Rule 34 Registration: Volume 1 Legion Water Service LLC Spyglass RF & Containments Section 8, T19S, R33E, Lea County

- Transmittal Letter & AST Closure Cost Estimate
- Siting Criteria Demonstration with Plates & Appendices

View southeast from well USGS-15469 that lies less than 500 feet from the boundary of the proposed Recycling Facility and Containments area showing the nature of the landscape and the fact the well is not in use.

Prepared for: Legion Water Operating LLC Denver, Colorado

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW F-142 Albuquerque, New Mexico

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

May 20, 2024

Ms. Leigh Barr EMNRD - Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505 Via E-Mail Ms. Victoria Venegas NMOCD - District 2 811 S. First St. Artesia, NM 88210 Via E-Mail

RE: Legion Water Services LLC Spyglass Recycling Facility, In-ground Containment & ASTs Section 8, T19S, R33E, Lea County

Dear Ms. Barr and Ms. Venegas:

On behalf of Legion Water Services, LLC, (Legion) R.T. Hicks Consultants Ltd. submits a C-147 *permit* for the above-referenced ASTs. Construction of the in-ground containment will begin in a few weeks and produced water will flow into the containments after late-May/early June.

Volume 1 of the package contains:

- This letter
- AST Closure Cost Estimate for ASTs and In-Ground containments
- Siting criteria demonstration for the in-ground and AST containment

Volume 2 contains:

- C-147 Form to register the in-ground containment for Legion Water Services,
- Stamped Design Drawings, and
- Recently Approved Plans for Design/Construction, O&M, Closure

Volume 3 is nearly identical to the Silverback Dagger AST document as the AST design is the same as is the setup contractor. Please find:

- C-147 Form and AST Design Sketch
- Stamped Design Drawings
- Design/Construction Plan
- O&M & Closure Plans
- Set Up SOP
- Variances and Equivalency Demonstrations

Legion will upload the permit package to OCD via the OCD.Online portal. In compliance with 19.15.34.10 of the Rule, Legion provided the C-147 to the surface owner and proof of this notification will also be uploaded to the portal.

May 20, 2024 Page 2

If you have any questions or concerns regarding this permit or the attached C-147, please contact me. As always, we appreciate your work ethic and diligence.

Sincerely, R.T. Hicks Consultants

Randall T. Hicks, PG Principal

Copy: Legion Water Services Cascade Services

Dulo 34

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

SPYGLASS AST CONTAINMENTS

Financial Assurance Cost Estimate

Attached is the cost estimate for reclamation of the two Spyglass recycling AST containments. **TOTAL BONDING IS \$65,000.00**.

AST CONTAINMENTs

Total estimated cost for closure, reclamation, and restoration of the facility (AST, fencing, etc.) pursuant to Rule 34 is **\$65,000** based upon the work elements in the spreadsheet (below). We used the same estimate as previously approved AST Containments. As described in the transmittal letter, the AST Containment will lie on working pad for the In-ground containments and the cost for reclamation of this pad is included in the estimate above.

ITEM NO.	ITEM DESCRIPTION	UNITS	QTY	UNIT PRICE	Rule 34 TOTAL PRICE
	Spyglass AST				
	Containment				
	Removal of AST and Liner				
	Disposal	1	2	\$30,000.00	60,000.00
	Assess soil for impacts	1	2	\$2,500.00	5000.00
	Facility Decommission Site Subtotal:				\$65,500.00
SPYGLA	SS IN-GROUND CONTAINMENTS	8			
The attacl	ned two estimates show				
Cost for l	iner removal:			\$905,760	.00
Cost for c	losure testing/report plus reclamation			\$653,104	.00
Total Bor	nd			\$1,624,36	54.00

Cascade Services, LLC

www.cascadeservicesllc.com

.

Estimate

ADDRESS	SHIP TO	ESTIMATE	1551
Braden Harris	Braden Harris	DATE	04/26/2024
Avant Operating LLC	Avant Operating LLC	EXPIRATION	05/24/2024
		DATE	

CUSTOMER PROJECT NAME

Spy Glass Civil Closure

DATE		DESCRIPTION	QTY	RATE	AMOUNT
	Civil Construction	This is pricing a package to reclaim the triple 750K pond cells Mobilize equipment to site. Existing Ponds estimated dimensions (3) 610' x 460' floor (3) 700' x 550' outside to outside 17' top of wall Average 18' deep 3:1 slopes Dirt reclaim of pond consist of- Bury all material (Caliche, Gypsum, Sand, ect.) below ground level, backfill pond area with uncontaminated soil from pond walls. Pond area will be reclaimed to natural elevations and water flow patterns. All stockpiled strippings will be put down last to ensure ground has been completely returned to native design.	1	605,384.00	605,384.00
	Civil Construction	Environmental soil sampling This will include digging 6 sample locations for each containment. One composite sample from 0-4 feet below surface and one discrete sample from each location at 4.25 feet Cost include trip, labor, materials, and laboratory testing	1	2,587.00	2,587.00
	Civil Construction	Environmental Soil testing Before earthwork can begin the soil must be tested for contamination in case of liner leakage. Cost include trip, labor, materials, and	1	4,050.00	4,050.00

	laboratory testi of 27 tests.	ng			
Civil Construction	Seed will be a County NM	ding of pond area native mix for Lea ase of seed mix and	1	4,500.00	4,500.00
Fence		ed at 4,575 ft per pond emoval of all posts, bric,	1	36,583.00	36,583.00
If pumping is needed due to weather conditions, a \$	350 daily fee will	SUBTOTAL			653,104.00
be charged on final invoice.		TAX			0.00
This estimate does not include tax. Tax may be add agreement terms and installation location. unless cu valid tax exemption document.		TOTAL			\$653,104.00

Questions? Email AR@Cascadeservicesllc.com

Accepted By

Accepted Date

Cascade Services, LLC

www.cascadeservicesllc.com

Estimate

ADDRESS	SHIP TO	ESTIMATE	1552
Braden Harris	Braden Harris	DATE	04/26/2024
Avant Operating LLC	Avant Operating LLC	EXPIRATION	05/26/2024
		DATE	

CUSTOMER PROJECT NAME

Spy Glass Liner Closure

AMOUNT	RATE	QTY	Ν	DESCRIPTION		DATE
905,760.00	0.17	5,328,000	l dispose of all four layers pits	Remove and out all three p	Service	
905,760.00			SUBTOTAL	ns, a \$350 daily fee will	g is needed due to weather conditions	If pumping is
0.00			TAX			be charged
\$905,760.00			TOTAL		nate does not include tax. Tax may b nt terms and installation location. unle exemption document.	agreement

Questions? Email AR@Cascadeservicesllc.com

Accepted By

Accepted Date

.

SITING CRITERIA DEMONSTRATION

Distance to Groundwater

Plates 1a, Plate 2, and the discussion below demonstrates that groundwater (fresh water as defined by NMOCD Rules) at the Spyglass RF & Containments (the Site) is greater than 100 feet beneath the area of interest.

Plate 1 is a topographic map that shows:

- 1. The Site in which the containments will be placed identified by the blue stippled polygon.
- 2. Water wells from the OSE database as a blue triangle inside colored circles. OSE wells are often mislocated in the WATERS database as older wells are plotted in the center of the quarter, quarter, quarter, of the Section Township and Range. Additionally, the OSE database can include locations of proposed wells (i.e., permit applications). We provide no depth to water data for the OSE wells as these data do not represent static water levels and are often misleading. Some locations in the OSE database plotted on Plate 1 are permits and several are dry holes.
- 3. Water wells from the USGS database as large triangles color-coded to the formation from which the well draws water. Depth to water and the date of measurement are presented in the Plate.
- 4. Water wells, which are not documented in the public databases but were identified by field inspection or other published reports as colored squares (Misc. well database).

Plate 2 is an area topographic and geologic map that shows:

- 1. The recycling containment area identified by the blue stippled polygon with the surface elevation noted.
- 2. Water wells measured by the USGS, the year of the measurement and the calculated elevation of the groundwater surface.
- 3. Water wells measured by professionals and documented in published reports or by staff of Hicks Consultants (Misc.).

Hydrogeology

As shown in Plates 1 and 2, the Triassic Upper Chinle Formation (T(r)cu) crops out in the southwest quadrant of the map, Quaternary piedmont deposits are exposed on the eastern, southern, and western margins of the maps. The surface geology at the containment site is Quaternary eolian and piedmont deposits (Qe/Qp).

We selected the seven driller's logs of relatively decent quality are in the NM OSE database around the Spyglass RF location. The data from the logs are summarized below with the closest well (CP-1967) listed first and others presented in a clockwise fashion below. These wells and other are in Appendix Well Logs and USGS Data .

- CP-1967 is southwest of the site and presents a mediocre quality log of a monitoring well boring to 110 feet with a screened interval from 90-110 feet that was drilled on June 13, 2023. Plugging occurred on June 20th and the plugging report indicates the boring was dry. The lithology is dominantly sand with some sandy clay. Typical alluvial fill.
- CP-1935 is west-northwest of the site and was drilled on December 21, 2022. This dry boring to 101 feet. The log for this boring appears good and describes
 tan to reddish brown sand to 32 feet

© 2024 R.T. Hicks Consultants, Ltd. Page 1

SITING CRITERIA (19.15.34.11 NMAC) LEGION WATER SERVICES LLC – SPYGLASS RF & CONTAINMENTS

- From 32-75 feet the log describes reddish brown semi-consolidated fine grained sand that may be weathered Triassic Chinle red beds.
- From 75-101 feet is stiff reddish-brown clay that is probably Chinle bedrock
- CP-1857 is another dry boring to 107 feet that is due north of the site. The log is good and is like those described above:
 - From 0-59 feet is tannish-brown alluvium with some caliche
 - From 59-107 is maroon, stiff clay with some fine sand, which is typical Chinle
- CP-875 is a dry boring drilled in January 1998 to a depth of 200 feet . We driller's log describes
 - o 0-63 feet as alluvium composed of sand and caliche.
 - o 63-70 feet is probably weathered Chinle
 - 70-200 feet is Chinle red bed
- L-7213 is a water well drilled in May 1974. The driller's log describes a water sand at 110 feet. The lithology described is alluvial sand and gravel to 160 feet that is overlain by 24 feet of topsoil and caliche. No Chinle encountered in this well.
- CP-1865 is mapped as two PODs. This is a 2-inch PVC well drilled to 105 feet is clearly a monitoring boring. This dry hole exhibits the following lithology
 - 0-21 feet is soil and alluvium
 - o 21-105 feet is Chinle clay
- L-7023 is a 262-foot water well drilled in November 1970. This well is south of the site, but there is no evidence of this well in any air photos. Cactus Drilling is the well owner and the USGS Topographic map shows a "drill hole" (oil well) near this site. We believe Cactus Drilling caused construction of this well for drilling fluid for drilling this Drill Hole. There is no record of this drill hole in the OCD database. The driller provides a relatively poor lithologic description that suggests to us:
 - 0-30 feet is caliche or sand and caliche
 - 30-90 feet if described as brown tight sand that may be the top of the Chinle (see discussion below)
 - 90-185 does not contain useable water and could be dry brown sand/clay of the Chinle
 - o 185-214, described as sand water is the uppermost water-bearing zone
 - o 214-262 is sand, sand and gravel and sandy clay, which is Chinle

Groundwater Report 6¹ provides a map of the area showing the elevation of the uppermost red bed of the Chinle. Plate 1b presents this map and shows the elevation of the top of the Chinle is about 3510 at L-7023. Given that this location in the OSE database has a surface elevation of about 3568 feet AST, the top of the Chinle red bed would be about (3568-3510=) 58 feet. We suggest that the water sand at 185-214 feet and the underlying sand and gravel is the Santa Rosa Sandstone of the Chinle, the uppermost water-bearing zone in this area.

The data permit a conclusion that the alluvium and caliche overlying the Chinle Formation in the area around the Spyglass RF site is unsaturated. The water bearing units of the Chinle are deep and probably confined (artesian).

¹ <u>https://www.nrc.gov/docs/ML0424/ML042430324.pdf</u> or https://geoinfo.nmt.edu/publications/water/gw/home.cfml?volume=6

^{© 2024} R.T. Hicks Consultants, Ltd. Page 2

Groundwater Data

Plate 2 presents groundwater elevation data closest to the Spyglass RF & containments. The potentiometric surface contours are based upon data from the Chinle in the western and northern area of the map and alluvial wells in the southeast quadrant. Locally,

The closest mapped water well to the site is USGS-15469, which is less than 500 feet from the northwest edge of the project site. The USGS measured this well in 2015, which the USGS database indicates is 131 feet deep and is completed in the alluvium. Examination of the historical data in the Appendix shows the 2015 elevation is about 170 feet higher than the 1997 measurement. This variation is concerning, and we plan to obtain a water level measurement of this well when possible. We did not use this data for our potentiometric surface shown in Plate 2.

USGS-15431 is 1.25 miles west of the site and provides a groundwater measurement for the same date in 2015 as USGS-15469. Groundwater elevation in this well varies by about 2 feet over the 25-year period of record (2015-1981). The USGS database states the well is 850 feet deep and draws water from the Santa Rosa Sandstone.

USGS-15327 is almost 5 miles south of the Spyglass project and was measured by the USGS in December of 2015. Because this well lies between Laguna Tonto and Laguna Gatuna, we expect seepage from the lakes could impact groundwater elevation. The observed decline in groundwater elevation after 2000 could be due to natural causes or to pumping of the Santa Rosa for stimulation of horizontal wells that accelerated after 2010.

Examination of Plate 2 shows USGS wells drawing water from the Santa Rosa Sandstone are interspersed with wells tapping the Alluvium across the mapped area. These data from the USGS contrasts with the top of Chinle map of Ground Water Report 6 and the lithology of driller's logs described above. We suggest that the wells within a few miles of the Spyglass site that the USGS states are alluvial wells tap a localized saturated sandstone in the Chinle. Alluvial wells exist in the southeast quadrant of Plate 2.

Plate presents data that we know are accurate to the best of our knowledge, except where noted above. We employed the most recent and nearest data available, and we conclude:

- Localized, thin, groundwater zones probably exist in thin sandstones of the upper Chinle Formation. USGS-15469 may be such a well.
- The uppermost regional beneath the Spyglass RF and containments resides in basal unit of the Chinle, the Santa Rosa Sandstone
- Alluvium overlying the Chinle around the Spyglass RF & containments is dry, as is the upper 100+ feet of the Chinle.
- Saturated units within the Chinle beneath the Spyglass RF & containments are confined.
- The elevation of groundwater beneath the Spyglass RF & containments is probably a thin sandstone lens in the Chinle Formation that is penetrated by USGS-15469. The regional aquifer (Santa Rosa Sandstone) shows a groundwater elevation of about 65 feet lower in 2015 (USGS-15431)
- The most conservative estimate of depth to groundwater beneath the AST containments is more than (3655-3536=) 119 feet.

© 2024 R.T. Hicks Consultants, Ltd. Page 3

Distance to Municipal Boundaries and Fresh Water Fields

Plate 3 demonstrates that the Spyglass RF & containments are not within incorporated municipal boundaries or within defined municipal fresh water well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.

- The closest municipality is Monument, approximately 27 miles east.
- The closest mapped public wells belong to the Monument Water Users Coop. These municipal supply wells are about 27 miles distant, north of Monument.
- The NMED database of water supply systems show an active site about 9 miles northeast. A well and storage tank appear on Google Earth, thus this location may support a public water supply.

Distance to Subsurface Mines

Plate 4 and our general reconnaissance of the Spyglass RF & containments demonstrate that the nearest mines are caliche pits. This location is not within an area overlying a subsurface mine.

• An abandoned caliche pit that has not operated for at least the age of the topographic map (probably decades) is about 750 feet west (see small surface scar on Plate 8)

Distance to High or Critical Karst Areas

Plate 5 shows the Spyglass RF & containments are not within mapped zone of high or critical Karst with respect to BLM mapped areas.

- The proposed containments are located within a "low" potential karst area.
- The nearest "high" or "critical" potential karst area is located approximately 15 miles west of the proposed containments.
- We observed no evidence of solution voids or unstable ground near the site during the field inspection.

Distance to 100-Year Floodplain

Plate 6 demonstrates that the Spyglass RF & Containments are within Zone D as designated by the Federal Emergency Management Agency with respect to the Flood Insurance Rate 100-Year Floodplain.

- FEMA describes the location as an area with possible but undetermined flood hazards. No flood hazard analysis has been conducted.
- Our field inspection and examination of the topography permits a conclusion that the location is not within any floodplain and has low risk for flooding.
- The nearest mapped flood hazard is about 14 miles west and is associated with Hackberry Lake.

Distance to Surface Water

Plate 7 shows the closest surface water bodies are three mapped Lakes/Ponds that are about 1 mile west of the Spyglass RF & containments.

- These mapped water bodies are shown on the USGS topographic map as rectangular impoundments (perhaps earthen lined) associated with the Tonto Oil Field.
- The site visit and photographs demonstrate that the recycling project area is not within 300 feet of a continuously flowing watercourse or 200-feet of any other significant

© 2024 R.T. Hicks Consultants, Ltd. Page 4 watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark) or spring.

Distance to Permanent Residence or Structures

Plate 8 and the site visit demonstrates that the location is not within 1000 feet from an occupied permanent residence, school, hospital, institution, church, or other structure in existence at the time of initial application.

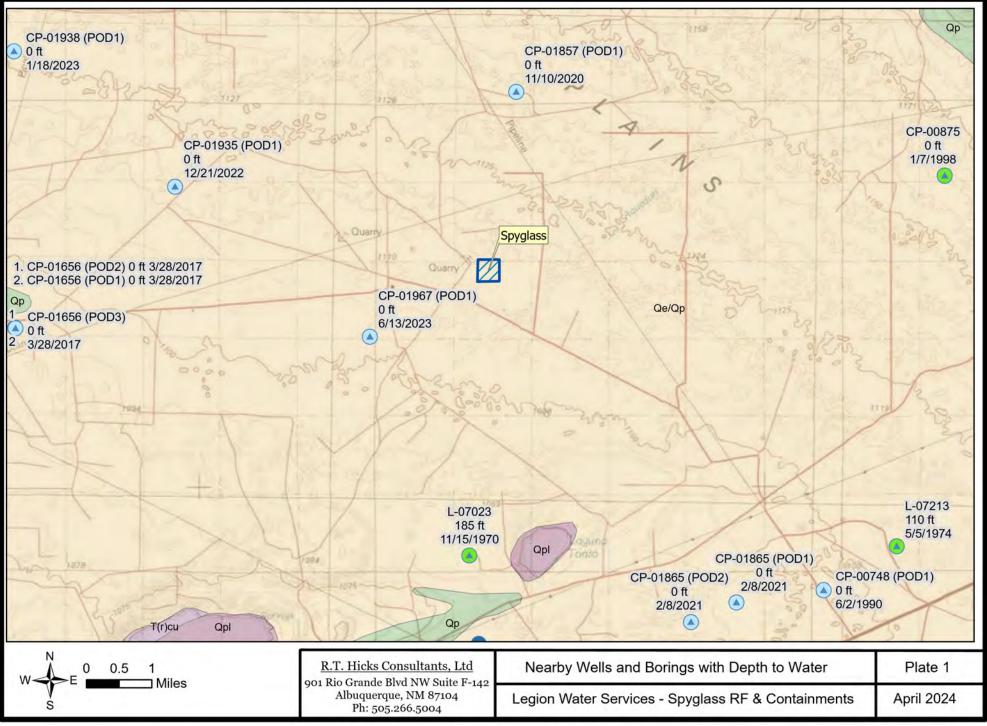
- The nearest structures are a well pads (active and reclaimed) and lease roads.
- No residences or other structures are in the area.
- USGS-15469 is less than 500 feet west of the edge of the project area. This map is not in use (see Site Photos)

Distance to Non-Public Water Supply

Plates 1 and 7 demonstrate that the Spyglass RF & containments are not within 500 horizontal feet of a spring or fresh water well used for domestic or stock watering purposes, in existence at the time of initial application.

- Plate 1 shows the locations of all area water wells, active or plugged.
- There are no domestic water wells located within 1,000 feet of the area of interest.
- No springs were identified within the mapping area (see Plate 7)
- USGS-15469 is not currently being used and is more than 500 feet from the anchor trenches of the proposed containments and the proposed ASTs.

Distance to Wetlands

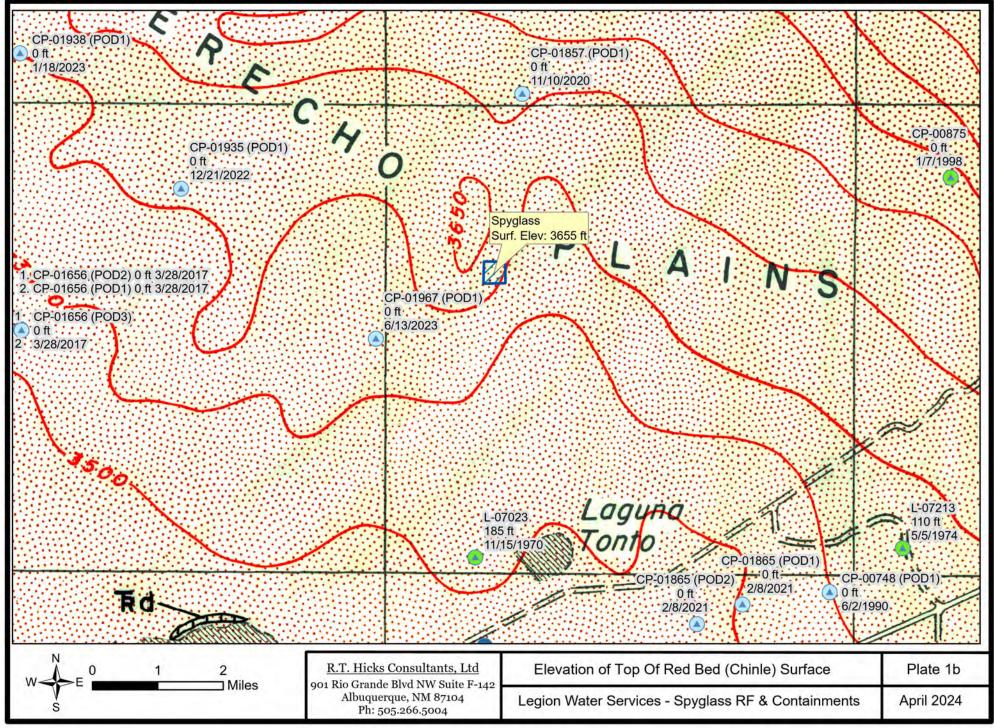

Plate 9 demonstrates the Spyglass RF & Containments are not within 500 feet of mapped wetlands using the USA database.

• The nearest mapped wetland is associated with Laguna Tonto on the southern margin of Plate 9

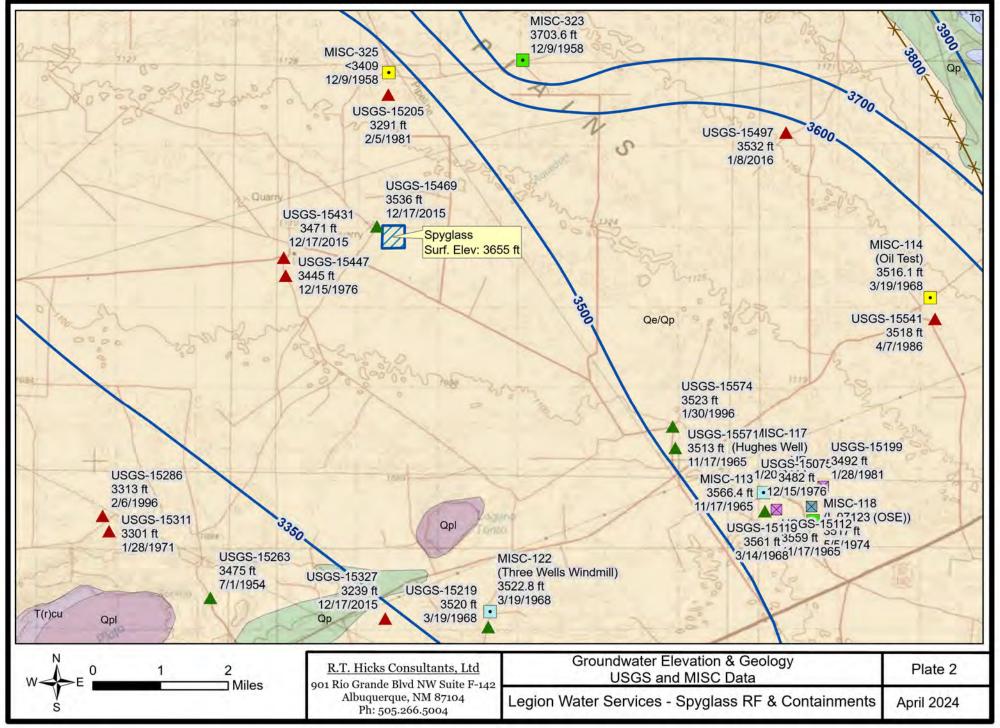
•

SITING CRITERIA DEMONSTRATION PLATES

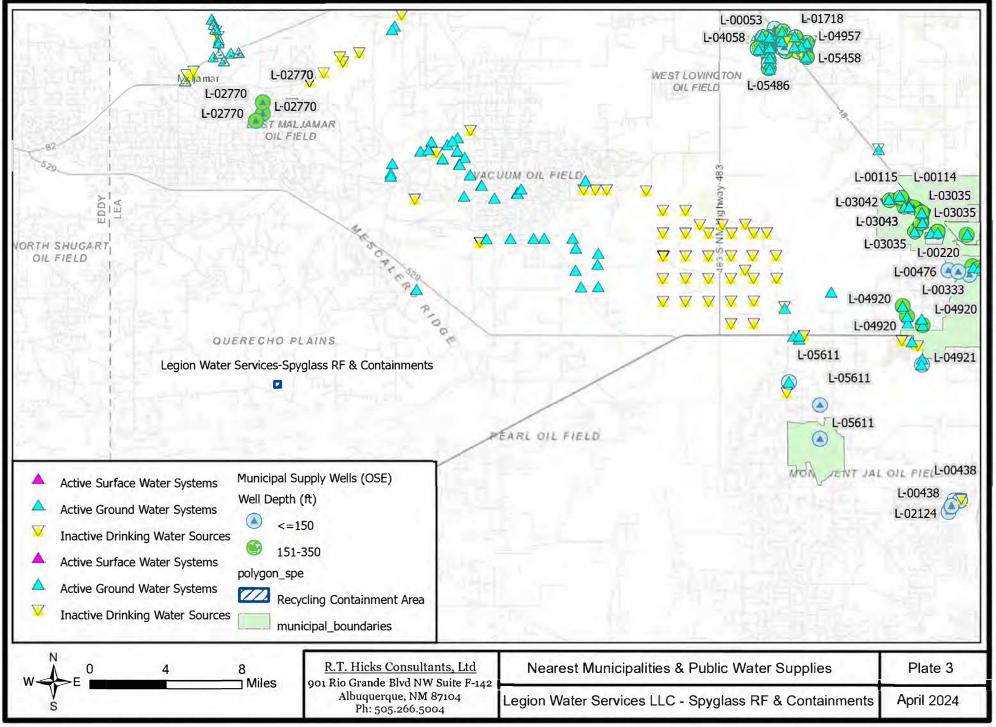
Received by OCD: 5/21/2024 2:02:19 PM

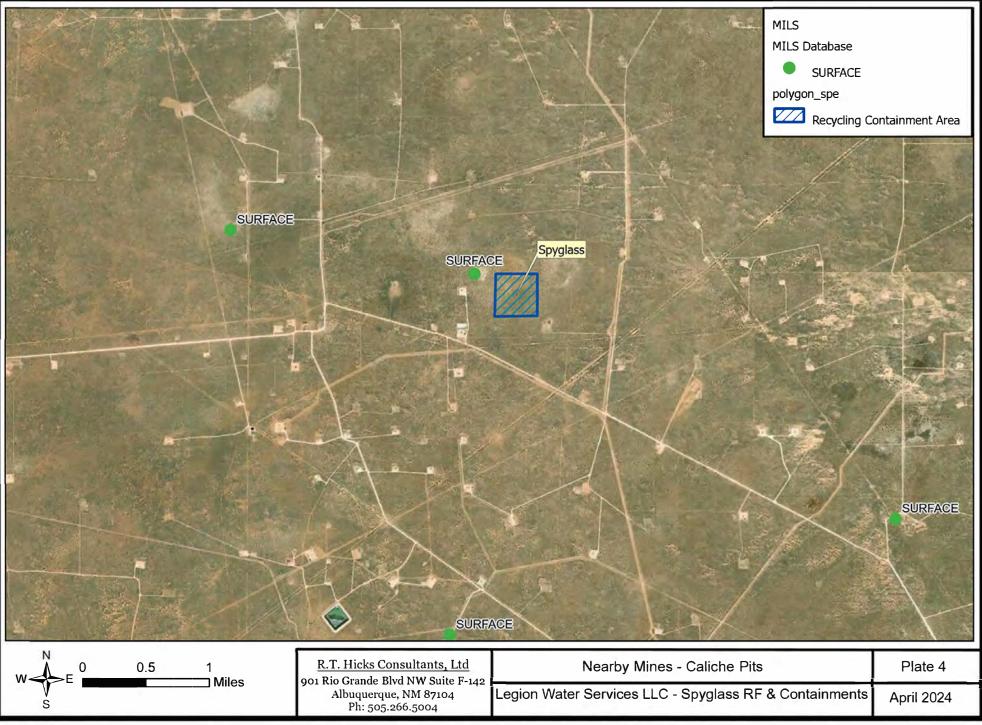


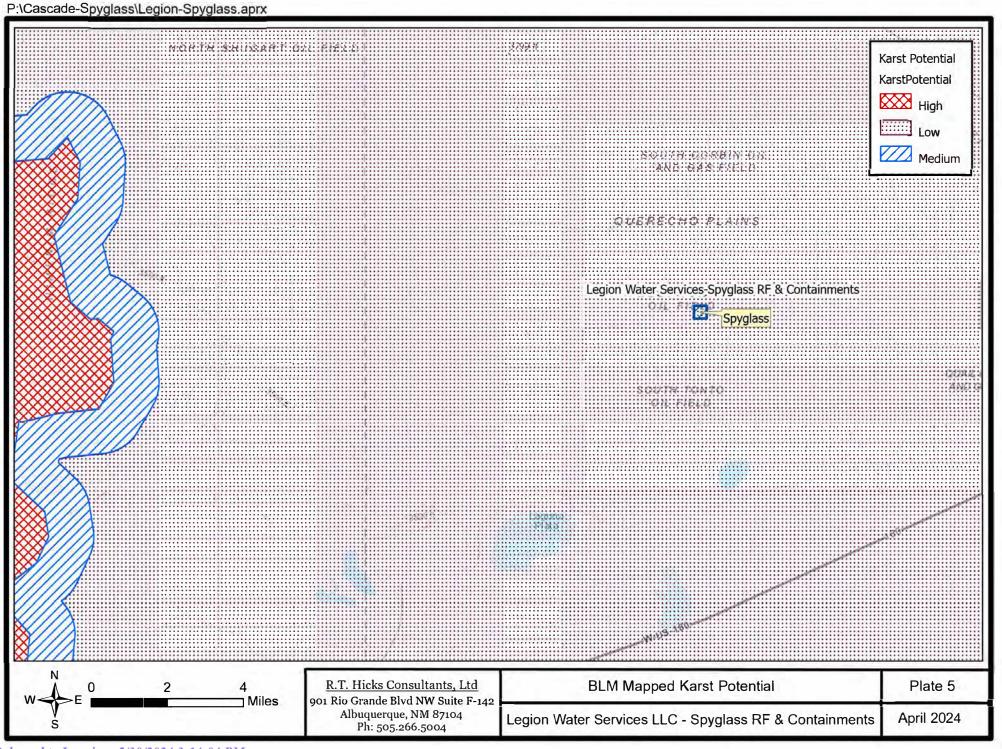
Released to Imaging: 5/30/2024 3:14:04 PM


Page	16	50	f 1	46
		J	, -	

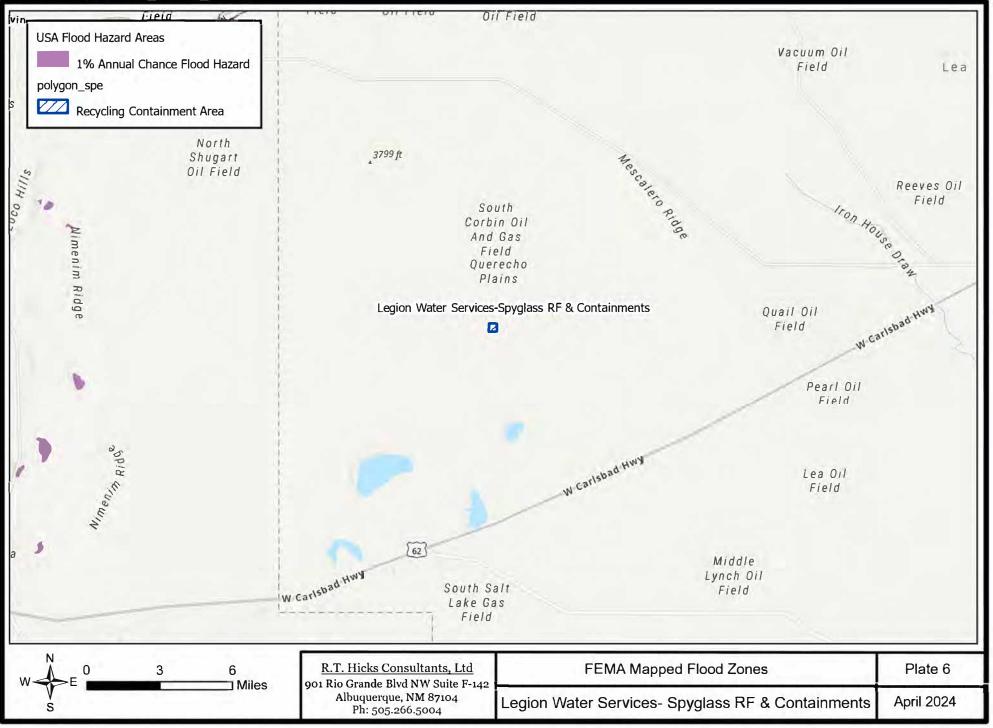
Aquife	r Code, Well Status
	Alluvium/Bolsom
	Alluviu/Bolsom, Site was being pumped.
*	Chinle
	Santa Rosa
	<null>, Site was being pumped.</null>
Misc.	Nater Wells (GW Elev, Date)
Well [epth (ft)
•	No Data
•	<= 150
	151 - 350
NM_G	eology
Map L	nit, Description
	Qe/Qp, Quaternary-Eolian Piedmont Deposits
	Qp, Quaternary-Piedmont Alluvial Deposits, Qp, Quaternary-Piedmont Alluvial Deposits
	Qpl, Quaternary-Lacustrine and Playa Deposits, Qpl, Quaternary-Lacustrine and Playa Deposits
	T(r)cu,Triassic-Upper Chinle Group,T(r)cu,Triassic-Upper Chinle Group
	To, Tertiary-Ogallala Formation, To, Tertiary-Ogallala Formation


. Hicks Consultants, Ltd Grande Blvd NW Suite F-142	Plate 1 and 2 Legend	
	Legion Water Services - Spyglass RF & Containments	April 2024

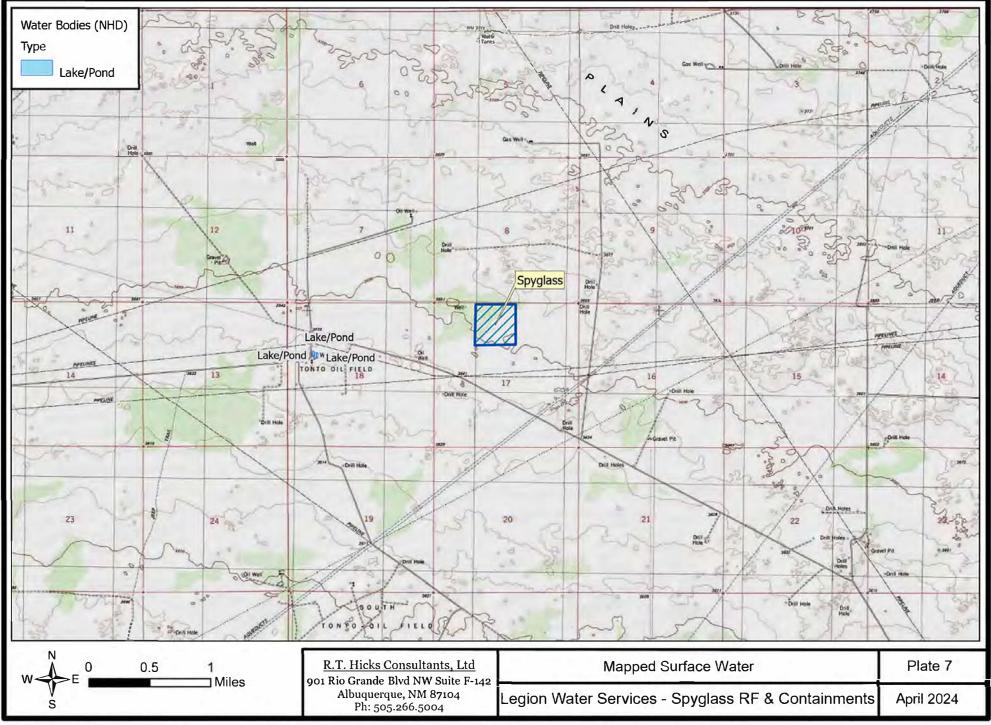

Released to Imaging: 5/30/2024 3:14:04 PM



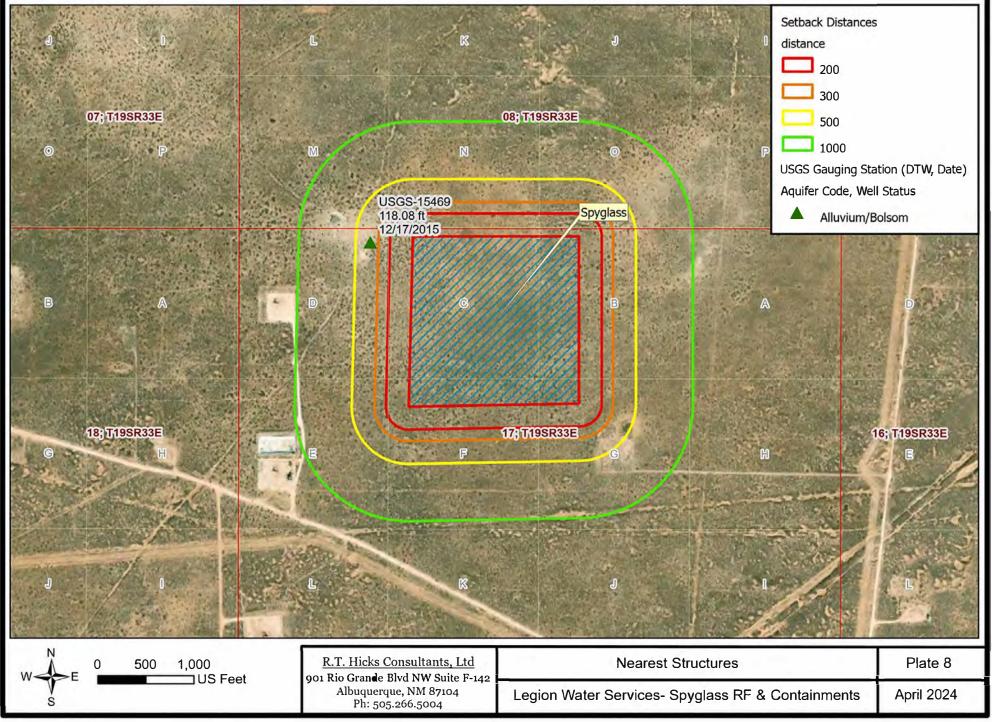
Released to Imaging: 5/30/2024 3:14:04 PM

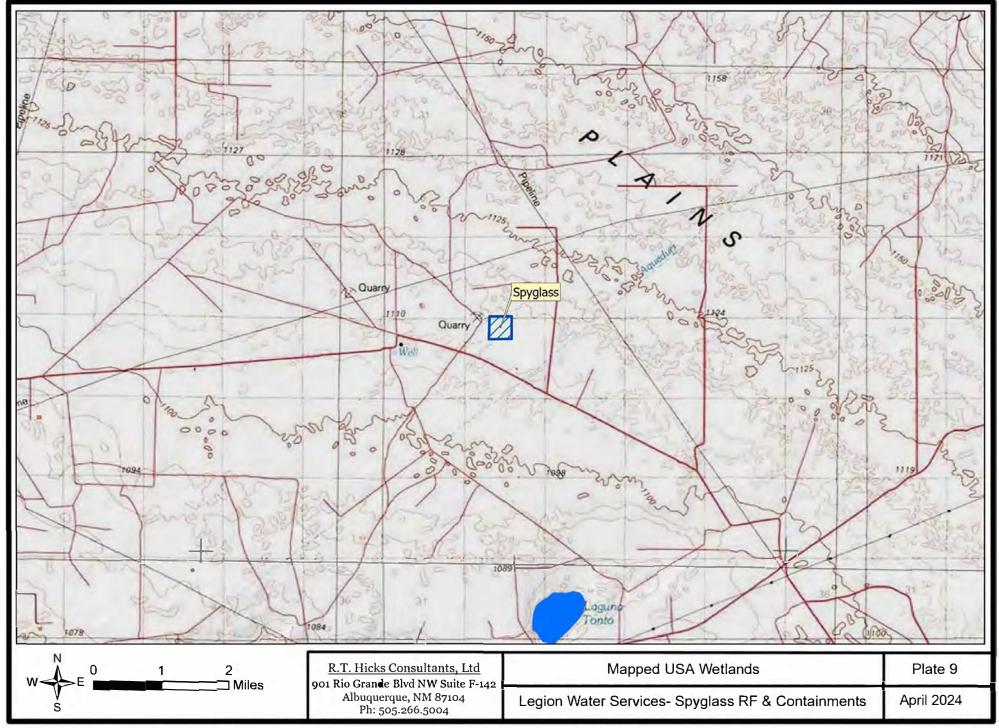


Released to Imaging: 5/30/2024 3:14:04 PM



Released to Imaging: 5/30/2024 3:14:04 PM




Released to Imaging: 5/30/2024 3:14:04 PM

Released to Imaging: 5/30/2024 3:14:04 PM

Released to Imaging: 5/30/2024 3:14:04 PM

•

APPENDIX WELL LOGS & USGS DATA

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO. (CP-01967 PC	WELL NO).)	WELL TAG ID NO.		OSE FILE NO(S). CP-	1967	
OCATI	WELL OWNER Hearthstone	NAME(S Operation) ng, LLC			PHONE (OPTI	ONAL)		
WELLL	WELL OWNER 600 N. Marie	MAILING	G ADDRESS Suite 1000		CITY Midland		TX 79701	ZIP	
1. GENERAL AND WELL LOCATION	WELL LOCATION (FROM GPS) DESCRIPTION	LO	TITUDE	GREES MINUTES 32 39 -103 42 STREET ADDRESS AND COMMON	SECONDS 10.64 N 46 W LANDMARKS - PLS	* DATUM RE	REQUIRED: ONE TEN QUIRED: WGS 84 WNSHJIP, RANGE) WH		
-	LICENSE NO. WD-16	70	NAME OF LICENSED	DRILLER Kenny Cooper		_	NAME OF WELL DR	ILLING COMPANY HCI Drilling	
	DRILLING STA 06/13/20	ARTED 023	DRILLING ENDED 06/13/2023	DEPTH OF COMPLETED WELL (FT 110') BORE HO	LE DEPTH (FT) 110'	DEPTH WATER FIRS	ST ENCOUNTERED (FT) N/A	
N	COMPLETED	WELL IS:	ARTESIAN *add Centralizer info be	DRY HOLE SHALLOW	V (UNCONFINED)		L WATER LEVEL PLETED WELL	DATE STATIC	MEASURED
ATIO	DRILLING FLU	JID:	🖌 AIR	MUD ADDITIVE	ES – SPECIFY:			UN ····	
RM	DRILLING ME	THOD: 🔽	ROTARY 🗌 HAMM	MER 🗌 CABLE TOOL 🗌 OTHE	R – SPECIFY:		CHECK INSTAL	HERE IE PITLESS ADA	PTER IS
INFO	DEPTH (f	eet bgl)	BORE HOLE	CASING MATERIAL AND	/OR	ASING	CASING	CASING WALL	SLOT
ASING IT	FROM	ТО	DIAM (inches)	GRADE (include each casing string, a note sections of screen)	and CONN	NECTION TYPE ling diameter)	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)
& C	0	90	6	PVC		FJ	2	Sch 40	
2. DRILLING & CASING INFORMATION	90	110	6	PVC		FJ	2	Sch 40	.010
							YOE OH WEN 20) 2023 mill 155	
	DEPTH (fe	eet bgl)	BORE HOLE	LIST ANNULAR SEAL MATER RANGE BY	IAL AND GRAVEI	PACK SIZE-	AMOUNT	METHO	
IATERIAI	FROM N/A	то	DIAM. (inches)	*(if using Centralizers for Artesia	n wells- indicate the	spacing below)	(cubic feet)	PLACEM	4ENT
3. ANNULAR MATERIAL									
FILE	OSE INTERN. NO. CP-		-POD 1	POD NO.		WR-20 TRN N	10. 7466	2 LOG (Version 09/2: 98	

Released to Imaging: 5/30/2024 3:14:04 PM

-	DEPTH (fe	et bgl)		COLOR AND TYPE OF MAT	RIAL ENCOU	NTERED -	WATER	ESTIMATED
	FROM	ТО	THICKNESS (feet)	INCLUDE WATER-BEARING CAV (attach supplemental sheets t	TTIES OR FRA	CTURE ZONES	BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5	Calich	e		Y N	
	5	25	20	Sand			Y N	
	25	65	45	Sand/Sand	stone		Y N	
	45	95	50	Sand/Sand	y Clay		Y N	
	95	110	15	Sand	1		Y N	
Ţ							Y N	
4. HYDROGEOLOGIC LOG OF WELL							Y N	
OF							Y N	
00							Y N	
ICI							Y N	
FOC							Y N	
GEO							Y N	
RO							Y N	
HYL							Y N	
4							YN	
							Y N	
							Y N	
							YON	-
							Y N	
							Y N	
							Y N	
	METHOD US			DF WATER-BEARING STRATA: BAILER OTHER – SPECIFY:			AL ESTIMATED	
N	WELL TEST	TEST	RESULTS - ATTA	CH A COPY OF DATA COLLECTED D IE, AND A TABLE SHOWING DISCHA				
TEST; RIG SUPERVISION	MISCELLAN	EOUS IN	FORMATION:Dry	Hole				
5. TESI	PRINT NAM	E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE S	UPERVISION C	DF WELL CONSTRU	CTION OTHER TH	IAN LICENSEE:
6. SIGNATURE	CORRECT R	ECORD C	F THE ABOVE D	ES THAT, TO THE BEST OF HIS OR H ESCRIBED HOLE AND THAT HE OR S DAYS AFTER COMPLETION OF WEI Kenny Cooper	HE WILL FILE	OGE AND BELIEF, 1 THIS WELL RECO	THE FOREGOING I RD WITH THE ST 06/22/2023	S A TRUE AND ATE ENGINEER
6. SI	the	SIGNAT	URE OF DRILLEI	R / PRINT SIGNEE NAME		_	DATE	
EO	OCE DETERM	AL LICE				WD 20 WELL DE	CORD & LOG (Ve	rsion 00/22/2022)
	R OSE INTERN E NO.	AL USE		POD NO.		TRN NO.		51011 0912212022)
	CATION			I		L TAG ID NO.		PAGE 2 OF 2

Released to Imaging: 5/30/2024 3:14:04 PM

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

POD1					n/a			CP-1935				_	
WELL OWNER NAME(S) Marathon Oil Permian LLC								PHONE (OPTIONAL)					
WELL OWNER MAILING ADDRESS 4111S Tidwell Rd.								CITY Carlsbad		STAT		ZIP	
	WELL	LATT		egrees 32	minutes 40	SECONDS 51.08	N	a state of states of the	REQUIRED: ONE	TENTH OF	A SECOND		
(FRO	(OM GPS)	LONG	GITUDE	103	45	20.88	W	* DATUM REC	QUIRED: WGS 84				
1.1.1			WELL LOCATION TO Sec. 10, T19S R32		RESS AND COMMO	ON LANDMARI	KS – PLS	SS (SECTION, TO	WNSHJIP, RANGE	E) WHERE A	VAILABLE		
LICEN	nse no. 1249		NAME OF LICENSED		Jackie D. Atkir	IS			NAME OF WEL Atkins		G COMPANY ng Associates, I	nc.	
11 A.	LING START 12/21/2022		DRILLING ENDED 12/21/2022	DEPTH OF CO	MPLETED WELL (101	FT) B		le depth (ft) ±101					
COMP	PLETED WELL IS: ARTESIAN I DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL N/a 12/21/2022-12/												
DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY:													
DRILLING METHOD: ROTARY HAMMER CABLE TOOL 🔽 OTHER - SPECIFY: H						Hollow Stem	Auger CH	HECK HERE	IF PITLESS ADAI	PTER IS			
DE FRO	EPTH (feet	bgl) TO	BORE HOLE DIAM (inches)	GRAI (include each cas	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)	GRADE (include each casing string,		CON	ASING NECTION FYPE		INSIDE DIAM. THI		SL SI (inc
0)	101	6.5"	note	sections of scree Soil Boring	n) (a	dd coup	oling diameter)		-	(inches)		
-	EPTH (feet		BORE HOLE DIAM. (inches)		ST ANNULAR				Cubic fo	NTAN 3	2023METHO PLACEN		
FRO		то			VELTACK SIZ	L-MANUE D			(cubic It	,			
-				-									
							_			_		_	

FILE NO. (.) - 1935 POD	NO. 1 TRN NO. 39254	
LOCATION 195. 32E, 10 2 21	WELL TAG ID NO. MA PAG	E 1 OF 2

	DEPTH (fee	t bgl)	1.5.7.1	COLOR AN	D TYPE OF MA	TERIAL E	NCOUN	TERED -		WA	TER	ESTIMATED YIELD FOR
	FROM	то	THICKNESS (feet)	INCLUDE WATE (attach sup	ER-BEARING CA					BEAR (YES	UNG?	WATER- BEARING ZONES (gpm)
	0	12	12	Sa	nd, medium/fine,	poorly gra	ded, Tan			Y	√ N	
	12	14	2	Sand, me	dium/fine, poorly	graded,wi	th Calich	he, Tan		Y	√ N	
	14	32	18	Sand, mediur	n/fine, poorly gra	ded, with c	aliche, R	ReddishTan		Y	√ N	1
	32	60	28	Sand, fine grained	l, poorly graded, s	emi-conso	lidated,	Reddish Brown		Y	√ N	2
	60	75	15	Sand, fine grained, poo	orly graded, semi-	consolidate	d, with	gravel Reddish	Brown	Y	√ N	1
4	75	101	26		Clay,Stiff, Re	ddish/Brow	wn			Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL			1						110	Y	N	
OF			1.200			-				Y	N	
00										Y	N	1
ICI			(1						Y	N	
LOG		1								Y	N	
GEO			· · · · · · · · · · · · · · · · · · ·							Y	N	
ROO		100.00		1						Y	N	
HYD										Y	N	
4										Y	N	
										Y	N	
										Y	N	-
										Y	N	
				1						Y	N	
										Y	N	-
		- 11								Y	N	
	METHOD US			OF WATER-BEARING	G STRATA: THER – SPECIFY	•			TOTAL WELL		MATED) (gpm):	0.00
TEST; RIG SUPERVISION	WELL TEST	STAR	T TIME, END TI FORMATION: R	CACH A COPY OF DAT ME, AND A TABLE SI emoved temporary we elow ground surface, t ecord.	HOWING DISCH	ARGE AN	ng, bac	wDOWN OVE kfilled with dr	R THE I	ng from	nG PERIC m total de	DD. epth to 10 feet
ST; I						Sanz Arriteria						
5. TE	PRINT NAME Shane Eldridg			RVISOR(S) THAT PRO	VIDED ONSITE	SUPERVI	SION O	F WELL CON	STRUCT	ION O	THER TH	IAN LICENSEE:
TURE	CORRECT RE	CORDO	F THE ABOVE	FIES THAT, TO THE B DESCRIBED HOLE AN 30 DAYS AFTER COM	D THAT HE OR	SHE WIL	L FILE	GE AND BELI THIS WELL R	EF, THE ECORD	E FORE WITH	GOING I	IS A TRUE AND ATE ENGINEER
6. SIGNATURE	Jack Atk	ina		Ja	ckie D. Atkins					12/30	0/2022	
		SIGNAT	URE OF DRILL	ER / PRINT SIGNEE	NAME		1				DATE	
FO	R OSE INTERN	AL USE						WR-20 WEI	L RECO	ORD &	LOG (Ve	rsion 01/28/2022)
	ENO. CP	10.	35	1.1.1	POD NO.	1		TRN NO.		251		
10	CATION 10		32E.10	221			WELL	TAG ID NO.	NA			PAGE 2 OF 2

.

WELL RECORD & LOG

05200 ACU 162/20 MS-40

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO POD1 (B		ı.)		WELL TAG ID NO. n/a			ose file no(CP-1857	S).			
OCATI		ER NAME(S roduction) Company (John H	urt)				PHONE (OPTI	ONAL)			
MELL I	well own 5400 LBJ		GADDRESS Suite 1500					CITY Dallas		STATE TX	75240	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO	DN LA	DI	egrees 32°	MINUTES 41'	secon 54.2		* ACCURACY	REQUIRED: ONE TEN	TH OF A S	ECOND	
NER	(FROM G	PS) LOI	NGITUDE	-103°	40'	49.4	6" W	* DATUM REG	QUIRED: WGS 84			
1. GE			NG WELL LOCATION TO 188 R33E, NMPM		RESS AND COMMON	LANDMA	RKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVA	ILABLE	
	LICENSE NO		NAME OF LICENSED		Jackie D. Atkins				NAME OF WELL DR Atkins Eng		OMPANY Associates, I	nc.
	DRILLING S		DRILLING ENDED 11/10/20		MPLETED WELL (FI rary well materia			e depth (ft) 107	DEPTH WATER FIR	ST ENCOU n/a		
Z	COMPLETE	D WELL IS:	ARTESIAN	DRY HO	E SHALLON	W (UNCON	IFINED)		STATIC WATER LEV	/EL IN CO n/a	MPLETED WE	LL (FT)
OEIN	DRILLING F	LUID:	AIR	MUD	ADDITIVI	ES – SPEC	IFY:		L	·		
DRM	DRILLING M	ETHOD:	ROTARY	HAMME	CABLE TO	DOL	ОТНЕВ	R - SPECIFY:	Hollo	w Stem	Auger	
INFC	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL AND GRADE	/OR	CA	SING	CASING	CASI	NG WALL	SLOT
2. DRILLING & CASING INFORMATION	FROM	то	DIAM (inches)		each casing string, a sections of screen)	and	Т	ECTION YPE ing diameter)	INSIDE DIAM. (inches)	1	CKNESS nches)	SIZE (inches)
80	0	59	±8.5		Boring- HSA							
DNI	59	107	±4.5	Bo	ring- Air Rotary				-			
RILI												
2. D												
	DEPTH	(feet bgl)	BORE HOLE		ST ANNULAR SE				AMOUNT		METHO	
RIAI	FROM	TO	DIAM. (inches)	GRA	VEL PACK SIZE-I	RANGE	BY INTER	RVAL	(cubic feet)		PLACEM	ENT
ATE												
R M												
ULA												
ANNULAR MATERIAL					· · · · · · · · ·							
З.												
											<u>.</u> .	

FOR OSE INTERNAL USE		WR-20 WELL	RECORD & LOG (Ve	ersion 06/30/17)
FILE NO. (, P-1857	POD NO.	TRN NO.	1.8/29	G
LOCATION 185	.33E.32.443	WELL TAG ID NO.	0-	PAGE 1 OF 2

•

08500 NGO 16 2020 mil 46

	r		I		· · · · · · · · · · · · · · · · · · ·						
	DEPTH (; FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAI BR-BEARING CAVITIES oplemental sheets to fully	S OR FRA	CTURE ZONE	S	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	4	4	Sand	l, medium grained , poorly	y-graded,	Tan		Y	√ N	
	4	14	10		nedium grained with clay				Y	✓ N	
	14	19	5		n grained with clay, and (Y	√ N	
	19	29	10		ium grained with gravel (-	-, ···		Y	√ N	
	29	49	20	Sand, me	lium grained, poorly-grad	ded, Tanis	h Brown		Y	√ N	
د ا	49	59	10	Sand, med	ium grained with and Cal	iche, Tani	ish Brown		Y	√ N	
HYDROGEOLOGIC LOG OF WELL	59	64	5	· · · · · · · · · · · · · · · · · · ·	Clay, Stiff Maroo	n			Y	√N	
OF	64	94	30	Sand, med	ium/Fine grained with Sti	ff clay.Da	rk Brown		Y	√N	
ğ	94	107	13		Clay, Stiff Maroo	-			Y	√N	
IC I							1 8 1 1 1 1		Y	N	
00					··· · · · ·				Y	N	
EOI									Y	N	
DO									Y	N	
R				· · · ·					Y	N	
4. E									Y	N	·
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:			тоти	L ESTIM	ATED	
	PUM		IR LIFT	BAILER OT	HER – SPECIFY:			WEL	l yield	(gpm):	0.00
NOISI	WELL TES				A COLLECTED DURIN						
TEST; RIG SUPERVISI	MISCELLA	NEOUS INF			als removed and the soi						
EST	PRINTNAN	E(S) OF DE	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPER	VISION	OF WELL CON	STRU	TION OT	HER TH	AN LICENSEE
5. T	Shane Eldrid							01100			
SIGNATURE	CORRECT I	ECORD OI	F THE ABOVE D	ESCRIBED HOLE AN	EST OF HIS OR HER K D THAT HE OR SHE W PLETION OF WELL DR	TLL FILE					
SIGN	Jack A	tkins		Jac	ckie D. Atkins				11/19	9/20	
		SIGNATI	URE OF DRILLE	R / PRINT SIGNEE	NAME]	DATE	
FO	OSE INTERI	NAL USE					WR-20 WE	LL REC	CORD & L	.OG (Ver	sion 06/30/2017)
	E NO.	CP-	1857		POD NO.	/	TRN NO.	Ū	812	294	0
LO	CATION					WEL	L TAG ID NO.				PAGE 2 OF 2

	•	
Bassingd by OCD, 5/21/2024 2.02.10 DM	Als that a second of the West of the department of the	
<i>Received by OCD: 5/21/2024 2:02:19 PM</i>	the farmer of the contraction of the second s	
	ale for the state of the state	

Page 33 of 146

STATE	ENGINEER	OFFICE
•		

WE	LL	RECORD

	•	* من		WELL REC	•	. ·	i .	
			Section 1	. GENERAL I	NFORMATION		* ••••••••••••••••••••••••••••••••••••	
.) Owner of	well Matac	lor Petrole	eum, Inc.				er's Well No	
City and	State	Midlar	nd, Texas	<u>Street, Si</u> <u>79701</u>	<u>lite 1101</u>			
					_ and is located			
a	1/4 1/	/4 1/4	¼ of Se	ection5	Township	<u>95 Ra</u>	nge <u>34e</u>	N.M.P
b. Tract	No	of Map No.	·	of the	•		- <u></u>	
c. Lot N	0	of Block No			e			
					.M. Coordinate S	vetem		7
				ieei, N	.m. Coordinate 5	ystem		Zone
) Drilling C	Contractor	Ken Marsl	h		· · · · · · · · · · · · · · · · · · ·	_ License No	WD-586	
dress					, N.M. 882			
illing Began	1-7-98	Com	pleted	1-7-98	_ Type tools	ary air	Size of 1	hole 7& 7/8
evation of lar	nd surface or _			at we	11 is	_ ft. Total depti	h of well $\frac{2}{2}$	00
mpleted wel	lis 🗆 s	hallow 🔲 a	irtesian.		Depth to water	upon completio:	n of well	ry
	1			,	R-BEARING ST			· · · · ·
Depth	·····	Thickness		•	Water-Bearing F		1	ated Yield
From	Το .	in Feet			n ater-sea nig 1		(gallons	s per minute)
· · ·	-		DRY		• • • • • • • • • • • • • • • • • • • •	······································		
·					·····	·····	s	
······					·	· · · · · · · · · · · · · · · · · · ·	3	
·						· · · · · · · · · · · · · · · · · · ·	5	· · · ·
				on 3. RECORD	T			
Diameter (inches)	Pounds per foot	Threads per in.		on 3. RECORD in Feet Bottom	OF CASING Length (feet)	Type of Sh	0e	Perforations om To
			Depth	in Feet	Length	Type of Sh	0e	
			Depth	in Feet	Length	Type of Sh	0e	
			Depth	in Feet	Length	Type of Sh	0e	
		per in.	Depth Top	in Feet Bottom	Length		0e	
(inches)	per foot	per in.	Depth Top on 4. RECO Sac	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING	0e	om To
(inches)	per foot	per in.	Depth Top on 4. RECO	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING	oe Fr	om To
(inches)	per foot	per in.	Depth Top on 4. RECO Sac	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING	oe Fr	om To
(inches)	per foot	per in.	Depth Top on 4. RECO Sac	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING Meth	oe Fr	om To
(inches)	per foot	per in.	Depth Top on 4. RECO Sac	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING Meth	oe Fr	om To
(inches)	per foot	per in.	Depth Top	In Feet Bottom RD OF MUDD ks C	Length (feet)	ENTING Meth	oe Fr	om To
(inches) Depth From	per foot	per in. Secti Hole Diameter	Depth Top	in Feet Bottom RD OF MUDD ks Cl ud of	Length (feet)	ENTING Meth	oe Fri	om To
(inches) Depth From	per foot	per in. Secti Hole Diameter	Depth Top on 4. RECO Sac of M Sectio	in Feet Bottom RD OF MUDD ks Cl ud of	Length (feet)	ENTING Meth	oe Fri	om To
(inches) Depth From Ingging Contra Ingging Methor te Well Plugg	per foot	per in. Secti Hole Diameter	Depth Top on 4. RECO Sac of M Sectio	in Feet Bottom RD OF MUDD ks Cl ud of	Length (feet)	ENTING Meth	oe Fri	om To
(inches) Depth From	per foot	per in. Secti Hole Diameter Same with cut	Depth Top on 4. RECO Sac of M Sectio	in Feet Bottom RD OF MUDD ks Cr ud of on 5. PLUGGIN	Length (feet)	ENTING Meth	oe Fri od of Placem	om To To lent Cubic Feet of Cement
(inches) Depth From gging Contra dress gging Metho te Well Plugg	per foot	per in. Secti Hole Diameter Same with cut	Depth Top on 4. RECO Sac of M Section Section tings	in Feet Bottom RD OF MUDD ks Ci ud of bon 5. PLUGGIN	Length (feet)	ENTING Meth Depth in Top 0	oe Fri od of Placem	om To To lent Cubic Feet of Cement

Released to Imaging: 5/30/2024 3:14:04 PM

Received h	OCD.	5/21/2024	2:02:19 PM
<i>Keceivea D</i>		MZ1/2024	ZINZIY PN

ЯM

Depth	in Feet 🧀 💀	Thickness	
From	То	i	Color and Type Material Encountered
, O	6	6	Topsoil
6	12	12	Caliche
12	63	57	Sand'& Gravel
63	70	7	Red Sand
70	200	·130 "	Red Bed
· ·			
	· · · · · · · · · · · · · · · · · · ·	· .	
·····			
1 2	• ·	· .	
		· ·	
	· · ·		
-			
·	· · · · · · · · · · · · · · · · · · ·		
	· · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	÷ *		
an ta		·	

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office Thate Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is district ordepended. When this form is used as a plugging record; only Section 1(a) and Section 5 need be completed. Released to Imaging: 5/30/2024 3:14:04 PM

				re engineer			2/0	2041
				WELL RECO	ORD		FIELD E	NGR. LO
		•• •• ••			FORMATION		(5-1)"	
A) Owner of Street or J	well <u>MC</u> Post Office Ad	Vay Dril Idress P.O.	ling Cor Box 924	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Owner's V	Well No. Qua	<u>il Sta</u> t
					_ and is located			
a	_ ¼ <u>SE</u> ½	4 <u>NE</u> 4 <u>S</u>	E ¼ of Sec	tion <u>3</u>	Township	<u>19</u> Range.	<u>34E</u>	N.M.P.M.
b. Tract N	No. <u> </u>	of Map No	•	of the				
c. Lot No Subdiv	ision, recorde	of Block No d in	Lea	of the C	ounty.	<u></u>	<u> </u>	
		_ feet, Y=		feet, N.	M. Coordinate S	System		Zone in Grant.
B) Drilling C	ontractor '	Abbott B	ros.			License No	46	
1					88240			
						Cable		8 1
		·	-					
						_ ft. Total depth of		
ompleted well	is 🛣 si	hallow 🗆 :	artesian.		Depth to water	upon completion of	well <u>110</u>	ft.
Desth	n Fast		· ~=	CIPAL WATER	R-BEARING ST	RATA		71-14
Depth i From		Thickness in Feet	E	Description of V	Water-Bearing F	ormation	Estimated) (gallons per n	
110	160	50	B	rown san	d		50	
· ·	· - ·			· · ·				
	- · · ·							
		<u>د</u>	Section	1 3. RECORD	OFCASING	<u> </u>		
Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfor	· · · · · · · · · · · · · · · · · · ·
(inches)	per foot	per in.	Тор	Bottom	(feet)		From	То
7	23	10	0	160	160	NONE	110	160
				<u> </u>				
						a		
		-1		····	ING AND CEM	ENTING	·	
		Hole Diameter	Sack of Mu		bic Feet Cement	Method of	of Placement	· ·
Depth i From	То					Cement at to	р 1	
	10				`			
								1
	10				-			
							·	
From	······································			n 5. PLUGGIN	-			
From Plugging Contra	ictor				G RECORD	Depth in Fee	tCu	bic Feet
From Plugging Contra					G RECORD			bic Feet Cement
From lugging Contra ddress lugging Metho	led				G RECORD			
From Plugging Contra ddress Plugging Metho Date Well Plugg	led			· · · · · · · · · · · · · · · · · · ·	G RECORD			
From Plugging Contra ddress Plugging Metho Date Well Plugg	actor d ed red by:	State Eng	gineer Repress	entative	G RECORD	Top Bo		

Released	to	Imaging:	5/30/	2024	3:	14:04	РМ
Hereusen			01001				

Received by OCD: 5/21/2024 2:02:19 PM

Page 36 of 146

Depth in Feet From To		Thickness in Feet	Color and Type of Material Encountered						
:									
0	1	l	Top soil						
1	25	24	Caliche						
25	110	85	Sand and gravel						
110	150	40	Water sand						
150	160	10	Sandy clay						
	· · · · ·	· · · · ·							
		· .							
	· .								
<u> </u>									
<u></u>									
		· · · · · · · · · · · · · · · · · · ·							
	<u></u>								
		· · · · · · · · · · · · · · · · · · ·							
	-								
		· ·							
·									
		· · · · · · · · · · · · · · · · · · ·							
	· ·								
	· · · · · ·	- -							
:		: :							
		· · ·							
	-	i							

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

<u>Alılır</u> Driller 14.B

INSTRUCTIONS: This for mould be recuted in triplicate, preferably typewritten, and submitted appropriate distri-of the State Engineer. All periods seept Section 5, shall be answered as complete and accurations possible when an *Released to Imaging* 533073024 3W14704h BMorm is used as a plugging record, only Section 1(a) and Section need be completed.

appropriate district office s possible when any well is

197 L

00 23

3 -

, .

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

OSE DII JUL 22 2021 PM2:05

www.ose.state.nm.us

							•••••• <u>•</u> •••••					
NO	OSE POD NO. (WELL NO.) POD1 CP-1865 WELL TAG ID NO.							OSE FILE NO(S). CP-01865				
GENERAL AND WELL LOCATION	WELL OWN BTA OIL F							PHONE (OPTIONAL)				
LL	WELL OWN		ADDRESS				• • •	СПУ	······	STATE		ZIP
VEL	104 S PECOS ST							MIDLAND TX 79701				
é	WELL	1	DE	GREES	MINUTES	SECOND	s	I	· · · · · · · · · · · · · · · · · · ·			
ΓV	LOCATIO		TTUDE	32	36	12.5	N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SE	COND	
ERA	(FROM GP	s)		-103	37	54	w	* DATUM REC	QUIRED: WGS 84			
GEN	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AN										LABLE	
→ LEA SECTION 2 TOWNSHIP 20S RANGE 33E												
	LICENSE NO		NAME OF LICENSED						NAME OF WELL DR			
	WD-1	753		JA	COB FRIESSEN	l				VANGU	RD	
	DRILLING S 2-8-		DRILLING ENDED 2-8-21				le depth (Ft) 105) DEPTH WATER FIRST ENCOUNTERED (FT) 0				
7	COMPLETED WELL IS:			DRY HOLE SHALLOW (UNCONFINED)				STATIC WATER LEVEL IN COMPLETED WELL (FT) 0			LL (FT)	
TIO	DRILLING FI	.UID:	AIR	MUD ADDITIVES – SPECIFY:				L				
CASING INFORMATION	DRILLING METHOD: CROTARY		HAMMER CABLE TOOL OTHE		R – SPECIFY:	···· ·						
	DEPTH (feet bgl)		BORE HOLE	CASING	MATERIAL AND/	OR		SING	CASING	CASIN	G WALL	SLOT
NG.	FROM TO		DIAM	GRADE (include each casing string, and		nd	CONN	VECTION	INSIDE DIAM.	1	KNESS	SIZE
ISE			(inches)	note sections of screen)				YPE ling diameter)	(inches)	(in	iches)	(inches)
ళ	-1	99	4.5	ļ	LANK PVC			AD 2.375	2	ļ	187	
ING	99	105	4.5	S	CREEN PVC		THRE	AD 2.375	2	ļ	187	.02
DRILLING				ļ				,,,,				
2. DR										[
								······································				
				1						<u> </u>		
	DEPTH	(feet bgi)	BORE HOLE	LIST ANNULAR SEAL MATERIAL AND				AMOUNT		METHO		
RIAI	FROM	TO	DIAM. (inches)	GRAV	VEL PACK SIZE-R		INTE	RVAL	(cubic feet)		PLACEN	
NTE	0 99	0 99 4.5		GROUT SILICA SAND			8			POURI		
X M/	<u> </u>	105	4.5		SILICA	SAND		,	.5		FOUR	
ILAF											<u></u>	
ANNULAR MATERIAL				<u> </u>		· · · ·						
3. A			-	<u>†</u>					· · · · · · · · ·			
FOR	OSE INTER							N/D 20		6 I OC A		·/10)

POD NO.

_7

TRN NO. (

WELL TAG ID NO.

-(

ノレ

<u>335</u>

FILE NO.

LOCATION

.

PAGE 1 OF 2

4

•

				· · · · · · · · · · · · · · · · · · ·		·····			1. 1. 11.1	7 77 18	00.044	
	DEPTH (I	feet bgl)	THICKNESS	COLOR AN	ID TYPE OF M	ATERIAL E	NCOUN	TERED -	JOE (M.	_الارد WA:	22 202 Fer	ESTANATED
	FROM	то	THICKNESS (feet)	INCLUDE WATI (attach su	ER-BEARING				5	BEAR (YES		WATER- BEARING ZONES (gpm)
	0	1	1		TO	PSOIL				Y	✓ N	
	1	21	20		S	AND				Y	✔ N	
	21	81 61 SANDY RED CLAY							Y	✓ N		
	81								Y	✓ N		
		••••••••••••••••••••••••••••••••••••••			- <u></u>	····		····· , ,,		Y	N	
ŗ			· · · · · ·							Y	N	
HYDROGEOLOGIC LOG OF WELL								· · · · · · · · ·		Y	N	
OF										Y	N	· · · · · · · · · · · · · · · · · · ·
00					·····					Y	N	
ICI										Y	N	
Fo										Y	N	
GEO										Y	N	
RO										Y	N	
HYL										Y	N	
4.										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARIN	G STRATA:				TOTAL			
	PUMI		IR LIFT	BAILER 0	THER – SPECI	FY:			WELL	YIELD	(gpm):	0.00
NO	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SI								
VISI	MISCELLA	NEOUS IN	FORMATION:								·····	
TEST; RIG SUPERVISI												
G SU												
; RI	1											
TEST	PRINT NAM	IE(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSI	E SUPERVI	SION O	F WELL CON	STRUCT	TON O	THER TH	AN LICENSEE:
5.1	PETE LOEV											
	BY SIGNIN	G BELOW	, I CERTIFY TH	AT TO THE BEST O	F MY KNOW	LEDGE AN) BELI	EF, THE FOR	EGOINC	J IS A	TRUE A	ND CORRECT
URE	RECORD O	F THE ABO ORD WILL	IVE DESCRIBED ALSO BE_FILED	WELL. I ALSO CERT WITH THE PERMIT I	IFY THAT TH HOLDER WITH	E WELL TA IIN 30 DAYS	G, IF RI S AFTER	EQUIRED, HA R THE COMPI	S BEEN ETION (INSTA	LLED AN LL DRILL	ID THAT THIS JING.
VATI		~	15									
SIGNATURE		//(15	JAC	COB FRIESSI	EN				7-1	3-21	
9		SIGNAT		R / PRINT SIGNEE	NAME		_			<u> </u>	DATE	
	V	JUNAI	OAL OF DRILLE	K / I KINI SIQNEE							JAIE	
	OSE INTERI	NAL USE						WR-20 WE	LL RECO	RD &	LOG (Ver	sion 04/30/2019)
	<u>e no. C -</u>	156	5		POD NO.			TRN NO.	68	6	117	·
LO	CATION 7	$'OS^{-}$	うってく	12 0	<u>2-3-4</u>	4	WELL	. TAG ID NO.	NA	¥		PAGE 2 OF 2

Recei	ived by	OCD :	5/21/2024	2:02:19	PM
	Č.	1			
•					

STATE ENGINEER OFFICE

A FE 1929

Page 39 of 146

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

to Imagi

Form WR-23

Section	1			or of woll	CACT	IS DRILLING	G CORP.	
			Street and					····
···	·		CityD	-		L-70	State	
								d is located in the
			ſ				=	
	·		1					nse No.WD-46
ĺ						637		
			City	<u>HOBB:</u>	<u>5, N.M</u> ,			• •
· .							-	
 • · · · · i0	Plat of 640 ac	res)	Drilling w	as comple	eted	NOV 15	2, 1970	
								262
								etion
		is sliaite			ļ		ter upon compre	()
Section 2	2;	·	PRIN	CIPAL WA	ATER-BEAR	ING STRATA	•••	197
No.	Depth in		Thickness in	-	 De	scription of Water	-Bearing Formatic	
	·From ·	To	Feet				~ ~	
1	185	214	29	wate:	r sand	н » н » - » - ».».	<u> </u>	
2	• •	· -			· · ·		, in the second s	
3					Ne	······································	<u> </u>	
- 4					-	· · · · · · · · · · · · · · · · · · ·		
5						ę		
	<u> </u>	^ <u> </u>		-1 _	<u> </u>	4 .+ .A	<u> </u>	····
Section 3	3	•		RECOR	DOF CAS	SING	· • •/	* .
Dia	Pounds	Thread	ds Der	oth	Feet	Type Shoe	·- ·· Perfo	orations
in.	ft.	in in	' Top	Bottom	, reet	Type Shoe	From	Tọ
7	23	8	1 -	262	: 262	none	200	260
	· · · ·	ļ <u>.</u>			5		,	
	1	'			<u>-</u>			
	•		1			····	, +	· · · · · ·
Section 4	£ .	· •	RECOR	D OF MUD	DING AN	D. CEMENTING		
	in Feet	Diamet		No. Sa		.	Methods Used	
From	То	Hole in	in. Clay	Cem	ient			
					;			
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				• • • • • •	·····
	·					·		· ···· ··· ··· · · · · ·
	, i	<u> </u>	· · · · · ·		<u>.</u>	č., **		
	· *i *	1		DULCO			ж. j	
Section 5		1 7		PLUGG	GING REC		an si an si s	
1 1	Plugging		or	- ·	<u>(.</u>	······	License No),
	nd Number	•			1		State	
	Clay used						pe of roughage	
Plugging	method us	ed	<u> </u>			Date)Plu	gged	
Plugging	approved	b y:	8 8 8		(. ·	· Cement Plug	s were placed a	s follows:
. ~		J	· · · · · · · · · · · · · · · · · · ·		'	Depth of P	lug	
<u> </u>			V Basin Sup	ervisor	No		No. o	f Sacks Used
• 4. <u> </u>	FOR USF	OF STÁT	E ENGINEER OI			,	ale the state of	
2.5	YOU ODE	UL DIAL				· · · · · ·		· · · · ·
• •	 Received	۰.)는 석이 <u>~~(</u>	- <u> </u>	·	
	LOCCCI¥CU	57	BRD BING	31 0261 .	マー			
	1 4	2023			L	<u> </u>		
		7-1	- lai		<u> </u>		· · · ·	
Dile M	(UF	-10	$\langle \langle \langle \langle \rangle \rangle \rangle$	_UseO	wd	Toontio	No 19.2.2	32,3322
File No.			<u> </u>	_use/	Jac 1!	Locatio	n 1NO. <u>/ / / /</u>	

÷

:, -

1

Depth in Feet Thickness			Court of the			
From	· To	- in Feet	Color			
0	1	1	brown	soil		
1	30	29	gray	caliche		
30	<u> </u>	30	brown	sand (tight)		
90	185 '	[·] 95	brówn	sand		
185	214	29	brown	sand water		
214	220	· ``6	brown	sandy clay		
220	248	28	brown	sand & fine gravel		
248	262 "	14	brown	sand clay		
		•		••		
-				······		
		1		· · · · · · · · · · · · · · · · · · ·		
	· · ·					
<u> </u>						
				The standard states and a state of the states of the state		
			· · · ·			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
			1			
(· · · · · · · · · · · · · · · · · · ·	······································		
		*	, , , , , , , , , , , , , , , , , , , ,			
			• • • • • • • • • • • • • • • • • • •			
			,			
	_	·**` •• ``	+			
		· · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		
,				· · · · ·		
		• • • • •	· frame			
	i .	1		<u> </u>		
	-	· · ·		• • • • • • •		
4						
•		-				

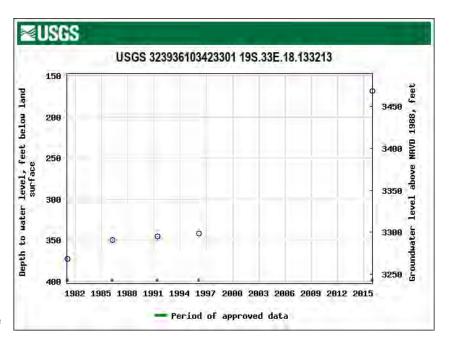
The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

· • · ··· 17.1 Jurrell C : Well Driller . 1 3 jr

n an an an an an an ann an Arresta ann ann an Arresta ann an Arresta ann an Arresta ann an Arresta ann an Arres An Arresta ann an Arresta ann an Arresta ann an Arresta ann an Arresta an Arresta ann an Arresta ann an Arresta Arresta an Arresta an Arresta ann an Arresta ann an Arresta an Arresta ann an Arresta ann an Arresta ann an Arr

39.0

and the second second


Released to Imaging: 5/30/2024 3:14:04 PM

USGS 323947103412001 19S.33E.17.11224 AKA USGS-15469

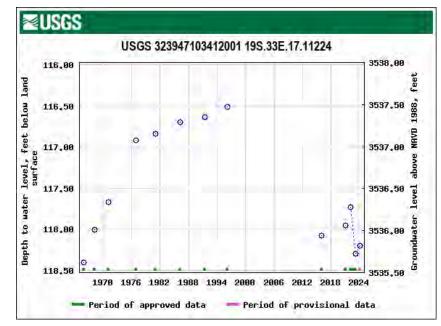
Lea County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°40'01.8", Longitude 103°41'24.3" NAD83 Land-surface elevation 3,654 feet above NAVD88 The depth of the well is 131 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the

Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

According to Plate 1b, the bottom of the alluvium is at an elevation of about

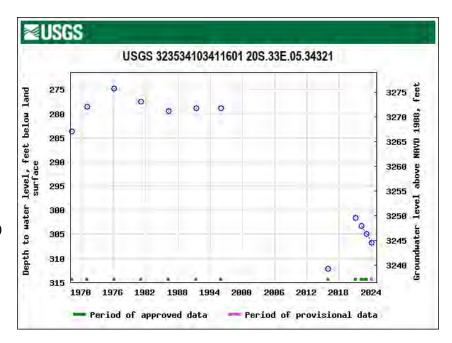
3640. Given the elevation of 3654, the base of the bolson deposits is (3654-3640=) 14 feet. We contend this well draws water from the Chinle – if it still operational.

USGS 323936103423301 19S.33E.18.133213 AKA USGS-15431


Lea County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°39'41.5", Longitude 103°42'36.1" NAD83 Land-surface elevation 3,639 feet above

NAVD88 The depth of the well is 850 feet below

land surface.


This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

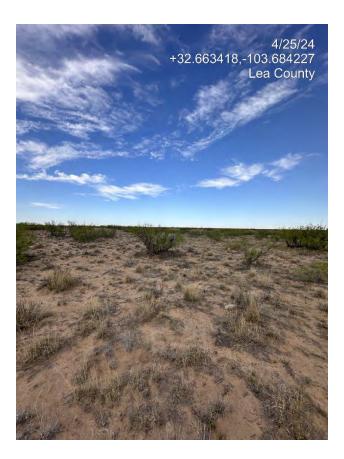
USGS 323534103411601 20S.33E.05.34321 AKA USGS- 15327

Lea County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°35'47.4", Longitude 103°41'17.9" NAD83 Land-surface elevation 3,551 feet above NAVD88 The depth of the well is 680 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

•

APPENDIX SITE PHOTOGRAPHS

LEGION SPYGLASS RF & CONTAINMENTS SITE PHOTOGRAPHS



4/25/24 +32.667338,-103.688703 Lea County

SP1- View southeast from well USGS-15469 that lies less than 500 feet from the boundary of the proposed Recycling Facility and Containments. This is not a working water well.

SP2- View from NW corner of project area showing nature of landscape and vegetation

LEGION SPYGLASS RF & CONTAINMENTS SITE PHOTOGRAPHS

SP3- View from SE corner of project area showing nature of landscape and vegetation

Volume 2 C-147 Permit Package for Spyglass In-Ground Containment Section 17, T19S, R33E, Lea County

- C-147 Form
- Stamped Design Drawings
- Recently Approved Plans for Design/Construction, O&M, Closure

View east from USGS-15469, an abandoned well located about 450 feet west of the proposed Spyglass project area. The area is a flat plain covered by eolian sand that is stabilized by vegestion.

Prepared for: Legion Water Services, LLC Denver, Colorado

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW F-142 Albuquerque, New Mexico

•

C-147

eceived by OCD: 5/21/2024 2:02:19 PM			Page 48 of 14
District I 1625 N. French Dr., Hobbs, NM 88240 District II	State of New Mex Energy Minerals and Natur Department		Form C-147 Revised April 3, 2017
811 S. First St., Artesia, NM 88210 District III	Oil Conservation Di	vision	
1000 Rio Brazos Road, Aztec, NM 87410 District IV	1220 South St. France		
1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87	505	
Recycling	Facility and/or Re	cycling Containr	nent
Type of Facility		Recycling Containm	ent*
Type of action:		Registration	
	fication	<pre>Extension Other (explain)</pre>	
At the time C-147 is submitted to the di		-	
Be advised that approval of this request does not rel			
For does approval relieve the operator of its respon			
Operator:	Legion Water Services LLC	OGRID #:	332392
Address: 1515 Wynkoop Str	eet Suite 700 Denver, CO 80202		
Facility or well name (include API#		Reuse Facility & CONTAINMENT #	±1, #2 & #3
OCD Permit Number: <u>1RF-52</u>	5 (For new facilities the	e permit number will be assigned by t	he district office)
U/L or Qtr/Qtr: <u>B, C, and G</u>	Section: <u>17</u> Township: <u>19S</u>	Range: <u>33E</u>	_County:Lea
Surface Owner: 🗌 Federal 🗌 State 🛛 Priva	te 🗌 Tribal Trust or Indian Allotment		
☑ Recycling Facility: Location of (if applicable): Latitude:32 Proposed Use: ☑ Drilling* ☑ Completion* *The re-use of produced water may NOT be □ Other, requires permit for other uses. Des groundwater or surface water. ☑ Fluid Storage	* Production* Plugging * used until fresh water zones are cased	and cemented	
Activity permitted under 19.15	cling containment Activity permitted .36 NMAC explain type:	Other explain cation information of each containme	 nt
Activity permitted under 19.15 For multiple or additional recycling Closure Report (required within 60 day Recycling Containment #1, #2 & #3	.36 NMAC explain type: cling containments, attach design and loo s of closure completion): Recyclin	Other explain cation information of each containme g Facility Closure Completion Date:	nt
Activity permitted under 19.15 For multiple or additional recycles Closure Report (required within 60 day	.36 NMAC explain type:	Other explain cation information of each containme g Facility Closure Completion Date: inspections for previous year) Center	nt
Activity permitted under 19.15 For multiple or additional recycling Closure Report (required within 60 day Recycling Containment #1, #2 & #3	.36 NMAC explain type:	Other explain cation information of each containme g Facility Closure Completion Date:	nt
Activity permitted under 19.15 ☐ For multiple or additional recycles Closure Report (required within 60 day	.36 NMAC explain type:	Gamma Content of the second se	of
Activity permitted under 19.15 For multiple or additional recycles Closure Report (required within 60 day	.36 NMAC explain type: cling containments, attach design and loo s of closure completion): Recycling : ach summary of monthly leak detection is attitude: 32.663616	Other explain cation information of each containme g Facility Closure Completion Date: inspections for previous year) Center Longitude: -103.686351 ation information of each containmer	nt
Activity permitted under 19.15 For multiple or additional recycles Closure Report (required within 60 day	.36 NMAC explain type:	Other explain cation information of each containme g Facility Closure Completion Date: inspections for previous year) Center Longitude: -103.686351 ation information of each containmer	nt
Activity permitted under 19.15 ☐ For multiple or additional recycle Closure Report (required within 60 day	.36 NMAC explain type:	Other explain Cation information of each containme g Facility Closure Completion Date: inspections for previous year) Center Longitude: -103.686351 ation information of each containmer neer Drawings □LLDPE	nt

•

Bonding:

4.

Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells owned or

operated by the owners of the containment.)

Bonding in accordance with 19.15.34.15(A)(1). Amount of bond \$_See Estimate (work on these facilities cannot commence until bonding amounts are approved)

amounts are approved)

Attach closure cost estimate and documentation on how the closure cost was calculated - after transmittal letter.

Fencing:

5.

Four-foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify: <u>See Drawings</u>

<u>Signs</u>:

6.

7.

🛛 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

Variances:

Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, human health, and the environment.

Check the below box only if a variance is requested:

 \Box Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested, include the variance information on a separate page and attach it to the C-147 as part of the application.

If a Variance is requested, it must be approved prior to implementation.

Siting Criteria for Recycling Containment

Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application. Potential examples of the siting attachment source material are provided below under each criteria.

General siting					
Ground water is less than 50 feet below the bottom of the Recycling Containment. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Plates 1-2 Volume 1	□ Yes ⊠ No □ NA				
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; written approval obtained from the municipality Plate 3 					
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division Plate 4 	🗌 Yes 🛛 No				
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map Plate 5 	🗌 Yes 🛛 No				
Within a 100-year floodplain. FEMA map Plate 6	🗌 Yes 🛛 No				
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; visual inspection (certification) of the proposed site Plate 7 	🗌 Yes 🛛 No				
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; aerial photo; satellite image Plate 8 	🗌 Yes 🛛 No				
 Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. Plates 1 and 7 - NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No				
 Within 500 feet of a wetland. Plate 9 US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No				

9. <u>Recycling Facility and/or Containment Checklist:</u> Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.	
 Design Plan - based upon the appropriate requirements. Operating and Maintenance Plan - based upon the appropriate requirements. Closure Plan - based upon the appropriate requirements. Site Specific Groundwater Data - Siting Criteria Compliance Demonstrations Certify that notice of the C-147 (only) has been sent to the surface owner(s) 	

10.	
Operator Application Certification:	
I hereby certify that the information and attachments submitted with this ap	oplication are true, accurate and complete to the best of my knowledge and belief.
Name (Print): BRADEN HARRES	Title: LEGION WATER SERVICES
Signature:	Date: 4/30/24 Telephone: 4/30/24
OCD Representative Signature: Victoria_Venegas	Approval Date:05/30/2024
Title:Environmental Sepcialist	OCD Permit Number:1RF-525
 X OCD Conditions X Additional OCD Conditions on Attachment 	

.

RECYCLING CONTAINMENT DESIGN

DRAWINGS AVIAN DETERRENT SYSTEM

TECHNICAL MEMORANDUM: 40-MIL HDPE AS ALTERNATIVE SECONDARY LINER SYSTEM FOR IN GROUND RECYCLING CONTAINMENT FACILITIES

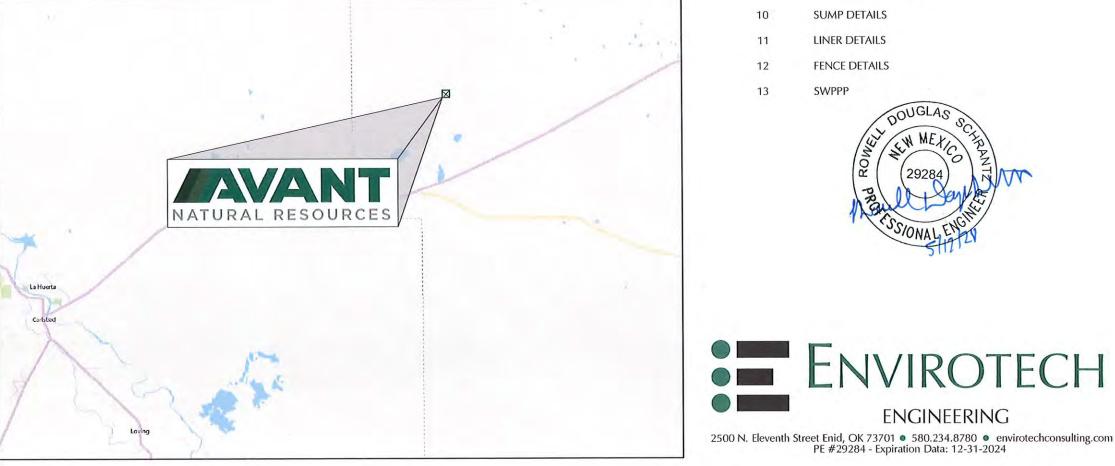
SPYGLASS DESIGN RECYCLE FACILITY AVANT NATURAL RESOURCES

SECTION 17, TOWNSHIP 19 SOUTH, RANGE 33 EAST N.M.P.M.

LEA COUNTY, NEW MEXICO

32° 39' 42.55" N, 103° 41' 22.67" W 32.661820°, -103.689630°

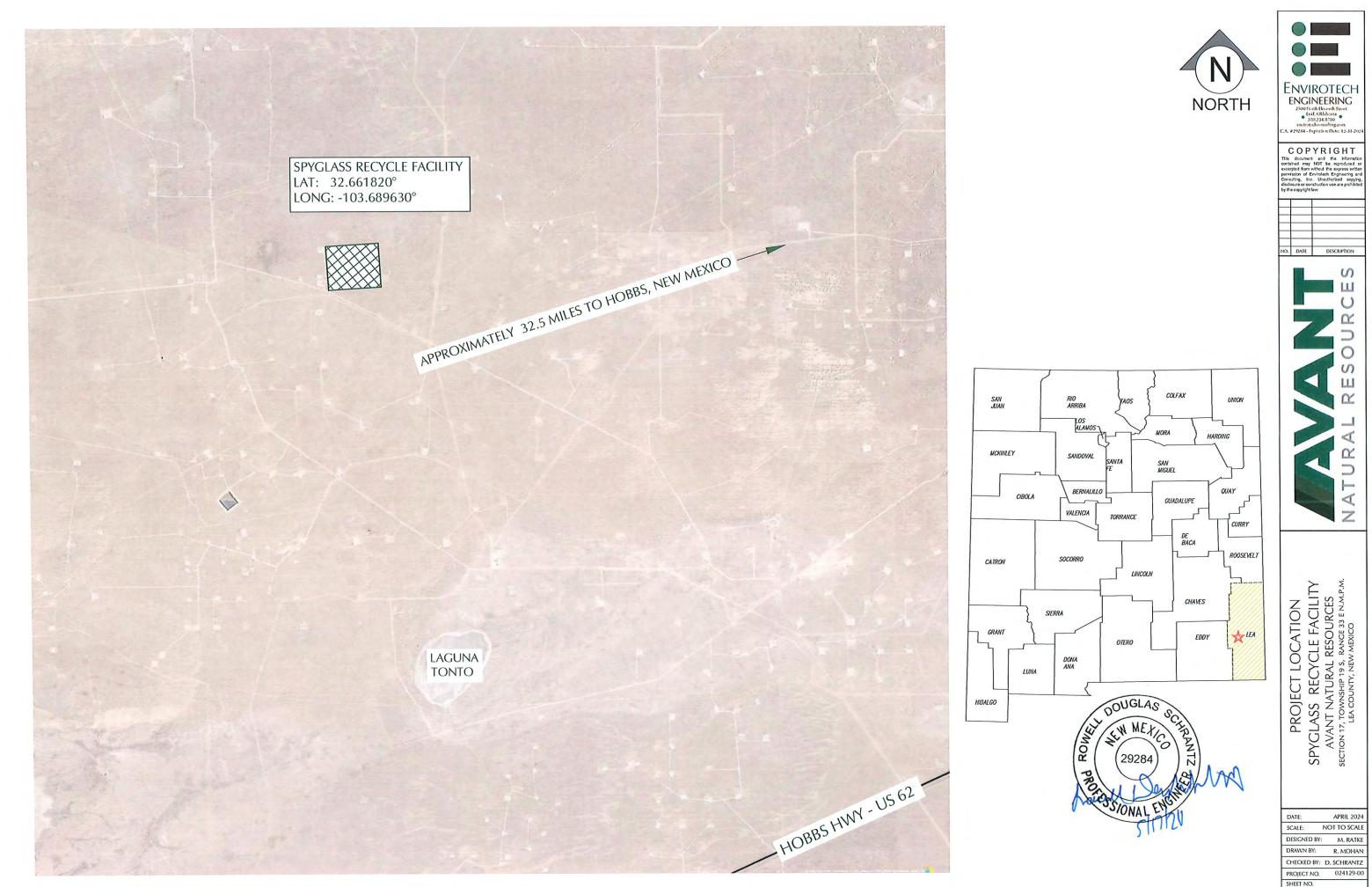
BOBBI JO CRAIN - CASCASDE SERVICES - (210) 632-8670


ENVIROTECH ENGINEERING & CONSULTING - MITCHELL RATKE, PE (580)-234-8780 (DESIGN ENGINEER)

ENVIROTECH ENGINEERING & CONSULTING - DOUG SCHRANTZ PE (580)-234-8780 (SUPERVISING ENGINEER)

UTILITY CAUTION

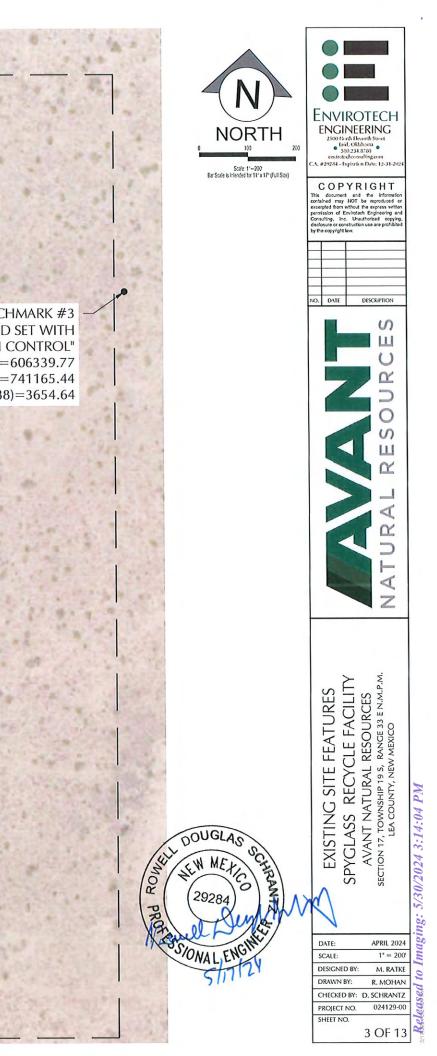
CONTRACTOR IS CAUTIONED THE LOCATION AND DEPTH OF EXISTING LITILITIES AS SHOWN ON THESE PLANS ARE BASED ON PUBLICLY AVAILABLE THE VARIOUS UTILITY COMPANIES AND FIELD MEASUREMENTS THE INFORMATION PROVIDED IS NOT TO BE RELIED ON AS BEING PRECISE OR COMPLETE, THE CONTRACTOR MUST CONTACT THE LOCAL UTILITY LOCATION CENTER AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIFLD LOCATIONS OF THE UTILITIES.

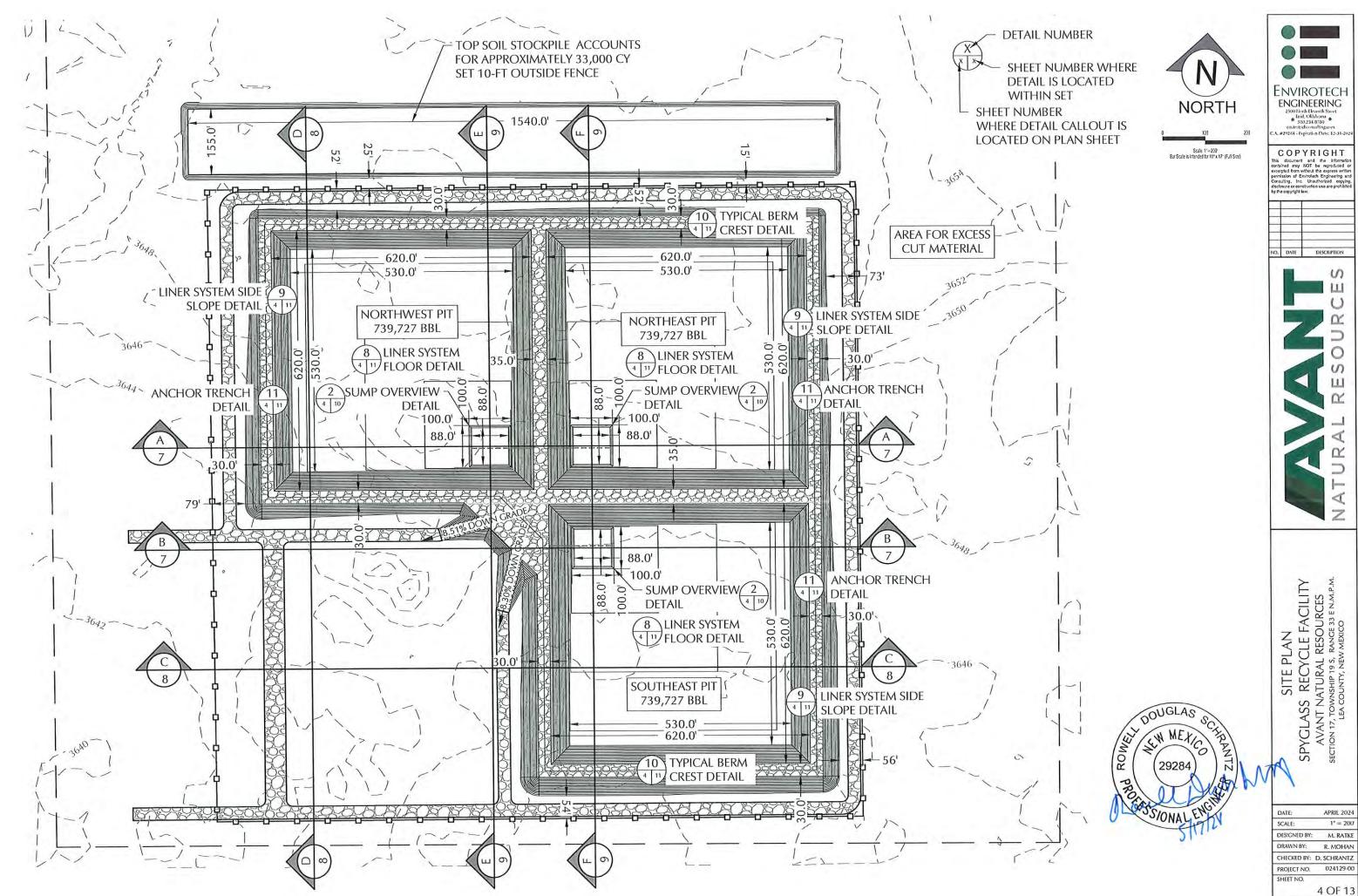


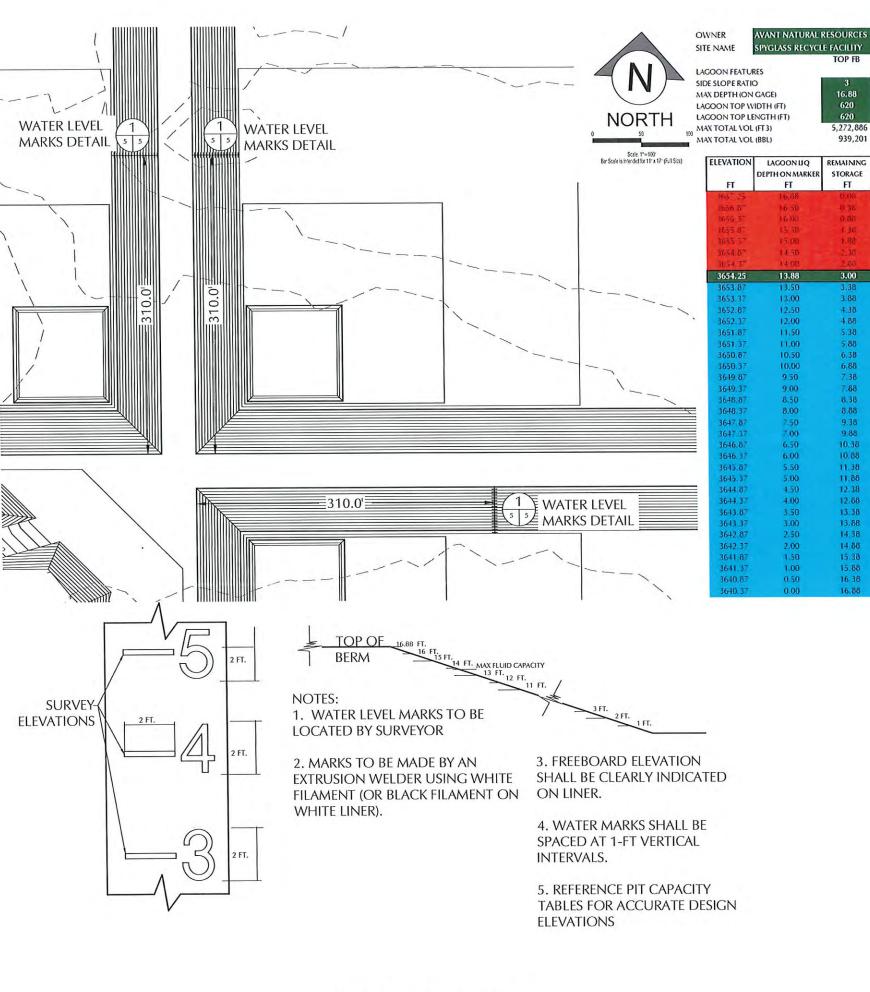
INDEX TO DRAWINGS

SHEET NO. DESCRIPTION

1	COVER					
2	PROJECT LOCATION					
3	EXISTING SITE FEATURES					
4	SITE PLAN					
5	PIT CAPACITY					
6	RUB SHEET & FENCE PLAN					
7	CROSS SECTIONS A & B					
8	CROSS SECTIONS C & D					
9	CROSS SECTIONS E & F					
10	SUMP DETAILS					
11	LINER DETAILS					
12	FENCE DETAILS					
13	SWPPP					
	DOUGLAS					






2 OF 13

	TING LEASE ROAD SURVEYED)	BENCHMARK #2 1/2" IRON ROD SET WITH RED CAP "DDSI CONTROL" NORTH (NM83-E)=606753.66 EAST (NM83-E)=739627.47 ELEV. (N.A.V.D. 1988)=3653.82	PROPERTY BOUNDARY (AS SURVEYED)
BENCHMARK #4 1/2" IRON ROD SET WITH RED CAP "DDSI CONTROL" NORTH (NM83-E)=605639.98 EAST (NM83-E)=738762.73 ELEV. (N.A.V.D. 1988)=3643.22			HEAST PIT

WATER LEVEL MARKS DETAIL

5 5

NOT TO SCALE

TOP FB

16.88 620 620

5,272,886

939,201

BOTTOM

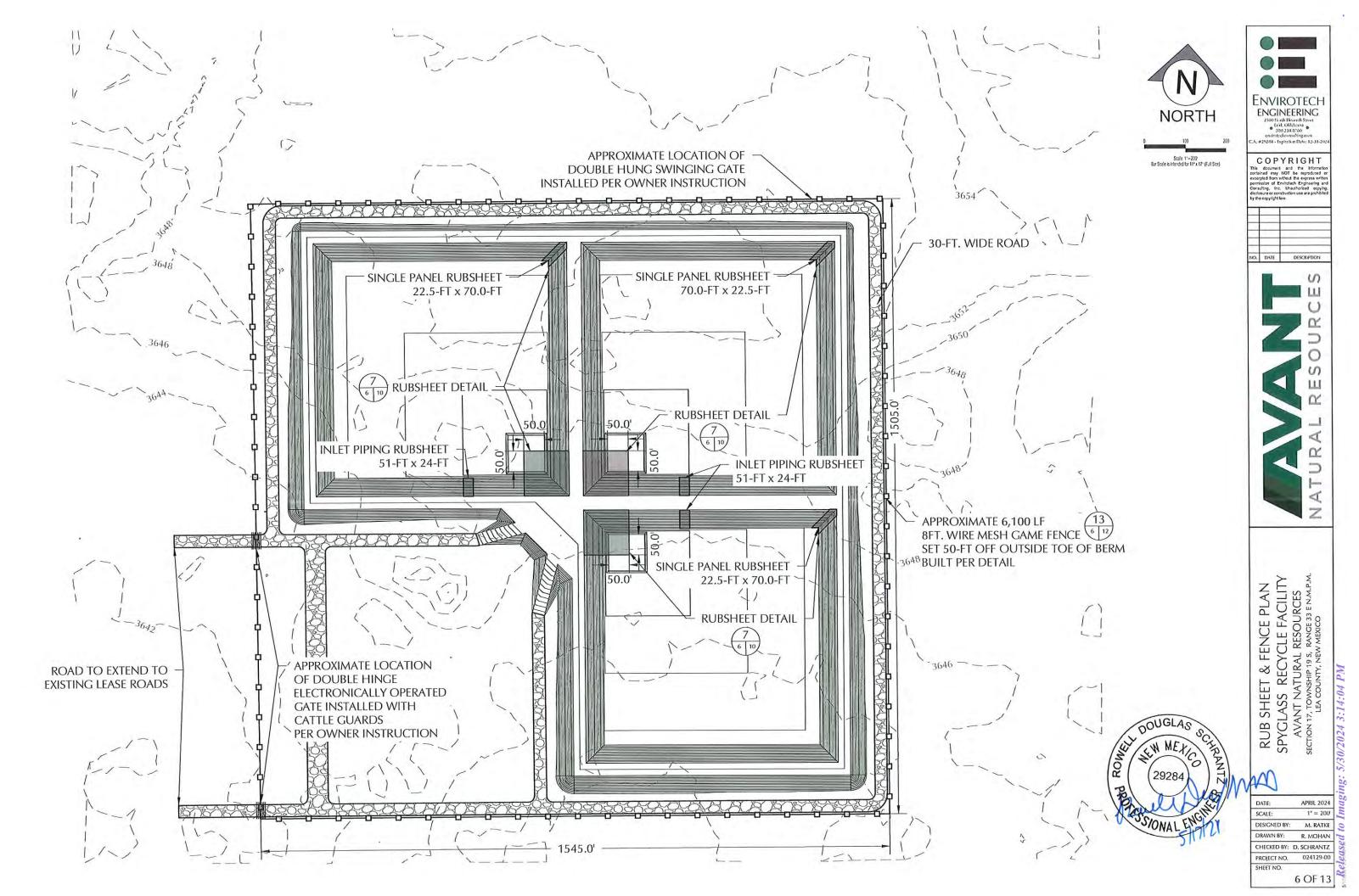
530

530

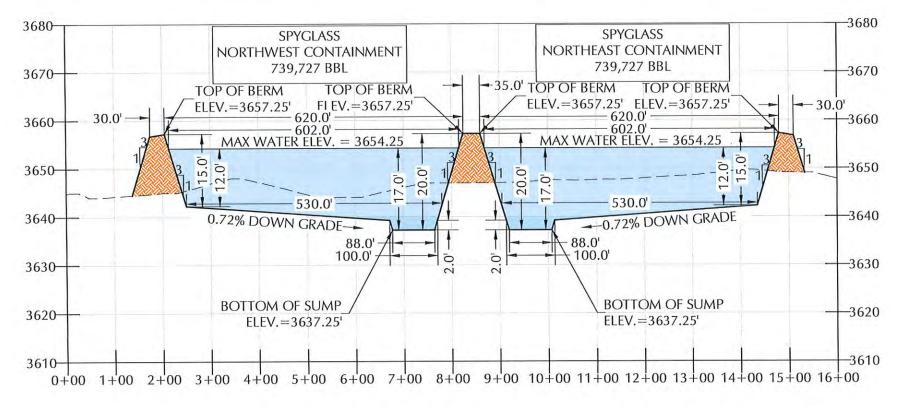
MAX LIQ. LEVEL

	FREEB
1	MAXI
	STOR

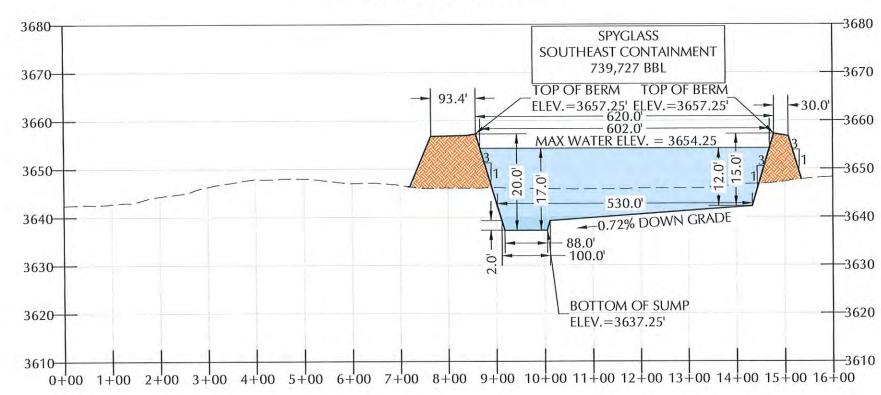
ELEVATION	LACOON LIQ DEPTH ON MARKER FT	REMAINING STORAGE FT	REMAINING STORAGE VOL FT3	REMAINING STORAGE GAL	REMAINING STORAGE BBLS	PERCENT OF TOTAL VOL %	VOL IN IAGOON FT3	VOL IN LACOON GAL	VOL IN LACOON BBLS	VOL IN LACOON AC-FT	PERCENT OF TOTAL VOL %
1656.87	16 50	0.38	226 3.21	1 038 605	25 919	3%	2.127.370	38.337 853	914,282	117.71	97%
1656.37	16.00	0:6//	521,577	2.506,788	59.753	6%p.	4 93 551	36,937 6 0	879-168	113-25	94%
1655-87	15.50	1.38	813.966	3.915,174	93 218	10%	4,749,537	35.531 283	845.983	109.03	90Po
1665 37	45.00	1.98	1,103,500	5.307 836	126 3***	1.3%	4,563,3**	34,136,622	812.824	1041.76	87%
3654.87	14.50	2.38	1.390.195	6 686 837	159.210	1.7%	4.379,043	32,759,621	150.061	100.53	37%
3854.37	14.00	2.80	1.674,064	8.052.246	191,720	20%	4 196 526	21,394,211	747,401	96.34	80%
3654.25	13.88	3.00	1,741,773	8,377,929	199,474	21%	4,152,991	31,068,529	739,727	95.34	79%
3653.87	13.50	3.38	1,955,121	9,404,130	223,908	24%	4,015,817	30,042,328	715,294	92.19	76%
3653.37	13.00	3.88	2,233,379	10,742,555	255,775	27%	3,836,907	28,703,902	683,426	88.08	73%
3652.87	12.50	4.38	2,508,855	12,067,591	287,324	31%	3,659,787	27,378,867	651,878	84.02	69%
3652.37	12.00	4.88	2,781,560	13,379,305	318,555	34%	3,484,448	26,067,153	620,646	79.99	66%
3651.87	11.50	5.38	3,051,509	14.677,760	349,470	37%	3,310,881	24,768,698	589,731	76.01	63%
3651.37	11.00	5.88	3,318,717	15,963,029	380,072	40%	3,139,076	23,483,428	559,129	72.06	60%
3650.87	10.50	6.38	3,583,197	17,235,176	410.361	44%	2,969,026	22,211,282	528,840	68.16	56%
3650.37	10.00	6.88	3,844,962	18,494,269	440,340	47%	2,800,720	20,952,189	498,862	64.30	53°o
3649.87	9.50	7.38	4,104,028	19,740,376	470,009	50%	2,634,151	19,706,081	469,192	60.47	50%
3649.37	9.00	7.88	4,360,408	20,973,564	499,371	53%	2,469,308	18,472,893	439,831	56.69	47%
3648.87	8.50	8.38	4,614,116	22,193,899	528,426	56°o	2, 306, 183	17,252,558	410,775	52.94	44%
3648.37	8.00	8.88	4,865,167	23,401,453	557,177	59%	2,144,767	16.045,005	382,024	49.24	41%
3647.87	7.50	9.38	5,113,573	24,596,286	585,626	62%	1,985,052	14,850,171	353,576	45.57	38%
3647.37	7.00	9.88	5,359,350	25,778,471	613,773	65%	1.827,027	13,667,986	325,428	41.94	35%
3646.87	6.50	10.38	5,602,510	26,948,072	641,621	68%	1,670,684	12,498,385	297,581	38.35	32%
3646.37	6.00	10.88	5,843,069	28,105,160	669,170	71%	1,516,014	11,341,298	270,031	34.80	29%
3645.87	5.50	11.38	6,081,039	29,249,798	696.424	74%	1,363,008	10, 196, 659	242,778	31.29	26%
3645.37	5.00	11.88	6,316,438	30.382.069	723,383	77%	1,211,655	9.064.389	215,819	27.82	23%
3644.87	4.50	12.38	6,549,272	31,502,000	750,048	80%	1.061,951	7,944,458	189,154	24.38	20%
3644.37	4.00	12.88	6,779,563	32.609,700	776,421	83%	913,883	6,836,758	162,780	20.98	17%
3643.87	3.50	13.38	7,007,322	33,705,220	802,505	85%	767,443	5,741,238	136,696	17.62	15%
3643.37	3.00	13.88	7,232,563	34,788,628	828,301	88%	622,621	4,657,830	110,901	14.29	12%
3642.87	2.50	14.38	7,455,300	35,859,993	853,809	91%	479,410	3,586,464	85,392	11.01	9%
3642.37	2.00	14.88	7,675,547	36,919,381	879,033	94%	337,799	2,527,077	60,169	7.75	6%
3641.67	1.50	15.38	7,877,467	37,890,614	902,157	96%	207,973	1,555,843	37,044	4.77	4%
3641.37	1.00	15.88	8,027,780	38,613,621	919,372	98%	111.327	832,837	19,829	2.56	2%
3640.87	0.50	16.38	8,132,907	39.119.282	931 411	99%	43,734	327,175	7,790	1.00	1%
3640.37	0.00	16.88	8,200,927	39,446,458	939,201	100%	-	-	+		0%


Received by OCD: 5/21/2024 2:02:19 PM

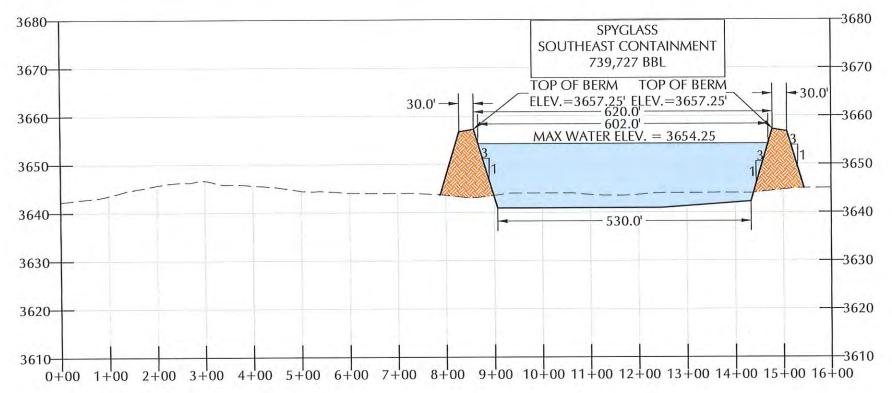
BOARD IMUM CAPACITY RAGE VOLUME

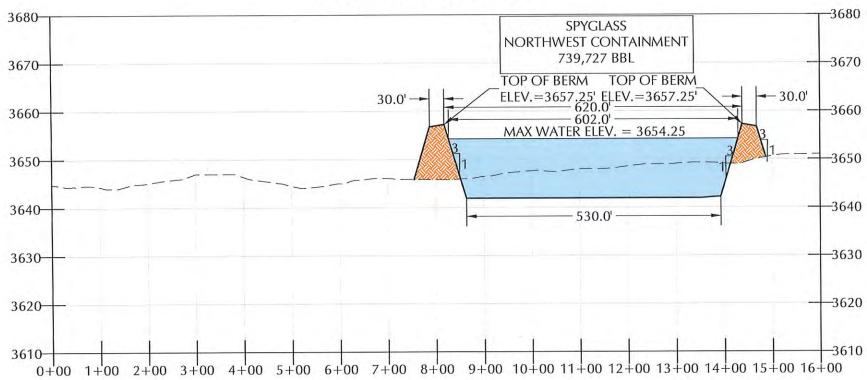


ENC 2500 emi CA. #29284	CINEE Hardh Elwar Inid, Olda Solozha S	IGH the inform the inform the inform the inform the inform the expressive the expressive	1-2024 T mation ed or orition	
PIT CAPACITY	SPYGLASS RECYCLE FACILITY	AVANT NATUKAL KESUUKCES SECTION 17, TOWNSHIP 19, RANGE 33 E N.M.P.M.	LEA COONTY, NEW MEALO	
DATE: SCALE: DESIGN DRAWN CHECKI PROJEC SHEET	n by: Ed by: [It no.	APRIL 1" = M. R. R. MO D. SCHRA 02412	2024 100 ATKE HAN NTZ 29-00	alaged to Imagino


ased to Imaging: 5/30/2024 3:14:04 PM Relev

CROSS SECTION A-A

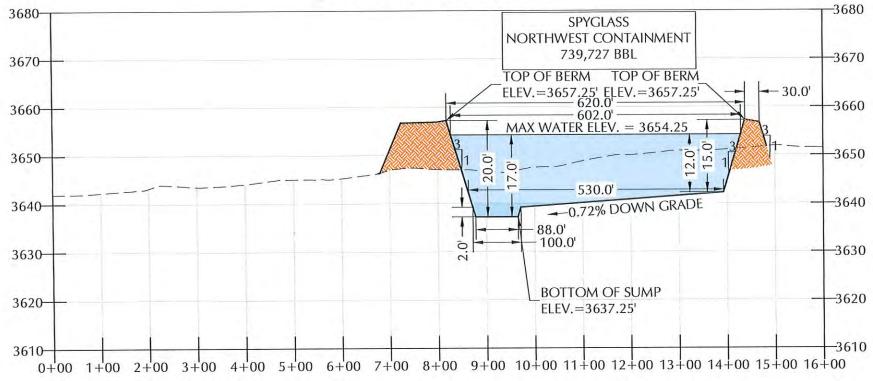

CROSS SECTION B-B


20 Scale 1'=20 Scale is intended for 11" x 17" (Full Sce) (Horizontal) Scale, 1°=20 Bar Scale is intended for 11° x 17° (Full Sce) (Verical) Envirotech ENGINEERING 2500 North Eleventh Street Enid, Oklahoma 580.234.8780 emirotochcomailing.com emitstechconsulting.com A. #29284 - Expitation Date: 12-31-COPYRIGHT This document and the inform contained may NOT be reproduce excerpted from without the express to permission of Envirotech Engineering Consulting, Inc. Unauthorized copy disclosure or construction use are prohib he copyright law. NO. DATE DESCRIPTION S Ш 0 R D O S Ш N < R D F 4 Z CROSS SECTIONS A & B SPYGLASS RECYCLE FACILITY AVANT NATURAL RESOURCES SECTION 17, TOWNSHIP 19 S, IRNICE 33 E N.M.P.M. LEA COUNTY, NEW MEXICO DOUGLAS ROWEL SEN MEXIC APRIL 2024 DATE HORIZONTAL: 1*=200* SCALE: VERTICAL: 1'=20' DESIGNED BY: M. RATKE DRAWN BY: R. MOHAN CHECKED BY: D. SCHRANTZ PROJECT NO. 024129-00 SHEET NO. 7 OF 13

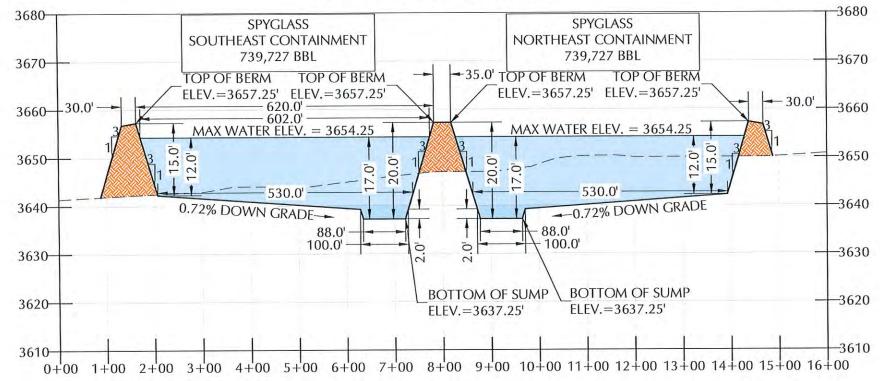
Released to Imaging: 5/30/2024 3:14:04 PM

CROSS SECTION C-C

CROSS SECTION D-D

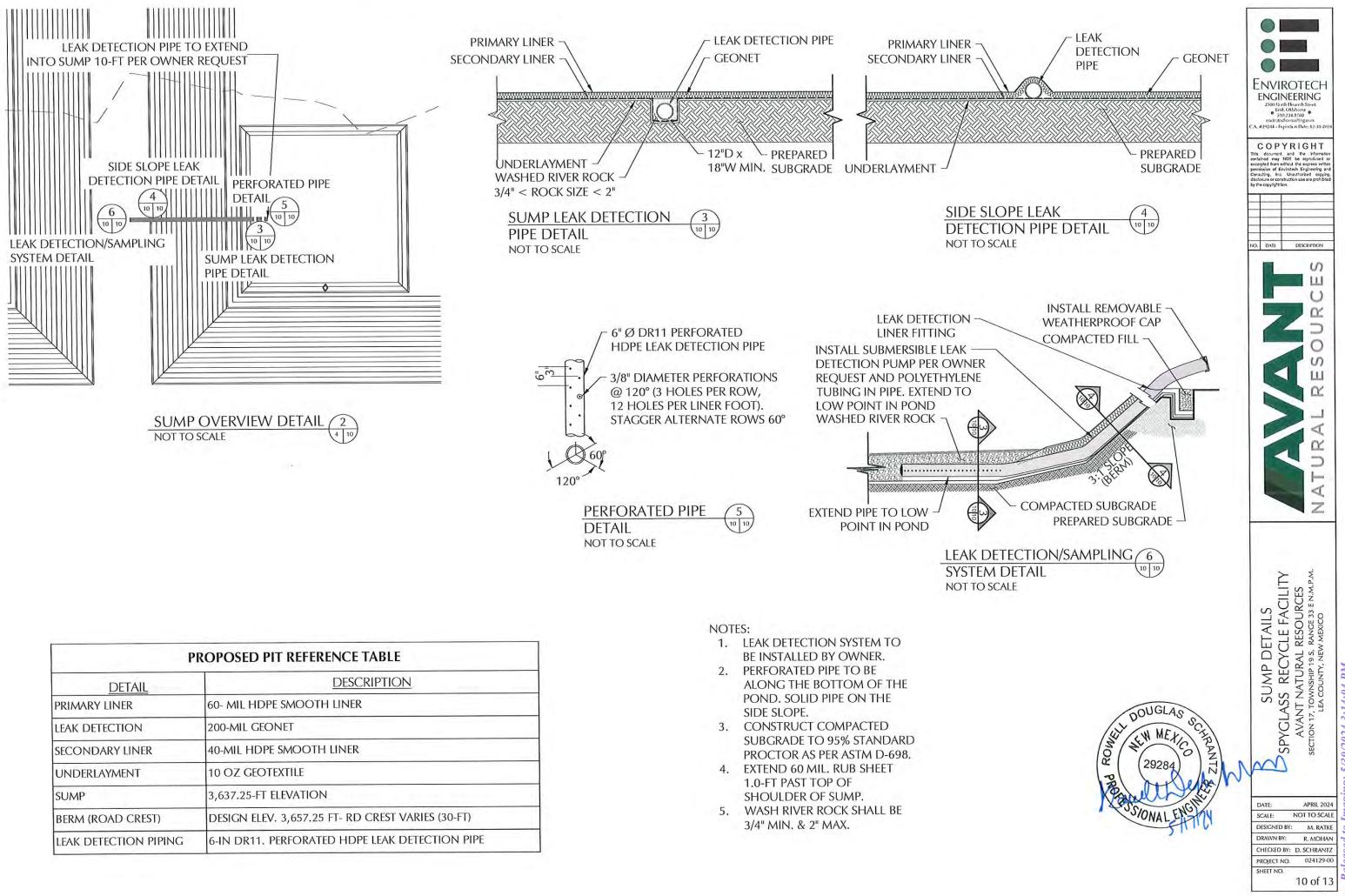


Scale is intended for 11" x 17" (Full Scal (Horizonte) Scale 1°=20 Ear Scale is intended for 11° x 17° (Full Sce) (Vertical) Envirotech ENGINEERING 2500 Nach Hoverh Street 1911, Olladorna 500234 8760 emiestediornaling.com A. #29244 - Spintin Date 12-31-20 COPYRIGHT This document and the informatic contained may NOT be reproduced considered may NOT be repre-excerpted from without the expre-ermission of Envirotech Engine Consulting, Inc. Unauthorized Seclosure or construction use are sy the copyright law. NO. DATE DESCRIPTION S Ш U R D 0 S Ш R < R D 4 Z CROSS SECTIONS C & D SPYGLASS RECYCLE FACILITY AVANT NATURAL RESOURCES SECTION 17, TOWNSHIP 19 S, RANGE 33 E N.M.P.M. LEA COUNTY, NEW MEXICO DOUGLAS ROWEL SEN MEXIC DATE: APRIL 2024 SCALE: HORIZONTAL: 1'=200 VERTICAL: 1'=20 DESIGNED BY: M. RATKE DRAWN BY: R. MOHAN CHECKED BY: D. SCHRANTZ PROJECT NO. 024129-00 SHEET NO. 8 OF 13


eleased to Imaging: 5/30/2024 3:14:04 F

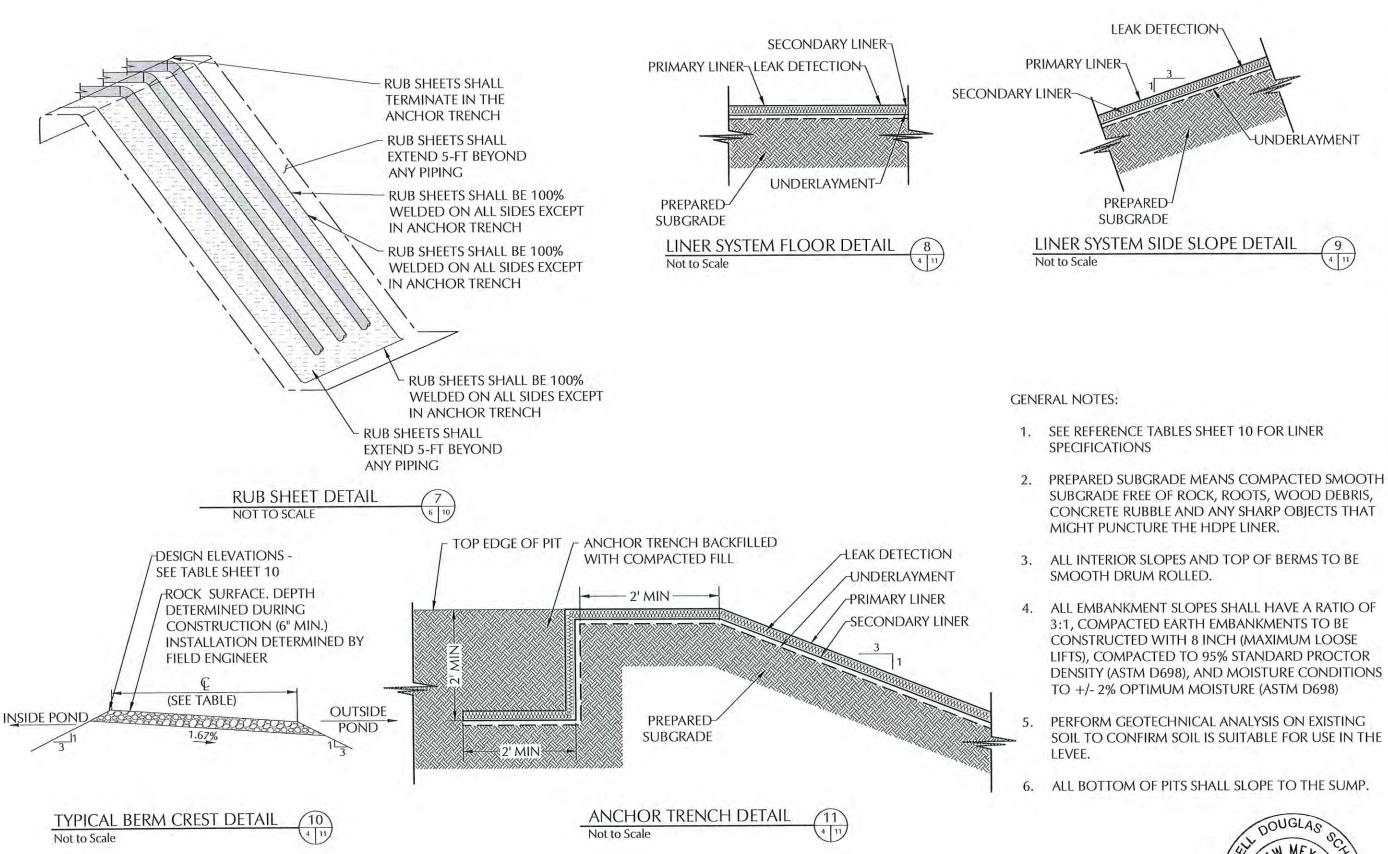
Page 60 of 146

CROSS SECTION E-E



CROSS SECTION F-F

fed for 11" x 17" (Full See (Horizontal) Envirotech Scale 1'=20' Bar Scale is intended for 11' x 17' (Full Sca) ENGINEERING (Votica) 2500 North Eleventh Stree Inid, Oklahoesa 530,234,8760 emirzechconstingcom A. #29284 - Explosion Date: 12-3 vite document and the v contained may NOT be reprodu-contained may NOT be reprodu-pernission of Envicedhe Engineering Considing, Inc. Unsaintoited disclosuse of construction usa-ty the copyright law. NO. DATE DESCRIPTION S Ш U n' D 0 S Ш R R \supset < Z CROSS SECTIONS E & F YGLASS RECYCLE FACILITY AVANT NATURAL RESOURCES 10N 17, TOWNSHIP 19.5, RANCE 33 E N.M.P.M. LEA COUNTY, SPYCLASS DOUGLA NEW . ROWE APRIL 2024 DATE: SCALE: HORIZONTAL: 1'=200' VERTICAL: 1'=20' DESIGNED BY: M. RATKE DRAWN BY: R. MOHAN CHECKED BY: D. SCHRANTZ PROJECT NO. 024129-00 SHEET NO. 9 OF 13


Released to Imaging: 5/30/2024 3:14:0

Р	ROPOSED PIT REFERENCE TABLE
DETAIL	DESCRIPTION
PRIMARY LINER	60- MIL HDPE SMOOTH LINER
LEAK DETECTION	200-MIL GEONET
SECONDARY LINER	40-MIL HDPE SMOOTH LINER
UNDERLAYMENT	10 OZ GEOTEXTILE
SUMP	3,637.25-FT ELEVATION
BERM (ROAD CREST)	DESIGN ELEV. 3,657.25 FT- RD CREST VARIES (30-FT)
LEAK DETECTION PIPING	6-IN DR11. PERFORATED HDPE LEAK DETECTION PIPE

ed by OCD: 5/21/2024 2:02:19 PM

Page 61 of 14(

Envirotech

ENGINEERING

2500 Herdt Haveth Steet Inid, Oklaborta 520,234 8760 en interdeconaling com A. #29264 - Explorti in Date: 12-3

COPYRIGHT

executed from whout the express with permission of Envirotech Engineering a Consulting, Inc. Unauthorized copyl disclosure or construction use are prohibility by the copylight law.

NO. DATE DESCRIPTION

S

LU

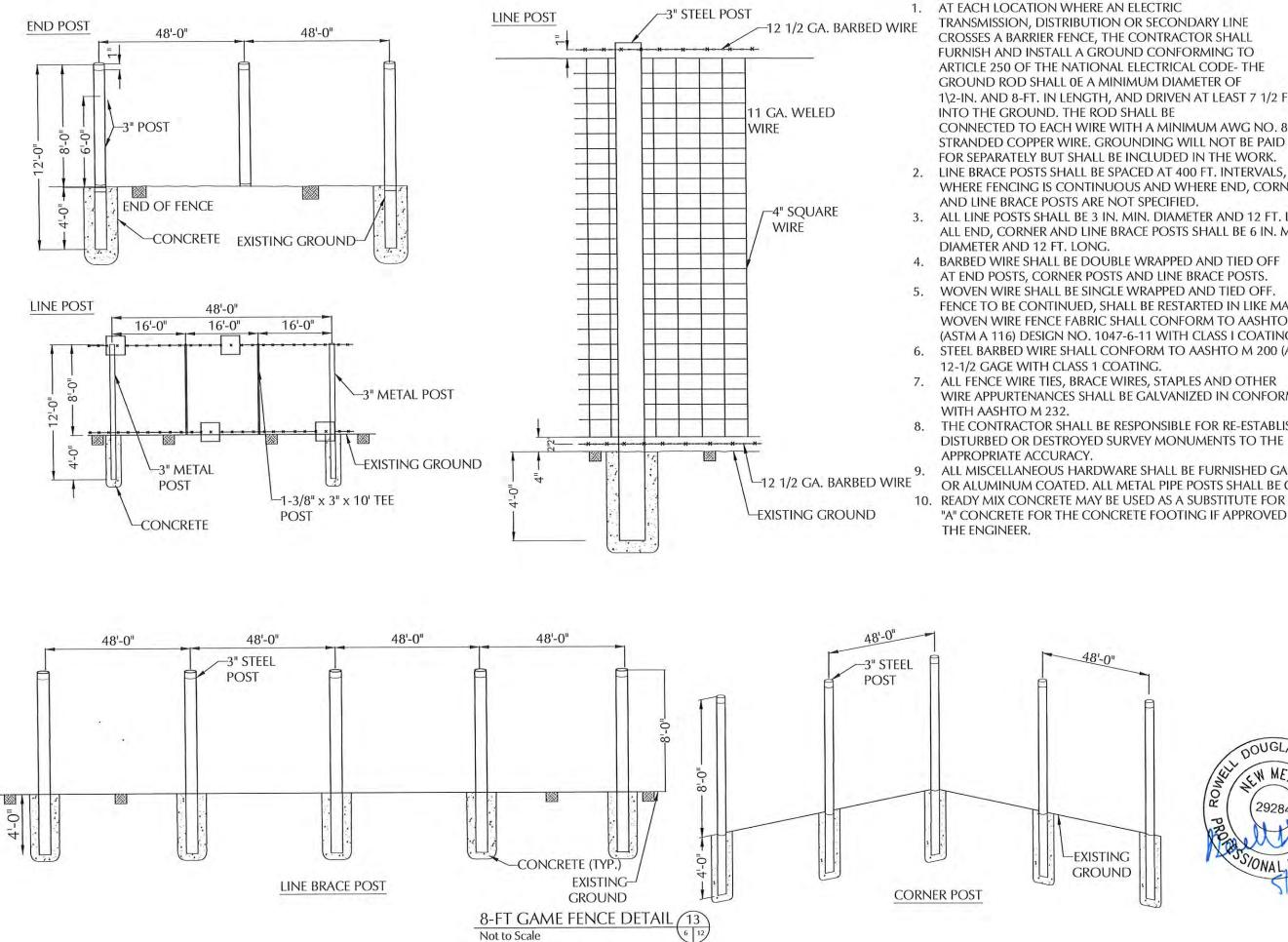
()

R

D 0 S Ш R

 \triangleleft

CL.


D

 \triangleleft

Z

SPYGLASS RECYCLE FACILITY AVANT NATURAL RESOURCES SECTION 17, TOWNSHIP 19 5, RANGE 33 E N.M.P.M. LEA COUNTY, NEW MEXICO

LINER DETAILS

TRANSMISSION, DISTRIBUTION OR SECONDARY LINE CROSSES A BARRIER FENCE, THE CONTRACTOR SHALL FURNISH AND INSTALL A GROUND CONFORMING TO ARTICLE 250 OF THE NATIONAL ELECTRICAL CODE- THE 1\2-IN. AND 8-FT. IN LENGTH, AND DRIVEN AT LEAST 7 1/2 FT.

STRANDED COPPER WIRE. GROUNDING WILL NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK. 2. LINE BRACE POSTS SHALL BE SPACED AT 400 FT. INTERVALS, WHERE FENCING IS CONTINUOUS AND WHERE END, CORNER

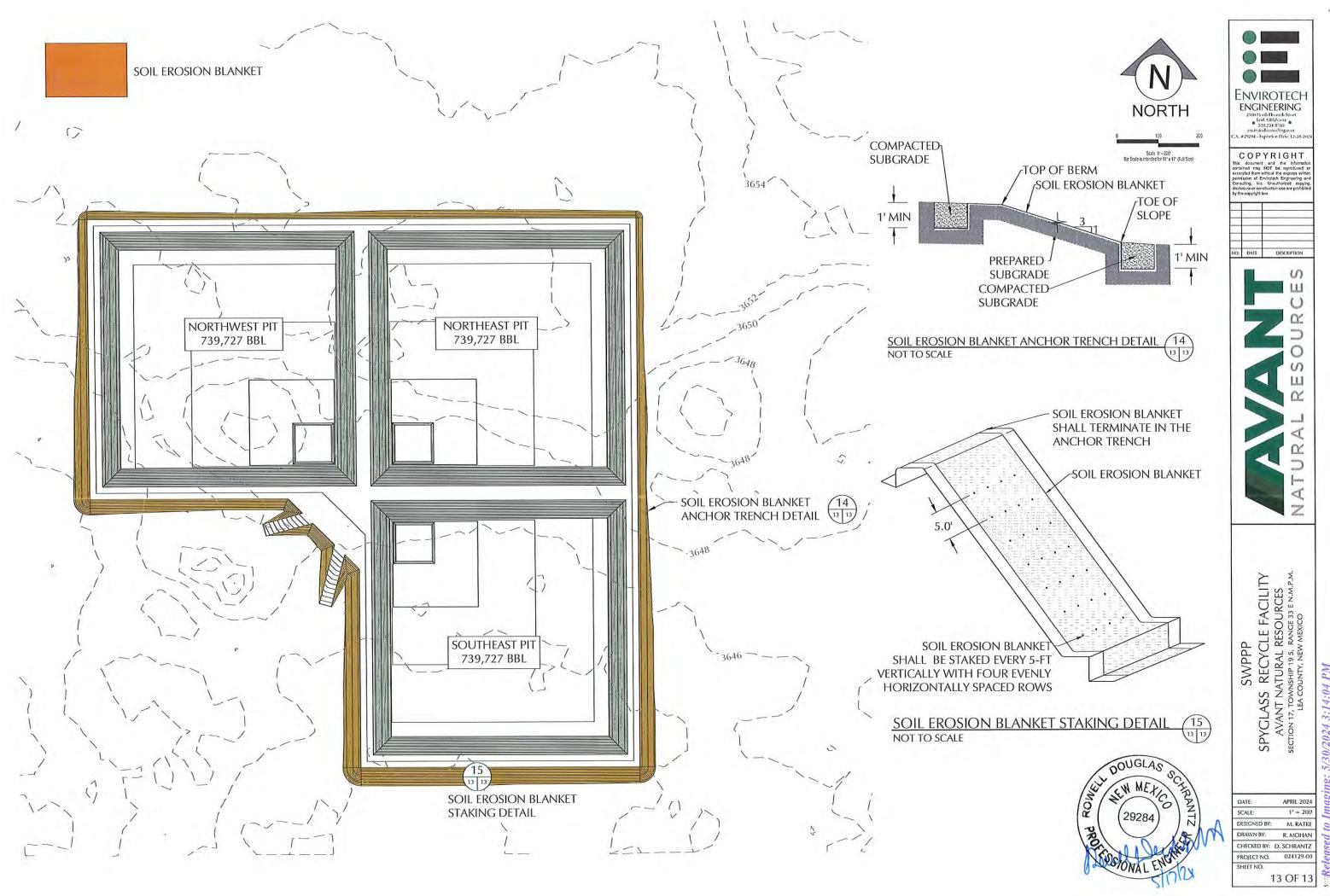
3. ALL LINE POSTS SHALL BE 3 IN. MIN. DIAMETER AND 12 FT. LONG. ALL END, CORNER AND LINE BRACE POSTS SHALL BE 6 IN. MIN.

4. BARBED WIRE SHALL BE DOUBLE WRAPPED AND TIED OFF AT END POSTS, CORNER POSTS AND LINE BRACE POSTS. 5. WOVEN WIRE SHALL BE SINGLE WRAPPED AND TIED OFF. FENCE TO BE CONTINUED, SHALL BE RESTARTED IN LIKE MANNER. WOVEN WIRE FENCE FABRIC SHALL CONFORM TO AASHTO M 279 (ASTM A 116) DESIGN NO. 1047-6-11 WITH CLASS I COATING. STEEL BARBED WIRE SHALL CONFORM TO AASHTO M 200 (ASTM A 121)

ALL FENCE WIRE TIES, BRACE WIRES, STAPLES AND OTHER WIRE APPURTENANCES SHALL BE GALVANIZED IN CONFORMANCE

THE CONTRACTOR SHALL BE RESPONSIBLE FOR RE-ESTABLISHING DISTURBED OR DESTROYED SURVEY MONUMENTS TO THE

ALL MISCELLANEOUS HARDWARE SHALL BE FURNISHED GALVANIZED OR ALUMINUM COATED. ALL METAL PIPE POSTS SHALL BE CAPPED. 10. READY MIX CONCRETE MAY BE USED AS A SUBSTITUTE FOR CLASS "A" CONCRETE FOR THE CONCRETE FOOTING IF APPROVED BY



48'-0" -EXISTING GROUND

SHEET NO.

12 OF 13

Nd

2024 3:14:04

Received by OCD: 3/21/2024 2:02:19 PMVIDE-AREA BIRD CONTR Page 65 of 146

Mega Blaster PRO sonic bird repeller covers 30 acres!

NEMA Rated Case Crystal-Clear Digital Sound

- Laughing Gull
- Ring-Billed Gull
- Herring Gull
- California Gull
- Black-Headed Gull
- Glaucous-Winged Gull
- **Double Crested Cormorant**
- Marsh Hawk

CONFIGURATIONS AVAILABLE:

- Agricultural # MEGA-AG
- Crow / Raven # MEGA-CROW
- Woodpecker
 # MEGA-WP
 Marine / Gull
- Marine / Gull # MEGA-MAR

Mega Blaster PRO uses intermittent distress calls to create a "danger zone" that frightens infesting birds away for good.

PREDATOR cries help scare all the birds.

Perfect for Landfills, Airfields, Fish Farms, Farm Fields or any multi-acre facility.

Our most powerful system features two high-output amplifiers that drive our specially-designed 20 speaker tower. The intense sound output covers up to 30 acres (12 hectares).

It features solid-state electronics mounted inside a NEMAtype control box, suitable for most any application.

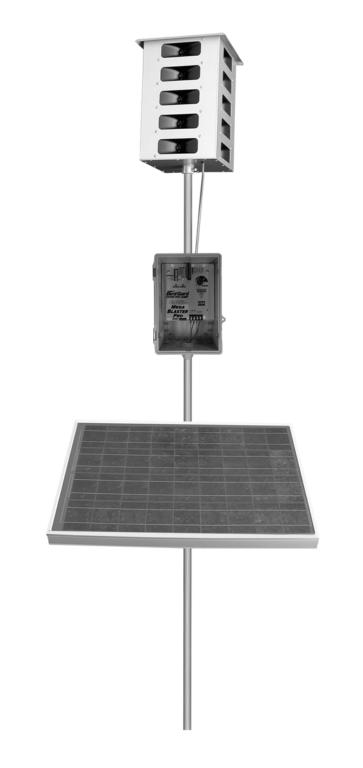
The generating unit mounts easily to a post or pole using the included hardware. The unit comes pre-recorded in four different configurations for the most common bird infestations.

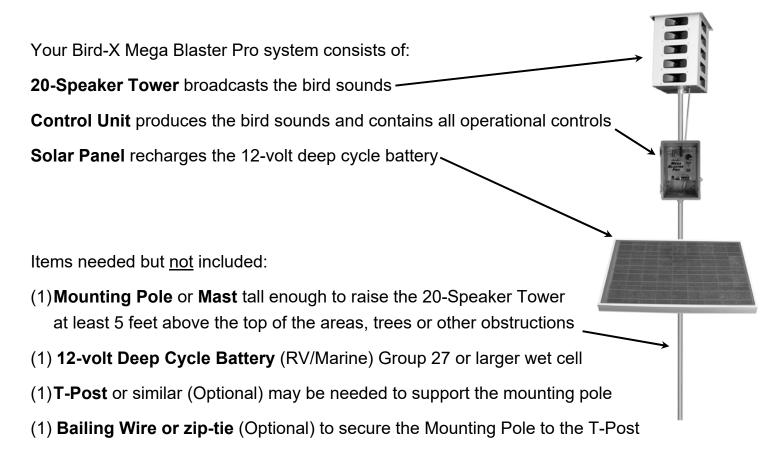
Choose any or all of the 8 sounds, including predators to give the birds even more of a sense of danger. Customize by choosing volume and silent time between sounds.

Mega Blaster PRO

Complete system includes the generating unit with two built-in highoutput amplifiers, 20-speaker tower with audio cables, 40 watt solar panel, battery clips and all mounting hardware.

NOTE: This unit is capable of sound output up to 125 decibels. HEARING PROTECTION IS RECOMMENDED.




User's Manual

Overview	2
Bird Control Management Guidelines	3
Materials List	4
Assembly	5
Control Unit	5
Solar Panel	5
Placement	6
Building a Mounting Pole or Mast	7
Installation	8
20-Speaker Tower	8
Solar Panel	8
Control Box	9
Solar Panel Connections	9
Settings	10
Recordings	10
Mode Settings	10
Warranty	12

Overview

The Bird-X Mega Blaster Pro utilizes the innate power of the natural survival instincts of birds to effectively repel them. Digital recordings of distressed and alarmed birds, along with the sounds made by their natural predators are broadcast through high fidelity weather-resistant speakers over the top of areas. This action triggers a primal fear and flee response. Pest birds soon relocate to where they can feed without feeling threatened.

CAUTION: THE MEGA BLASTER PRO IS CAPABLE OF PRODUCING SOUNDS UP TO 125 DECIBELS. PROPER HEARING PROTECTION MUST BE WORN ANYTIME THE UNIT IS TURNED ON.

Bird-X Mega Blaster Pro Users Manual

Bird Control Management Guidelines

An active bird control management program is a key to successfully repelling pest birds. Bird feeding patterns may take several days or weeks to break. Follow all suggestions for maximum effectiveness. Read all instructions prior to installation.

For best results:

- It is extremely important to fully protect your entire area from birds. Any areas not fully protected will allow birds to begin feeding at the fringes of the sound coverage. They will soon become bolder and learn the sounds are nothing to fear. This will cause the effectiveness to diminish. Complete Bird-X product coverage forces birds to leave the area entirely.
- Install the Mega Blaster Pro unit at least two weeks before birds are attracted to your area. It is much easier to keep birds away before they have found a food source than it is to repel them once they have developed a feeding pattern.
- Most birds begin feeding from the perimeter of an area. Place Mega Blaster Pro units so the sound protection covers past the edges of the area.
- Birds will often use tall trees for roosting and observation. If birds are in bordering trees it is necessary to position the units so the sound protection covers the trees as well.
- Mount the 20-Speaker Tower at least five feet above trees, areas and structures for maximum coverage. The higher the better. Sound will disperse or reflect off structures or foliage. Mount control unit out of direct sun, if possible.
- When first installed, run Mega Blaster Pro units at FULL volume and on SHORT time off periods. This ensures maximum "bird stress" and creates a hostile environment.
- Watch for changes in bird activity and adjust the location of your Mega Blaster Pro unit if needed.
- Check the battery and unit settings often to insure continuous bird control. Be certain that the system is not turned down or has a dead battery. Field hands or harvesters may turn down the volume.
- Changing settings and switches often helps to prevent bird habituation. Periodically change the switch settings of the eight sounds (turning them ON or OFF). NEVER turn OFF the distress calls of the target birds you are trying to repel and always keep at least one predator bird sound turned ON.
- If different bird species enter the protected area and begin causing damage contact us immediately for an updated Sound Recording Card designed to repel the new invading birds.
- Remember that the Mega Blaster Pro system is a management tool, and should be used as part of your overall bird control strategy, sometimes in conjunction with other bird control techniques and devices.

Be aware that under extreme drought or other adverse conditions, birds will disregard all deterrents and risks in order to survive

1

R.K. FROBEL & ASSOCIATES Consulting Engineers

Technical Memorandum: 40-mil HDPE as Alternative Secondary Liner System for In Ground Recycling Containment Facilities NMAC 19.15.34.12 A

I have investigated the suitability of application for 40 mil HDPE geomembrane as an equivalent secondary liner to 30 mil scrim reinforced LLDPE (LLDPEr) in the application for In Ground Recycling Containment facilities. *In summary, it is my professional opinion that the specified 40 mil HDPE geomembrane will provide a secondary liner system that is equal to or better than 30 mil scrim reinforced LLDPEr and will provide the requisite protection of fresh water, public health and the environment for many years when engineering design provides requisite site/soil/slope preparation and when used in concert with requisite primary liners and drainage layers.*

It is understood that the lining system under discussion is composed of a 60 mil HDPE Primary liner, geonet drainage layer and a 40 mil HDPE Secondary liner. *In consideration of the secondary lining system application, size of impoundment and depth, design details as well as the chemical nature of typical processed water, it is my professional opinion that the 40 mil HDPE geomembrane will provide the requisite barrier against processed water loss and will function effectively as a secondary liner.*

The following are discussion points that hopefully will exhibit the equivalency of a 40 mil HDPE secondary liner to that of a 30 mil LLDPEr.

The nature and formulation of the 40 mil HDPE resin is the same as the Primary 60 mil HDPE. The major difference is that the 40 mil HDPE is lower in thickness (more flexible and less puncture resistant). However, in covered conditions, HDPE will resist aging and degradation and remain intact for many decades. In fact, a secondary liner of 40 mil HDPE will outlast an exposed 60 mil HDPE liner. According to the Geosynthetic Research Institute (GRI) study on lifetime prediction (GRI Paper No. 6), the half life of HDPE (GRI GM 13) exposed is > 36 years and the half-life of HDPE covered or buried is greater than 100 years. It is understood that in order to ensure compliance of materials, the primary 60 mil HDPE to be used must meet or exceed GRI GM 13 Standards. Likewise, the secondary liner that is not exposed to the same environmental and chemical conditions must meet or exceed GRI GM 13 for non-reinforced HDPE. Adhering to the minimum requirements of the GRI Specifications, 40 mil HDPE liner (reference: www.geosynthetic-institute.org/grispecs) and equally as protective as a 30 mil scrim reinforced LLDPEr liner.

<u>Durability of Geomembranes is directly affected by exposure conditions.</u> Buried or covered geomembranes are not affected by the same degradation mechanisms (UV, Ozone, Chemical, Stress, Temperature, etc) as are fully exposed geomembranes. In this regard, the secondary liner material and thickness can be much less robust than the fully exposed primary liner which in this case is 60 mil HDPE. This is also the case for

32156 Castle Court / Suite 211-240 / Evergreen, CO 80439 Ph 720-289-0300 / geosynthetics@msn.com

Released to Imaging: 5/30/2024 3:14:04 PM

R.K. FROBEL & ASSOCIATES Consulting Engineers

landfill lining systems where the secondary geomembrane in a bottom landfill cell may be 40 mil HDPE.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Dual wedge thermal fusion welding is commonly used on HDPE and QC testing by air channel (ASTM D 5820) is fully acceptable and recognized as an industry standard. In this regard, there should be no exception requirement for seaming and QC testing as both the Primary and Secondary geomembranes are HDPE. This is fully covered in comprehensive specifications for both the Primary and Secondary geomembranes (Reference: <u>www.ASTM.org/Standards</u>).

<u>Potential for Leakage through the Primary and Secondary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The geonet drainage media provides immediate drainage to a low point or sump and thus no hydrostatic head or driving gradient is available to push leakage water through a hole in the secondary liner. In this regard, secondary geomembrane materials can be (and usually are) much less in thickness and also polymer type. Hydraulic Conductivity through the 40 mil HDPE liner material is extremely low due to the polymer type, structure and crystallinity and exceeds requirements of EPA SW-846 Method 9090A.

<u>Chemical Attack</u>. Chemical attack to polymeric geomembranes is directly a function of type of chemical, temperature and exposure time. Again, the HDPE Primary provides the chemically resistant liner and is QC tested to reduce potential defects or holes. If there is a small hole, the geonet drain takes any leakage water immediately to the sump for extraction. Thus, exposure time is very limited on a secondary liner in addition to low temperature, little volume and virtually no head pressure. In this regard, a chemically resistant geomembrane material such as 40 mil HDPE can be specified for the secondary and is a fully acceptable alternate to 30 mil scrim reinforced LLDPEr.

<u>Mechanical Properties Characteristics</u>. Geomembranes of different polymer and/or structure (i.e., reinforced vs non-reinforced) cannot be readily compared using such characteristics as tensile stress/strain, tear, puncture and polymer requirements. For a 40 mil HDPE liner material to function as a Secondary liner it should meet or exceed the manufacturers minimum requirements for Density, Tensile Properties, Tear, Puncture as well as other properties such as UV resistance. The sheet material must also meet or exceed GRI GM 13 minimum requirements. *In this regard, a 40 mil HDPE will be equivalent to a 30 mil LLDPEr as a secondary liner for the conditions listed below:*

- The subgrade or compacted earth foundation will be smooth, free of debris or loose rocks, dry, unyielding and will support the lining system.
- The side slopes for the containment shall be equal to or less than 3H:1V.
- The physical properties and condition of the subgrade or liner foundation

R.K. FROBEL & ASSOCIATES Consulting Engineers

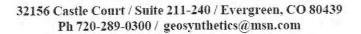
(i.e., density, slope, moisture) will be inspected and certified by a Professional Engineer that it meets or exceeds specification requirements.

- Immediately prior to installation, the installation contractor shall inspect and sign off on the subgrade conditions that they meet or exceed the HDPE manufacturer and installers requirements.
- A protective geotextile will be placed on the finished and accepted subgrade between subgrade and the 40 mil HDPE Secondary liner.
- A 200 mil geonet will be placed over the 40 mil HDPE Secondary Liner.
- A 60 mil HDPE Primary liner will be placed over the 200 mil geonet drainage layer.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email <u>geosynthetics@msn.com</u>

Sincerely Yours,

RK Frahel


Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

Geosynthetic Research Institute (GRI) Published Standards and Papers 2017 www.geosynthetic-institute.org

ASTM Geosynthetics Standards 2017 www.ASTM.org/Standards

Released to Imaging: 5/30/2024 3:14:04 PM

•

DESIGN/CONSTRUCTION PLAN

This plan addresses construction of the earthen containments.

Magrym Engineers is providing the design of the containment and their plans are presented in this submission.

Dike Protection and Structural Integrity

The design and operation provide for the confinement of produced water, prevention of releases and prevention of overtopping due to wave action or rainfall. Additionally, the design prevents run-on of surface water as the containment is surrounded by an above-grade levee (a berm) and/or diversion ditch (between the levee and the soil stockpile) to prevent run-on of surface water.

Stockpile Topsoil

Where topsoil is present, prior to constructing containment, the operator will strip and stockpile the topsoil for use as the final cover or fill at the time of closure.

Signage

The operator will place an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in a conspicuous place on the fence surrounding the containment. The sign is posted in a manner and location such that a person can easily read the legend. The sign will provide the following information:

- the operator's name,
- the location of the site by quarter-quarter or unit letter, section, township and range, and
- emergency telephone numbers

Fencing

The operator will provide for a fence to enclose the recycling containment in a manner that deters unauthorized wildlife and human access. As specified in the design drawings, the operator will employ a chain-link or game fence. If required by the District Office, the operator will add fourstrands of barbed wire to comply with the text of the Rule. Because feral pigs, javelina and deer are present in the area, a chain link or game fence is required in order to comply with Section 19.15.34.12 D.1 of the Rule because pigs will move beneath the lower strand of a 4-strand, 4-foot high barbed wire fence and deer will jump over. However, 19.15.34.12 D.2 requires "a four-foot fence that has at least four strands of barbed wire evenly spaced in the interval between one foot and four feet above ground level". Therefore, a barbed wire specification will be added to the game fence to avoid a variance if required by the OCD District Office.

© 2023 R.T. HICKS CONSULTANTS, LTD.

19.15.34.12 A Design and Construction Specifications

(1). The operator shall design and construct a recycling containment to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall.
(8). The operator of a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water

19.15.34.12 B. Prior to constructing containment, the operator shall strip and stockpile the topsoil for use as the final cover or fill at the time of closure

19.15.34.12 C. Signs.

The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in a conspicuous place on the fence surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers

19.15.34.12 D. Fencing

(1) The operator shall fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

(2) Recycling containments shall be fenced with a four-foot fence that has at least four strands of barbed wire evenly spaced in the interval between one foot and four feet above ground level.

As stated in the O&M plan, the operator will ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

Netting and Protection of Wildlife

The perimeter game/chain-link fence will be effective in excluding stock and most terrestrial wildlife. If requested by the surface owner, the game fence can include a fine mesh from the base to 1 foot above the ground to exclude the small reptiles (e.g. dune sagebrush lizard).

The recycling containment will be protective of wildlife, including migratory birds_through the implementation of an Avian Protection Plan, routine inspections and the perimeter fence.

The avian protection plan includes the use of a Bird-X Mega Blaster Pro¹ as a primary hazing program for avian species. The device will be equipped with sounds suitable for the Permian Basin environment. In addition to this sonic device, staff will routinely inspect the containment for the presence of avian species and, if detected, will use a blank cartridge or shell in a handgun, starter pistol or shotgun as additional hazing. Decoys of birds of prey may be placed on the game fence and other roosts around the open water to provide additional hazing.

The O&M plan calls for the operator to inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

Earthwork

The containment will have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity.

This volume provides the stamped drawings for the containment with the following design/construction specifications:

a) levee has inside grade no steeper than two horizontal feet to one vertical foot (2H: 1V).

19.15.34.12 E Netting.

The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

19.15.34.12 A

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity...

© 2023 R.T. HICKS CONSULTANTS, LTD.

- b) levee outside grade is no steeper than three horizontal feet to one vertical foot (3H: 1V)
- c) top of the levee is wide enough to install an anchor trench and provide adequate room for inspection and maintenance.
- d) The containment floor design calls for a slope toward the sump in the corner(s).

Liner and Drainage Geotextile Installation

The containment has a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions.

The primary (upper) liner is a geomembrane liner composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. It is 60-mil HDPE. The secondary liner is specified in the design drawings and is 40-mil HDPE or thicker and is equivalent to 30-mil LLDPEr (in accordance with a previously approved variance) Liner compatibility meets or exceeds a subsequent relevant publication to EPA SW-846 method 9090A.

The recycling containment design has a leak detection system between the upper and lower geomembrane liners of 200-mil geonet to facilitate drainage. The leak detection system consists of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection. The containment floor design calls for a slope toward the sump in the corner(s) of the containment, as shown in the design drawings. This slope combined with the highly transmissive geonet drainage layer provide for rapid leak detection.

The liners and drainage material will be installed consistent with the Manufacturer's specifications. In addition to any specifications of the Manufacturer, protocols for liner installation include measures to:

- i. minimizing liner seams and orient them up and down, not across, a slope of the levee.
- ii. use factory-welded seams where possible.
- use field seams in geosynthetic material that are thermally seamed and prior to field seaming, overlap liners four to six inches.
- iv. minimize the number of field seams and comers and irregularly shaped areas.
- v. provide for no horizontal seams within five feet of the

© 2023 R.T. HICKS CONSULTANTS, LTD.

19.15.34.12 A

(2) ...The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.

19.15.34.12 A

(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions.

19.15.34.12 A

(4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

19.15.34.12 A

(7) The operator of a recycling containment shall place a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet or two feet of compacted soil with a saturated hydraulic conductivity of 1 x 10-5 cm/sec or greater to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection.

19.15.34.12 A

(5) The operator of a recycling containment shall minimize liner seams and orient them up and down, not across, a slope of the levee. Factory welded seams shall be used where possible. The operator shall ensure field seams in geosynthetic material are thermally seamed. Prior to field seaming, the operator shall overlap liners four to six inches...

slope's toe.

- vi. use qualified personnel to perform field welding and testing.
- vii. avoid excessive stress-strain on the liner
- viii. The edges of all liners are anchored in the bottom of a compacted earth-filled trench that is at least 18 inches deep

At points of discharge into the lined earthen containment the pipe configuration effectively protects the liner from excessive hydrostatic force or mechanical damage during filling.

The design shows that at any point of discharge into or suction from the recycling containment, the liner is protected from excessive hydrostatic force or mechanical damage. External discharge or suction lines do not penetrate the liner.

Pumping from the containment to hydraulic fracturing operations is the responsibility of stimulation contractors. Typically, lines are permanently placed in the containment with floats attached to prevent damage to the liner system. The containment may be equipped with permanent HDPE stinger (supported by a sacrificial liner or geotextile) for withdrawal of fluid if the owner deems necessary during operations.

Leak Detection and Fluid Removal System Installation The leak detection system, contains the following design elements

- a. The 200-mil HyperNet Geonet drainage material between the primary and secondary liner that is sufficiently permeable to allow the transport of fluids to the observation ports (Appendix A).
- b. The containment floor is sloped towards the monitoring riser pipe to facilitate the earliest possible leak detection of the containment bottom. A pump may be placed in the observation port to provide for fluid removal.
- c. Piping will withstand chemical attack from any seepage, structural loading from stresses and disturbances from overlying water, cover materials, equipment operation or expansion or contraction (see Appendix A).

19.15.34.12 A

(5) ...The operator shall minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the slope's toe. Qualified personnel shall perform field welding and testing.

19.15.34.12 A

(3) The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

19.15.34.12 A

(6) At a point of discharge into or suction from the recycling containment, the operator shall insure that the liner is protected from excessive hydrostatic force or mechanical damage. External discharge or suction lines shall not penetrate the liner.

© 2023 R.T. HICKS CONSULTANTS, LTD.

OPERATIONS AND MAINTENANCE PLAN

CLOSURE PLAN

Overview

The operator will operate and maintain the lined earthen containment to contain liquids and solids (blow sand and minimal precipitates from the produced water) and maintain the integrity of the liner system in a manner that prevents contamination of fresh water and protects public health and the environment as described below. The purpose of the lined earthen containment is to facilitate recycling, reuse and reclamation of produced water derived from oil and gas wells. During periods when water for E&P operations is not needed, produced water will discharge to injection wells or to a pipeline for transfer to another recycling facility. The containment will not be used for the disposal of produced water or other oilfield waste.

The operation of the containment is summarized below.

- A. Produced water generated from nearby oil and gas wells is delivered to a treatment system located as indicated in the C-147.
- B. Unless specified in the transmittal letter, after treatment, the produced water discharges into the containment.
- C. When required, produced water is removed from the containment for E&P operations. At this time, produced water will be used for drilling beneath the freshwater zones (beneath surface casing), for well stimulation (e.g. hydraulic fracturing) and other E&P uses as approved by OCD.
- D. Whenever the maximum fluid capacity of the containment is reached, treatment and discharge to the containment ceases (see Freeboard and Overtopping Plan, below).
- E. The operator will keep accurate records and shall report monthly to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148 (see attached example).
- F. The operator will maintain accurate records that identify the sources and disposition of all recycled water that shall be made available for review by the division upon request.

19.15.34.10 D Recycling containments may not be used for the disposal of produced water or other oilfield wastes.

19.15.34.9 E

The operator of a recycling facility shall keep accurate records and shall report monthly to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.

19.15.34.9 F

The operator of a recycling facility shall maintain accurate records that identify the sources and disposition of all recycled water that shall be made available for review by the division upon request.

© 2023 R.T. Hicks Consultants

G. The containment shall be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six months following the first withdrawal of produced water for use. The operator will report cessation of operations to the appropriate division district office. The appropriate division district office may grant an extension to this determination of cessation of operations not to exceed six months.

The operation of the lined earthen containment will follow the mandates listed below:

- 1. The operator will not discharge into or store any hazardous waste (as defined by 40 CFR 261 and NMAC 19.15.2.7.H.3) in the containments.
- 2. If the containment's primary liner is compromised above the fluid's surface, the operator will repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension of time from the division district office.
- 3. If the primary liner is compromised below the fluid's surface, the operator will remove all fluid above the damage or leak within 48 hours of discovery, notify the division district office and repair the damage or replace the primary liner.
- 4. If any penetration of the containment liner is confirmed by sampling of fluid in the leak detection system (see Monitoring, Inspection, and Reporting Plan; below), the operator will:
 - a. Begin and maintain fluid removal from the leak detection/pump-back system,
 - b. Notify the district office within 48 hours (phone or email) of the discovery,
 - c. Identify the location of the leak, and
 - d. Repair the damage or, if necessary, replace the containment liner.
- 5. The operator will install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release and the operator will remove any visible layer of oil from the surface of the recycling containment.
- 6. The operator will report releases of fluid in a manner consistent with NMAC 19.15.29
- 7. The containment will be operated to prevent the collection of surface water run-on.

19.15.34.13 C

A recycling containment shall be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six months following the first withdrawal of produced water for use. The operator must report cessation of operations to the appropriate division district office. The appropriate division district office may grant an extension to this determination of cessation of operations not to exceed six months.

19.15.34.13 B

(4) If the containment's primary liner is compromised above the fluid's surface, the operator shall repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension of time from the division district office. (5) If the primary liner is compromised below the fluid's surface, the operator shall remove all fluid above the damage or leak within 48 hours of discovery, notify the division district office and repair the damage or replace the primary liner.

19.15.34.13 B

(7) The operator shall install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release.(1) The operator shall remove any

visible layer of oil from the surface of the recycling containment. 19.15.34.8 A

(6) All releases from the recycling and re-use of produced water shall be handled in accordance with 19.15.29 NMAC.

- 8. The operator will maintain the containment free of miscellaneous solid waste or debris.
- 9. The operator will maintain at least three feet of freeboard for the containment and will use a free-standing staff gauge to allow easy determination of the required 3-foot of freeboard.
- 10. As described in the design/construction plan, the injection or withdrawal of fluids from the containment is accomplished through hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.
- 11. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.
- 12. The operator will maintain the fences in good repair.

Monitoring, Inspection, and Reporting Plan

The operator will inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request.

Weekly inspections consist of:

- reading and recording the fluid height of staff gauges,
- recording any evidence that the pond surface shows visible oil,
- visually inspecting the containment's exposed liners
- checking the leak detection system for any evidence of a loss of integrity of the primary liner.
- inspect diversion ditches and berms around the containment to check for erosion and collection of surface water run-on.
- inspect the leak detection system for evidence of damage or malfunction and monitor for leakage.

As stated above, if a liner's integrity is compromised, or if any penetration of the liner occurs, then the operator will take appropriate action within 48 hours, based on if above or below water surface, as noted above. 19.15.34.13(6) The containment shall be operated to prevent the collection of surface water run-on.

19.15.34.13 B

(2) The operator shall maintain at least three feet of freeboard at each containment.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

19.15.34.12 D

(1) The operator shall fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

19.15.34.13 A

The operator shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request.

Monthly, the operator will:

- A. Inspect the containment for dead migratory birds and other wildlife. Within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.
- B. Report to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.
- C. Record sources and disposition of all recycled water.

The operator will maintain a log of all inspections and make the log available for the appropriate Division district office's review upon request. An example of the log is attached to this section of the permit application.

Freeboard and Overtopping Prevention Plan

The method of operation of the containment allows for maintaining freeboard with very few potential problems. When the capacity of the containment is reached (3-feet of freeboard), the discharge of produced water ceases and the produced water generated by nearby oil and gas wells is managed by an injection well(s).

If rising water levels suggest that 3-feet of freeboard will not be maintained, the operator will implement one or more of the following options:

I. Cease discharging produced water to the containment.

II.Accelerate re-use of the produced water for purposes approved by the Division.

III. Transfer produced water from the containment to injection wells.

The reading of the staff gauge typically occurs daily when treatment operations are ongoing and weekly when discharge to the containment is not occurring.

19.15.34.12 E

The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

19.15.34.9 E

The operator of a recycling facility shall keep accurate records and shall report monthly to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.

19.15.34.9 F

The operator of a recycling facility shall maintain accurate records that identify the sources and disposition of all recycled water that shall be made available for review by the division upon request.

Protocol for Leak Detection Monitoring, Fluid Removal and Reporting

As shown in Appendix A, the leak detection system includes a monitoring system. Any fluid released from the primary liner will flow to the collection sump, where fluid level monitoring is possible at the monitoring riser pipe associated with the leak detection system.

Staff may employ a portable electronic water level meter to determine if fluid exists in the monitoring riser pipe. Obtaining accurate readings of water levels in a sloped pipe beneath a containment can be a challenge. An electrician's wire snake may be required to push the probe to the bottom of the port and the probe may be fixed in a 2-inch pipe "dry housing" to avoid false readings due to water condensation on the pipe. There are many techniques to determine the existence of water in the sumps – including low flow pumps and a simple small bailer affixed to an electrician's snake. The operator will use the method that works best for this containment.

If seepage from the containment into the leak detection system is suspected by a positive fluid level measurement, the operator will:

- 1. Re-measure fluid levels in the monitoring riser pipe on a daily basis for one week to determine the rate of seepage.
- 2. Collect a water sample from the monitoring riser pipe to confirm the seepage is produced water from the containment via electrical conductivity and chloride measurements.
- 3. Notify NMOCD of a confirmed positive detection in the system within 48 hours of sampling (initial notification).
- 4. Install a pump into the monitoring riser pipe sump to continually (manually on a daily basis or via automatic timers) remove fluids from the leak detection system into the containment until the liner is repaired or replaced.
- 5. Dispatch a liner professional to inspect the portion of the containment suspected of leakage during a "low water" monitoring event.
- 6. Provide NMOCD a second report describing the inspection and/or repair within 20 days of the initial notification.

© 2023 R.T. Hicks Consultants

If the point of release is obvious from a low water inspection, the liner professional will repair the loss of integrity. If the point of release cannot be determined by the inspection, the liner professional will develop a more robust plan to identify the point(s) of release. The inspection plan and schedule will be submitted to OCD with the second report. The operator will implement the plan upon OCD approval.

Closure Plan In Ground Containments

19.15.34.14 A

Once the operator has ceased operations, the operator shall remove all fluids within 60 days and close the containment within six months from the date the operator ceases operations from the containment for use.

19.15.34.14 E

The operator shall substantially restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

19.15.34.14 G

The re-vegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

19.15.34.14 B

The operator shall close a recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.

19.15.34.14 C

The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below.

19.15.34.14 C

 If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

Overview

After operations cease, the operator will remove all fluids within 60 days and close the containment within six months from the date the operator ceases operations from the containment for use.

The operator shall substantially restore the impacted surface area to

- a. the condition that existed prior to the construction of the recycling containment or
- b. to a condition imposed by federal, state trust land or tribal agencies on lands managed by those agencies as these provisions govern the obligations of any operator subject to those provisions,

The surface owner will impose a closure design that conforms to their needs for the site. The operator understands that a variance will be submitted to OCD to allow for any alternative closure protocol.

Excavation and Removal Closure Plan – Protocols and Procedures

The containment is expected to hold a small volume of solids, the majority of which will be windblown sand and dust with some mineral precipitates from the water

- 1. The operator will remove all liquids from the containment and either:
 - a. Dispose of the liquids in a division-approved facility, or
 - b. Recycle, reuse or reclaim the water for reuse in drilling and stimulation.
- 2. The operator will close the recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.
- 3. After the removal of the containment contents and liners, soils beneath the containment will be tested by collection of a five-point (minimum) composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I of 19.15.34.14.
- 4. After review of the laboratory results:
 - a. If any contaminant concentration is higher than the parameters listed in Table I, additional delineation may be required, and the operator must receive approval before proceeding with closure.

©2023 R.T. Hicks Consultants.

Closure Plan In Ground Containments

- b. If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator will proceed to
 - i. backfill with non-waste containing, uncontaminated, earthen material Or
 - ii. undertake an alternative closure process pursuant to a variance request after approval by OCD.

Reclamation and Re-vegetation

- a. The operator will reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area.
- <u>b.</u> Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.
- <u>c.</u> The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment.

Closure Documentation

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

The operator shall notify the division when reclamation and revegetation are complete. Specifically the notice will document that all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

19.15.34.14 C

(2) If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator can proceed to backfill with non-waste containing, uncontaminated, earthen material.

19.15.34.14 E

Once the operator has closed the recycling containment, the operator shall reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment.

19.15.34.14 D

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

19.15.34.14 H

The operator shall notify the division when reclamation and re-vegetation are complete.

19.15.34.14 F

Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

Volume 3 C-147 Permit Package for Spyglass AST Containment Section 17, T19S, R33E, Lea County

- C-147 & Design Sketch
- Stamped Design Drawings
- Design/Construction Plan
- O&M and Closure Plans
- Set-Up SOP
- Variances and Equivalency Demonstrations

View east from USGS-15469, an abandoned well located about 450 feet west of the proposed Spyglass project area. The area is a flat plain covered by eolian sand that is stabilized by vegestion.

Prepared for: Legion Water Services, LLC Denver, Colorado

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW F-142 Albuquerque, New Mexico

Received by OCD: 5/21/2024 2:02:19 P	M		Page 87 of 1 4
District I 1625 N. French Dr., Hobbs, NM 88240 District II	State of New Me Energy Minerals and Natur		Form C-147 Revised April 3, 2017
811 S. First St., Artesia, NM 88210 District III	Department		
1000 Rio Brazos Road, Aztec, NM 87410	Oil Conservation D 1220 South St. Fran		
District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87		
Recycling	g Facility and/or Re	cycling Containmen	it
• •	· •	Recycling Containment*	_
Type of action: 🗹 Per			
	dification	Extension	
_	osure	Other (explain)	
* At the time C-147 is submitted to the	division for a Recycling Containme	nt, a copy shall be provided to the surf	face owner.
Be advised that approval of this request does not Nor does approval relieve the operator of its resp	relieve the operator of liability should opera onsibility to comply with any other applicab	tions result in pollution of surface water, ground le governmental authority's rules, regulations of	d water or the environment. r ordinances.
1. Operator <u>: Legion</u>	n Water Services LLC	OGRID #: 332392	
Address: 1515	Wynkoop Street Suite 700 Denver, CO 8	0202	
Facility or well name (include API# if asso	ciated with a well): <u>Spyglass Reuse F</u>	acility & AST CONTAINMENT #1 & #2	
OCD Permit Number: 1RF-525	(For new facilities the permit n	umber will be assigned by the district office)	
		Range: <u>33E</u> Cour	
Surface Owner: 🗌 Federal 🗌 State 🖂 Pri	ivate 🗌 Tribal Trust or Indian Allotment		
2.			
Recycling Facility:			
Location of (if applicable): Latitude:	32.663616 Longitude	:	3)
Proposed Use: 🖾 Drilling* 🖾 Completion	-		,
*The re-use of produced water may NOT	00 0	and cemented	
	-	produced water and ensure there will be no	adverse impact on
groundwater or surface water.			
Fluid Storage			
-	avaling containment 🗖 Activity permitte	l under 19.15.17 NMAC explain type	
-			
	15.56 NMAC explain type:	Other explain	
	1		
	cycling containments, attach design and lo		
		cation information of each containment g Facility Closure Completion Date:	
Closure Report (required within 60 d	ays of closure completion): Recyclin		
Closure Report (required within 60 d	ays of closure completion): Recyclin #2: 	g Facility Closure Completion Date:	
Closure Report (required within 60 d) 3. Recycling Containment AST #1 and # Annual Extension after initial 5 years (attack)	ays of closure completion): Recyclin Recyclin #2: ch summary of monthly leak detection instant 	g Facility Closure Completion Date:	prox. (NAD83)
Closure Report (required within 60 d) 3. Recycling Containment AST #1 and # Annual Extension after initial 5 years (attacked Recycling Containment (if applicable) Lattacked Recycling Co	avs of closure completion): Recyclin #2:	g Facility Closure Completion Date: pections for previous year) Center of Longitude: -103.686351 ap	
Closure Report (required within 60 d) 3. Recycling Containment AST #1 and # Annual Extension after initial 5 years (attac Recycling Containment (if applicable) Lat For multiple or additional recycling	avs of closure completion): Recyclin #2:	g Facility Closure Completion Date: pections for previous year) Center of Longitude: -103. <u>686351 ap</u> ration information of each containment	prox. (NAD83)
□ Closure Report (required within 60 d) 3. □ Recycling Containment AST #1 and # □ Annual Extension after initial 5 years (attacked recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ Liner type: Thickness 40 m	avs of closure completion): Recyclin #2:	g Facility Closure Completion Date: pections for previous year) Center of Longitude: -103.686351 ap	prox. (NAD83)
Closure Report (required within 60 d) 3. Recycling Containment AST #1 and # Annual Extension after initial 5 years (attacked recycling Containment (if applicable) Lattacked recycling Co	avs of closure completion): Recyclin #2:	g Facility Closure Completion Date: pections for previous year) Center of ap	prox. (NAD83)
□ Closure Report (required within 60 d) 3. □ Recycling Containment AST #1 and # □ Annual Extension after initial 5 years (attacked recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ For multiple or additional recycling Containment (if applicable) Latter □ Liner type: Thickness 40 m	avs of closure completion): Recyclin #2:	g Facility Closure Completion Date: pections for previous year) Center of ap	prox. (NAD83)

•

Bonding:

4.

Covered under bonding pursuant to 19.15.8 NMAC per 19.15.34.15(A)(2) NMAC (These containments are limited to only the wells owned or

operated by the owners of the containment.)

Bonding in accordance with 19.15.34.15(A)(1). Amount of bond \$______ (work on these facilities cannot commence until bonding amounts are approved)

amounts are approved)

Attach closure cost estimate and documentation on how the closure cost was calculated - after transmittal letter.

Fencing:

5.

Four-foot height, four strands of barbed wire evenly spaced between one and four

Efeet Alternate. Please specify: See Variance

<u>Signs</u>:

6.

7.

🛛 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

Variances:

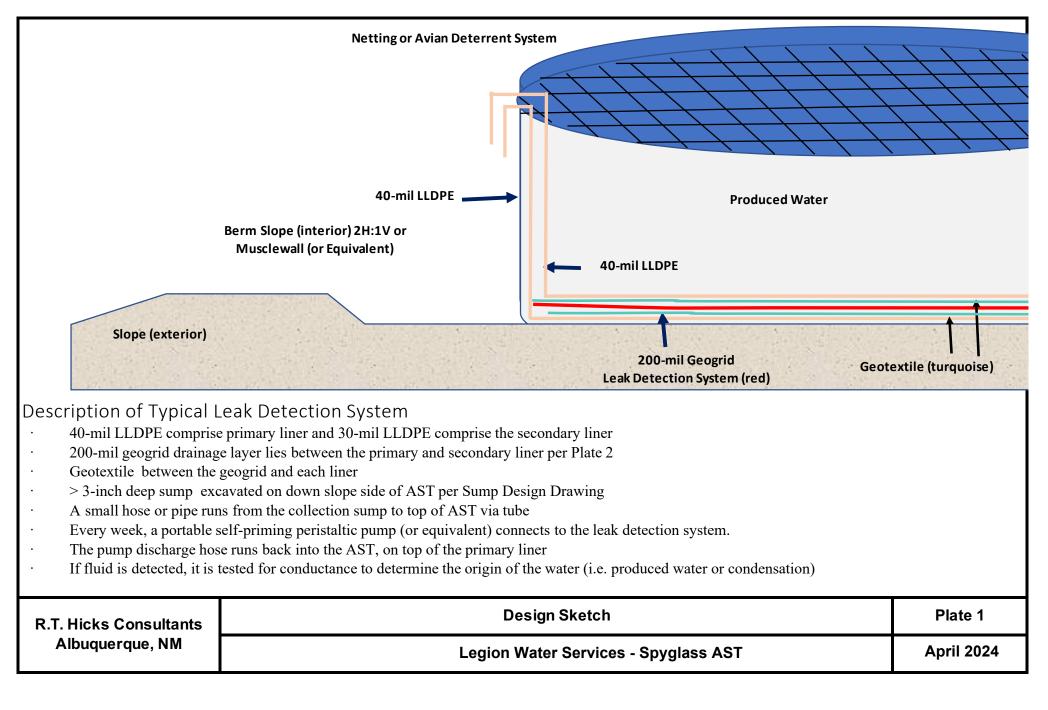
Justifications and/or demonstrations that the proposed variance will afford reasonable protection against contamination of fresh water, human health, and the environment.

Check the below box only if a variance is requested:

 \checkmark Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. If a Variance is requested, include the variance information on a separate page and attach it to the C-147 as part of the application.

If a Variance is requested, it must be approved prior to implementation.

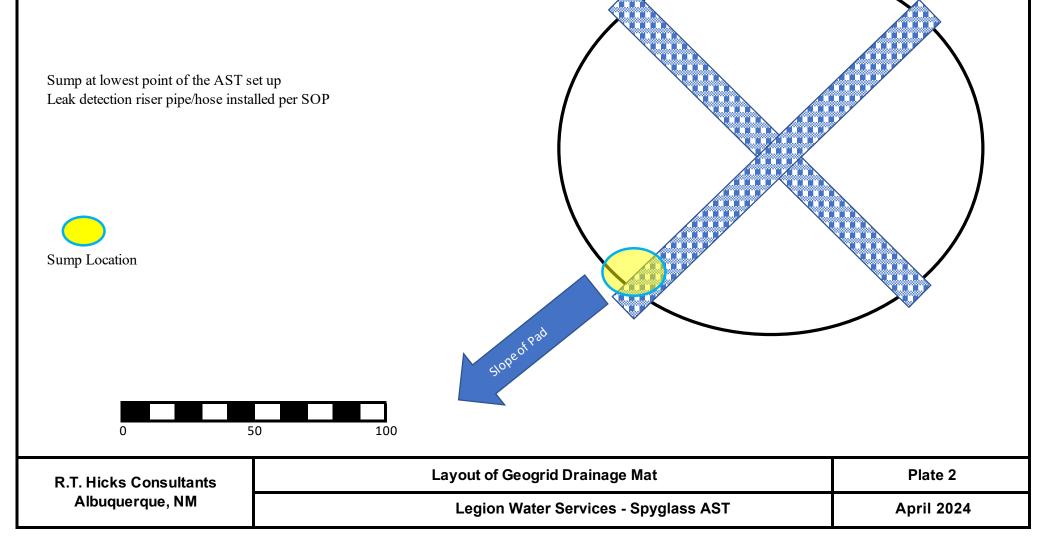
Siting Criteria for Recycling Containment


Instructions: The applicant must provide attachments that demonstrate compliance for each siting criteria below as part of the application. Potential examples of the siting attachment source material are provided below under each criteria.

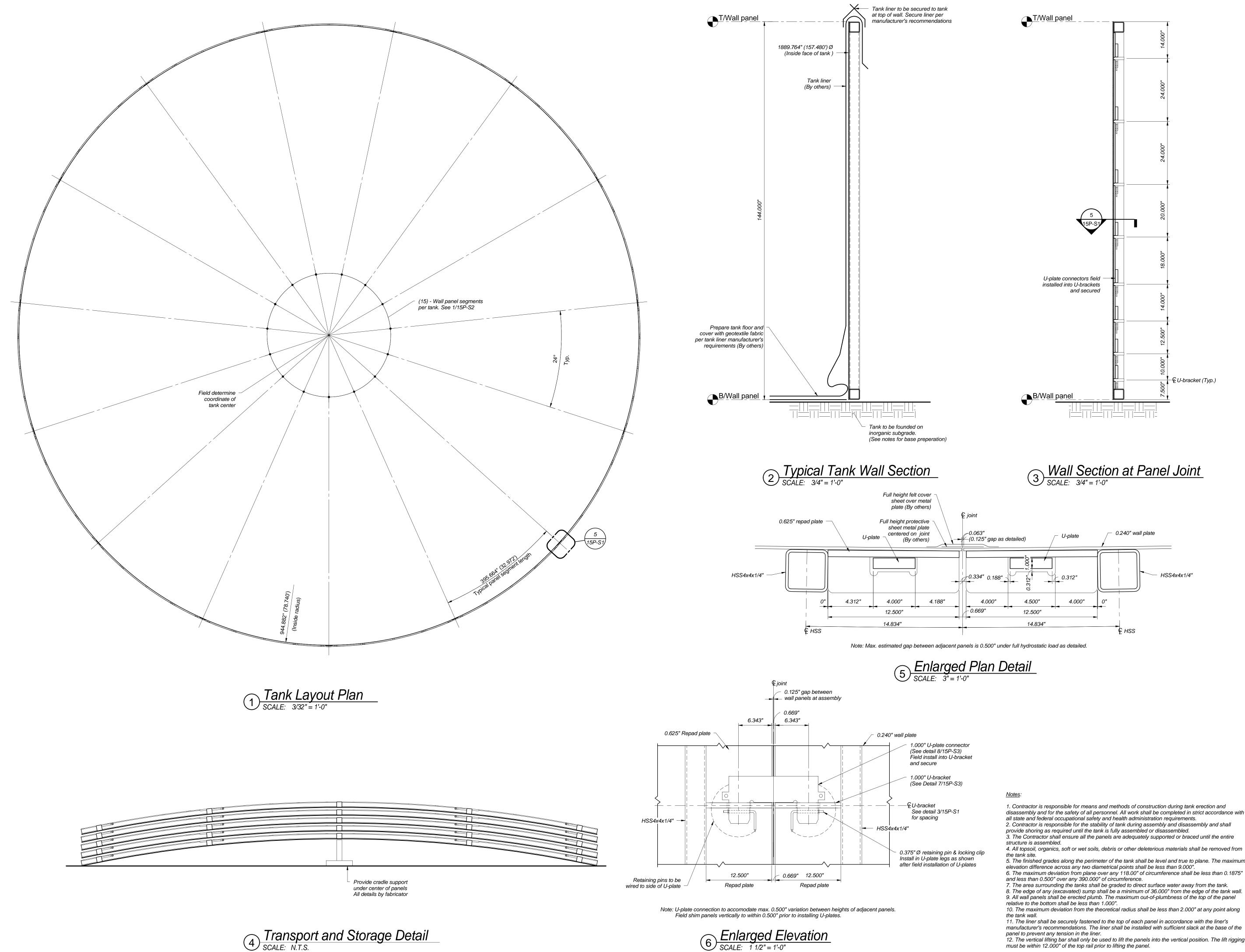
General siting	
Ground water is less than 50 feet below the bottom of the Recycling Containment. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Plates 1-2 Volume 1	□ Yes ⊠ No □ NA
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; written approval obtained from the municipality Plate 3 	☐ Yes ⊠ No ☐ NA
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Minerals Division Plate 4 	🗌 Yes 🛛 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; topographic map Plate 5 	🗌 Yes 🛛 No
Within a 100-year floodplain. FEMA map Plate 6	🗌 Yes 🛛 No
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; visual inspection (certification) of the proposed site Plate 7 	🗌 Yes 🛛 No
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; aerial photo; satellite image Plate 8 	🗌 Yes 🛛 No
 Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. Plates 1 and 7 - NM Office of the State Engineer - iWATERS database search; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No
 Within 500 feet of a wetland. Plate 9 US Fish and Wildlife Wetland Identification map; topographic map; visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No

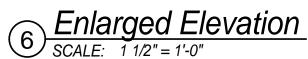
9. <u>Recycling Facility and/or Containment Checklist:</u> Instructions: Each of the following items must be attached to the application. Indicate, by a check mark in the box, that the documents are attached.	
 Design Plan - based upon the appropriate requirements. Operating and Maintenance Plan - based upon the appropriate requirements. Closure Plan - based upon the appropriate requirements. Site Specific Groundwater Data - Siting Criteria Compliance Demonstrations - Certify that notice of the C-147 (only) has been sent to the surface owner(s) 	

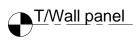
10.	
Operator Application Certification:	
I hereby certify that the information and attachments submitted with this ap	pplication are true, accurate and complete to the best of my knowledge and belief.
Name (Print): BRADEN HARRES	Title: LEGION WATER SERVICES
Signature:	Date: 4/30/24 Telephone: 4/30/24
OCD Representative Signature: Victoria Venegas	Approval Date:05/30/2024
Title: Environmental Specialist Source OCD Conditions	OCD Permit Number: <u>1RF-525</u>
X Additional OCD Conditions on Attachment	

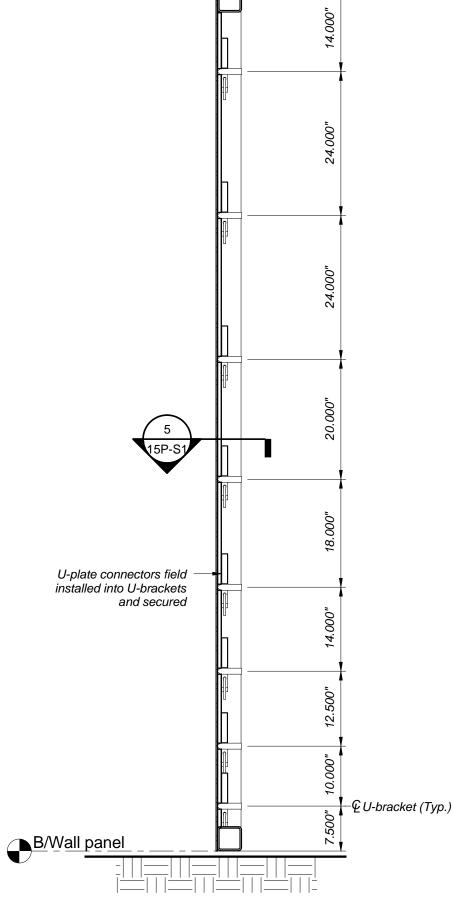

.

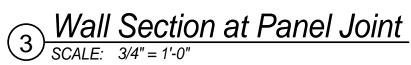
Determine slope of pad and low point of AST


200 mil geogrid placed


above 8-oz geotextile and 30-mil secondary liner inside of AST after set up, before installation of primary liner below two 40-mil primary liner system geotextile is placed around the 200-mil geogrid drainage system




•


STAMPED DESIGN DRAWINGS

1. Contractor is responsible for means and methods of construction during tank erection and disassembly and for the safety of all personnel. All work shall be completed in strict accordance with all state and federal occupational safety and health administration requirements. 2. Contractor is responsible for the stability of tank during assembly and disassembly and shall 3. The Contractor shall ensure all the panels are adequately supported or braced until the entire

5. The finished grades along the perimeter of the tank shall be level and true to plane. The maximum elevation difference across any two diametrical points shall be less than 9.000". 6. The maximum deviation from plane over any 118.00" of circumference shall be less than 0.1875"

7. The area surrounding the tanks shall be graded to direct surface water away from the tank. 8. The edge of any (excavated) sump shall be a minimum of 36.000" from the edge of the tank wall. 9. All wall panels shall be erected plumb. The maximum out-of-plumbness of the top of the panel

11. The liner shall be securely fastened to the top of each panel in accordance with the liner's manufacturer's recommendations. The liner shall be installed with sufficient slack at the base of the

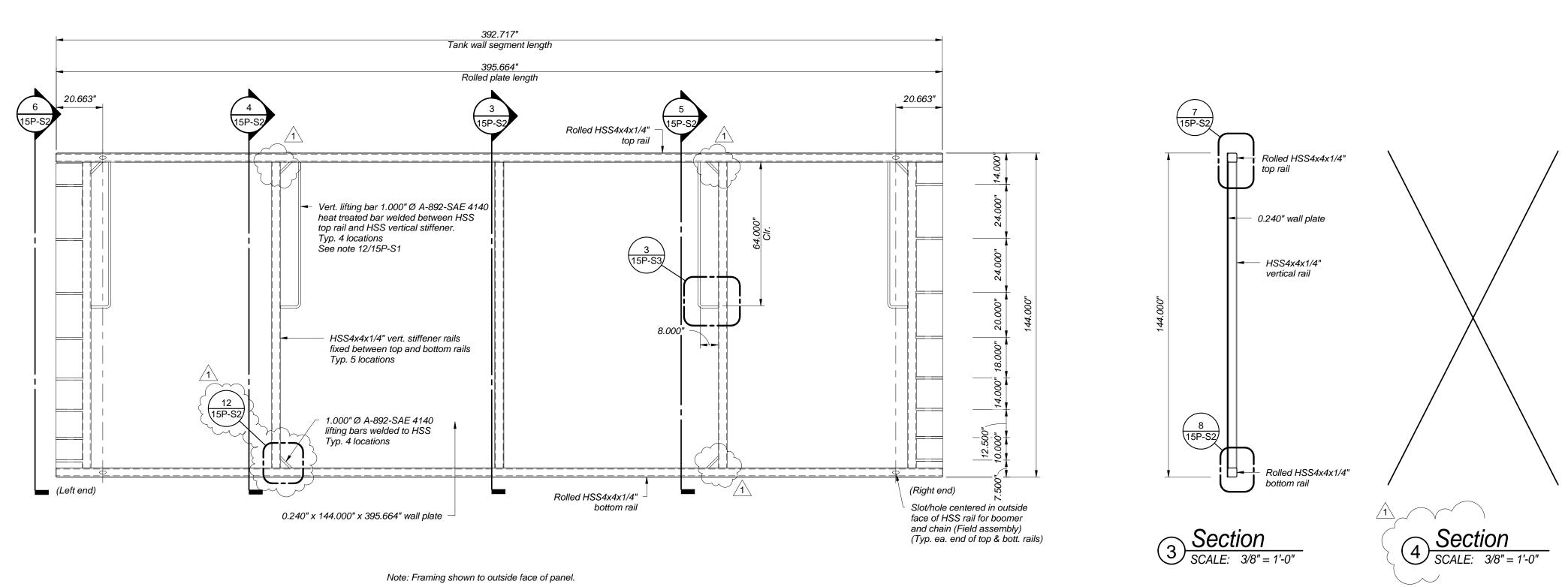
panel to prevent any tension in the liner. 12. The vertical lifting bar shall only be used to lift the panels into the vertical position. The lift rigging must be within 12.000" of the top rail prior to lifting the panel.

Frost Engineering & Consulting Company R. Jerry Frost, PE, MS, MBA Troy A. Madlem, PE, MLSE

201 Lincolnway West Mishawaka, Indiana 46544 Phone: 574.344.5900 Email: contactus@frosteng.net Web: www.frosteng.net

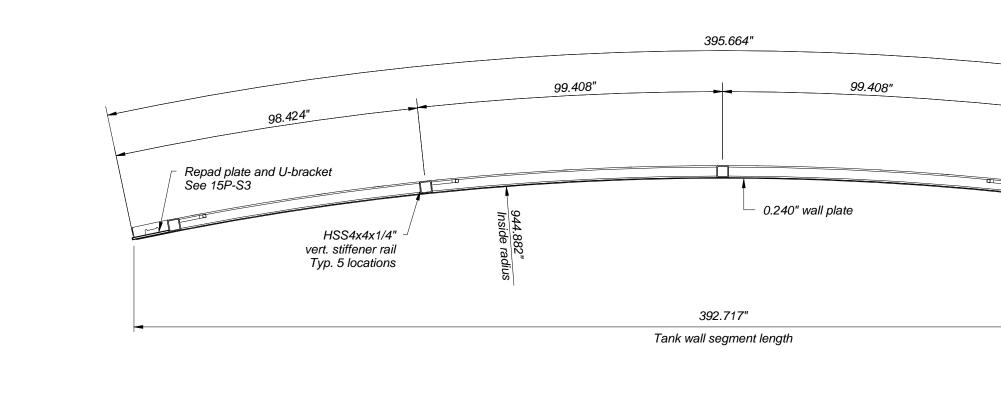
> Tanks Dia. 480' Modular S $\overline{}$ \smile ank Energy Water lydrera 5 D **—**

CERTIFIED BY: Troy A. Madlem, P.E.


This drawing and the details contained herein are confidential and the property of Frost Engineering and Consulting Company (FEC). You may not reproduce, perform, distribute, disclose or create derivative works of the content of this drawing without the express written consent and approval of FEC. Possession of any consent from this document does not confer you any legal rights with regard to its content. FEC reserves all rights with regards to all elements of this document

Revision:

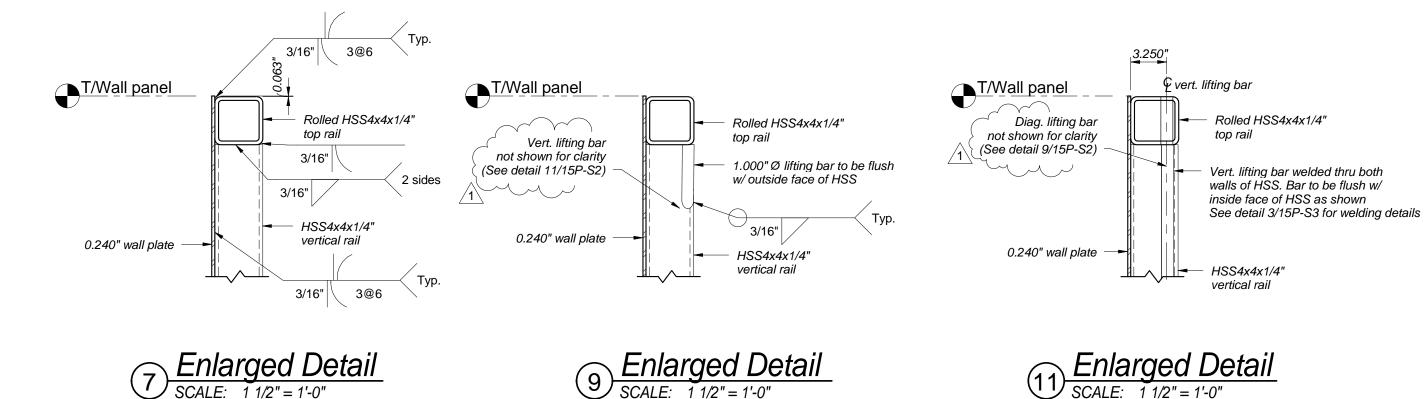
Project: Designed: FEC Drawn: TCM Drawn: TCM Checked: TAM Scale: As indicated Issue Date: 06/24/13

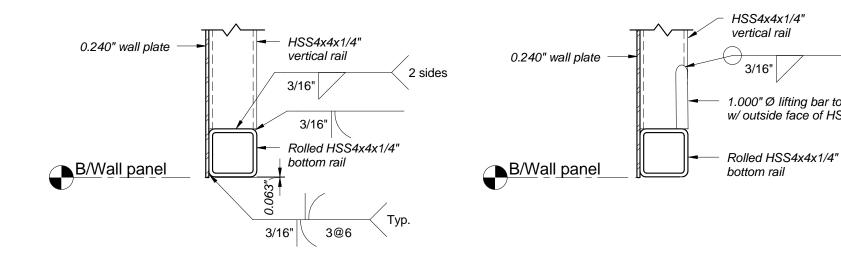

Tank Installation & Assembly 15P-S1

> Highest level of Quality and Commitment for our Clients

98.424"

 $\underbrace{\text{Wall Panel elevation (15 total)}}_{\text{SCALE: } 3/8" = 1'-0"}$




2 Typical Plan Section SCALE: 3/8" = 1'-0"

General Notes:

	n liquid with specific gravity of 1.0. rication and erection shall comply with American Institute of Steel Construction
(AISC) specification 303 and 360	
/ /	I in strict accordance with American Welding Society (AWS) D1.1, latest edition.
4. Structural steel materials shall	comply with the following minimum requirements:
Wall plate	ASTM A-572 w/ min. Fy = 44 ksi.
HSS tubing	ASTM A-500, Gr. B w/ min. Fy = 46 ksi.
Repad plates	ASTM A-572, Gr. 50 w/ min. Fy = 50 ksi.
U-plates	ASTM A-514, Gr. B w/ min. Fy = 100 ksi.
U-brackets	ASTM A-514, Gr. B w/ min. Fy = 100 ksi.
	ASTM A-892-SAE 4140 w/ min. Fy = 135 ksi.
	Il be of solid welded construction, as shown using appropriate weld electrodes wi

5. Fabrication of wall panels shall be of solid welded construction, as shown, using appropriate weld electrodes with minimum tensile strength equal to or greater than the yield strength of the strongest connected parts.

8 Enlarged Detail SCALE: 1 1/2" = 1'-0"

 $\underbrace{10}_{\text{SCALE:}} \underbrace{Enlarged Detail}_{\text{SCALE:}} \underbrace{1}_{1/2"} = 1'-0"$

Frost Engineering & Consulting Company R. Jerry Frost, PE, MS, MBA Troy A. Madlem, PE, MLSE

201 Lincolnway West Mishawaka, Indiana 46544 Phone: 574.344.5900 Email: contactus@frosteng.net Web: www.frosteng.net

Tanks

Modular

Energy

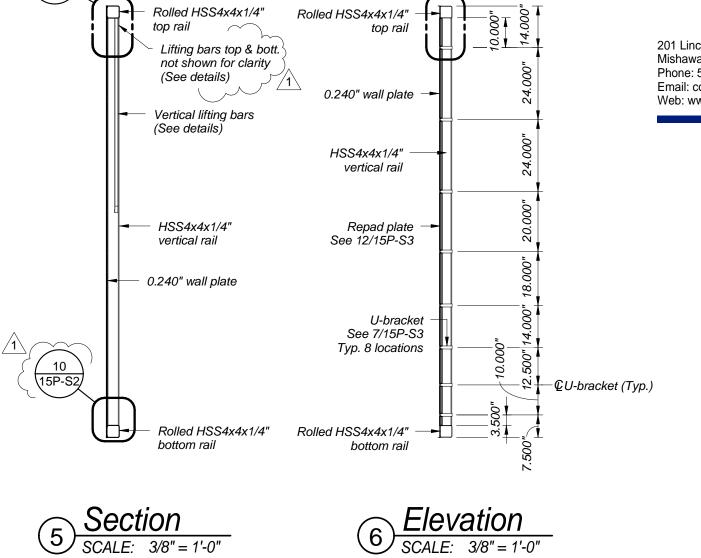
lydrera

Dia.)

480

S

ank

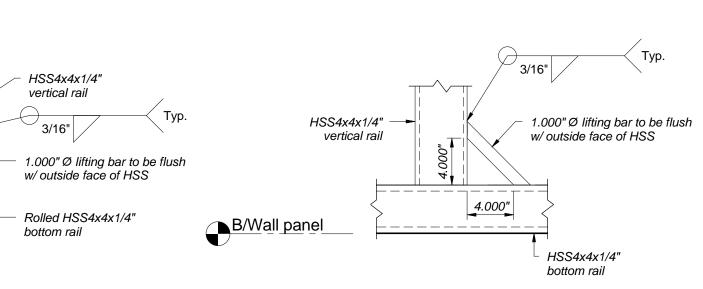


Water

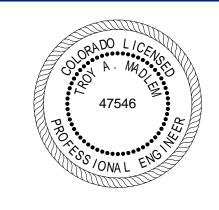
5P

 $\overline{}$

 $\overline{}$ \checkmark


15P-9

15P-S2


(5) SCALE: 3/8'' = 1'-0''

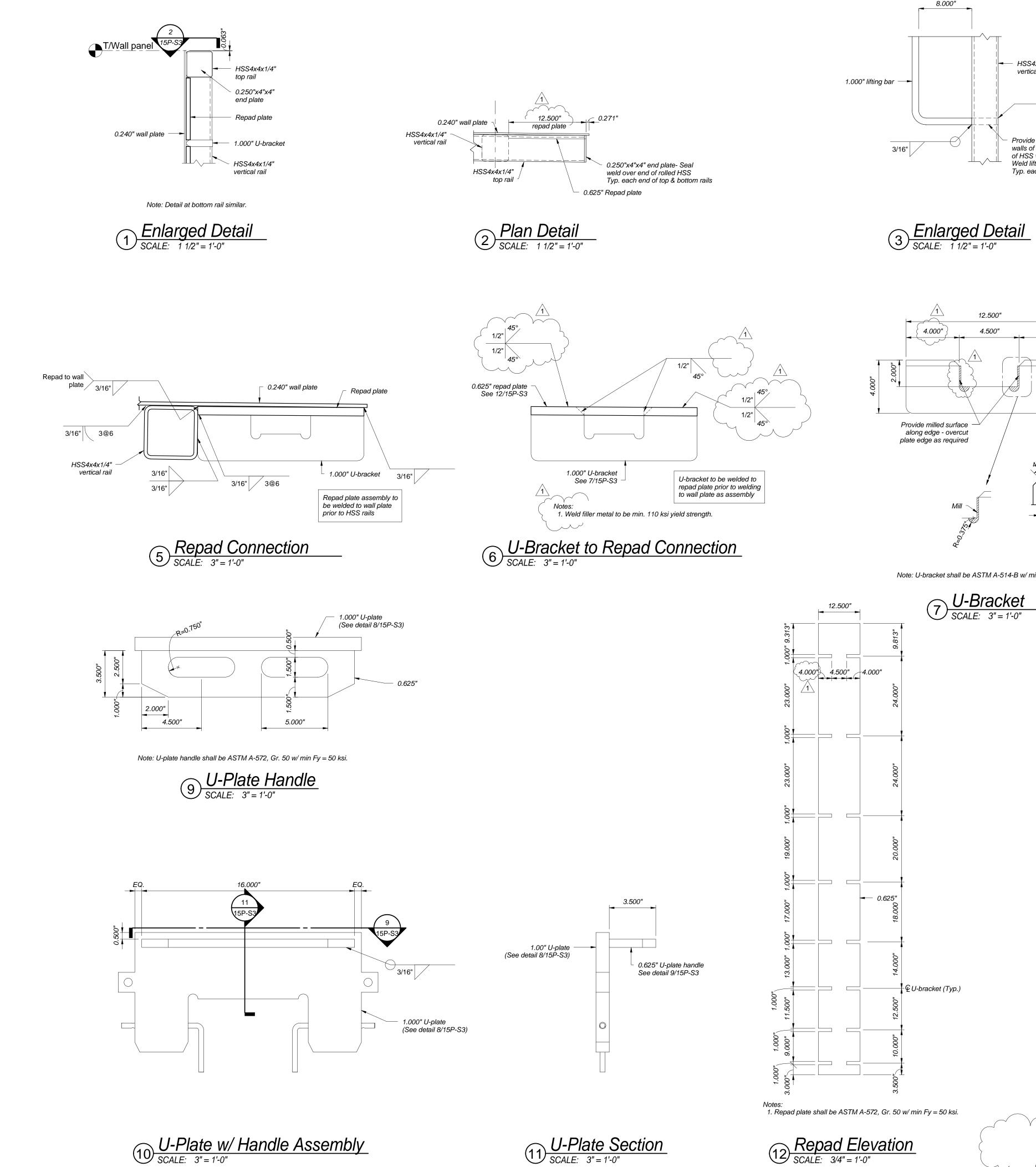
(11) (15P-S2)

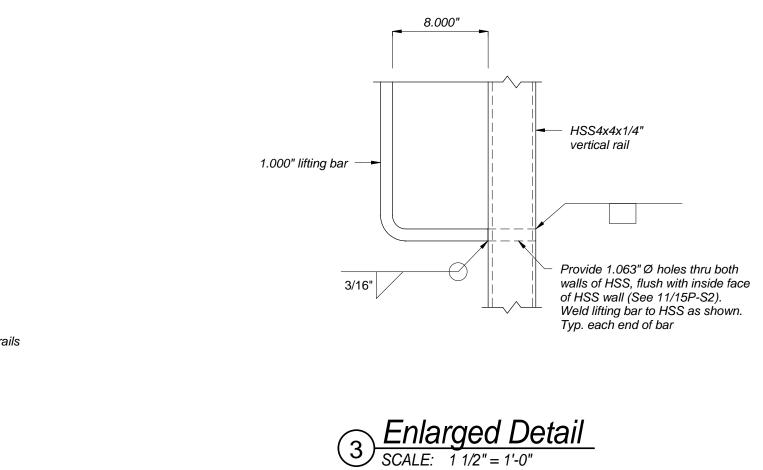
(1) Enlarged Detail SCALE: 1 1/2" = 1'-0"

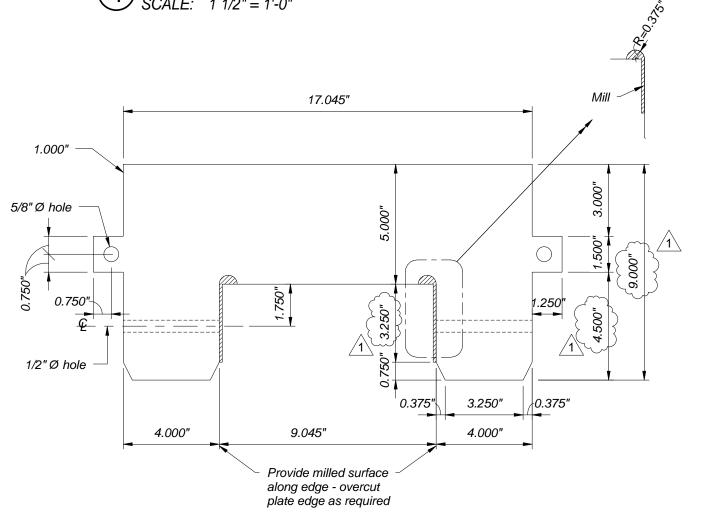
12 Enlarged Detail SCALE: 1 1/2" = 1'-0"

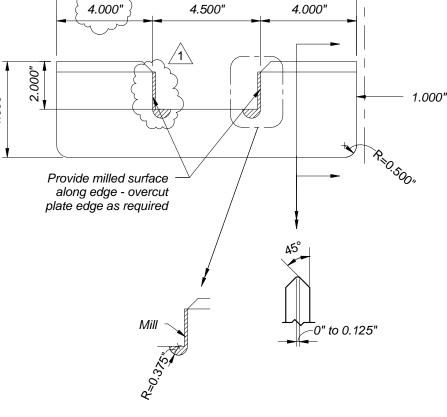
CERTIFIED BY: Troy A. Madlem, P.E.

This drawing and the details contained herein are confidential and the property of Frost Engineering and Consulting Company (FEC). You may not reproduce, perform, distribute, disclose or create derivative works of the content of this drawing without the express written consent and approval of FEC. Possession of any consent from this document does not confer you any legal rights with regard to its content. FEC reserves all rights with regards to all elements of this document

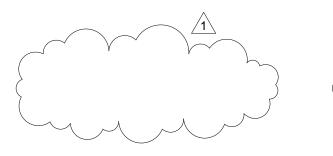

Revision: 1 Revisions


07/30/13


Project: Designed: FEC Drawn: TCM Checked: TAM Scale: As indicated 06/24/13 Issue Date:

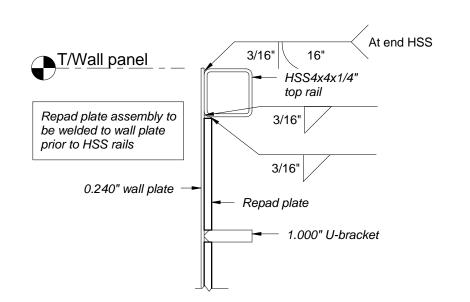

Framing Plan, Elevation, Sections & details

15P-S2



12.500"

joint



Frost Engineering & Consulting Company R. Jerry Frost, PE, MS, MBA Troy A. Madlem, PE, MLSE

201 Lincolnway West Mishawaka, Indiana 46544 Phone: 574.344.5900 Email: contactus@frosteng.net Web: www.frosteng.net

Note: Connection detail at bottom rail similar.

4 Panel Connection Welds - Section SCALE: 1 1/2" = 1'-0"

Note: U-plate shall be ASTM A-514-B w/ min. Fy = 100 ksi.

8 U-Plate SCALE: 3" = 1'-0"

CERTIFIED BY: Troy A. Madlem, P.E.

This drawing and the details contained herein are confidential and the property of Frost Engineering and Consulting Company (FEC). You may not reproduce, perform, distribute, disclose or create derivative works of the content of this drawing without the express written consent and approval of FEC. Possession of any consent from this document does not confer you any legal rights with regard to its content. FEC reserves all rights with regards to all elements of this document

Revision: 1 Revisions

07/30/13

Project: Designed: FEC Drawn: TCM Checked: TAM Scale: As indicated 06/24/13 Issue Date:

Framing Sections & Details

15P-S3

Received by OCD: 5/21/2024 2:02:19 PM

Premium Quality - Built to Last

www.inlandtarp.com

Geotextile Product Description Sheet GT-110 Nonwoven Geotextile

GT-110 is a needle-punched nonwoven geotextile made of 100% polypropylene staple fibers, which are formed into a random network for dimensional stability. SKAPS GT-110 resists ultraviolet deterioration, rotting, biological degradation, naturally encountered basics and acids. Polypropylene is stable within a pH range of 2 to 13. SKAPS GT-110 conforms to the physical property values listed below:

PROPERTY TEST METHOD UNIT M.A.R.V. (Minimum Average Roll Value)

Weight (Typical) ASTM D 5261 oz/yd₂ (g/m₂) 10.0 (339) Grab Tensile ASTM D 4632 lbs (kN) 250 (1.11) Grab Elongation ASTM D 4632 % 50 Trapezoid Tear Strength ASTM D 4533 lbs (kN) 100 (0.444) CBR Puncture Resistance ASTM D 6241 lbs (kN) 700 (3.11) Permittivity* ASTM D 4491 sec-1 1.2 Water Flow* ASTM D 4491 gpm/ft₂ (l/min/m₂) 80 (3251) AOS* ASTM D 4751 US Sieve (mm) 100 (0.150) UV Resistance ASTM D 4355 %/hrs 70/500

PACKAGING

Roll Dimensions (W x L) – ft. 12.5 x 360 / 15 x 300 Square Yards Per Roll 500 Estimated Roll Weight – lbs. 320

* At the time of manufacturing. Handling may change these properties. This information is provided for reference purposes only and is not intended as a warranty or guarantee. SKAPS assumes no liability in connection with the use of this information.

Made in U.S.A.

U.S. Fabrication & Distribution Centers

Moses Lake, Washington • 4172 North Frontage Road E, Moses Lake, WA 98837 • 800.346.7744 • Fax 509.766.0414

4172 North Frontage Rd E Moses Lake, WA 98837 (800) 346-7744 (509) 766-7024 Fax (509) 766-0414 www.inlandtarp.com

TECHNICAL DATA SHEET Geomembrane 40mil LLDPE

Property	Test Method	Frequency (A)	Unit ^{Metric}	Solmax 140-7000
Thickness (Nominal +/- 10%) (E)	ASTM D 5199	Every roll	mm	1.00
Resin Density	ASTM D 1505	1/Batch	g/cc	<0.926
Melt Index-190/2.16(max)	ASTM D 1238	1/Batch	g/10min	1.0
Sheet Density (C)	ASTM D 1505	Every 2 rolls	g/cc	<0.939
Carbon Black Content (D)	ASTM D 4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D 5596	Every 6 rolls	Category	Cat. 1 / Cat. 2
Oxidative Induction Time (min. avg)	ASTM D3895	1/Batch	min	100
Tensile Properties (min. avg)(B)	ASTM D 6693	Every 2 rolls		
Strength as Break			kN/m	23
Elongation at Break			%	800
2% Modulus (max.)	ASTM D 5323	PerFormulation	kN/m	420
Tear Resistance (min. avg.)	ASTM D 1004	Every 6 rolls	N	85
Puncture Resistance (min. avg.)	ASTM D 4833	Every 6 rolls	N	215
Dimensional Stability	ASTM D 1204	Every 6 rolls	%	+/- 2
Multi-Axial Tensile (min.)	ASTM D 5617	PerFormulation	%	90
Oven Aging-% retained after 90 days	ASTM D 5721	PerFormulation		
STD OIT (min. avg.)	ASTM D 3895		%	35
HP OIT (min. avg.)	ASTM D 5885		%	60
UV Resistance-% retained after 1600				
hr	GRI-GM-11	PerFormulation		
HP-OIT (min. avg.)	ASTM D 5885		%	35

Note;

(A) Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).

(B) Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.

(C) Correlation table is available for ASTM D792 vs. ASTM D1505. Both methods give the same results.

(D) Correlation table is available for ASTM D1603 vs. ASTM D4218. Both methods give the same results.

(E) The minimum average thickness is +/- 10% of the nominal value.

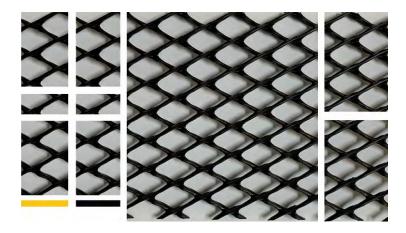
*All values are nominal test results, except when specified as minimum of maximum.

* The information contained herein is provided for reference purposes only and is not intended as warranty of guarantee. Final determination of suitability

for use contemplated is the sole responsibility of the user. Solmax along with Inland Tarp & Liner assumes no liability in connection with the use of this information.

Manufacture & Distribution of Hay Tarps, Truck Tarps, Industrial Liners, Building & Athletic Field Covers. 1-800-346-7744

SKAPS TRANSNET[™] geonet consists of SKAPS Geonet made from HDPE resin.


PROPERTY	TEST METHOD	UNIT	VALUE	QUALIFIER
Thickness	ASTM D 5199	mm	5.08	MAV ⁽³⁾
Carbon Black	ASTM D 4218	%	2.0	MAV
Tensile Strength	ASTM D 7179	N/mm	7.87	MAV
Melt Flow	ASTM D 1238 ⁽²⁾	g/10 min	1.0	Maximum
Density	ASTM D 1505	g/cm ³	0.94	MAV
Transmissivity ⁽¹⁾	ASTM D 4716	m²/sec	2.0 x 10 ⁻³	MAV

Notes:

(1) Transmissivity measured using water at 21 ± 2 °C (70 ± 4 °F) with a gradient of 0.1 and a confining pressure of 479 kPa between steel plates after 15 minutes. Values may vary with individual labs.

(2) Condition 190/2.16

(3) Minimum average value

This information is provided for reference purposes only and is not intended as a warranty or guarantee. SKAPS assumes no liability in connection with the use of this information.

4172 North Frontage Rd E Moses Lake, WA 98837 (800) 346-7744 (509) 766-7024 Fax (509) 766-0414 www.inlandtarp.com

TECHNICAL DATA SHEET Geomembrane 30mil LLDPE

Property	Test Method	Frequency (A)	Unit Metric	Solmax
			Wethe	130-2000
Thickness (min. avg.)	ASTM D 5199	Every roll	mm	0.75
Thickness (min.)	ASTM D 5199	Every roll	mm	0.68
Resin Density	ASTM D 1505	1/Batch	g/cc	<0.926
Melt Index-190/2.16(max)	ASTM D1238	1/Batch	g/10min	1.0
Sheet Density (C)	ASTM D1505	Every 2 rolls	g/cc	<0.939
Carbon Black Content (D)	ASTM D 4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D 5596	Every 6 rolls	Category	Cat. 1 / Cat. 2
Oxidative Induction Time (min. avg)	ASTM D3895	1/Batch	min	100
Tensile Properties (min. avg)(B)	ASTM D 6693	Every 2 rolls		
Strength as Break			kN/m	20
Elongation at Break			%	750
2% Modulus (max.)	ASTM D 5323	PerFormulation	kN/m	315
Tear Resistance (min. avg.)	ASTM D 1004	Every 6 rolls	N	70
Puncture Resistance (min. avg.)	ASTM D 4833	Every 6 rolls	Ν	200
Dimensional Stability	ASTM D 1204	Every 6 rolls	%	+/- 2
Multi-Axial Tensile (min.)	ASTM D 5617	PerFormulation	%	90
Oven Aging-% retained after 90 days	ASTM D 5721	PerFormulation		
STD OIT (min. avg.)	ASTM D 3895		%	35
HP OIT (min. avg.)	ASTM D 5885		%	60
UV Resistance-% retained after 1600				
hr	GRI-GM-11	PerFormulation		
HP-OIT (min. avg.)	ASTM D 5885		%	35

Note;

(A) Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).

(B) Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.

(C) Correlation table is available for ASTM D792 vs. ASTM D1505. Both methods give the same results.

(D) Correlation table is available for ASTM D1603 vs. ASTM D4218. Both methods give the same results.

*All values are nominal test results, except when specified as minimum of maximum.

* The information contained herein is provided for reference purposes only and is not intended as warranty of guarantee. Final determination of suitability

for use contemplated is the sole responsibility of the user. Solmax along with Inland Tarp & Liner assumes no liability in connection with the use of this information.

Manufacture & Distribution of Hay Tarps, Truck Tarps, Industrial Liners, Building & Athletic Field Covers. 1-800-346-7744

DESIGN/CONSTRUCTION PLAN

General

Examination of the engineering drawings and the SOP for set-up (Appendix Engineering Drawings, Liner Specifications, Set Up) plus the history of solid performance of these AST Containments demonstrates that the AST Containment is designed and will be assembled to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall. As the AST Containments are generally less than 190 feet in diameter, wave action is not a meaningful consideration.

These AST Containments are constructed of 12-foot high steel panels and are netted or employ the Mega Blaster Pro avian deterrent system to prevent ingress of migratory birds. AST Containments will be enclosed by a 4-strand barbed wire fence. Thus, complies with the Rule to fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair.

The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in conspicuous places surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

Site Preparation

Foundation for AST Containment

Preparation of the soils on site is required to form a dependable base for the AST Containment in accordance with the SOP. If the location of the AST Containment is on an existing pad, the operator has stripped and stockpiled the topsoil for use as the final cover or fill at the time of closure. If the pad is new construction, the operator will strip and stockpile the soil for reclamation upon cessation of site activities.

19.15.34.12 A

(1) The operator shall design and construct a recycling containment to ensure the confinement of produced water, to prevent releases and to prevent overtopping due to wave action or rainfall.

19.15.34.12 D

(1) The operator shall fence or enclose a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.

19.15.34.12 C

Signs. The operator shall post an upright sign no less than 12 inches by 24 inches with lettering not less than two inches in height in a conspicuous place on the fence surrounding the containment. The operator shall post the sign in a manner and location such that a person can easily read the legend. The sign shall provide the following information: the operator's name, the location of the site by quarter-quarter or unit letter, section, township and range, and emergency telephone numbers.

19.15.34.12 B Stockpiling of topsoil. Prior to constructing

containment, the operator shall strip and stockpile the topsoil for use as the final cover or fill at the time of closure.

The foundation soils must be roller compacted smooth and free of loose aggregate over ½ inch. Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698.

Examination of the SOP shows that the AST Containment contractor will conform to the following mandates of the Rule:

- the AST Containment will have a properly constructed compacted earth foundation and interior slopes (vertical steel) consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear.
- Geotextile will be placed under the liner where needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity.
- If the AST Containment is within a levee, the inside grade is no steeper than two horizontal feet to one vertical foot (2H: 1V) and the outside grade no steeper than three horizontal feet to one vertical foot (3H: IV). The vertical steel walls of the AST Containment are the *subject of a requested variance*.

The Operator will ensure that at a point of discharge into or suction from the recycling containment, the liner is protected from excessive hydrostatic force or mechanical damage and external discharge or suction lines shall not penetrate the liner.

Liner and Leak Detection Materials

The liner and geotextile specifications show that all primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be *an equivalent liner [to that stated in Rule 34] approved by OCD pursuant to a variance.* The liner system is presented in an earlier section of this submission.

All secondary liners shall be an equivalent liner [to that stated in Rule 34] or approved by OCD pursuant to a

19.15.34.12 A

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot (2H:1V). The levee shall have an outside grade no steeper than three horizontal feet to one vertical foot (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.

19.15.34.12 A

(6) At a point of discharge into or suction from the recycling containment, the operator shall insure that the liner is protected from excessive hydrostatic force or mechanical damage. External discharge or suction lines shall not penetrate the liner.

19.15.34.12 A

(4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

variance. The liner system is presented in an earlier section of this submission.

Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The AST Containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage.

Install Secondary Liner, Leak Detection System and Secondary Containment

All AST containments holding produced water will have a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The rule states that the edges of all secondary liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep. *The lack of an anchor trench with an AST Containment is also the subject of requested variance.*

The AST Containment Contractor will cause the recycling containment will have a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection (see attached design sketch).

The presence of the secondary containment levee or pre-fabricated secondary containment meets the OCD Rule mandate that a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

AST Containment Setup

As with the secondary liner, AST Containment contractor will minimize liner seams and orient them up and down, as much as possible, not across, a slope. Factory welded seams shall be used where possible. AST Containment contractor will employ field seams in

19.15.34.12 A

(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

19.15.34.12 A

(7) The operator of a recycling containment shall place a leak detection system between the upper and lower geomembrane liners that shall consist of 200-mil geonet or two feet of compacted soil with a saturated hydraulic conductivity of 1 x 10-5 cm/sec or greater to facilitate drainage. The leak detection system shall consist of a properly designed drainage and collection and removal system placed above the lower geomembrane liner in depressions and sloped to facilitate the earliest possible leak detection.

19.15.34.12 A

(8) The operator of a recycling containment shall design the containment to prevent run-on of surface water. The containment shall be surrounded by a berm, ditch or other diversion to prevent run-on of surface water.

19.15.34.12 A

(5) The operator of a recycling containment shall minimize liner seams and orient them up and down, not across, a slope of the levee. Factory welded seams shall be used where possible. The

geosynthetic material that are thermally seamed. Prior to field seaming, AST Containment contractor shall overlap liners four to six inches and minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the AST Containment bottom. Qualified personnel shall perform field welding and testing.

Fluid Injection/Withdrawal Flow Diverter The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes. operator shall ensure field seams in geosynthetic material are thermally seamed. Prior to field seaming, the operator shall overlap liners four to six inches. The operator shall minimize the number of field seams and corners and irregularly shaped areas. There shall be no horizontal seams within five feet of the slope's toe. Qualified personnel shall perform field welding and testing.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

OPERATIONS AND MAINTENANCE PLAN

CLOSURE PLAN

Released to Imaging: 5/30/2024 3:14:04 PM

Operations and Maintenance Plan Above Ground Tank Containment (AST)

General Specifications

This plan provides additional protocols to cause the proposed recycling containments (AST Containments) to conform to NMOCD Rules.

The operator will maintain and operate the recycling containments and facility in accordance with the following plan to contain liquids and maintain the integrity of the liner to prevent contamination of fresh water and protect public health and the environment.

- The operator will use the treated produced water in the containments for drilling, completion (stimulation), producing or processing oil or gas or both. If other uses are planned, the operator will notify the OCD though the submission of a modified C-147.
- For all exploration and production operations that use produced water, the operator will conduct these activities in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.
- The operator will address all releases from the recycling and re-use of produced water in accordance with 19.15.29 NMAC.

19.15.34.10 B Recycling containments may hold produced

water for use in connection with drilling, completion, producing or processing oil or gas or both. 19.15.34.8 A (6) All releases from the recycling and re-use of produced water shall be handled in accordance with 19.15.29 NMAC.

19.15.34.10 B

Recycling containments may hold produced water for use in connection with drilling, completion, producing or processing oil or gas or both. Such fluids may include fresh water, brackish water, recycled and treated water, fluids added to water to facilitate well drilling or completion, water produced with oil and gas, flowback from operations, water generated by an oil or gas processing facility or other waters that are gathered for well drilling or completion but may not include any hazardous waste.

19.15.34.8 A

(5) All operations in which produced water is used shall be conducted in a manner consistent with hydrogen sulfide gas provisions in 19.15.11 NMAC or NORM provisions in 19.15.35 NMAC, as applicable.

19.15.29.6

To prohibit releases and require persons who operate or control the release or the location of the release to report the unauthorized release of oil, gases, produced water, condensate or oil field waste including regulated NORM or other oil field related chemicals, contaminants or mixtures of those chemicals or contaminants that occur during drilling, producing, storing, disposing, injecting, transporting, servicing or processing and to establish procedures for reporting, site assessment, remediation, closure, variance and enforcement.

Operations and Maintenance Plan Above Ground Tank Containment (AST)

- The operator will not discharge into or store any hazardous waste in the recycling containments, but they may hold fluids such was freshwater, brackish water, recycled and treated water, water generated by oil or gas processing facilities, or other waters that are gathered for well drilling or completion. The recycling facility will not be used for the disposal of produced water. The operator will maintain the containments free of miscellaneous solid waste or debris.
- The operator will verify that no oil is on the surface of the contained fluid. If oil is observed, the oil shall be removed using an absorbent boom or other device and properly disposed at an approved facility. An absorbent boom or other device will be maintained on site.
- The operator will install and use a header and diverter described in the design/construction plan in order to prevent damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes during injection or withdrawal of liquids.
- The operator shall maintain at least three feet of freeboard at each containment.
- If the liner develops a leak or if any penetration of the liner occurs above the liquid's surface, then the operator will repair the damage or initiate replacement of the liner within 48 hours of discovery or will seek a variance from the division district office within this time period.
- If visible inspection suggests that the liner developed a leak or if any penetration of the liner occurs below the liquid's surface, then the operator will remove all liquid above the damage or leak line within 48 hours of discovery. The operator will also notify the district division office within this same 48 hours of the discovery and repair the damage or replace the liner.

19.15.34.9 G Recycling facilities may not be used for the disposal of produced water.

19.15.34.13 B

(1) The operator shall remove any visible layer of oil from the surface of the recycling containment

(7) The operator shall install, or maintain on site, an oil absorbent boom or other device to contain an unanticipated release.

19.15.34.13 B

(3) The injection or withdrawal of fluids from the containment shall be accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.

19.15.34.13 B

(2) The operator shall maintain at least three feet of freeboard at each containment.

19.5.34.13 B

(4) If the containment's primary liner is compromised above the fluid's surface, the operator shall repair the damage or initiate replacement of the primary liner within 48 hours of discovery or seek an extension of time from the division district office.

(5) If the primary liner is compromised below the fluid's surface, the operator shall remove all fluid above the damage or leak within 48 hours of discovery, notify the division district office and repair the damage or replace the primary liner.

Operations and Maintenance Plan Above Ground Tank Containment (AST)

- In the event of a leak due to a hole in the liner, the following steps will be followed:
 - 1. If the source of the fluid is uncertain, comparative field tests may need to be performed on both the water in the containment and that which may have been released (e.g. pH, conductance, and chloride).
 - 2. If the fluid is found to be coming from the containment, determine the location from which the leak is originating.
 - 3. Mark the point where the water is coming out of the tank.
 - 4. Locate the puncture or hole in the liner.
 - 5. Empty the containment to the point of damage in liner.
 - 6. Clean area of liner that needs to be repaired.
 - 7. Cut out piece of material (patch or tape) to overlay liner.
 - Either weld the patch to the injured area in the liner or apply tape over the rupture.
 - 9. Make sure rupture is completely covered.
 - 10. Monitor as needed.

The operator will inspect and remove, as necessary, surface water run-on accumulated in the secondary containment

Monitoring, Inspections, and Reporting

An inspection log will be maintained by the operator and will be made available to the division upon request. Inspection will include: freeboard monitoring, leak detection, identifying potential hazards that may have developed, change in site conditions or if the contents of the containment change from the initial use.

Weekly inspections consist of:

- Reading and recording the fluid height of staff gauges and freeboard
- Recording any evidence of visible oil on surface

19.15.29.8 B.

Requirements. For all releases regardless of volume, the responsible party shall comply with 19.15.29.8 NMAC and shall remediate the release. For major and minor releases, the responsible party shall also comply with 19.15.29.9, 19.15.29.10, 19.15.29.11, 19.15.29.12 and 19.15.29.13 NMAC.

19.15.34.13

(6) The containment shall be operated to prevent the collection of surface water runon.

19.15.34.13 A.

The operator shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the log available for review by the division upon request.

Operations and Maintenance Plan Above Ground Tank Containment (AST)

- Visually inspecting the containments exposed liners
- Checking the leak detection system for any evidence of a loss of integrity of the primary liner
- Inspect any diversion ditches and berms around the containment to check for erosion and collection of surface water run-on.
- Inspect the leak detection system for evidence of damage or malfunction and monitor for leakage.
- Inspect netting (may not be used if Mega Blaster Pro avian deterrent is used) for damage or dead wildlife, including migratory birds. Operator shall report the discovery of a dead animal to the appropriate wildlife agency and to the district within 30 days of discovery. Further prevention measures may be required.

Additional monitoring to identify hazards that may have developed, changes in site conditions, tank use, and to enable early detection of structural issues such as uneven tank panel settlement, soil settlement, liner damage, insufficient liner slack or leaks. If changes are noted the AST contractor should be notified

• If observed conditions indicate a potential tank failure is imminent, the vicinity will be immediately cleared and the AST will be drained.

Monthly, the operator will:

- Report to the division, the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.
- Record sources and disposition of all recycled water.

Cessation of Operations

If less than 20% of the total fluid capacity is utilized every six months, beginning from the first withdraw, operation of the facility has ceased and the division district office will be

19.15.34.12 E

Netting. The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

19.15.34.9 E

The operator of a recycling facility shall keep accurate records and shall report monthly to the division the total volume of water received for recycling, with the amount of fresh water received listed separately, and the total volume of water leaving the facility for disposition by use on form C-148.

19.15.34.13 C

A recycling containment shall be deemed to have ceased operations if less than 20% of the total fluid capacity is used every six

Operations and Maintenance Plan Above Ground Tank Containment (AST)

notified. The division district may grant an extension not to exceed six months to determine the cessation of operations.

The operator will remove all fluids from the recycling facility within 60 days of cessation of operations. An extension, not to exceed 2 months, may be granted by the district division for the removal of fluids from the facility.

The breakdown of the containments follows the reverse order of the setup steps presented in the set-up manual.

months following the first withdrawal of produced water for use. The operator must report cessation of operations to the appropriate division district office. The appropriate division district office may grant an extension to this determination of cessation of operations not to exceed six months.

19.15.34.14 A

Once the operator has ceased operations, the operator shall remove all fluids within 60 days and close the containment within six months from the date the operator ceases operations from the containment for use. The division district office may grant an extension for the removal of all fluids not to exceed two months.

© 2024 R.T. HICKS CONSULTANTS, LTD.

Closure Plan Above Ground Tank Containment (AST)

Closure Plan

The containments are expected to contain a small volume of solids, the majority of which will be windblown sand and dust with some mineral precipitates from the water.

The operator will notify the division district (phone or email) before initiating closure of the containments and/or facility.

Excavation and Removal Closure Plan – Protocols and Proceedures

Procedures

- 1. Residual fluids in the containments will be sent to disposal at a division-approved facility.
- The operator will remove all solid contents and transfer those materials to the following division-approved facility: Disposal Facility Name: R360 Permit Number NM 01-0006
- 3. If possible, geomembrane textiles and liners that exhibit good integrity may be recycled for use as an under liner of tank batteries or other use as approved by OCD.
- 4. Disassemble the recycling containment infrastructure according to manufacturer's recommendations
- 5. After the disassemble of the containments and removal of the contents and liners, soils beneath the tanks will be tested as follows
 - a. Collect a five-point (minimum) composite from beneath the liner to include any obviously stained or wet soils, or any other evidence of impact from the containments for laboratory analyses for the constituents listed in Table I of 19.15.34.14 NMAC.
 - b. If any concentration is higher than the parameters listed in Table I, additional delineation may be required, and closure activities will not proceed without Division approval.
 - c. If all constituents' concentrations are less than or equal to the parameters listed in Table I, then the operator will backfill the facility as necessary using non-waste containing, uncontaminated, earthen material and proceed to reclaim the surface to pre-existing conditions.

19.15.34.14 B

The operator shall close a recycling containment by first removing all fluids, contents and synthetic liners and transferring these materials to a division approved facility.

19.15.34.14 C

The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below. (1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

(2) If all contaminant concentrations are less than or equal to the parameters listed in Table I, then the operator can proceed to backfill with non-waste containing, uncontaminated, earthen material.

© 2024 R.T. HICKS CONSULTANTS, LTD.

Closure Plan Above Ground Tank Containment (AST)

Closure Documentation

Within 60 days of closure completion, the operator will submit a closure report (Form C-147) to the District Division, with necessary attachments to document all closure activities are complete, including sampling results and details regarding backfilling and capping as necessary.

In the closure report, the operator will certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in the closure plan.

Reclamation and Revegetation

The operator will reclaim the surface to safe and stable pre-existing conditions that blends with the surrounding undisturbed area. "Pre-existing conditions" may include a caliche well pad that existed prior to the construction of the recycling containment and that supports active oil and gas operations.

Areas not reclaimed as described herein due to their use in production or drilling operations will be stabilized and maintained to minimize dust and erosion.

For all areas disturbed by the closure process that will not be used for production operations or future drilling, the operator will

- 1. Replace topsoils and subsoils to their original relative positions
- 2. Grade so as to achieve erosion control, long-term stability and preservation of surface water flow patterns
- 3. Reseed in the first favorable growing season following closure

Federal, state trust land, or tribal lands may impose alternate reclamation and revegetation obligations that provide equal or better protection of fresh water, human health, and the environment. Revegetation and reclamation plans imposed by the surface owner will be outlined in communications with the OCD.

The operator will notify the division when the site meets the surface owner's requirements or exhibits a uniform vegetative cover that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds. The operator will notify the Division when reclamation and revegetation is complete.

19.15.34.14 D

Within 60 days of closure completion, the operator shall submit a closure report on form C-147, including required attachments, to document all closure activities including sampling results and the details on any backfilling, capping or covering, where applicable. The closure report shall certify that all information in the report and attachments is correct and that the operator has complied with all applicable closure requirements and conditions specified in division rules or directives.

19.15.34.14 E

Once the operator has closed the recycling containment, the operator shall reclaim the containment's location to a safe and stable condition that blends with the surrounding undisturbed area. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area shall then be reseeded in the first favorable growing season following closure of a recycling containment. The operator shall substantially restore the impacted surface area to the condition that existed prior to the construction of the recycling containment.

19.15.34.14 G

The re-vegetation and reclamation obligations imposed by federal, state trust land or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of any operator subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment.

19.15.34.14 F

Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of predisturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds.

AST SET UP SOP

Above Ground Storage Tank - Standard Operating Procedure

1. Planning for an AST Project

Achieving the efficient deployment, installation and removal of an AST lies in our ability to effectively plan for each phase of the project. Engagement of the proper personnel from each company involved and discussing the essential planning categories as listed below will increase the opportunity to achieve an incident-free, desired result.

Essential Planning Steps:

- Request for Quote
- o Pre-Order and Deployment Requirements
- o Ground Preparation
- o Pre-Assembly Requirements

Request for Quote

Discussing and obtaining the following details is essential in building accurate AST project pricing.

- 1. Total Fluid Storage (barrels. or gallons) and Free-board Requirements
- 2. Anticipated Install Date and Rental Duration
- 3. Location GPS Coordinates or Physical Address
- 4. Location Size, Adequacy or Restrictions
- 5. Type of Fluid Being Stored and Material Package Strategy (liner mil thickness, single or double lined)
- 6. Accessory(ies) Strategy (Fill Piping, Suction Piping/Drain, Bird Netting, Lid, Leak Detection)
- 7. On-Site Orientation(s), Specific Certification(s), and Training Required to Gain Clearance to Access Location
- 8. Initial Fill Strategy (source, availability of fluid, fill rate, turn-around time for trucks)
- 9. Site Access Restrictions

Pre-Order and Deployment Requirements

Once pricing has been submitted and accepted by the customer, a PO must be obtained from the customer prior to placing an order for the material package or accessories. Only thereafter should the project coordination be set into motion and scheduled.

Pre-Deployment Discussion:

A meeting with the customer should be held prior to the tank and/or crew deployment for installation or removal. The below should be used a guidance for the customer meeting prior to installation:

- AST Delivery and Installation Schedule
- Confirmation of Proper Ground Preparation
- Adequate Clearances Around the Tank for Crew and Equipment 25' or greater around perimeter of tank
- Standard Equipment or Crane Installation Confirmation
- Strategy to pin the floor of the tank (fresh water, source type, fill rate, etc.)
- Customer roles/responsibilities/contact information including customer's project manager, key on site staff, and EHS staff.
- Review AST intended use and customer safety requirements.
- Review AST accessories required (fill lines, suction, egress, etc.)
- Site access and truck route requirements
- Crew start and stop time requirements or limitations.
- Forecast rental duration.
- Confirm AST size to be deployed.
- 2' minimum fluid requirement in AST always
- Conditions that could result in standby time charges or additional charges, and what prior customer approvals are required.
- Rental Start Date Strategy
- Rental End Date Strategy
- AST component storage on-site while tank is in operation.

• Ground Preparation

Preparation of the soil and location is required to form a dependable base for the AST. This base is also imperative in achieving the proper operation of the AST once fluid is introduced - Proper seating of the liner on the floor of the tank; Adequate, ongoing suction of the stored fluid; Favorable draining/"bottoming-out" of the

tank at the end of the project.

*Preparation of the soil and location is the sole responsibility of the customer. Ensuring proper slope and compaction prior to AST installation is the sole responsibility of the customer.

Location preparation requirements are as follows:

- Use laser level to grade pad to within one inch, up and down.
- Confirm that there is 25' of clearance around the parameter of the tank, based on the diameter of the specific AST being installed.
- Use center pin, tape measure and marking paint to mark the diameter of the tank on the pad as per measurement chart.
- Check area for sharp objects, rocks, or any other potential hazards to the liner.
- Speak with the consultant to determine where the suction will be located and mark out where the "Y" trench will be situated.
- The suction branch of the "Y" trench should be at least twelve inches (12") deep with the depth tapering out to six at center and level at the two other points of the "Y" trench.
- Ensure the start of the suction trench is at least three feet from the edge of the tank and the ends of "Y" trench are 10 feet from the edge.

Soil preparation requirements are as follows:

• A minimum soil compaction of 95% compaction. Soil testing results are normally shared with the installation Supervisor or Field Operations Manager.

*Soil compaction testing to be conducted via Standard Proctor Test (American Society for Testing and Materials {ASTM} Standard D698) or Modified Proctor Test (ASTM Standard D1557). CALL BEFORE YOU DIG - 811

*It is the responsibility of the excavating company to ensure 811 - Call Before You Dig has been notified and proper clearances obtained prior to digging sump.

Installation Crew:

The installation crew may have basic equipment on-site to double check that location is graded to within one inch, up and down, however does not have access to compaction testing equipment or methods. It is good practice for the installation crew to check location grade and confirm compaction testing results prior to installing the AST.

*Inadequate ground preparation should be documented and discussed with the customer and project halted until ground preparation is complete per SOP.

• Pre-Assembly Requirements

Prior to starting the assembly process, use the steps below as guidance to achieve an incident free, efficient installation of the tank, while meeting customer and SOP requirements:

- 1. Conduct Job Safety Analysis
- 2. All 3rd party personnel, sub-contractors, customers, end user representatives, and tank operators (if available) are encouraged to participate in JSA and/or pre-job meetings.
- 3. Inspect location/soil conditions and review compaction test results with customer.
- 4. If applicable, installation crew to check grade using a laser level document slope in inches around parameter of tank.
- 5. Confirm a 30' clear work area around the perimeter of the tank is possible to provide access for equipment and lay-down area for AST materials and installation equipment.
- 6. Check that the minimum distances to existing wells, power lines, etc. are met.
- 7. Establish final location for the suction tube and stairs.
- 8. Confirm trash bin is available to dispose of packaging, cut-off materials and installation garbage.
- 9. Confirm that fluid is available, per initial fill strategy, to seat the floor of the tank at the desired time.

Standard Equipment:

All equipment is subject to daily inspection. (Check condition, rigging, oil, water, fuel and cleanliness.) The below represents a list of the recommended, standard equipment required for assembly of the tank.

- Two (2) 40' extending straight boom man-lifts.
- One (1) 12,000 lb. capacity extending boom, rough terrain powered telehandler.
- One (1) 310 backhoe or comparable.

Hand and Power Tools:

- Two extension ladders
- One Push and one house broom
- One Paint wand
- One 24" pipe wrench
- One 36" pipe wrench
- Two 4 lb. sledgehammers
- 100' and 300' tape measure
- Set of wrenches $\frac{1}{4}$ " 1 $\frac{1}{2}$ "
- Set of deep impact sockets $\frac{1}{4}$ " 1 $\frac{1}{2}$ " (3/4" drive)
- Two 36" pry bars
- 8' Dig/Frost Bar
- Two round nose shovels
- Four safety harnesses with retractable lanyards
- 300' of 3/8" rope
- Self-retracting utility knife (one per Installer)
- One 3/4" drive impact
- Patch tape, Rubbing alcohol, Patch Roller
- Wire brush
- Crescent and channel lock wrench set
- Little Giant 2,000 lb. wagon

Rigging:

- Two tag lines
- Four 4" x 4" x 2' blocks
- Four-way chain sling
- Four 3/8" x 2' cable slings
- Four 10' continuous loop slings (yellow)
- 2 1-1/4" shackles
- 4 3/4" shackles
- 1 10,000 lb. swivel
- 1 4" x 15' schedule 80 pipe with eyelets

Consumables:

- Three cans of orange marking paint
- PB Blaster or Lubricant
- Gorilla tape
- Zip ties

2. AST Installation Process

Laying Out the Tank:

- 1. Establish the center of the tank with a sandbag. This will be used to determine the tank's perimeter using model/size specific radius/diameter, using paint wand and marking paint. In addition, the center of the tank will be identifiable after the geo ground pad and liner have been rolled out as well.
- 2. Measure and paint perimeter circle for tank panels and measure where geo and liner(s) will begin and end including width.
- 3. Measure and paint where the sump or bottom drain is to be set.
- 4. Once layout is complete, confirm minimum distances are met for on-site hazards existing wells, power lines, production equipment, etc.

Sump or Bottom Drain Excavation:

- 1. 811 must be called, with confirmation that all utilities have responded to the request before excavation commences.
- 2. Sump or bottom drain should be excavated on the low side of location, using a backhoe or excavator.
- 3. If multiple suctions are required, a minimum of 8' of separation should be placed in-between excavations.
- 4. Barricade any excavation with cones and tape if left unattended overnight.
- 5. Excavation will vary depending on what type of suction is to be installed (candy cane, bottom drain, etc.)

Geo Ground Pad and Liner Installation:

- 1. All sharp objects are to be removed from inside the tank layout (rocks, sticks, debris, roots, etc.)
- 2. Using a 12,000# telehandler, approved rigging and liner bar, unroll the geo ground pad, placing the edge of the roll on the designated geo ground pad line marked during the layout stage. Unroll from one end of the tank to the other using a spotter, to unroll over the center of the tank.
- 3. Per prefabricated design, unfold the geo ground pad in both directions and pull until centered on the tank floor.
- 4. Steps #2 and #3 should be repeated as to roll-out and unfold the primary liner, using the designated liner marked during the layout stage.
 - Follow double lined AST SOP for installation of multiple liners.
- 5. Perform a visual inspection of the liner. If defects are found, document, take photos and repair. Take post repair photos.
- 6. If a bird net is required set the bird net, stands, and cables on liner. Make sure stands have protective covering on base to ensure no damage to liner is done.
- 7. Starting at the sump and moving counterclockwise, fold the liner inward around perimeter. The liner edge should be pulled inside the painted tank wall no less than 2'.
- 8. Next, holding onto the inner most edge of the liner, fold the liner back over itself, toward the outside of the tank and around the entire perimeter (creating a pocket for fluid to be trapped, eliminating escape from the floor of the tank)

*It is critical that customer and regulatory requirements are met when storing flowback, production, waste or treated fluid *Geo and/or liner should not be installed in winds of 15 mph or more

Sand or Geotextile Transition: Enough sand or geotextile should be placed in the ground to wall transition, around the inside perimeter of the AST to achieve a 1:1 transitional slope.

Standing Panels (Building Tank Walls):

- 1. Using a 12,000# telehandler and approved rigging, begin standing panels per AST engineering requirement or forecast wind direction (if applicable)
- 2. Once the first panel is stood, with cribbing blocks installed under each end, use a backhoe or excavator to hold and secure the panel, allowing the telehandler to safely disconnect from the panel without losing stability or securement. The equipment used should remain connected until enough panels are installed to safely stand on their own (varies per tank size and panel engineering)
- 3. Establish which direction the walls will be stood up and stand one panel at a time until the last seam is joined together, ensuring a 1:1 transitional slope of sand or geotextile is installed at each panel's interior base.

Note:

- Spotters should be used while connecting panel seams (ladder use, falling objects, moving equipment, etc.)
- Two taglines are to be used when transporting each panel from their stacked state to upright position/installation.
- Rigging should be inspected with each lift to ensure the safe handling of the suspended load.

• Pre-cut strips of 10 oz. geotextile should be installed on the inside of each seam to protect the liner from sharp edges. *Released to Imaging: 5/30/2024 3:14:04 PM*

Liner Placement and Clamp Installation:

- 1. Unfold the liner in sections, toward the base of each panel, ensuring that the transitional material is installed properly.
- 2. After liner is pulled toward the base of the panel, a two-man crew in a 40' straight boom on the outside of the tank works with the team members inside the tank to begin pulling the liner edge up and over the top of each panel. The man lift crew lifts the liner edge using ropes attached by the inside crew. The man boom crew lifts a small liner section to the top of the panel and folds it over the top of the panel, while the crew inside the tank ensures that there is enough slack in the liner inside the panel wall (typically 1' of slack).
- 3. Once a section of liner is positioned properly (with liner slack inside the tank) and over the top of each panel wall, the man lift crew secures the top of the liner with liner clamps.
 - NOTE: The number of clamps per panel is dependent on the panel length and specific engineering of the tank
- 4. Both inside and man lift crews continue this process, working around the tank, one or two panels at a time, until the entire liner is in place.
 - NOTE: The crew must allow sufficient slack in the liner at the wall to allow for liner movement during filling and draining.

Stairs, Fill Tubes, and Suction/Bottom Drain:

- 1. Install safety stair system, fill tubes, and suction or complete bottom drain. Ensure that stair system and tubes are appropriately secured to the tank walls according to customer specifications.
- 2. Upon completion of the stair system installation, the stairs should be secured as per the operating company requirements.

Bird Net Installation

- 1. Erect bird net stand(s) and run security cables through D-rings of each stand and secure cables to panel wall D-rings. Be sure cables are straight across the diameter of the tank.
- 2. Spread out bird net on liner floor. A 2-man crew in man boom will pull a section with tag line up to clamps to secure edge of net on top of panels. Continue pulling and securing bird net going around the tank. Continue to pull and secure until desired tautness is obtained.

Final Steps and Initial Fill:

- 1. Trim liner around perimeter of tank, allowing for 2' 5' of liner to hang over edge of tank. Longer trim strategy includes the installation of a perimeter cable.
- 2. Inspect all connections and equipment.
- 3. Pump a minimum of 18" of FRESH or approved water onto the floor of the tank and monitor for leaks.
- 4. As soon as reasonably possible, complete the initial fill on the tank, monitoring for leaks.

Ongoing Inspection Guidance:

- 1. When the fluid levels are lowered, it is good practice to have the operating company perform an inspection on the exposed liner. Take photos if necessary and send to the installation crew.
- 2. As the tank is operated day-to-day, visibly inspect each panel.
- 3. Inspect the accessories, piping, valves and liner clamps installed.
- 4. Water must NEVER go below 24 inches at the LOWEST level in the tank. 2' water marks can be painted on the inside of the tank as a reminder to the operating company.
- 5. Do not leave liner exposed inside tank for long periods of time. The wind will cause the liner to rub on itself. This friction will create potential pinholes.
- 6. All water present on the ground around the tank should be inspected to ensure it is not coming from the tank. Water spots can be traced to identify growth, if visible fluid is not running from under the tank wall or down a panel.

March 2020

Variances and/or Equivalency Demonstrations for Above Ground Steel Tank Modular Recycling Storage Containments (AST) Primary and Secondary Liners

40-mil Non-reinforced LLDPE Liner as Alternate Primary and 30-mil Non-reinforced LLDPE as Secondary Liner for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR 40 MIL NON-REINFORCED LLDPE GEOMEMBRANE AS AN ALTERNATIVE PRIMARY AND 30 MIL NON-REINFORCED AS ALTERNATIVE SECONDARY LINER FOR MODULAR STEEL AST CONTAINMENT

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of 19.15.34.12

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT
 (4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The applicant proposes one layer of 40-mil LLDPE non-reinforced as a primary liner and a secondary liner comprised of one layer of 30-mil LLDPE non-reinforced material

Rule 34 did not consider Above Ground Steel Storage Tanks that employ liners as a primary and secondary containment method.

This material is more readily available than the prescribed liners in the Rule and provides superior flexibility and conformity characteristics. Due to the vertical steel walls, 60-mil HDPE, 45 or 30-mil LLDPE string reinforced liners and 30-mil PCV liners are not sufficiently flexible for use in these modular containments.

All liners will have a hydraulic conductivity no greater than 1 x 10 -9 cm/sec and meet or exceed EPA SW-846 method 9090A.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical documents provide supportive data to demonstrate that this liner system *(with integrated leak detection system)* provides equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection. Attached is a technical comparison of the proposed material is compared to what is advised through Rule 34. A second memorandum provides clarification that the engineering requirements for site preparation, which ensures functionality of the liner system, is crosscutting to varied locations/sites within the Permian Basin. Liner specifications are also included in submission.

Technical Memorandum: 40-mil LLDPE as Alternative Primary with 30mil LLDPE as Alternative Secondary Liner System for Modular Steel AST Recycling Containment NMAC 19.15.34.12 A (4)

In consideration of the liner application for modular AST impoundments, size and depth of the AST, design details for modular tanks as well as estimated length of at least five years of service time, it is my professional opinion that a 40 mil LLDPE (non-reinforced) and a 30 mil LLDPE (non-reinforced) geomembrane system will provide the requisite barrier against produced water loss as an alternative primary and secondary liner system. *The two proposed liners, 40 mil LLDPE as Primary liner and 30 mil LLDPE Secondary liner, will function equal to or better than 45 mil String Reinforced LLDPE, 30 mil PVC, or 60 mil HDPE liners as a primary liner and 30 mil LLDPE string reinforced as a secondary liner system. Additionally, this two-layer system with integrated leak detection system, will provide requisite protection for the environment that is equal to or better than the above primary and secondary liner systems referenced in OCD rule 34. The following are discussion points that will exhibit the attributes of a 40 mil/30 mil LLDPE lining system:*

<u>The nature and formulation of LLDPE resin is very similar to HDPE</u>. The major difference is that LLDPE is lower density, lower crystallinity (more flexible and less chemical resistant). However, LLDPE will resist aging and degradation and remain intact for many years in exposed conditions. The LLDPE resin is virtually the same for non-reinforced 30 or 40 mil LLDPE and string reinforced 30 or 45 mil LLDPE geomembranes and both will provide requisite containment and be equally protective for this application, enduring UV and chemical degradation in the produced water environment.

<u>Flexibility Requirements.</u> Non-reinforced LLDPE geomembranes are less stiff and far more flexible than string reinforced geomembranes as well as 60 mil HDPE and in this regard are preferred for installations in vertical wall tanks such as this proposed installation. LLDPE provides a very flexible sheet that enables it to be fabricated into large panels, folded for shipping and installed on vertical walls transitioned to flat bottom. Non-reinforced LLDPE sheet will conform better than a string reinforced LLDPE to the tank dimensions under hydrostatic loading and will exhibit less wrinkling and creasing during and after installation.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Both dual wedge and single wedge thermal fusion welding is commonly used on LLDPE and QC testing by air channel (ASTM D 5820) or High Pressure Air Lance (ASTM D 4437) is fully acceptable and recognized as industry standards. In this regard, either non-reinforced LLDPE or string-reinforced LLDPE will be acceptable as far as QC and thermal fusion seaming methods are concerned.

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

<u>Potential for Leakage through the Primary and Secondary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The geonet drainage media between the primary and secondary LLDPE geomembranes at the base of the AST in this application provides immediate drainage to a low point or outside the Modular AST Impoundment and thus no hydrostatic head or driving gradient is available to push leakage water through a hole in the Secondary LLDPE liner.

Leakage through any Primary geomembrane is driven by size of hole and depth and will be detected by the increase of water in the drainage system and the volume being pumped out of the secondary containment. In this regard and for this variance, the Primary consists of 40 mil LLDPE geomembrane which will perform equal to or better than a single layer of string reinforced LLDPE for potential leakage. Thus, if a leak occurs through the top layer, it will be effectively contained by the second layer of 30 mil LLDPE geomembrane. If required, location of holes in the Primary can be found by Electrical Leak Location Survey (ELLS) using a towed electrode (ASTM D 7007). Holes found can then be repaired and thus water seepage into the leakage collection and drainage system will be kept to a minimum. Dependent on OCR requirements for Action Leakage Rate (ALR), the leakage volumes may only be monitored. For example, a typical ALR is < 20 gpad whereas a rapid and large leak (RLL) may be > 100 gpad. Most states specify maximum ALR values for waste and process water impoundments usually in the range of 100 to 500 gpad. However, New Mexico does not specify an ALR for waste or process water impoundments (GRI Paper No. 15).

LLDPE (and string reinforced LLDPE) can be prefabricated into large panels and thus both types offer the following for Containment:

- Prefabrication in factory-controlled conditions into very large panels (up to 30,000 sf) results in ease of installation, less thermal fusion field seams and less on site QC and CQA. (It should be noted that HDPE cannot be prefabricated into panels and requires considerably more on-site welding and QC).
- Large prefabricated panels will provide better control of thermal fusion welding in a factory environment that will improve the liner system integrity for the long term. Ease of installation of large prefabricated custom size panels results in a greater reduction of installation time and associated installation and QC costs
- <u>The Non-reinforced LLDPE geomembrane provides superior lay flat</u> <u>characteristics and conformability</u> which allows for more intimate contact with the underlying soil, geonet, or geotextile and tank walls as well as overlying materials thus providing better flow characteristics for drainage of water. String reinforced LLDPE exhibits more wrinkling and when overlaid or in contact with a geonet drain, wrinkles tend to form pockets and dams affecting drainage of any leakage water to the exterior of the Modular AST Impoundment.

 Both types of LLDPE geomembrane are easily repaired using the same thermal fusion bonding method without the need for special surface grunding preparation for extrusion welding as is typically used in repair of HDPE geomembranes. <u>However, string reinforced LLDPE requires that all cut edges with exposed scrim</u> <u>must be encapsulated with extrusion bead</u>. No encapsulation is required on nonreinforced LLDPE.

In summary, it is no professional opinion that the liner system of 40 mil non-reinforced LLDPE geomembrane as Primary liner and 30 mil non-reinforced LLDPE Secondary liner, with integrated leak detection system, will provide protection that is equal to or better than 45 mil strong reinforced LLDPE. 30 mil PVC, 60 mil HDPE (primary liner) and 35 mil LLDPEr (secondary liner) and meets requirements as defined by the rule as an alternative liner system (resistance to UV and chemical exposure and required hydraulic conductivity). Additionally, this liner system will provide a superior installation in the AST environment and function better than liners referenced in the OCD rule and will provide the requisite protection of fresh water, public health and the environment for at least 5 years in the produced water recycling environment.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email geosynthetics@jusn.com

Sincerely Yours.

RRFHAN

Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

Geosynthetic Research Institute (GRI) Published Standards and Papers 2018

ASTM Standards 2018

Attachments:

R. K. Frobel C.V.

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR 40 MIL NON-REINFORCED LLDPE GEOMEMBRANE AS AN ALTERNATIVE PRIMARY AND SECONDARY LINER FOR MODULAR STEEL AST CONTAINMENT

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of 19.15.34.12

NMAC 19.15.34.12 A DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT
 (4) All primary (upper) liners in a recycling containment shall be geomembrane liners composed of an impervious, synthetic material that is resistant to ultraviolet light, petroleum hydrocarbons, salts and acidic and alkaline solutions. All primary liners shall be 30-mil flexible PVC, 45-mil LLDPE string reinforced or 60-mil HDPE liners. Secondary liners shall be 30-mil LLDPE string reinforced or equivalent with a hydraulic conductivity no greater than 1 x 10-9 cm/sec. Liner compatibility shall meet or exceed the EPA SW-846 method 9090A or subsequent relevant publications.

The applicant proposes one layer of 40-mil LLDPE as a primary liner and a secondary liner comprised of one layer of 40-mil LLDPE material.

Rule 34 did not consider Above Ground Steel Storage Tanks that employ liners as a primary and secondary containment method.

This material is more readily available than the prescribed liners in the Rule and provides superior flexibility and conformity characteristics. Due to the vertical steel walls, 60-mil HDPE, 45 or 30-mil LLDPE string reinforced liners and 30-mil PCV liners are not sufficiently flexible for use in these modular containments.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical documents provide supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection. Technical comparison of the proposed material is compared to what is advised through Rule 34 is discussed. A second memorandum provides clarification that the engineering requirements for site preparation, which ensures functionality of the liner system, is crosscutting to varied locations within the Permian Basin. Stamped plans from design engineer confirm applicability of this liner system to this specific site.

Technical Memorandum: 40-mil LLDPE as Alternative Primary/Secondary Liner System for Modular Steel AST Recycling Containment NMAC 19.15.34.12 A (4)

In consideration of the Primary lining application (modular AST impoundment), size of the AST and depth, design details for modular tanks as well as estimated length of up to five years of service time, it is my professional opinion that a 40 mil LLDPE geomembrane will provide the requisite barrier against processed water loss. It should be noted that the 40 mil LLDPE exceeds the OCD mandate for a Secondary lining system. *The two proposed 40 mil LLDPE liners will function equal to or better than 45 mil String Reinforced LLDPE, 30 mil PVC, or 60 mil HDPE liners as a primary liner and 30 mil LLDPE string reinforced as a secondary liner system. Additionally, the 40 mil LLDPE in a two-layer system will provide requisite protection for the environment that is equal to or better than the above primary and secondary liner systems referenced in OCD rule 34. The following are discussion points that will exhibit the attributes of a 40 mil LLDPE lining system:*

<u>The nature and formulation of LLDPE resin is very similar to HDPE</u>. The major difference is that LLDPE is lower density, lower crystallinity (more flexible and less chemical resistant). However, LLDPE will resist aging and degradation and remain intact for many years in exposed conditions. The LLDPE resin is virtually the same for non-reinforced 40 mil LLDPE and string reinforced 45 mil LLDPE geomembranes and both will provide requisite containment and be equally protective for this application.

<u>Flexibility Requirements.</u> Non-reinforced LLDPE geomembranes are less stiff and far more flexible than string reinforced geomembranes as well as 60 mil HDPE and in this regard are preferred for installations in vertical wall tanks such as this proposed installation. LLDPE provides a very flexible sheet that enables it to be fabricated into large panels, folded for shipping and installed on vertical walls transitioned to flat bottom. Non-reinforced LLDPE sheet will conform better than a string reinforced LLDPE to the tank dimensions under hydrostatic loading and will exhibit less wrinkling and creasing during and after installation.

<u>Thermal Fusion Seaming Requirements</u>. Thermal seaming and QC seam test requirements for geomembranes are product specific and usually prescribed by the sheet manufacturer. Both dual wedge and single wedge thermal fusion welding is commonly used on LLDPE and QC testing by air channel (ASTM D 5820) or High Pressure Air Lance (ASTM D 4437) is fully acceptable and recognized as industry standards. In this regard, either non-reinforced LLDPE or string-reinforced LLDPE will be acceptable as far as QC and thermal fusion seaming methods are concerned.

<u>Potential for Leakage through the Primary and Secondary Liners.</u> Leakage through geomembrane liners is directly a function of the height of liquid head above any hole or imperfection. The geonet drainage media between the primary and secondary LLDPE

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

geomembranes at the base of the AST in this application provides immediate drainage to a low point or outside the Modular AST Impoundment and thus no hydrostatic head or driving gradient is available to push leakage water through a hole in the Secondary LLDPE liner.

Leakage through any Primary geomembrane is driven by size of hole and depth and will be detected by the increase of water in the drainage system and the volume being pumped out of the secondary containment. In this regard and for this variance, the Primary consists of 40 mil LLDPE geomembrane which will perform equal to or better than a single layer of string reinforced LLDPE for potential leakage. Thus, if a leak occurs through the top layer, it will be effectively contained by the second layer of 40 mil LLDPE geomembrane. If required, location of holes in the Primary can be found by Electrical Leak Location Survey (ELLS) using a towed electrode (ASTM D 7007). Holes found can then be repaired and thus water seepage into the leakage collection and drainage system will be kept to a minimum. Dependent on OCR requirements for Action Leakage Rate (ALR), the leakage volumes may only be monitored. For example, a typical ALR is < 20 gpad whereas a rapid and large leak (RLL) may be > 100 gpad. Most states specify maximum ALR values for waste and process water impoundments usually in the range of 100 to 500 gpad. However, New Mexico does not specify an ALR for waste or process water impoundments (GRI Paper No. 15).

Both non-reinforced LLDPE and string reinforced LLDPE can be prefabricated into large panels and thus both types offer the following for Containment:

- Prefabrication in factory-controlled conditions into very large panels (up to 30,000 sf) results in ease of installation, less thermal fusion field seams and less on site QC and CQA. (It should be noted that HDPE cannot be prefabricated into panels and requires considerably more on-site welding and QC).
- Large prefabricated panels will provide better control of thermal fusion welding in a factory environment that will improve the liner system integrity for the long term. Ease of installation of large prefabricated custom size panels results in a greater reduction of installation time and associated installation and QC costs
- <u>The Non-reinforced LLDPE geomembrane provides superior lay flat</u> <u>characteristics and conformability</u> which allows for more intimate contact with the underlying soil, geonet, or geotextile and tank walls as well as overlying materials thus providing better flow characteristics for drainage of water. String reinforced LLDPE exhibits more wrinkling and when overlaid or in contact with a geonet drain, wrinkles tend to form pockets and dams affecting drainage of any leakage water to the exterior of the Modular AST Impoundment.
- Both types of LLDPE geomembrane are easily repaired using the same thermal fusion bonding method without the need for special surface grinding/preparation for extrusion welding as is typically used in repair of HDPE geomembranes.

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

However, string reinforced LLDPE requires that all cut edges with exposed scrim must be encapsulated with extrusion bead. No encapsulation is required on nonreinforced LLDPE.

In summary, it is my professional opinion that the two layers of 40 mil non-reinforced LLDPE geomembranes will provide a Primary/Secondary liner system that is equal to or better than 45 mil string reinforced LLDPE, 30 mil PVC, 60 mil HDPE (primary liner) and 35 mil LLDPEr (secondary liner). Additionally, the two layers of 40 mil LLDPE will provide a superior installation and function better than liners referenced in the OCD rule. The two layers of 40 mil non- reinforced LLDPE will provide the requisite protection of fresh water, public health and the environment for at least 5 years in the frack water environment.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email geosynthetics@msn.com

Sincerely Yours.

RK Frobel

Rouald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

Geosynthetic Research Institute (GRI) Published Standards and Papers 2018

ASTM Standards 2018

Attachments

R. K. Frobel C.V.

32156 Castle Court / Sulte 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com

Released to Imaging: 5/30/2024 3:14:04 PM

0.

Slope and Anchor Variance Request for Above Ground Steel Tank Modular Recycling Storage Containments

STATEMENT EXPLAINING WHY THE APPLICANT SEEKS A VARIANCE FOR SLOPE AND ANCHOR FOR MODULAR STEEL AST CONTAINMENT

Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are the following subsections of NMAC 19.15.34.12.

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT:

A. An operator shall design and construct a recycling containment in accordance with the following specifications.

(2) A recycling containment shall have a properly constructed foundation and interior slopes consisting of a firm, unyielding base, smooth and free of rocks, debris, sharp edges or irregularities to prevent the liner's rupture or tear. Geotextile is required under the liner when needed to reduce localized stress-strain or protuberances that otherwise may compromise the liner's integrity. *The operator shall construct the containment in a levee with an inside grade no steeper than two horizontal feet to one vertical foot* (2H:1V). *The levee shall have an outside grade no steeper than three horizontal feet to one vertical feet to one vertical foot* (3H:1V). The top of the levee shall be wide enough to install an anchor trench and provide adequate room for inspection and maintenance.
(3) Each recycling containment shall incorporate, at a minimum, a primary (upper) liner

and a secondary (lower) liner with a leak detection system appropriate to the site's conditions. The edges of all liners shall be anchored in the bottom of a compacted earth-filled trench. The anchor trench shall be at least 18 inches deep.

The applicant requests a variance to prescribed slope and anchor in the setting of above ground modular steel containments.

With respect to storage of produced water for use in lieu of fresh water, Rule 34 is written for earthen, lined pits, not free-standing modular impoundments that employ liners as their primary fluid containment system. A modular impoundment consists of a professionally designed steel tank ring with vertical walls. There is no slope to consider as the segmental steel sections are set vertical.

There is no anchor trench as envisioned by the Rule, liners are anchored to the top of the steel walls with clips, no anchor trench is required.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The following technical memorandum provides supportive data to demonstrate equal or better protection of fresh water, public health and the environment by providing the requisite containment and protection.

Technical Memorandum: Slope and Anchor Trench Variance for Above Ground Steel Modular Containments NMAC 19.15.34.12 A (2), (3)

Side Slope

The design of soil side slope (inclination) is a geotechnical engineering design consideration. Liquid impoundments such as fresh water or process water containments are usually built within an excavation or with raised earthen embankments. For a liquid impoundment with an exposed liner system, the slope soils and construction dictate slope inclination and very detailed slope stability analysis may be required to determine if slope failure within the embankment will occur once loaded with impounded water. Slope failure may also occur during construction or when the impoundment is empty. A maximum slope is usually specified and is dependent on soil type and cohesive strength, saturated or unsaturated conditions, etc. Detailed analysis for slope stability can be found in "Designing with Geosynthetics" by R.M Koerner as well as many geotechnical books.

A modular impoundment, on the other hand, consists of a professionally designed steel tank ring with vertical walls. *There is no slope to consider as the segmental steel sections are set vertical.* Design of steel tanks, in regard to hydrostatic loading, wind loading, seismic loads, etc. are thoroughly referenced with detailed procedures in the design code - American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage". *There are no requirements for maximum slope inclination other than perhaps 90 degrees or vertical wall.*

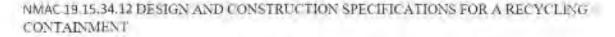
Anchor Trench

All earthen impoundments with a geomembrane lining system require some form of top of slope anchor, the most common of which is an excavated and backfilled anchor trench usually set back at least 3 ft from the top of slope. Again, there are detailed procedures for anchor trench design in "Designing with Geosynthetics" by R.M Koerner.

A Modular Impoundment requires mechanical anchoring of the geomembrane at the top of the vertical steel wall using standard liner clips that prevent the geomembrane or geomembrane layers from slipping down the side wall. These are detailed in the Tank Installation Manual. There are no requirements for an "anchor trench" as this is not an in-ground impoundment.

In summary, based on the design and specifications of a modular steel impoundment, there is no requirement for a maximum interior slope angle of 2H:1V due to the fact that this impoundment is a steel tank with vertical walls. Additionally, there is no requirement for an anchor trench as the geomembrane is attached to the top of the Modular Impoundment vertical walls with large steel clips. This provides the requisite protection of fresh water, public health and the environment for many years.

> 32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@msn.com


If you have any questions on the above technical memorandum or require further information, give me a call at 303-679-0285 or email geosynthetics@msn.com

Sincerely Yours.

22 Frabel

Ronald K. Frobel, MSCE, PE

American Petroleum Institute (API) 650-98 "Welded Steel Tanks for Oil Storage"

Koemer, R.M., 2005 "Designing With Geosynthetics" Prentice Hall Publishers

Attachments:

R. K. Frobel C.V.

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics/a msn.com

2

January 2020

Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico

Released to Imaging: 5/30/2024 3:14:04 PM

Technical Memorandum: Applicability of Variances for Modular AST Containments in the Permian Basin of New Mexico NMAC 19.15.34.12 A (2)

I have reviewed the most recent historical variances for AST Containments in the document titled "Variances for C-147 Registration Packages Permian Basin of New Mexico" (January 2020) and examined the applicable design drawings and permits for the following modular AST containments located in the Permian Basin of New Mexico.

- C-147 Registration Package for Myox Above Ground Storage Tank Section 32, T25S, R28E, Eddy County (January 20, 2020)
- C-147 Registration Package for Fez Recycling Containment and Recycling Facility Area (100+ acres) Section 8, T25-S, R35-E, Lea County, Volume 2 – Above-Ground Storage Tank Containments
- Hackberry 16 Recycling Containments and Recycling Facility Section 16, T19S, R31E, Eddy County

Locations of the modular containments range from west of the Pecos River to slightly west of Jal, NM. All locations exhibit different surface and subsurface geology, different topography and are of various sizes and volumes. *However, in regard to structural integrity of the base soils that support the AST and in particular the geomembrane containment system, the specification requirements are the same*. The foundation soils must be roller compacted smooth and free of loose aggregate over ½ inch. Compaction characteristics must meet or exceed 95% of Standard Proctor Density in accordance with ASTM D 698. This specification requirement is specific and causes the general or earthworks contractor to meet this standard regardless of the site- specifications call out the minimum requirements for subsoils compaction (i.e., 95% Standard Proctor Density – ASTM D 698), the design engineer or owners representative will carry out soils testing on the foundation materials to provide certainty to the AST containment owner that the earthworks contractor has met these obligations.

Thus, provided that the contractor meets the minimum specified requirements for foundation soils preparation and density, the location, geology or depth to groundwater will make no difference in regard to geomembrane liner equivalency as demonstrated by the AST variances presented in this volume and are considered valid for meeting NMOCD Rule 34 requirements for all locations within the Permian Basin of New Mexico.

If you have any questions on the above technical memorandum or require further information, give me a call at 720-289-0300 or email <u>geosynthetics@msn.com</u>

Sincerely Yours,

27 Frakel

Ronald K. Frobel, MSCE, PE

References:

NMAC 19.15.34.12 DESIGN AND CONSTRUCTION SPECIFICATIONS FOR A RECYCLING CONTAINMENT

ASTM Standards 2019

32156 Castle Court / Suite 211 / Evergreen, CO 80439 Ph 303-679-0285 Fx 303-679-8955 geosynthetics@uusn.com

RONALD K. FROBEL, MSCE, P.E.

CIVIL ENGINEERING GEOSYNTHETICS EXPERT WITNESS FORENSICS

FIRM: R. K. FROBEL & ASSOCIATES Consulting Civil / Geosynthetics Engineers

TITLE: Principal and Owner

PROFESSIONAL AFFILIATIONS:

American Society for Testing and Materials (ASTM) -Founding member of Committee D 35 on Geosynthetics Chairman ASTM D35 Subcommittee on Geomembranes 1985-2000 ASTM Award of Merit Recipient/ASTM Fellow - 1992 ASTM D18 Soil and Rock - Special Service Award - 2000 Transportation Research Board (TRB) of The National Academies Appointed Member A2K07 Geosynthetics 2000 - 2003 National Society of Professional Engineers (NSPE) - Member American Society of Civil Engineers (ASCE) - Member Colorado Section - ASCE - Member International Society of Soil Mechanics and Foundation Engineers (ISSMFE) - Member International Geosynthetics Society (IGS) - Member North American Geosynthetics Society (NAGS) - Member International Standards Organization (ISO) - Member TC 221 Team Leader - USA Delegation Geosynthetics 1985 - 2001 European Committee for Standardization (CEN) - USA Observer EPA Advisory Committee on Geosynthetics (Past Member) Association of State Dam Safety Officials (ASDSO) - Member U. S. Committee on Irrigation and Drainage (USCID) - Member Technical Advisory Committee - Geosynthetics Magazine Editorial Board - Geotextiles and Geomembranes Journal Fabricated Geomembrane Institute (FGI) – Board of Directors Co-Chairman International Conference on Geomembranes Co-Chairman ASTM Symposium on Impermeable Barriers U.S. Naval Reserve Officer (Inactive) Registered Professional Engineer – Civil (Colorado) Mine Safety Health Administration (MSHA) Certified

ACADEMIC

BACKGROUND:

University of Arizona: M.S. - Civil Engineering - 1975 University of Arizona: B. S. - Civil Engineering – 1969 Wentworth Institute of Technology: A.S. Architecture – 1966

RONALD K. FROBEL, MSCE, P.E.

R. K. Frobel & Associates - Consulting Engineers Evergreen, Colorado, Principal and Owner, 1988 - Present
Chemie Linz AG and Polyfelt Ges.m.b.H., Linz, Austria U. S. Technical Manager Geosynthetics, 1985 - 1988
U.S. Bureau of Reclamation, Engineering and Research Center Denver, Colorado, Technical Specialist in Construction Materials Research and Application, 1978 - 1985
Water Resources Research Center (WRRC), University of Arizona Tucson, AZ, Associate Research Engineer, 1975 - 1978
Engineering Experiment Station, University of Arizona Tucson, AZ, Research Assistant, 1974 - 1975
United States Navy, Commissioned Naval Officer, 1970 - 1973

REPRESENTATIVE EXPERIENCE:

<u>R.K. Frobel & Associates</u>: Civil engineering firm specializing in the fields of geotechnical, geo-environmental and geosynthetics. Expertise is provided to full service civil/geotechnical engineering firms, federal agencies, municipalities or owners on a direct contract, joint venture or sub-consultant basis. Responsibilities are primarily devoted to specialized technical assistance in design and application for foreign and domestic projects such as the following:

Forensics investigations into geotechnical and geosynthetics failures; providing expert report and testimony on failure analysis; providing design and peer review on landfill lining and cover system design, mine waste reclamation, water treatment facilities, hydro-technical canal, dam, reservoir and mining projects, floating reservoir covers; oil and gas waste containment; design of manufacturers technical literature and manuals; development and presentation of technical seminars; new product development and testing; MQA/CQA program design and implementation.

<u>Polyfelt Ges.m.b.H., Linz, Austria and Denver Colorado</u>: As U.S. technical manager, primary responsibilities included technical development for the Polyfelt line of geosynthetics for the U.S. civil engineering market as well as worldwide applications.

Page 2

RONALD K. FROBEL, MSCE, P.E.

<u>U.S. Bureau of Reclamation, Denver, Colorado</u>: As technical specialist, responsibilities included directing laboratory research, design and development investigations into geosynthetics and construction materials for use on large western water projects such as dams, canals, power plants and other civil structures. Included were material research, selection and testing, specification writing, large scale pilot test programs, MQA/CQA program design and supervision of site installations. Prime author or contributor to several USBR technical publications incorporating geosynthetics.

<u>University of Arizona, Tucson, Arizona</u>: As research engineer at the Water Resources Research Center, responsibilities included research, design and development of engineering materials and methods for use in construction of major water projects including potable water reservoirs, canals and distribution systems. Prime author or contributor to several WRRC technical publications.

<u>Northeast Utilities, Hartford, Connecticut</u>: As field engineer for construction at Northeast Utilities, responsibilities included liason for many construction projects including additions to power plants, construction of substations, erection of fuel oil pipelines and fuel oil storage tanks. Responsibilities also included detailed review, inspection and reporting on numerous construction projects.

U.S. Navy: Commissioned Naval Officer - Nuclear Program

PUBLICATIONS: Over 85 published articles, papers and books.

CONTACT DETAILS:

Ronald K. Frobel, MSCE, P.E. R. K. Frobel & Associates Consulting Civil/Geosynthetics Engineers PO Box 2633 Evergreen, Colorado 80439 USA Phone 720-289-0300 Email: geosynthetics@msn.com

Page 3

Additional VARIANCE FOR RECYCLING STORAGE CONTAINMENTS (Inground and AST)

- Alternative Testing Methods
- Fencing ASTs

Request for OCD Approval of Alternative Test Methods to Analyze Concentrations of TPH and Chloride

The prescriptive mandates of the Rule that are the subject of this request are the following subsections of NMAC 19.15.17.13 [emphasis added], 19.15.34.14 and 19.15.29. 12 D

19.15.17.13 CLOSURE AND SITE RECLAMATION REQUIREMENTS:

D.(5) The operator shall collect, at a minimum, a five point composite of the contents of the temporary pit or drying pad/tank associated with a closed-loop system to demonstrate that, after the waste is solidified or stabilized with soil or other non-waste material at a ratio of no more than 3:1 soil or other non-waste material to waste, the concentration of any contaminant in the stabilized waste is not higher than the parameters listed in Table II of 19.15.17.13 NMAC.

The referenced Table II, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

Table II Closure Criteria for Burial Trenches and Waste Left in Place in Temporary Pits			
Depth below bottom of pit to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**
	Chloride	EPA Method 300.0	20,000 mg/kg
25-50 feet	TPH	EPA SW-846 Method 418.1	100 mg/kg

19.15.34.14 CLOSURE AND SITE RECLAMATION REQUIREMENTS FOR RECYCLING CONTAINMENTS:

C. The operator shall test the soils beneath the containment for contamination with a five-point composite sample which includes stained or wet soils, if any, and that sample shall be analyzed for the constituents listed in Table I below.

(1) If any contaminant concentration is higher than the parameters listed in Table I, the division may require additional delineation upon review of the results and the operator must receive approval before proceeding with closure.

The referenced Table I, which is reproduced in part below, notes the Method with asterisk signifying: "*Or other test methods approved by the division".

Table I Closure Criteria for Recycling Containments			
Depth below bottom of containment to groundwater less than 10,000 mg/l TDS	Constituent	Method*	Limit**
51 feet - 100 feet	Chloride	EPA 300.0	10,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg

After sampling solids of more than 50 drilling pits in the Permian Basin, we have observed and reported to OCD on numerous occasions significant problems with non-petroleum drilling additives (e.g. starch) interfering with the laboratory method 418.1. It is not surprising that in many instances we found no correlation between the laboratory results using 418.1 and the results using Method 8015.

We request approval of Method 8015 (GRO + DRO + MRO) for Method 418.1.

19.15.29.12 D. CLOSURE REQUIREMENTS. The responsible party must take the following action for any major or minor release containing liquids.

(1) The responsible party must test the remediated areas for contamination with representative five-point composite samples from the walls and base, and individual grab samples from any wet or discolored areas. The samples must be analyzed for the constituents listed in Table I of 19.15.29.12 NMAC or constituents from other applicable remediation standards.

		Fable I foils Impacted by a Release	
Minimum depth below any point within the horizontal boundary of the release to ground water 		Method*	Limit**
≤ 50 feet	Chloride***	EPA 300.0 or SM4500 C1 B	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg

The referenced Table I, is reproduced in part below.

We request approval of EPA 300.0 or SM4500 for the analysis of chloride.

Demonstration that OCD Approval Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

The purpose of TPH analyses in the Pit Rule is to measure total petroleum hydrocarbons not all non-polar compounds, such as starch or cellulose that can interfere with Method 418.1. While Method 418.1 may provide some useful data for transportation of crude oil or condensate spills to disposal, the addition of non-polar organic materials in drilling fluids, especially for horizontal wells, renders Method 418.1 highly problematic to determine compliance with the Rule. Using Method 8015 for TPH (GRO+DRO+MRO) provides a better measurement of what we believe the Commission intended operators to measure.

In hearings before the Oil Conservation Commission technical arguments were presented regarding the use of SM4500 in lieu of EPA 300.00 for chloride analysis for Rule 29. The Division and the Commission agreed that these two methods provide equal or better protection of fresh water, public health and the environment.

Statement Explaining Why the Applicant Seeks a Variance

The prescriptive mandates of the Rule that are the subject of this variance request are presented below with <u>emphasis **added**</u>:

D. Fencing.

(1) The operator shall <u>fence or enclose</u> a recycling containment in a manner that deters unauthorized wildlife and human access and shall maintain the fences in good repair. The operator shall ensure that all gates associated with the fence are closed and locked when responsible personnel are not onsite.
(2) Recycling containments shall be fenced with a four foot fence that has at least four strands of barbed wire evenly spaced in the interval between one foot and four feet above ground level.
E. Netting. The operator shall ensure that a recycling containment is screened, netted or otherwise protective of wildlife, including migratory birds. The operator shall on a monthly basis inspect for and, within 30 days of discovery, report the discovery of dead migratory birds or other wildlife to the appropriate wildlife agency and to the division district office in order to facilitate assessment and implementation of measures to prevent incidents from reoccurring.

The subject AST employs netting or sonic bird hazing (Mega Bird X with bird calls specific to the Permian Basin). These methods effectively protect avian species such as waterfowl and bats. OCD and BLM have approved both methods per Rule 34 and by BLM Rules respectively.

The steel structure of the AST is 11-feet high, which obviously encloses the containment "in a manner that deters...[terrestrial] wildlife." Thus, the steel structure meets the mandate of the Rule for enclosure. Thus, netting and the steel structure meet the mandate of Rule 34 for deterring/protecting avian and terrestrial wildlife.

Because AST Containments have a steel stairway between ground surface and the open top, the operator proposes the following deterrent to unauthorized human access:

- 1. Install gate (e.g. <u>https://www.saferack.com/saferack-yellowgate-adjustable-safety-swing-gates/</u>) or chain across the stairway
- 2. Place an appropriate sign on the gate or chain to help deter unauthorized human access to the open top of the containment
- 3. Provide for a mechanism to lock the gate when responsible personnel are not onsite.

Demonstration That the Variance Will Provide Equal or Better Protection of Fresh Water, Public Health and the Environment

We believe the proposed protocol provides equal protection of Public Health as a 4-strand barbed wire fence.

Venegas, Victoria, EMNRD

From:	Venegas, Victoria, EMNRD
Sent:	Thursday, May 30, 2024 3:05 PM
То:	sarah@avantnr.com; 'BobbiJo Crain'
Subject:	1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805]
Attachments:	C-147 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] 05.30.2024.pdf

1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805]

Good afternoon Ms. Ferreyros.

NMOCD has reviewed the recycling containment permit application and related documents, submitted by [332392] Legion Water Services, LLC on May 21, 2024, Application ID: 346435, for 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] in Unit Letter A, Section 09, Township 25S, Range 32E, Lea County, New Mexico.

[332392] Legion Water Services, LLC requested variances from 19.15.34 NMAC for 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805].

The following variances have been approved:

- The variance to 19.15.34.14 NMAC Table I for the use of alternate analytical method 8015/8015M for total petroleum hydrocarbons (TPH) is approved.
- The variance to 19.15.34.14 NMAC Table I for the use of alternate analytical method EPA 300.0 or SM4500 for the analysis of chloride is approved.
- The variance to 19.15.34.12.A.(2) NMAC for the no side-slope requirement for the AST containment with vertical walls is approved.
- The variance to 19.15.34.12.A.(3) NMAC for the liners to be anchored to the top of the AST steel walls and no anchor trenches is approved.
- The variance to 19.15.34.12.A.(4) NMAC for the installation on the AST containment of a 30-mil non-reinforced LLDPE secondary liner is approved.
- The variance to 19.15.34.12.A.(4) NMAC for the installation on the AST containment of a 40-mil non-reinforced LLDPE primary liner is approved.
- The variance to NMAC 19.15.34.12.D to install a gate or chain across the stairway between the ground surface and the open-top of the AST containment is approved. The operator shall place an appropriate sign on the gate or chain to prevent unauthorized human access to the open top of the containment and will provide a mechanism to lock the gate when responsible personnel are not onsite.

The form C-147 and related documents for 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] is approved with the following conditions of approval:

- The purpose of this permit is for oil and gas activities regulated under the NMAC 19.15.34.3 STATUTORY AUTHORITY: 19.15.34 NMAC is adopted pursuant to the Oil and Gas Act, Paragraph (15) of Section 70-2-12(B) NMSA 1978, which authorizes the division to regulate the disposition of water produced or used in connection with the drilling for or producing of oil and gas or both and Paragraph (21) of Section 70-2-12(B) NMSA 1978 which authorizes the regulation of the disposition of nondomestic wastes from the exploration, development, production or storage of crude oil or natural gas.
- 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] is approved for five years of operation from the date of permit application of May 21, 2024.
- 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] permit expires on May 21, 2029. If [332392] Legion Water Services, LLC wishes to extend operations past five years, an annual extension request must be submitted using on form C-147 Long through OCD Permitting by April 21, 2024.

- 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] consists of three (3) inground containments with a fluid capacity of 739,727.00 barrels each containment and two (2) ASTs of 40,000.00 barrels each. The total fluid capacity of 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] is 2,299,181.00 barrels.
- The total closure cost estimated of 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] in the amount of \$1,689,864.00, meets the requirements of NMAC 19.15.34.15.A. The financial assurance should be mailed to:

EMNRD - Oil Conservation Division Administration & Compliance Bureau Attn: Bond Administrator 1220 S. St. Francis Drive | Santa Fe, NM 87505.

- [332392] Legion Water Services, LLC shall construct, operate, maintain, close, and reclaim 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] in compliance with NMAC 19.15.34 NMAC.
- [332392] Legion Water Services, LLC shall notify OCD, through OCD Permitting, when construction of 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] commences.
- [332392] Legion Water Services, LLC shall notify NMOCD through OCD Permitting when recycling operations commence and cease at 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805].
- A minimum of 3-feet freeboard must be maintained at 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] at all times during operations.
- If less than 20% of the total fluid capacity is utilized every six months, beginning from the first withdrawal, operations of the 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] is considered ceased and a notification of cessation of operations should be sent electronically to OCD Permitting. A request to extend the cessation of operations, not to exceed six months, may be submitted using a C-147 form through OCD Permitting. If after that 6-month extension period, the 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805] is not utilized at a minimum of 20% fluid capacity, no additional extensions would be granted, and the operator would be directed to remove all fluids and proceed with the closure requirements.
- [332392] Legion Water Services, LLC shall submit monthly reports of recycling and reuse of produced water, drilling fluids, and liquid oil field waste on OCD form C-148 via OCD Permitting even if there is zero activity.
- [332392] Legion Water Services, LLC shall inspect the recycling containment and associated leak detection systems weekly while it contains fluids. The operator shall maintain a current log of such inspections and make the logs available for review by the division upon request according to 19.15.34.13.A.
- [332392] Legion Water Services, LLC shall comply with 19.15.29 NMAC Releases in the event of any release of produced water or other oil field waste at 1RF-525 SPYGLASS RECYCLING FACILITY [fVV2415136805].

Please reference number 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] in all future communications. Regards,

Victoria Venegas • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 506 W. Texas Ave. Artesia, NM 88210 (575) 909-0269 | <u>Victoria.Venegas@emnrd.nm.gov</u> https://www.emnrd.nm.gov/ocd/

Received by OCD: 5/21/2024 2:02:19 PM

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: 0	DGRID:
Legion Water Services, LLC	332392
1515 Wynkoop Street A	Action Number:
Denver, CO 80202	346435
A	Action Type:
	[C-147] Water Recycle Long (C-147L)
CONDITIONS	

CONDITION		
Created By	Condition	Condition Date
vvenegas	• 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] is approved for five years of operation from the date of permit application of May 21, 2024. • 1RF-525 - SPYGLASS RECYCLING FACILITY [fVV2415136805] permit expires on May 21, 2029. If [332392] Legion Water Services, LLC wishes to extend operations past five years, an annual extension request must be submitted using on form C-147 Long through OCD Permitting by April 21, 2029.	5/30/2024

Action 346435