

April 7, 2025

Mr. Joel Stone Environmental Specialist New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

VIA ELECTRONIC SUBMITTAL

Re: Temporary Pit Closure Report

Javelina Unit 610 (610H, 611H, 612H, 507H, 508H)

BLM Lease No. USA NMNM 029234

Section 10 of T24S, R31E Eddy County, New Mexico Facility ID: fJMB2221536628

Dear Mr. Stone,

Tetra Tech, Inc. (Tetra Tech) is pleased to provide this Temporary Pit Closure Report on behalf of Chevron Mid Continent Business Unit (MCBU) for the above-referenced temporary pit in accordance with the approved C-144 closure plan and conditions of approval, dated August 3, 2022. Temporary pit closure activities were completed on November 10, 2024. The site will be monitored in 2025 for vegetative growth progress. The Division will be notified upon the establishment of appropriate vegetative cover that blends with the surrounding undisturbed area. This submittal includes the following information listed in Part 21 of the C-144 Form (Closure Report Attachment Checklist):

Closure Requirement	Attachment			
Proof of Closure Notification	Attachment A			
Proof of Deed Notice (on-site closure on private land only)	Not Applicable; <i>BLM Land</i>			
C-105 form (for on-site closures and temporary pits), Plot Plan	Attachment B			
Confirmation Sampling Analytical Results	Not Applicable			
Waste Material Sampling Analytical Results (required for on-site	Attachment A; submitted with closure notice			
closure)				
Disposal Facility Name and Permit Number	Not Applicable; on-site closure			
Soil Backfilling and Cover Installation	Attachment C			
Re-vegetation Application Rates and Seeding Technique	Attachment C			
Site Reclamation (photo documentation)	Attachment C			
Updated C-144 form	Attachment D			

If you have any questions or comments regarding this submittal, please contact Kim Beebe at kimbeebe@chevron.com.

Respectfully submitted, TETRA TECH

du Faylor

John Faught, GIT Project Manager Tetra Tech, Inc. Clair Gonzales, PG Operations Manager Tetra Tech, Inc.

Cc: James Amos, Bureau of Land Management, via electronic submittal

Attachment A

Proof of Closure Notice

From: <u>Venegas, Victoria, EMNRD</u>

To: <u>Beebe, Kim</u>

Cc: Anderson, Justin; Faught, John

Subject: RE: [EXTERNAL] JAVELINA UNIT 610 (610H, 611H, 612H, 507H, 508H) [fJMB2221536628]

Date: Wednesday, October 2, 2024 8:44:37 AM

Attachments: image001.jpg image002.png

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Good morning Ms. Beebe,

Please include this notice in your closure report and also, please, submit the notification via OCD Online as per conditions of approval.

Thank you.

Victoria Venegas • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave. Artesia, NM 88210
(575) 909-0269 | <u>Victoria.Venegas@emnrd.nm.gov</u>

https://www.emnrd.nm.gov/ocd/

From: Beebe, Kim <kimbeebe@chevron.com> **Sent:** Wednesday, October 2, 2024 7:38 AM

To: Venegas, Victoria, EMNRD < Victoria. Venegas@emnrd.nm.gov>

Cc: Anderson, Justin < Justin. Anderson@chevron.com>; Faught, John < JOHN. FAUGHT1@tetratech.com>

Subject: [EXTERNAL] JAVELINA UNIT 610 (610H, 611H, 612H, 507H, 508H) [fJMB2221536628]

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hi Victoria, I would like to submit notification in regards to this permit condition for JAVELINA UNIT 610 (610H, 611H, 612H, 507H, 508H) [fJMB2221536628],.

Kim Beebe

Lead Environmental Specialist – Waste Advisor

Chevron North America Exploration and Production Mid-Continent Business Unit

6301 Deauville Blvd Midland, TX 79706 Tel 432 687-7480 Mobile 310 606-9561

September 17, 2024

EMNRD - New Mexico Oil Conservation Division 1220 South Saint Francis Drive Sante Fe, NM 87505

RE: Chevron Pit Closure Notice

Javelina Unit 610 (610H, 611H, 612H, 507H, 508H)

Facility ID: fJMB2221536628 BLM Lease #USA NMNM 029234 Section 10, T24S, R31E

To Whom It May Concern:

This submittal serves as notice to the New Mexico Oil Conservation Division (NMOCD) that closure at the above referenced pit will begin on September 9, 2024. The closure process should be completed around November 15, 2024.

The permitted Non-Low Chloride Temporary Pit was associated with the following Javelina Unit wells:

Javelina Unit #610H API# 30-015-53379
 Javelina Unit #611H API# 30-015-53376
 Javelina Unit #612H API# 30-015-53377
 Javelina Unit #507H API# 30-015-53380
 Javelina Unit #508H API# 30-015-53375

The "In place Burial" closure plan for the pit was approved by the NMOCD on April 14, 2022, and the permit application and approval are on the OCD website.

Tetra Tech, on behalf of Chevron, collected a five-point composite sample from the contents of the Temporary Pit. A copy of the laboratory report is presented in **Attachment A**, and the table below provides a summary of the analytical results.

Analytical Results for Javelina Unit 610									
Name	Chloride (mg/kg)	TPH (mg/kg)	GRO + DRO	Benzene	ВТЕХ				
Burial Standard	80,000	2,500	1,000	10	50				
Javelina 610	47,800	37.9	37.9 J	<0.00140	0.0380				

Based on the results, no soil mixing needs to be utilized to meet the in-place closure target concentrations found in Table II of 19.15.17.13 NMAC. The closure process will follow the previously submitted plan.

Thank you for your consideration of the notice of in-place closure.

Sincerely,

John Faught, GIT Project Manager Tetra Tech, Inc. Russ Weigand, PG Account Manager Tetra Tech, Inc.

Ressell Weigand

Enclosures:

Attachment A: Laboratory Analytical Results

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: John Faught Tetra Tech Inc 901 W Wall Ste 100 Midland, Texas 79701

Generated 8/26/2024 1:06:51 PM Revision 1

JOB DESCRIPTION

SND Pad 610 Eddy County NM

JOB NUMBER

880-46972-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/26/2024 1:06:51 PM Revision 1

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 •

_

6

9

12

13

Client: Tetra Tech Inc

Project/Site: SND Pad 610

Laboratory Job ID: 880-46972-1 SDG: Eddy County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

3

4

6

8

10

40

13

Definitions/Glossary

Client: Tetra Tech Inc Job ID: 880-46972-1 Project/Site: SND Pad 610 SDG: Eddy County NM

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

n Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

 $\mathsf{DL},\,\mathsf{RA},\,\mathsf{RE},\,\mathsf{IN}$ Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech Inc Job ID: 880-46972-1 Project: SND Pad 610

Eurofins Midland Job ID: 880-46972-1

> Job Narrative 880-46972-1

REVISION

The report being provided is a revision of the original report sent on 8/8/2024. The report (revision 1) is being revised due to Per client email, requestin CS-1 to be on own report.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 8/7/2024 11:38 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.1°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: The continuing calibration verification (CCV) associated with batch 880-87805 recovered above the upper control limit for Diesel Range Organics (Over C10-C28). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-87886 and analytical batch 880-87894 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-87759 and analytical batch 880-87765 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

Client Sample ID: CS-1 Lab Sample ID: 880-46972-6

Date Collected: 08/07/24 11:11 Matrix: Solid
Date Received: 08/07/24 11:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00140	U	0.00201	0.00140	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
Toluene	<0.00201	U	0.00201	0.00201	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
Ethylbenzene	0.00402		0.00201	0.00109	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
m-Xylene & p-Xylene	0.0242		0.00402	0.00229	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
o-Xylene	0.00978		0.00201	0.00159	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
Xylenes, Total	0.0340		0.00402	0.00229	mg/Kg		08/07/24 11:51	08/07/24 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	117		70 - 130				08/07/24 11:51	08/07/24 21:37	- 1
1,4-Difluorobenzene (Surr)	109		70 - 130				08/07/24 11:51	08/07/24 21:37	1
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0380		0.00402	0.00229	mg/Kg			08/07/24 21:37	1
Method: SW846 8015 NM - Di	_	•		MDI	1114	_	Burner	A	D'' 5
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	37.9								
		3	50.0	15.1	mg/Kg			08/08/24 00:50	1
Method: SW846 8015B NM - [15.1	mg/Kg			08/08/24 00:50	1
	Diesel Range Result	Organics Qualifier	(DRO) (GC)	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Diesel Range	Organics Qualifier	(DRO) (GC)	MDL		<u>D</u>	Prepared 08/07/24 10:32	Analyzed	,
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Diesel Range Result	Organics Qualifier	(DRO) (GC)	MDL 14.5	Unit	<u> </u>	08/07/24 10:32	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Diesel Range Result <14.5	Organics Qualifier U	(DRO) (GC) RL 50.0	MDL 14.5 15.1	Unit mg/Kg	<u>D</u>	08/07/24 10:32 08/07/24 10:32	Analyzed 08/08/24 00:50	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Diesel Range Result <14.5	Qualifier U	(DRO) (GC) RL 50.0	MDL 14.5 15.1	Unit mg/Kg mg/Kg	<u>D</u>	08/07/24 10:32 08/07/24 10:32	Analyzed 08/08/24 00:50 08/08/24 00:50	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate		Qualifier U	50.0 (DRO) (GC) RL 50.0 50.0	MDL 14.5 15.1	Unit mg/Kg mg/Kg	<u> </u>	08/07/24 10:32 08/07/24 10:32 08/07/24 10:32 Prepared	Analyzed 08/08/24 00:50 08/08/24 00:50 08/08/24 00:50	Dil Fac
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Piesel Range Result <14.5 37.9 <15.1 %Recovery	Qualifier U	50.0 (DRO) (GC) RL 50.0 50.0 Limits	MDL 14.5 15.1	Unit mg/Kg mg/Kg	<u>D</u>	08/07/24 10:32 08/07/24 10:32 08/07/24 10:32 Prepared 08/07/24 10:32	Analyzed 08/08/24 00:50 08/08/24 00:50 08/08/24 00:50 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <14.5 37.9 <15.1	Qualifier U U Qualifier	50.0 50.0 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL 14.5 15.1	Unit mg/Kg mg/Kg	<u>D</u>	08/07/24 10:32 08/07/24 10:32 08/07/24 10:32 Prepared 08/07/24 10:32	Analyzed 08/08/24 00:50 08/08/24 00:50 08/08/24 00:50 Analyzed 08/08/24 00:50	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl		Qualifier U U Qualifier	50.0 50.0 50.0 50.0 50.0 Limits 70 - 130 70 - 130	MDL 14.5 15.1 15.1	Unit mg/Kg mg/Kg	<u>D</u>	08/07/24 10:32 08/07/24 10:32 08/07/24 10:32 Prepared 08/07/24 10:32	Analyzed 08/08/24 00:50 08/08/24 00:50 08/08/24 00:50 Analyzed 08/08/24 00:50	Dil Fac

2

3

5

8

10

12

Surrogate Summary

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-46972-6	CS-1	117	109	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Perce	nt Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-46972-6	CS-1	96	92	
Surrogate Legend				

1CO = 1-Chlorooctane
OTPH = o-Terphenyl

Job ID: 880-46972-1 SDG: Eddy County NM

Project/Site: SND Pad 610 Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-87737/5-A

Matrix: Solid

Client: Tetra Tech Inc

Analysis Batch: 87760

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 87737

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		08/07/24 11:51	08/07/24 16:19	•
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		08/07/24 11:51	08/07/24 16:19	
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		08/07/24 11:51	08/07/24 16:19	
m-Xylene & p-Xylene	<0.00229	U	0.00400	0.00229	mg/Kg		08/07/24 11:51	08/07/24 16:19	
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		08/07/24 11:51	08/07/24 16:19	
Xylenes, Total	<0.00229	U	0.00400	0.00229	mg/Kg		08/07/24 11:51	08/07/24 16:19	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130	08/07/24 11:51	08/07/24 16:19	1
1,4-Difluorobenzene (Surr)	96		70 - 130	08/07/24 11:51	08/07/24 16:19	1

Lab Sample ID: LCS 880-87737/1-A

Matrix: Solid

Analysis Batch: 87760

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 87737

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1079 mg/Kg 108 70 - 130 Toluene 0.100 0.09671 mg/Kg 97 70 - 130 Ethylbenzene 0.100 0.1039 mg/Kg 104 70 - 130 70 - 130 0.200 0.1983 m-Xylene & p-Xylene mg/Kg 99 0.100 70 - 130 o-Xylene 0.09691 mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: LCSD 880-87737/2-A

Matrix: Solid

Analysis Batch: 87760

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 87737

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1218 mg/Kg 122 70 - 130 12 35 Toluene 0.100 0.1072 mg/Kg 107 70 - 130 10 35 Ethylbenzene 0.100 0.1153 mg/Kg 115 70 - 130 10 35 0.200 m-Xylene & p-Xylene 0.2466 mg/Kg 123 70 - 130 22 35 0.100 0.1188 o-Xylene mg/Kg 119 70 - 130 20 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1.4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 880-46971-A-1-A MS

Matrix: Solid

Analysis Batch: 87760

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 87737

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00140	U	0.0998	0.1065		mg/Kg		107	70 - 130	
Toluene	< 0.00201	U	0.0998	0.09284		mg/Kg		93	70 - 130	

Eurofins Midland

Page 8 of 20

Client: Tetra Tech Inc Job ID: 880-46972-1 Project/Site: SND Pad 610 SDG: Eddy County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-46971-A-1-A MS

Analysis Batch: 87760

Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA Prep Batch: 87737

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00110	U	0.0998	0.1138		mg/Kg		114	70 - 130	
m-Xylene & p-Xylene	<0.00230	U	0.200	0.2228		mg/Kg		112	70 - 130	
o-Xylene	<0.00159	U	0.0998	0.1087		mg/Kg		109	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 880-46971-A-1-B MSD

Matrix: Solid

Analysis Batch: 87760

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 87737

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 0.100 Benzene <0.00140 U 0.09484 mg/Kg 95 70 - 130 12 35 Toluene 0.08100 <0.00201 U 0.100 mg/Kg 81 70 - 130 14 35 Ethylbenzene <0.00110 U 0.100 0.08428 mg/Kg 84 70 - 130 30 35 <0.00230 U 0.200 0.1875 70 - 130 17 35 m-Xylene & p-Xylene mg/Kg 0.100 <0.00159 U 0.09052 90 70 - 130 o-Xylene mg/Kg 18

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-87729/1-A

Matrix: Solid

Analysis Batch: 87805

Client	Sample	ID:	Method	Blank

Prep Type: Total/NA

Prep Batch: 87729

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	50.0	14.5	mg/Kg		08/07/24 10:32	08/07/24 16:42	1
Diesel Range Organics (Over C10-C28)	<15.1	U	50.0	15.1	mg/Kg		08/07/24 10:32	08/07/24 16:42	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		08/07/24 10:32	08/07/24 16:42	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130	08/07/24 10:32	08/07/24 16:42	1
o-Terphenyl	86		70 - 130	08/07/24 10:32	08/07/24 16:42	1

Lab Sample ID: LCS 880-87729/2-A

Matrix: Solid

Analysis Batch: 87805

Client Sample	ID: Lab	Control	Sample
---------------	---------	---------	--------

Prep Type: Total/NA

Prep Batch: 87729

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	992.0		mg/Kg		99	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	906.2		mg/Kg		91	70 - 130	
C10-C28)								

Job ID: 880-46972-1

SDG: Eddy County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-87729/2-A

Matrix: Solid

Analysis Batch: 87805

Client: Tetra Tech Inc Project/Site: SND Pad 610

> Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 87729

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 106 70 - 130 o-Terphenyl 86 70 - 130

Lab Sample ID: LCSD 880-87729/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 87805

Prep Type: Total/NA

Prep Batch: 87729

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 932.2 93 70 - 1306 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 824.7 82 mg/Kg 70 - 1309 20 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 97 70 - 130 1-Chlorooctane 80 70 - 130 o-Terphenyl

Lab Sample ID: 880-46963-A-10-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 87805

Prep Type: Total/NA

Prep Batch: 87729

Sample Sample MS MS Spike Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Gasoline Range Organics <14.5 U 995 878.5 mg/Kg 88 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <15.1 U 995 852.3 mg/Kg 86 70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 108 o-Terphenyl 87 70 - 130

Lab Sample ID: 880-46963-A-10-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 87805

Prep Type: Total/NA Prep Batch: 87729

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	995	854.7		mg/Kg		86	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	<15.1	U	995	876.8		mg/Kg		88	70 - 130	3	20

MSD MSD Qualifier Surrogate %Recovery Limits

1-Chlorooctane 113 70 - 130 93 70 - 130 o-Terphenyl

Job ID: 880-46972-1

Client: Tetra Tech Inc Project/Site: SND Pad 610 SDG: Eddy County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MD MD

69 S1-

81

Lab Sample ID: MB 880-87886/1-A

Analysis Batch: 87894

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 87886

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	50.0	14.5	mg/Kg		08/08/24 08:53	08/08/24 09:36	1
Diesel Range Organics (Over C10-C28)	<15.1	U	50.0	15.1	mg/Kg		08/08/24 08:53	08/08/24 09:36	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		08/08/24 08:53	08/08/24 09:36	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

Lab Sample ID: LCS 880-87886/2-A

Matrix: Solid

1-Chlorooctane

o-Terphenyl

Analysis Batch: 87894

Client Sample ID: Lab Control Sample

08/08/24 09:36

08/08/24 09:36

08/08/24 08:53

08/08/24 08:53

Prep Type: Total/NA

Prep Batch: 87886

LCS LCS Spike Added Analyte Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 848.3 85 70 - 130 mg/Kg (GRO)-C6-C10 1000 946.0 Diesel Range Organics (Over mg/Kg 95 70 - 130C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	100		70 - 130
o-Terphenyl	102		70 - 130

Lab Sample ID: LCSD 880-87886/3-A

Matrix: Solid

Analysis Batch: 87894

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 87886

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	824.9		mg/Kg		82	70 - 130	3	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	858.8		mg/Kg		86	70 - 130	10	20
C10-C28)									

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	94	70 - 130
o-Terphenyl	93	70 - 130

Lab Sample ID: 880-46847-A-1-H MS

Matrix: Solid

Analysis Batch: 87894

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 87886

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<14.6	U	997	848.8		mg/Kg		85	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	186		997	1005		mg/Kg		82	70 - 130	
C10-C28)										

Client: Tetra Tech Inc Project/Site: SND Pad 610

Job ID: 880-46972-1 SDG: Eddy County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-46847-A-1-H MS

MS MS

Matrix: Solid

Analysis Batch: 87894

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 87886

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	114		70 - 130
o-Terphenyl	121		70 - 130

Lab Sample ID: 880-46847-A-1-I MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Analysis Batch: 87894

Prep Type: Total/NA

Prep Batch: 87886

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<14.6	U	997	808.3		mg/Kg		81	70 - 130	5	20
Diesel Range Organics (Over C10-C28)	186		997	954.2		mg/Kg		77	70 - 130	5	20

MSD MSD Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 111 115 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-87759/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 87765

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	< 0.395	U	5.00	0.395	mg/Kg			08/07/24 22:16	1

Lab Sample ID: LCS 880-87759/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 87765

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	244.5		ma/Ka		98	90 - 110	

Lab Sample ID: LCSD 880-87759/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Analysis Batch: 87765

	Spi	(e	LCSD	LCSD				%Rec		RPD
Analyte	Add	ed	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		50	244.7		mg/Kg	_	98	90 - 110		20

Lab Sample ID: 880-46971-A-3-D MS Client Sample ID: Matrix Spike **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 87765

Released to Imaging: 4/17/2025 1:40:51 PM

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12900	F1	4990	18950	F1	ma/Ka		122	90 - 110	

Eurofins Midland

Prep Type: Soluble

QC Sample Results

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-46971-A-3-E MSD

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate
Prep Type: Soluble

Analysis Batch: 87765

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12900	F1	4990	18940	F1	mg/Kg		122	90 - 110	0	20

3

<u>+</u>

6

12

13

QC Association Summary

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

2

GC VOA

Prep Batch: 87737

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	5035	

Analysis Batch: 87760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	8021B	87737

Analysis Batch: 87888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 87729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	8015NM Prep	

Analysis Batch: 87805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	8015B NM	87729

Analysis Batch: 87884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 87759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Soluble	Solid	DLLeach	

Analysis Batch: 87765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-46972-6	CS-1	Soluble	Solid	300.0	87759

Lab Chronicle

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

Client Sample ID: CS-1

Lab Sample ID: 880-46972-6

Date Collected: 08/07/24 11:11 Matrix: Solid
Date Received: 08/07/24 11:38

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	87737	08/07/24 11:51	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	87760	08/07/24 21:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			87888	08/07/24 21:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			87884	08/08/24 00:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	87729	08/07/24 10:32	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	87805	08/08/24 00:50	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	87759	08/07/24 13:05	SA	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	87765	08/08/24 01:17	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech Inc Job ID: 880-46972-1
Project/Site: SND Pad 610 SDG: Eddy County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date		
exas	NELAI	Р	T104704400	06-30-25		
		in this report, but the laboratory is not certified by the governing authority. This list				
		rt but the laboratory is i	not contitiod by the acyonning cuithori	ty This list may includ		
,	•	•	not certified by the governing authori	ty. This list may includ		
,	s are included in this repo does not offer certification	•	not certified by the governing authori	ity. This list may includ		
,	•	•	not certified by the governing authori Analyte	ty. This list may includ		
for which the agency	does not offer certification	i.	, , ,	ty. This list may includ		

2

3

4

6

10

12

Method Summary

Client: Tetra Tech Inc Project/Site: SND Pad 610

Method

8015 NM

8015B NM

8015NM Prep

DI Leach

300.0

5035

8021B Total BTEX Job ID: 880-46972-1 SDG: Eddy County NM

EET MID

EET MID

Protocol	Laboratory
SW846	EET MID
TAL SOP	EET MID
SW846	EET MID
SW846	EET MID
EPA	EET MID
SW846	EET MID

SW846

ASTM

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

Microextraction

Method Description

Total BTEX Calculation

Volatile Organic Compounds (GC)

Diesel Range Organics (DRO) (GC)

Diesel Range Organics (DRO) (GC)

Deionized Water Leaching Procedure

Anions, Ion Chromatography

Closed System Purge and Trap

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

J

9

11

Sample Summary

Client: Tetra Tech Inc Project/Site: SND Pad 610 Job ID: 880-46972-1 SDG: Eddy County NM

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 880-46972-6
 CS-1
 Solid
 08/07/24 11:11
 08/07/24 11:38

3

4

6

8

4.6

11

12

Analysis Request of Chain of Custody Record Project Name: Receiving Laboratory: county, state) roject Location Client Name: nvoice to: Relinquished by: Relinquished by: CAB USE LAB# ᆏ S-1 CS-1 S-3 S-2 S-5 S-4 Email: john.faught1@tetratech.com; clairgonzales@tetratech.com; kimbeebe@chevron.com Eddy County, NM **Eurofins Laboratory** SND Pad 610 Chevron MCBU OGA.ECS.AccountsPayable@tetratech.com Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Time: Time lime Sampler Signature: Project #: Site Manager ORIGINAL COPY Received by ece ved by DATE SAMPLING 107 200 1102 100 TIME John Faught WATER MATRIX 901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 212C-MD-03278 × × × Cuttings Date: Date: HCL PRESERVATIVE METHOD HNO: ICE Time: Time: # CONTAINERS 130 FILTERED (Y/N) Sample Temperature × × × BTEX 8021B (Circle) HAND DELIVERED TPH TX1005 (Ext to C35) LAB USE TPH 8015M (GRO - DRO - ORO - MRO) $\overline{\times}$ $\overline{\times}$ × \times × 880-46972 Chain of Custody PAH 8270C Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg **ANALYSIS REQUEST** TCLP Volatiles TCLP Semi Volatiles X RUSH: Same Day Rush Charges Authorized Special Report Limits or TRRP Report FEDEX RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) 24 hr Chloride EPA 300 × $\times \times \times$ × Sulfate TDS Chloride General Water Chemistry (see attached list) 48 hr Anion/Cation Balance Method 9095 72 hr 으 Hold Page 19 of 20

Released to Imaging: 4/17/2025 1:40:51 PM

8/26/2024 (Rev. 1)

Login Sample Receipt Checklist

Client: Tetra Tech Inc

Job Number: 880-46972-1

SDG Number: Eddy County NM

List Source: Eurofins Midland

Login Number: 46972 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

0J 47

<6mm (1/4").

Attachment B

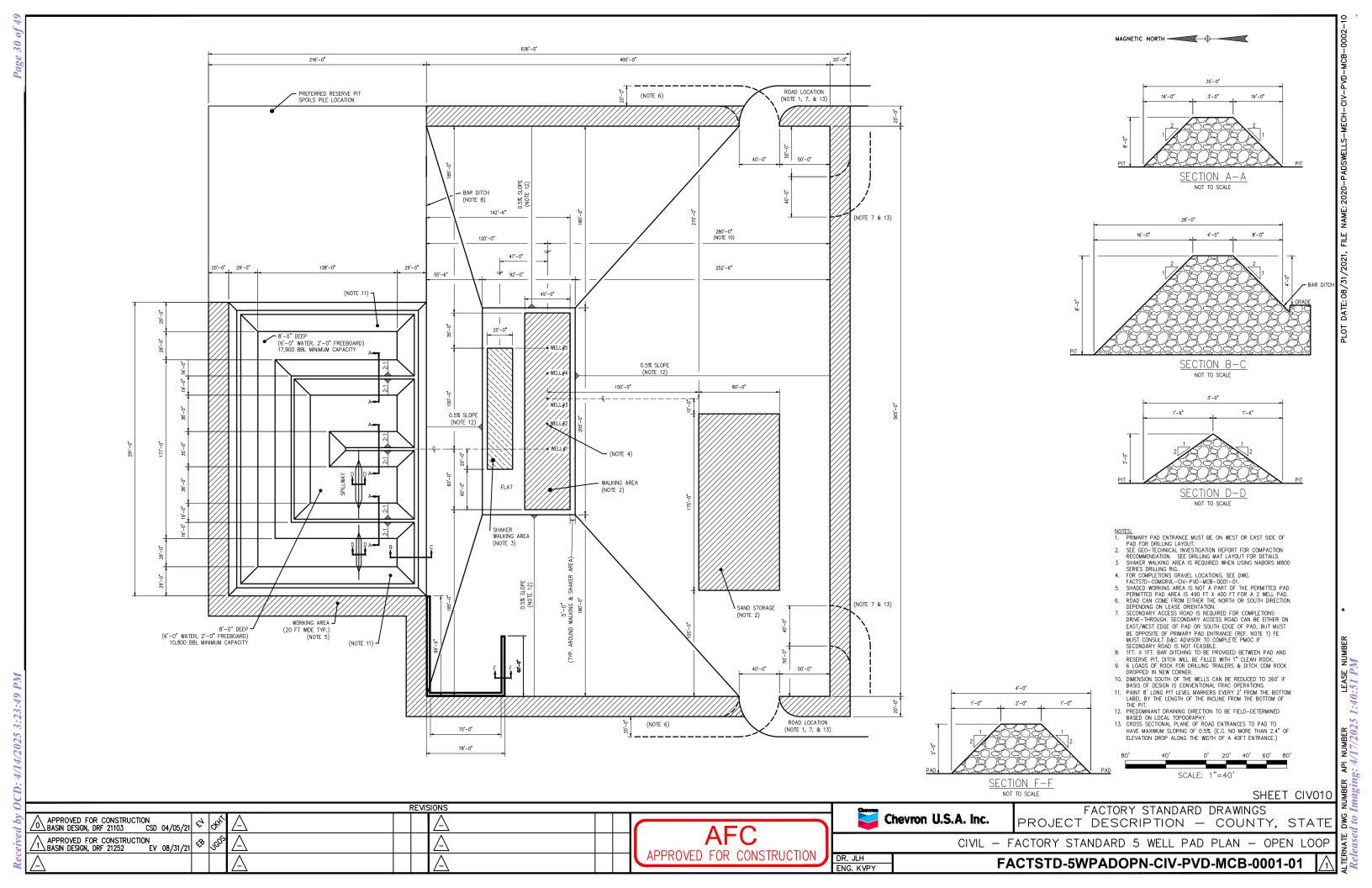
C-105 Form, Plot Plan

Received by OC	CD: 4/	14/2025	3:23:4	19 PM													Page 28 of 49
Submit To Appropri Two Copies	ate Distric	ct Office		_		State of Ne									_		orm C-105
District I 1625 N. French Dr.,	Hobbs, N	IM 88240		En	ergy,	Minerals and	d Natu	ıral	Resc	ources	-	1. WELL A	A DI N	JO.	ŀ	Revised .	April 3, 2017
<u>District II</u> 811 S. First St., Arte					٠.	1 ~						30-015-53375			, 53379,	53380	
District III									2. Type of Le	ease							
1000 Rio Brazos Rd District IV	., Aztec, N	NM 87410		1220 South St. Francis Dr.					STATE FEE FED/INDIAN 3. State Oil & Gas Lease No.				IAN				
1220 S. St. Francis I						Santa Fe, N						3. State on & das Ecase IV.					
		LETIO	N OR	RECO	OMPL	ETION RE	POR	ΙΑ	ND I	_OG		5 I N	T.1		, NI	0	1.0
4. Reason for filir	ıg:											5. Lease Nam	e or U	nit Agree	ement Na	ame Sar	nd Dunes
COMPLETION REPORT (Fill in boxes #1 through #31 for State and Fee wells only) 6. Well Number: Javelina Unit 610 (610H, 611H, 6 507H, 508H) C-144 CLOSURE ATTACHMENT (Fill in boxes #1 through #9, #15 Date Rig Released and #32 and/or									1Н, 612Н,								
#33; attach this an	d the pla																
7. Type of Compl		∃work	OVER	□ DEEP	ENING	□PLUGBACK	κΠbi	IFFE	RENT	RESERV	/OIR	OTHER					
8. Name of Operat	tor: Chev	vron U.S.A	. Inc.		21 111 10				, redict	TEBBLIC		9. OGRID: 43	323				
10. Address of Op	erator											11. Pool name	or Wi	ildeat			
6301 Deauville Bl	vd., Mid																
12.Eocation	Unit Ltr	Sect	ion	Town	ship	Range	Lot		F	eet from	the	N/S Line	Feet	from the	E/W l	Line	County
Surface:																	
BH:																	
13. Date Spudded		ate T.D. R	eached			Released 11/11/						(Ready to Prod		R	T, GR, e	etc.)	and RKB,
18. Total Measure	d Depth	of Well		19.	Plug Bac	ck Measured Dep	oth		20. V	as Direct	tiona	l Survey Made?	,	21. Typ	e Electr	ic and Of	ther Logs Run
22. Producing Inte	erval(s),	of this con	pletion	- Top, Bo	ttom, Na	ame											
23.					CAS	ING REC	ORD	(R	enor	t all st	ring	s set in w	e11)				
CASING SIZ	Έ	WEI	GHT LE	s./FT.		DEPTH SET				ESIZE	3 1112	CEMENTIN		CORD	Al	MOUNT	PULLED
24					LDI	ED DECORD					25	Т.	TIDI	IC DEC	ODD		
SIZE	TOP		В	OTTOM	LIN	ER RECORD SACKS CEM	ENT !	SCR	EEN		25. SIZ			NG REC EPTH SE		PACK	ER SET
SIEE	101			CIICII		Brieffs CENT		bere	LLIT		512			A THI OL	1	THEIR	ER SET
26. Perforation	record (i	nterval, siz	e, and r	umber)								ACTURE, CE					
]	DEP'	TH IN	TERVAL	,	AMOUNT A	ND K	IND MA	TERIAI	LUSED	
							_										
							_										
20						-	PRO	DI.	CT	ON							
28. Date First Product	ion		Produ	iction Met	thod (Fl	owing, gas lift, pi)	Well Status	(Proc	l or Shut	_in)		
Date The Treate			11040		.100 (1 10	, , , , , , , , , , , , , , , , , , ,		2,20		, pe pump,	,	, von Status	(1700	0. 5	,		
Date of Test	Hours	s Tested		hoke Size	;	Prod'n For Test Period		Oil -	Bbl		Gas	s - MCF	Wa	ater - Bbl		Gas - 0	Dil Ratio
Flow Tubing	Casin	g Pressure		alculated	24-	Oil - Bbl.		(Gas - N	1CF		Water - Bbl.		Oil Gr	avity - A	<u> </u> PI - <i>(Cor</i>	r.)
Press.	Cusin	ig i ressure		lour Rate	2-1	l Boi.		lÌ	Gus IV	101	I	water Boi.		On Oil	1VILY 71	11 (00)	,,,
29. Disposition of	Gas (So.	ld used fo	r fuel v	ented etc	1							<u> </u>	30 T	est Witne	essed By	,	
27. Disposition of	Jus (50)	ы, изси ј0	juei, V	си, егс.	,								JU. 1	-51 YY 11110	гээси Бу		
31. List Attachmen	nts																
32. If a temporary	pit was	used at the	well, at	tach a pla	t with th	e location of the	tempora	ary p	it.				33. R	ig Releas	se Date:	11/11/20	23
34. If an on-site bu	urial was	used at th	e well, 1	eport the	exact lo	cation of the on-s	site buria		, т	ongitude	-10	3 76418	NΔ	D83			
I hereby certify	y that t	he infori	nation	shown		h sides of this									dge an	d beliej	f
Signature /						Printed Name	-			Tit		·			_	Date	
E-mail Addres	s kdfk(@chevro	n]	Kim Beebe				Wa	aste	e Advisor 4/7/2025			025		

INSTRUCTIONS

This form is to be filed with the appropriate District Office of the Division not later than 20 days after the completion of any newly-drilled or deepened well and not later than 60 days after completion of closure. When submitted as a completion report, this shall be accompanied by one copy of all electrical and radio-activity logs run on the well and a summary of all special tests conducted, including drill stem tests. All depths reported shall be measured depths. In the case of directionally drilled wells, true vertical depths shall also be reported. For multiple completions, items 11, 12 and 26-31 shall be reported for each zone.

INDICATE FORMATION TOPS IN CONFORMANCE WITH GEOGRAPHICAL SECTION OF STATE


Southe	astern New Mexico	Northy	Northwestern New Mexico				
T. Anhy	T. Canyon	T. Ojo Alamo	T. Penn A"				
T. Salt	T. Strawn	T. Kirtland	T. Penn. "B"				
B. Salt	T. Atoka	T. Fruitland	T. Penn. "C"				
T. Yates	T. Miss	T. Pictured Cliffs	T. Penn. "D"				
T. 7 Rivers	T. Devonian	T. Cliff House	T. Leadville				
T. Queen	T. Silurian	T. Menefee	T. Madison				
T. Grayburg	T. Montoya	T. Point Lookout	T. Elbert				
T. San Andres	T. Simpson	T. Mancos	T. McCracken				
T. Glorieta	T. McKee	T. Gallup	T. Ignacio Otzte				
T. Paddock	T. Ellenburger	Base Greenhorn	T.Granite				
T. Blinebry	T. Gr. Wash	T. Dakota					
T.Tubb_	T. Delaware Sand	T. Morrison					
T. Drinkard	T. Bone Springs	T.Todilto_					
T. Abo	T.	T. Entrada					
T. Wolfcamp	T.	T. Wingate					
T. Penn T.		T. Chinle					
T. Cisco (Bough C) T.		T. Permian					

			SANDS OI	R GAS R ZONES
No. 1, from	to	No. 3, from	to	
No. 2, from	to	No. 4, from	to	
	IMPORTANT \	WATER SANDS		
Include data on rate of v	vater inflow and elevation to which wate	r rose in hole.		
No. 1, from	to	feet		
No. 2, from	to	feet		

LITHOLOGY RECORD (Attach additional sheet if necessary)

No. 3, from......to.....feet....

From	То	Thickness In Feet	Lithology	From	То	Thickness In Feet	Lithology

Released to Imaging: 4/17/2025 1:40:51 PM

NV	NW CLEARING LIMITS CORNER NE CLEARI			LEARING LIMITS	CORNER	N/	W ARCH AREA CO	RNER	N	E ARCH AREA CO	RNER	NV	RESERVE PIT C	ORNER	. NE	RESERVE PIT CO	ORNER
X= Y=	675,829' 450,001'	NAD 27	X= Y=	676,434' 450,001'	NAD 27	X= Y=	675,793' 450,159'	NAD 27	X= Y=	676,493' 450,163'	NAD 27	X= Y=	675,965' 450,264'	NAD 27	X= Y=	676,298' 450,266'	NAD 27
LAT.			LAT. LONG.	32.235881° N 103.762719° W			LAT. LONG.	32.236326° N 103.762528° W			32.236611° N 103.764234° W		LAT. LONG.	32.236612° N 103.763157° W			
X= Y= LAT. LONG	717,013' 450,060' 32.236013° N i. 103.765160° W	NAD83/2011	X= Y= LAT. LONG.	717,618' 450,060' 32.236004° N 103.763203° W	NAD83/2011	X= Y= LAT. LONG.	716,976' 450,218' 32.236448° N 103.765276° W	NAD83/2011	X= Y= LAT. LONG.	717,676' 450,222' 32.236449° N 103.763012° W	NAD83/2011	X= Y= LAT. LONG.	717,148' 450,323' 32.236734° N 103.764718° W	NAD83/2011	X= Y= LAT. LONG.	717,481' 450,325' 32.236736° N 103.763641° W	NAD83/2011
ELEV	. +3,474'	NAVD88	ELEV.	+3,480'	NAVD88	ELEV.	+3,473'	NAVD88	ELEV.	+3,481'	NAVD88	ELEV.	+3,475'	NAVD88	ELEV.	+3,480'	NAVD88
SV	SW CLEARING LIMITS CORNER		SE C	LEARING LIMITS	CORNER	SW ARCH AREA CORNER		SE ARCH AREA CORNER SW RESERVE PIT CORNER		ORNER	SE RESERVE PIT CORNER						
X= Y= LAT. LONG	675,829' 449,561' 32.234680° N i. 103.764683° W	NAD 27	X= Y= LAT. LONG.	676,434' 449,561' 32.234672° N 103.762727° W	NAD 27	X= Y= LAT. LONG.	675,796' 449,559' 32.234675° N 103.764791° W	NAD 27	X= Y= LAT. LONG.	676,496' 449,563' 32.234676° N 103.762527° W	NAD 27	X= Y= LAT. LONG.	675,966' 450,000' 32.235886° N 103.764233° W	NAD 27	X= Y= LAT. LONG.	676,299' 450,002' 32.235887° N 103.763156° W	NAD 27
X= Y= LAT. LONG	717,013' 449,620' 32.234804° N i. 103.765167° W	NAD83/2011	X= Y= LAT. LONG.	717,618' 449,620' 32.234795° N 103.763211° W	NAD83/2011	X= Y= LAT. LONG.	716,980' 449,618' 32.234799° N 103.765275° W	NAD83/2011	X= Y= LAT. LONG.	717,680' 449,622' 32.234800° N 103.763011° W	NAD83/2011	X= Y= LAT. LONG.	717,150' 450,059' 32.236009° N 103.764717° W	NAD83/2011	X= Y= LAT. LONG.	717,483' 450,061' 32.236010° N 103.763640° W	NAD83/2011
ELEV	. +3,475'	NAVD88	ELEV.	+3,481'	NAVD88	ELEV.	+3,475'	NAVD88	ELEV.	+3,481'	NAVD88	ELEV.	+3,477'	NAVD88	ELEV.	+3,481'	NAVD88

NOTE:

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nm811.org

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

	COURSE	BEARING	DISTANCE					
	1	SOUTH	440.00'					
	2	WEST	605.00'					
	3	NORTH	440.00'					
	4	EAST	605.00'					
	9							
	PROPOSED RESERVE PIT							

PROPOSED DRILL PAD

PROPOSED RESERVE PIT								
BEARING	DISTANCE							
N 00° 22' 31" W	264.00'							
N 89° 37' 29" E	333.00'							
S 00° 22' 31" E	264.00'							
S 89° 37' 29" W	333.00'							
	BEARING N 00° 22' 31" W N 89° 37' 29" E S 00° 22' 31" E							

CENTERL	ENTERLINE PROPOSED ACCESS ROAD					
COURSE	BEARING	DISTANCE				
9	SOUTH	754.27'				
10	EAST	35.00'				

CENTERLINE PROPOSED ACCESS ROAD								
COURSE	BEARING	BEARING DISTANCE						
11	SOUTH	75.00'						
12	EAST	635.00'						
13	NORTH	105.00						
14	WEST	35.00						

FOR THE EXCLUSIVE USE OF CHEVRON U.S.A. INC.

I, Robert L. Lastrapes, Professional Surveyor, do hereby state this plat is true and correct to the best of my knowledge.

08/13/2021

Robert L. Lastrapes Registration No. 23006 **WELL PLAT**

Page 2 of 2

CHEVRON U.S.A. INC.

PROPOSED PAD, RESERVE PIT AND ACCESS ROADS JAVELINA UNIT NO. 610H WELL **SECTION 10, T24S-R31E** EDDY COUNTY, NEW MEXICO

2				REVISIONS			
DRAWN BY: PBH	#	BY:	DATE:	DESCRIPTION:			
PROJMGR.:VHV							
DATIE 08/03/2021							
FILENAME: T:\2021\2213508\DWG\Javelina Unit No. 610H Well Plat.dwg							

C. H. Fenstermaker & Associates, L.L.C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299 www.fenstermaker.com

Attachment C

Soil Backfilling and Cover Installation

Soil Backfilling & Cover Installation

Soil backfilling and pit closure activities were completed in accordance with Closure and Site Reclamation Requirements detailed in 19.15.17.13 NMAC and conditions of approval. Photographs are provided on the following pages.

- 1. The Temporary Pit C-144 application was received and approved by the NMOCD on August 3, 2022.
- A five-point composite sample was collected from the Temporary Pit and sent to Eurofins Laboratory in Midland, Texas on August 7, 2024. The sample was analyzed for chloride, TPH, GRO+DRO, benzene, and BTEX. Based on the analytical results, no soil mixing ratio was needed to meet the in-place closure target concentrations found in Table II of 19.15.17.13 NMAC.
- 3. A closure notice was submitted to the NMOCD on September 17, 2024, with a copy of the analytical report for the five-point composite sample (Attachment A).
- 4. On September 9, 2024, closure activities commenced with the mixing of the cuttings and sloping of the material so that the overlying liner will shed infiltrating fluids.
- 5. On October 2, 2024, eTech Environmental mobilized to the site and collected a sample confirming that the mixed cuttings passed paint filter analysis. A copy of the paint filter analytical report is included within this attachment.
- 6. A 40 mil HDPE liner was then installed in a way that prevents ponding of water and is 8 feet below grade.
- 7. At least four feet of compacted, uncontaminated, non-waste containing earthen fill were placed above the liner.
- 8. At least one foot of topsoil was placed over the four feet of compacted material and graded to preserve surface flow patterns and prevent ponding.
- 9. A steel marker was installed in the center of the former Temporary Pit.
- 10. The area was broadcast reseeded with BLM #2 Seed Mix (Lot#: 3200) at a distribution rate of 5.243 bulk pounds per acre. Additional reseeding and/or weed control measures will be taken, if necessary, upon monitoring activities in 2025.
- 11. Final closure and reclamation activities were completed on November 11, 2024.

Photographic Log Javelina Unit 610 (611H, 612H, 507H, 508H)

Photo 1: Overview of pit closure activities.

Photo 2: Overview of final liner installation.

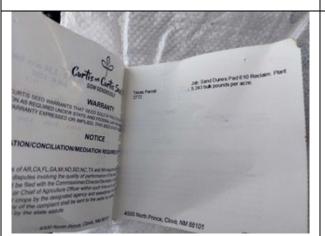


Photo 3: Overview of BLM seed mix.

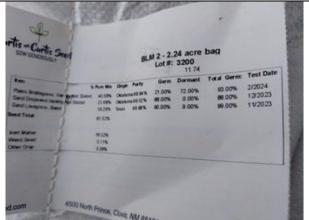


Photo 4: Overview of BLM seed mix.

Photo 5: Overview of final backfill and sign installation.

Page No.	Client:	Site Name:	
1 of 2	Chevron MCBU	Javelina Unit 610	TET

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: SND Pad 610
Project Number: 21240
Location:

Lab Order Number: 4J09006

Current Certification

Report Date: 10/10/24

13000 West County Road 100 Odessa TX, 79765 Project SND Pad 610
Project Number: 21240
Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Paint Filter Test	4J09006-01	Soil	10/02/24 12:00	10-08-2024 16:05

13000 West County Road 100

Project: SND Pad 610
Project Number: 21240
Project Manager: Blake Estep

Odessa TX, 79765

Paint Filter Test 4J09006-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Physical Parameters by APHA/ASTM/EPA Methods

Free Liquid PASS N/A 1 P4J0919 10/09/24 01:07 10/09/24 13:24 EPA 9095

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765

Project Number: 21240

Project Manager: Blake Estep

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: SND Pad 610

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P4J0919 - *** DEFAULT PREP ***

Duplicate (P4J0919-DUP1)	Source: 4J0	9006-01	Prepared & Analyzed: 10/09/24	
Free Liquid	PASS	N/A	PASS	200

13000 West County Road 100

Odessa TX, 79765

Project: SND Pad 610

Project Number: 21240 Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

Duplicate

MS Matrix Spike

Dup

	Drew	Davier C		
Report Approved By:			Date:	10/10/2024

PAR

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Environmental & Safety Solutions, Inc.

City/State/Zip:

Midland, Texas 79711

Company Address: P.O. Box 62228

Company Name: Project Manager:

Brandon Wilson

Ester

Area:

DBill Etech

Project Name: SND

Project #: 2/2 40

Project Loc: PO#: スルヤ

Etech Environmental & Safety Solutions, Inc. Blake

Relinquished by:	Relinquished by:	Relinquished by	Special Instructions:										_	LAB # (lab use only)			(lab use only)	odilibiei olgilature.
	<	WHO	tions:										Kind Filt T	FIELD CODE		4109006		nure.
Date Time		7 h 25											est)DE				ellidii.
R	Re												1	Start Depth				
Service of the servic	Received by:	Received by:											Ľ	End Depth	Pre		500	- 4
REPENSIVE BUCKS	d by:	id by:							,				カフンソ	Date Sampled	Preservation & # of Containers		DICKE	Trandon@etechenv.com
exp													200	Time Sampled	Containers			env.com
													1	No. of Containers				
													×	Ice HNO ₃				
														HCI				
														H ₂ SO ₄				
														NaOH				
1														Na ₂ S ₂ O ₃				
0/														None				
ate	Date	Date		Ш	Ш	Ш	Ш	Ш						Other (Specify)				0,
116	=	=1											V	THE HOLD POLICE OF THE PARTY OF	Matrix			
6:05	Time	Time												TPH: 418.1 8015M 1005 100	06			
1	Sa	S D D	Sa											Cations (Ca, Mg, Na, K)				
mper	r by r by	stod stod	mple											Anions (Cl, SO4, CO3, HCO3)		TOTAL	5	Ì
atur	Sam	y se y se Har	Cor Free											SAR / ESP / CEC		A .	TCI P.	١.
е Цр	pler/ ier?	als cals of	y Containe											Metals: As Ag Ba Cd Cr Pb Hg S	е			
Temperature Upon Receipt:	Sar by Sampler/Client Rep. ? Sar by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?											Volatiles			Þ	İ
ecei	LPS UPS	ntair oler(nent											Semi volatiles			Analyze For:	1
ot:	E . 5	ner(s	8. S. S.											BTEX 8021B/5030 or BTEX 8260	0		⊒F.	141
4	Ĭ													RCI	+		⊣ ă	מו סרט. ב
e	7													N.O.R.M. Chlorides	+		-	
	X D X	~ ~ ~	~ ~										1X	Paint Fifter Test			+	
-	٥.													THILL FILL TO			1	
1.6	N N	zzz	zz											RUSH TAT(Pre-Schedule) 24, 48	, 72	hrs		
OC	S																	

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 1 H

Page 6 of 6

610

Attachment D

Updated C-144 Form

Form C-144 Revised October 11, 2022

State of New Mexico
Energy Minerals and Natural Resources
Department
Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

Pit, Below-Grade Tank, or Proposed Alternative Method Permit or Closure Plan Application Below grade tank registration Type of action: Permit of a pit or proposed alternative method Temp Pit #1 Closure of a pit, below-grade tank, or proposed alternative method ☐ Modification to an existing permit/or registration Closure plan only submitted for an existing permitted or non-permitted pit, below-grade tank, or proposed alternative method Instructions: Please submit one application (Form C-144) per individual pit, below-grade tank or alternative request Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances. Operator: Chevron USA, Inc. _____ _{OGRID #:} 4323 Address: 6301 Deauville Blvd., Midland, TX 79706 Facility or well name: Javelina Unit 610 (610H, 611H, 612H, 507H, 508H) OCD Permit Number: Facility ID: [fJMB2221536628] API Number: 30-015-53375, 53376, 53377, 53379, 53380 U/L or Otr/Otr D Section 10 Township 24S Range 31E County: Eddy Center of Proposed Design: Latitude 32.23637 Longitude -103.76418 Surface Owner: ✓ Federal ✓ State ✓ Private ✓ Tribal Trust or Indian Allotment **Pit:** Subsection F, G or J of 19.15.17.11 NMAC Temporary: ☑ Drilling ☐ Workover ☐ Permanent ☐ Emergency ☐ Cavitation ☐ P&A ☐ Multi-Well Fluid Management Low Chloride Drilling Fluid yes no ✓ Lined ☐ Unlined Liner type: Thickness 40 mil ☐ LLDPE ✓ HDPE ☐ PVC ☐ Other _ ☐ String-Reinforced ______ Volume: 1x17,900, 1x10,800bbl Dimensions: L 291' x W 196' x D 8' Liner Seams: ✓ Welded ☐ Factory ☐ Other ____ Below-grade tank: Subsection I of 19.15.17.11 NMAC _____bbl Type of fluid: _____ Tank Construction material: ___ Secondary containment with leak detection Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off ☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other _ Liner type: Thickness _ **Alternative Method:** Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks) Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church) ☑ Four foot height, four strands of barbed wire evenly spaced between one and four feet

☐ Alternate. Please specify_

6. Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen □ Netting □ Other □ Monthly inspections (If netting or screening is not physically feasible)	
Trouting inspections (it netting of selecting is not physically reasitie)	
7. Signs: Subsection C of 19.15.17.11 NMAC ☐ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers ☑ Signed in compliance with 19.15.16.8 NMAC	
8. <u>Variances and Exceptions:</u> Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance. Please check a box if one or more of the following is requested, if not leave blank: ☐ Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. ☐ Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.	
9. Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptate are provided below. Siting criteria does not apply to drying pads or above-grade tanks.	ptable source
General siting	
Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No ☑ NA
Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☑ No ☐ NA
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks) - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☑ No
Within the area overlying a subsurface mine. (Does not apply to below grade tanks) - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☑ No
Within an unstable area. (Does not apply to below grade tanks) - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map	☐ Yes ☑ No
Within a 100-year floodplain. (Does not apply to below grade tanks) - FEMA map	☐ Yes ☑ No
Below Grade Tanks	
Within 100 feet of a continuously flowing watercourse, significant watercourse, lake bed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter)	
Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.) - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application.	☐ Yes ☐ No
- Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	
Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No

Within 100 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit Non-low chloride drilling fluid	
Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☑ No
Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application; - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 300 feet of a wetland US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Permanent Pit or Multi-Well Fluid Management Pit	
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).	
- Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application.	
- NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	Yes No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	Yes No
10. Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 N	IMAC
Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the doc	
attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC) NMAC
Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19. and 19.15.17.13 NMAC	15.17.9 NMAC
Previously Approved Design (attach copy of design) API Number: or Permit Number:	
11.	
Multi-Well Fluid Management Pit Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the doc attached.	cuments are
 □ Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC □ Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC □ A List of wells with approved application for permit to drill associated with the pit. □ Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 	.15.17.9 NMAC
and 19.15.17.13 NMAC Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC	
Previously Approved Design (attach copy of design) API Number: or Permit Number:	

Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC	
Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the attached.	documents are
Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC	
☐ Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC ☐ Climatological Factors Assessment	
Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC	
Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC	
☐ Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC ☐ Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC	
Quality Control/Quality Assurance Construction and Installation Plan	
☐ Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC ☐ Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC	
Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan	
☐ Emergency Response Plan☐ Oil Field Waste Stream Characterization	
Monitoring and Inspection Plan	
☐ Erosion Control Plan	
Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC	
13. Proposed Closure: 19.15.17.13 NMAC	
Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.	
Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well Fl	uid Management Pit
Proposed Closure Method: Waste Excavation and Removal	
☐ Waste Removal (Closed-loop systems only)☑ On-site Closure Method (Only for temporary pits and closed-loop systems)	
✓ In-place Burial ☐ On-site Trench Burial	
Alternative Closure Method	
Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be a closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC	attached to the
☐ Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC ☐ Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings)	
Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	
 □ Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC □ Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC 	
—	
15. Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC	
Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable sour	
provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. P. 19.15.17.10 NMAC for guidance.	lease refer to
Ground water is less than 25 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☑ No ☐ NA
Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☑ No ☐ NA
Ground water is more than 100 feet below the bottom of the buried waste.	Yes No
- NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	□ NA
Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☑ No
Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence	☐ Yes ☑ No
at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site	
Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☑ No
Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☑ No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance	☐ 162 M 140

adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☑ No								
Within the area overlying a subsurface mine Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☑ No								
Within an unstable area. - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological									
Society; Topographic map Within a 100-year floodplain.	☐ Yes ☑ No								
- FEMA map	☐ Yes ☑ No								
On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection E of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19.15.17.11 NMAC Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.15.17.13 NMAC Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC									
17. Operator Application Certification:									
I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge and beli	ef.								
Name (Print): Kim Beebe Title: Waste Advisor									
Signature: Kim Beebe Date: 4/9/2025									
e-mail address:kdfk@chevron.com310-606-9561	<u>-</u>								
18. OCD Approval: Permit Application (including closure plan) Closure Plan (only) OCD Conditions (see attachment)									
OCD Representative Signature: Joel Stone Approval Date: 04/17	7/2025								
Title: Environmental Scientist & Specialist-A OCD Permit Number: Temp Pit #1									
Closure Report (required within 60 days of closure completion): 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not section of the form until an approved closure plan has been obtained and the closure activities have been completed. Closure Completion Date: November 1	complete this								
20. Closure Method: Waste Excavation and Removal ✓ On-Site Closure Method ☐ Alternative Closure Method ☐ Waste Removal (Closed-lo	on systems only)								
If different from approved plan, please explain.	op systems omy)								
21.									

22.	
Operator Closure Certification:	
I hereby certify that the information and attachments submitted with this closure rep	
belief. I also certify that the closure complies with all applicable closure requireme	nts and conditions specified in the approved closure plan.
Name (Print): Kim Beebe	Title: Waste Advisor
Signature: Kim Beebe	Date: 4/7/2025
e-mail address: kimbeebe@chevron.com	Telephone: 310-696-9561

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 451796

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	451796
	Action Type:
	[C-144] Temporary Pit Plan (C-144T)

CONDITIONS

Created By	Condition	Condition Date	ĺ
joel.stone	The operator shall notify the division when reclamation and re-vegetation are complete.	4/17/2025	