS Geologic Map Database. Available online at https://my.usgs.gov/eerma/data/index/4f4e496ee4b07f02db5a354e

Attachments 1 - 3

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Attachment 1

Arcadis Environmental Field Survey, Section 3 & 34, Karst Evaluation, Cotton Draw (2020)

Attachment 2

Tetra Tech Geotechnical Study Report, Section 34, Cotton Draw (2021)

Attachment 3

DOI-BLM-NM-P020-2018-0846-EA, Section 1.6, Scoping, Public Involvement, and Issues (2018)

Attachments 1 – Arcadis Environmental Field Survey, Section 3 & 34, Karst Evaluation, Cotton Draw (2020)

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

Chevron U.S.A. Inc.

ENVIRONMENTAL FIELD SURVEY

April 2020

ENVIRONMENTAL FIELD SURVEY

ENVIRONMENTAL FIELD SURVEY

Cotton Draw Development Area

Prepared for:
Lee Higgins
HES Specialist – CD Factory Support
Chevron Mid-Continent Business Unit
1400 Smith Street
Houston, Texas 77002

Prepared by: Arcadis U.S., Inc. 1004 N Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400

Our Ref.: 30047010

Date: April 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

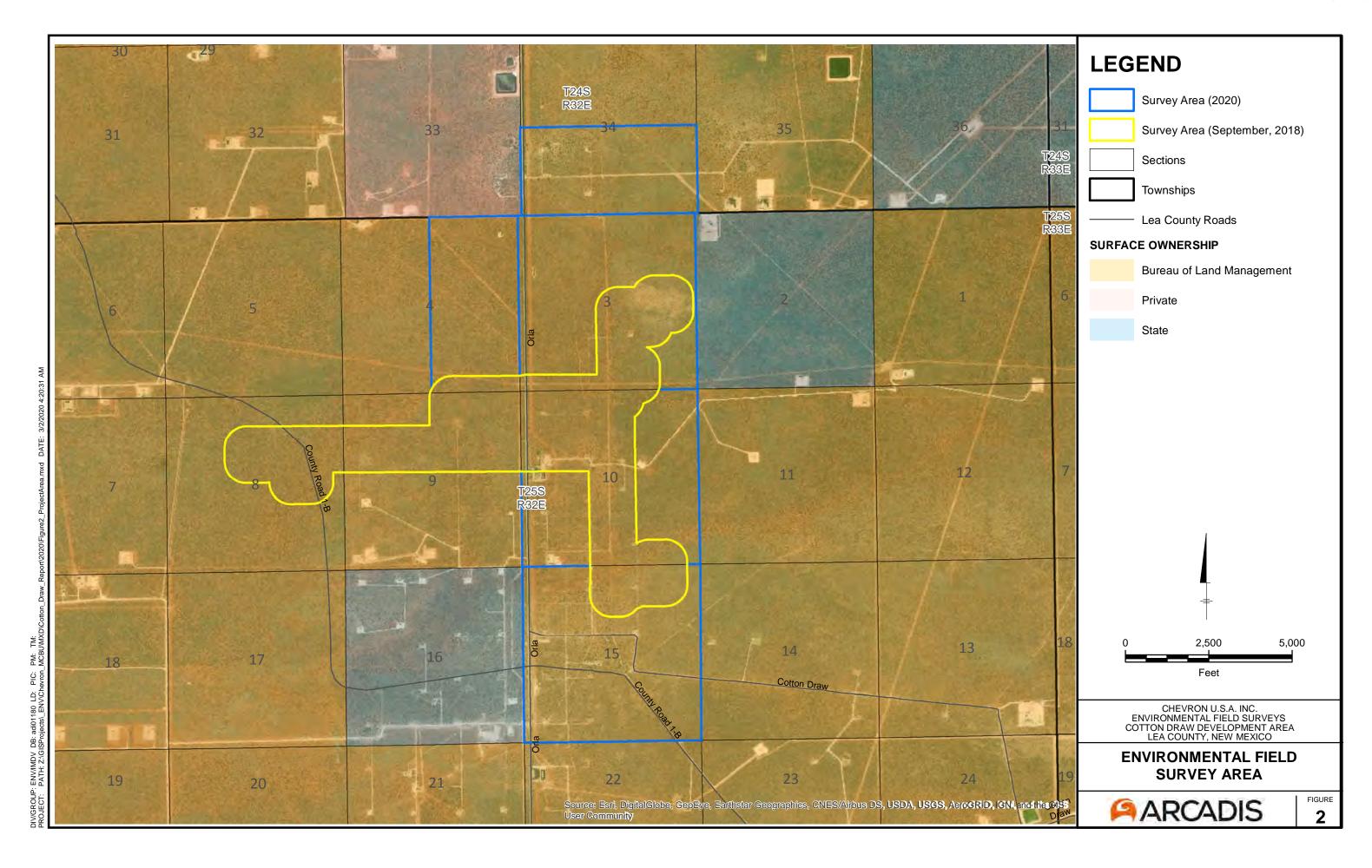
ENVIRONMENTAL FIELD SURVEY

11 KARST

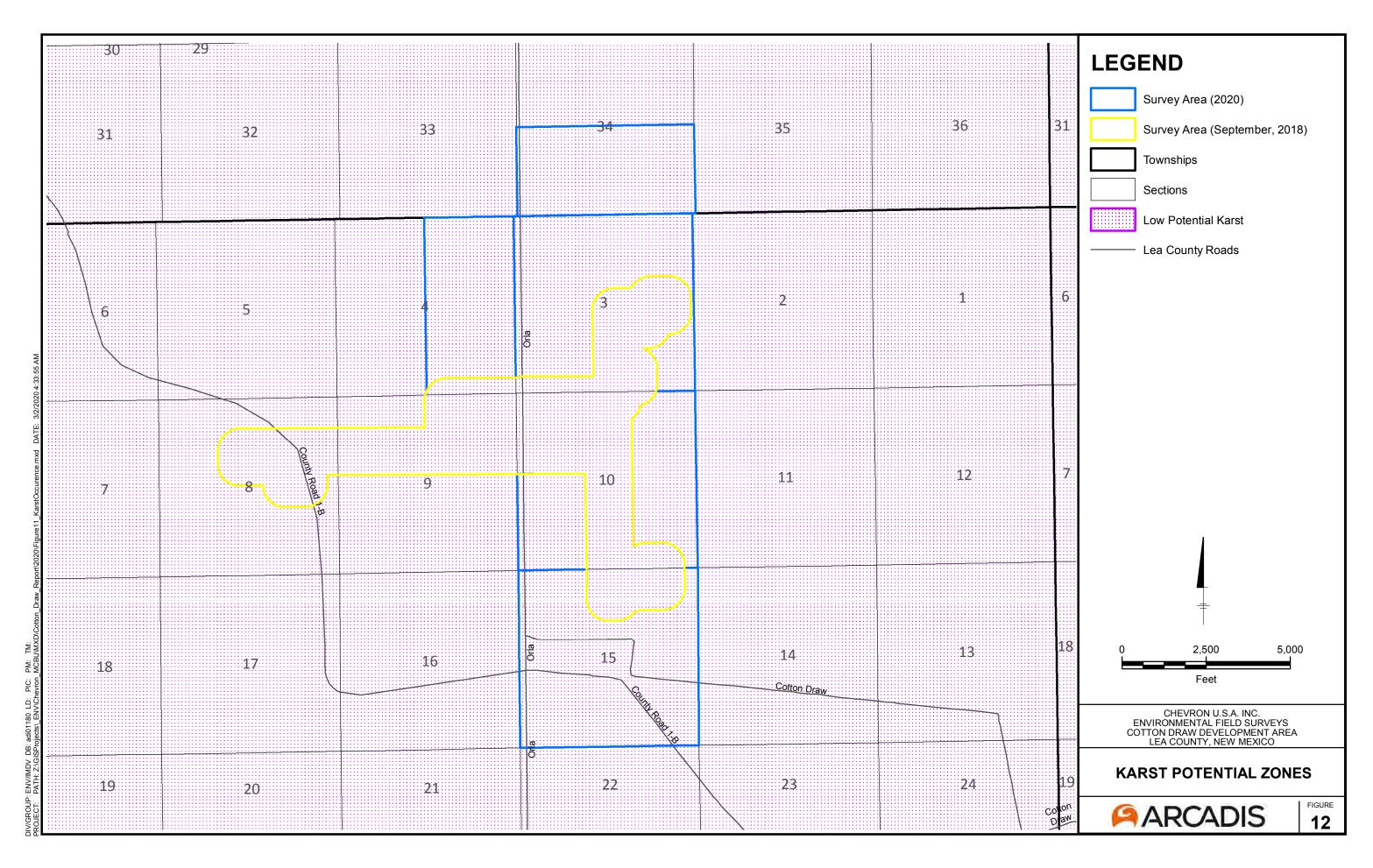
The term karst describes distinct terranes that are attributable to high solubility of underlying bedrock. Common features of such terranes include sinkholes and caves, which are formed as the bedrock is dissolved by groundwater. Karst aquifers represent saturated bedrock where its permeability has been enhanced by dissolution processes. Such aquifers can be important sources of potable groundwater.

The survey area lies near the western end of the Delaware Basin, and is situated north of the Gypsum Plain (Hill 1996). Bedrock cropping out beneath the proposed project area is comprised of the Rustler Formation, a roughly 50-meter-thick sequence of limestone, siltstone, and sandstone with interbedded clay and gypsum (Land and Veni 2014). The Rustler Formation is underlain by the Castile Formation, which is composed chiefly of anhydrite and is more prone to karst formation than the Rustler Formation. The bedrock geology of the survey area and the surrounding area is discussed in greater detail in Section 12 of this report.

The Castile and Rustler formations are highly soluble and karst development in them (i.e., sinkholes and associated caves) is well recognized, particularly in the Gypsum Plain. Stafford et al. (2008) prepared a karst potential map for the Castile Formation outcrop that shows the two densest regions of karst development occur west of the survey area; however, the survey area is situated in an area where karst development is expected to be less intense. Karst potential is classified as low potential across the survey area as shown in **Figure 12**.


Sinkholes play an important role in recharging groundwater to underlying aquifers by allowing rapid infiltration of precipitation during and following rainfall events. As such, mitigation measures would be required in development areas to prevent contaminants from entering sinkholes.

11.1 Survey Findings and Mitigation


No karst surface features were identified within the survey area. During construction activities, if a void is encountered, all activities must stop immediately. The BLM must then be contacted within 24 hours to devise the best management plan to protect karst and human safety. These voids could occur in any portion of the survey area.

arcadis.com 11-1

Received by OCD: 11/7/2023 12:10:53 PM

Received by OCD: 11/7/2023 12:10:53 PM

APPENDIX A

Resumes

DANIELLE MARIE MOLINA

Staff Biologist

EDUCATION

MS, Biology, University of Nebraska at Kearney, 2016 BS, Biology, The University of Texas at El Paso, 2013

YEARS OF EXPERIENCE

Total – 3 With Arcadis – 1

PROFESSIONAL QUALIFICATIONS

Wetland Delineation Training PEC Safeland HAZWOPER 40-hr H2S Safety Awareness eRail Safety Training Roadway Worker Protection Chevron101 Training Smith Defensive Driving First Aid CPR Ms. Molina has experience as a field biologist and environmental specialist on environmental consulting projects. She has a comprehensive education in ecology, environmental and wildlife biology, and forest and range management.

Project Experience

International Boundary Water Commission (IBWC)

ARCADIS, United States; Cameron County, TX

Performed threatened and endangered species/habitat survey and Waters of the United States delineation for a proposed levee rehabilitation in southern Texas.

Environmental Assessments

Confidential Client, United States

Assisted with biological surveys for rare plants and sensitive species, wetland delineation, cultural resource inventories, flood impacts assessment, and writing Environmental Assessments. Supported Arid West Ordinary High Water Mark determinations.

Environmental Assessments

Paiute Pipeline, Nevada

As biologist, assisted with desert tortoise surveys and other biological assessments. Supported in Ordinary High Water Mark determinations.

Quail Project

Cox and McLain Environmental Consulting, Inc., Various Locations, Texas

As environmental specialist II, conducted covey call surveys on bobwhite quail, vegetative assessments on various Texas areas, driving transect assessments and point count estimates.

Field Biologist

Tetra Tech, Inc., Big Spring, Texas

Completed post-construction wildlife surveys and habitat evaluations. Analyzed impacts of wind energy projects on biological resources. Completed accurate data collection forms. Collected GPS data. Searched

Project Experience Continued

for bird and bat fatalities by walking established transects. Conducted searcher efficiency and carcass persistent trials.

Oil Company Assistant

Chisholm Operating, Inc., Abilene, Texas

Coordinated day-to-day activities between contractors/pumpers. Consistently provided excellent customer service via telephone and email. Assisted in preparing wildlife management surveys. Created and maintained spreadsheets using Excel functions to improve data collection and archiving. Assisted with aerial wildlife surveys. Oversaw and managed travel arrangements for staff. Maintained successful inter-office communication by streamlining all email communications and multiple calendars. Organized and designed electronic file systems and maintained electronic and paper files. Effectively managed the receptionist area, including greeting visitors and responding to telephone and in-person requests for information promptly and courteously. Made copies, sent faxes and handled all incoming and outgoing correspondences. Generated and compiled copious data for monthly production reports.

Research Intern

African Lion Environment Research Trust (ALERT), Livingstone, Zambia

Collected behavioral data on a released pride of African lions. Actively accumulated game surveys on a 700-acre site. Consolidated data entry for clarification and analysis purposes. Locate individual lions using radio telemetry. Employed GPS units to report the location of the pride. Formulated play and/or hunting behavior data on walked lion cubs. Organized and aided in animal husbandry practices. Developed and presented conservation education to local schools. Performed snare sweeps and handled mammals. Assisted in and supported the management of project volunteers.

Enrichment and Training Intern / Administrative Assistant

Abilene Zoological Gardens, Abilene, Texas

Cared for and attended to birds within the rehabilitation zone. Conducted behavioral research on certain animals. Performed animal husbandry. Originated and prioritized the locations of various zoo animals. Performed data entry and record keeping using Excel. Responsible for accurate and concise record keeping for all enrichment activities. Executed monthly reports for zoo management. Assembled graphs and charts for high-visibility monthly reports. Developed complete natural histories on certain animals. Gathered inventory of enrichment tools.

Veterinary Assistant

Southwest Vet Clinic, Abilene, Texas

Collaborated with the veterinarian during routine and emergency animal examinations. Filled prescriptions. Meticulously sterilized medical equipment. Handled all daily maintenance and care for boarded animals.

CHARLESTON SHIRLEY ENVIRONMENTAL SCIENTIST I, BIOLOGIST

EDUCATION

BS Natural Resource Management Louisiana State University and Agricultural & Mechanical College 2013

YEARS OF EXPERIENCE

Total – 4 years With Arcadis – <1 year Mr. Shirley has more than two years of experience in the consulting field. He specializes in conducting surveys and monitoring of flora and fauna with an emphasis on threatened species, endangered species and species of concern. Previously he has worked with the military, public agencies and private landowners. He is an authorized biologist with the desert tortoise, Gopherus agassizii.

Project Experience

Ongoing Maintenance Activities on Pipeline System in the Southern California Deserts

SoCal Gas Company, Southern California Desert Areas

As an authorized biologist, monitored sites for wildlife and environmental compliance as excavation, pipe removal and replacement occurred. Performed pre-construction clearance surveys for flora and fauna.

Development Project

Confidential Client, Coyote Springs, Nevada

As an authorized biologist, conducted radio telemetry tracking of transmittered tortoises. Handled tortoises and collected body metrics and replaced transmitters on all tortoises. Monitored sites as crews worked in sensitive wildlife areas.

Water Treatment Installation

Tetra Tech, Henderson, Nevada

Performed inspection on all tortoise prevention devices. Checked site for compliance.

Range-wide Monitoring Program

U.S. Fish and Wildlife Service, Nevada, California and Utah

As an authorized biologist, tracked all transmittered tortoises, removed transmitters from all individuals being removed from project study, and managed data entry for submission to USFWS.

Community Solar Project

Valley Electric Association, Pahrump, Nevada

Attachments 2 – Tetra Tech Geotechnical Study Report, Cotton Draw, Section 34 (2021)

Temporary Pit containing non-low chloride fluids Cotton Draw 34 27 Federal Com Pit Section 3, T25S, R32E

February 20, 2020

Ms. Anna Trocquet Facilities Infrastructure Engineer Chevron North America - MCBU **Exploration and Production Company** 6301 Deauville Blvd. Midland, Texas 79706

RE: Baseline Sampling Results and Boring Log for Grizzly 34 Well Pad Reserve Pit located in Lea County, New Mexico

Dear Ms. Trocquet:

Tetra Tech Inc. (Tetra Tech) was retained by Chevron to conduct baseline environmental sampling and drill a deep boring for purposes of identifying groundwater at the proposed Grizzly 34 Well Pad Reserve Pit. The proposed reserve pit is located in Lea County, New Mexico. The GPS coordinates for the reserve pit are N 32.166950° and W 103.659270°. The site location is shown on an aerial map, Figure 1.

Chevron requested that Tetra Tech drill a ~110-foot deep boring at the location of the proposed reserve pit and perform baseline environmental soil sampling. The purpose of the deep boring is for observation of the presence of groundwater at the reserve pit site. The purpose of the environmental baseline sampling is to establish a baseline of existing soil conditions at this site prior to the construction and operation of the reserve pit. As part of the baseline sampling program, Chevron requested that Tetra Tech collect soil samples at 8-inches in depth below the surface with a hand-auger and the samples be analyzed by a qualified laboratory for BTEX, TPH, and Chlorides.

Boring

On February 3rd, 2021 one (1) boring, B-4, was installed to a depth of 112-feet. Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling. Standard Penetration Tests SPTs were performed at two to five foot intervals in the upper 25 feet for understanding the relative density of the soils for a future geotechnical investigation. A copy of the boring log is included in Appendix A. The boring location for B-4 is shown in Figure 1.

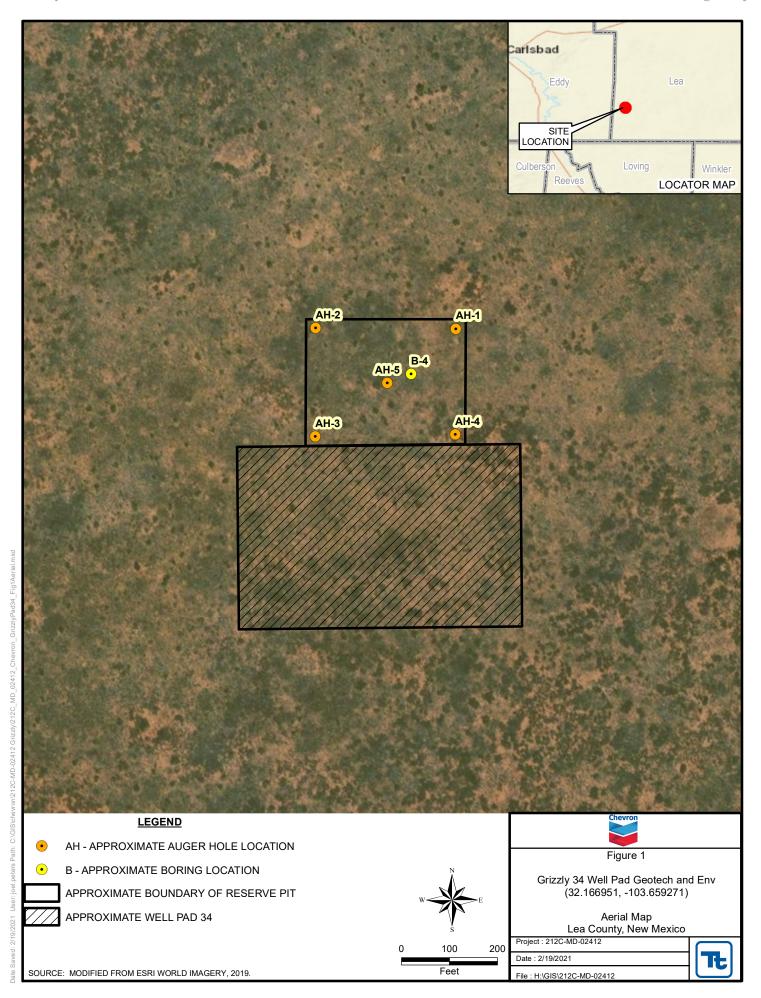
Environmental Baseline Sampling and Laboratory Analyses

Tetra Tech personnel conducted the baseline environmental soil sampling on February 3rd, 2021 and a total of five (5) sample points (AH-1 through AH-5) were collected using handauger. Four (4) of the five sample locations were located approximately at the corners of the perimeter of the proposed reserve pit; and one (1) sample was located in the middle area of the reserve pit. All soil samples were collected at 8-12" below ground surface (bgs). The sample locations are shown in Figure 1.

Each of the five (5) samples (AH-1 through AH-5) were collected and placed into laboratoryprovided containers and delivered to the laboratory under chain of custody. The samples from the site were delivered to Eurofins Xenco Laboratories in Carlsbad, New Mexico for chloride analysis by Method SM 4500 CI B, TPH analysis by method SW8015 (Mod) Extended, and BTEX by method EPA 8021B. In addition, the laboratory included analysis for 8-RCRA Metals. The laboratory

Tetra Tech

results are summarized in Table 1. Copies of the laboratory reports and results are included in Appendix B.


If Chevron should require additional support with this project, please contact Nathan Langford at 432-250-0652 or if we can be of further assistance.

Sincerely,

TETRATECH, INC

Nathan Langford, PE Project Manager

Figures

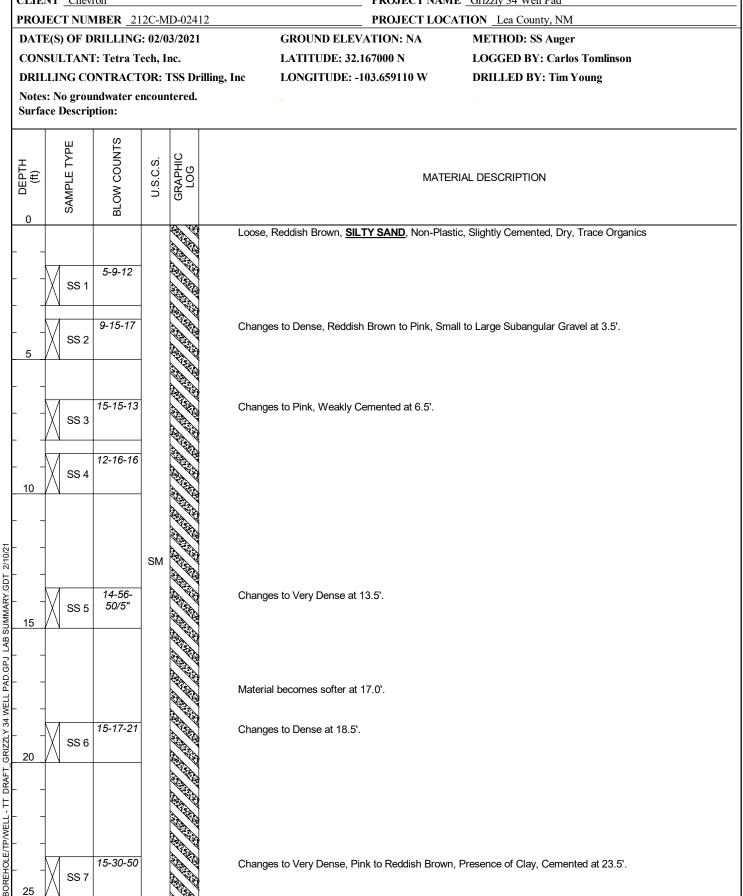
Tables

Received by OCD: 11/7/2023 12:10:53 PM

Table 1 - Summary of Results Chevron N.A. E&P MCBU Grizzly Sect 34 Well Pad Reserve Pit Lea County, New Mexico

		Sample	Т	PH (mg/kg	1)			BTEX (mg/kg)						Total Meta	ıls (mg/kg)				Chloride
Sample ID	Sample Date	Depth (ft.) (8")	GRO	DRO	Total	Benzene	Toluene	Ethylbenzene	Xylene	Total BTEX	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	(mg/kg)
AH-1	2/3/2021	0.667	<50.0	<50.0	<50.0	<0.002	<0.002	<0.002	<0.002	<0.002	<3.91	23.70	<1.96	6.39	3.66	<0.0182	<1.96	<1.96	<10.0
AH-2	2/3/2021	0.667	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<3.46	<3.46	<1.73	<3.46	<1.73	<0.0179	<1.73	<1.73	11.4
AH-3	2/3/2021	0.667	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<3.67	25.4	<1.84	6.52	3.74	<0.0172	<1.84	<1.84	11.5
AH-4	2/3/2021	0.667	<50.2	<50.2	<50.2	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<5.14	19.9	<2.57	5.74	3.19	<0.0189	<2.57	<2.57	11.1
AH-5	2/3/2021	0.667	<50.2	<50.2	<50.2	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<3.90	18.8	<1.95	5.51	3.24	<0.0182	<1.95	<1.95	11.9
	•											-		•		-	•		

Appendix A



Tetra Tech, Inc. 901 West Wall, Suite 100 Midland, Tx. 79701 Phone: 432-682-4559

BOREHOLE ID: B-4

PAGE 1 OF 5

CLIENT Chevron PROJECT NAME Grizzly 34 Well Pad

Tetra Tech, Inc. 901 West Wall, Suite 100 Midland, Tx. 79701

BOREHOLE ID: B-4

PAGE 2 OF 5 Phone: 432-682-4559 CLIENT Chevron PROJECT NAME Grizzly 34 Well Pad PROJECT NUMBER 212C-MD-02412 PROJECT LOCATION Lea County, NM OW COUNTS SAMPLE TYPE GRAPHIC LOG U.S.C.S. MATERIAL DESCRIPTION 25 Washing to the same of the sam Loose, Reddish Brown, SILTY SAND, Non-Plastic, Slightly Cemented, Dry, Trace Organics (continued) Grinding noises while drilling at 27.0'. Switched to Air Rotary at 27.5'. 30 Changes to Pale Red at 30.0'. Rock Layer Encountered at 31.0'. 35 SM 40 BOREHOLE/TP/WELL - TT DRAFT_GRIZZLY 34 WELL PAD.GPJ LAB SUMMARY.GDT 2/10/21 45 50 Changes to Brown to Pale Red at 50.0'.

Tetra Tech, Inc.

BUDEHUI E ID. B 4

TŁ T	ETRA	TECH	Tetra Tech, Inc. 901 West Wall, Suite 100 Midland, Tx. 79701 Phone: 432-682-4559 Fax: BOREHOLE ID: PAGE 3	OF
CLIENT Che			PROJECT NAME Grizzly 34 Well Pad	
PROJECT NU	MBER _21	12C-MD-024	PROJECT LOCATION Lea County, NM	
DEPTH (ft) SAMPLE TYPE	OW COUNTS	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	
55 55 60 60 65 70 75 80			Losse, Reddish Brown, SILTY SAND, Non-Plastic, Slightly Cemented, Dry, Trace Organics (continued,	

T	TE	TRA	TEC	СН	Tetra Tech, Inc. 901 West Wall, Suite 100 Midland, Tx. 79701 Phone: 432-682-4559 Fax:	BOREHOLE ID: B-4 PAGE 4 OF 5
CLIEN	NT Chevre	on				PROJECT NAME Grizzly 34 Well Pad
PROJ	ECT NUM	BER <u>21</u>	2C-M	D-02412	2	PROJECT LOCATION Lea County, NM
DEPTH (ft)	SAMPLE TYPE	OW COUNTS		GRAPHIC LOG		MATERIAL DESCRIPTION
			SM			_TY SAND, Non-Plastic, Slightly Cemented, Dry, Trace Organics (continued)

Tetra Tech, Inc.

BOREHOLE ID: B-4

901 West Wall, Suite 100 PAGE 5 OF 5 Midland, Tx. 79701 Phone: 432-682-4559 PROJECT NAME Grizzly 34 Well Pad CLIENT Chevron PROJECT NUMBER 212C-MD-02412 PROJECT LOCATION Lea County, NM OW COUNTS SAMPLE TYPE GRAPHIC LOG U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION 112.0 Loose, Reddish Brown, SILTY SAND, Non-Plastic, Slightly Cemented, Dry, Trace Organics (continued) SM Borehole terminated at 112.0 ft. BOREHOLE/TP/WELL - TT DRAFT_GRIZZLY 34 WELL PAD.GPJ LAB SUMMARY.GDT 2/10/21

Appendix B

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-140-1

Laboratory Sample Delivery Group: 212C-MD-02412

Client Project/Site: Chevron Grizzly Pad

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Nathan Langford

JURAMER

Authorized for release by: 2/12/2021 5:03:42 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/8/2023 11:30:49 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

4

5

6

Ω Ω

3

11

12

1 /

Client: Tetra Tech, Inc.

Laboratory Job ID: 890-140-1

Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 890-140-1 Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Qualifiers

GC VOA Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Subcontract

Qualifier **Qualifier Description** В Analyte detected in Blank

U Indicates the analyte was analyzed for but not detected

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit **CFU CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MI MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1 SDG: 212C-MD-02412

Job ID: 890-140-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-140-1

Receipt

The samples were received on 2/3/2021 4:58 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 18.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 890-136 and analytical batch 890-146 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Subcontract Lab non-Sister Lab

See attached subcontract report.

4

6

9

10

12

13

14

Client: Tetra Tech, Inc.

Job ID: 890-140-1

Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

Client Sample ID: AH-1

Analyte

Date Collected: 02/03/21 13:11 Date Received: 02/03/21 16:58 Lab Sample ID: 890-140-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
Total BTEX	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
Xylenes, Total	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
m,p-Xylenes	<0.00400	U	0.00400		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:01	02/06/21 03:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	96		70 - 130				02/03/21 20:01	02/06/21 03:35	1
4-Bromofluorobenzene (Surr)	100		70 - 130				02/03/21 20:01	02/06/21 03:35	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac C6-C10 <50.0 U 50.0 mg/Kg 02/10/21 11:22 02/11/21 18:59 Total TPH <50.0 U 50.0 02/10/21 11:22 02/11/21 18:59 mg/Kg >C10-C28 <50.0 U 02/10/21 11:22 02/11/21 18:59 50.0 mg/Kg >C28-C35 <50.0 U 02/10/21 11:22 02/11/21 18:59 50.0 mg/Kg Surrogate %Recovery Qualifier Prepared

Surrogate	%Recovery Qualifier	LIIIIIS	Prepareu	Allalyzeu	DII Fac
1-Chlorooctane	113	70 - 135	02/10/21 11:22	02/11/21 18:59	1
o-Terphenyl	111	70 - 135	02/10/21 11:22	02/11/21 18:59	1
Method: 300.0 - Anions, Ion Cl	hromatography - Solı	ıble			

RL

MDL Unit

D

Prepared

Analyzed

Chloride	<10.0 U	10.0	m	ng/Kg		02/06/21 08:56	1
Method: Mercury - SW846 747	1 Mercury by C\	/AA					
Analyte	Result Quali	ifier RL	MDL U	Jnit D	Prepared	Analyzed	Dil Fac
Mercury	<0.0182 U	0.0182	m	ng/kg	02/10/21 12:00	02/10/21 19:27	1

Result Qualifier

 Client Sample ID: AH-1
 Lab Sample ID: 890-140-1

 Date Collected: 02/03/21 13:11
 Matrix: Solid

 Date Received: 02/03/21 16:58
 Percent Solids: 98.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<3.91	U	3.91		mg/kg	☆	02/09/21 10:30	02/09/21 13:26	10
Barium	23.7		3.91		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10
Cadmium	<1.96	U	1.96		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10
Chromium	6.39		3.91		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10
Lead	3.66		1.96		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10
Selenium	<1.96	U	1.96		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10
Silver	<1.96	U	1.96		mg/kg	₩	02/09/21 10:30	02/09/21 13:26	10

Client Sample ID: AH-2

Date Collected: 02/03/21 13:52

Date Received: 02/03/21 16:58

Lab Sample ID: 890-140-2

Matrix: Solid

Method: 8021B - Volatile Orgai	nic Compounds (G	C)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202 U	0.00202	mg/Kg		02/03/21 20:01	02/06/21 03:57	1

Eurofins Xenco, Carlsbad

3

4

6

8

10

12

1 /

Dil Fac

Client: Tetra Tech, Inc.

Project/Site: Chevron Grizzly Pad

Lab Sample ID: 890-140-2

Matrix: Solid

Client Sample ID: AH-2 Date Collected: 02/03/21 13:52

Date Received: 02/03/21 16:58

I			
Method: 8021B - Volatile Org	ganic Compounds	(GC)	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 03:57	1
Toluene	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 03:57	1
Total BTEX	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 03:57	1
Xylenes, Total	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 03:57	1
m,p-Xylenes	< 0.00403	U	0.00403		mg/Kg		02/03/21 20:01	02/06/21 03:57	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 03:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	100		70 - 130	02/03/21 20:01	02/06/21 03:57	1
4-Bromofluorobenzene (Surr)	104		70 - 130	02/03/21 20:01	02/06/21 03:57	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

method: 00 10D Mm - Dieser Kange Organies (DRO) (OO)								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	C6-C10	<50.1 U	50.1	mg/Kg		02/10/21 11:22	02/11/21 19:19	1
	Total TPH	<50.1 U	50.1	mg/Kg		02/10/21 11:22	02/11/21 19:19	1
	>C10-C28	<50.1 U	50.1	mg/Kg		02/10/21 11:22	02/11/21 19:19	1
	>C28-C35	<50.1 U	50.1	mg/Kg		02/10/21 11:22	02/11/21 19:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 135	02/10/21 11:22	02/11/21 19:19	1
o-Terphenyl	98		70 - 135	02/10/21 11:22	02/11/21 19:19	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.4	9.96	mg/Kg			02/05/21 20:32	1

Method: Mercur	/ - SW846 7471	Mercury I	by CVAA
Analyte		Result	Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0179	U	0.0179		mg/kg		02/10/21 12:00	02/10/21 19:38	1

Client Sample ID: AH-2 Lab Sample ID: 890-140-2 Date Collected: 02/03/21 13:52 Matrix: Solid

Date Received: 02/03/21 16:58 Percent Solids: 98.02 Method: RCRA8 - SW846 6020 Metals by ICPMS

Method. Nonao - Stroto	0020 Wetais by								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<3.46	U	3.46		mg/kg	<u></u>	02/09/21 10:30	02/09/21 13:49	10
Barium	<3.46	U	3.46		mg/kg	₩	02/09/21 10:30	02/09/21 13:49	10
Cadmium	<1.73	U	1.73		mg/kg	₩	02/09/21 10:30	02/09/21 13:49	10
Chromium	<3.46	U	3.46		mg/kg	₩	02/09/21 10:30	02/09/21 13:49	10
Lead	<1.73	U	1.73		mg/kg	₩	02/09/21 10:30	02/09/21 13:49	10
Selenium	<1.73	U	1.73		mg/kg	☆	02/09/21 10:30	02/09/21 13:49	10

Client Sample ID: AH-3 Lab Sample ID: 890-140-3

Date Collected: 02/03/21 13:56 **Matrix: Solid** Date Received: 02/03/21 16:58

1.73

mg/kg

<1.73 U

Method: 8021B - Volatile Organic Compounds (GC)									
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	<0.00201	U	0.00201	mg/Kg		02/03/21 20:01	02/06/21 04:20	1
	Ethylbenzene	< 0.00201	U	0.00201	mg/Kg		02/03/21 20:01	02/06/21 04:20	1

Eurofins Xenco, Carlsbad

© 02/09/21 10:30 02/09/21 13:49

10

Silver

Job ID: 890-140-1

Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Client Sample ID: AH-3

Lab Sample ID: 890-140-3

Matrix: Solid

Date Collected: 02/03/21 13:56 Date Received: 02/03/21 16:58

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<0.00201	U	0.00201		mg/Kg		02/03/21 20:01	02/06/21 04:20	1
Total BTEX	<0.00201	U	0.00201		mg/Kg		02/03/21 20:01	02/06/21 04:20	1
Xylenes, Total	< 0.00201	U	0.00201		mg/Kg		02/03/21 20:01	02/06/21 04:20	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		02/03/21 20:01	02/06/21 04:20	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		02/03/21 20:01	02/06/21 04:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	101		70 - 130				02/03/21 20:01	02/06/21 04:20	1
4-Bromofluorobenzene (Surr)	101		70 - 130				02/03/21 20:01	02/06/21 04:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 19:39	1
Total TPH	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 19:39	1
>C10-C28	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 19:39	1
>C28-C35	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 19:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 135				02/10/21 11:22	02/11/21 19:39	1
o-Terphenyl	98		70 - 135				02/10/21 11:22	02/11/21 19:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.5		9.94		mg/Kg			02/05/21 20:38	1
Method: Mercury - SW846 747	1 Mercury b	y CVAA							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0172	П	0.0172		mg/kg		02/10/21 12:00	02/10/21 10:45	

Client Sample ID: AH-3 Lab Sample ID: 890-140-3 Date Collected: 02/03/21 13:56 **Matrix: Solid** Date Received: 02/03/21 16:58 Percent Solids: 97.24

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<3.67	U	3.67		mg/kg	*	02/09/21 10:30	02/09/21 13:52	10
Barium	25.4		3.67		mg/kg	₩	02/09/21 10:30	02/09/21 13:52	10
Cadmium	<1.84	U	1.84		mg/kg	₩	02/09/21 10:30	02/09/21 13:52	10
Chromium	6.52		3.67		mg/kg	₩	02/09/21 10:30	02/09/21 13:52	10
Lead	3.74		1.84		mg/kg	₩	02/09/21 10:30	02/09/21 13:52	10
Selenium	<1.84	U	1.84		mg/kg	₩	02/09/21 10:30	02/09/21 13:52	10
Silver	<1.84	U	1.84		mg/kg	≎	02/09/21 10:30	02/09/21 13:52	10

Client Sample ID: AH-4 Lab Sample ID: 890-140-4 Date Collected: 02/03/21 13:55 **Matrix: Solid** Date Received: 02/03/21 16:58

Method: 8021B - Volatile Organic Compounds (GC)										
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac				
Benzene	<0.00198 U	0.00198	mg/Kg	02/03/21 20:01	02/06/21 04:42	1				
Ethylbenzene	<0.00198 U	0.00198	mg/Kg	02/03/21 20:01	02/06/21 04:42	1				
Toluene	<0.00198 U	0.00198	mg/Kg	02/03/21 20:01	02/06/21 04:42	1				

1

Client: Tetra Tech, Inc.

Project/Site: Chevron Grizzly Pad

Lab Sample ID: 890-140-4

Matrix: Solid

Job ID: 890-140-1

SDG: 212C-MD-02412

Client Sample ID: AH-4 Date Collected: 02/03/21 13:55

Date Received: 02/03/21 16:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00198	U	0.00198		mg/Kg		02/03/21 20:01	02/06/21 04:42	1
Xylenes, Total	<0.00198	U	0.00198		mg/Kg		02/03/21 20:01	02/06/21 04:42	1
m,p-Xylenes	< 0.00396	U	0.00396		mg/Kg		02/03/21 20:01	02/06/21 04:42	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		02/03/21 20:01	02/06/21 04:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	96		70 - 130				02/03/21 20:01	02/06/21 04:42	1
4-Bromofluorobenzene (Surr)	97		70 - 130				02/03/21 20:01	02/06/21 04:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.2	U	50.2		mg/Kg		02/10/21 11:22	02/11/21 19:59	1
Total TPH	<50.2	U	50.2		mg/Kg		02/10/21 11:22	02/11/21 19:59	1
>C10-C28	<50.2	U	50.2		mg/Kg		02/10/21 11:22	02/11/21 19:59	1
>C28-C35	<50.2	U	50.2		mg/Kg		02/10/21 11:22	02/11/21 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 135				02/10/21 11:22	02/11/21 19:59	1
o-Terphenyl	97		70 - 135				02/10/21 11:22	02/11/21 19:59	1

Method: 300.0 - Anions, Ion Cl	hromatogra <mark>j</mark>	phy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.1		9.90		mg/Kg			02/05/21 00:18	1

Method: Mercury - SW846 747	1 Mercury b	oy CVAA							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0189	U	0.0189		mg/kg		02/10/21 12:00	02/10/21 19:47	1

 Client Sample ID: AH-4
 Lab Sample ID: 890-140-4

 Date Collected: 02/03/21 13:55
 Matrix: Solid

 Date Received: 02/03/21 16:58
 Percent Solids: 74.88

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<5.14	U	5.14		mg/kg	<u></u>	02/09/21 10:30	02/09/21 13:55	10
Barium	19.9		5.14		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10
Cadmium	<2.57	U	2.57		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10
Chromium	5.74		5.14		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10
Lead	3.19		2.57		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10
Selenium	<2.57	U	2.57		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10
Silver	<2.57	U	2.57		mg/kg	₩	02/09/21 10:30	02/09/21 13:55	10

Client Sample ID: AH-5

Date Collected: 02/03/21 14:07

Lab Sample ID: 890-140-5

Matrix: Solid

Date Received: 02/03/21 16:58

Method: 8021B - Volatile	Organic Compound	ds (GC)					
Analyte	Result Qu	ıalifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202 U	0.00202	mg/Kg		02/03/21 20:01	02/06/21 05:05	1
Ethylbenzene	<0.00202 U	0.00202	mg/Kg		02/03/21 20:01	02/06/21 05:05	1
Toluene	<0.00202 U	0.00202	mg/Kg		02/03/21 20:01	02/06/21 05:05	1
Total BTEX	<0.00202 U	0.00202	mg/Kg		02/03/21 20:01	02/06/21 05:05	1

Eurofins Xenco, Carlsbad

Page 8 of 27

Job ID: 890-140-1 SDG: 212C-MD-02412

Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad

Analyte

Project/Site: Chevron Grizzly Pad

Lab Sample ID: 890-140-5

Matrix: Solid

Date Collected: 02/03/21 14:07 Date Received: 02/03/21 16:58

Method: 8021B - Volatile Org	ganic Compo	unds (GC)	(Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 05:05	1
m,p-Xylenes	<0.00404	U	0.00404		mg/Kg		02/03/21 20:01	02/06/21 05:05	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		02/03/21 20:01	02/06/21 05:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
Surrogate 1,4-Difluorobenzene		Qualifier	70 - 130				Prepared 02/03/21 20:01	Analyzed 02/06/21 05:05	Dil Fac
		Qualifier					-1		
1,4-Difluorobenzene	99		70 - 130 70 - 130				02/03/21 20:01	02/06/21 05:05	

					•	•	
C6-C10	<50.2	U	50.2	mg/Kg	02/10/21 11:22	02/11/21 20:39	1
Total TPH	<50.2	U	50.2	mg/Kg	02/10/21 11:22	02/11/21 20:39	1
>C10-C28	<50.2	U	50.2	mg/Kg	02/10/21 11:22	02/11/21 20:39	1
>C28-C35	<50.2	U	50.2	mg/Kg	02/10/21 11:22	02/11/21 20:39	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 135		02/10/21 11:22	02/11/21 20:39	1
o-Terphenyl	103		70 - 135		02/10/21 11:22	02/11/21 20:39	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.9	10.0		mg/Kg			02/05/21 00:24	1
	846 7471 Mercury by CVAA							

Mercury	<0.0182 U	0.0182	mg/kg	02/10/21 12:00 02/10/21 19:50 1
Client Sample ID: AH-5				Lab Sample ID: 890-140-5
Date Collected: 02/03/21 14:07				Matrix: Solid

MDL Unit

Result Qualifier

Date Received: 02/03/21 14:07

Date Received: 02/03/21 16:58

Percent Solids: 98.56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<3.90	U	3.90		mg/kg	<u></u>	02/09/21 10:30	02/09/21 13:57	10
Barium	18.8		3.90		mg/kg	☼	02/09/21 10:30	02/09/21 13:57	10
Cadmium	<1.95	U	1.95		mg/kg	☼	02/09/21 10:30	02/09/21 13:57	10
Chromium	5.51		3.90		mg/kg	≎	02/09/21 10:30	02/09/21 13:57	10
Lead	3.24		1.95		mg/kg	☼	02/09/21 10:30	02/09/21 13:57	10
Selenium	<1.95	U	1.95		mg/kg	☼	02/09/21 10:30	02/09/21 13:57	10
Silver	<1.95	U	1.95		mg/kg	≎	02/09/21 10:30	02/09/21 13:57	10

Analyzed

Prepared

__

3

5

7

9

10

12

4 4

Dil Fac

Surrogate Summary

Client: Tetra Tech, Inc. Job ID: 890-140-1 Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

_			Perc
		DFBZ1	BFB1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-139-A-4-B MS	Matrix Spike	100	100
890-139-A-4-C MSD	Matrix Spike Duplicate	98	96
890-140-1	AH-1	96	100
890-140-2	AH-2	100	104
890-140-3	AH-3	101	101
890-140-4	AH-4	96	97
890-140-5	AH-5	99	107
LCS 890-136/2-A	Lab Control Sample	97	97
LCSD 890-136/3-A	Lab Control Sample Dup	94	96
MB 890-136/1-A	Method Blank	102	103
Surrogate Legend			

DFBZ = 1,4-Difluorobenzene

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		1CO1	OTPH1					
Lab Sample ID	Client Sample ID	(70-135)	(70-135)					
890-140-1	AH-1	113	111					
890-140-2	AH-2	99	98					
890-140-3	AH-3	98	98					
890-140-4	AH-4	99	97					
890-140-5	AH-5	105	103					
890-160-A-1-F MS	Matrix Spike	111	101					
890-160-A-1-G MSD	Matrix Spike Duplicate	111	102					
LCS 890-238/2-A	Lab Control Sample	111	101					
LCSD 890-238/3-A	Lab Control Sample Dup	112	102					
MB 890-238/1-A	Method Blank	89	87					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Tetra Tech, Inc. Job ID: 890-140-1 Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-136/1-A

Matrix: Solid Analysis Batch: 146 **Client Sample ID: Method Blank** Prep Type: Total/NA

Prep Batch: 136

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Total BTEX	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
Xylenes, Total	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
m,p-Xylenes	<0.00400	U	0.00400		mg/Kg		02/03/21 20:06	02/05/21 20:06	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/03/21 20:06	02/05/21 20:06	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	102		70 - 130	02/03/21 20:06	02/05/21 20:06	1
4-Bromofluorobenzene (Surr)	103		70 - 130	02/03/21 20:06	02/05/21 20:06	1

Lab Sample ID: LCS 890-136/2-A

Matrix: Solid

Analysis Batch: 146

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 136

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09769		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.09480		mg/Kg		95	71 - 129	
Toluene	0.100	0.09539		mg/Kg		95	70 - 130	
m,p-Xylenes	0.200	0.1870		mg/Kg		94	70 - 135	
o-Xylene	0.100	0.09692		mg/Kg		97	71 - 133	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,4-Difluorobenzene	97	70 - 130
4-Bromofluorobenzene (Surr)	97	70 - 130

Lab Sample ID: LCSD 890-136/3-A

Matrix: Solid

Analysis Batch: 146

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 136

Spike LCSD LCSD %Rec. **RPD** D %Rec Analyte Added Result Qualifier Unit Limits RPD Limit Benzene 0.100 0.09775 mg/Kg 98 70 - 130 0 35 Ethylbenzene 0.100 0.09646 mg/Kg 96 71 - 129 2 35 Toluene 0.100 0.09628 mg/Kg 96 70 - 130 35 m,p-Xylenes 0.200 0.1919 mg/Kg 70 - 135 35 0.100 0.09522 71 - 133 35 o-Xylene mg/Kg 95

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1,4-Difluorobenzene	94	70 - 130
4-Bromofluorobenzene (Surr)	96	70 - 130

Lab Sample ID: 890-139-A-4-B MS

Matrix: Solid

Analyte Benzene

Analysis Batch:

: 146									Pre	Batch: 136
	Sample	Sample	Spike	MS	MS				%Rec.	
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	<0.00200	U	0.101	0.09904		mg/Kg		98	70 - 130	

Eurofins Xenco, Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Page 11 of 27

Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1 SDG: 212C-MD-02412

Prep Batch: 136

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-139-A-4-B MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 146

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U F2 F1	0.101	0.02129	F1	mg/Kg		21	71 - 129	
Toluene	<0.00200	U	0.101	0.07812		mg/Kg		77	70 - 130	
m,p-Xylenes	<0.00399	U F1	0.202	0.1412		mg/Kg		70	70 - 135	
o-Xylene	<0.00200	U	0.101	0.09511		mg/Kg		94	71 - 133	

MS MS

Surrogate	%Recovery (Qualifier	Limits
1,4-Difluorobenzene	100		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-139-A-4-C MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Analysis Batch: 146

Prep Type: Total/NA

Prep Batch: 136

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier RPD Limit Analyte Added Result Qualifier Unit D %Rec Limits mg/Kg Benzene <0.00200 U 0.0996 0.09403 94 70 - 130 5 35 <0.00200 U F2 F1 71 - 129 Ethylbenzene 0.0996 0.03654 F2 F1 mg/Kg 37 53 35 Toluene <0.00200 U 0.0996 0.07677 mg/Kg 77 70 - 130 2 35 m,p-Xylenes <0.00399 UF1 0.199 0.1037 F1 52 70 - 135 35 mg/Kg 31 o-Xylene <0.00200 U 0.0996 0.09398 mg/Kg 94 71 - 133

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	98		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 890-238/1-A

Matrix: Solid

Analysis Batch: 248

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 238

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 16:49	1
Total TPH	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 16:49	1
>C10-C28	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 16:49	1
>C28-C35	<50.0	U	50.0		mg/Kg		02/10/21 11:22	02/11/21 16:49	1

MB MB

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89	70 - 135	02/10/21 11:22	02/11/21 16:49	1
o-Terphenyl	87	70 - 135	02/10/21 11:22	02/11/21 16:49	1

Lab Sample ID: LCS 890-238/2-A

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 248 Prep Batch: 238

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C10	1000	1001		mg/Kg		100	70 - 135	
>C10-C28	1000	1006		mg/Kg		101	70 - 135	

Client: Tetra Tech, Inc.

Job ID: 890-140-1

Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 890-238/2-A

Matrix: Solid

Analysis Batch: 248

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 111
 70 - 135

 o-Terphenyl
 101
 70 - 135

Lab Sample ID: LCSD 890-238/3-A

Lab Sample ID: 890-160-A-1-F MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 248

Analysis Batch: 248

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 238

LCSD LCSD RPD %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit C6-C10 1000 1015 mg/Kg 101 70 - 135 1 25 >C10-C28 1000 1000 70 - 135 25 mg/Kg 100

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 112
 70 - 135

 o-Terphenyl
 102
 70 - 135

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 238

Sample Sample Spike MS MS %Rec. Limits Analyte Result Qualifier Added Result Qualifier Unit D %Rec C6-C10 <50.2 U 1010 969.9 97 70 - 135 mg/Kg Total TPH <50.2 U 2010 1945 97 mg/Kg >C10-C28 <50.2 U 1010 975.1 mg/Kg 97 70 - 135

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 135
o-Terphenyl	101		70 - 135

Lab Sample ID: 890-160-A-1-G MSD Client Sample ID: Mar

Matrix: Solid

Analysis Batch: 248

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

Prep Batch: 238

Tiep Daten. 200

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C10	<50.2	U	1000	966.5		mg/Kg		97	70 - 135	0	35
Total TPH	<50.2	U	2000	1944		mg/Kg		97		0	
>C10-C28	<50.2	U	1000	977.6		mg/Kg		98	70 - 135	0	35

MSD MSD

Surrogate	%Recovery Qualifi	ier Limits
1-Chlorooctane	111	70 - 135
o-Terphenyl	102	70 - 135

Eurofins Xenco, Carlsbad

2

Δ

5

7

9

11

13

Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1

SDG: 212C-MD-02412

Client Sample ID: AH-1

Client Sample ID: AH-1

Prep Type: Soluble

Prep Type: Soluble

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 890-143/1-A

Client Sample ID: Method Blank

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 150

Client: Tetra Tech, Inc.

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 10.0 02/04/21 21:50 Chloride <10.0 U mg/Kg

Lab Sample ID: LCS 890-143/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 150

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 500 535.0 90 - 110 Chloride mg/Kg 107

Lab Sample ID: LCSD 890-143/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 150

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits **RPD** Limit Analyte Unit D %Rec Chloride 500 534.8 107 90 - 110 20 mg/Kg

Lab Sample ID: 890-140-1 MS

Matrix: Solid

Analysis Batch: 163

Spike MS MS %Rec. Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride <10 0 U 505 560.8 mg/Kg 110 90 - 110

Lab Sample ID: 890-140-1 MSD

Matrix: Solid

Analysis Batch: 163

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Unit Limit Chloride <10.0 U 504 558.7 110 mg/Kg 90 - 110 0 20

Method: Mercury - SW846 7471 Mercury by CVAA

Lab Sample ID: 7721200-1-BLK Client Sample ID: Method Blank **Matrix: SOIL** Prep Type: Total/NA Prep Batch: 3150688_P

Analysis Batch: 3150688

BLANK BLANK Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed <.0179 .0179 02/10/21 12:00 02/10/21 19:20 Mercury mg/kg

Lab Sample ID: 7721200-1-BKS

Matrix: SOIL

Prep Type: Total/NA Analysis Batch: 3150688 Prep Batch: 3150688 P LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Mercury .172 0.152 mg/kg 88 80 - 120

Eurofins Xenco, Carlsbad

Client Sample ID: Lab Control Sample

Mercury

Mercury

Silver

109

mg/kg

mg/kg

mg/kg

80 - 120

80 - 120

02/09/21 10:30 02/09/21 13:17

5

20

Client: Tetra Tech, Inc.

Job ID: 890-140-1

Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

Method: Mercury - SW846 7471 Mercury by CVAA (Continued)

<.0175

<.0175

<.2

Lab Sample ID: 7721200-1-BSD Client Sample ID: Lab Control Sample Dup **Matrix: SOIL** Prep Type: Total/NA Analysis Batch: 3150688 Prep Batch: 3150688 P LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit %Rec Limits RPD Limit Analyte Mercury .182 0.157 mg/kg 86 80 - 120 3 20

Lab Sample ID: 687552-001 S Client Sample ID: Matrix Spike **Matrix: SOIL** Prep Type: Total/NA Prep Batch: 3150688 P **Analysis Batch: 3150688** Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Added Unit D %Rec Limits Analyte

0.184

0.193

Lab Sample ID: 687552-001 SD Client Sample ID: Matrix Spike Duplicate **Matrix: SOIL** Prep Type: Total/NA Analysis Batch: 3150688 Prep Batch: 3150688 P Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits **RPD** Limit **Analyte** Unit D %Rec

.169

.175

Method: RCRA8 - SW846 6020 Metals by ICPMS

Lab Sample ID: 7721086-1-BLK

Matrix: SOIL

Analysis Batch: 3150456

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 3150456_P

BLANK BLANK Result Qualifier RL**MDL** Unit **Analyte** D Prepared Analyzed Dil Fac Arsenic .4 02/09/21 10:30 02/09/21 13:17 <.4 mg/kg 02/09/21 10:30 02/09/21 13:17 .4 Barium < 4 mg/kg Cadmium < 2 .2 mg/kg 02/09/21 10:30 02/09/21 13:17 Chromium 4 02/09/21 10:30 02/09/21 13:17 < 4 mg/kg Lead <.2 .2 mg/kg 02/09/21 10:30 02/09/21 13:17 Selenium <.2 .2 02/09/21 10:30 02/09/21 13:17 mg/kg

Lab Sample ID: 7721086-1-BKS

Matrix: SOIL

Analysis Batch: 3150456

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 3150456_P

.2

Tananyono Battorni o 100 100								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	10	9.82		mg/kg		98	75 - 125	
Barium	10	9.70		mg/kg		97	75 - 125	
Cadmium	10	9.93		mg/kg		99	75 - 125	
Chromium	10	9.89		mg/kg		99	75 - 125	
Lead	10	9.74		mg/kg		97	75 - 125	
Selenium	10	9.64		mg/kg		96	75 - 125	
Silver	5	5 23		ma/ka		105	75 - 125	

Lab Sample ID: 7721086-1-BSD Client Sample ID: Lab Control Sample Dup **Matrix: SOIL** Prep Type: Total/NA Analysis Batch: 3150456 Prep Batch: 3150456 P Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits **RPD Analyte** Unit D %Rec Limit Arsenic 9.62 9.38 98 75 - 125 20 mg/kg

Eurofins Xenco, Carlsbad

Page 15 of 27

Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1 SDG: 212C-MD-02412

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Method: RCRA8 - SW846 6020 Metals by ICPMS (Continued)

Lab Sample ID: 7721086-1-BSD **Client Sample ID: Lab Control Sample Dup Matrix: SOIL** Prep Type: Total/NA Analysis Batch: 3150456 Prep Batch: 3150456_P

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	9.62	9.23		mg/kg		96	75 - 125	5	20
Cadmium	9.62	9.51		mg/kg		99	75 - 125	4	20
Chromium	9.62	9.69		mg/kg		101	75 - 125	2	20
Lead	9.62	9.41		mg/kg		98	75 - 125	3	20
Selenium	9.62	9.23		mg/kg		96	75 - 125	4	20
Silver	4.81	5.11		mg/kg		106	75 - 125	2	20

Lab Sample ID: 687552-001 S

Matrix: SOIL

Analysis Batch: 3150456								Pi	rep Batch: 3	3150456_P
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	<3.77		9.78	11.6		mg/kg	<u></u>	119	75 - 125	
Barium	23.7		9.78	33.3		mg/kg	☼	98	75 - 125	
Cadmium	<1.88		9.78	9.75		mg/kg	₩	100	75 - 125	
Chromium	6.39		9.78	16.4		mg/kg	₩	102	75 - 125	
Lead	3.66		9.78	13.3		mg/kg	☼	99	75 - 125	
Selenium	<1.88		9.78	10.2		mg/kg	₩	104	75 - 125	
Silver	<1.88		4.89	5.25		mg/kg		107	75 - 125	

Lab Sample ID: 687552-001 SD

Matrix: SOIL

Analysis Batch: 3150456								Pi	rep Batch		
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<3.77		9.42	11.3		mg/kg	<u></u>	120	75 - 125	3	30
Barium	23.7		9.42	32.1		mg/kg	☼	89	75 - 125	4	30
Cadmium	<1.88		9.42	9.57		mg/kg	☼	102	75 - 125	2	30
Chromium	6.39		9.42	15.5		mg/kg	☼	97	75 - 125	6	30
Lead	3.66		9.42	12.8		mg/kg	☼	97	75 - 125	4	30
Selenium	<1.88		9.42	9.81		mg/kg	☼	104	75 - 125	4	30
Silver	<1.88		4.71	5.02		mg/kg	₩	107	75 - 125	4	30

Method: SM2540G - Wet Chemistry

Lab Sample ID: 3150495-1-BLK

Matrix: SOIL

Analysis Batch: 3150495

	BLANK	BLANK
A I 4 .	D 14	O

RL **MDL** Unit D Analyzed Dil Fac Analyte Result Qualifier Prepared 02/09/21 18:16 02/09/21 18:16 Percent Moisture В

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 3150495_P

QC Association Summary

Job ID: 890-140-1 Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

GC VOA

Prep Batch: 135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	5030C	
890-140-2	AH-2	Total/NA	Solid	5030C	
890-140-3	AH-3	Total/NA	Solid	5030C	
890-140-4	AH-4	Total/NA	Solid	5030C	
890-140-5	AH-5	Total/NA	Solid	5030C	

Prep Batch: 136

Lab Sample ID MB 890-136/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 5030C	Prep Batch
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
890-139-A-4-B MS	Matrix Spike	Total/NA	Solid	5030C	
890-139-A-4-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Analysis Batch: 146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	8021B	135
890-140-2	AH-2	Total/NA	Solid	8021B	135
890-140-3	AH-3	Total/NA	Solid	8021B	135
890-140-4	AH-4	Total/NA	Solid	8021B	135
890-140-5	AH-5	Total/NA	Solid	8021B	135
MB 890-136/1-A	Method Blank	Total/NA	Solid	8021B	136
LCS 890-136/2-A	Lab Control Sample	Total/NA	Solid	8021B	136
LCSD 890-136/3-A	Lab Control Sample Dup	Total/NA	Solid	8021B	136
890-139-A-4-B MS	Matrix Spike	Total/NA	Solid	8021B	136
890-139-A-4-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	136

GC Semi VOA

Prep Batch: 238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	8015NM Prep	
890-140-2	AH-2	Total/NA	Solid	8015NM Prep	
890-140-3	AH-3	Total/NA	Solid	8015NM Prep	
890-140-4	AH-4	Total/NA	Solid	8015NM Prep	
890-140-5	AH-5	Total/NA	Solid	8015NM Prep	
MB 890-238/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-238/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-238/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-160-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-160-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	8015B NM	238
890-140-2	AH-2	Total/NA	Solid	8015B NM	238
890-140-3	AH-3	Total/NA	Solid	8015B NM	238
890-140-4	AH-4	Total/NA	Solid	8015B NM	238
890-140-5	AH-5	Total/NA	Solid	8015B NM	238
MB 890-238/1-A	Method Blank	Total/NA	Solid	8015B NM	238
LCS 890-238/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	238

Eurofins Xenco, Carlsbad

Page 17 of 27

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 890-140-1
Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

GC Semi VOA (Continued)

Analysis Batch: 248 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 890-238/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	238
890-160-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	238
890-160-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	238

HPLC/IC

Leach Batch: 143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Soluble	Solid	DI Leach	
890-140-2	AH-2	Soluble	Solid	DI Leach	
890-140-3	AH-3	Soluble	Solid	DI Leach	
890-140-4	AH-4	Soluble	Solid	DI Leach	
890-140-5	AH-5	Soluble	Solid	DI Leach	
MB 890-143/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 890-143/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 890-143/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-140-1 MS	AH-1	Soluble	Solid	DI Leach	
890-140-1 MSD	AH-1	Soluble	Solid	DI Leach	

Analysis Batch: 150

La	b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
89	0-140-4	AH-4	Soluble	Solid	300.0	143
89	0-140-5	AH-5	Soluble	Solid	300.0	143
ME	B 890-143/1-A	Method Blank	Soluble	Solid	300.0	143
LC	S 890-143/2-A	Lab Control Sample	Soluble	Solid	300.0	143
LC	SD 890-143/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	143

Analysis Batch: 163

Lab Sample ID 890-140-1	Client Sample ID AH-1	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 143
890-140-2	AH-2	Soluble	Solid	300.0	143
890-140-3	AH-3	Soluble	Solid	300.0	143
890-140-1 MS	AH-1	Soluble	Solid	300.0	143
890-140-1 MSD	AH-1	Soluble	Solid	300.0	143

Subcontract

Analysis Batch: 3150456

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	RCRA8	3150456_P
890-140-2	AH-2	Total/NA	Solid	RCRA8	3150456_P
890-140-3	AH-3	Total/NA	Solid	RCRA8	3150456_P
890-140-4	AH-4	Total/NA	Solid	RCRA8	3150456_P
890-140-5	AH-5	Total/NA	Solid	RCRA8	3150456_P
7721086-1-BLK	Method Blank	Total/NA	SOIL	RCRA8	3150456_P
7721086-1-BKS	Lab Control Sample	Total/NA	SOIL	RCRA8	3150456_P
7721086-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	RCRA8	3150456_P
687552-001 S	Matrix Spike	Total/NA	SOIL	RCRA8	3150456_P
687552-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	RCRA8	3150456_P

Eurofins Xenco, Carlsbad

2

3

4

6

R

9

11

13

14

QC Association Summary

Job ID: 890-140-1 Client: Tetra Tech, Inc. Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Subcontract

Analysis Batch: 3150495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
3150495-1-BLK	Method Blank	Total/NA	SOIL	SM2540G	3150495_P

Analysis Batch: 3150688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	Mercury	3150688_P
890-140-2	AH-2	Total/NA	Solid	Mercury	3150688_P
890-140-3	AH-3	Total/NA	Solid	Mercury	3150688_P
890-140-4	AH-4	Total/NA	Solid	Mercury	3150688_P
890-140-5	AH-5	Total/NA	Solid	Mercury	3150688_P
7721200-1-BLK	Method Blank	Total/NA	SOIL	Mercury	3150688_P
7721200-1-BKS	Lab Control Sample	Total/NA	SOIL	Mercury	3150688_P
7721200-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	Mercury	3150688_P
687552-001 S	Matrix Spike	Total/NA	SOIL	Mercury	3150688_P
687552-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	Mercury	3150688_P

Prep Batch: 3150456_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	SW3051	
890-140-2	AH-2	Total/NA	Solid	SW3051	
890-140-3	AH-3	Total/NA	Solid	SW3051	
890-140-4	AH-4	Total/NA	Solid	SW3051	
890-140-5	AH-5	Total/NA	Solid	SW3051	
7721086-1-BLK	Method Blank	Total/NA	SOIL	SW3051	
7721086-1-BKS	Lab Control Sample	Total/NA	SOIL	SW3051	
7721086-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	SW3051	
687552-001 S	Matrix Spike	Total/NA	SOIL	SW3051	
687552-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	SW3051	

Prep Batch: 3150495_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
3150495-1-BLK	Method Blank	Total/NA	SOIL	***DEFAULT	
				PREP***	

Prep Batch: 3150688_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-140-1	AH-1	Total/NA	Solid	SW7471P	
890-140-2	AH-2	Total/NA	Solid	SW7471P	
890-140-3	AH-3	Total/NA	Solid	SW7471P	
890-140-4	AH-4	Total/NA	Solid	SW7471P	
890-140-5	AH-5	Total/NA	Solid	SW7471P	
7721200-1-BLK	Method Blank	Total/NA	SOIL	***DEFAULT PREP***	
7721200-1-BKS	Lab Control Sample	Total/NA	SOIL	***DEFAULT PREP***	
7721200-1-BSD	Lab Control Sample Dup	Total/NA	SOIL	***DEFAULT PREP***	
687552-001 S	Matrix Spike	Total/NA	SOIL	***DEFAULT PREP***	
687552-001 SD	Matrix Spike Duplicate	Total/NA	SOIL	***DEFAULT PREP***	

SDG: 212C-MD-02412

Job ID: 890-140-1

Client Sample ID: AH-1
Date Collected: 02/03/21 13:11

Lab Sample ID: 890-140-1 Matrix: Solid

Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/06/21 03:35	PXS	XC
Total/NA	Prep	8015NM Prep			238	02/10/21 11:22	MC	XC
Total/NA	Analysis	8015B NM		1	248	02/11/21 18:59	T1S	XC
Soluble	Leach	DI Leach			143	02/04/21 09:40	MC	XC
Soluble	Analysis	300.0		1	163	02/06/21 08:56	A1S	XC
Total/NA	Prep	SW7471P		1	3150688_P	02/10/21 12:00		XS
Total/NA	Analysis	Mercury		1	3150688	02/10/21 19:27	ANJ	XS

Client Sample ID: AH-1 Lab Sample ID: 890-140-1

Date Collected: 02/03/21 13:11 Matrix: Solid
Date Received: 02/03/21 16:58 Percent Solids: 98.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SW3051		1	3150456_P	02/09/21 10:30		XS
Total/NA	Analysis	RCRA8		10	3150456	02/09/21 13:26	DEP	XS

Client Sample ID: AH-2

Date Collected: 02/03/21 13:52

Lab Sample ID: 890-140-2

Matrix: Solid

Date Collected: 02/03/21 13:52 Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/06/21 03:57	PXS	XC
Total/NA	Prep	8015NM Prep			238	02/10/21 11:22	MC	XC
Total/NA	Analysis	8015B NM		1	248	02/11/21 19:19	T1S	XC
Soluble	Leach	DI Leach			143	02/04/21 09:40	MC	XC
Soluble	Analysis	300.0		1	163	02/05/21 20:32	A1S	XC
Total/NA	Prep	SW7471P		1	3150688_P	02/10/21 12:00		XS
Total/NA	Analysis	Mercury		1	3150688	02/10/21 19:38	ANJ	XS

Client Sample ID: AH-2 Lab Sample ID: 890-140-2

Date Collected: 02/03/21 13:52 Matrix: Solid
Date Received: 02/03/21 16:58 Percent Solids: 98.02

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SW3051		1	3150456_P	02/09/21 10:30		XS
Total/NA	Analysis	RCRA8		10	3150456	02/09/21 13:49	DEP	XS

Client Sample ID: AH-3 Lab Sample ID: 890-140-3

Date Collected: 02/03/21 13:56 Matrix: Solid
Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/06/21 04:20	PXS	XC

Job ID: 890-140-1

Client Sample ID: AH-3

Lab Sample ID: 890-140-3

Date Collected: 02/03/21 13:56 Date Received: 02/03/21 16:58

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8015NM Prep			238	02/10/21 11:22	MC	XC
Total/NA	Analysis	8015B NM		1	248	02/11/21 19:39	T1S	XC
Soluble	Leach	DI Leach			143	02/04/21 09:40	MC	XC
Soluble	Analysis	300.0		1	163	02/05/21 20:38	A1S	XC
Total/NA	Prep	SW7471P		1	3150688_P	02/10/21 12:00		XS
Total/NA	Analysis	Mercury		1	3150688	02/10/21 19:45	ANJ	XS

Client Sample ID: AH-3 Lab Sample ID: 890-140-3

Date Collected: 02/03/21 13:56 **Matrix: Solid** Date Received: 02/03/21 16:58 Percent Solids: 97.24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SW3051		1	3150456_P	02/09/21 10:30		XS
Total/NA	Analysis	RCRA8		10	3150456	02/09/21 13:52	DEP	XS

Lab Sample ID: 890-140-4 Client Sample ID: AH-4

Date Collected: 02/03/21 13:55 **Matrix: Solid**

Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/06/21 04:42	PXS	XC
Total/NA	Prep	8015NM Prep			238	02/10/21 11:22	MC	XC
Total/NA	Analysis	8015B NM		1	248	02/11/21 19:59	T1S	XC
Soluble	Leach	DI Leach			143	02/04/21 09:40	MC	XC
Soluble	Analysis	300.0		1	150	02/05/21 00:18	A1S	XC
Total/NA	Prep	SW7471P		1	3150688_P	02/10/21 12:00		XS
Total/NA	Analysis	Mercury		1	3150688	02/10/21 19:47	ANJ	XS

Client Sample ID: AH-4 Lab Sample ID: 890-140-4 Date Collected: 02/03/21 13:55 **Matrix: Solid**

Date Received: 02/03/21 16:58 Percent Solids: 74.88

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SW3051		1	3150456_P	02/09/21 10:30		XS
Total/NA	Analysis	RCRA8		10	3150456	02/09/21 13:55	DEP	XS

Client Sample ID: AH-5 Lab Sample ID: 890-140-5

Date Collected: 02/03/21 14:07 **Matrix: Solid** Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/06/21 05:05	PXS	XC
Total/NA	Prep	8015NM Prep			238	02/10/21 11:22	MC	XC
Total/NA	Analysis	8015B NM		1	248	02/11/21 20:39	T1S	XC

Client: Tetra Tech, Inc.

Job ID: 890-140-1

Project/Site: Chevron Grizzly Pad SDG: 212C-MD-02412

Client Sample ID: AH-5 Lab Sample ID: 890-140-5 Date Collected: 02/03/21 14:07 **Matrix: Solid**

Date Received: 02/03/21 16:58

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Soluble	Leach	DI Leach			143	02/04/21 09:40	MC	XC	•
Soluble	Analysis	300.0		1	150	02/05/21 00:24	A1S	XC	
Total/NA	Prep	SW7471P		1	3150688_P	02/10/21 12:00		XS	
Total/NA	Analysis	Mercury		1	3150688	02/10/21 19:50	ANJ	XS	

Client Sample ID: AH-5 Lab Sample ID: 890-140-5

Date Collected: 02/03/21 14:07 **Matrix: Solid**

Date Received: 02/03/21 16:58 Percent Solids: 98.56

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SW3051		1	3150456_P	02/09/21 10:30		XS
Total/NA	Analysis	RCRA8		10	3150456	02/09/21 13:57	DEP	XS

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

XS = Eurofins Stafford, 4147 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 890-140-1
Project/Site: Chevron Grizzly Pad

SDG: 212C-MD-02412

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
Louisiana	<u> </u>	NELAP	05092	06-30-21
The following analytes the agency does not on	•	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method 8015B NM	Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH	

Laboratory: Eurofins Stafford

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704215-20-37	06-30-21

Eurofins Xenco, Carlsbad

3

1

7

9

10

12

14

Method Summary

Client: Tetra Tech, Inc.

Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1

SDG: 212C-MD-02412

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	XC
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
300.0	Anions, Ion Chromatography	MCAWW	XC
6020	SW846 6020 Metals by ICPMS	SW846	XS
471	SW846 7471 Mercury by CVAA	SW846	XS
5030C	Purge and Trap	SW846	XC
015NM Prep	Microextraction	SW846	XC
Ol Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

XS = Eurofins Stafford, 4147 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Xenco, Carlsbad

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: Chevron Grizzly Pad

Job ID: 890-140-1

SDG: 212C-MD-02412

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
0-140-1	AH-1	Solid	02/03/21 13:11	02/03/21 16:58
0-140-2	AH-2	Solid	02/03/21 13:52	02/03/21 16:58
0-140-3	AH-3	Solid	02/03/21 13:56	02/03/21 16:58
0-140-4	AH-4	Solid	02/03/21 13:55	02/03/21 16:58
90-140-5	AH-5	Solid	02/03/21 14:07	02/03/21 16:58

1

2

3

4

6

8

10 11

13

Chain of Custody

D Local Data Descrição Bay 202	0				-		+		55 4
	4 2	5.21 158	2	\$	PARTY AND	CID (los
Received by: (Signature) Date/Time	Relinquished by: (Signature)	Date/Time		ure)	d by: (Signature)	Received by:	ture)	by: (Signa	Relinquished by: (Signature)
assigns standard terms and conditions lue to circumstances beyond the control lue to circumstances beyond the control libe enforced unless previously negotiated.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofine Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofine Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofine Xenco, but not analyzed. These terms will be enforced unless previously negotiated	company to Eurofins iny losses or expens le submitted to Eurof	from client sibility for a each samp	rchase order ne any responarge of \$5 for	stitutes a valid po d shall not assu project and a ch	of samples cons t of samples an applied to each	ind relinquishment of the cost of \$85.00 will be	s document a nco will be lia ninimum char	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase or of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any res of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5
Ni Se Ag TI U Hg: 1631 / 245.1 / /470 / /471	TCLP / SPLP 6010: 8RCRA So As Ba Be Cd Cr Co Cu Pb Mn Mo Ni	Sb As Ba Be	SRCRA	LP-8010	TGLP / SP	zed	(s) to be analy	and Metal	Circle Method(s) and Metal(s) to be analyzed
K Se Ag SiO ₂ Na Sr Tl Sn L		Sb As Ba Be	11 A!	M Texas	8RCRA 13PPM	8R	200.8 / 6020:		Total 200.7 / 6010
			+						
			H						
030-11-0	7	7	3	9		15/21	3		44.5
800 1 AO Chain of Custody	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	17	- 6	\perp	\$ 3 1	2/3/21	. 8		A H-4
	\	1			2/2	43/67	١,٠		44-5
	5	۲ / / / / / / / / / / / / / / / / / / /	-	~	722	73/21			1:12
	X	X / / / / / / / / / / / / / / / / / / /	6	5	3				37.
	×	X X	8-	32	1307	2/2/21	S :		1-11
Sample Comments	RC	_	ab/ # of mp Cont	Depth Grab/	Time Sampled	Date Sampled	Matrix	Sample Identification	Sample Id
NaC H+Ascologic Accas Garage	R	EX		30	emperature:	Corrected Temperature	7		Total Containers:
Zn Acetate+NaCH: Zn	A	· S	150	0	Reading:	Temperature Reading:	Yes (No) N/A	-	Sample Custody Seals:
Na ₂ S ₂ O ₃ : NaSO ₃	- (so	Sin		0	actor:	Correction Factor:	19		Cooler Custody Seals:
NaHSO4: NABIS	9- Me	w8 U8	للما	LIM W	yr ID:	Thermometer ID:	(Yes No		Samples Received Intact:
H ₃ PO ₄ : HP	· c	00	nete	(Yes) No	Wet Ice:	(Yes) No	Temp Blank:	EIPT	SAMPLE RECEIPT
H ₂ VV ₄ : H ₂	L	2 15	Ь.	wed by 4:30p	the lab, if received by 4:30pm	52	250 065	432	PO #:
		i F	φ	day received	TAT starts the day received by	U	R (H.V	Sampler's Name:
ŭ	<u> </u>	3			Due Date:		Country	Lec	Project Location:
None: NO DI Water: H ₂ O) <u> </u>	Code	Rush	Routine	412	2125-MD-02412	2725	Project Number:
Preservati	ANALYSIS REQUEST	NA	3	Turn Around	Turn .	, Pa)	Cheuron Griedy	Che	Project Name:
Deliverables: EDD [_] ADAPT [_] Orner:	tetratech.com Del	las page		1/2 then	Email:	7	432-256-065	432-	Phone:
				City, State ZIP		メなな	1	D:A	City, State ZIP:
State of Project:	Sta			Address:			961 w. wall 5+	961	Address:
Program: UST/PST ☐ PRP☐ Brownfields ☐ RRC ☐ Superfund ☐	Pro		ame:	Company Name		7017	13	Texas	Company Name:
Work Order Comments			rent)	Bill to: (if different)		caster)	2	Nath	Project Manager:
www.xenco.com Page of				;					
•	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hohbe, NM (575) 392-7550, Carlebad, NM (575) 988-3199	(915) 585-3443, Lu 575) 392-7550 Car	. Paso, TX	źΈ			Xenco		
Work Order No:	Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	32) 704-5440, San	and, TX (4	Mid	sting	Environment Testing			
	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300	((281) 240-4200, [ouston, T)	I		ļ		ofins	eurofins

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 890-140-1

SDG Number: 212C-MD-02412

1340 **5** ..**6** .. 0. 1.1.4

Login Number: 140 List Number: 1 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

2

4

6

8

11

40

14

Attachments 3 – DOI-BLM-NM-P020-2018-0846-EA, Section 1.6, Scoping, Public Involvement, and Issues (2018)

Temporary Pit containing non-low chloride fluids
Cotton Draw 34 27 Federal Com Pit
Section 3, T25S, R32E

United States Department of the Interior Bureau of Land Management

Environmental Assessment DOI-BLM-NM-P020-2018-0846-EA

CHEVRON U.S.A. INC
CO Grizzly 3 27 FED 0051H
CO Grizzly 3 27 FED 0052H
CO Grizzly 3 27 FED 0055H
CO Grizzly 3 27 FED 0057H
CO Grizzly 3 34 FED 0510H
Lease No. NMLC 061936

U.S. Department of the Interior Bureau of Land Management Pecos District Carlsbad Field Office 620 East Greene Street Carlsbad, NM 88220 Phone: (575) 234-5972 FAX: (575) 885-9264

August 2018

Confidentiality Policy

Any comments, including names and street addresses of respondents, you submit may be made available for public review. Individual respondents may request confidentiality. If you wish to withhold your name or street address from public review or from disclosure under the Freedom of Information Act, you must state this prominently at the beginning of your written comment. Such requests will be honored to the extent allowed by law. All submissions from organizations or businesses, and from individuals identifying themselves as representatives or officials of organizations or businesses, will be made available for public inspection in their entirety.

TABLE OF CONTENTS

1.0	Purpose and Need for Action	1-1
1.1	Background	1-1
1.2	Purpose and Need for Action	1-1
1.3	Decision to be Made	1-1
1.4	Conformance with Applicable Land Use Plan(s)	1-2
1.5	Relationship to Statutes, Regulations or Other Plans	1-2
1.6	Scoping, Public Involvement, and Issues	1-3
2.0	Proposed Action and Alternative(s)	2-5
2.1	Proposed Action	2-5
2.2	No Action	2-12
2.3	Alternatives Considered but Eliminated from Detailed Study .	2-12
3.0	Affected Environment and Environmental Consequences	1
3.1	Air Resources	1
3.2	Soils	8
3.3	Watershed	9
3.4	Wildlife	
3.5	Vegetation	
3.6	Noxious Weeds and Invasive Plants	14
3.7	Range	15
3.8	Visual Resource Management	16
3.9	Cultural and Historical Resources	17
3.10	Paleontology	18
3.11	Chemical Fluids Used In Hydraulic Fracturing	19
3.12	•	
4.0	Supporting Information	22
4.1	List of Preparers	22
4.2	References	
Decisio	n Record	Error! Bookmark not defined.
Finding	of No Significant Impact	Error! Bookmark not defined.

- Clean Water Act of 1977, as amended (30 USC 1251) Establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters.
- Comprehensive Environmental Response, Compensation, and Liability Act of (42 USC 9601 et seq.) Sections 101 (14) and (33), exclude petroleum from the definitions of "hazardous substances" and "pollutant or contaminant." Petroleum derivatives to which this exclusion applies include crude oil or any fraction thereof (if the fraction is not specifically listed or designated a hazardous substance by other listed acts), natural gas, natural gas liquids, liquefied natural gas, and synthetic gas usable for fuel.
- Endangered Species Act of 1973 (16 USC 1531 et seq.) Protects critically imperiled species
 from extinction as a consequence of economic growth and development untempered by adequate
 concern and conservation.
- Federal Cave Resources Protection Act of 1988 (16 USC 4301 et seq.) Protects significant caves on federal lands by identifying their location, regulating their use, requiring permits for removal of their resources, and prohibiting destructive acts.
- Migratory Bird Treaty Act of 1918 (16 USC 703-712) Implements the convention for the protection of migratory birds.
- Mining and Mineral Policy Act of 1970, as amended (30 USC 21) Fosters and encourages
 private enterprise in the development of economically sound and stable industries, and in the
 orderly and economic development of domestic resources to help assure satisfaction of industrial,
 security, and environmental needs.
- National American Graves Protection and Repatriation Act of 1990 (25 USC 301) Provides
 a process for museums and Federal agencies to return certain Native American cultural items
 such as human remains, funerary objects, sacred objects, or objects of cultural patrimony to lineal
 descendants, and culturally affiliated Indian tribes and Native Hawaiian organizations and
 includes provisions for unclaimed and culturally unidentifiable Native American cultural items,
 intentional and inadvertent discovery of Native American cultural items on Federal and tribal
 lands, and penalties for noncompliance and illegal trafficking.
- National Historic Preservation Act of 1966, as amended (16 USC 470) Preserves historical and archaeological sites.

Air quality standards in New Mexico (with the exception of Bernalillo County) are under the jurisdiction of the New Mexico Environment Department/Air Quality Bureau (NMED/NMAQB). The Environmental Improvement Act, NMSA 1978, and the Air Quality Control Act, NMSA 1978, dictate state air quality standards. Also, 40 CFR § 60 "Standards of Performance for New Stationary Sources" is administered by the NMED/NMAQB.

Additionally, Chevron would comply with all applicable federal, state, and local laws and regulations; obtain the necessary permits for construction and operation; and certify that Surface Use Agreements have been reached with the private landowners or other leaseholders, where required.

1.6 Scoping, Public Involvement, and Issues

The Carlsbad Field Office (CFO) publishes a NEPA log for public inspection. This log contains a list of proposed and approved actions in the field office. The log is located in the lobby of the CFO. The BLM also has an ePlanning website (https://eplanning.blm.gov/epl-front-office/eplanning/lup/lup_register.do) that allows the public to review and comment online for BLM NEPA and planning projects.

The CFO uses Geographic Information Systems (GIS) in order to identify resources that may be affected by the proposed action. A map of the project area is prepared to display the resources in the area and to identify potential issues.

Information provided within the environmental consequences sections provides the decision maker with the information necessary to compare and contrast the predicted effects of the proposed action and alternatives and make a reasoned and informed decision regarding which alternative or combination of actions should be selected in the Decision Record.

The proposed action was circulated among CFO resource specialists in order to identify any issues associated with the project. The issues that were raised include:

- How would air quality be impacted by the proposed action?
- How would climate change be impacted by the proposed action?
- How would soils be impacted by the proposed action?
- How would watershed resources be impacted by the proposed action?
- How would cave karst be impacted by the proposed action?
- How would wildlife habitat be impacted by the proposed action?
- How would vegetation be impacted by the proposed action?
- Could noxious weeds be introduced to the project area because of the proposed action?
- How would range management be impacted by the proposed action?
- How would visual resources be impacted by the proposed action?
- How would cultural resources be impacted by the proposed action?
- How would paleontological resources be impacted by the proposed action?

Caves and karst, Potash, recreation, potential special designations, and special status species were evaluated, but determined to have no impacts from the proposed action and therefore not evaluated in the environmental analysis.

mitigation measures are required for approval of the ADP's. Residual impacts from the accidental release of hazardous and non-hazardous substances are expected to be less than significant.

3.12 Cumulative Impacts

Cumulative impacts are the combined effect of past projects, specific planned projects, and other reasonably foreseeable future actions within the project study area to which oil and gas exploration and development may add incremental impacts. This includes all actions, not just oil and gas actions that may occur in the area including foreseeable non-federal actions.

The combination of all land use practices across a landscape has the potential to change the visual character, disrupt natural water flow and infiltration, disturb cultural sites, cause minor increases in greenhouse gas emissions, fragment wildlife habitat and contaminate groundwater. However, the likelihood of these impacts occurring is minimized through standard mitigation measures, special Conditions of Approval and ongoing monitoring studies.

All resources are expected to sustain some level of cumulative impacts over time, however these impacts fluctuate with the gradual abandonment and reclamation of wells. As new wells are being drilled, there are others being abandoned and reclaimed. As the oil field plays out, the cumulative impacts will lessen as more areas are reclaimed and less are developed.

4.0 SUPPORTING INFORMATION

4.1 List of Preparers

Prepared by: Adam Davis

Project Planner

Arcadis

Reviewed by: Rachel Cruz

Project Manager

Arcadis

Date: 12/4/2018

The following individuals aided in the preparation of this document:

- Paul Murphy, Natural Resource Specialist BLM-CFO
- Elia Perez, Archaeologist, BLM-CFO
- Wildlife Biologist, BLM-CFO
- Brad Winger, Rangeland Management Specialist, BLM-CFO

4.2 References

- Arcadis U.S., Inc. (Arcadis). 2018. Environmental Field Survey Cotton Draw Development Area. Prepared for Chevron U.S.A., Inc. June 2018.
- Applied Enviro Solutions (AES). 2011. Southeast New Mexico Inventory of Air Pollutant Emissions and Cumulative Air Impact Analysis 2007. BLM. Carlsbad Field Office.
- Belnap, J. and D.A. Gillette. 1997. Disturbance of Biological Soil Crusts: Impacts on Potential Wind Erodibility of Sandy Desert Soils in Southeastern Utah. Land Degradation & Development. 8: 355-362.
- BLM. 1988. Carlsbad Resource Management Plan. Bureau of Land Management, Roswell District, New Mexico. September 1988.
- BLM. 1997. Carlsbad Approved Resource Management Plan Amendment and Record of Decision. Carlsbad Resource Area, Roswell District Office, New Mexico. October 1997.
- BLM. 2008a. National Environmental Policy Act. Handbook H-1790-1. January 2008. 184 p.
- BLM. 2008b. Paleontological Fossil Yield Classification (PFYC) System for Paleontological Resources on Public Lands. Instructional Memorandum 2008-009. October 15, 2007. 11 p.
- BLM. 2009. Assessment and Mitigation of Paleontological Resources. Instructional Memorandum 2009-011. October 10, 2008.
- BLM. 2013. Air Resources Technical Report for Oil and Gas Development in New Mexico, Kansas, Oklahoma, and Texas. New Mexico State Office.
- BLM. 2016. Air Resources Technical Report for Oil and Gas Development. New Mexico, Oklahoma, Texas, and Kansas. BLM New Mexico State Office. January 2016. 71 pp.

- Coffin, A. 2007. From roadkill to road ecology: A review of the ecological effects of roads. Journal of Transport Geography 15:396-406.
- Colborn, Theo, Carol Kwiatkowski, Kim Schultz, and Mary Bachran (Colburn et al.) 2011. Natural Gas Operations from a Public Health Perspective. Human and Ecological Risk Assessment. 17:1039-1056.
- DiTomaso, J. 2000. Invasive weeds in rangelands: Species, impacts, and management. Weed Science 48:255-265.
- EPA. 2011. National Air Toxics Assessment, 2011 NATA Assessment for Cancer, Neurological and Respiratory Risks for Eddy and Lea Counties in New Mexico. [Web Page]. Located at https://www.epa.gov/national-air-toxics-assessment. Accessed: March 7, 2016.
- EPA. 2013a. 2005 National-Scale Air Toxics Assessment. Summary of results by county. [Web page]. Located at https://www.epa.gov/national-air-toxics-assessment/2005-nata-assessment-results. Accessed: March 7, 2016.
- EPA. 2013b. Air Trends: Design Values. [Web page]. Located at https://www.epa.gov/air-trends/air-quality-design-values. Accessed: March 7, 2016.
- EPA. 2015. Counties Designated "Nonattainment" for Clean Air Act's National Ambient Air Quality Standards (NAAQS). [Web Page]. Located at https://www3.epa.gov/airquality/greenbook/mapnpoll.html. Accessed: February 12, 2016.
- Evangelista, P.H., A.W. Crall, and E. Bergquist. 2011. Invasive Plants and their Response to Energy Development. Pages 115-129 *in* Naugle, D.E. ed. Energy Development and Wildlife Conservation in Western North America. Island Press, Washington, D.C. 344 pages.
- Fletcher, S.M. 2012. Risk Assessment of Groundwater Contamination from Hydraulic Fracturing Fluid Spills in Pennsylvania. *Thesis (M.S.)*. Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program. [Web Page]. Located at http://hdl.handle.net/1721.1/72885. Accessed: April 21, 2016.
- Groundwater Protection Council (GWPC) and ALL Consulting (ALL). 2009. Modern Shale Gas Development in the United States: A Primer. Prepared for the U.S. Department of Energy, Office of Fossil Energy, and National Energy Technology Laboratory (NETL). DE-FG26-04NT15455. Oklahoma City, OK. [Web Page]. Located at http://energy.gov/sites/prod/files/2013/03/f0/ShaleGasPrimer_Online_4-2009.pdf. Accessed: April 21, 2016.
- National Oceanic and Atmospheric Administration (NOAA). 2011. NOAA's 1981-2010 Climate Normals. National Climatic Center. Natural Resource Conservation Service (NRCS). 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.
- New Mexico Environment Department (NMED). 2014. 2014-2016 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report. November 18, 2014.
- New Mexico State University (NMSU). 2011. New Mexico Range Plants, Circular 374. Las Cruces, New Mexico. 48pp.
- New Mexico Statutes Annotated (NMSA). 1978. Oil and Gas Act, Sections 70-2-1 et seq. Water Quality Act, Section 74-6-7 et seq.

- Railey, J.A. 2016. Permian Basin Research Design 2016-2026 Volume I: Archaeology and Native American Cultural Resources. SWCA Environmental Consultants, Albuquerque, New Mexico.
- Texas Commission on Environmental Quality (TCEQ). 2014. Air Monitoring Web Site Design Concentrations for Various Pollutants. [Web Page]. Located at https://www.tceq.texas.gov/airquality/monops/sites/mon_sites.html. Accessed: February 12, 2016.
- Trombulak, S.C. and C.A. Frissell. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14(1):18-30.
- URS. 2013. Air Resources Technical Support Document, Carlsbad Field Office, Oil and Gas Resource Management Plan Revision. April. 308 pp.
- U.S. Department of Agriculture (USDA). 1974. Soil Survey for Lea County, New Mexico available at: http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/leaNM1974/leaNM1974.pdf. Accessed September 2017.
- USDA. 2016. Sandy Ecological Site Characteristics. [Web page]. Located at https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?approved=yes&repType=regular&id=R0 42XA051NM. Accessed: July 2018.
- USDA. 2018. Natural Resources Conservation Service. Soil Surveys by State available at www.nrcs.usda.gov. Accessed April 2018.
- WeatherSpark. 2016. Average Weather for Carlsbad, NM, USA. [Web Page]. Located at https://weatherspark.com/averages/29937/Carlsbad-New-Mexico-United-States. Accessed: February 12, 2016
- Wenzel, C. 2012. A Case Study—Hydraulic Fracturing Geography: The Case of the Eagle Ford Shale, TX, USA. *Thesis* (*M.S.*). Texas State University-San Marcos, Department of Geography. [Web Page]. Located at https://digital.library.txstate.edu/handle/10877/4247. Accessed: April 21, 2016.

Venegas, Victoria, EMNRD

From: Venegas, Victoria, EMNRD

Sent: Wednesday, November 8, 2023 11:06 AM

To: Vallejo, Tony

Subject: COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H,

807H, 808H, 809H) FACILITY ID [fVV2331238093].

Attachments: C-144 COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H,

309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093].pdf

COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093].

Good morning Mr. Vallejo,

NMOCD has reviewed [4323] CHEVRON USA INC's, Application and Form C-144 received on 11/07/2023, for the proposed COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Temporary Pit with non-low chloride drilling fluid located in Unit Letter A Section 03, Township 25S Range 32E, Lea County, New Mexico.

[4323] CHEVRON USA INC in the Application requested the following two variances from the requirements of 19.15.17 NMAC – Pits, Closed-Loop Systems, Below-Grade Tanks and Sumps:

[4323] CHEVRON USA INC proposes a closure timeline based on the date of the first occurrence of Rig Down Move Out (RDMO). RDMO is defined as the activity when the drilling rig is moved off location. Typically, RDMO occurs after the completion of drilling the last well on the pad. On pads where the Operator plans to return to the pad, multiple RDMO dates occur. This variance does not consider subsequent RDMO affecting the closure timeline dates after the first RDMO. The Operator proposes dewatering the pit within 30 days of RDMO and proposes closing the pits within 1 year of RDMO.

1. [4323] CHEVRON USA INC proposes the use of 40-mil High-Density Polyethylene (HDPE) Liner for Temporary Pit in lieu of 20 mil string reinforced Linear Low-Density Polyethylene (LLDPE) Liner.

Subject to the conditions specified below, NMOCD approves the following variances:

- 1. The variance from 19.15.17.7.R NMAC, which requires that a pit be closed no later than six (6) months after removal of the drilling or workover rig from the first well using the pit.
- 2. The variance from 19.15.17.11.F.3 NMAC, which requires the pit to be equipped with a 20- mil string reinforced LLDPE or equivalent liner material that the appropriate division district office approves.

[4323] CHEVRON USA INC shall comply with the following conditions of approval:

- 1. [4323] CHEVRON USA INC shall design, construct, operate, maintain, and close COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit in compliance with 19.15.17 NMAC Pits, Closed-Loop Systems, Below-Grade-Tanks and Sumps.
- 2. The design and construction plan, included in the Application, is approved. [4323] CHEVRON USA INC shall design and construct COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit as described in the approved plan. [4323] CHEVRON USA INC shall apply for a permit modification for any change to the plan.
- 3. The closure plan, included as Appendix F of the Application, is approved. [4323] CHEVRON USA INC shall close the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY

- ID [fVV2331238093] Pit as described in the approved plan. [4323] CHEVRON USA INC shall apply for a permit modification for any change to the plan.
- 4. Prior to commencing construction of the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit, [4323] CHEVRON USA INC shall submit to OCD a Form C-102, including a certified survey, as required by 19.15.17.9(C)(2) NMAC via OCD Online.
- 5. [4323] CHEVRON USA INC shall inspect COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit at least once per month during construction for compliance with the approved design and construction plan. [4323] CHEVRON USA INC shall maintain a log of each inspection and provide a copy of the log through OCD Online for each quarter beginning fifteen days (15) after the end of the quarter during construction.
- 6. If [4323] CHEVRON USA INC encounters a void or collapse during construction, operation, maintenance, or closure of the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit, [4323] CHEVRON USA INC shall immediately cease the activity, notify OCD through OCD Online, within twenty-four (24) hours, and take corrective action approved by OCD.
- 7. No later than seventy-two (72) hours prior to installing the 40-mil HDPE liner, [4323] CHEVRON USA INC shall notify the OCD through OCD Online.
- 8. [4323] CHEVRON USA INC shall inspect COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit at least once per day for liner integrity, freeboard height, fluid level, debris, migratory birds and other wildlife, and releases while the drilling or workover rig is on location, and once per week after removal of the rig but prior to dewatering the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit. [4323] CHEVRON USA INC shall maintain a log of each inspection and provide a copy of the log through OCD Online for each quarter beginning fifteen days (15) after the end of the quarter during construction.
- 9. [4323] CHEVRON USA INC shall maintain no less than two (2) feet of freeboard at the Pit at all times.
- 10. [4323] CHEVRON USA INC shall construct and maintain a fence around the perimeter of the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit at all times after the completion of construction.
- 11. No later than thirty (30) days after the date of any of the following events, [4323] CHEVRON USA INC shall drain and dewater the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit:
 - a. The release of the drilling or workover rig from the last well as reported to the OCD on Form C-105; or
 - b. The removal of the drilling or workover rig from the pad if the well is not completed; or
 - c. If the drilling or workover rig is located at the pad, one hundred eight one (181) days after the rig became inactive.
- 12. No later than six (6) months after the date of any of the following events, [4323] CHEVRON USA INC shall close COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093]:
 - a. The release of the drilling or workover rig from the last well as reported to the OCD on Form C-105; or
 - b. The removal of the drilling or workover rig from the pad if the well is not completed; or
 - c. If the drilling or workover rig is located at the pad, one hundred eight one (181) days after the rig became inactive.
- 13. After [4323] CHEVRON USA INC drains and dewaters COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit, it shall inspect the Pit for liner integrity, fluid level, debris, migratory birds and other wildlife, and releases once per week until the installation of the top geomembrane cover and the placement of the cover soils in accordance with the closure plan. [4323] CHEVRON USA INC shall maintain a log of each inspection and provide a copy of the log to OCD via OCD Online for each quarter beginning fifteen days (15) days after the end of the quarter in which the Pit is dewatered and drained. If [4323] CHEVRON USA INC observes fluid in the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit during an inspection, it shall notify OCD's Environmental Bureau at through OCD Online, remove the fluid immediately, and submit a report characterizing the nature, volume, and source of the fluid via OCD Online.

- 14. After [4323] CHEVRON USA INC has drained and dewatered COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Pit, [4323] CHEVRON USA INC shall not discharge fluid into the Pit for any purpose except for an emergency as provided in 19.15.17.14 NMAC.
- 15. [4323] CHEVRON USA INC shall comply with 19.15.29 NMAC Releases for any release related to or associated with the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093].
- 16. No later than seventy-two (72) hours prior to installing the top geomembrane cover and cover soil on the COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093], [4323] CHEVRON USA INC shall notify the OCD via OCD Online.

This letter constitutes NMOCD's conditions of approval of the variances. Please reference COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093], in all future communications

Please let me know if you have any additional questions or concerns. Regards,

Victoria Venegas • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave. Artesia, NM 88210
(575) 909-0269 | Victoria.Venegas@emnrd.nm.gov

https://www.emnrd.nm.gov/ocd/

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 283468

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	283468
	Action Type:
	[C-144] Temporary Pit Plan (C-144T)

CONDITIONS

Created By	Condition	Condition Date
vvenegas	NMOCD has reviewed and approved [4323] CHEVRON USA INC's, Application and Form C-144 received on 11/07/2023, for the proposed COTTON DRAW PAD 305 (707H, 207H, 305H, 708H, 208H, 709H, 306H, 209H, 309H, 807H, 808H, 809H) FACILITY ID [fVV2331238093] Temporary Pit with non-low chloride drilling fluid located in Unit Letter A Section 03, Township 25S Range 32E, Lea County, New Mexico.	11/8/2023