SITE INFORMATION

	Кер	ort Type: W	ork Plan r	NAD 192	4044200)	
General Site Ir	formation:						
Site:		James A #011	Stuffing Box Re	lease			
Company:		ConocoPhillips					
Section, Town	ship and Range	Unit Letter L2	Sec. 2	T 22 S	R 30 E		
Lease Number	r:		<mark>'l No. 30-015-26</mark> 5	10			
County:		Eddy					
GPS:			32.426625°			-103.84	9328°
Surface Owne		State					
Mineral Owner	?	N/A					Potash Mines Rd. for
Directions:		3.79 miles. Turn left north for 0.79 miles.	ht onto Jal Hwy. Hea t onto Louis Whitlock . Turn left onto lease . Turn right. Head eas	Rd. Head noi road. Head w	rth for 2.53 mile /est for 3.5 mile	s. Turn left or s. Turn right o	nto lease road. Head onto lease road. Head
Date Released	:	8/13/2019 Produced Wate	r/Oil				
Date Released. Type Release:							
Date Released Type Release: Source of Cont Fluid Released	amination: :	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1	ak bbl oil				
Release Data: Date Released Type Release: Source of Cont Fluid Released Fluids Recover	amination: :	Produced Wate Stuffing Box Lea	ak bbl oil				
Date Released Type Release: Source of Cont Fluid Released	amination: : ed:	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1	ak bbl oil				
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm	amination: : ed:	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1	ak bbl oil		Christian M.	. Llull	
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm Name:	amination: : ed: unication:	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Christian M. Tetra Tech	. Llull	
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover	amination: : ed: unication: Marvin Soriwei	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Tetra Tech		exas Highway
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm Name: Company:	amination: : ed: unication: Marvin Soriwei Conoco Phillips -	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Tetra Tech	Capital of T	exas Highway
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm Name: Company: Address:	amination: : ed: unication: Marvin Soriwei Conoco Phillips -	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Tetra Tech 8911 North	Capital of T Suite 2310	exas Highway
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm Name: Company: Address: City:	amination: ed: unication: Marvin Soriwei Conoco Phillips - 935 N. Eldridge P Houston, Texas 7	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Tetra Tech 8911 North Building 2, S Austin, Texa	Capital of T Suite 2310 as	exas Highway
Date Released. Type Release: Source of Cont Fluid Released Fluids Recover Official Comm Name: Company: Address:	amination: ed: unication: Marvin Soriwei Conoco Phillips - 935 N. Eldridge P Houston, Texas 7	Produced Wate Stuffing Box Lea 26.5 bbls pw, 1 26.5 bbls pw, 0	ak bbl oil		Tetra Tech 8911 North Building 2, S	Capital of T Suite 2310 as	exas Highway

262' below surface
No
Yes
No
High
No
No

Recommended F	Remedial Action Le	evels (RRALs)		
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides
10 mg/kg	50 mg/kg	N/A	100 mg/kg	600 mg/kg
	55		55	5 5

March 5, 2021

District Supervisor Oil Conservation Division, District 2 811 South First Street Artesia, New Mexico 88210

Re: Release Characterization and Remediation Work Plan ConocoPhillips James A #011 Stuffing Box Release Unit Letter L2, Section 2, Township 22 South, Range 30 East Eddy County, New Mexico Incident ID NAB1924044206 2RP-5605

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the stuffing box of the James A #011 well (API No. 30-015-26510). The release footprint is located in Public Land Survey System (PLSS) Unit Letter L2, Section 2, Township 22 South, Range 30 East, in Eddy County, New Mexico (Site). The approximate release point occurred at coordinates 32.426625°, - 103.849328°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on August 13, 2019. The release occurred as the result of a stuffing box leak and consisted of approximately 26.5 barrels (bbls) of produced water and 1 bbl of oil, which affected an area of approximately 4,400 square feet. During initial response activities, a vacuum truck recovered approximately 26.5 bbls of produced water. The initial C-141 was dated August 19, 2019 and submitted to The New Mexico Oil Conservation District (NMOCD), who subsequently assigned the Incident ID NAB1924044206, and the Remediation Permit (RP) number 2RP-5605.

SITE CHARACTERIZATION

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of high karst potential. An OSE stream body is located within 33 feet of the site.

The Site is within a New Mexico oil and gas production area. According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no wells within a ½ mile (800 m) of the Site. There are twenty-seven (27) water wells within 4 miles (6,400 meters) of the Site. Only one of these wells has a depth to water which is documented at 262 feet below ground surface (bgs). The site characterization data is included in Appendix B.

ConocoPhillips

Release Characterization and Remediation Work Plan March 5, 2021

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, proximity to OSE stream body and the high karst potential, the RRALs for the Site are as follows:

g/kg
g/kg
/kg
/kg
/k

INITIAL ASSESSMENT ACTIVITIES AND RESULTS

As a portion of the initial response and assessment, COP collected soil samples from twenty-seven (27) locations (SP-1 through SP-27) on October 19, 2019 to define the extent of impact. For all sample locations, samples were collected at the surface, at the 2-foot depth and at the 4-foot depth intervals. Twenty-two (22) locations were sampled within the release extent (SP-1 through SP-22). Samples from the remaining five sample locations (SP-23 through SP-27) were collected along the perimeter of the release to achieve horizontal delineation. The soil samples collected were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000CI-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Sample locations are shown in Figure 3.

Results from the October 2019 soil sampling event are summarized in Table 1. Analytical results from the release interior exceeded the Site RRAL for chloride (600 mg/kg) from the surface down to the 2-foot interval at all locations except SP-8. Analytical results exceeded the chloride RRAL down to the 4-foot interval at locations SP-1 through SP-4, SP-9 through SP-16, SP-19 through SP-23, and SP-25. Additionally, analytical results from boring locations SP-3 through SP-9, SP-12, SP-13, and SP-15 through SP-21 exceeded the Site RRAL for TPH (100 mg/kg) at the surface. Analytical results from perimeter locations SP-23, SP-25, and SP-27 exceeded the chloride RRAL at the surface. There were no detections of BTEX above the Site RRAL of 50 mg/kg in any of the analyzed samples. A copy of the analytical laboratory report and chain-of-custody documentation are included in Appendix C. Based on the analytical data, neither horizontal nor vertical delineation of the release was achieved during this assessment.

CORRECTIVE ACTION PLAN

A Corrective Action Plan (CAP) was submitted to the NMOCD by COP Environmental Coordinator, Gustavo Fejervary, on November 7, 2019. The CAP (submitted under PO 9KRVD-191110-C-1410) was denied by the NMOCD on December 30, 2019, via email. The email response indicated that additional documentation was required for submittal as follows:

- 1. Scaled site map diagram with sample points clearly marked
- 2. Site Photos
- 3. Site Assessment/Delineation summary (horizontal and vertical)
- 4. Delineation sample analytical results (lab tested)
- 5. Table containing analytical data
- 6. Description of proposed excavation depths corresponding to analytical table
- 7. Depth to groundwater evaluation, including fluid level data from New Mexico Office of the State Engineer or other documented evidence
- 8. Karst evaluation
- 9. FEMA National Flood map review.

ConocoPhillips

Release Characterization and Remediation Work Plan March 5, 2021

10. Signed and dated C-141 (Pages 3-5)

The denial also added the following comment:

If a release occurs within an unstable area (high karst): the responsible party must treat the release as if it occurred less than 50 feet to ground water in Table I of 19.15.29.12 NMAC. Please, remediate/excavate until the samples are under 600 mg/kg for chlorides and 100 mg/kg for TPH.

It appears that the information requested was sent via email to the NMOCD by COP Environmental Coordinator, Gustavo Fejervary, on January 24, 2020. However, the information was not submitted to the portal as instructed on the email mentioned above. After this series of correspondence, COP requested that Tetra Tech assist in the release characterization and remediation work plan for the Site.

ADDITIONAL SITE ASSESSMENT

Tetra Tech personnel visited the Site on August 26, 2020 to conduct soil sampling to achieve horizontal and vertical delineation of the release extent. A total of ten (10) borings (BH-1 through BH-9 and BG-1) were installed using an air rotary drilling rig. Two (2) borings (BH-1 and BH-2) were installed within the release extent to depths of 20 and 25 feet bgs, respectively to achieve vertical delineation. Seven borings (BH-3 through BH-9) were installed along the perimeter of the release to a depth of 10 feet bgs to achieve horizontal delineation. One (1) boring (BG-1) was installed approximately 170 feet southwest of the release extent to a depth of 10 feet bgs in an attempt to serve as a background sample point. Boring logs, included as Appendix D, present soil descriptions, sample depths, and field screening data from the August 2020 assessment activities.

A total of forty-four (44) samples were collected from the ten borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee (Pace) to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Sample locations are shown in Figure 4.

To complete horizontal delineation, Tetra Tech personnel returned to the Site on two separate occasions (September 4 and December 9, 2020) to install two (2) additional hand auger borings (BH-10 and BH-11) to a depth of 4 ft bgs and one (1) hand auger boring (BH-12) to a depth of 1 ft bgs. A total of five (5) samples were collected and submitted to Pace to analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. All samples were below Site RRALs for chloride, TPH and BTEX. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Sample locations are shown in Figure 4. Photographic documentation is included in Appendix E.

SUMMARY OF SAMPLING RESULTS

Analytical results from the August 2020 soil sampling event are summarized in Table 2. Analytical results associated with BH-1 and BH-2 exceeded RRAL for chloride (600 mg/kg) down to 5 ft bgs. Analytical results for BH-4 and BH-8 exceeded the RRAL for chloride down to 1 ft bgs. Additionally, analytical results for BH-6 exceeded the Site RRAL for TPH (100 mg/kg) down to 1 ft bgs. All other analytical results were below Site RRALs, and there were no exceedances of the RRAL for BTEX (50 mg/kg).

All results from the September and December 2020 sampling events were below Site RRALs. The results are summarized in Table 2 along with the August 2020 analytical results. After the additional hand auger sampling activities in September and December 2020, the release is considered fully delineated.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the impacted material as shown in Figure 5. Impacted soils around BH-1 and BH-2 will be excavated using heavy equipment (backhoes, hoe

rams, and track hoes) to a maximum depth of 5 ft bgs. The impacted soil in the vicinity of boring locations BH-4, BH-6 and BH-8 will be excavated to a depth of 1 ft bgs. Excavation will continue until a representative sample from the walls and bottom of the excavation is below the RRALs. Impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safety concerns for onsite personnel. As such, COP will excavate the impacted soils to the maximum extent possible.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 1,350 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 6. Seventeen (17) confirmation floor samples and Twenty-one (21) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 8,400 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (USEPA Method 300.0). Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

Excavated soils will be transported offsite and disposed of an NMOCD approved and permitted facility and the excavation will be backfilled with clean material to surface grade. The majority of the proposed remediation area is on the lease pad; however, a small portion of the proposed remediation is within a lease pad/pastureland transitional area. If any backfilled area is deemed to be primarily pastureland, it will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

If seeding is deemed necessary, site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 90 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD.

Release Characterization and Remediation Work Plan March 5, 2021

ConocoPhillips

If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, **Tetra Tech, Inc.**

Christian M. Llull, P.G. Project Manager

Fe

Greg W. Pope, P.G. Program Manager

CC:

- Mr. Marvin Soriwei, RMR ConocoPhillips
- Mr. Charles Beauvais, GPBU ConocoPhillips

.

Release Characterization and Remediation Work Plan March 5, 2021

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

- Figure 1 Overview Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Approximate Release Extent and Initial Assessment Map
- Figure 4 Additional Assessment Map
- Figure 5 Proposed Remediation Extent
- Figure 6 Alternative Confirmation Sampling Plan

Tables:

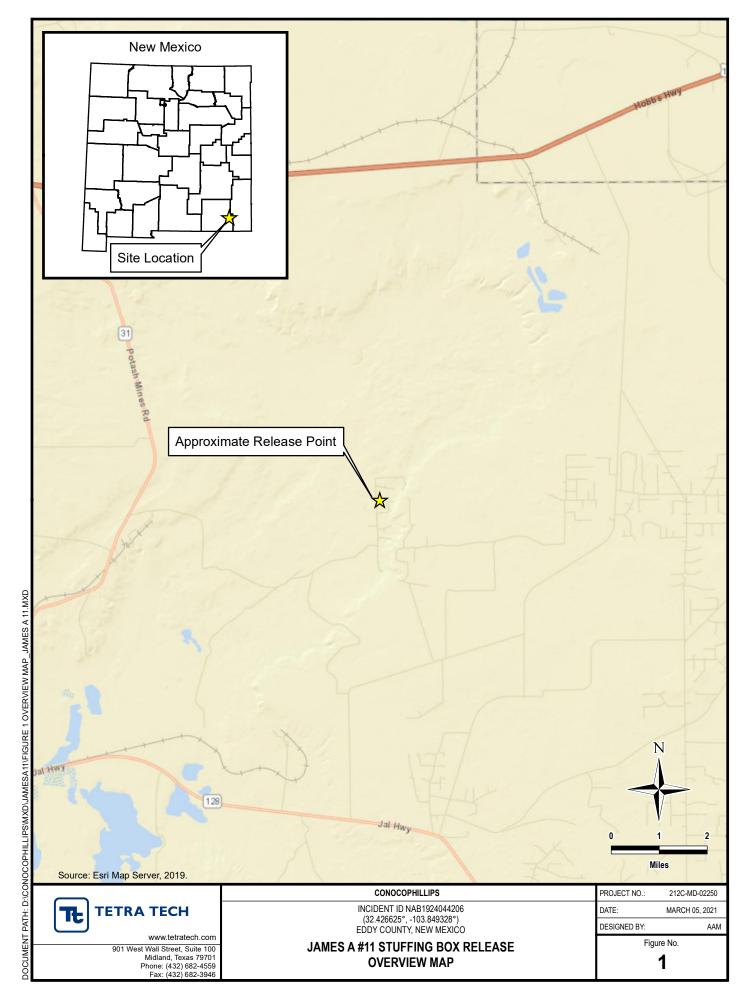
Table 1 – Summary of Analytical Results – Initial Soil Assessment

Table 2 – Summary of Analytical Results – Additional Soil Assessment

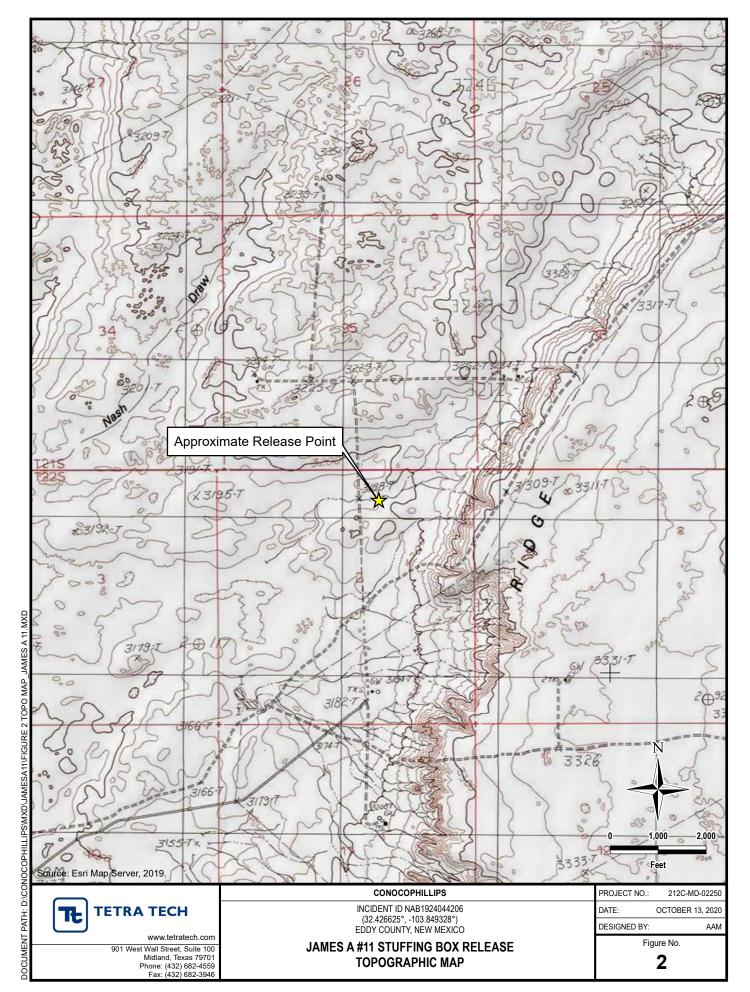
Appendices:

Appendix A – C-141 Forms

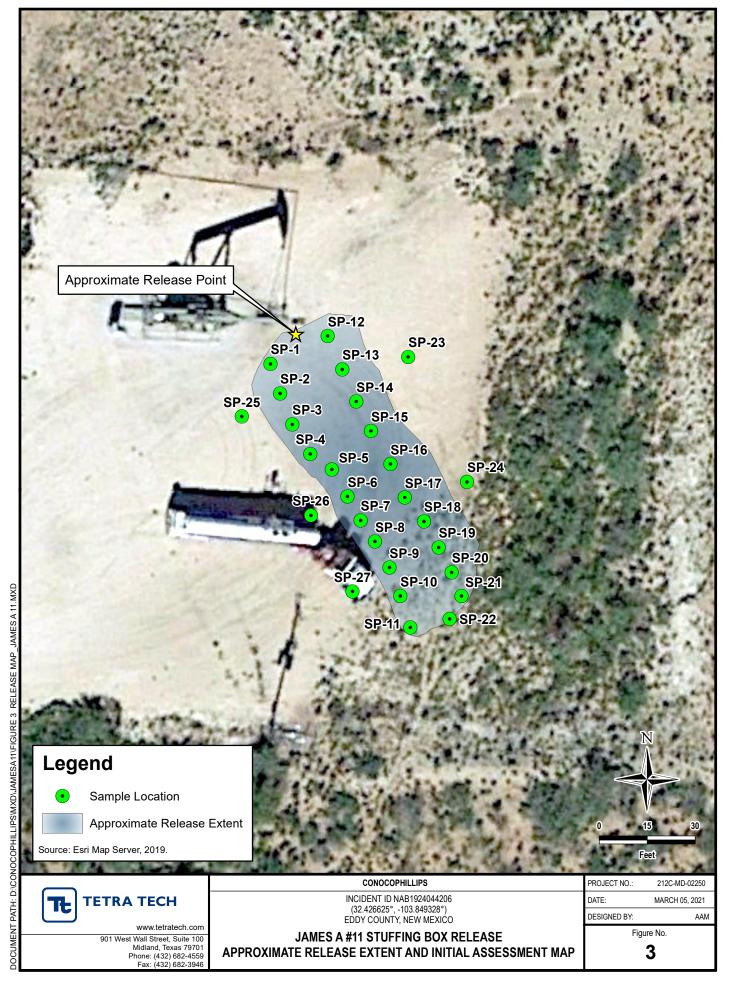
Appendix B – Site Characterization Data

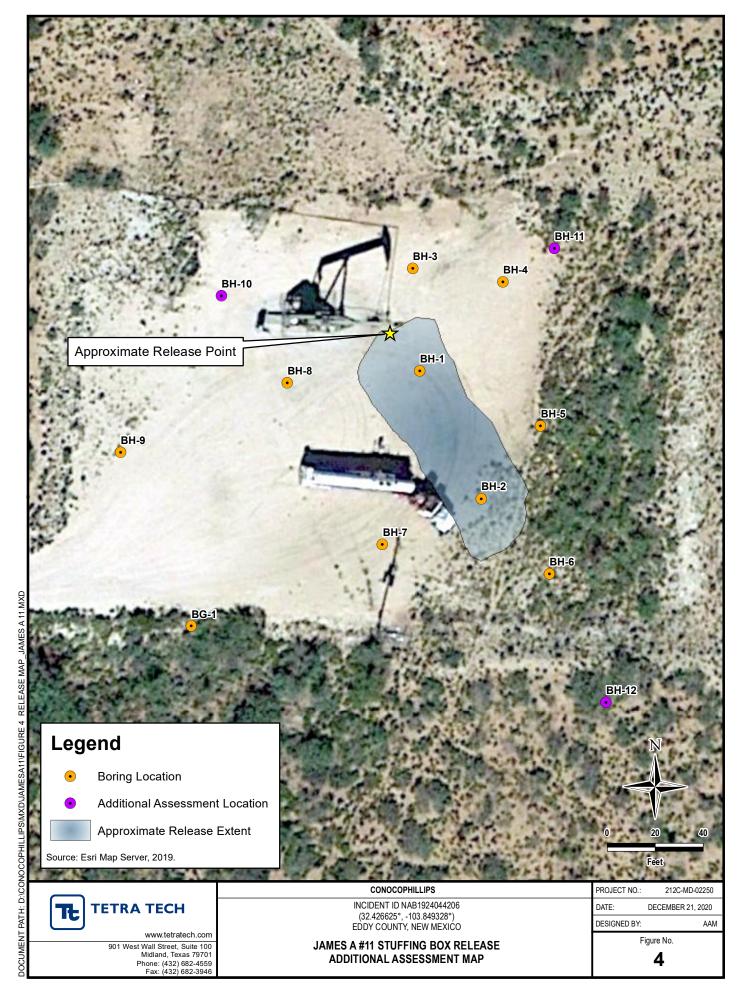

Appendix C – Laboratory Analytical Data

Appendix D – Soil Boring Logs

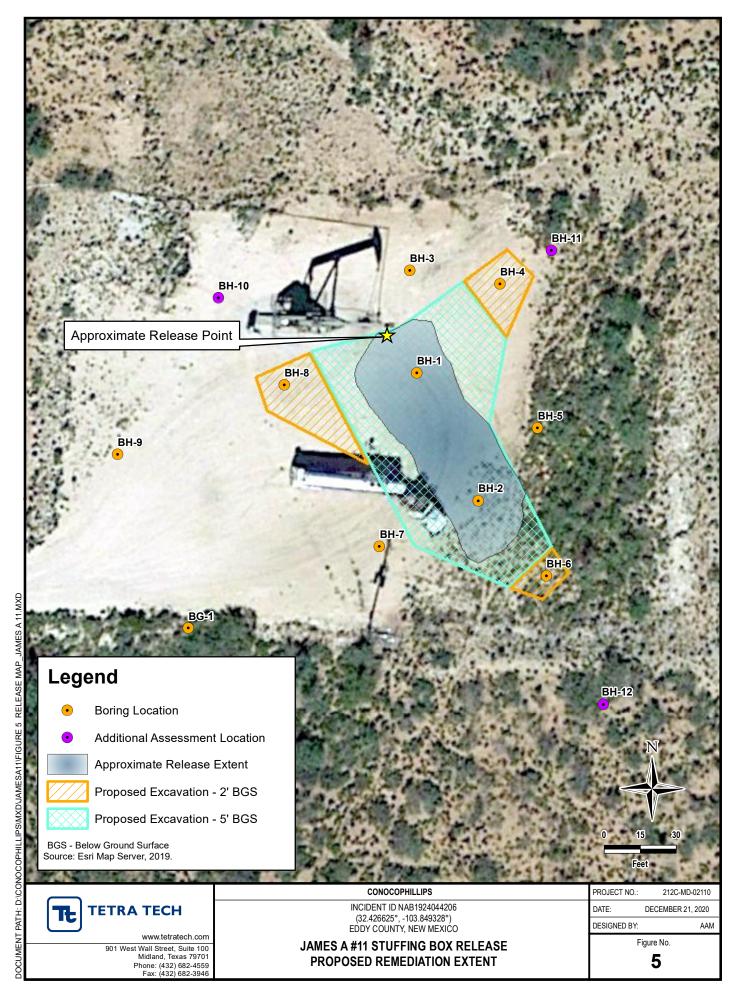

Appendix E – Photographic Documentation

Appendix F – NMSLO Seed Mixture Details

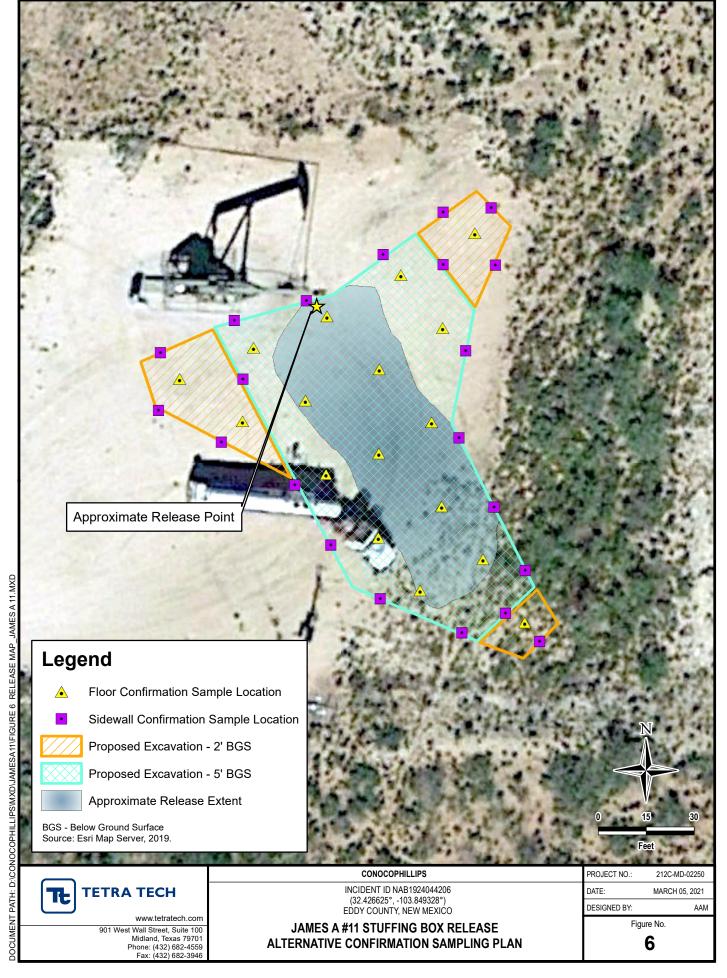

FIGURES



Released to Imaging: 4/8/2021 11:24:56 AM



Released to Imaging: 4/8/2021 11:24:56 AM



Released to Imaging: 4/8/2021 11:24:56 AM

Received by OCD: 3/5/2021 3:12:10 PM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - NAB1924044206 CONOCOPHILLIPS JAMES A #11 STUFFING BOX RELEASE EDDY COUNTY, NM

Released to Imaging: 4/8/2021 11:24:56 AM

									BTEX	2								т	PH ³		
Sample ID	Sample Date	Sample Depth	Chlorid	le ¹	Benze	no	Toluer	10	Ethylben	7000	Total Xyl	onos	Total B	FX	GRO		DRC)	EXT D	RO	Total TPH
Sample ib	Sample Date				Delize		Tolder		Luiyiben	zene	Total Ay	enes	Total D		C ₆ - C ₁	C ₆ - C ₁₀ >C ₁₀ - C ₂₈ mg/kg Q mg/kg Q		>C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO)	
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		SURFACE	22800		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 1	10/9/2019	2	4000		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	1540		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	23200	QM-07	< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 2	10/9/2019	2	1710		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	1860		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	20000		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		2690	QR-03, QM-07	1140		3830
SP 3	10/9/2019	2	1550		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	720		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	11200		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		3450		1790		5240
SP 4	10/9/2019	2	1520		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	1150		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	42000		< 0.050		< 0.050		< 0.050		< 0.150	1	< 0.300		< 10.0		2620		959		3579
SP 5	10/9/2019	2	2030		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	512		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	11100		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		1810		833		2643
SP 6	10/9/2019	2	672		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	224		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	26600		< 0.050	1	< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		5890		2330		8220
SP 7	10/9/2019	2	720		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	128		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	32400		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		12500	1	3870		16370
SP 8	10/9/2019	2	496		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	64.0		NA		NA		NA		NA		NA		NA		NA		NA		-
	-	SURFACE	13200		< 0.050	Ì	< 0.050		< 0.050		0.461	-	0.461		< 50.0		3410		891	1	4301
SP 9	10/9/2019	2	6800		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	720		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	160		< 0.000		< 0.500		< 0.050		0.171		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 10	10/9/2019	2	20800		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	832		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	1260		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0	1	< 10.0		-
SP 11	10/9/2019	2	7600		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	784		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	7920		< 0.050		< 0.050		< 0.050		< 0.150	1	< 0.300		< 10.0		1580	1	905	1	2485
SP 12	10/9/2019	2	5200		NA		NA		NA		× 0.150	<u> </u>	NA		NA NA		NA		NA		-
		4	3840	1	NA		NA		NA		NA		NA		NA		NA	1	NA	1	_

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - NAB1924044206 CONOCOPHILLIPS JAMES A #11 STUFFING BOX RELEASE EDDY COUNTY, NM

									BTEX	2								т	PH ³		
Consulta ID	Consulta Data	Sample Depth	Chloric	de1	D		Talua		Tabudh an		Tetel Vol		Tatal D		GRO		DRO		EXT DI	RO	Total TPH
Sample ID	Sample Date				Benzei	ne	Toluer	ne	Ethylben	zene	Total Xyl	enes	Total B	IEX	C ₆ - C ₁	C ₆ -C ₁₀ >C ₁₀ -C ₂₈ mg/kg Q mg/kg Q		>C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO)	
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		SURFACE	25400		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		150		72.1		222
SP 13	10/9/2019	2	3560		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	3200		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	23000		< 0.050		< 0.050		< 0.050		< 0.150	1	< 0.300		< 10.0		1570	1	909		-
SP 14	10/9/2019	2	640		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	1250		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	27400		< 0.050		< 0.050		< 0.050		< 0.150	1	< 0.300		< 50.0		7840	1	3790		11630
SP 15	10/9/2019	2	2500		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	768		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	34000	1	< 0.050	1	< 0.050		< 0.050		< 0.150	1	< 0.300		< 50.0		9050	1	3190	1	12240
SP 16	10/9/2019	2	1660		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	608		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	22600		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		12000		4820	1	16820
SP 17	10/10/2019	2	3920		NA		NA		NA		NA		NA		NA		NA		NA		-
	., .,	4	320		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	20000	1	< 0.050	1	< 0.050	1	< 0.050		< 0.150	1	< 0.300		< 50.0		7260	1	3280	1	10540
SP 18	10/10/2019	2	6480		< 0.050 NA		< 0.030 NA		< 0.050 NA		< 0.150 NA		< 0.300 NA		< 50.0 NA		7200 NA		3280 NA		-
5. 10	10/10/2013	4	448		NA		NA		NA		NA		NA		NA		NA		NA		-
	1	SURFACE	5840	1	< 0.050		< 0.050		< 0.050		< 0.150	1	< 0.300		< 10.0		423	1	242	1	665
SP 19	10/10/2019	2	14400		< 0.030 NA		< 0.030 NA		< 0.050 NA		< 0.150 NA		< 0.300 NA		< 10.0 NA		425 NA		242 NA		-
51 15	10/10/2015	4	1300		NA		NA		NA		NA		NA		NA		NA		NA		
	Ĩ		1	1		1		1				1		1			1	1		1	
SP 20	10/10/2019	SURFACE 2	34400 47200		< 0.050 NA		< 0.050 NA		< 0.050 NA		< 0.150 NA		< 0.300 NA		< 50.0 NA		13200 NA		4740 NA		17940
3P 20	10/10/2019	4	10300		NA		NA		NA		NA		NA		NA		NA		NA		-
	1		1	1		1		1		1		1					1	1		1	
CD 24	10/10/2010	SURFACE	15000		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 50.0		5020		1570		6590
SP 21	10/10/2019	2	29200		NA		NA		NA		NA		NA		NA		NA		NA		-
	1	4	5760	1	NA	I	NA	I	NA		NA	I	NA		NA		NA	I	NA	1	-
		SURFACE	832	QM-07	< 0.050	ļ	< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 22	10/10/2019	2	12800		NA		NA		NA		NA		NA		NA		NA	<u> </u>	NA		-
		4	19600		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	2760		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 23	10/10/2019	2	1020		NA	L	NA		NA		NA	L	NA		NA		NA	L	NA		-
		4	800		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	160		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
SP 24	10/10/2019	2	384		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	560		NA		NA		NA		NA		NA		NA		NA		NA		-

Received by OCD: 3/5/2021 3:12:10 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - NAB1924044206 CONOCOPHILLIPS JAMES A #11 STUFFING BOX RELEASE EDDY COUNTY, NM

									BTEX	2								Т	PH ³		
Sample ID	Sample Date	Sample Depth	Chlorid	le ¹	Benzer	20	Toluer	20	Ethylben	1000	Total Xyl	0005	Total B	rev	GRO		DRO		EXT DI	80	Total TPH
Sample ID	Sample Date				Delizer	ie	Tolder		Luiyiben	zene	Total Ay	enes	Total B		C ₆ - C ₁	.0	>C ₁₀ - 0	28	>C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO)
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		SURFACE	976		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		11.5		< 10.0		11.5
SP 25	10/10/2019	2	192		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	736		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	352	1	< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	1	< 10.0		< 10.0		< 10.0		-
SP 26	10/10/2019	2	704		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	208		NA		NA		NA		NA		NA		NA		NA		NA		-
		SURFACE	848		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0	[
SP 27	10/10/2019	2	144		NA		NA		NA		NA		NA		NA		NA		NA		-
		4	96.0		NA		NA		NA		NA		NA		NA		NA		NA		-

NOTES: ft. Feet

Released to Imaging: 4/8/2021 11:24:56 AM

Bold and italicized values indicate exceedance of proposed RRALs

Below ground surface bgs mg/kg Milligrams per kilogram

NA Sample not analyzed for constituent

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

Diesel range organics DRO

1 Method SM4500Cl-B

Method 8021B 2

3 Method 8015M

QUALIFIERS: QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference.

QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD.

The batch was accepted based on acceptable LCS recovery

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - NAB1924044206 CONOCOPHILLIPS JAMES A #11 STUFFING BOX RELEASE EDDY COUNTY, NM

Released to Imaging: 4/8/2021 11:24:56 AM

											BTEX ²								TPH	13		
		Sample Depth Interval	Field Screen	ning Results	Chloride1		-									GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene		Ethylbenzen	e	Total Xylene	es	Total BTEX	C3 - C10		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	95.0	0.0	27.8		< 0.00107		< 0.00536		< 0.00268		0.00106	J	0.00106	0.0230	1	5.13		23.0		28.2
		2-3	68.1	0.0	NS		NS		NS		NS		NS		-	NS		NS		NS		-
BG-1	8/26/2020	4-5	62.5	0.0	10.6	J	< 0.00107		< 0.00537		< 0.00268		0.00150	J	0.00150	< 0.104		1.99	J	10.6	В	12.6
		6-7	120	0.0	< 20.6		< 0.00106		< 0.00530		< 0.00265		0.00105	J	0.00105	< 0.103		< 4.12		3.34	ΒJ	3.34
		9-10	88.6	0.0	< 20.5		< 0.00105		< 0.00527		< 0.00264		0.00216	J	0.00216	< 0.103		< 4.11		3.19	ΒJ	3.19
		0-1	-	0.0	16500	1	< 0.00120		< 0.00600		< 0.00300	1	< 0.00780	1	-	< 0.110		6.80		13.0		19.8
		2-3	1760	0.0	13700		< 0.00127		< 0.00634		< 0.00317		< 0.00824		-	< 0.113		2.05	J	3.59	J	5.64
		4-5	-	0.0	1080		< 0.00118		< 0.00588		< 0.00294		< 0.00764		-	< 0.109		< 4.35		< 4.35		-
BH-1	8/26/2020	6-7	-	0.0	385		< 0.00122		< 0.00609		< 0.00305		< 0.00792		-	< 0.111		< 4.44		< 4.44		-
		9-10	305	0.0	263		< 0.00114		< 0.00570		< 0.00285		< 0.00741		-	< 0.108		< 4.28		< 4.28		-
		14-15	342	0.0	339		< 0.00129		< 0.00645		< 0.00323		< 0.00839		-	< 0.115		< 4.58		< 4.58		-
		19-20	-	0.0	405		< 0.00132		< 0.00659		< 0.00329		< 0.00857		-	< 0.116		< 4.64		< 4.64		-
		0-1	> 4000	0.0	11200		0.000547	J	< 0.00575		< 0.00288		< 0.00748		0.000547	< 0.108		8.84		14.2		23.0
		2-3	> 4000	0.0	18000		< 0.00127		< 0.00637		< 0.00318		< 0.00828		-	< 0.114		< 4.55		1.94	J	1.94
		4-5	900	0.0	995		< 0.00119		< 0.00597		< 0.00299		< 0.00776		-	< 0.110		< 4.39		< 4.39		-
BH-2	8/26/2020	6-7	140	0.0	88.9		< 0.00161		< 0.00806		< 0.00403		< 0.0105		-	< 0.131		< 5.23		< 5.23		-
0112	0/20/2020	9-10	250	0.0	292		< 0.00170		< 0.00850		< 0.00425		< 0.0111		-	< 0.135		< 5.40		< 5.40		-
		14-15	112	0.0	80.1		0.000635	J	< 0.00669		< 0.00334		< 0.00870		0.000635	< 0.117		< 4.68		< 4.68		-
		19-20	100	0.0	88.1		< 0.00138		< 0.00689		< 0.00345		< 0.00896		-	< 0.119		< 4.76		< 4.76		-
		24-25	-	0.0	120		< 0.00125		< 0.00627		< 0.00314		< 0.00815		-	< 0.113		< 4.51		< 4.51		-
		0-1	243	0.0	172		< 0.00105		< 0.00527		< 0.00263		< 0.00685		-	< 0.103		< 4.11		1.39	J	1.39
		2-3	451	0.0	148		< 0.00107		< 0.00535		< 0.00268		< 0.00696		-	< 0.104		< 4.14		3.98	ΒJ	3.98
BH-3	8/26/2020	4-5	1080	0.0	NS		NS		NS		NS		NS		-	NS		NS		NS		-
		6-7	948	0.0	NS		NS		NS		NS		NS		-	NS		NS		NS		-
		9-10	641	0.0	NS		NS		NS		NS		NS		-	NS		NS		NS		-
		0-1	2450	0.0	1200		< 0.00110		< 0.00550		< 0.00275		< 0.00714		-	< 0.105		< 4.20		1.74	ΒJ	1.74
BH-4	8/26/2020	2-3	530	0.0	585		< 0.00114		< 0.00569		< 0.00285		< 0.00740		-	< 0.107		< 4.28		0.916	ΒJ	0.916
		4-5	736	0.0	435		< 0.00114		< 0.00571		< 0.00285		< 0.00742		-	< 0.107		< 4.28		0.334	ΒJ	0.334
		0-1	316	0.0	104		< 0.00104		< 0.00522		< 0.00261		< 0.00679		-	< 0.102		12.9*	Q	26.7*	Q	39.6
		2-3	101	0.0	35.9		< 0.00115		< 0.00576		< 0.00288		< 0.00749		-	< 0.108		< 4.30		3.24	ΒJ	3.24
BH-5	8/26/2020	4-5	126	0.0	86.4		< 0.00108		< 0.00540		< 0.00270		< 0.00702		-	< 0.104		1.75	J	3.43	ΒJ	5.18
		6-7	83	0.0	38.8		< 0.00111		< 0.00555		< 0.00278		< 0.00722		-	< 0.105		< 4.22		1.49	ΒJ	1.49
		9-10	48	0.0	22.3		< 0.00112		< 0.00559		< 0.00280		< 0.00727		-	< 0.106		2.28	J	2.38	ΒJ	4.66
		0-1	170	0.0	90.4		< 0.00122		< 0.00608		< 0.00304		< 0.00790		-	< 0.111		171	J	675		846
		2-3	170	0.0	30.1		< 0.00111		< 0.00556		< 0.00278		< 0.00723		-	< 0.106		3.26*	١Q	10.0*	Q	13.3
BH-6	8/26/2020	4-5	123	0.0	12.5	J	< 0.00114		< 0.00568		< 0.00284		0.00113	J	0.00113	< 0.107		2.97*	١Q	8.40*	Q	11.4
		6-7	144	0.0	< 21.1		< 0.00111		< 0.00554		< 0.00277		0.00119	J	0.00119	< 0.105		< 4.22		1.05	ΒJ	1.05
		9-10	145	0.0	< 21.3		< 0.00113		< 0.00565		< 0.00283		< 0.00735		-	< 0.107	1	< 4.26		1.04	ΒJ	1.04
		0-1	150	0.0	432		< 0.00106		< 0.00531		< 0.00265		< 0.00690		-	< 0.103		1.77	J	6.28	В	8.05
		2-3	160	0.0	456		< 0.00108		< 0.00538		< 0.00269		< 0.00700		-	0.0257	J	< 4.15		1.39	ΒJ	1.42
BH-7	8/26/2020	4-5	355	0.0	334		< 0.00106		< 0.00529		0.000785	J	0.00683	J	0.00762	< 0.103		< 4.11		1.76	ΒJ	1.76
		6-7	450	0.0	529		< 0.00118	_	< 0.00589		< 0.00294		0.00309	J	0.00309	< 0.109		< 4.35		1.11	ΒJ	1.11
		9-10	255	0.0	206		< 0.00112		< 0.00561		< 0.00281		0.00239	J	0.00239	< 0.106		< 4.25		1.14	ΒJ	1.14

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - NAB1924044206 CONOCOPHILLIPS JAMES A #11 STUFFING BOX RELEASE EDDY COUNTY, NM

			Field Screer	ing Poculto							BTEX ²								TP	H ³		
Sample ID	Sample Date	Sample Depth Interval	Field Scieel	ing Results	Chloride1		Benzene		Toluene		Ethylbenzen	•	Total Xylen	65	Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Denzene		roluelle		Ethylbenzen	c	Total Aylen	63	Total DTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	4020	0.0	5350		< 0.00108		< 0.00538		< 0.00269		0.00211	J	0.00211	0.0253	J	2.38	J	4.77	В	7.18
BH-8	8/26/2020	2-3	455	0.0	404		< 0.00105		< 0.00526		< 0.00263		0.00162	J	0.00162	< 0.103		< 4.10		4.56	В	4.56
		4-5	238	0.0	375		< 0.00107		< 0.00537		< 0.00268		0.00144	J	0.00144	< 0.104		< 4.15		1.20	ВJ	1.20
		0-1	143	0.0	215		< 0.00103		< 0.00516		< 0.00258		0.00134	J	0.00134	< 0.102		< 4.06		2.78	ΒJ	2.78
BH-9	8/26/2020	2-3	460	0.0	254		< 0.00104		< 0.00521		< 0.00260		0.00122	J	0.00122	0.0242	J	3.45	J	19.9		23.4
		4-5	640	0.0	NS		NS		NS		NS		NS		-	NS		NS		NS		-
BH-10	9/4/2020	0-1	232	-	40.3		0.000609	J	0.00434	J	< 0.00290		0.00229	J	0.00724	0.670	J	7.18		33.2		41.1
BII-10	5/4/2020	3-4	180	-	53.3		0.000690	J	0.00420	J	< 0.00288		0.00146	J	0.00635	0.672	J	5.21		24.5		30.4
BH-11	9/4/2020	0-1	201	-	< 20.2		< 0.00102		0.00340	J	< 0.00256		0.00150	J	0.00490	< 2.56		4.01	J	13.4		17.4
511-11	5/4/2020	3-4	134	-	< 21.6		< 0.00122		0.00265	J	< 0.00305		< 0.00794		0.00265	< 3.05		1.86	J	3.69	J	5.55
BH-12	12/9/2020	0-1	-	-	< 20.1		< 0.00101		< 0.00507		< 0.00254		< 0.00659		-	0.0488	ΒJ	< 4.03		2.15	ΒJ	2.20

<u>NOTES:</u> ft. F

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

NS Interval Not Sampled

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics DRO Diesel range organics

ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

4 EPA Method 8015D/GRO

* Duplicate Analysis performed due to QC failure; duplicate analysis results reported in table.

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

Q Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

Received by OCD: 3/5/2021 3:12:10 PM

APPENDIX A C-141 Forms

Received by OCD- 8/19/2019 12-16:52 PM Received by OCD: 3/5/2021 3:12:10 PM

> District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 22 of 249

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAB1924044206
District RP	2RP-5605
Facility ID	
Application ID	pAB1924043309

Release Notification 3CU

3CUMI-190819-C-1410

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817
Contact Name Gustavo Fejervary	Contact Telephone 432/210-7037
Contact email g.fejervary@cop.com	Incident # (assigned by OCD) NAB1924044206
Contact mailing address 3300 N A ST. Midland Texas 79	0705

Location of Release Source

Latitude 32.426517

Longitude -103.849449

(NAD 83 in decimal degrees to 5 decimal places)

Site Name James A 11	Site Type Oil Well
Date Release Discovered 8/13/19	API# (if applicable) 30-015-26510

Unit Letter	**Section	Township	Range	County		
2	-22	22S	30E	Eddy		
	AB					

Surface Owner: 🛛 State 🗌 Federal 🗌 Tribal 🗌 Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 1	Volume Recovered (bbls) 0				
Produced Water	Volume Released (bbls) 26.5	Volume Recovered (bbls) 26.5				
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No				
Condensate	Volume Released (bbls)	Volume Recovered (bbls)				
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)				
Other (describe) Volume/Weight Released (provide units)		Volume/Weight Recovered (provide units)				
Cause of Release leak	from stuffing box					

Page	2

Oil Conservation Division

Incident ID	NAB1924044206
District RP	2RP-5605
Facility ID	
Application ID	pAB1924043309

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?							
19.15.29.7(A) NMAC?	it was more than 25 bbls.							
Yes 🗌 No	(110'x40'x4"/5.61) x 0.105 (effective porosity for on pad spills) = 27.5 bbls.							
	Based on production rates, only 1 of the 27.5 bbls is Oil, the rest is PW.							
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?							
Yes, email sent to Bradford B	illings, Dylan Roes-Coss, Amalia Bustamante, Victoria Venegas, Robert Hamlet (8/13/2019 e mail) 🖉							

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

 \checkmark The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Gustavo Fejervary	Title: Environmental Coordinator
Signature:	Date: <u>8/19/19</u>
email:	Telephone:432/210-7037
OCD Only	
Received by: Amalia Bustamante	Date: 8/28/2019

Received by OCD: 3/5/2021 3:12:10 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 24 of 249
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/5/20	221 3:12:10 PM State of New Mexico	Page 25 of 249
Form C-141		Incident ID
Page 4	Oil Conservation Division	District RP
		Facility ID
		Application ID
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature:	re required to report and/or file certain release notifi onment. The acceptance of a C-141 report by the OC tigate and remediate contamination that pose a threat e of a C-141 report does not relieve the operator of re	est of my knowledge and understand that pursuant to OCD rules and cations and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have t to groundwater, surface water, human health or the environment. In esponsibility for compliance with any other federal, state, or local laws Title: Date: Telephone:
OCD Only		
Received by:		Date:

Received by OCD: 3/5/2021 3:12:10 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: _____ Date: _____ Telephone: email: _____ OCD Only Date: Received by: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Chud Hene Signature: Date:

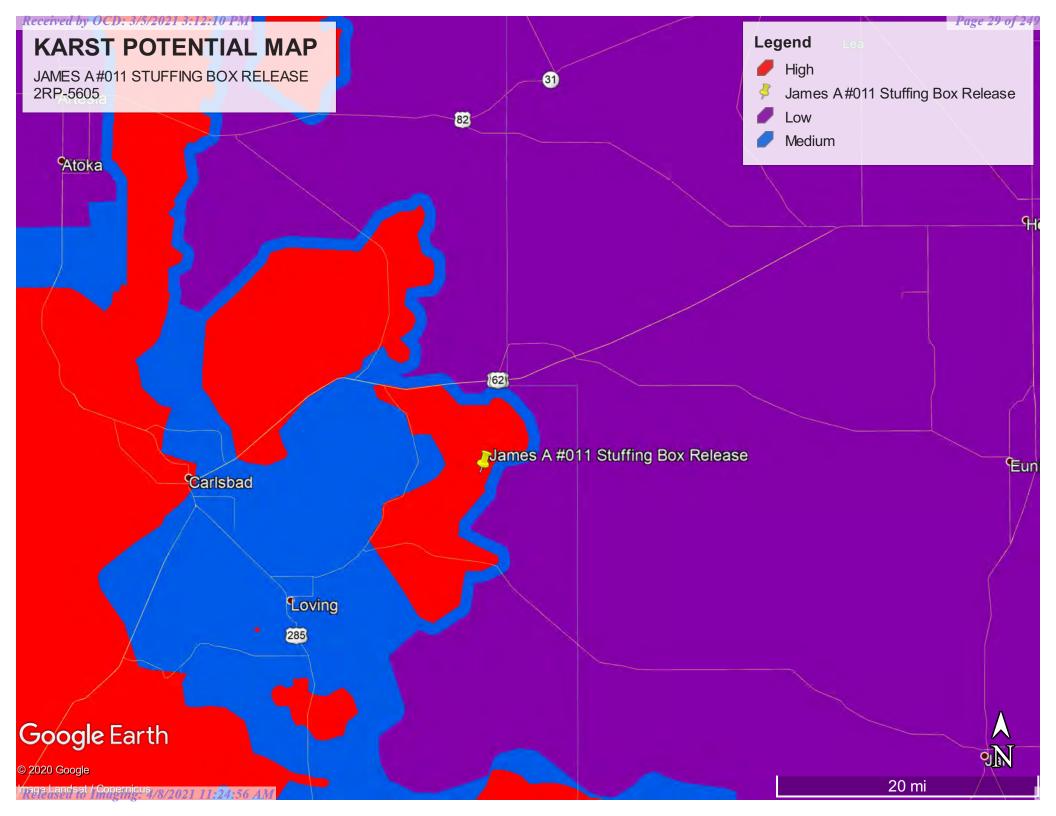
Page 5

APPENDIX B Site Characterization Data

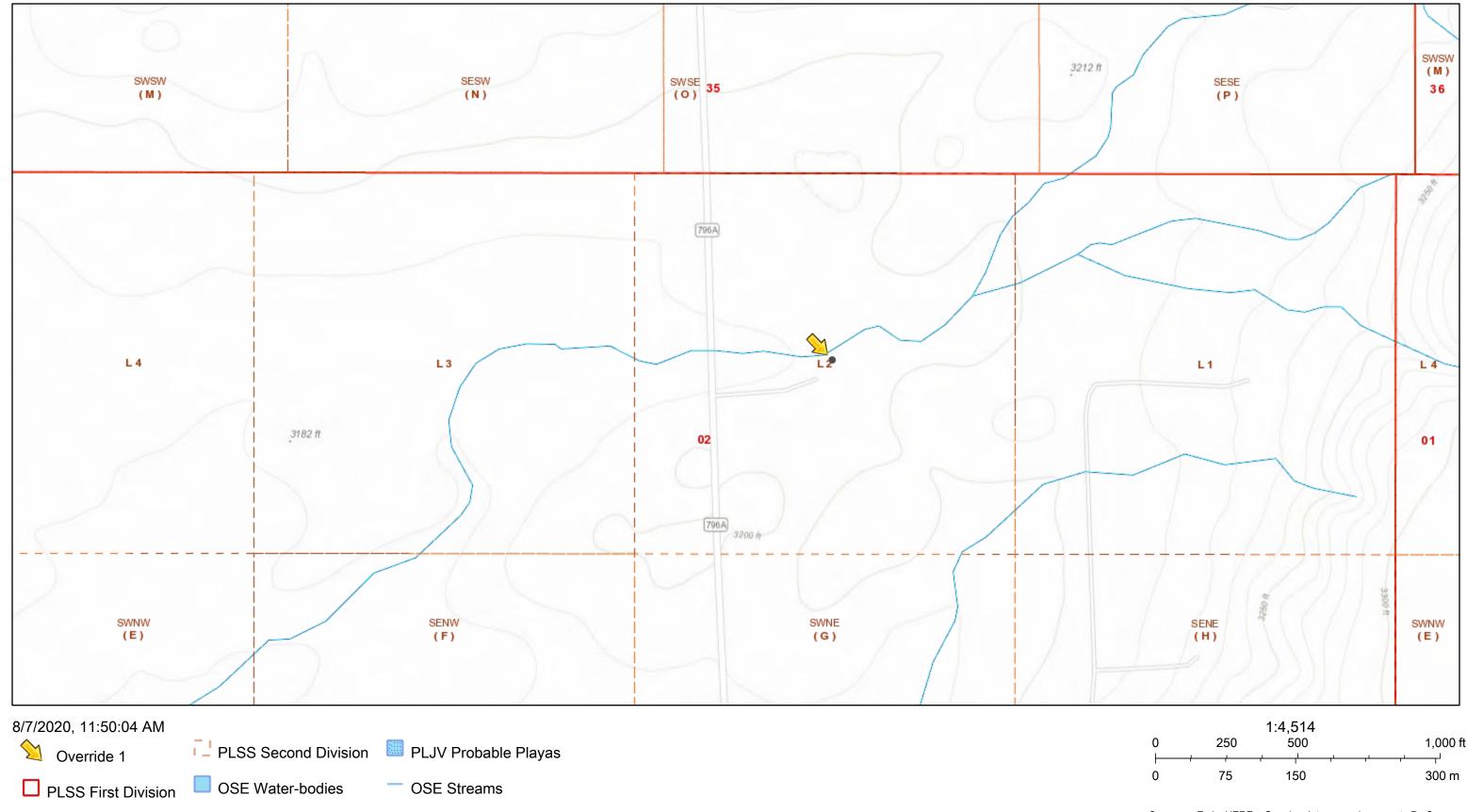
New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the **POD** suffix indicates th re se fil

(R=POD has


been replaced,

the POD has been replaced & no longer	O=orpha				au	arto	vro or	o 1_N		E 2_9\M 4	_9E)				
serves a water right file.)	C=the file is closed)				(quarters are 1=NW 2=NE (quarters are smallest to largest)					(NAD83 UTM in meters)			(In fee	et)	
		POD Sub-		Q	Q	Q								, V	Vater
POD Number C 03234 EXPLORE	Code		ED	64	16	4		Tws 21S	-	X 607695	Y 3589207* 🍋	DistanceDe	epthWellDepth 410	-	
<u>C 03003</u>		CUB	ED	3	1	3	31	21S	31E	610511	3588970* 🥌	2419	650		
<u>C 03002</u>		CUB	ED	4	2	4	06	22S	31E	611933	3587375* 🌍	3864	668		
<u>C 02749</u>		CUB	ED	1	1	1	18	22S	31E	610556	3585146* 🌍	3953	640		
<u>C 02750</u>		CUB	ED	1	1	1	18	22S	31E	610556	3585146* 🌍	3953	741		
<u>C 02751</u>		CUB	ED	1	1	1	18	22S	31E	610556	3585146* 🔵	3953	637		
<u>C 02723</u>		CUB	ED	2	2	3	15	22S	30E	606282	3584363* 🔵	4379	651		
C 03773 POD1	С	CUB	ED	4	2	2	32	21S	30E	604039	3589799 🌍	4404	55		
C 03774 POD1	С	CUB	ED	2	4	2	32	21S	30E	604039	3589799 🌍	4404	32		
C 03772 POD1	С	CUB	ED	2	4	2	32	21S	30E	603859	3589714 🌍	4546	30		
C 03772 POD2	С	CUB	ED	4	2	2	32	21S	30E	603850	3589707 🌍	4553	30		
C 03772 POD3	С	CUB	ED	4	2	2	32	21S	30E	603840	3589699 🌍	4560	30		
C 03772 POD5	С	CUB	ED	4	2	2	32	21S	30E	603823	3589681 🌍	4571	30		
C 03772 POD4	С	CUB	ED	4	2	2	32	21S	30E	603824	3589692 🌍	4573	30		
C 03772 POD6	С	CUB	ED	4	2	2	32	21S	30E	603814	3589666 🌍	4575	30		
C 03772 POD7	С	CUB	ED	4	2	2	32	21S	30E	603805	3589655 🌍	4580	30		
C 03772 POD8	С	CUB	ED	4	2	2	32	21S	30E	603797	3589636 🌍	4583	30		
<u>C 02727</u>		CUB	ED	3	1	1	33	21S	31E	613716	3589809* 🌍	5732	913		
<u>C 02950 EXPL</u>		CUB	ED	4	2	4	23	22S	30E	608740	3582576* 🌍	5759	845		
C 03112 EXPLORE		CUB	ED	3	1	1	09	22S	31E	613753	3586590* 🌍	5828	3567		
<u>C 02748</u>		CUB	ED	1	2	3	17	22S	31E	612576	3584364* 🌍	5903	3856		
<u>C 02637</u>		CUB	ED	1	3	3	24	22S	30E	608950	3582377* 🌍	5981	759		
<u>C 02682</u>		CUB	ED	4	4	4	08	22S	31E	613566	3585379* 🌍	6128	4400		
<u>C 02722</u>		CUB	ED	1	2	1	21	21S	30E	604435	3593203* 🌍	6164	592		
<u>C 03015</u>		CUB	ED	1	4	3	22	22S	30E	606099	3582353* 🌍	6309	1316	262	1054
C 03233 EXPLORE		CUB	ED	4	4	4	20	21S	31E	613489	3591816* 🌍	6360	566		
<u>C 02683</u>		CUB	ED	3	1	1	20	22S	31E	612184	3583356* 🌍	6366	840		
											Aver	age Depth to V	Water:	262 fe	et
												Minimum D	epth:	262 fe	eet
												Maximum D	epth:	262 fe	eet
Record 27															


Record Count:

UTMNAD83 Radius Search (in meters):

Easting (X): 608183.328 Northing (Y): 3588308.768 Radius: 6400

James A #11 Stuffing Box Release - NAB1924044206

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community, BLM

New Mexico Oil Conservation Division

APPENDIX C Laboratory Analytical Data

September 04, 2019

JUSTIN WRIGHT Conoco Phillips - Hobbs P. O. BOX 325 Hobbs, NM 88240

RE: JAMES A #11

Enclosed are the results of analyses for samples received by the laboratory on 08/28/19 12:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

	JUSTI P. O. E	o Phillips - Hobbs N WRIGHT 30X 325 NM, 88240		
	Fax To	: (575) 297-1477	7	
Received:	08/28/2019		Sampling Date:	08/27/2019
Reported:	09/04/2019		Sampling Type:	Soil
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN		Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM			

Sample ID: SP # 1 - SURFACE (H902985-01)

BTEX 8021B	mg	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	86.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48000	16.0	09/03/2019	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/31/2019	ND	190	95.0	200	0.234	
DRO >C10-C28*	66.4	10.0	08/31/2019	ND	183	91.7	200	3.75	
EXT DRO >C28-C36	22.6	10.0	08/31/2019	ND					
Surrogate: 1-Chlorooctane	83.3	% 41-142							
Surrogate: 1-Chlorooctadecane	89.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be determed waived unless made in uniting and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 1 - 1' (H902985-02)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11000	16.0	09/03/2019	ND	416	104	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO N	4			

Sample ID: SP # 2 - SURFACE (H902985-03)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	84.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32800	16.0	09/03/2019	ND	400	100	400	0.00	QM-07
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/31/2019	ND	190	95.0	200	0.234	
DRO >C10-C28*	531	10.0	08/31/2019	ND	183	91.7	200	3.75	
EXT DRO >C28-C36	208	10.0	08/31/2019	ND					
Surrogate: 1-Chlorooctane	85.7	% 41-142							
Surrogate: 1-Chlorooctadecane	107 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be determed waived unless made in uniting and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 2 - 1' (H902985-04)

Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15000	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,			
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NN	1			

Sample ID: SP # 3 - SURFACE (H902985-05)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	86.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	68800	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/31/2019	ND	190	95.0	200	0.234	
DRO >C10-C28*	1720	10.0	08/31/2019	ND	183	91.7	200	3.75	
EXT DRO >C28-C36	648	10.0	08/31/2019	ND					
Surrogate: 1-Chlorooctane	87.7	% 41-142							
Surrogate: 1-Chlorooctadecane	177 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Со	onoco Phi	llips - Hobbs					
	P. O. BOX 325							
	Но	obbs NM,	88240					
	Fa	ax To:	(575) 297-1477					
Received:	08/28/2019			Sampling Date:	08/27/2019			
Reported:	09/04/2019			Sampling Type:	Soil			
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact			
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker			
Project Location:	COPC - EDDY CO NM							

Sample ID: SP # 3 - 1' (H902985-06)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	14400	16.0	09/03/2019	ND	400	100	400	0.00	

Sample ID: SP # 3 - 2' (H902985-07)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3520	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO N	М			

Sample ID: SP # 4 - SURFACE (H902985-08)

BTEX 8021B	mg/	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	85.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	52000	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	5890	50.0	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	2510	50.0	09/01/2019	ND					
Surrogate: 1-Chlorooctane	126 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	475 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 4 - 1' (H902985-09)

Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32000	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO N	М			

Sample ID: SP # 5 - SURFACE (H902985-10)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	84.6 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	60000	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	7590	50.0	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	3310	50.0	09/01/2019	ND					
Surrogate: 1-Chlorooctane	116 %	6 41-142	2						
Surrogate: 1-Chlorooctadecane	573 %	6 37.6-14							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 5 - 1' (H902985-11)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	22600	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	08/28/2019			Sampling Date:	08,	/27/2019
Reported:	09/04/2019			Sampling Type:	So	il
Project Name:	JAMES A #11			Sampling Condition:	Co	ol & Intact
Project Number: Project Location:	NONE GIVEN COPC - EDDY CO NM			Sample Received By:	Та	mara Oldaker
	COPC - LDDT CO NM					

Sample ID: SP # 6 - SURFACE (H902985-12)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	84.3	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	76800	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	415	10.0	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	240	10.0	09/01/2019	ND					
Surrogate: 1-Chlorooctane	118 9	6 41-142	2						
Surrogate: 1-Chlorooctadecane	157 9	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 6 - 1' (H902985-13)

Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	26400	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SP # 7 - SURFACE (H902985-14)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	81.6 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	79200	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<100	100	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	17900	100	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	6940	100	09/01/2019	ND					
Surrogate: 1-Chlorooctane	114 %	6 41-142	2						
Surrogate: 1-Chlorooctadecane	1070	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 7 - 1' (H902985-15)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	21000	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SP # 8 - SURFACE (H902985-16)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	<0.050	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	84.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	93600	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<100	100	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	18600	100	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	5790	100	09/01/2019	ND					
Surrogate: 1-Chlorooctane	117 9	6 41-142							
Surrogate: 1-Chlorooctadecane	975 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 8 - 1' (H902985-17)

Chloride, SM4500Cl-B	mg/kg		SM4500CI-B mg/kg Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32400	16.0	09/03/2019	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	08/28/2019			Sampling Date:	08/27/2019
Reported:	09/04/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO N	М			

Sample ID: SP # 9 - SURFACE (H902985-18)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/01/2019	ND	1.89	94.5	2.00	0.0227	
Toluene*	0.054	0.050	09/01/2019	ND	1.88	94.1	2.00	1.35	
Ethylbenzene*	<0.050	0.050	09/01/2019	ND	1.91	95.5	2.00	0.0410	
Total Xylenes*	<0.150	0.150	09/01/2019	ND	5.71	95.2	6.00	1.11	
Total BTEX	<0.300	0.300	09/01/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	84.3	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	120000	16.0	09/03/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	09/01/2019	ND	208	104	200	0.228	
DRO >C10-C28*	4440	50.0	09/01/2019	ND	215	107	200	1.93	
EXT DRO >C28-C36	1320	50.0	09/01/2019	ND					
Surrogate: 1-Chlorooctane	129 9	6 41-142	2						
Surrogate: 1-Chlorooctadecane	340 9	37.6-14	_						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477

Received:	08/28/2019	Sampling Date:	08/27/2019
Reported:	09/04/2019	Sampling Type:	Soil
Project Name:	JAMES A #11	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	COPC - EDDY CO NM		

Sample ID: SP # 9 - 1' (H902985-19)

Chloride, SM4500CI-B	mg/kg		le, SM4500Cl-B mg/kg Analyzed By: AC							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	33200	16.0	09/03/2019	ND	400	100	400	0.00		

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Receiv	ved by OCD: 3/5/	2021 3:12:10 PM		and the second design of the		SPPTPL
1	S Re	analys service Sartiat		Hea	Lat	none #: oject #: roject N ampler
Ŧ	ampl	S All Class		862	D 1.D	#: Locatic
Cardinal	ered By ler - UPS	Cablery inclusion	Darleye	wp-1		5-43
al ca	1	ding those Cardinal Dama Cardinal Dama	SP# SP#	SP# SP#		anne Edit
nnot	Circl	ed:	E E W W 2 3	1212	(0)	a 4 6

of 249

Page 21 of 22

Difference Difference <th>< < < < BIEX < < < < TPH</th>	< < < < BIEX < < < < TPH
and all costs of collections, including atterney's fees. No iAdd'i Phone #: No Add'i Fax #:	A Conditions: Interest will be charged on all accounts frome bo days para another for the output of

Rea

analyse Al claim and Cardinal be liable for incool and an or servers haroung our of related to the performance of servers harows our of related to the performance of servers harows our of related to the performance of servers our of related to the performance out of related to the performan	H9029855 13 SP#6-11 13 SP#6-11 14 SP#7-11 15 SP#8-11 15 SP#8-11 15 SP#8-11 19 SP#8-11 19 SP#8-11 19 SP#8-11	Company Name: Consed Pullip Project Manager: Justin Whight Address: State: Mm 2 City: Holls Fax #: Project #: S75-631-9092 Fax #: Project Name: Justin Whight Sampler Name: Justin Whight FOR USE OWNY FOR USE OWNY FOR USE OWNY FOR USE OWNY Sample 1.D. Lab 1.D.	ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240 (575) 393-2326 Fax (575) 393-2476
some in no evid shall be berichedina un services harunder by Carrenal, logandes of Workey and State St	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(G)RAB OR (C)OMP. P.O. # CONTAINERS GROUNDWATER WASTEWATER MATRIX SOIL OIL OIL State: OTHER: PRESERV. ACID/BASE: PRESERV. ICE / COOL OTHER: DATE: SAMPLING	30 476 BILL TO
Sult: U No Add'I Fax #	V V V <td>Chlorides BTEX TTPH</td> <td>Pageof</td>	Chlorides BTEX TTPH	Pageof

October 16, 2019

JUSTIN WRIGHT Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: JAMES A #11

Enclosed are the results of analyses for samples received by the laboratory on 10/11/19 9:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

	JUS P. (onoco Philli STIN WRIC O. BOX 32 obbs NM, 8	5		
	Fax	x To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #1 SURFACE (H903457-01)

BTEX 8021B	mg	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	22800	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2019	ND	211	105	200	1.52	
DRO >C10-C28*	<10.0	10.0	10/11/2019	ND	189	94.5	200	5.01	
EXT DRO >C28-C36	<10.0	10.0	10/11/2019	ND					
Surrogate: 1-Chlorooctane	89.7	% 41-142							
Surrogate: 1-Chlorooctadecane	92.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph JUSTIN WF P. O. BOX Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09	/2019
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool 8	k Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi H	enson
Project Location:	COPC - EDDY CO N	М				

Sample ID: SAMPLE #1 2' (H903457-02)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #1 4' (H903457-03)

Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1540	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #2 SURFACE (H903457-04)

BTEX 8021B	mg/	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	23200	16.0	10/14/2019	ND	432	108	400	0.00	QM-07
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2019	ND	211	105	200	1.52	
DRO >C10-C28*	<10.0	10.0	10/11/2019	ND	189	94.5	200	5.01	
EXT DRO >C28-C36	<10.0	10.0	10/11/2019	ND					
Surrogate: 1-Chlorooctane	94.6	% 41-142	,						
Surrogate: 1-Chlorooctadecane	99.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph JUSTIN WF P. O. BOX Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09	/2019
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool 8	k Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi H	enson
Project Location:	COPC - EDDY CO N	М				

Sample ID: SAMPLE #2 2' (H903457-05)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1710	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #2 4' (H903457-06)

Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1860	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #3 SURFACE (H903457-07)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	20000	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	2690	50.0	10/14/2019	ND	183	91.3	200	5.44	QR-03, QM-07
EXT DRO >C28-C36	1140	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	102 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	243 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX Hobbs NM,	325		
		Fax To:	(575) 297-1477	,	
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO N	γ			

Sample ID: SAMPLE #3 2' (H903457-08)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1550	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #3 4' (H903457-09)

Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #4 SURFACE (H903457-10)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11200	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	3450	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	1790	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	103 9	% 41-142							
Surrogate: 1-Chlorooctadecane	292 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph JUSTIN WF P. O. BOX Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intac	t
Project Number: Project Location:	Test Holes Copc - Eddy Co NN	4		Sample Received By:	Jodi Henson	

Sample ID: SAMPLE #4 2' (H903457-11)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1520	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #4 4' (H903457-12)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1150	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	:	Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
	F	Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson	
Project Location:	COPC - EDDY CO NM					

Sample ID: SAMPLE #5 SURFACE (H903457-13)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	42000	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	2620	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	959	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	93.0	% 41-142							
Surrogate: 1-Chlorooctadecane	216 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. C	noco Philli STIN WRIG O. BOX 32 bbs NM, 8	5		
	Fax	к То:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #5 2' (H903457-14)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2030	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #5 4' (H903457-15)

Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #6 SURFACE (H903457-16)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11100	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	1810	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	833	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	87.8	% 41-142							
Surrogate: 1-Chlorooctadecane	178 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. C	noco Philli STIN WRIG O. BOX 32 bbs NM, 8	5		
	Fax	к То:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #6 2' (H903457-17)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #6 4' (H903457-18)

Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #7 SURFACE (H903457-19)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.3	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	26600	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	5890	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	2330	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	99.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	378 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph JUSTIN WF P. O. BOX Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09	/2019
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool 8	k Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi H	enson
Project Location:	COPC - EDDY CO N	М				

Sample ID: SAMPLE #7 2' (H903457-20)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #7 4' (H903457-21)

Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	10/14/2019	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #8 SURFACE (H903457-22)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32400	16.0	10/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	12500	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	3870	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	90.9	% 41-142							
Surrogate: 1-Chlorooctadecane	588 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JU P.	onoco Phill USTIN WRI . O. BOX 3 lobbs NM, 8	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #8 2' (H903457-23)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	10/14/2019	ND	432	108	400	0.00	

Sample ID: SAMPLE #8 4' (H903457-24)

Chloride, SM4500Cl-B	mg	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240						
		Fax To:	(575) 297-1477					
Received:	10/11/2019			Sampling Date:	10/09/2019			
Reported:	10/16/2019			Sampling Type:	Soil			
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	ī.		
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson			
Project Location:	COPC - EDDY CO NM							

Sample ID: SAMPLE #9 SURFACE (H903457-25)

BTEX 8021B	mg/kg		Analyzed By: BF						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	0.461	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	0.461	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	13200	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	3410	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	891	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	98.2	% 41-142							
Surrogate: 1-Chlorooctadecane	228	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Conc	oco Phillips - Hobbs						
	JUST	JUSTIN WRIGHT						
	P. O.	P. O. BOX 325						
	Hobb	Hobbs NM, 88240						
	Fax ⁻	To: (575) 297-1477						
Received:	10/11/2019		Sampling Date:	10/09/2019				
Reported:	10/16/2019		Sampling Type:	Soil				
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact				
Project Number:	TEST HOLES		Sample Received By:	Jodi Henson				
Project Location:	COPC - EDDY CO NM							

Sample ID: SAMPLE #9 2' (H903457-26)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6800	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #9 4' (H903457-27)

Chloride, SM4500Cl-B	mg/kg			Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. (onoco Phillip STIN WRIG O. BOX 32 obbs NM, 88	iHT 5		
	Fax	x To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #10 SURFACE (H903457-28)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	0.171	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	<10.0	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	<10.0	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	82.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	77.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. C	noco Phillip STIN WRIC O. BOX 32 bbs NM, 88	5			
	Fax	к То:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/	09/2019
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Coo	l & Intact
Project Number:	TEST HOLES			Sample Received By:	Jod	i Henson
Project Location:	COPC - EDDY CO NM					

Sample ID: SAMPLE #10 2' (H903457-29)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	20800	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #10 4' (H903457-30)

Chloride, SM4500Cl-B	oride, SM4500Cl-B mg/kg		Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	832	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUSTIN P. O. BO	Phillips - Hobbs WRIGHT XX 325 IM, 88240		
	Fax To:	(575) 297-1477	,	
Received:	10/11/2019		Sampling Date:	10/09/2019
Reported:	10/16/2019		Sampling Type:	Soil
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES		Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM			

Sample ID: SAMPLE #11 SURFACE (H903457-31)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1260	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	<10.0	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	<10.0	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	84.0	% 41-142							
Surrogate: 1-Chlorooctadecane	87.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #11 2' (H903457-32)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7600	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #11 4' (H903457-33)

Chloride, SM4500Cl-B	loride, SM4500Cl-B mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	784	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P.	onoco Philli ISTIN WRI O. BOX 32 obbs NM, 8	25		
	Fax	х То:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #12 SURFACE (H903457-34)

BTEX 8021B	mg/	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7920	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	1580	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	905	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	119 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	205 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #12 2' (H903457-35)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #12 4' (H903457-36)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3840	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. (onoco Phillip STIN WRIG O. BOX 32 obbs NM, 88	iHT 5		
	Fax	x To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #13 SURFACE (H903457-37)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/11/2019	ND	1.90	95.1	2.00	5.04	
Toluene*	<0.050	0.050	10/11/2019	ND	1.95	97.5	2.00	5.04	
Ethylbenzene*	<0.050	0.050	10/11/2019	ND	1.98	99.1	2.00	4.82	
Total Xylenes*	<0.150	0.150	10/11/2019	ND	5.92	98.7	6.00	5.20	
Total BTEX	<0.300	0.300	10/11/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	25400	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	150	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	72.1	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	84.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	97.5	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #13 2' (H903457-38)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3560	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #13 4' (H903457-39)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3200	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	:	Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
	F	Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/09/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson	
Project Location:	COPC - EDDY CO NM					

Sample ID: SAMPLE #14 SURFACE (H903457-40)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	23000	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	1570	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	909	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	86.3	% 41-142							
Surrogate: 1-Chlorooctadecane	177 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	· · · · · · · · · · · · · · · · · · ·	Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #14 2' (H903457-41)

Chloride, SM4500Cl-B	mg	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	10/15/2019	ND	416	104	400	0.00	

Sample ID: SAMPLE #14 4' (H903457-42)

Chloride, SM4500Cl-B	mg/kg		Analyze						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	10/15/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. (onoco Phillip STIN WRIG O. BOX 32 obbs NM, 88	iHT 5		
	Fax	x To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #15 SURFACE (H903457-43)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	73.3-12	9						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	27400	16.0	10/15/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	7840	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	3790	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	87.8	% 41-142							
Surrogate: 1-Chlorooctadecane	474	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WF P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #15 2' (H903457-44)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2500	16.0	10/15/2019	ND	400	100	400	3.92	QM-07

Sample ID: SAMPLE #15 4' (H903457-45)

Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	768	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUS P. (onoco Phillip STIN WRIG O. BOX 32 obbs NM, 88	iHT 5		
	Fax	x To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #16 SURFACE (H903457-46)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	34000	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	9050	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	3190	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	90.6	% 41-142							
Surrogate: 1-Chlorooctadecane	507 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phil JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/09/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #16 2' (H903457-47)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1660	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #16 4' (H903457-48)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JU P.	Conoco Phill USTIN WR 2. O. BOX 3 Iobbs NM, 3	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #17 SURFACE (H903457-49)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	22600	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	12000	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	4820	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	90.9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	646 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JI P	Conoco Phill USTIN WR P. O. BOX 3 Hobbs NM, 8	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #17 2' (H903457-50)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #17 4' (H903457-51)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JU P.	Conoco Phill USTIN WR 2. O. BOX 3 Iobbs NM, 3	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #18 SURFACE (H903457-52)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	20000	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	7260	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	3280	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	89.0	% 41-142							
Surrogate: 1-Chlorooctadecane	443 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/10/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	t
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson	
Project Location:	COPC - EDDY CO NN	1				

Sample ID: SAMPLE #18 2' (H903457-53)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6480	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #18 4' (H903457-54)

Chloride, SM4500Cl-B	mg/kg Analyzed By: AC								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUSTIN P. O. BO	Phillips - Hobbs WRIGHT XX 325 IM, 88240		
	Fax To:	(575) 297-1477	,	
Received:	10/11/2019		Sampling Date:	10/10/2019
Reported:	10/16/2019		Sampling Type:	Soil
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES		Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM			

Sample ID: SAMPLE #19 SURFACE (H903457-55)

BTEX 8021B	mg/	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5840	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	423	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	242	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	83.6	% 41-142	,						
Surrogate: 1-Chlorooctadecane	103 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JI P	Conoco Phill USTIN WR P. O. BOX 3 Hobbs NM, 8	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #19 2' (H903457-56)

Chloride, SM4500Cl-B	mg	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	14400	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #19 4' (H903457-57)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1300	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JU P.	Conoco Phill USTIN WR 2. O. BOX 3 Iobbs NM, 3	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #20 SURFACE (H903457-58)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	34400	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	13200	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	4740	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	87.1	% 41-142							
Surrogate: 1-Chlorooctadecane	649 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/10/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	t
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson	
Project Location:	COPC - EDDY CO NN	1				

Sample ID: SAMPLE #20 2' (H903457-59)

Chloride, SM4500Cl-B	mg	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	47200	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #20 4' (H903457-60)

Chloride, SM4500Cl-B	ide, SM4500CI-B mg/kg				Analyzed By: AC				
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10300	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JL P.	Conoco Phill USTIN WR 2. O. BOX 3 Iobbs NM, 3	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #21 SURFACE (H903457-61)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15000	16.0	10/15/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	5020	50.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	1570	50.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	91.7	% 41-142							
Surrogate: 1-Chlorooctadecane	260 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JI P	Conoco Phill USTIN WR P. O. BOX 3 Hobbs NM, 8	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #21 2' (H903457-62)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	29200	16.0	10/15/2019	ND	400	100	400	3.92	

Sample ID: SAMPLE #21 4' (H903457-63)

Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5760	16.0	10/15/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JL P.	Conoco Phill USTIN WR 2. O. BOX 3 Iobbs NM, 3	25		
	Fa	ax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM				

Sample ID: SAMPLE #22 SURFACE (H903457-64)

BTEX 8021B	mg/	kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	832	16.0	10/14/2019	ND	432	108	400	3.77	QM-07
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/14/2019	ND	211	106	200	8.32	
DRO >C10-C28*	<10.0	10.0	10/14/2019	ND	183	91.3	200	5.44	
EXT DRO >C28-C36	<10.0	10.0	10/14/2019	ND					
Surrogate: 1-Chlorooctane	76.0 9	% 41-142							
Surrogate: 1-Chlorooctadecane	78.3 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #22 2' (H903457-65)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	12800	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #22 4' (H903457-66)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	19600	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #23 SURFACE (H903457-67)

BTEX 8021B	mg/	′kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.74	86.8	2.00	4.27	
Toluene*	<0.050	0.050	10/14/2019	ND	1.84	92.2	2.00	2.63	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.81	90.3	2.00	3.71	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.59	93.2	6.00	3.56	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2760	16.0	10/15/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2019	ND	215	108	200	2.55	
DRO >C10-C28*	<10.0	10.0	10/11/2019	ND	211	106	200	1.24	
EXT DRO >C28-C36	<10.0	10.0	10/11/2019	ND					
Surrogate: 1-Chlorooctane	93.5	% 41-142	,						
Surrogate: 1-Chlorooctadecane	<i>93.7</i>	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph JUSTIN WF P. O. BOX Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NI	М			

Sample ID: SAMPLE #23 2' (H903457-68)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #23 4' (H903457-69)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM	1			

Sample ID: SAMPLE #24 SURFACE (H903457-70)

BTEX 8021B	mg/	/kg	Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.91	95.5	2.00	1.84	
Toluene*	<0.050	0.050	10/14/2019	ND	1.95	97.7	2.00	2.67	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.94	97.1	2.00	2.36	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.84	97.3	6.00	2.20	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	10/15/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2019	ND	215	108	200	2.55	
DRO >C10-C28*	<10.0	10.0	10/11/2019	ND	211	106	200	1.24	
EXT DRO >C28-C36	<10.0	10.0	10/11/2019	ND					
Surrogate: 1-Chlorooctane	94.3	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:		10/10/2019
Reported:	10/16/2019			Sampling Type:	:	Soil
Project Name:	JAMES A #11			Sampling Condition:	(Cool & Intact
Project Number:	TEST HOLES			Sample Received By:	-	Jodi Henson
Project Location:	COPC - EDDY CO NM	1				

Sample ID: SAMPLE #24 2' (H903457-71)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #24 4' (H903457-72)

Chloride, SM4500Cl-B mg/kg			Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUSTIN P. O. E	o Phillips - Hobbs N WRIGHT 30X 325 NM, 88240		
	Fax To	: (575) 297-147	7	
Received:	10/11/2019		Sampling Date:	10/10/2019
Reported:	10/16/2019		Sampling Type:	Soil
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES		Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM			

Sample ID: SAMPLE #25 SURFACE (H903457-73)

BTEX 8021B	mg/kg		Analyze	d By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.91	95.5	2.00	1.84	
Toluene*	<0.050	0.050	10/14/2019	ND	1.95	97.7	2.00	2.67	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.94	97.1	2.00	2.36	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.84	97.3	6.00	2.20	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	976	16.0	10/15/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2019	ND	215	108	200	2.55	
DRO >C10-C28*	11.5	10.0	10/11/2019	ND	211	106	200	1.24	
EXT DRO >C28-C36	<10.0	10.0	10/11/2019	ND					
Surrogate: 1-Chlorooctane	99.1	% 41-142							
Surrogate: 1-Chlorooctadecane	98.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	10/11/2019			Sampling Date:	10/10/2019
Reported:	10/16/2019			Sampling Type:	Soil
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM			Sample Received By:	Jodi Henson

Sample ID: SAMPLE #25 2' (H903457-74)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #25 4' (H903457-75)

Chloride, SM4500Cl-B	Chloride, SM4500Cl-B mg/kg			Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	736	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	JUSTIN P. O. BO	Phillips - Hobbs WRIGHT XX 325 IM, 88240		
	Fax To:	(575) 297-1477	,	
Received:	10/11/2019		Sampling Date:	10/10/2019
Reported:	10/16/2019		Sampling Type:	Soil
Project Name:	JAMES A #11		Sampling Condition:	Cool & Intact
Project Number:	TEST HOLES		Sample Received By:	Jodi Henson
Project Location:	COPC - EDDY CO NM			

Sample ID: SAMPLE #26 SURFACE (H903457-76)

BTEX 8021B	mg/kg		Analyze	Analyzed By: BF					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.91	95.5	2.00	1.84	
Toluene*	<0.050	0.050	10/14/2019	ND	1.95	97.7	2.00	2.67	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.94	97.1	2.00	2.36	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.84	97.3	6.00	2.20	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	10/15/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/12/2019	ND	219	109	200	2.67	
DRO >C10-C28*	<10.0	10.0	10/12/2019	ND	217	108	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	10/12/2019	ND					
Surrogate: 1-Chlorooctane	101 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	101 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325			
		Fax To:	(575) 297-1477			
Received:	10/11/2019			Sampling Date:	10/10/2019	
Reported:	10/16/2019			Sampling Type:	Soil	
Project Name:	JAMES A #11			Sampling Condition:	Cool & Intact	:
Project Number: Project Location:	Test Holes Copc - Eddy Co Ni	м		Sample Received By:	Jodi Henson	
	COFC - LDDT CO M	*1				

Sample ID: SAMPLE #26 2' (H903457-77)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	704	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #26 4' (H903457-78)

Chloride, SM4500Cl-B	nloride, SM4500Cl-B mg/kg			d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phillips - Hobbs JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240						
		Fax To:	(575) 297-1477					
Received:	10/11/2019			Sampling Date:		10/10/2019		
Reported:	10/16/2019			Sampling Type:	9	Soil		
Project Name:	JAMES A #11			Sampling Condition:	(Cool & Intact		
Project Number:	TEST HOLES			Sample Received By:	-	Jodi Henson		
Project Location:	COPC - EDDY CO NM							

Sample ID: SAMPLE #27 SURFACE (H903457-79)

BTEX 8021B	mg/kg		Analyzed By: BF						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/14/2019	ND	1.91	95.5	2.00	1.84	
Toluene*	<0.050	0.050	10/14/2019	ND	1.95	97.7	2.00	2.67	
Ethylbenzene*	<0.050	0.050	10/14/2019	ND	1.94	97.1	2.00	2.36	
Total Xylenes*	<0.150	0.150	10/14/2019	ND	5.84	97.3	6.00	2.20	
Total BTEX	<0.300	0.300	10/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	848	16.0	10/15/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/12/2019	ND	219	109	200	2.67	
DRO >C10-C28*	<10.0	10.0	10/12/2019	ND	217	108	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	10/12/2019	ND					
Surrogate: 1-Chlorooctane	103 9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	103 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,				
		Fax To:	(575) 297-1477	,		
Received:	10/11/2019			Sampling Date:	10/	10/2019
Reported:	10/16/2019			Sampling Type:	Soi	
Project Name:	JAMES A #11			Sampling Condition:	Coo	ol & Intact
Project Number: Project Location:	Test Holes Copc - Eddy Co NM	1		Sample Received By:	Joc	i Henson
	COLC EDDI CONT	•				

Sample ID: SAMPLE #27 2' (H903457-80)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	10/15/2019	ND	432	108	400	3.77	

Sample ID: SAMPLE #27 4' (H903457-81)

Chloride, SM4500CI-B	00Cl-B mg/kg			Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	10/15/2019	ND	432	108	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother this subsidiaries, afflictes or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 57 of 65

Company Name: Conce / [1111]ps project Manager: Justu Wryth Address: Baken	P.O. #: Company: SFこソビ Attn:	
-631 - 90 Jone N 111 Fest Nul-	Address: City: State: Zip Phone #: Fax #:	tanded
Lab I.D. Sample I.D.	CONTAINERS ROUNDWATER MASTEWATER OIL DIL DIL DIL DIL DIL DIL DIL DIL DIL D	BTEX TPH TPH Bet
103421 11 544 4 94 12 54 5 84944 14 54 5 84944 14 54 5 84944 14 54 5 84944	$\frac{1}{1} = \frac{1}{10} =$	AN A
18 50 6 6uster	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	and we have
20 50 7 2 55 NOTE: Labity and Damagea. Caudual's inbidity and client's exclusive rem	artislag whother based in contract or hort, shall be initiated to the arrowt paid by a warved univers made in writing and received by Cardinal within 30 dops after com warved new hort internations in loss of use, or loss of profits incurred by client,	an 10
analyses of successions and carcinal be labele for incidental or consequential damages, including managements of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of ar related to the performance of successions anong out of an out of the performance of successions anong out of the performance of successions anong out of the performance of successions anong out of the performance of successions and out of the performance of the perf	Received By: Beceived By: Beceived By: Beceived By: Beceived By:	D No Add'l Phone #: D No Add'l Fax #:

Receiv OCD: 3/5/2021 3-12-10 PM d h

No Add'l Phone #:	TIME Clarity With the clarity of the clarity of the clarity of the applicable clarity of the applicable clarity is subscription.	Attn: City: City: State: Zip: Phone #: Phone #: Phone #: Phone #: Phone #: Phone #: Phone #: Preserv Soll Oil Subde Oil Subde Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Oil Subde Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Other: Soll Subde Soll Other: Soll Subde Soll Other: Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde Soll Subde S	Netho State: // Second A 111 Project Ov Towne / 111 Project Ov Name: fast / 1/1 Project Ov Name: fast / 1/1 Project Ov Second Name: fast / 1/1 Project Ov Name: fast / 1/1 Project Ov Name: fast / 1/1 Project Ov Second Name: fast / 1/1 Project Ov Second Second State (10) Project Ov Second Second State (10) Project Ov Second State (10) Project Ov Seco
		(1)	(atta
		P.O. #	12
AINALI DID INEMOTO I		BILL TO	Company Name: Conce JPhillips

Page 59 of 65

Lorth Lorth Lorth Plo Lorth State: N/N Zip: FT YU Atm G71 - Ro'S Z Fax #: Com Com G71 - Ro'S Z Fax #: Com Add G71 - Ro'S Z Fax #: Com Pho G71 - Ro'S Z Sample I.D. G(PAB OR (C)OMP. Pho G71 - Ro'S Z Sample I.D. G(PAB OR (C)OMP. Pho Solution Sample I.D. G(PAB OR (C)OMP. Pho Solution Sample I.D. G(PAB OR (C)OMP. Pho Solution Sample I.D. GROUNDWATER Pho Solution Same Sane<	Concer 1Phi		0 ANALYSIS
Muching State: MUT/Lip: GT V U Attn: Group CR / 1/1 Project Owner: Grup: Grup: Jame: Fax #: Grup: State: Dire Jame: Fax #: Grup: State: Zip: Name: Fax #: Grup: State: Zip: Jame: Jame: Grup: Grup: State: Zip: Jame: Jame: Jame: Grup: Grup: State: Zip: Jame: Jame: Jame: Grup: Grup: Jame: Jame: Jame: Jame: Jame: Jame: Jame: Jame: Jame: Jame: Jame:	Justa Unight		
Andress: Andress: ext: "Conc. (I. All.) per Name: Fail III. per Name: Fail III. per Name: Fail III. ab I.D. Sample I.D. 32 Sp. II. 33 Sp. II. 34 Sp. III. 35 Sp. II. 36 Sp. II. 37 Sp. II. 38 Sp. II. 39 Sp. II. 31 Sp. II. 32 Sp. II. 33 Sp. II. 34 Sp. II. 35 Sp. II. 36 Sp. II. 37 Sp. II. 38 Sp. II. 39 Sp. II. 31 Sp. II. 32 Sp. II. 33 Sp. II. 34 Sp. II. 35 Sp. II. 36 II. 37 Sp. II. 38 Sp. II. 39	Morker .	Zip: SrzYU	
Internet Carly City: anne: Fail State: Zip: ocation: C4/17/L/L Intrink Presservic State: Name: Fail Intrink Presservic State: Name: Intrink Intrink Presservic State: Name: Intrink Intrink Presservic State: Name: Intrink Intrink Intrink Presservic Name: Intrink Intrink Intrink Intrink Name: Intrink Intrink Intrink Intrink Name: Intrink Intrink Intrink Intrink Name: Intrink Intrink Intrink Intrin			
Inne: Clinitie: State: Zip: opation: C. 6/m C. 4/m Turk Phone #: ion: Tartic: Phone #: ion: Tartion Phone ion:	Jone N All		1
On: Caline Lek Torone #: In: Sample Lib Fax #: In: Fax #: Fax #:	me fed Hil-1	State:	
Sample I.D. NIRX PRESERV SAMPLING Spill Statut Sample I.D. (G)RAB OR (C)OMP. PRESERV SAMPLING Spill Statut Statut (G)RAB OR (C)OMP. PRESERV Sampling Statut Spill Statut Statut (G)RAB OR (C)OMP. Interview Sampling Statut Spill Statut USA (G)RAB OR (C)OMP. Interview Sampling Statut Interview Spill Statut Interview (G)RAB OR (C)OMP. Interview Interview Spill Statut Interview (G)RAB OR (C)OMP. Interview Interview Spill Statut Interview Interview Interview Interview	1 strate	Phone #:	de
BY: Date: MATRIX PRESERV (G)RAB OR (C)OMP. BY: Date: Image of a reader build of any of a read of any	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Winght	ter
Sample I.D. Sample I.D. Spit Soft Soft Soft Soft Soft Soft Soft Sof	Jen Con	MATRIX PRESERV.	>
A Spill Shuth Show (GRA Spill Shuth Show (GRA (GRA Spill Shuth Show (GRA <	1	ITAINERS INDWATER EWATER GE IR : /BASE: COOL	PH
Johnson	190457	# CC GRC WAS SOI OIL SLU OT ACI ICE	TE TIME
Junction Junct	11-5		M W
July July July July July July	52 50 11 4	101	A
A J.F. A J.F. B Gutta B Gutta Curdnat's actualive remedy for any claim arising whethar based in confract or furt, shall be limited to the amount paid by the claent for the approach process and any other cause what arising whethar based in confract or furt, shall be limited to the amount paid by the claent for the approach process and any other cause what arising whethar based in confract or furt, shall be limited to the amount paid by the claent for the approach of the approach and any other cause what arising whethar based in confract or furt, shall be limited to the amount paid by the claent for any client action and waived unless made in writing and tracted by Caused, as substitution, turiness financypore, loss of rules in the actions after composition of the applicable claim is based rules or tops of parks increasing at substitution. Independential or consequential damages, including whethar three BY: Date: Date: Three Date: Three Date:	34 Co là Sudar	6/01 / / / / / / / / / / / / / / / / / /	-
B B <td>12 SI JS JS</td> <td>4/4) · · · · · · · · · · · · · · · · · ·</td> <td>m</td>	12 SI JS JS	4/4) · · · · · · · · · · · · · · · · · ·	m
Suffy Suffy W	Ste 50 1+ 7"	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Support Support M M M Cardnal's lability and claim's exclusive remoty for any claim artising whether based in contract or lust, shall be limited to the arround paid by the client for the apgrence and any consequential damages, including whether based in writing and received by Cardnal, and subdification, business financiporo, loss of profits incrusible damages, including whether based interruption. It is a subdification, business financiporo, loss of profits incrust by client, is subdification, and any client and any client and any client and any client activity of the account by Cardnal incrusted by Cardnal, incrusted by Cardnal, incrusted by Cardnal, incrusted by Cardnal, incrusted and in the performance of sources havender by Cardnal, regardless of twenty claim is based upon any of the account by client, is subdification, business finance of sources havender by Cardnal, regardless of twenty claim is based upon any of the account by Client, is subdification, business finance of sources havender by Cardnal, regardless of twenty claim is based upon any of the account by Client, is subdification, business finance of sources havender by Cardnal, regardless of twenty claim is based upon any of the account by Client, is subdification, business finance of sources havender by Cardnal, regardless of the account by Client, is subdified to the arcount by Client, is subdified to the arcount by Client, is subdified to the arcount of the account by Client, is subdified to the arcount of the account by Client, is subdified to the arcount part of the account of	37 2 0 12 Suter	() () () () () () () () () () () () () (A
Cardnal's inability and cleant's exclusive remedy for any claim arising whether based in contract or last, shall be limited to the annual paid by the cleant for the seguences and any other cause whatsoever shall be deemed wave unless made in writing and recorrectly Cardinal within 30 days after completion of the applicable seguences and any other cause whatsoever shall be deemed wave unless made in writing and recorrectly Cardinal within 30 days after completion of the applicable seguences and any other causes the under the work of the second by Cardinal within 30 days after completion of the applicable set in the performance of services the aururdar regardless of whether such claim is based upon any of the above stated reasons or diamente. Date: Date: Received By: Fax Result: Date: The Ceived By: Date: Received By: Fax Result: Date: The: Received By: Fax Result: Date:	29 61 61 92 PS	y/1 1 1 1	M
ad by on other cause visuas over anno or whole hintshor, business interruptions, loss of uses of tops of polds, incurred by clear, is substationes, the for incidential or consequential damages, inciding without hintshow the performance of services have under by Candhal, regardless of whether such claim is based upon any of the above stated researe or alternations, assed to the performance of services have under by Candhal, regardless of whether such claim is based upon any of the above stated researe or alternations, assed to the performance of services have under the performance of services h	40 6P H S	a remody for any claim artisting whether based in contract or but, shall be limited to the am one whether the second waived unless mode in writing and recolved by Cardinal within 30 of	by the client for the completion of the applicable
Tippeq:25 Received By: Phone Result: Diversion of the security	ble for incident	hages, including without Amitation, business interruptions, loss of use, or loss of profils incu have not be a set of the above to be abov	ent, its subskiferies, sons or otherwise.
	eialed to the performance o	1/19 Received By: 1.25 Received By:	Phone Result: D No Fax Result: D No REMARKS: No

Page 60 of 65

The 11/19 Received By: The 11/19 Columbu Addition CHECKED BY: 5 2 3.42 491 Cool mate Cool mate 10/11/19 191 Cool mate 10/11/19 191 191 191 191 191 191 191 191 1	SAMPLING SAMPLING DATE TIME 04 04 04 04 04 04 04 04 04 04 04 04 04	(575) 393-2326 Fax (5/5) 393-24/5 BILL TO
No Add'I Fax #:	W W W W W TPH	ANALYSIS REQUEST

Re OCD: 3/5/2021 3-12-10 PM 11

Company Name: Conver / Contractor	P.O. #: Company:	
16/0 Suite.	Address:	
Phone m. S. Tome N /// Project Owner:	er: City:	,
red Hul-1	State: Zip:	
64	Phone #:	zde
project Locanon Trile Our Dutte	Wyight Fax #:	ter
	AP.	
Lab I.D. Sample I.D.	G)RAB OR (C)OM CONTAINERS BROUNDWATER NASTEWATER SOIL DIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	Clerin
50 5	1 1 1	
53 56 18 ar		10
to pl of ZS	(: 11/6	1 1
27 11 11 12 4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ W. W WM
A C OF OF OF OF OS	0/01 : 1: 1: 1:	MA N W
client's exclusive rem ter cause whatsoever	any claim artisting whether based in contract or fort, shall be finited to the arrorat paid by fire cl or deemed waived unless made in writing and neorived by Caudinal within 30 deep after complete or deemed waived unless made in writing and neorived by claim.	pplicable
oresore among out of a reliable to the performance of services beau oresore among out of a reliable to the performance of services beau Refinquished: Date 11 Tipped	the dam is based upon any of the slove timed rate	Phone Result: No iAdd'l Phone #: Fax Result: No iAdd'l Fax #: REMARKS:
Relinquished By: Date: Delivered By: Circle One)	Temp. Sample Condition CHECKEP BY	

Page 62 of 65

.

Attn: City: State: Zip: Phone #: ICE / COOL OTHER: DO OTHER:	Address: Mill of the set
P.O. #: Company:	Justa Wright
BILL IO	Company Name: Conver JPhillips

Page 63 of 65

R

Page 65 of 65

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description: L1256173 08/29/2020 212C-MD-02250 James A #011 Release

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02250

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 1 of 84

Page 119 of 249

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page			1
Tc: Table of Contents			2
Ss: Sample Summary			4
Cn: Case Narrative			13
Sr: Sample Results			14
BH-1 (0-1) L1256173-01			14
BH-1 (2-3) L1256173-02			15
BH-1 (4-5) L1256173-03			16
BH-1 (6-7) L1256173-04			17
BH-1 (9-10) L1256173-05			18
BH-1 (14-15) L1256173-06			19
BH-1 (19-20) L1256173-07			20
BH-2 (0-1) L1256173-08			21
BH-2 (2-3) L1256173-09			22
BH-2 (4-5) L1256173-10			23
BH-2 (6-7) L1256173-11			24
BH-2 (9-10) L1256173-12			25
BH-2 (14-15) L1256173-13			26
BH-2 (19-20) L1256173-14			27
BH-2 (24-25) L1256173-15			28
BH-3 (0-1) L1256173-16			29
BH-3 (2-3) L1256173-17			30
BH-4 (0-1) L1256173-18			31
BH-4 (2-3) L1256173-19			32
BH-4 (4-5) L1256173-20			33
BH-5 (0-1) L1256173-21			34
BH-5 (2-3) L1256173-22			35
BH-5 (4-5) L1256173-23			36
BH-5 (6-7) L1256173-24			37
BH-5 (9-10) L1256173-25			38
BH-6 (0-1) L1256173-26			39
BH-6 (2-3) L1256173-27			40
BH-6 (4-5) L1256173-28			41
BH-6 (6-7) L1256173-29			42
BH-6 (9-10) L1256173-30			43
BH-7 (0-1) L1256173-31			44
BH-7 (2-3) L1256173-32			45
BH-7 (4-5) L1256173-33			46
BH-7 (6-7) L1256173-34			47
BH-7 (9-10) L1256173-35			48
naging: 4/8/2021 11:24:56 AM	PROJECT:	SDG:	DATE/TIME:

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

L1256173

.

PAGE: 2 of 84

Ср

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-8 (0-1) L1256173-36	49
BH-8 (2-3) L1256173-37	50
BH-8 (4-5) L1256173-38	51
BH-9 (0-1) L1256173-39	52
BH-9 (2-3) L1256173-40	53
BG-1 (0-1) L1256173-41	54
BG-1 (4-5) L1256173-42	55
BG-1 (6-7) L1256173-43	56
BG-1 (9-10) L1256173-44	57
Qc: Quality Control Summary	58
Total Solids by Method 2540 G-2011	58
Wet Chemistry by Method 300.0	63
Volatile Organic Compounds (GC) by Method 8015D/GRO	66
Volatile Organic Compounds (GC/MS) by Method 8260B	69
Semi-Volatile Organic Compounds (GC) by Method 8015	73
GI: Glossary of Terms	78
Al: Accreditations & Locations	79
Sc: Sample Chain of Custody	80

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39 PAGE: 3 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev122 of 249

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

eccenteu by OCD. 5/5/2021 5.12.10 1 m	SAMPLES		/IAR I		ONLL	AB. NAI 1689
BH-1 (0-1) L1256173-01 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538110	1	09/06/20 18:25	09/06/20 19:12	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	100	08/31/20 17:24	08/31/20 19:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/01/20 23:08	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 02:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1537627	1	09/04/20 11:03	09/05/20 00:47	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (2-3) L1256173-02 Solid			John Thurston	08/26/20 00:00	08/29/20 10	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538110	1	09/06/20 18:25	09/06/20 19:12	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	100	08/31/20 17:24	08/31/20 19:16	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/01/20 23:29	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 02:46	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1537627	1	09/04/20 11:03	09/05/20 00:21	JDG	Mt. Juliet, TN
BH-1 (4-5) L1256173-03 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538110	1	09/06/20 18:25	09/06/20 19:12	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	5	08/31/20 17:24	08/31/20 19:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/01/20 23:49	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 03:05	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 18:01	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 10:30	AEG	Mt. Juliet, TN
BH-1 (6-7) L1256173-04 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538110	1	09/06/20 18:25	09/06/20 19:12	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 19:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 00:10	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 03:24	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 18:15	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 10:43	AEG	Mt. Juliet, TN
BH-1 (9-10) L1256173-05 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
, , ,	_		_			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 19:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1.01	09/01/20 17:40	09/02/20 00:34	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 03:43	DWR	Mt. Juliet, TN
Volatile organic compounds (Colmo) by method 0200b				00/07/00 40 00	150	MAL LUISA TA
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 18:28	AEG	Mt. Juliet, TN

PROJECT: 212C-MD-02250

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 4 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev123 of 249

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

Received by OCD: 3/5/2021 3:12:10 PM	SAMPLE S	SUMN	/IARY		ONE	LAB. NA Page
BH-1 (14-15) L1256173-06 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 20:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 00:55	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 04:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 18:41	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 11:09	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
BH-1 (19-20) L1256173-07 Solid			John Thurston	08/26/20 00:00	08/29/20 10	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 20:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 01:21	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:40	09/02/20 04:22	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 18:54	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 11:22	AEG	Mt. Juliet, TN
BH-2 (0-1) L1256173-08 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	100	08/31/20 17:24	08/31/20 20:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG15356466	1	09/01/20 17:40	09/02/20 02:06	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/01/20 22:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8200B	WG1539086	1	09/07/20 02:10	09/07/20 19:07	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 18:00	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
BH-2 (2-3) L1256173-09 Solid			John Thurston	08/26/20 00:00	08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	100	08/31/20 17:24	08/31/20 21:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 02:27	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/01/20 22:46	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 82005	WG1539086	1	09/07/20 02:10	09/07/20 19:20	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1535086	1	09/07/20 02:10	09/08/20 11:48	AEG	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
BH-2 (4-5) L1256173-10 Solid		D:1 ::				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 21:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 02:47	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/01/20 23:05	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 19:33	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 12:01	AEG	Mt. Juliet, TN
A 0001017			6D.6			
Released to Imaging: 4/8/2021 11:24:56 AM	PROJECT:		SDG:		E/TIME:	
ConocoPhillips - Tetra Tech	212C-MD-02250		L1256173	09/15/	20 22:39	

Received by OCD: 3/5/2021 3:12:10 PM	SAMPLES	SUMN	/IARY		ONE L	AB. NA Page v	124 of 2	19
BH-2 (6-7) L1256173-11 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10		1	Ср
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	2	TC
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN	'	C
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 21:19	ELN	Mt. Juliet, TN	3	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 03:08	ACG	Mt. Juliet, TN	2	SS
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1536449 WG1539086	1 1	09/01/20 17:40 09/07/20 02:10	09/01/20 23:24 09/07/20 19:46	DWR AEG	Mt. Juliet, TN Mt. Juliet, TN	4	
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 12:14	AEG	Mt. Juliet, TN		Cn
BH-2 (9-10) L1256173-12 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10		6	Sr
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		λς
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN	- ⁷ G	SI
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 21:29	ELN	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 03:29	ACG	Mt. Juliet, TN	⁸ A	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/01/20 23:42	DWR	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 19:59	AEG	Mt. Juliet, TN	9	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 12:28	AEG	Mt. Juliet, TN		Sc
			Collected by	Collected date/time	Received da	te/time		
BH-2 (14-15) L1256173-13 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 21:57	ELN	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 03:49	ACG	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/02/20 00:01	DWR	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 20:12	AEG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 12:41	AEG	Mt. Juliet, TN		
BH-2 (19-20) L1256173-14 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10			
Method	Datab	Dilution						
method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1538113	1	09/06/20 01:01	09/06/20 01:18	KBC	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 22:06	ELN	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 04:10	ACG	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1536449 WG1539086	1 1	09/01/20 17:40 09/07/20 02:10	09/02/20 00:19 09/07/20 20:25	DWR AEG	Mt. Juliet, TN Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 12:53	AEG	Mt. Juliet, TN		
			Collected by John Thurston	Collected date/time	Received da			
BH-2 (24-25) L1256173-15 Solid				08/26/20 00:00	08/29/20 10		_	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 22:16	ELN	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536466 WG1536449	1 1	09/01/20 17:40 09/01/20 17:40	09/02/20 04:31 09/02/20 00:38	ACG DWR	Mt. Juliet, TN Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449 WG1539086	1	09/01/20 17:40	09/02/20 00:38	AEG	Mt. Juliet, TN Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 13:06	AEG	Mt. Juliet, TN		
Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech	PROJECT: 212C-MD-02250		SDG: L1256173		E/TIME: 20 22:39		PAGE: 6 of 84	•

BH-3 (0-1) L1256173-16 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 22:47	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 05:25	ACG	Mt. Juliet, TN
'olatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/02/20 00:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/07/20 20:51	AEG	Mt. Juliet, TN
semi-Volatile Organic Compounds (GC) by Method 8015	WG1539086	1	09/07/20 02:10	09/08/20 13:19	AEG	Mt. Juliet, TN
3H-3 (2-3) L1256173-17 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 22:56	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B	WG1536466 WG1536449	1 1	09/01/20 17:40 09/01/20 17:40	09/02/20 05:46 09/02/20 01:15	ACG DWR	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC/MS) by Method 82606	WG1536449 WG1539272	1	09/08/20 23:52	09/09/20 11:00	AEG	Mt. Juliet, TN Mt. Juliet, TN
	1101000272		50, 50, E0 E0.0E	55,557 <u>2</u> 0 11.00	120	Junct, TN
			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
3H-4 (0-1) L1256173-18 Solid						
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1535090	5	08/31/20 17:24	08/31/20 23:19	ELN	Mt. Juliet, TN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 06:07	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/02/20 01:34	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 08:51	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (2-3) L1256173-19 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 23:29	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 06:27	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/02/20 01:53	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 09:32	JN	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
BH-4 (4-5) L1256173-20 Solid						
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1535090	1	08/31/20 17:24	08/31/20 23:40	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536466	1	09/01/20 17:40	09/02/20 06:53	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:40	09/02/20 02:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 09:48	JN	Mt. Juliet, TN

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 7 of 84

Received by OCD: 3/5/2021 3:12:10 PM	SAMPLE S	SUMN	IARY		ONE L	AB. NA Page
BH-5 (0-1) L1256173-21 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received dat 08/29/20 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	08/31/20 22:07	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 06:44	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:29	09/02/20 02:31	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 13:03	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1540114	1	09/10/20 21:06	09/11/20 02:24	AEG	Mt. Juliet, TN
3H-5 (2-3) L1256173-22 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received dat 08/29/20 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solide by Mothod 2540 C 2011		1	date/time	date/time	KDC	Mt Indian Th
Fotal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO	WG1535091 WG1536522	1	08/31/20 15:43 09/01/20 17:29	08/31/20 22:41 09/02/20 07:07	ELN DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536522 WG1536449	1 1	09/01/20 17:29	09/02/20 07:07	DWR	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC/MS) by Method 82608	WG1536449 WG1539272	1	09/01/20 17:29	09/02/20 02:49	JN	Mt. Juliet, TN Mt. Juliet, TN
enn volutie organie compounds (oc) by method 6015	WO100927Z	I	00100120 20.02	03/03/20 10.02	IIL	wit. Juliët, TN
			Collected by	Collected date/time	Received dat	te/time
3H-5 (4-5) L1256173-23 Solid			John Thurston	08/26/20 00:00	08/29/20 10:	:00
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	08/31/20 22:59	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 08:39	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:29	09/02/20 03:08	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 10:15	JN	Mt. Juliet, TN
3H-5 (6-7) L1256173-24 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received dat 08/29/20 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Fotal Solids by Method 2540 G-2011	WG1538114	1	09/06/20 00:42	09/06/20 00:42	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	08/31/20 23:16	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 09:22	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1536449 WG1539272	1	09/01/20 17:29	09/02/20 03:27	DWR JN	Mt. Juliet, TN
enn-voiaine organic compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 10:28	ИС	Mt. Juliet, TN
BH-5 (9-10) L1256173-25 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received dat 08/29/20 10:	
Method	Batch	Dilution	Proparation	Analysis	Analyst	location
		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	08/31/20 23:34	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 09:57	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:29	09/02/20 03:46	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 10:42	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 8 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev127 of 249

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-6 (0-1) L1256173-26 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	08/31/20 23:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 10:20	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:29	09/02/20 04:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	50	09/08/20 23:52	09/09/20 15:16	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-6 (2-3) L1256173-27 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 00:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 10:43	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536449	1	09/01/20 17:29	09/02/20 04:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 13:32	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1540114	1	09/10/20 21:06	09/11/20 02:37	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-6 (4-5) L1256173-28 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 01:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 11:06	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536422	1	09/01/20 17:29	09/02/20 11:02	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 13:46	AEG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1540114	1	09/10/20 21:06	09/11/20 02:50	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-6 (6-7) L1256173-29 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 01:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 11:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536422	1	09/01/20 17:29	09/02/20 11:22	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 11:36	JN	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
BH-6 (9-10) L1256173-30 Solid	Patch	Dilution				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 01:36	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 11:52	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:29	09/02/20 04:41	DWR	Mt. Juliet, TN
				09/09/20 11:17	JN	Mt. Juliet, TN

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02250

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 9 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev128 of 249

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-7 (0-1) L1256173-31 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 02:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536522	1	09/01/20 17:29	09/02/20 12:15	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:29	09/02/20 05:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/14/20 08:44	JN	Mt. Juliet, TN
BH-7 (2-3) L1256173-32 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
include	Baten	Dilation	date/time	date/time	/ maryse	Location
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 02:45	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 06:50	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536450	1	09/01/20 17:29	09/02/20 05:19	DWR	Mt. Juliet, TM
Semi-Volatile Organic Compounds (GC/MS) by Method 82008	WG1539272	1	09/08/20 23:52	09/09/20 12:10	JN	Mt. Juliet, TN
			0		D	
BH-7 (4-5) L1256173-33 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method	Daten	Dilution	date/time	date/time	Andiyst	LUCATION
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 03:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG15356524	1	09/01/20 17:29	09/02/20 07:11	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 09:10	JHH	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 12:23	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-7 (6-7) L1256173-34 Solid			John Thurston	08/26/20 00:00	08/29/20 10	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1538116	1	09/05/20 23:55	09/06/20 00:41	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 03:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 07:32	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 09:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 12:36	JN	Mt. Juliet, Th
BH-7 (9-10) L1256173-35 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 03:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 07:52	ACG	Mt. Juliet, TN
	WG1536658	1	09/01/20 17:29	09/02/20 09:49	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B		•				

PROJECT: 212C-MD-02250

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 10 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev129 of 249

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

International Control (Control (Contro) (Control (Control (Contro) (Contro) (Contro) (Co	BH-8 (0-1) L1256173-36 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10	
With Display by Method 2000 With Sign 50 by Method 2000 With Sign 5254 1 09/02/01 729 09/02/01 020 Link Mit Lunk Volatile Organic Compounds (GC) by Method 2050 With Sign 5254 1 09/02/01 729	Method	Batch	Dilution	-		Analyst	Location
Valuatic Drigenic Compounds (CC) by Method 8015BC8D WGI353552 1 050102 07.29 060202 07.39 AEG ML. Luiet, WGI3535558 Semi-Valuatile Organic Compounds (CC) by Method 8015 WGI353577 1 050102 07.29 060202 01.08 J#H Mt. Juliet, WGI353577 050102 07.29 0602020 10.08 J#H Mt. Juliet, WGI353577 050102 07.29 0602020 01.08 J#H Mt. Juliet, WGI353577 050102 07.29 0602020 01.08 J#H Mt. Juliet, WGI353577 050102 07.29 0602020 02.83 Aradysis, Aradysis, Aradysis, Aradysis, Method Aradysis, Aradysis, Method Aradysis, WGI353570 Aradysis, Million Aradysis, Method Aradysis, Million Aradysis, Aradysis, Million Aradysis, Million Aradysis, Aradysis, Aradysis, Million Aradysis, Million	Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, TN
Violatic Organic Compounds (6C/MS) by Method 8208 WEIS38658 1 090102 17.29 090220 10.08 JH ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 805 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 805 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 805 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, ML Julie1, Semi-Volatile Organic Compounds (GG) by Method 8050 ML Julie1, Semi-Volatile Organic Compounds (GG	Wet Chemistry by Method 300.0	WG1535091	10	08/31/20 15:43	09/01/20 04:30	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG153272 1 09/08/20 23:2 09/09/20 13:19 A.EG M.L.Juliet, Juliet, Juli	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 08:13	ACG	Mt. Juliet, TN
BH-8 (2-3) L1256173-37 Solid Collected by John Thurston Collected by G87520 00.00 Received datetime B82920 10:00 Mithod Batch Dilution Preparation datetime Analysis Analysis Location datetime Tatal Solids by Method 300.0 Wef139789 1 0905/20 254 KBC ML Julici, Use Chemistry by Method 300.0 Wef139789 1 0905/20 254 KBC ML Julici, Use Chemistry by Method 300.0 Wef139789 1 0905/20 254 KBC ML Julici, Use Chemistry by Method 300.0 Wef139879 1 0905/20 256 09072/20 834 AGS ML Julici, Use Chemistry by Method 300.0 Wef139873 1 09072/20 258 09072/20 18:5 TJD ML Julici, ML Julici, Use Chemistry by Method 300.0 Wef139873 1 09072/20 258 09072/20 258 09072/20 258 09072/20 252 ELN ML Julici, Mu Julici, Use Chemistry by Method 300.0 Wef139873 1 09072/20 258 09072/20 258 09072/20 258 09072/20 252 ELN ML Julici, Mu Julici, Use Chemistry by Method 300.0 Wef139873 1 09072/20 258 09072/20 252 ELN ML Julici, Mu Julici, Use Chemistry by Method 300.0 Wef139871	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 10:08	JHH	Mt. Juliet, TN
BH-8 (2-3) L1256173-37 Solid Jaim Thurston 0926/20 00:00 09229/20 10:00 Method Batch Dilution Preparation databiline Analysis databiline Analysis dat	Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539272	1	09/08/20 23:52	09/09/20 13:19	AEG	Mt. Juliet, TN
Mathad Batch Dilution Preparation date/time Analysis date/time Analysis date/time Total Solids by Method 300.0 WG1538153 1 030570 2258 0905220 2234 KRC Mt. Juliet, Vicial Coganic Compounds (GC) by Method 3005D/GRO WG1538554 1 0301/20 17:29 0900/20 02.6 ACG Mt. Juliet, Mt. Juliet, Vicial Coganic Compounds (GC) by Method 8015 WG1538554 1 0301/20 17:29 0900/20 02.6 JiH Mt. Juliet, Mt. Juliet, Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 030920 06:42 0909/20 10:55 T/D Mt. Juliet, Mt. Juliet, John Thurston Mt. Juliet, 03022/20 10:00 Received date/time 0322/20 10:00 03022/20 10:00 BH-8 (4-5) L1256173-38 Solid Batch Dilution John Thurston Preparation date/time date/time Analysis date/time date/time Analysis date/time	BH-8 (2-3) 1256173-37 Solid						
Total Solids by Method 2540 6-2011 WG (Tissis) by Method 300.0 WG (Tissis) by Method 2540 6-2011 Method 2540 6-2011 Collected data/time Collected Jy John Thurston Collected Jy JOH (Till 200.00.00 Collected Jy JOH (Till 200.00.00.00.00.00.00.00.00.00.00.00.00.		Batch	Dilution	-	-	Analyst	Location
Wet Chemistry by Method 300.0 WG1535091 1 06/31/20 15:43 09/01/20 06:47 ELN Mt. Juliet. Volatile Organic Compounds (GC) by Method 80150/GR0 WG1536524 1 09/01/20 17:29 09/02/20 10:26 Mt. Juliet. Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536273 1 09/09/20 16:15 TJD Mt. Juliet. BH-8 (4-5) L1256173-38 Solid Ogn/020 16:15 TJD Mt. Juliet. BH-8 (4-5) L1256173-38 Solid Ogn/020 16:15 TJD Mt. Juliet. Wet Chemistry by Method 300.0 WG15365091 09/07/20 16:26 Collected date/time 0gn/02/20 06:42 Ogn/02/20 08:34 AR8 Mt. Juliet. Volatile Organic Compounds (GC) by Method 80150/GR0 WG15355091 09/07/20 07:29 Ogn/02/20 08:44 AGC Mt. Juliet. Volatile Organic Compounds (GC) by Method 80150/GR0 WG1536524 1 Ogn/02/20 06:42 Ogn/02/20 08:44 AGC Mt. Juliet. Volatile Organic Compounds (GC) by Method 80150/GR0 WG1536524 1 Ogn/02/20 06:42 Ogn/02/20 08:54 AGC Mt. Juliet. <	Total Solids by Method 2540 G-2011	WG1538139	1			KBC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 08:34 AGG Mt. Juliet, Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536524 1 09/01/20 17:29 09/02/20 08:34 AGG Mt. Juliet, BH-8 (4-5) L1256173-38 Solid Collected Date/Time Received date/Time Received date/Time 08/26/20 00:00 08/27/20 10:00 08/27/20 10:00 Method Batch Dilution Preparation Analysis Analysis Analysis Analysis Location Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:38 09/05/20 23:34 KBC Mt. Juliet, Volatile Organic Compounds (GC) by Method 805D/GRO WG1538539 1 09/07/20 05:42 BI/M Mt. Juliet, Volatile Organic Compounds (GC) by Method 805D/GRO WG1538527 1 09/07/20 06:42 09/09/20 14:20 TJD Mt. Juliet, Semi-Volatile Organic Compounds (GC) by Method 8015 WG1538273 1 09/07/20 06:42 09/09/20 14:20 TJD Mt. Juliet, BH-9 (0-1) L1	-						Mt. Juliet, TN
Volatile Organic Compounds (GCMS) by Method 8260B WG153665B 1 09/01/20 17:29 09/02/20 10:26 JHH Mt. Juliet, Mt. Juliet, J							Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 0642 09/09/20 1615 LD Mt. Juliet, ' BH-8 (4-5) L1256173-38 Solid Collected by John Thurston Collected date/time date/time Collected date/time date/time Analysis Analysis Location date/time Total Solids by Method 2540 G-2011 WG1538159 1 09/07/20 72-25 80 09/07/20 22-34 KBC Mt. Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1536524 1 09/07/20 17-29 09/07/20 05-22 ELN Mt. Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1536524 1 09/07/20 17-29 09/07/20 05-32 ELN Mt. Juliet, ' Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536528 1 09/07/20 17-29 09/07/20 17-29 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20 17-20 09/07/20							Mt. Juliet, T
BH-8 (4-5) L1256173-38 Solid O8/26/20 0.00 08/29/20 0.00 Method Batch Dilution Preparation date/time Analysis Analysis Analysis Analysis Location Total Solids by Method 2540 G-2011 WG153819 1 09/05/20 22:34 KBC Mt. Juliet, it Wet Chemistry by Method 300.0 WG15385091 1 09/01/20 05:22 ELN Mt. Juliet, it Volatile Organic Compounds (GC) by Method 8015D/GR0 WG1536528 1 09/01/20 07:29 09/02/20 08:42 09/09/20 1.00 Mt. Juliet, it Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536528 1 09/01/20 07:29 09/02/20 1.00 Mt. Juliet, it BH-9 (0-1) L1256173-39 Solid Mt. Juliet, it Juliet, it Mt. Juliet, it Juliet, it Mt. Juliet, it Mt. Juliet, it Juliet, it Juliet, it Juliet, it Mt. Juliet, it Juliet, it<							Mt. Juliet, TN
Method Batch Dilution Preparation date/time Analysis Analysis Analysis Analysis Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536591 1 09/07/20 15:43 09/07/20 05:52 ELN Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536568 1 09/07/20 17:29 09/02/20 10:45 JHH Mt. Juliet, Semi-Volatile Organic Compounds (GC) by Method 8015 WG1538273 1 09/09/20 06:42 09/09/20 14:20 TJD Mt. Juliet, BH-9 (O-1) L1256173-39 Solid Solid Preparation date/time Analysis Analysis Analysis Location Method Batch Dilution Preparation date/time Analysis Analysis Location Method Batch Dilution Preparation date/time Analysis Analysis Location Volatile Organic Compounds (GC) by Method 8015D/GRO WG1538513 1 09/07/20 17:29 09/07/20 05:39 ELN Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WG1538521 09/01/20 17:29 09/01/20 05:39 ELN Mt. Juliet, Volatile Orga	BH-8 (4-5) L1256173-38 Solid						
Total Solids by Method 2540 6-2011 WGI538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WGI535654 1 09/01/20 05:22 ELN Mt. Juliet, Volatile Organic Compounds (GC/MS) by Method 8260B WGI536554 1 09/01/20 07:29 09/02/20 08:54 A.CG Mt. Juliet, Semi-Volatile Organic Compounds (GC/MS) by Method 8260B WGI536658 1 09/09/20 06:42 09/09/20 10:45 J.HH Mt. Juliet, BH-9 (0-1) L1256173-39 SOIid Collected by Collected date/time Received date/time 08/29/20 10:00 08/29/20 10:00 Method Batch Dilution Preparation Analysis Analysis Location Total Solids by Method 2540 G-2011 WGI538139 1 09/05/20 22:58 09/02/20 10:30 ELN Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WGI538524 1 09/01/20 17:29 09/02/20 10:43 H.H Mt. Juliet, Wet Chemistry by Method 300.0 WGI536554 1 09/01/20 07:29 09/02/	· · ·	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:22 ELN Mt. Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 08:54 ACG Mt. Juliet, ' Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536528 1 09/01/20 06:42 09/09/20 14:20 TJD Mt. Juliet, ' BH-9 (0-1) L1256173-39 Solid Collected by Collected date/time Received date/time Received date/time Analysis Analysis Analysis Analysis Location date/time Batch Dilution Preparation Analysis Analysis Mt. Juliet, ' Volatile Organic Compounds (GC) by Method 8015D/GRO WG1535091 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, ' Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536554 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, ' Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536554 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, ' Semi-Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536554 09/09/20 10:40 <td></td> <td></td> <td></td> <td>date/time</td> <td>date/time</td> <td></td> <td></td>				date/time	date/time		
Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1536524 1 09/01/20 17:29 09/02/20 08:54 ACG Mt: Juliet, ' Valatile Organic Compounds (GC/MS) by Method 8015 WG1536658 1 09/01/20 17:29 09/02/20 10:45 JHH Mt: Juliet, ' BH-9 (0-1) L1256173-39 Solid Collected by Collected date/time Received date/time Received date/time Method Batch Dilution Preparation Analysis Analysis Analysis Location Total Solids by Method 300.0 WG1536524 1 09/01/20 17:29 09/02/20 00:00 08/29/20 10:00 Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1538139 1 09/01/20 17:29 09/02/20 3:34 KBC Mt: Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GR0 WG15385091 09/01/20 17:29 09/02/20 05:15 ACG Mt: Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1538524 09/01/20 17:29 09/02/20 05:15 ACG Mt: Juliet, ' Valatile Organic Compounds (GC) by Method 8015D/GR0 WG1538524 09/01/20 17:29 09/02/20 05:15 ACG Mt: Juliet, ' Valatile Organic Compounds (GC) by Method 8015	Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 10:45 JHH Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:20 TJD Mt. Juliet, 1 BH-9 (0-1) L1256173-39 Solid Collected by Collected date/time Received date/time 08/26/20 00:00 08/29/20 10:0 Method Batch Dilution Preparation Analysis Analysis Analysis Location Vet Chemistry by Method 300.0 WG1538139 1 09/01/20 17:29 09/01/20 07:39 ELN Mt. Juliet, 1 Volatile Organic Compounds (GC/MS) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, 1 Volatile Organic Compounds (GC/MS) by Method 8015 WG1536558 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC) by Method 8015 WG153658 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, 1 Volatile Organic Compounds (GC/MS) by Method 8015 WG153657 1 09/01/20 17:29 09/02/20 14:33 TJD Mt. Julie	Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 05:22	ELN	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:20 TJD Mt. Juliet, 1 BH-9 (0-1) L1256173-39 Solid Collected by John Thurston Collected date/time 08/26/20 00:00 Received date/time 08/26/20 00:00 Received date/time 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analysi Location date/time Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 1 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC/MS) by Method 8260B WG1536524 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC by Method 8015 WG1538273 1 09/09/20 16:42 09/09/20 14:33 TJD Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC by Method 8015 WG1538273 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, 1 BH-9 (2-3) L1256173-40 Solid Els	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 08:54	ACG	Mt. Juliet, TI
BH-9 (0-1) L1256173-39 Solid Collected by John Thurston Collected date/time 08/26/20 00:00 Received date/time 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analysi Location Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, i Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, i Volatile Organic Compounds (GC/MS) by Method 8015D/GRO WG153658 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, i Semi-Volatile Organic Compounds (GC/MS) by Method 8015D WG153658 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, i BH-9 (2-3) L1256173-40 Solid WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, i Method Batch Dilution Preparation date/time Analysis Analysis Analysi Location date/time Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 10:45	JHH	Mt. Juliet, TI
BH-9 (0-1) L1256173-39 Solid John Thurston 08/26/20 00:00 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analysis Analysis Location date/time Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, T Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 07:29 09/02/20 09:15 ACG Mt. Juliet, T Volatile Organic Compounds (GC/MS) by Method 8015 WG1536524 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, T Semi-Volatile Organic Compounds (GC) by Method 8015 WG1536527 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, T BH-9 (2-3) L1256173-40 Solid Solid Dilution Preparation date/time Analysis Analysi Location date/time BH-9 (2-3) L1256173-40 Solid Solid Dilution Preparation date/time Analysis Analysis Location date/time Total Solids by Method 2540 G-2011 WG1538139	Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539273	1	09/09/20 06:42	09/09/20 14:20	TJD	Mt. Juliet, TI
date/time date/time Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 1 Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:39 ELN Mt. Juliet, 1 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, 1 Volatile Organic Compounds (GC) by Method 8015D/GRO WG153658 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, 1 Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, 1 BH-9 (2-3) L1256173-40 Solid WG1538139 1 09/05/20 22:58 09/05/20 20:00 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analysis Analysis Analysis Mt. Juliet, 1 Volatile Organic Compounds (GC) by Method 300.0 WG1535091 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 1 Volatile Organic Comp	BH-9 (0-1) L1256173-39 Solid			-			
Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:39 ELN Mt. Juliet, M	Method	Batch	Dilution			Analyst	Location
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:15 ACG Mt. Juliet, T Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, T Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, T BH-9 (2-3) L1256173-40 Solid Volatile Organic Compounds (GC) by Method 8015 Batch Dilution Preparation date/time date/time 08/29/20 10:00 08/29/20 10:00 08/29/20 10:00 Method Batch Dilution Preparation date/time date/time Malysis Analysis Analysis Location date/time Total Solids by Method 350.0 WG1536524 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, T Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 15:43 09/01/20 05:57 ELN Mt. Juliet, T Volatile Organic Compounds (GC/MS) by Method 8260B WG1536558 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, T	Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:04 JHH Mt. Juliet, T Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, T BH-9 (2-3) L1256173-40 Solid Collected by Collected date/time 08/29/20 10:00 08/29/20 10:00 08/29/20 10:00 Method Batch Dilution Preparation Analysis Analysis Analysis Location Total Solids by Method 300.0 WG1536591 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, T Volatile Organic Compounds (GC/MS) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, T	Wet Chemistry by Method 300.0	WG1535091	1	08/31/20 15:43	09/01/20 05:39	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG1539273 1 09/09/20 06:42 09/09/20 14:33 TJD Mt. Juliet, 1 BH-9 (2-3) L1256173-40 Solid Collected by John Thurston Collected date/time 08/26/20 00:00 Received date/time 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analyst Location Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 1 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, 1 Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet, 1	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 09:15	ACG	Mt. Juliet, Ti
BH-9 (2-3) L1256173-40 SolidCollected by John ThurstonCollected date/time 08/26/20 00:00Received date/time 08/29/20 10:00MethodBatchDilutionPreparation date/timeAnalysisAnalysisLocation date/timeTotal Solids by Method 2540 G-2011WG1538139109/05/20 22:5809/05/20 23:34KBCMt. Juliet, T Volatile Organic Compounds (GC) by Method 8015D/GROWG1536524109/01/20 17:2909/02/20 09:36ACGMt. Juliet, T Volatile, TVolatile Organic Compounds (GC/MS) by Method 8260BWG1536658109/01/20 17:2909/02/20 11:23JHHMt. Juliet, T	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 11:04	JHH	Mt. Juliet, Tl
BH-9 (2-3) L1256173-40 Solid John Thurston 08/26/20 00:00 08/29/20 10:00 Method Batch Dilution Preparation date/time Analysis Analysis Location Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 7 Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:57 ELN Mt. Juliet, 7 Volatile Organic Compounds (GC/MS) by Method 8260B WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, 7	Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539273	1	09/09/20 06:42	09/09/20 14:33	TJD	Mt. Juliet, TN
date/time date/time Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, 7 Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:57 ELN Mt. Juliet, 7 Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, 7 Volatile Organic Compounds (GC/MS) by Method 8260B WG153658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet, 7	BH-9 (2-3) L1256173-40 Solid						
Total Solids by Method 2540 G-2011 WG1538139 1 09/05/20 22:58 09/05/20 23:34 KBC Mt. Juliet, Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:57 ELN Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet,	Method	Batch	Dilution	-	-	Analyst	Location
Wet Chemistry by Method 300.0 WG1535091 1 08/31/20 15:43 09/01/20 05:57 ELN Mt. Juliet, Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet,		Woreasta	4			1/00	No. 1
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1536524 1 09/01/20 17:29 09/02/20 09:36 ACG Mt. Juliet, Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet,							
Volatile Organic Compounds (GC/MS) by Method 8260B WG1536658 1 09/01/20 17:29 09/02/20 11:23 JHH Mt. Juliet,							
							Mt. Juliet, Tr Mt. Juliet, Th

PROJECT: 212C-MD-02250

SDG: L1256173 DATE/TIME: 09/15/20 22:39

.

PAGE: 11 of 84

SAMPLE SUMMARY

ONE LAB. NAPagev130 of 249

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BG-1 (0-1) L1256173-41 Solid			John Thurston	08/26/20 00:00	08/29/20 10:	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535329	1	08/31/20 15:39	08/31/20 23:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 09:56	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 11:42	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539273	1	09/09/20 06:42	09/09/20 16:41	TJD	Mt. Juliet, TN
BG-1 (4-5) L1256173-42 Solid			Collected by John Thurston	Collected date/time 08/26/20 00:00	Received da 08/29/20 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1538139	1	09/05/20 22:58	09/05/20 23:34	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1535139	1	08/31/20 15:39	08/31/20 23:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1536524	1	09/01/20 17:29	09/02/20 10:17	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536658	1	09/01/20 17:29	09/02/20 12:01	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1539273	1	09/09/20 06:42	09/09/20 14:46	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BG-1 (6-7) L1256173-43 Solid			John Thurston	08/26/20 00:00	08/29/20 10:	:00
BG-1 (6-7) L1256173-43 Solid Method	Batch	Dilution	John Thurston Preparation date/time	08/26/20 00:00 Analysis date/time	08/29/20 10: Analyst	Location
	Batch WG1538139	Dilution 1	Preparation	Analysis		Location
Method Total Solids by Method 2540 G-2011			Preparation date/time	Analysis date/time	Analyst	Location Mt. Juliet, TN
Method	WG1538139	1	Preparation date/time 09/05/20 22:58	Analysis date/time 09/05/20 23:34	Analyst KBC	Location Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1538139 WG1535329	1	Preparation date/time 09/05/20 22:58 08/31/20 15:39	Analysis date/time 09/05/20 23:34 08/31/20 23:48	Analyst KBC ELN	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1538139 WG1535329 WG1536524	1 1 1	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38	Analyst KBC ELN ACG	
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1538139 WG1535329 WG1536524 WG1536658	1 1 1 1	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20	Analyst KBC ELN ACG JHH	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1538139 WG1535329 WG1536524 WG1536658	1 1 1 1	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29 09/09/20 06:42 Collected by	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20 09/09/20 14:59 Collected date/time	Analyst KBC ELN ACG JHH TJD Received da	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BG-1 (9-10) L1256173-44 Solid Method	WG1538139 WG1535329 WG1536524 WG1536658 WG1539273	1 1 1 1	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29 09/09/20 06:42 Collected by John Thurston Preparation	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20 09/09/20 14:59 Collected date/time 08/26/20 00:00 Analysis	Analyst KBC ELN ACG JHH TJD Received da 08/29/20 10	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time :00
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BG-1 (9-10) L1256173-44 Solid Method Total Solids by Method 2540 G-2011	WG1538139 WG1535329 WG1536524 WG1536658 WG1539273 Batch	1 1 1 1 Dilution	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29 09/09/20 06:42 Collected by John Thurston Preparation date/time	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20 09/09/20 14:59 Collected date/time 08/26/20 00:00 Analysis date/time	Analyst KBC ELN ACG JHH TJD Received da 08/29/20 10: Analyst	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time :00 Location Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BG-1 (9-10) L1256173-44 Solid	WG1538139 WG1535329 WG1536524 WG1536658 WG1539273 Batch WG1538139	1 1 1 1 1 Dilution	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29 09/09/20 06:42 Collected by John Thurston Preparation date/time 09/05/20 22:58	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20 09/09/20 14:59 Collected date/time 08/26/20 00:00 Analysis date/time 09/05/20 23:34	Analyst KBC ELN ACG JHH TJD Received da 08/29/20 10: Analyst KBC	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Location Mt. Juliet, TN Mt. Juliet, TN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 BG-1 (9-10) L1256173-44 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1538139 WG1535329 WG1536524 WG1536658 WG1539273 Batch WG1538139 WG1538139 WG1535329	1 1 1 1 1 Dilution	Preparation date/time 09/05/20 22:58 08/31/20 15:39 09/01/20 17:29 09/01/20 17:29 09/09/20 06:42 Collected by John Thurston Preparation date/time 09/05/20 22:58 08/31/20 15:39	Analysis date/time 09/05/20 23:34 08/31/20 23:48 09/02/20 10:38 09/02/20 12:20 09/09/20 14:59 Collected date/time 08/26/20 00:00 Analysis date/time 09/05/20 23:34 09/01/20 00:06	Analyst KBC ELN ACG JHH TJD Received da 08/29/20 10: Analyst KBC ELN	Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time :00

PROJECT: 212C-MD-02250

SDG: L1256173

D 09/

DATE/TIME: 09/15/20 22:39 PAGE: 12 of 84

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 13 of 84

Received by PCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 01

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte		%			date / time		1	2
Total Solids		90.9		1	09/06/2020 19:12	WG1538110		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16500		1010	2200	100	08/31/2020 19:05	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

F	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
	ma/ka	Quanner	ma/ka	mg/kg	Dilution	date / time	Butch
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/01/2020 23:08	WG1536466
(5)	102			77.0-120		09/01/2020 23:08	WG1536466

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000560	0.00120	1	09/02/2020 02:27	WG1536450
Toluene	U		0.00156	0.00600	1	09/02/2020 02:27	WG1536450
Ethylbenzene	U		0.000884	0.00300	1	09/02/2020 02:27	WG1536450
Total Xylenes	U		0.00106	0.00780	1	09/02/2020 02:27	WG1536450
(S) Toluene-d8	105			75.0-131		09/02/2020 02:27	WG1536450
(S) 4-Bromofluorobenzene	95.0			67.0-138		09/02/2020 02:27	WG1536450
(S) 1,2-Dichloroethane-d4	99.7			70.0-130		09/02/2020 02:27	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.80		1.77	4.40	1	09/05/2020 00:47	WG1537627
C28-C40 Oil Range	13.0		0.301	4.40	1	09/05/2020 00:47	<u>WG1537627</u>
(S) o-Terphenyl	75.4			18.0-148		09/05/2020 00:47	WG1537627

SDG: L1256173

Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

-						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	88.2		1	09/06/2020 19:12	<u>WG1538110</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13700		1040	2270	100	08/31/2020 19:16	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Bildtion	date / time	buten	
TPH (GC/FID) Low Fraction	U		0.0246	0.113	1	09/01/2020 23:29	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		09/01/2020 23:29	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000592	0.00127	1	09/02/2020 02:46	<u>WG1536450</u>
Toluene	U		0.00165	0.00634	1	09/02/2020 02:46	<u>WG1536450</u>
Ethylbenzene	U		0.000934	0.00317	1	09/02/2020 02:46	WG1536450
Total Xylenes	U		0.00112	0.00824	1	09/02/2020 02:46	WG1536450
(S) Toluene-d8	103			75.0-131		09/02/2020 02:46	WG1536450
(S) 4-Bromofluorobenzene	92.8			67.0-138		09/02/2020 02:46	WG1536450
(S) 1,2-Dichloroethane-d4	100			70.0-130		09/02/2020 02:46	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.05	J	1.82	4.53	1	09/05/2020 00:21	<u>WG1537627</u>
C28-C40 Oil Range	3.59	J	0.311	4.53	1	09/05/2020 00:21	<u>WG1537627</u>
(S) o-Terphenyl	65.1			18.0-148		09/05/2020 00:21	WG1537627

SDG: L1256173

Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 03

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	2						I Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte		%			date / time		2
Total Solids		91.9		1	09/06/2020 19:12	WG1538110	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1080		50.0	109	5	08/31/2020 19:38	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/01/2020 23:49	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		09/01/2020 23:49	<u>WG1536466</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000549	0.00118	1	09/02/2020 03:05	<u>WG1536450</u>
Toluene	U		0.00153	0.00588	1	09/02/2020 03:05	<u>WG1536450</u>
Ethylbenzene	U		0.000866	0.00294	1	09/02/2020 03:05	WG1536450
Total Xylenes	U		0.00103	0.00764	1	09/02/2020 03:05	<u>WG1536450</u>
(S) Toluene-d8	104			75.0-131		09/02/2020 03:05	WG1536450
(S) 4-Bromofluorobenzene	92.4			67.0-138		09/02/2020 03:05	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	100			70.0-130		09/02/2020 03:05	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.35	1	09/07/2020 18:01	<u>WG1539086</u>
C28-C40 Oil Range	U		0.298	4.35	1	09/08/2020 10:30	<u>WG1539086</u>
(S) o-Terphenyl	70.6			18.0-148		09/07/2020 18:01	WG1539086
(S) o-Terphenyl	53.6			18.0-148		09/08/2020 10:30	<u>WG1539086</u>

SDG: L1256173

Received by PCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 04

ONE LAB. NAPagev135 of 209

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

		Result	Qualifier	Dilution	Analysis	Batch	Cp	2
Analy	te	%			date / time		2	_
Total	Solids	90.1		1	09/06/2020 19:12	<u>WG1538110</u>	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	385		10.2	22.2	1	08/31/2020 19:49	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/02/2020 00:10	WG1536466
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2020 00:10	WG1536466

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000569	0.00122	1	09/02/2020 03:24	WG1536450
Toluene	U		0.00158	0.00609	1	09/02/2020 03:24	WG1536450
Ethylbenzene	U		0.000898	0.00305	1	09/02/2020 03:24	WG1536450
Total Xylenes	U		0.00107	0.00792	1	09/02/2020 03:24	WG1536450
(S) Toluene-d8	103			75.0-131		09/02/2020 03:24	WG1536450
(S) 4-Bromofluorobenzene	94.2			67.0-138		09/02/2020 03:24	WG1536450
(S) 1,2-Dichloroethane-d4	100			70.0-130		09/02/2020 03:24	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/07/2020 18:15	<u>WG1539086</u>
C28-C40 Oil Range	U		0.304	4.44	1	09/08/2020 10:43	<u>WG1539086</u>
(S) o-Terphenyl	68.3			18.0-148		09/07/2020 18:15	<u>WG1539086</u>
(S) o-Terphenyl	50.9			18.0-148		09/08/2020 10:43	<u>WG1539086</u>

SDG: L1256173

Received by 10GD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 05 L1256173

ONE LAB. NAPage 136 of 249

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.5		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	263		9.84	21.4	1	08/31/2020 19:59	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamer	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1.01	09/02/2020 00:34	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		09/02/2020 00:34	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000532	0.00114	1	09/02/2020 03:43	<u>WG1536450</u>
Toluene	U		0.00148	0.00570	1	09/02/2020 03:43	<u>WG1536450</u>
Ethylbenzene	U		0.000840	0.00285	1	09/02/2020 03:43	WG1536450
Total Xylenes	U		0.00100	0.00741	1	09/02/2020 03:43	<u>WG1536450</u>
(S) Toluene-d8	104			75.0-131		09/02/2020 03:43	WG1536450
(S) 4-Bromofluorobenzene	94.0			67.0-138		09/02/2020 03:43	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	98.5			70.0-130		09/02/2020 03:43	<u>WG1536450</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	09/07/2020 18:28	<u>WG1539086</u>
C28-C40 Oil Range	U		0.293	4.28	1	09/08/2020 10:56	<u>WG1539086</u>
(S) o-Terphenyl	134			18.0-148		09/07/2020 18:28	<u>WG1539086</u>
(S) o-Terphenyl	94.0			18.0-148		09/08/2020 10:56	<u>WG1539086</u>

SDG: L1256173

Received by OSD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 06 L1256173

⁵Sr

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	87.3		1	09/06/2020 01:18	WG1538113	T	Гс

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	339		10.5	22.9	1	08/31/2020 20:11	WG1535090	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time		
TPH (GC/FID) Low Fraction	U		0.0249	0.115	1	09/02/2020 00:55	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2020 00:55	<u>WG1536466</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000603	0.00129	1	09/02/2020 04:02	WG1536450
Toluene	U		0.00168	0.00645	1	09/02/2020 04:02	<u>WG1536450</u>
Ethylbenzene	U		0.000951	0.00323	1	09/02/2020 04:02	WG1536450
Total Xylenes	U		0.00114	0.00839	1	09/02/2020 04:02	<u>WG1536450</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 04:02	WG1536450
(S) 4-Bromofluorobenzene	94.0			67.0-138		09/02/2020 04:02	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	102			70.0-130		09/02/2020 04:02	<u>WG1536450</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.84	4.58	1	09/07/2020 18:41	<u>WG1539086</u>
C28-C40 Oil Range	U		0.314	4.58	1	09/08/2020 11:09	<u>WG1539086</u>
(S) o-Terphenyl	74.1			18.0-148		09/07/2020 18:41	WG1539086
(S) o-Terphenyl	53.5			18.0-148		09/08/2020 11:09	<u>WG1539086</u>

SDG: L1256173

Received by _QCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 07 L1256173

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.3		1	09/06/2020 01:18	<u>WG1538113</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemisti	ry by Method 300	0.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	405		10.7	23.2	1	08/31/2020 20:20	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0251	0.116	1	09/02/2020 01:21	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		09/02/2020 01:21	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000615	0.00132	1	09/02/2020 04:22	WG1536450
Toluene	U		0.00171	0.00659	1	09/02/2020 04:22	WG1536450
Ethylbenzene	U		0.000971	0.00329	1	09/02/2020 04:22	WG1536450
Total Xylenes	U		0.00116	0.00857	1	09/02/2020 04:22	WG1536450
(S) Toluene-d8	102			75.0-131		09/02/2020 04:22	WG1536450
(S) 4-Bromofluorobenzene	96.6			67.0-138		09/02/2020 04:22	WG1536450
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/02/2020 04:22	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.87	4.64	1	09/07/2020 18:54	<u>WG1539086</u>
C28-C40 Oil Range	U		0.318	4.64	1	09/08/2020 11:22	<u>WG1539086</u>
(S) o-Terphenyl	77.3			18.0-148		09/07/2020 18:54	<u>WG1539086</u>
(S) o-Terphenyl	60.4			18.0-148		09/08/2020 11:22	<u>WG1539086</u>

SDG: L1256173

Received by OCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00 SAMPLE RESULTS - 08

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.0		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11200		989	2150	100	08/31/2020 20:51	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quamer	mg/kg	mg/kg	Dilation	date / time	Baten	6
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	09/02/2020 02:06	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		09/02/2020 02:06	WG1536466	3

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000547	J	0.000537	0.00115	1	09/01/2020 22:27	<u>WG1536449</u>
Toluene	U		0.00150	0.00575	1	09/01/2020 22:27	<u>WG1536449</u>
Ethylbenzene	U		0.000848	0.00288	1	09/01/2020 22:27	WG1536449
Total Xylenes	U		0.00101	0.00748	1	09/01/2020 22:27	WG1536449
(S) Toluene-d8	102			75.0-131		09/01/2020 22:27	WG1536449
(S) 4-Bromofluorobenzene	109			67.0-138		09/01/2020 22:27	WG1536449
(S) 1,2-Dichloroethane-d4	113			70.0-130		09/01/2020 22:27	<u>WG1536449</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.84		1.73	4.30	1	09/07/2020 19:07	<u>WG1539086</u>
C28-C40 Oil Range	14.2		0.295	4.30	1	09/08/2020 18:00	<u>WG1539086</u>
(S) o-Terphenyl	79.5			18.0-148		09/07/2020 19:07	<u>WG1539086</u>
(S) o-Terphenyl	62.1			18.0-148		09/08/2020 18:00	<u>WG1539086</u>

SDG: L1256173

Received by 9CD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00 SAMPLE RESULTS - 09

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	88.0		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	18000		1050	2270	100	08/31/2020 21:01	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	buten	1
TPH (GC/FID) Low Fraction	U		0.0247	0.114	1	09/02/2020 02:27	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		09/02/2020 02:27	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000595	0.00127	1	09/01/2020 22:46	<u>WG1536449</u>
Toluene	U		0.00166	0.00637	1	09/01/2020 22:46	WG1536449
Ethylbenzene	U		0.000939	0.00318	1	09/01/2020 22:46	WG1536449
Total Xylenes	U		0.00112	0.00828	1	09/01/2020 22:46	WG1536449
(S) Toluene-d8	104			75.0-131		09/01/2020 22:46	WG1536449
(S) 4-Bromofluorobenzene	109			67.0-138		09/01/2020 22:46	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/01/2020 22:46	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.83	4.55	1	09/07/2020 19:20	<u>WG1539086</u>
C28-C40 Oil Range	1.94	J	0.311	4.55	1	09/08/2020 11:48	<u>WG1539086</u>
(S) o-Terphenyl	65.2			18.0-148		09/07/2020 19:20	WG1539086
(S) o-Terphenyl	47.4			18.0-148		09/08/2020 11:48	<u>WG1539086</u>

PROJECT: 212C-MD-02250

SDG: L1256173

Received by QCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 10 L1256173

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.1		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	995		10.1	21.9	1	08/31/2020 21:10	WG1535090		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.100.011	date / time	<u></u>	
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	09/02/2020 02:47	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		09/02/2020 02:47	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000558	0.00119	1	09/01/2020 23:05	<u>WG1536449</u>
Toluene	U		0.00155	0.00597	1	09/01/2020 23:05	<u>WG1536449</u>
Ethylbenzene	U		0.000880	0.00299	1	09/01/2020 23:05	WG1536449
Total Xylenes	U		0.00105	0.00776	1	09/01/2020 23:05	WG1536449
(S) Toluene-d8	100			75.0-131		09/01/2020 23:05	WG1536449
(S) 4-Bromofluorobenzene	109			67.0-138		09/01/2020 23:05	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/01/2020 23:05	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.39	1	09/07/2020 19:33	<u>WG1539086</u>
C28-C40 Oil Range	U		0.301	4.39	1	09/08/2020 12:01	<u>WG1539086</u>
(S) o-Terphenyl	67.8			18.0-148		09/07/2020 19:33	<u>WG1539086</u>
(S) o-Terphenyl	47.3			18.0-148		09/08/2020 12:01	<u>WG1539086</u>

SDG: L1256173

Received by QCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 11 L1256173

Â

Sc

Total Solids by Method 2540 G-2011

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	76.6		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	88.9		12.0	26.1	1	08/31/2020 21:19	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0283	0.131	1	09/02/2020 03:08	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		09/02/2020 03:08	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000753	0.00161	1	09/01/2020 23:24	WG1536449
Toluene	U		0.00210	0.00806	1	09/01/2020 23:24	<u>WG1536449</u>
Ethylbenzene	U		0.00119	0.00403	1	09/01/2020 23:24	WG1536449
Total Xylenes	U		0.00142	0.0105	1	09/01/2020 23:24	WG1536449
(S) Toluene-d8	103			75.0-131		09/01/2020 23:24	WG1536449
(S) 4-Bromofluorobenzene	107			67.0-138		09/01/2020 23:24	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/01/2020 23:24	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.10	5.23	1	09/07/2020 19:46	WG1539086
C28-C40 Oil Range	U		0.358	5.23	1	09/08/2020 12:14	<u>WG1539086</u>
(S) o-Terphenyl	68.8			18.0-148		09/07/2020 19:46	WG1539086
(S) o-Terphenyl	50.6			18.0-148		09/08/2020 12:14	WG1539086

SDG: L1256173

Received by OGP: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 12 L1256173

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	—	Ср
Analyte		%			date / time			2
Total Solids		74.0		1	09/06/2020 01:18	<u>WG1538113</u>		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	292		12.4	27.0	1	08/31/2020 21:29	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0293	0.135	1	09/02/2020 03:29	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		09/02/2020 03:29	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000794	0.00170	1	09/01/2020 23:42	WG1536449
Toluene	U		0.00221	0.00850	1	09/01/2020 23:42	WG1536449
Ethylbenzene	U		0.00125	0.00425	1	09/01/2020 23:42	WG1536449
Total Xylenes	U		0.00150	0.0111	1	09/01/2020 23:42	WG1536449
(S) Toluene-d8	102			75.0-131		09/01/2020 23:42	WG1536449
(S) 4-Bromofluorobenzene	106			67.0-138		09/01/2020 23:42	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/01/2020 23:42	<u>WG1536449</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.17	5.40	1	09/07/2020 19:59	<u>WG1539086</u>
C28-C40 Oil Range	U		0.370	5.40	1	09/08/2020 12:28	<u>WG1539086</u>
(S) o-Terphenyl	42.0			18.0-148		09/07/2020 19:59	WG1539086
(S) o-Terphenyl	31.3			18.0-148		09/08/2020 12:28	<u>WG1539086</u>

SDG: L1256173

DATE/TIME: 09/15/20 22:39 Ss Cn

Â

Sc

Received by OCD: 3/5/2021 3:12:10 PM Collected date/time: 08/26/20 00:00

SAMPLE RESULTS - 13 L1256173

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	85.5		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	80.1		10.8	23.4	1	08/31/2020 21:57	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilation	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0254	0.117	1	09/02/2020 03:49	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2020 03:49	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000635	J	0.000625	0.00134	1	09/02/2020 00:01	<u>WG1536449</u>
Toluene	U		0.00174	0.00669	1	09/02/2020 00:01	<u>WG1536449</u>
Ethylbenzene	U		0.000986	0.00334	1	09/02/2020 00:01	WG1536449
Total Xylenes	U		0.00118	0.00870	1	09/02/2020 00:01	WG1536449
(S) Toluene-d8	99.7			75.0-131		09/02/2020 00:01	WG1536449
(S) 4-Bromofluorobenzene	109			67.0-138		09/02/2020 00:01	WG1536449
(S) 1,2-Dichloroethane-d4	110			70.0-130		09/02/2020 00:01	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.88	4.68	1	09/07/2020 20:12	<u>WG1539086</u>
C28-C40 Oil Range	U		0.320	4.68	1	09/08/2020 12:41	<u>WG1539086</u>
(S) o-Terphenyl	63.7			18.0-148		09/07/2020 20:12	<u>WG1539086</u>
(S) o-Terphenyl	47.2			18.0-148		09/08/2020 12:41	<u>WG1539086</u>

SDG: L1256173

SAMPLE RESULTS - 14

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	84.1		1	09/06/2020 01:18	WG1538113	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	88.1		10.9	23.8	1	08/31/2020 22:06	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0258	0.119	1	09/02/2020 04:10	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		09/02/2020 04:10	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000644	0.00138	1	09/02/2020 00:19	WG1536449
Toluene	U		0.00179	0.00689	1	09/02/2020 00:19	<u>WG1536449</u>
Ethylbenzene	U		0.00102	0.00345	1	09/02/2020 00:19	WG1536449
Total Xylenes	U		0.00121	0.00896	1	09/02/2020 00:19	<u>WG1536449</u>
(S) Toluene-d8	101			75.0-131		09/02/2020 00:19	WG1536449
(S) 4-Bromofluorobenzene	108			67.0-138		09/02/2020 00:19	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/02/2020 00:19	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.76	1	09/07/2020 20:25	<u>WG1539086</u>
C28-C40 Oil Range	U		0.326	4.76	1	09/08/2020 12:53	<u>WG1539086</u>
(S) o-Terphenyl	68.1			18.0-148		09/07/2020 20:25	WG1539086
(S) o-Terphenyl	50.9			18.0-148		09/08/2020 12:53	<u>WG1539086</u>

SDG: L1256173

SAMPLE RESULTS - 15 L1256173

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.7		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	120		10.4	22.5	1	08/31/2020 22:16	WG1535090		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	09/02/2020 04:31	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		09/02/2020 04:31	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000586	0.00125	1	09/02/2020 00:38	WG1536449
Toluene	U		0.00163	0.00627	1	09/02/2020 00:38	WG1536449
Ethylbenzene	U		0.000924	0.00314	1	09/02/2020 00:38	WG1536449
Total Xylenes	U		0.00110	0.00815	1	09/02/2020 00:38	WG1536449
(S) Toluene-d8	102			75.0-131		09/02/2020 00:38	WG1536449
(S) 4-Bromofluorobenzene	107			67.0-138		09/02/2020 00:38	WG1536449
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/02/2020 00:38	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.51	1	09/07/2020 20:38	<u>WG1539086</u>
C28-C40 Oil Range	U		0.309	4.51	1	09/08/2020 13:06	<u>WG1539086</u>
(S) o-Terphenyl	76.4			18.0-148		09/07/2020 20:38	WG1539086
(S) o-Terphenyl	58.0			18.0-148		09/08/2020 13:06	<u>WG1539086</u>

SDG: L1256173

SAMPLE RESULTS - 16 L1256173

ΆI

Sc

Total Solids by Method 2540 G-2011

	· ·						1 Cn
		Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		97.4		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	172		9.45	20.5	1	08/31/2020 22:47	WG1535090	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	09/02/2020 05:25	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		09/02/2020 05:25	<u>WG1536466</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	09/02/2020 00:57	<u>WG1536449</u>
Toluene	U		0.00137	0.00527	1	09/02/2020 00:57	<u>WG1536449</u>
Ethylbenzene	U		0.000776	0.00263	1	09/02/2020 00:57	<u>WG1536449</u>
Total Xylenes	U		0.000927	0.00685	1	09/02/2020 00:57	<u>WG1536449</u>
(S) Toluene-d8	102			75.0-131		09/02/2020 00:57	WG1536449
(S) 4-Bromofluorobenzene	113			67.0-138		09/02/2020 00:57	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/02/2020 00:57	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.11	1	09/07/2020 20:51	<u>WG1539086</u>
C28-C40 Oil Range	1.39	J	0.281	4.11	1	09/08/2020 13:19	<u>WG1539086</u>
(S) o-Terphenyl	70.2			18.0-148		09/07/2020 20:51	<u>WG1539086</u>
(S) o-Terphenyl	52.2			18.0-148		09/08/2020 13:19	<u>WG1539086</u>

SDG: L1256173

SAMPLE RESULTS - 17

Ss

Cn

AI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cr	p
Analyte	%			date / time		2	_
Total Solids	96.6		1	09/06/2020 00:42	WG1538114	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	148		9.53	20.7	1	08/31/2020 22:56	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2020 05:46	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		09/02/2020 05:46	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	09/02/2020 01:15	WG1536449
Toluene	U		0.00139	0.00535	1	09/02/2020 01:15	<u>WG1536449</u>
Ethylbenzene	U		0.000789	0.00268	1	09/02/2020 01:15	WG1536449
Total Xylenes	U		0.000942	0.00696	1	09/02/2020 01:15	<u>WG1536449</u>
(S) Toluene-d8	99.7			75.0-131		09/02/2020 01:15	WG1536449
(S) 4-Bromofluorobenzene	107			67.0-138		09/02/2020 01:15	WG1536449
(S) 1,2-Dichloroethane-d4	110			70.0-130		09/02/2020 01:15	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	09/09/2020 11:00	<u>WG1539272</u>
C28-C40 Oil Range	3.98	<u>B J</u>	0.284	4.14	1	09/09/2020 11:00	<u>WG1539272</u>
(S) o-Terphenyl	68.7			18.0-148		09/09/2020 11:00	WG1539272

Sample Narrative:

L1256173-17 WG1539272: Duplicate Analysis performed due to QC failure. Results confirm; reporting in hold data

SDG: L1256173

SAMPLE RESULTS - 18

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.3		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1200		48.3	105	5	08/31/2020 23:19	WG1535090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	09/02/2020 06:07	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2020 06:07	WG1536466	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	09/02/2020 01:34	<u>WG1536449</u>
Toluene	U		0.00143	0.00550	1	09/02/2020 01:34	<u>WG1536449</u>
Ethylbenzene	U		0.000810	0.00275	1	09/02/2020 01:34	WG1536449
Total Xylenes	U		0.000967	0.00714	1	09/02/2020 01:34	<u>WG1536449</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 01:34	<u>WG1536449</u>
(S) 4-Bromofluorobenzene	107			67.0-138		09/02/2020 01:34	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/02/2020 01:34	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	09/09/2020 08:51	<u>WG1539272</u>
C28-C40 Oil Range	1.74	<u>B J</u>	0.288	4.20	1	09/09/2020 08:51	WG1539272
(S) o-Terphenyl	62.2			18.0-148		09/09/2020 08:51	WG1539272

SDG: L1256173

SAMPLE RESULTS - 19 L1256173

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.5		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						зS
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	585		9.84	21.4	1	08/31/2020 23:29	WG1535090	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	09/02/2020 06:27	WG1536466
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		09/02/2020 06:27	WG1536466

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000532	0.00114	1	09/02/2020 01:53	WG1536449
Toluene	U		0.00148	0.00569	1	09/02/2020 01:53	<u>WG1536449</u>
Ethylbenzene	U		0.000839	0.00285	1	09/02/2020 01:53	WG1536449
Total Xylenes	U		0.00100	0.00740	1	09/02/2020 01:53	<u>WG1536449</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 01:53	WG1536449
(S) 4-Bromofluorobenzene	108			67.0-138		09/02/2020 01:53	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	110			70.0-130		09/02/2020 01:53	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	09/09/2020 09:32	<u>WG1539272</u>
C28-C40 Oil Range	0.916	<u>B J</u>	0.293	4.28	1	09/09/2020 09:32	<u>WG1539272</u>
(S) o-Terphenyl	71.1			18.0-148		09/09/2020 09:32	WG1539272

SDG: L1256173

SAMPLE RESULTS - 20 L1256173

ONE LAB. NAPagev151 of 249

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		93.4		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	435		9.85	21.4	1	08/31/2020 23:40	WG1535090	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	09/02/2020 06:53	WG1536466	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		09/02/2020 06:53	<u>WG1536466</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	09/02/2020 02:12	<u>WG1536449</u>
Toluene	U		0.00148	0.00571	1	09/02/2020 02:12	<u>WG1536449</u>
Ethylbenzene	U		0.000842	0.00285	1	09/02/2020 02:12	<u>WG1536449</u>
Total Xylenes	U		0.00100	0.00742	1	09/02/2020 02:12	<u>WG1536449</u>
(S) Toluene-d8	100			75.0-131		09/02/2020 02:12	<u>WG1536449</u>
(S) 4-Bromofluorobenzene	109			67.0-138		09/02/2020 02:12	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/02/2020 02:12	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	09/09/2020 09:48	<u>WG1539272</u>
C28-C40 Oil Range	0.334	<u>B J</u>	0.293	4.28	1	09/09/2020 09:48	<u>WG1539272</u>
(S) o-Terphenyl	61.1			18.0-148		09/09/2020 09:48	WG1539272

SDG: L1256173

SAMPLE RESULTS - 21

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

-	Desult	0	Dilution	Amelia	Datab	1	Ср
	Result	Qualifier	Dilution	Analysis	Batch	L	
Analyte	%			date / time		2	
Total Solids	97.9		1	09/06/2020 00:42	WG1538114	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	104		9.40	20.4	1	08/31/2020 22:07	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	09/02/2020 06:44	WG1536522
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		09/02/2020 06:44	WG1536522

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	09/02/2020 02:31	WG1536449
Toluene	U		0.00136	0.00522	1	09/02/2020 02:31	WG1536449
Ethylbenzene	U		0.000769	0.00261	1	09/02/2020 02:31	WG1536449
Total Xylenes	U		0.000919	0.00679	1	09/02/2020 02:31	WG1536449
(S) Toluene-d8	102			75.0-131		09/02/2020 02:31	WG1536449
(S) 4-Bromofluorobenzene	110			67.0-138		09/02/2020 02:31	WG1536449
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/02/2020 02:31	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	23.8		1.65	4.09	1	09/09/2020 13:03	WG1539272
C10-C28 Diesel Range	12.9	Q	1.65	4.09	1	09/11/2020 02:24	WG1540114
C28-C40 Oil Range	51.1	B	0.280	4.09	1	09/09/2020 13:03	WG1539272
C28-C40 Oil Range	26.7	Q	0.280	4.09	1	09/11/2020 02:24	WG1540114
(S) o-Terphenyl	84.3			18.0-148		09/09/2020 13:03	WG1539272
(S) o-Terphenyl	89.3			18.0-148		09/11/2020 02:24	WG1540114

Sample Narrative:

L1256173-21 WG1539272, WG1540114: Duplicate Analysis performed due to QC failure. Results don't confirm; both analyses reported

SDG: L1256173

SAMPLE RESULTS - 22

°Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.0		1	09/06/2020 00:42	WG1538114	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	35.9		9.90	21.5	1	08/31/2020 22:41	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	butch	
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	09/02/2020 07:07	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		09/02/2020 07:07	WG1536522	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000538	0.00115	1	09/02/2020 02:49	<u>WG1536449</u>
Toluene	U		0.00150	0.00576	1	09/02/2020 02:49	<u>WG1536449</u>
Ethylbenzene	U		0.000849	0.00288	1	09/02/2020 02:49	WG1536449
Total Xylenes	U		0.00101	0.00749	1	09/02/2020 02:49	WG1536449
(S) Toluene-d8	102			75.0-131		09/02/2020 02:49	WG1536449
(S) 4-Bromofluorobenzene	107			67.0-138		09/02/2020 02:49	WG1536449
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/02/2020 02:49	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	09/09/2020 10:02	<u>WG1539272</u>
C28-C40 Oil Range	3.24	<u>B J</u>	0.295	4.30	1	09/09/2020 10:02	WG1539272
(S) o-Terphenyl	65.7			18.0-148		09/09/2020 10:02	WG1539272

SDG: L1256173

SAMPLE RESULTS - 23

ONE LAB. NAPagev154 of 219

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch		-μ
Analyte	%			date / time		2	
Total Solids	96.2		1	09/06/2020 00:42	WG1538114	1	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	86.4		9.56	20.8	1	08/31/2020 22:59	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	09/02/2020 08:39	WG1536522
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		09/02/2020 08:39	WG1536522

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	09/02/2020 03:08	<u>WG1536449</u>
Toluene	U		0.00140	0.00540	1	09/02/2020 03:08	<u>WG1536449</u>
Ethylbenzene	U		0.000796	0.00270	1	09/02/2020 03:08	WG1536449
Total Xylenes	U		0.000950	0.00702	1	09/02/2020 03:08	WG1536449
(S) Toluene-d8	101			75.0-131		09/02/2020 03:08	WG1536449
(S) 4-Bromofluorobenzene	110			67.0-138		09/02/2020 03:08	WG1536449
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/02/2020 03:08	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.75	J	1.67	4.16	1	09/09/2020 10:15	WG1539272
C28-C40 Oil Range	3.43	<u>B J</u>	0.285	4.16	1	09/09/2020 10:15	WG1539272
(S) o-Terphenyl	67.0			18.0-148		09/09/2020 10:15	WG1539272

SDG: L1256173

SAMPLE RESULTS - 24

ONE LAB. NAPagev155 of 209

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	94.8		1	09/06/2020 00:42	<u>WG1538114</u>	ŤΤ(

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.8		9.70	21.1	1	08/31/2020 23:16	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	batch	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	09/02/2020 09:22	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-120		09/02/2020 09:22	<u>WG1536522</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	09/02/2020 03:27	<u>WG1536449</u>
Toluene	U		0.00144	0.00555	1	09/02/2020 03:27	<u>WG1536449</u>
Ethylbenzene	U		0.000818	0.00278	1	09/02/2020 03:27	<u>WG1536449</u>
Total Xylenes	U		0.000977	0.00722	1	09/02/2020 03:27	<u>WG1536449</u>
(S) Toluene-d8	102			75.0-131		09/02/2020 03:27	<u>WG1536449</u>
(S) 4-Bromofluorobenzene	110			67.0-138		09/02/2020 03:27	<u>WG1536449</u>
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/02/2020 03:27	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	09/09/2020 10:28	WG1539272
C28-C40 Oil Range	1.49	<u>B J</u>	0.289	4.22	1	09/09/2020 10:28	<u>WG1539272</u>
(S) o-Terphenyl	67.3			18.0-148		09/09/2020 10:28	WG1539272

SDG: L1256173

SAMPLE RESULTS - 25

°Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.4		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	22.3		9.75	21.2	1	08/31/2020 23:34	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2020 09:57	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		09/02/2020 09:57	<u>WG1536522</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	09/02/2020 03:46	<u>WG1536449</u>
Toluene	U		0.00145	0.00559	1	09/02/2020 03:46	<u>WG1536449</u>
Ethylbenzene	U		0.000825	0.00280	1	09/02/2020 03:46	WG1536449
Total Xylenes	U		0.000985	0.00727	1	09/02/2020 03:46	<u>WG1536449</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 03:46	WG1536449
(S) 4-Bromofluorobenzene	106			67.0-138		09/02/2020 03:46	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/02/2020 03:46	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.28	J	1.71	4.24	1	09/09/2020 10:42	WG1539272
C28-C40 Oil Range	2.38	<u>B J</u>	0.290	4.24	1	09/09/2020 10:42	WG1539272
(S) o-Terphenyl	70.3			18.0-148		09/09/2020 10:42	WG1539272

SDG: L1256173

SAMPLE RESULTS - 26

Ss

Cn

AI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.3		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	90.4		10.2	22.2	1	08/31/2020 23:51	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	09/02/2020 10:20	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	93.7			77.0-120		09/02/2020 10:20	WG1536522	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000568	0.00122	1	09/02/2020 04:04	WG1536449
Toluene	U		0.00158	0.00608	1	09/02/2020 04:04	WG1536449
Ethylbenzene	U		0.000896	0.00304	1	09/02/2020 04:04	WG1536449
Total Xylenes	U		0.00107	0.00790	1	09/02/2020 04:04	WG1536449
(S) Toluene-d8	104			75.0-131		09/02/2020 04:04	WG1536449
(S) 4-Bromofluorobenzene	110			67.0-138		09/02/2020 04:04	WG1536449
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/02/2020 04:04	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	171	J	89.2	222	50	09/09/2020 15:16	WG1539272
C28-C40 Oil Range	675		15.2	222	50	09/09/2020 15:16	WG1539272
(S) o-Terphenyl	95.6	<u>J7</u>		18.0-148		09/09/2020 15:16	WG1539272

Sample Narrative:

L1256173-26 WG1539272: Dilution due to matrix.

SDG: L1256173

SAMPLE RESULTS - 27

ONE LAB. NAPage 158 of 249

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Cp
Analyte		%			date / time		2
Total Solids		94.7		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	30.1		9.71	21.1	1	09/01/2020 00:08	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	09/02/2020 10:43	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		09/02/2020 10:43	<u>WG1536522</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1	09/02/2020 04:23	<u>WG1536449</u>
Toluene	U		0.00145	0.00556	1	09/02/2020 04:23	WG1536449
Ethylbenzene	U		0.000820	0.00278	1	09/02/2020 04:23	WG1536449
Total Xylenes	U		0.000979	0.00723	1	09/02/2020 04:23	WG1536449
(S) Toluene-d8	99.8			75.0-131		09/02/2020 04:23	WG1536449
(S) 4-Bromofluorobenzene	110			67.0-138		09/02/2020 04:23	WG1536449
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/02/2020 04:23	WG1536449

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.41		1.70	4.22	1	09/09/2020 13:32	WG1539272
C10-C28 Diesel Range	3.26	JQ	1.70	4.22	1	09/11/2020 02:37	WG1540114
C28-C40 Oil Range	17.7	B	0.289	4.22	1	09/09/2020 13:32	WG1539272
C28-C40 Oil Range	10.0	Q	0.289	4.22	1	09/11/2020 02:37	WG1540114
(S) o-Terphenyl	70.5			18.0-148		09/09/2020 13:32	WG1539272
(S) o-Terphenyl	77.3			18.0-148		09/11/2020 02:37	WG1540114

Sample Narrative:

L1256173-27 WG1539272, WG1540114: Duplicate Analysis performed due to QC failure. Results don't confirm; both analyses reported

SDG: L1256173

SAMPLE RESULTS - 28 L1256173

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.7		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.5	J	9.82	21.3	1	09/01/2020 01:01	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	09/02/2020 11:06	<u>WG1536522</u>
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		09/02/2020 11:06	WG1536522

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00114	1	09/02/2020 11:02	WG1536422
Toluene	U		0.00148	0.00568	1	09/02/2020 11:02	WG1536422
Ethylbenzene	U		0.000837	0.00284	1	09/02/2020 11:02	WG1536422
Total Xylenes	0.00113	J	0.000999	0.00738	1	09/02/2020 11:02	WG1536422
(S) Toluene-d8	97.3			75.0-131		09/02/2020 11:02	WG1536422
(S) 4-Bromofluorobenzene	98.1			67.0-138		09/02/2020 11:02	WG1536422
(S) 1,2-Dichloroethane-d4	89.4			70.0-130		09/02/2020 11:02	WG1536422

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	21.5		1.72	4.27	1	09/09/2020 13:46	WG1539272
C10-C28 Diesel Range	2.97	JQ	1.72	4.27	1	09/11/2020 02:50	WG1540114
C28-C40 Oil Range	75.9	B	0.292	4.27	1	09/09/2020 13:46	WG1539272
C28-C40 Oil Range	8.40	Q	0.292	4.27	1	09/11/2020 02:50	WG1540114
(S) o-Terphenyl	66.6			18.0-148		09/09/2020 13:46	WG1539272
(S) o-Terphenyl	76.4			18.0-148		09/11/2020 02:50	WG1540114

Sample Narrative:

L1256173-28 WG1539272, WG1540114: Duplicate Analysis performed due to QC failure. Results don't confirm; both analyses reported

SDG: L1256173

SAMPLE RESULTS - 29

ONE LAB. NAPagev160 of 249

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp	2
Analyte	%			date / time		2	_
Total Solids	94.9		1	09/06/2020 00:41	WG1538116	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.70	21.1	1	09/01/2020 01:18	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.100.011	date / time	2000	e	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	09/02/2020 11:29	WG1536522		
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		09/02/2020 11:29	WG1536522	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	09/02/2020 11:22	WG1536422
Toluene	U		0.00144	0.00554	1	09/02/2020 11:22	WG1536422
Ethylbenzene	U		0.000817	0.00277	1	09/02/2020 11:22	WG1536422
Total Xylenes	0.00119	J	0.000975	0.00720	1	09/02/2020 11:22	WG1536422
(S) Toluene-d8	99.5			75.0-131		09/02/2020 11:22	WG1536422
(S) 4-Bromofluorobenzene	98.4			67.0-138		09/02/2020 11:22	WG1536422
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		09/02/2020 11:22	WG1536422

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	09/09/2020 11:36	WG1539272
C28-C40 Oil Range	1.05	<u>B J</u>	0.289	4.22	1	09/09/2020 11:36	WG1539272
(S) o-Terphenyl	69.4			18.0-148		09/09/2020 11:36	WG1539272

SAMPLE RESULTS - 30

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

		Result	Qualifier	Dilution	Analysis	Batch		Ср
Ana	lyte	%			date / time		2	
Tota	Il Solids	93.9		1	09/06/2020 00:41	WG1538116	17	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.80	21.3	1	09/01/2020 01:36	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	09/02/2020 11:52	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		09/02/2020 11:52	WG1536522	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000528	0.00113	1	09/02/2020 04:41	<u>WG1536450</u>
Toluene	U		0.00147	0.00565	1	09/02/2020 04:41	<u>WG1536450</u>
Ethylbenzene	U		0.000833	0.00283	1	09/02/2020 04:41	<u>WG1536450</u>
Total Xylenes	U		0.000995	0.00735	1	09/02/2020 04:41	<u>WG1536450</u>
(S) Toluene-d8	105			75.0-131		09/02/2020 04:41	WG1536450
(S) 4-Bromofluorobenzene	93.6			67.0-138		09/02/2020 04:41	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	100			70.0-130		09/02/2020 04:41	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	09/09/2020 11:17	WG1539272
C28-C40 Oil Range	1.04	<u>B J</u>	0.292	4.26	1	09/09/2020 11:17	WG1539272
(S) o-Terphenyl	64.3			18.0-148		09/09/2020 11:17	WG1539272

SDG: L1256173

SAMPLE RESULTS - 31

Total Solids by Method 2540 G-2011

	-						l'Cn
		Result	Qualifier	Dilution	Analysis	Batch	
Analyte		%			date / time		2
Total Solids		97.0		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	432		9.48	20.6	1	09/01/2020 02:28	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilation	date / time	Batch	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	09/02/2020 12:15	WG1536522	
(S) a,a,a-Trifluorotoluene(FID)	94.0			77.0-120		09/02/2020 12:15	WG1536522	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	09/02/2020 05:00	<u>WG1536450</u>
Toluene	U		0.00138	0.00531	1	09/02/2020 05:00	<u>WG1536450</u>
Ethylbenzene	U		0.000782	0.00265	1	09/02/2020 05:00	WG1536450
Total Xylenes	U		0.000934	0.00690	1	09/02/2020 05:00	<u>WG1536450</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 05:00	WG1536450
(S) 4-Bromofluorobenzene	94.4			67.0-138		09/02/2020 05:00	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		09/02/2020 05:00	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.77	J	1.66	4.12	1	09/14/2020 08:44	WG1539272
C28-C40 Oil Range	6.28	B	0.282	4.12	1	09/14/2020 08:44	WG1539272
(S) o-Terphenyl	83.5			18.0-148		09/14/2020 08:44	WG1539272

Sample Narrative:

L1256173-31 WG1539272: Duplicate Analysis performed due to QC failure. Results confirm; reporting in hold data

SDG: L1256173 DATE/TIME: 09/15/20 22:39

Ss Cn

AI

Sc

SAMPLE RESULTS - 32

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						11	Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	96.3		1	09/06/2020 00:41	WG1538116	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	456		9.55	20.8	1	09/01/2020 02:45	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0257	J	0.0225	0.104	1	09/02/2020 06:50	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		09/02/2020 06:50	WG1536524	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	09/02/2020 05:19	<u>WG1536450</u>
Toluene	U		0.00140	0.00538	1	09/02/2020 05:19	<u>WG1536450</u>
Ethylbenzene	U		0.000793	0.00269	1	09/02/2020 05:19	WG1536450
Total Xylenes	U		0.000947	0.00700	1	09/02/2020 05:19	<u>WG1536450</u>
(S) Toluene-d8	105			75.0-131		09/02/2020 05:19	WG1536450
(S) 4-Bromofluorobenzene	94.4			67.0-138		09/02/2020 05:19	<u>WG1536450</u>
(S) 1,2-Dichloroethane-d4	102			70.0-130		09/02/2020 05:19	WG1536450

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	09/09/2020 12:10	WG1539272
C28-C40 Oil Range	1.39	<u>B J</u>	0.284	4.15	1	09/09/2020 12:10	WG1539272
(S) o-Terphenyl	71.5			18.0-148		09/09/2020 12:10	WG1539272

SDG: L1256173

SAMPLE RESULTS - 33

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.2		1	09/06/2020 00:41	<u>WG1538116</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	334		9.46	20.6	1	09/01/2020 03:03	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	09/02/2020 07:11	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		09/02/2020 07:11	WG1536524	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	09/02/2020 09:10	<u>WG1536658</u>
Toluene	U		0.00137	0.00529	1	09/02/2020 09:10	<u>WG1536658</u>
Ethylbenzene	0.000785	J	0.000779	0.00264	1	09/02/2020 09:10	WG1536658
Total Xylenes	0.00683	J	0.000930	0.00687	1	09/02/2020 09:10	<u>WG1536658</u>
(S) Toluene-d8	98.6			75.0-131		09/02/2020 09:10	WG1536658
(S) 4-Bromofluorobenzene	99.4			67.0-138		09/02/2020 09:10	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	90.8			70.0-130		09/02/2020 09:10	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.11	1	09/09/2020 12:23	<u>WG1539272</u>
C28-C40 Oil Range	1.76	<u>B J</u>	0.282	4.11	1	09/09/2020 12:23	<u>WG1539272</u>
(S) o-Terphenyl	69.2			18.0-148		09/09/2020 12:23	WG1539272

SDG: L1256173

SAMPLE RESULTS - 34

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						 1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	91.9		1	09/06/2020 00:41	WG1538116	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	529		10.0	21.8	1	09/01/2020 03:20	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner		KDE (dry)	Dilution	,	Bateri	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		G
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2020 07:32	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		09/02/2020 07:32	WG1536524	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000550	0.00118	1	09/02/2020 09:29	WG1536658
Toluene	U		0.00153	0.00589	1	09/02/2020 09:29	WG1536658
Ethylbenzene	U		0.000868	0.00294	1	09/02/2020 09:29	WG1536658
Total Xylenes	0.00309	J	0.00104	0.00765	1	09/02/2020 09:29	WG1536658
(S) Toluene-d8	106			75.0-131		09/02/2020 09:29	WG1536658
(S) 4-Bromofluorobenzene	93.6			67.0-138		09/02/2020 09:29	WG1536658
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		09/02/2020 09:29	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.35	1	09/09/2020 12:36	WG1539272
C28-C40 Oil Range	1.11	<u>B J</u>	0.298	4.35	1	09/09/2020 12:36	<u>WG1539272</u>
(S) o-Terphenyl	63.5			18.0-148		09/09/2020 12:36	WG1539272

SDG: L1256173

Received by OGD: 3/5/2021 3:12:10 PM

SAMPLE RESULTS - 35 L1256173

ONE LAB. NAPage 166 of 249

ΆI

Sc

Collected date/time: 08/26/20 00:00

lethod 2540 G-2	2011					1
Result	Qualifier	Dilution	Analysis	Batch		Ср
%			date / time			2
94.2		1	09/05/2020 23:34	WG1538139		² Tc
	Result %	%	Result <u>Qualifier</u> Dilution %	ResultQualifierDilutionAnalysis%date / time	ResultQualifierDilutionAnalysisBatch%date / time	Result Qualifier Dilution Analysis Batch % date / time

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						 Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴Cn
Chloride	206		9.76	21.2	1	09/01/2020 03:37	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner	WDE (dry)	KDE (dry)	Dilution	,	Bateri	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2020 07:52	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.7			77.0-120		09/02/2020 07:52	WG1536524	⁷ C

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/02/2020 09:49	<u>WG1536658</u>
Toluene	U		0.00146	0.00561	1	09/02/2020 09:49	<u>WG1536658</u>
Ethylbenzene	U		0.000827	0.00281	1	09/02/2020 09:49	WG1536658
Total Xylenes	0.00239	J	0.000988	0.00730	1	09/02/2020 09:49	<u>WG1536658</u>
(S) Toluene-d8	108			75.0-131		09/02/2020 09:49	WG1536658
(S) 4-Bromofluorobenzene	91.9			67.0-138		09/02/2020 09:49	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		09/02/2020 09:49	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	09/09/2020 12:50	<u>WG1539272</u>
C28-C40 Oil Range	1.14	<u>B J</u>	0.291	4.25	1	09/09/2020 12:50	<u>WG1539272</u>
(S) o-Terphenyl	74.2			18.0-148		09/09/2020 12:50	WG1539272

SDG: L1256173

SAMPLE RESULTS - 36

Ss

Cn

AI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp	С
Analyte	%			date / time		2	_
Total Solids	96.4		1	09/05/2020 23:34	WG1538139	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5350		95.5	208	10	09/01/2020 04:30	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilation	date / time	Baten	
TPH (GC/FID) Low Fraction	0.0253	J	0.0225	0.104	1	09/02/2020 08:13	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.1			77.0-120		09/02/2020 08:13	WG1536524	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	09/02/2020 10:08	WG1536658
Toluene	U		0.00140	0.00538	1	09/02/2020 10:08	<u>WG1536658</u>
Ethylbenzene	U		0.000793	0.00269	1	09/02/2020 10:08	WG1536658
Total Xylenes	0.00211	Ţ	0.000946	0.00699	1	09/02/2020 10:08	<u>WG1536658</u>
(S) Toluene-d8	104			75.0-131		09/02/2020 10:08	WG1536658
(S) 4-Bromofluorobenzene	96.2			67.0-138		09/02/2020 10:08	WG1536658
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		09/02/2020 10:08	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.38	J	1.67	4.15	1	09/09/2020 13:19	<u>WG1539272</u>
C28-C40 Oil Range	4.77	B	0.284	4.15	1	09/09/2020 13:19	WG1539272
(S) o-Terphenyl	68.2			18.0-148		09/09/2020 13:19	WG1539272

Sample Narrative:

L1256173-36 WG1539272: Duplicate Analysis performed due to QC failure. Results confirm; reporting in hold data

SDG: L1256173

SAMPLE RESULTS - 37

ONE LAB. NAPage 168 of 209

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.5		1	09/05/2020 23:34	WG1538139	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	404		9.44	20.5	1	09/01/2020 04:47	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Australia		Quaimer	,		Dilution	,	baten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	09/02/2020 08:34	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	90.6			77.0-120		09/02/2020 08:34	<u>WG1536524</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00105	1	09/02/2020 10:26	<u>WG1536658</u>
Toluene	U		0.00137	0.00526	1	09/02/2020 10:26	<u>WG1536658</u>
Ethylbenzene	U		0.000775	0.00263	1	09/02/2020 10:26	<u>WG1536658</u>
Total Xylenes	0.00162	J	0.000925	0.00684	1	09/02/2020 10:26	<u>WG1536658</u>
(S) Toluene-d8	107			75.0-131		09/02/2020 10:26	<u>WG1536658</u>
(S) 4-Bromofluorobenzene	93.6			67.0-138		09/02/2020 10:26	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		09/02/2020 10:26	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	09/09/2020 16:15	WG1539273
C28-C40 Oil Range	4.56	B	0.281	4.10	1	09/09/2020 16:15	WG1539273
(S) o-Terphenyl	74.0			18.0-148		09/09/2020 16:15	WG1539273

SDG: L1256173

SAMPLE RESULTS - 38

ONE LAB. NAPagev169 of 209

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

,						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	96.5		1	09/05/2020 23:34	WG1538139	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	375		9.54	20.7	1	09/01/2020 05:22	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (ury)	Dilution	,	baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2020 08:54	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		09/02/2020 08:54	<u>WG1536524</u>	⁷ C

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	09/02/2020 10:45	WG1536658
Toluene	U		0.00140	0.00537	1	09/02/2020 10:45	WG1536658
Ethylbenzene	U		0.000791	0.00268	1	09/02/2020 10:45	WG1536658
Total Xylenes	0.00144	Ţ	0.000945	0.00698	1	09/02/2020 10:45	WG1536658
(S) Toluene-d8	107			75.0-131		09/02/2020 10:45	WG1536658
(S) 4-Bromofluorobenzene	95.5			67.0-138		09/02/2020 10:45	WG1536658
(S) 1,2-Dichloroethane-d4	89.1			70.0-130		09/02/2020 10:45	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	09/09/2020 14:20	WG1539273
C28-C40 Oil Range	1.20	<u>B J</u>	0.284	4.15	1	09/09/2020 14:20	WG1539273
(S) o-Terphenyl	86.7			18.0-148		09/09/2020 14:20	WG1539273

SDG: L1256173

Received by OCD: 3/5/2021 3:12:10 PM

SAMPLE RESULTS - 39

ONE LAB. NAPagev170 of 209

ŚS

Cn

ΆI

Sc

Collected date/time: 08/26/20 00:00

	101100 2040 0-20	211				1 Cn	L
	Result	Qualifier	Dilution	Analysis	Batch	 Cp	l
Analyte	%			date / time		2	i
Total Solids	98.4		1	09/05/2020 23:34	WG1538139	Tc	
						2	1

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	215		9.35	20.3	1	09/01/2020 05:39	WG1535091

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	09/02/2020 09:15	WG1536524
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		09/02/2020 09:15	WG1536524

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	09/02/2020 11:04	<u>WG1536658</u>
Toluene	U		0.00134	0.00516	1	09/02/2020 11:04	<u>WG1536658</u>
Ethylbenzene	U		0.000761	0.00258	1	09/02/2020 11:04	<u>WG1536658</u>
Total Xylenes	0.00134	J	0.000908	0.00671	1	09/02/2020 11:04	<u>WG1536658</u>
(S) Toluene-d8	108			75.0-131		09/02/2020 11:04	WG1536658
(S) 4-Bromofluorobenzene	94.8			67.0-138		09/02/2020 11:04	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		09/02/2020 11:04	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.06	1	09/09/2020 14:33	WG1539273
C28-C40 Oil Range	2.78	<u>B J</u>	0.278	4.06	1	09/09/2020 14:33	<u>WG1539273</u>
(S) o-Terphenyl	75.2			18.0-148		09/09/2020 14:33	WG1539273

SDG: L1256173

SAMPLE RESULTS - 40

ONE LAB. NAPagev171 of 209

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.0		1	09/05/2020 23:34	WG1538139	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	254		9.39	20.4	1	09/01/2020 05:57	WG1535091	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0242	J	0.0222	0.102	1	09/02/2020 09:36	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.7			77.0-120		09/02/2020 09:36	<u>WG1536524</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	09/02/2020 11:23	WG1536658
Toluene	U		0.00135	0.00521	1	09/02/2020 11:23	<u>WG1536658</u>
Ethylbenzene	U		0.000768	0.00260	1	09/02/2020 11:23	WG1536658
Total Xylenes	0.00122	J	0.000917	0.00677	1	09/02/2020 11:23	WG1536658
(S) Toluene-d8	106			75.0-131		09/02/2020 11:23	WG1536658
(S) 4-Bromofluorobenzene	96.3			67.0-138		09/02/2020 11:23	WG1536658
(S) 1,2-Dichloroethane-d4	92.2			70.0-130		09/02/2020 11:23	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.45	J	1.64	4.08	1	09/09/2020 16:28	<u>WG1539273</u>
C28-C40 Oil Range	19.9		0.280	4.08	1	09/09/2020 16:28	<u>WG1539273</u>
(S) o-Terphenyl	88.1			18.0-148		09/09/2020 16:28	WG1539273

SDG: L1256173

SAMPLE RESULTS - 41 L1256173

Â

Sc

Total Solids by Method 2540 G-2011

						I Cr	2
	Result	Qualifier	Dilution	Analysis	Batch)
Analyte	%			date / time		2	_
Total Solids	96.5		1	09/05/2020 23:34	WG1538139	Tc	2

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴Cn
Chloride	27.8		9.53	20.7	1	08/31/2020 23:11	WG1535329	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.1000	date / time		
TPH (GC/FID) Low Fraction	0.0230	J	0.0225	0.104	1	09/02/2020 09:56	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	90.0			77.0-120		09/02/2020 09:56	<u>WG1536524</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	09/02/2020 11:42	<u>WG1536658</u>
Toluene	U		0.00139	0.00536	1	09/02/2020 11:42	<u>WG1536658</u>
Ethylbenzene	U		0.000790	0.00268	1	09/02/2020 11:42	WG1536658
Total Xylenes	0.00106	J	0.000944	0.00697	1	09/02/2020 11:42	<u>WG1536658</u>
(S) Toluene-d8	106			75.0-131		09/02/2020 11:42	WG1536658
(S) 4-Bromofluorobenzene	96.3			67.0-138		09/02/2020 11:42	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		09/02/2020 11:42	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.13		1.67	4.14	1	09/09/2020 16:41	<u>WG1539273</u>
C28-C40 Oil Range	23.0		0.284	4.14	1	09/09/2020 16:41	<u>WG1539273</u>
(S) o-Terphenyl	90.6			18.0-148		09/09/2020 16:41	WG1539273

SDG: L1256173

Received by GCD: 3/5/2021 3:12:10 PM

SAMPLE RESULTS - 42 L1256173

Cn

Â

Sc

Collected date/time: 08/26/20 00:00

Total Solids by N	Method 2540 G-2	011				1
	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.5		1	09/05/2020 23:34	<u>WG1538139</u>	² Tc
Wet Chemistry b	by Method 300.0					³ Ss

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	10.6	J	9.54	20.7	1	08/31/2020 23:29	WG1535329	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2020 10:17	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.5			77.0-120		09/02/2020 10:17	WG1536524	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	09/02/2020 12:01	<u>WG1536658</u>
Toluene	U		0.00140	0.00537	1	09/02/2020 12:01	<u>WG1536658</u>
Ethylbenzene	U		0.000791	0.00268	1	09/02/2020 12:01	WG1536658
Total Xylenes	0.00150	J	0.000945	0.00698	1	09/02/2020 12:01	<u>WG1536658</u>
(S) Toluene-d8	103			75.0-131		09/02/2020 12:01	WG1536658
(S) 4-Bromofluorobenzene	94.8			67.0-138		09/02/2020 12:01	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	91.5			70.0-130		09/02/2020 12:01	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.99	J	1.67	4.15	1	09/09/2020 14:46	<u>WG1539273</u>
C28-C40 Oil Range	10.6	B	0.284	4.15	1	09/09/2020 14:46	<u>WG1539273</u>
(S) o-Terphenyl	81.3			18.0-148		09/09/2020 14:46	<u>WG1539273</u>

SDG: L1256173

SAMPLE RESULTS - 43

ONE LAB. NARage 154 of 249

°Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						I Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.1		1	09/05/2020 23:34	WG1538139	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.48	20.6	1	08/31/2020 23:48	WG1535329	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	09/02/2020 10:38	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.0			77.0-120		09/02/2020 10:38	WG1536524	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	09/02/2020 12:20	WG1536658
Toluene	U		0.00138	0.00530	1	09/02/2020 12:20	<u>WG1536658</u>
Ethylbenzene	U		0.000782	0.00265	1	09/02/2020 12:20	<u>WG1536658</u>
Total Xylenes	0.00105	J	0.000933	0.00689	1	09/02/2020 12:20	<u>WG1536658</u>
(S) Toluene-d8	104			75.0-131		09/02/2020 12:20	WG1536658
(S) 4-Bromofluorobenzene	90.6			67.0-138		09/02/2020 12:20	<u>WG1536658</u>
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		09/02/2020 12:20	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	09/09/2020 14:59	<u>WG1539273</u>
C28-C40 Oil Range	3.34	<u>B J</u>	0.282	4.12	1	09/09/2020 14:59	<u>WG1539273</u>
(S) o-Terphenyl	82.5			18.0-148		09/09/2020 14:59	<u>WG1539273</u>

SDG: L1256173

SAMPLE RESULTS - 44 L1256173

ONE LAB. NAPagev175 of 249

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.4		1	09/05/2020 23:34	<u>WG1538139</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.45	20.5	1	09/01/2020 00:06	WG1535329

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	09/02/2020 10:59	WG1536524	
(S) a,a,a-Trifluorotoluene(FID)	89.3			77.0-120		09/02/2020 10:59	<u>WG1536524</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	09/02/2020 12:39	<u>WG1536658</u>
Toluene	U		0.00137	0.00527	1	09/02/2020 12:39	WG1536658
Ethylbenzene	U		0.000777	0.00264	1	09/02/2020 12:39	WG1536658
Total Xylenes	0.00216	Ţ	0.000928	0.00685	1	09/02/2020 12:39	WG1536658
(S) Toluene-d8	105			75.0-131		09/02/2020 12:39	WG1536658
(S) 4-Bromofluorobenzene	96.9			67.0-138		09/02/2020 12:39	WG1536658
(S) 1,2-Dichloroethane-d4	91.5			70.0-130		09/02/2020 12:39	WG1536658

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.11	1	09/09/2020 15:11	WG1539273
C28-C40 Oil Range	3.19	<u>B J</u>	0.281	4.11	1	09/09/2020 15:11	WG1539273
(S) o-Terphenyl	79.2			18.0-148		09/09/2020 15:11	WG1539273

SDG: L1256173

Regeired by 800 3/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1256173-01,02,03,04

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blain	$\langle (V D) \rangle$							
(MB) R3568439-1	09/06/20 19:12						 	1
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	%		%	%				
Total Solids	0.000							

L1256171-01 Original Sample (OS) • Duplicate (DUP)

L1256171-01 Orig	inal Sample	(OS) • Dup	olicate (D	OUP)		
S) L1256171-01 09/0	6/20 19:12 • (DUF	9) R3568439-3	09/06/20	19:12		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	%	%		%		%
Total Solids	82.8	83.2	1	0.517		10

Laboratory Control Sample (LCS)

(LCS) R3568439-2 09/0	06/20 19:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 58 of 84

Regeired by 8CD3 3/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1256173-05,06,07,08,09,10,11,12,13,14

[°]Qc

GI

Â

Sc

Method Blank (MB)

9/06/20 01:18							
MB Result	MB Qualifier	MB MDL	MB RDL				
%		%	%				
0.00100							
	09/06/20 01:18 MB Result %	9/06/20 01:18 MB Result <u>MB Qualifier</u> %	9/06/20 01:18 MB Result <u>MB Qualifier</u> MB MDL I % %	9/06/20 01:18 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %			

L1256173-09 Original Sample (OS) • Duplicate (DUP)

L1256173-09 Original Sample (OS) • Duplicate (DUP)									
(OS) L1256173-09 09	/06/20 01:18 • (DUF	P) R3568438-3	3 09/06/20	0 01:18					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	88.0	89.1	1	1.24		10			

Laboratory Control Sample (LCS)

(LCS) R3568438-2 09/0	06/20 01:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 59 of 84

Regeired by 8CD4 3/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1256173-15,16,17,18,19,20,21,22,23,24

⁺Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3568436-1 09/06/20 00:42							
%		%	%		Тс		
0.00100							
				3	°Ss		
	09/06/20 00:42 MB Result %	D9/06/20 00:42 MB Result <u>MB Qualifier</u> %	D9/06/20 00:42 MB Result <u>MB Qualifier</u> MB MDL % %	D9/06/20 00:42 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %	D9/06/20 00:42 MB Result MB Qualifier MB MDL MB RDL % % % 0.00100		

L1256173-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1256173-20 09/06	6/20 00:42 • (DU	P) R3568436-	3 09/06/2	20 00:42		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.4	93.3	1	0.115		10

Laboratory Control Sample (LCS)

(LCS) R3568436-2 09	9/06/20 00:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 60 of 84

Regen et by 8005 3/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1256173-25,26,27,28,29,30,31,32,33,34

Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3568431-1 09/06/20 00:41						
,						
,						

L1256173-30 Original Sample (OS) • Duplicate (DUP)

L1256173-30 Origir	nal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1256173-30 09/06/	20 00:41 • (DUF	P) R3568431-3	09/06/20	0 00:41		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.9	94.9	1	1.04		10

Laboratory Control Sample (LCS)

(LCS) R3568431-2 09	/06/20 00:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 61 of 84

Reg cy q by 8 CB 3/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1256173-35,36,37,38,39,40,41,42,43,44

[°]Qc

Gl

Â

Sc

Method Blank (MB)

Method Blan	K (IVIB)				1	1 C
(MB) R3568427-1	09/05/20 23:34					
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	%		%	%		ŤΤ
Total Solids	0.00100					_
						³S
						Ŭ

L1256173-35 Original Sample (OS) • Duplicate (DUP)

L1256173-35 Origi	inal Sample	(OS) • Dup	plicate (DUP)			
(OS) L1256173-35 09/05/20 23:34 • (DUP) R3568427-3 09/05/20 23:34							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	94.2	94.5	1	0.337		10	

Laboratory Control Sample (LCS)

(LCS) R3568427-2 09/05/20 23:34									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	%	%	%	%					
Total Solids	50.0	50.0	100	85.0-115					

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 62 of 84

Reg cire a by BOD 8/5/2021 3:12:10 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1256173-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Cn

Sr

Qc

Method Blank (MB)

Method Blan	K (IVIB)			
(MB) R3565946-1	08/31/20 18:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1256173-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1256173-02 08/31/2	20 19:16 • (DUP)	R3565946-3	08/31/201	19:27		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	13700	12900	100	6.40		20

L1256173-17 Original Sample (OS) • Duplicate (DUP)

L1256173-17 Ori	ginal Sample ((OS) • Dup	olicate (E	OUP)			⁷ Gl
(OS) L1256173-17 08/	31/20 22:56 • (DUP) R3565946-6	6 08/31/20	23:08			
	Original Result (dry)	t DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/kg	mg/kg		%		%	
Chloride	148	169	1	13.5		20	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3565946-2 08/31	CS) R3565946-2 08/31/20 18:42							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	198	99.0	90.0-110				

L1256173-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-12 08/31/20 21:29 • (MS) R3565946-4 08/31/20 21:38 • (MSD) R3565946-5 08/31/20 21:48												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	675	292	966	941	99.8	96.1	1	80.0-120			2.64	20

Released to	Imaging? 4/8/2021 11:24:56 AM	
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 63 of 84

Reg cire a by BOD \$/5/2021 3:12:10 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1256173-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

Тс

Ss

⁺Cn

Sr

Qc

Method Blank (MB)

(MB) R3566144-1 08/31/20 20:39								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	U		9.20	20.0				

L1256173-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1256173-21 08/31/	/20 22:07 • (DUP)	R3566144-3	08/31/202	22:24		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	104	104	1	0.259		20

L1256173-37 Original Sample (OS) • Duplicate (DUP)

L1256173-37 C	riginal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1256173-37 C	9/01/20 04:47 • (DUP) R3566144-6	09/01/20	05:05		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	404	355	1	13.0		20

Laboratory Control Sample (LCS)

(LCS) R3566144-2 08/31/	CS) R3566144-2 08/31/20 20:57								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie				
Analyte	mg/kg	mg/kg	%	%					
Chloride	200	209	104	90.0-110					

L1256173-30 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-30 09/01/20 01:36 • (MS) R3566144-4 09/01/20 01:53 • (MSD) R3566144-5 09/01/20 02:10												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	533	U	539	538	101	101	1	80.0-120			0.121	20

Released to	Imaging? 4/8/2021 11:24:56 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 64 of 84

Received by BGD & 5/2021 3:12:10 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1256173-41,42,43,44

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3565928-1 (08/31/20 20:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1256203-41 Original Sample (OS) • Duplicate (DUP)

(OS) L1256203-41 09/01/2	20 00:24 • (DUP) R3565928-3	3 09/01/20	0 00:42		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1256291-06 Original Sample (OS) • Duplicate (DUP)

L1256291-06 C	1256291-06 Original Sample (OS) • Duplicate (DUP)							
(OS) L1256291-06 0	9/01/20 06:26 • (DUI	P) R3565928-	-6 09/01/2	20 06:42				
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	46.6	48.7	1	4.33		20		

Laboratory Control Sample (LCS)

(LCS) R3565928-2 08/3	CS) R3565928-2 08/31/20 21:11							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	201	101	90.0-110				

L1256203-44 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256203-44 09/01/20 01:37 • (MS) R3565928-4 09/01/20 02:33 • (MSD) R3565928-5 09/01/20 02:51												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	504	U	517	506	103	100	1	80.0-120			2.24	20

Released to	Imaging? 4/8/2021 11:24:56 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 65 of 84

Reg co e 5/3 8 9 5/2021 3:12:10 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1256173-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

¹Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)							
(MB) R3568161-2 09/01/20 21:29							
MB Result	MB Qualifier	MB MDL	MB RDL				
mg/kg		mg/kg	mg/kg				
U		0.0217	0.100				
106			77.0-120				
	0 21:29 MB Result mg/kg U	0 21:29 MB Result <u>MB Qualifier</u> mg/kg U	0 21:29 MB Result MB Qualifier MB MDL mg/kg mg/kg U 0.0217	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg mg/kg U 0.0217 0.100			

Laboratory Control Sample (LCS)

(LCS) R3568161-1 09/01/2	20 20:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.12	111	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			103	77.0-120	

L1256173-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-19 09/02/20 06:27 • (MS) R3568161-3 09/02/20 08:05 • (MSD) R3568161-4 09/02/20 08:42												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.76	U	2.99	3.35	51.9	58.6	1	10.0-151			11.1	28
(S) a,a,a-Trifluorotoluene(FID)					100	97.9		77.0-120				

Register of the BGD 3/5/2021 3:12:10 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1256173-21,22,23,24,25,26,27,28,29,30,31

Method Blank (MB)

(MB) R3566987-2 09/02	/20 04:31				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	96.5			77.0-120	35

Laboratory Control Sample (LCS)

(LCS) R3566987-1 09/02	/20 03:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.83	106	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			106	77.0-120	

-	
	³ Ss
	⁴ Cn
	⁵Sr
1	⁶ Qc
	⁷ Gl
	⁸ ΔI

Sc

Ср

DATE/TIME: 09/15/20 22:39

PAGE: 67 of 84

Reg cire thy 8502 A/5/2021 3:12:10 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1256173-32,33,34,35,36,37,38,39,40,41,42,43,44

¹Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)											
(MB) R3567079-2 09/02/20 05:36											
MB Result	MB Qualifier	MB MDL	MB RDL								
mg/kg		mg/kg	mg/kg								
U		0.0217	0.100								
91.0			77.0-120								
	/20 05:36 MB Result mg/kg U	/20 05:36 MB Result <u>MB Qualifier</u> mg/kg U	/20 05:36 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg U 0.0217	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.0217 0.100							

Laboratory Control Sample (LCS)

(LCS) R3567079-1 09/02	/20 04:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.58	101	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			106	77.0-120	

L1256203-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256203-01 09/02/20 11:19 • (MS) R3567079-3 09/02/20 13:23 • (MSD) R3567079-4 09/02/20 13:44												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.55	0.0259	5.09	5.08	91.2	89.2	1	10.0-151			0.203	28
(S) a,a,a-Trifluorotoluene(FID)					98.8	97.8		77.0-120				

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 68 of 84

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3566381-2 09/02/	20 05:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	99.1			75.0-131
(S) 4-Bromofluorobenzene	96.1			67.0-138
(S) 1,2-Dichloroethane-d4	83.9			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3566381-1 09/02	/20 04:09 • (LCS	SD) R3566381	-3 09/02/20 0	5:52							5
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	/
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	_ L
Benzene	0.125	0.134	0.137	107	110	70.0-123			2.21	20	8
Ethylbenzene	0.125	0.120	0.126	96.0	101	74.0-126			4.88	20	
Toluene	0.125	0.114	0.119	91.2	95.2	75.0-121			4.29	20	9
Xylenes, Total	0.375	0.361	0.371	96.3	98.9	72.0-127			2.73	20	
(S) Toluene-d8				94.1	94.6	75.0-131					L
(S) 4-Bromofluorobenzene				102	103	67.0-138					
(S) 1,2-Dichloroethane-d4				104	101	70.0-130					

L1255968-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255968-01 09/02/20 14:06 • (MS) R3566381-4 09/02/20 14:27 • (MSD) R3566381-5 09/02/20 14:47												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	5.00	1.52	9.34	8.97	156	149	40	10.0-149	<u>J5</u>		4.04	37
Ethylbenzene	5.00	9.98	21.5	21.2	230	224	40	10.0-160	<u>J5</u>	<u>J5</u>	1.41	38
Toluene	5.00	36.9	62.2	62.9	506	520	40	10.0-156	$\underline{\vee}$	$\underline{\vee}$	1.12	38
Xylenes, Total	15.0	53.0	98.7	99.1	305	307	40	10.0-160	<u>J5</u>	<u>J5</u>	0.404	38
(S) Toluene-d8					95.4	95.9		75.0-131				
(S) 4-Bromofluorobenzene					104	106		67.0-138				
(S) 1,2-Dichloroethane-d4					102	99.0		70.0-130				

SDG: L1256173 DATE/TIME: 09/15/20 22:39

Ср

Тс

Ss

Cn

QUALITY CONTROL SUMMARY L1256173-08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27

Ср

Τс

Ss

Cn

Sr

[°]Qc

Method Blank (MB)

(MB) R3568065-3 09/01/2) R3568065-3 09/01/20 21:10										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
Benzene	U		0.000467	0.00100							
Ethylbenzene	U		0.000737	0.00250							
Toluene	U		0.00130	0.00500							
Xylenes, Total	U		0.000880	0.00650							
(S) Toluene-d8	101			75.0-131							
(S) 4-Bromofluorobenzene	105			67.0-138							
(S) 1,2-Dichloroethane-d4	107			70.0-130							

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3568065-1 09/01/	20 19:55 • (LCS	D) R3568065	-2 09/01/20 20):14							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í G
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.127	0.126	102	101	70.0-123			0.791	20	8
Ethylbenzene	0.125	0.120	0.125	96.0	100	74.0-126			4.08	20	A
Toluene	0.125	0.123	0.119	98.4	95.2	75.0-121			3.31	20	9
Xylenes, Total	0.375	0.394	0.399	105	106	72.0-127			1.26	20	Sc
(S) Toluene-d8				97.4	99.5	75.0-131					
(S) 4-Bromofluorobenzene				104	105	67.0-138					
(S) 1,2-Dichloroethane-d4				114	116	70.0-130					

L1256173-27 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-27 09/02/20 04:23 • (MS) R3568065-4 09/02/20 04:42 • (MSD) R3568065-5 09/02/20 05:01												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.139	U	0.185	0.177	133	127	1	10.0-149			4.31	37
Ethylbenzene	0.139	U	0.180	0.172	130	124	1	10.0-160			4.42	38
Toluene	0.139	U	0.176	0.168	126	121	1	10.0-156			4.53	38
Xylenes, Total	0.417	U	0.588	0.564	141	135	1	10.0-160			4.25	38
(S) Toluene-d8					98.9	99.2		75.0-131				
(S) 4-Bromofluorobenzene					110	109		67.0-138				
(S) 1,2-Dichloroethane-d4					112	107		70.0-130				

Released to Imaging? 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1256173

DATE/TIME: 09/15/20 22:39

PAGE: 70 of 84

QUALITY CONTROL SUMMARY L1256173-01,02,03,04,05,06,07,30,31,32

Тс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3567051-2 09/01/2	20 22:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	102			75.0-131
(S) 4-Bromofluorobenzene	92.3			67.0-138
(S) 1,2-Dichloroethane-d4	99.6			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3567051-1 09/01/2	20 19:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.105	84.0	70.0-123	
Ethylbenzene	0.125	0.108	86.4	74.0-126	
Toluene	0.125	0.101	80.8	75.0-121	
Xylenes, Total	0.375	0.335	89.3	72.0-127	
(S) Toluene-d8			98.0	75.0-131	
(S) 4-Bromofluorobenzene			95.8	67.0-138	
(S) 1,2-Dichloroethane-d4			107	70.0-130	

L1256162-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256162-04 09/02/20 05:57 • (MS) R3567051-3 09/02/20 06:16 • (MSD) R3567051-4 09/02/20 06:35												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	2.50	0.384	3.36	3.35	119	119	20	10.0-149			0.298	37
Ethylbenzene	2.50	4.72	9.41	9.50	188	191	20	10.0-160	<u>J5</u>	<u>J5</u>	0.952	38
Toluene	2.50	8.10	15.1	15.0	280	276	20	10.0-156	<u>J5</u>	<u>J5</u>	0.664	38
Xylenes, Total	7.50	24.1	42.0	41.3	239	229	20	10.0-160	<u>J5</u>	<u>J5</u>	1.68	38
(S) Toluene-d8					100	98.2		75.0-131				
(S) 4-Bromofluorobenzene					91.3	92.3		67.0-138				
(S) 1,2-Dichloroethane-d4					104	103		70.0-130				

SDG: L1256173

QUALITY CONTROL SUMMARY L1256173-33,34,35,36,37,38,39,40,41,42,43,44

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3566859-2 09/02	/20 08:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	105			75.0-131
(S) 4-Bromofluorobenzene	95.4			67.0-138
(S) 1,2-Dichloroethane-d4	86.0			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3566859-1 09/0	2/20 07:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.124	99.2	70.0-123	
Ethylbenzene	0.125	0.124	99.2	74.0-126	
Toluene	0.125	0.122	97.6	75.0-121	
Xylenes, Total	0.375	0.379	101	72.0-127	
(S) Toluene-d8			97.8	75.0-131	
(S) 4-Bromofluorobenzene			102	67.0-138	
(S) 1,2-Dichloroethane-d4			97.9	70.0-130	

L1256173-33 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-33 09/02/2	DS) L1256173-33 09/02/20 09:10 • (MS) R3566859-3 09/02/20 15:30 • (MSD) R3566859-4 09/02/20 15:49													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Benzene	0.131	U	0.107	0.0795	81.5	60.6	1	10.0-149			29.3	37		
Ethylbenzene	0.131	0.000785	0.112	0.0818	84.9	61.8	1	10.0-160			31.2	38		
Toluene	0.131	U	0.116	0.0849	88.7	64.8	1	10.0-156			31.2	38		
Xylenes, Total	0.393	0.00683	0.324	0.254	80.5	62.8	1	10.0-160			24.2	38		
(S) Toluene-d8					104	104		75.0-131						
(S) 4-Bromofluorobenzene					94.4	95.7		67.0-138						
(S) 1,2-Dichloroethane-d4					97.9	97.0		70.0-130						

SDG: L1256173

QUALITY CONTROL SUMMARY

ONE LAB. NARagev191 of 249

Cn

A

Method Blank (MB)

	0)				
(MB) R3567638-1 09/0	4/20 23:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	67.4			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3567638-2 09/0	05/20 00:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.5	71.0	50.0-150	
(S) o-Terphenyl			81.8	18.0-148	

L1255941-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255941-02 09/05/20 17:23 • (MS) R3567691-1 09/05/20 17:36 • (MSD) R3567691-2 09/05/20 17:49														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		Sc
C10-C28 Diesel Range	48.3	717	767	1210	104	1030	10	50.0-150		J3 V	44.8	20		
(S) o-Terphenyl					314	426		18.0-148	<u>J1</u>	<u>J1</u>				

Sample Narrative:

OS: Surrogate failure due to matrix interference

QUALITY CONTROL SUMMARY L1256173-03,04,05,06,07,08,09,10,11,12,13,14,15,16

⁺Cn

Â

Sc

Method Blank (MB)

	10)				
(MB) R3567980-1 09/0	7/20 13:52				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	75.8			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3567980-2 09/0	07/20 14:05				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.7	71.4	50.0-150	
(S) o-Terphenyl			79.7	18.0-148	

L1257938-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1257938-03 09/07/	/20 16:30 • (MS)	R3567980-3	09/07/20 16:43	• (MSD) R356	7980-4 09/07/	/20 16:56						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	56.8	U	38.7	37.4	68.1	66.1	1	50.0-150			3.34	20
(S) o-Terphenyl					79.6	79.1		18.0-148				

QUALITY CONTROL SUMMARY L1256173-17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36

Cn

Â

Sc

Method Blank (MB)

	0)				
(MB) R3568390-1 09/0	9/20 08:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	7.49		0.274	4.00	
(S) o-Terphenyl	74.3			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3568390-2 09/	09/20 08:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.2	72.4	50.0-150	
(S) o-Terphenyl			95.8	18.0-148	

L1256173-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256173-18 09/09	/20 08:51 • (MS) I	R3568390-3 C	9/09/20 09:05	5 • (MSD) R356	68390-4 09/0	9/20 09:18						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.5	U	33.5	31.4	63.8	59.8	1	50.0-150			6.47	20
(S) o-Terphenyl					86.6	77.5		18.0-148				

QUALITY CONTROL SUMMARY L1256173-37,38,39,40,41,42,43,44

Cn

Â

Sc

Method Blank (MB)

(MB) R3568754-1 09/0	9/20 13:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	1.94	J	0.274	4.00	
(S) o-Terphenyl	85.0			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3568754-2 09/0	09/20 13:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	42.6	85.2	50.0-150	
(S) o-Terphenyl			69.2	18.0-148	

L1256203-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1256203-01 09/09/	20 13:42 • (MS)	R3568754-3 (09/09/20 13:55	• (MSD) R356	8754-4 09/09	/20 14:07						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.3	U	45.1	42.9	88.0	83.5	1	50.0-150			5.15	20
(S) o-Terphenyl					66.0	64.2		18.0-148				

SDG: L1256173 DATE/TIME: 09/15/20 22:39

PAGE: 76 of 84

QUALITY CONTROL SUMMARY

Method Blank (MB)

INELIOU DIALIK (IVI	D)					
MB) R3569226-1 09/11	1/20 01:34					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
C10-C28 Diesel Range	U		1.61	4.00		
C28-C40 Oil Range	U		0.274	4.00		
(S) o-Terphenyl	89.9			18.0-148		

Laboratory Control Sample (LCS)

(LCS) R3569226-2 09/	11/20 01:47					1
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	42.2	84.4	50.0-150		
(S) o-Terphenyl			26.0	18.0-148		

⁺Cn

⁵Sr

Qc

DATE/TIME: 09/15/20 22:39

PAGE: 77 of 84

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Demittons
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1256173 PAGE: 78 of 84

Received by OCD: 3/5/2021 3:12:10 PMACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

NE-OS-15-05 IN-03-2002-34 2975 IN002 n/a 11742
2975 FN002 n/a
FN002 n/a
n/a
1742
Env375
DW21704
41
R-140
CL0069
9915
FN200002
68-02979
A000356
34004
n/a
2006
Г104704245-18-15
_AB0152
FN00003
/T2006
460132
C847
233
9980939910
A2LA
Env DW 41 R-1 CL0 99 TN 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 58 -A0 -A0 -A0 -A0 -A0 -A0 -A0 -A0

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02250

SDG: L1256173

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.			901	Mid Te	dland, Tel (43	all Street, I, Texas 7 32) 682-4 32) 682-3	7970 4559	01 9	>												12:	561.	73	5
Client Name:	Conoco Phillips	Site Manager:	:	Christia	an Llu'		-															IN	- 1		
	James A #011 Release	Contact Info:		Email: c Phone:			ull@tetrat 3-1667	tech	.com				1				spe			en).)	11	
Project Location: (county, state)	Lea County, New Mexico	Project #:	1.3%	212C-M	AD-02	250																			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01	تقليد الم	P								RO)	4	Hg	1	1			P			New .	(Isil be		
Receiving Laboratory:	Pace Analytical	Sampler Sign	nature:	Joh	hn Thu	urstor	1					RO - M		Pb Se Hg			4			I		40	attacrie		
Comments: COPTET	ETRA Acctnum			-Ter							(8260B	C35) DRO - ORO - MRO)		Cd Cr			524	70C/625		1		1 10			
		SAMPL	LING	MATR	RIX P		SERVATIN	VE	RS	(N/N)	BTEX Ext to C	GRO - D	1 1	Ag As Ba		atiles		/ol. 82	08			E	Chemic		
	SAMPLE IDENTIFICATION	YEAR: 2020		1	T	T	\square		AINE		8021B TX1005 (F				latiles	mi Vola	ol. 82	emi. V	382 / 6	nestos	300.0	Sulfa	Vater Vater	SR	0
LAB # (LAB USE)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	1	HCL HNO ₃	ICE		# CONTAINERS	FILTERED	BTEX 80	TPH 801	PAH 8270C	Total Metals TCLP Metals	TCLP Vol	4	RCI GC/MS VI	GC/MS S	PCB's 80 NORM	PLM (Ast	Chloride	Chloride	General V Anion/Cat	TPH 8015	
(One)	BH-1 (0-1)	8/26/2020		X			X		1	N	X	X	+			4			4	1	X	4	4	4	
	BH-1 (2-3)	8/26/2020		X	4	4	X		1	N	X	X	+ +	-	1	4	-	1	AV	4	X	4	4		Ó
	BH-1 (4-5)	8/26/2020		X		4	X		1	N	X	X	+ +	-	4	4	-	1	4	4		4	4		0
	BH-1 (6-7)	8/26/2020		X		4	X		1	N	X	X	+ +	-	4	4	+	1	4	14	X	4	4	4	0
	BH-1 (9-10)	8/26/2020		X		4	X		1	N	X	X	4	-	1	4	+	1	4	4	X	4	4	4	0
	BH-1 (14-15')	8/26/2020	100	X		4	X		1	N	X	X	4	-	\square	4	+	1	4	4	++	4	4	4	0
	BH-1 (19-20')	8/26/2020		X		4	X		1	N	X	X	4	-	1		-	1	4	4	+ +	4	4	4	d
	BH-2 (0-1')	8/26/2020	1	X		4	X		1	N	X	X		-		4	4	1	4	4		4	4	4	d
	BH-2 (2-3')	8/26/2020		X		4	X		1	N	X	X	4	-	\square	4	-	-	4	4	++	4	4	4	0
	BH-2 (4-5')	8/26/2020	1	X	1		X		1	N	X	X			125					L	X				
Relinquished by:	Date: Time: Date: 1345 Date: Time:	Received by: Received by:	tt	Y	8	Date 28/2 Date	20	ime: 13 ime:	3:46	5	-		VLY		-	X	Stand	dard		ay 2	.4 hr.	48 h	ır. 72	hr.	
Relinquished by	8/28/20 17:4	U SOA	4	E	Fr	8/22			7:0	0		pho -		Cito.	-		Rush	Char	ges Au	thoriz	red				
Relinquished by:	Date: Time:	Received by;	m	-		Date		ime:		120															
	all your	OBICINA	AL COD	8-29-20 1020							(Circle) HAND DELIVERED FEDEX UPS Tracking #:														

Analysis Request of Chain of Custody Record

TE	Tetra Tech, Inc.					Midland Tel (4	d, Tex 32) 6	reet, Si (as 797) 82-455 (82-394)	01 9	0					-						125	617	ч	
Client Name:	Conoco Phillips	Site Manage	r:	Chri	istian l	Juli							10	iral						JES				
Project Name: ,	James A #011 Release	Contact Info				istian.l 12) 338		etratec 7	h.com		1	11			e 0		pe						1	
Project Location:	Lea County, New Mexico	Project #:		212	C-MD-	02250																		
(county, state) Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701	. A						-			(Ot		g								ed list)		
Receiving Laboratory	Pace Analytical	Sampler Sig	nature:		John 7	Thursto	n					ORO - MRO)	o Se H	b Se H								attached		
Comments: COPTE	ETRA Acctnum										X 8260B	1.1	Ag As Ba Cd Cr Pb Se Hg	CLP Metals Ag As Ba Cd Cr Pb Se Hg			24	8270C/625			TDS	(see		
	upped and the second	SAMP	LING	MA	ATRIX		SERV	OD	RS	(N/A)	BTEX	8015M (GRO - DRO	As Ba	J As Ba		Volatiles	8260B / 624	1000	200			Chemistry	alance	
	SAMPLE IDENTIFICATION	YEAR: 2020				Π			AINE	ED (Y	21B	EM (G	oc als Ad	tals A	atiles	ni Vol	ol. 82	Semi. V	0/78	(Asbestos)	300.0 Sulfate	Water	tion B	
LAB #	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	CE	NONE	CONTAINERS	FILTERED	TEX 8021B	TPH 801	Total Metals	CLP Me	CLP Volatiles	RCI Semi	GC/MS Vol.	SC/MS Semi. Vol.	VORM	PLM (Asb	Chloride :	General V	Anion/Cation Balance TPH 8015R	НОГР
(ONLY /	BH-2 (6-7)	8/26/2020		>	X		X	2	#	N	X	X				-					X			(1)
	BH-2 (9-10)	8/26/2020			X		X		1	N	X	X	1	T							X			in
	BH-2 (14-15')	8/26/2020	-		X		X		1	N	x	X									х			17
	BH-2 (19-20')	8/26/2020			x		X		1	N	X	X									Х			14
	BH-2 (24-25')	8/26/2020			X		X		1	N	X	X									X			ir
	BH-3 (0-1')	8/26/2020	r		X		X		1	N	X	X								\square	X			15
	BH-3 (2-3')	8/26/2020	1		X		X		1	N	X	X	-			-			-		X			17
	BH-4 (0-1')	8/26/2020			X		X		1	N	X	X	-			-			-	\square	X			18
	BH-4 (2-3')	8/26/2020			X		X		1	N	X	X	-	-		-	-		+	+	X	+	-	19
	BH-4 (4-5')	8/26/2020	-	1/	X		X		1	N	X	X			DE	AR	(6)				X			20
Relinquished by:	Date: Time: 8/28/20 134		the	L)8	5/201	22		3.4	5		ON				x s	tanda		e Day	241	nr 41	R hr	72 hr.	
Relinquished by:	Date: Time:	No Swit	4		8	bat 28/	1	Time	7:0	ف	Sam	ole Tem	perat	ture		_				norized				
Relinquished by:	Date: Time:	Received by	1	-	,	Dat		Time:		00						S	pecial	Repo	rt Lim	its or T	RRP	Report		
		ORIGINA	AL COPY			0 0		10=			(Circ	le) HA	ND D	ELIV	ERE	D FE	DEX	UP	S	rackir	g #: .	_		_

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.					Vest W Midland Tel (4 Fax (4	d, Texa 32) 68	as 797 2-455	701 59	0									12	SIL	, p:	3		
Client Name:	Conoco Phillips	Site Manage	r:	Chris	stian l	lull											UES		1-1					
Project Name:	James A #011 Release	Contact Info	:			istian.ll 12) 338			ch.com			11	1				pe			ethe		10.)		
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-MD-	02250																		
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1										(0)		0								d list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John T	Thursto	n					ORO - MRO)		b Se H								(see attached		
Comments: COPTET	"RA Acctnum										8260B			a Cd Cr F			24	8270C/625			TDS			
		SAMP	LING	MA	TRIX	1.000000	ERVA			(N/A)				As Ba		atties	60B/6		608		ate	Chemis	alance	
	SAMPLE IDENTIFICATION	YEAR: 2020							AINE		8021B	5M (0	00	als A	atiles	Semi Volatiles	ol. 82	emi. V	8082 / 6	estos	300.0 Sulfate	Vater	R	
LAB #	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	ICE	NONE	# CONTAINERS	FILTERED	BTEX 802	TPH TX1005 (Ext to TPH 8015M (GRO -	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatile	RCI RCI	GC/MS Vol. 8260B / 624		PCB's 80	01	Chloride 3 Chloride	General Water Chemistry	Anion/Cation Balance TPH 8015R	НОГР
	BH-5 (0-1')	8/26/2020		-	X		X		1	N	X	X									X			21
	BH-5 (2-3')	8/26/2020			x		X		1	N	X	X							1		X			22
	BH-5 (4-5')	8/26/2020			X		X		1	N	Х	X									x	1000		23
	BH-5 (6-7')	8/26/2020			x		X		1	N	Х	X									x			24
	BH-5 (9-10')	8/26/2020			х		X		1	N	X	X							-		X			25
	BH-6 (0-1')	8/26/2020			x		X		1	N	X	X									X			26
	BH-6 (2-3')	8/26/2020			x		X		1	N	X	X									x			27
	BH-6 (4-5')	8/26/2020			x		X		1	N	Х	X									x			22
	BH-6 (6-7')	8/26/2020			X		X		1	N	X	X									X			29
	BH-6 (9-10')	8/26/2020			x		X		1	N	X	X					1				X			30
Relinquished by:	Date: Time: Date: Time: Date: Time: Date: Time: S/28/20 17:00	Received by	the		8	Date 58/1 Date 28/	5	Time: 3 Time:	2:4	200	Sam	LAB ON	ILY			_	tand USH:	San		y 24 I		3 hr.	72 hr.	
Relinquished by:	Date: Time:	Received by	-			Dáti		Time		0						S	pecia	l Rep	ort Lin	nits or 1	TRRP F	Report		
-		ZORIGIAN	COPY	1					5 %		(Cir	cle) H	AND	DELIV	ERED) FE	DEX	(UF	PS	Trackir	ng #: _			

Page : 4 of 5 Analysis Request of Chain of Custody Record 901 West Wall Street, Suite 100 Midland, Texas 79701 1256173 Tetra Tech, Inc. R Tel (432) 682-4559 Fax (432) 682-3946 ANALYSIS REQUEST Site Manager: Christian Llull **Client Name: Conoco Phillips** (Circle or Specify Method No.) Email: christian.llull@tetratech.com 3.2 Contact Info: **Project Name:** James A #011 Release Phone: (512) 338-1667 **Project Location:** Project #: 212C-MD-02250 Lea County, New Mexico (county, state) Accounts Payable Invoice to: ist) 901 West Wall Street, Suite 100 Midland, Texas 79701 DRO - ORO - MRO) Se Hg bed Sampler Signature: John Thurston **Receiving Laboratory:** Pace Analytical Cd Cr Pb S a Cd Cr Pb 25 Comments: **COPTETRA** Acctnum DS 8260B / 624 Ba Ba PRESERVATIVE GRO -Ext to SAMPLING MATRIX As BT Ag As I FILTERED (Y/N) CONTAINERS METHOD Vol. 8082 / 608 Ag PLM (Asbestos) â 8015M (YEAR: 2020 eral Water 8021B **FX1005** Metals Semi n/Cation otal Metals 'MS Vol. 8270C SAMPLE IDENTIFICATION LAB # CLP Semi ride oride 801 NONE MS CB's IORM HOLD LAB USE HCL HNO₃ 3TFX SOIL ۵ NATI HA DATE TIME Hd CE Ca ONLY U U. N X X 1 X Х X BH-7 (0-1') 8/26/2020 3 X N X X X 1 BH-7 (2-3') 8/26/2020 X 32 X X 1 N X X X BH-7 (4-5') 8/26/2020 34 X X 1 N X Х X BH-7 (6-7') 8/26/2020 3 Х X N X Х X 1 BH-7 (9-10') 8/26/2020 3 X X X N X Х 8/26/2020 1 BH-8 (0-1') 31 X х X N BH-8 (2-3') 8/26/2020 X X 1 38 X X BH-8 (4-5') 8/26/2020 X X 1 N X 21 X х х X 1 N X BH-9(0-1') 8/26/2020 20 X X Х N X X BH-9 (2-3') 8/26/2020 REMARKS: Date: Time: Relinguished by: Date: Time: Received by: LAB USE X Standard 13:45 1345 der man 81 28/20 8/28/20 ONLY UN RUSH: Same Day 24 hr. 48 hr. 72 hr. Relinguished by Date: Time: Received by: Date: Time: Sample Temperature 23 ice iw Rush Charges Authorized Date: Time: Relinquished by: Date: Time: Received by: Special Report Limits or TRRP Report 8-29-20 1000 ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #:

Received by OCD: 3/5/2021 3:12:10 PM

Received by OCD: 3/5/2021 3:12:10 PM Analysis Request of Chain of Custody Record

æ	Tetra Tech, Inc.	÷			901	Midla Tel	nd, (432	Street, Texas 7 () 682-4 2) 682-3	9701 559	1												n	66	17		
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull															QUE					
Project Name:	James #011 A Release	Contact Info):		nail: ch ione: (5			@tetrat 667	ech.c	com		1	11	((Circ		or	Spe 		fy	/letł	100		0.)	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		21	2C-MD	-0225	0		- - 1覧	- 74	2															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1		1							1		()											list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:		John	Thurs	ton	-	-				- ORO - MRO)		Se Hg				2					attached		
Comments: COPTE	TRA Acctnum	14		-						-		X 8260B C35)	RO - ORC		otal Metals Ag As Ba Cd Cr Pb Se Hg CL P Metals Ag As Ba Cd Cr Pb Se Hg			V	8270C/625		-	1		(see		
	2	SAMF	LING	м	ATRIX			RVATIN		RS	(N/N)	BTEX (Ext to C:	8015M (GRO - DRO		As Ba (atiles	ACAL / GOA	Vol. 827	80			ate TI	Water Chemistry ation Balance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		-						AINEI	D (Y	mu	SM (G	S	als Ag	atiles	Semi Volatiles	ICB IC	Semi. V	82 / 6(sbestos)	300.0	Sulfate	vater (ion Ba	æ	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED	BTEX 80211 TPH TX100		PAH 8270C	Total Metals	CLP Volatiles	0	RCI GC/MS Vol	GC/MS Se	CB's 8082 / 608	VORM PLM (Asb	Chloride 3		Anion/Cation Balance	FPH 8015R	НОГР
	BG-1 (0-1')	8/26/2020		-	X	-		X	T	1	N	X	X	-		T					2 11	X				41
and a second	BG-1 (4-5)	8/26/2020			X			x	1		N	x	X			1	\square					X				yh
	BG-1 (6-7')	8/26/2020			X			×	1		N	X	X			T						X				47
	BG-1 (9-10')	8/26/2020	-		X			x		1	N	x	X									X				VV
	ł.						-		-					-				-	-		-		-	-		
									1									+								
	-+		-	+			-		+	-		-	$\left \right $	-	-	-		+	+		-			+		+
Relinq <u>ui</u> sh e d by:	Date: Time:	Dathind his	1		Ļ.			Tim			-															
anos		Received by	rk	/	3	Da VZE		Tim		34	5	L	AB ON		E		X									
Relinquisked by:	Date: Time: Stashs Mino	Received by:	A		8	Da 28	1	Tim	ie:	3		Samp	le Ten	npera	ature						ay 2		48 h	r. 72	hr.	
Relinquished by:	Date: Time:	Received by:		-	1 1	Da	-	Tim	e:								_				uthoriz		P Re	port		
		OFIGINA	LCOPY	_	-		+	=].	_	000	2	(Circl	-		051.0			FEDE	X I	IDC	Trac	king t	į.	-	al ^e	

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1260251 09/10/2020 212C-MD-02250 James A #011 Stuffing Box Release

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02250

SDG: L1260251 DATE/TIME: 09/21/20 17:03

PAGE: 1 of 17

Page 203 of 249

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-10 (0-1') L1260251-01	5
BH-10 (3-4') L1260251-02	6
BH-11 (0-1') L1260251-03	7
BH-11 (3-4') L1260251-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 300.0	10
Volatile Organic Compounds (GC) by Method 8015D/GRO	11
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Semi-Volatile Organic Compounds (GC) by Method 8015	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

PROJECT: 212C-MD-02250

SDG: L1260251

DATE/TIME: 09/21/20 17:03

PAGE: 2 of 17

SAMPLE SUMMARY

ONE LAB. NAPage 205 of 249

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-10 (0-1') L1260251-01 Solid			Collected by Joe Tyler	Collected date/time 09/04/20 12:00	Received da 09/10/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1544748	1	09/18/20 16:08	09/18/20 16:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 00:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542333	27.8	09/04/20 12:00	09/13/20 21:10	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542519	1.11	09/04/20 12:00	09/14/20 06:11	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1544028	1	09/17/20 23:17	09/18/20 09:48	TJD	Mt. Juliet, TN
			Collected by Joe Tyler	Collected date/time 09/04/20 12:20	Received da 09/10/20 09	
BH-10 (3-4') L1260251-02 Solid			Jue Tylei	09/04/20 12.20	03/10/20 03	.30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1544748	1	09/18/20 16:08	09/18/20 16:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 01:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542333	27.5	09/04/20 12:20	09/13/20 21:32	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542519	1.1	09/04/20 12:20	09/14/20 06:30	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1544028	1	09/17/20 23:17	09/18/20 08:55	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-11 (0-1') L1260251-03 Solid			Joe Tyler	09/04/20 13:00	09/10/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1544748	1	09/18/20 16:08	09/18/20 16:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 01:16	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542333	25	09/04/20 13:00	09/13/20 21:54	DWR	Mt. Juliet, TN
	WG1542519	1	09/04/20 13:00	09/14/20 06:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B			09/17/20 23:17	00/10/00 07 10	TJD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1544028	1	09/17/20 23.17	09/18/20 07:49	IJD	
	WG1544028	1	Collected by	Collected date/time	Received da	te/time
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1544028	1				te/time
Semi-Volatile Organic Compounds (GC) by Method 8015 BH-11 (3-4') L1260251-04 Solid	WG1544028 Batch	1 Dilution	Collected by	Collected date/time	Received da	te/time
Semi-Volatile Organic Compounds (GC) by Method 8015 BH-11 (3-4') L1260251-04 Solid Method			Collected by Joe Tyler Preparation	Collected date/time 09/04/20 13:20 Analysis	Received da 09/10/20 09	te/time :30 Location
Semi-Volatile Organic Compounds (GC) by Method 8015 BH-11 (3-4') L1260251-04 Solid Method Total Solids by Method 2540 G-2011	Batch	Dilution	Collected by Joe Tyler Preparation date/time	Collected date/time 09/04/20 13:20 Analysis date/time	Received da 09/10/20 09 Analyst	te/time :30 Location Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 BH-11 (3-4') L1260251-04 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	Batch WG1544748	Dilution	Collected by Joe Tyler Preparation date/time 09/18/20 16:08	Collected date/time 09/04/20 13:20 Analysis date/time 09/18/20 16:15	Received da 09/10/20 09 Analyst KDW	te/time :30 Location Mt. Juliet, TN Mt. Juliet, TN
	Batch WG1544748 WG1541864	Dilution 1 1	Collected by Joe Tyler Preparation date/time 09/18/20 16:08 09/13/20 20:10	Collected date/time 09/04/20 13:20 Analysis date/time 09/18/20 16:15 09/14/20 01:31	Received da 09/10/20 09 Analyst KDW ELN	te/time :30

PROJECT: 212C-MD-02250

SDG: L1260251 DATE/TIME: 09/21/20 17:03

PAGE: 3 of 17

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02250

SDG: L1260251 DATE/TIME: 09/21/20 17:03

IME: 17:03 **PAGE**: 4 of 17

Received by OCP: 3/5/2021 3:12:10 PM Collected date/time: 09/04/20 12:00

SAMPLE RESULTS - 01

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp)
Analyte	%			date / time		2	_
Total Solids	97.7		1	09/18/2020 16:15	WG1544748	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	40.3		9.41	20.5	1	09/14/2020 00:32	WG1541864	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	Batch	
TPH (GC/FID) Low Fraction	0.670	J	0.630	2.90	27.8	09/13/2020 21:10	WG1542333	
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		09/13/2020 21:10	WG1542333	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000609	J	0.000541	0.00116	1.11	09/14/2020 06:11	WG1542519
Toluene	0.00434	Ţ	0.00150	0.00579	1.11	09/14/2020 06:11	WG1542519
Ethylbenzene	U		0.000854	0.00290	1.11	09/14/2020 06:11	WG1542519
Total Xylenes	0.00229	J	0.00102	0.00754	1.11	09/14/2020 06:11	WG1542519
(S) Toluene-d8	99.7			75.0-131		09/14/2020 06:11	WG1542519
(S) 4-Bromofluorobenzene	94.4			67.0-138		09/14/2020 06:11	WG1542519
(S) 1,2-Dichloroethane-d4	103			70.0-130		09/14/2020 06:11	WG1542519

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.18		1.65	4.09	1	09/18/2020 09:48	<u>WG1544028</u>
C28-C40 Oil Range	33.2		0.280	4.09	1	09/18/2020 09:48	<u>WG1544028</u>
(S) o-Terphenyl	60.4			18.0-148		09/18/2020 09:48	WG1544028

SDG: L1260251 DATE/TIME: 09/21/20 17:03

Received by OCP: 3/5/2021 3:12:10 PM Collected date/time: 09/04/20 12:20

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.7		1	09/18/2020 16:15	WG1544748	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	53.3		9.42	20.5	1	09/14/2020 01:02	WG1541864

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	,	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.672	J	0.624	2.88	27.5	09/13/2020 21:32	WG1542333	L
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		09/13/2020 21:32	WG1542333	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000690	J	0.000538	0.00115	1.1	09/14/2020 06:30	WG1542519
Toluene	0.00420	J	0.00150	0.00575	1.1	09/14/2020 06:30	<u>WG1542519</u>
Ethylbenzene	U		0.000848	0.00288	1.1	09/14/2020 06:30	WG1542519
Total Xylenes	0.00146	J	0.00101	0.00748	1.1	09/14/2020 06:30	WG1542519
(S) Toluene-d8	101			75.0-131		09/14/2020 06:30	WG1542519
(S) 4-Bromofluorobenzene	91.4			67.0-138		09/14/2020 06:30	WG1542519
(S) 1,2-Dichloroethane-d4	104			70.0-130		09/14/2020 06:30	WG1542519

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.21		1.65	4.10	1	09/18/2020 08:55	<u>WG1544028</u>
C28-C40 Oil Range	24.5		0.281	4.10	1	09/18/2020 08:55	<u>WG1544028</u>
(S) o-Terphenyl	63.4			18.0-148		09/18/2020 08:55	WG1544028

SDG: L1260251 DA 09/2 Ss Cn

Sr

ΆI

Sc

Received for 99D: 3/5/2021 3:12:10 PM Collected date/time: 09/04/20 13:00

SAMPLE RESULTS - 03

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.8		1	09/18/2020 16:15	WG1544748	⁻Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.31	20.2	1	09/14/2020 01:16	WG1541864

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier	WDE (ury)	KDE (dry)	Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.556	2.56	25	09/13/2020 21:54	WG1542333	
(S) a,a,a-Trifluorotoluene(FID)	98.5			77.0-120		09/13/2020 21:54	WG1542333	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	09/14/2020 06:49	<u>WG1542519</u>
Toluene	0.00340	Ţ	0.00133	0.00512	1	09/14/2020 06:49	<u>WG1542519</u>
Ethylbenzene	U		0.000755	0.00256	1	09/14/2020 06:49	WG1542519
Total Xylenes	0.00150	Ţ	0.000901	0.00666	1	09/14/2020 06:49	<u>WG1542519</u>
(S) Toluene-d8	99.1			75.0-131		09/14/2020 06:49	WG1542519
(S) 4-Bromofluorobenzene	94.0			67.0-138		09/14/2020 06:49	<u>WG1542519</u>
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/14/2020 06:49	WG1542519

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.01	J	1.63	4.05	1	09/18/2020 07:49	WG1544028
C28-C40 Oil Range	13.4		0.277	4.05	1	09/18/2020 07:49	<u>WG1544028</u>
(S) o-Terphenyl	62.0			18.0-148		09/18/2020 07:49	WG1544028

SDG: L1260251 DAT 09/21/

Received by QCD: 3/5/2021 3:12:10 PM Collected date/time: 09/04/20 13:20

SAMPLE RESULTS - 04 L1260251

ONE LAB. NAPage 210 of 249

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.6		1	09/18/2020 16:15	WG1544748	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		9.93	21.6	1	09/14/2020 01:31	WG1541864	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.663	3.05	25	09/13/2020 22:17	WG1542333	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		09/13/2020 22:17	WG1542333	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000570	0.00122	1	09/14/2020 18:06	WG1542747
Toluene	0.00265	J	0.00159	0.00611	1	09/14/2020 18:06	<u>WG1542747</u>
Ethylbenzene	U		0.000900	0.00305	1	09/14/2020 18:06	WG1542747
Total Xylenes	U		0.00107	0.00794	1	09/14/2020 18:06	<u>WG1542747</u>
(S) Toluene-d8	101			75.0-131		09/14/2020 18:06	WG1542747
(S) 4-Bromofluorobenzene	93.7			67.0-138		09/14/2020 18:06	<u>WG1542747</u>
(S) 1,2-Dichloroethane-d4	77.2			70.0-130		09/14/2020 18:06	WG1542747

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.86	J	1.74	4.32	1	09/18/2020 07:36	WG1544028
C28-C40 Oil Range	3.69	J	0.296	4.32	1	09/18/2020 07:36	WG1544028
(S) o-Terphenyl	63.4			18.0-148		09/18/2020 07:36	WG1544028

SDG: L1260251

DATE/TIME: 09/21/20 17:03

Reg @ q by Q 9 D: 8/5/2021 3:12:10 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1260251-01,02,03,04

GI

Â

Sc

Method Blank (MB)

(MB) R3572222-1	09/18/20 16:15						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00100						

L1260251-01 Original Sample (OS) • Duplicate (DUP)

L1260251-01 Orig	ginal Sample	∍ (OS) • Dur	plicate ('	,DUP)					4
(OS) L1260251-01 09/1	18/20 16:15 • (DUF	e) R3572222-3	, 09/18/20	16:15					
	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			5
Analyte	%	%		%		%			
Total Solids	97.7	97.9	1	0.159		10			6

Laboratory Control Sample (LCS)

(LCS) R3572222-2 09	9/18/20 16:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1260251

DATE/TIME: 09/21/20 17:03 PAGE: 9 of 17

Reg @ q by OSB: 3/5/2021 3:12:10 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1260251-01,02,03,04

Τс

Ss

Method Blank (MB)

(MB) R3569986-1 09	/13/20 21:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1260251-01 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result DUP and an an and an an and an and an and an and an
(dry) (dry) Dilution DUP RPD <u>DUP Qualifier</u> Limits
Analyte mg/kg mg/kg % %
Chloride 40.3 40.2 1 0.432 20

L1260772-06 Original Sample (OS) • Duplicate (DUP)

L1260772-06	Original Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1260772-06	09/14/20 06:00 • (DU	P) R3569986	-6 09/14/2	20 06:15		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3960	4110	10	3.70		20

Laboratory Control Sample (LCS)

(LCS) R3569986-2 09/13	/20 21:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	197	98.3	90.0-110	

L1260772-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1260772-01 09/14/2	0 03:31 • (MS) F	R3569986-4 0	9/14/20 03:46	• (MSD) R3569	9986-5 09/14/	20 04:01						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	10100	10300	10800	43.3	129	1	80.0-120	EV	EV	4.05	20

Released to	Imaging ^{AC4} /8/2021 11:24:56 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1260251

DATE/TIME: 09/21/20 17:03

PAGE: 10 of 17

Regering the 26 By 3/5/2021 3:12:10 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

⁴Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)				
20 11:54				
MB Result	MB Qualifier	MB MDL	MB RDL	
mg/kg		mg/kg	mg/kg	
U		0.0217	0.100	
98.1			77.0-120	
	20 11:54 MB Result mg/kg U	20 11:54 MB Result <u>MB Qualifier</u> mg/kg U	20 11:54 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg U 0.0217	20 11:54 MB Result <u>MB Qualifier</u> MB MDL MB RDL mg/kg mg/kg mg/kg U 0.0217 0.100

Laboratory Control Sample (LCS)

(LCS) R3571502-1 09/13/2	20 10:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.83	106	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			103	77.0-120	

L1260251-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1260251-04 09/13/2	20 22:17 • (MS) I	R3571502-3 0	9/13/20 22:40 •	(MSD) R35715	502-4 09/13/20) 23:02						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	94.1	U	82.4	85.3	87.7	90.6	25	10.0-151			3.35	28
(S) a,a,a-Trifluorotoluene(FID)					102	103		77.0-120				

DATE/TIME: 09/21/20 17:03

PAGE: 11 of 17

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3571013-3 09/14/20	0 04:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	101			75.0-131
(S) 4-Bromofluorobenzene	89.8			67.0-138
(S) 1,2-Dichloroethane-d4	101			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3571013-1 09/14/20 03:03 • (LCSD) R3571013-2 09/14/20 03:22												7	
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		΄GΙ	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Benzene	0.125	0.121	0.123	96.8	98.4	70.0-123			1.64	20		8	
Ethylbenzene	0.125	0.117	0.119	93.6	95.2	74.0-126			1.69	20		AI	
Toluene	0.125	0.114	0.113	91.2	90.4	75.0-121			0.881	20		9	
Xylenes, Total	0.375	0.364	0.361	97.1	96.3	72.0-127			0.828	20		Sc	
(S) Toluene-d8				97.2	96.4	75.0-131							
(S) 4-Bromofluorobenzene				94.1	97.1	67.0-138							
(S) 1,2-Dichloroethane-d4				105	109	70.0-130							

DATE/TIME: 09/21/20 17:03 PAGE: 12 of 17

QUALITY CONTROL SUMMARY

ONE LAB. NAPage 215 of 249

Qc

Method Blank (MB)

Method Blank (MB)									
(MB) R3570617-2 09/14/20 13:01										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Benzene	U		0.000467	0.00100						
Ethylbenzene	U		0.000737	0.00250						
Toluene	U		0.00130	0.00500						
Xylenes, Total	U		0.000880	0.00650						
(S) Toluene-d8	105			75.0-131						
(S) 4-Bromofluorobenzene	96.4			67.0-138						
(S) 1,2-Dichloroethane-d4	83.9			70.0-130						

Laboratory Control Sample (LCS)

(LCS) R3570617-1 09/14	4/20 12:04					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Í GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.125	100	70.0-123		8
Ethylbenzene	0.125	0.128	102	74.0-126		A
Toluene	0.125	0.123	98.4	75.0-121		9
Xylenes, Total	0.375	0.370	98.7	72.0-127		Sc
(S) Toluene-d8			98.7	75.0-131		
(S) 4-Bromofluorobenzen	e		99.5	67.0-138		
(S) 1,2-Dichloroethane-d4	!		99.1	70.0-130		

DATE/TIME: 09/21/20 17:03 PAGE: 13 of 17

QUALITY CONTROL SUMMARY

Â

Sc

Method Blank (MB)

	D)								
(MB) R3572094-1 09/18/20 06:03									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
C10-C28 Diesel Range	U		1.61	4.00					
C28-C40 Oil Range	U		0.274	4.00					
(S) o-Terphenyl	69.2			18.0-148					

Laboratory Control Sample (LCS)

(LCS) R3572094-2 09/1	8/20 06:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	33.3	66.6	50.0-150	
(S) o-Terphenyl			85.4	18.0-148	

L1260251-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1260251-01 09/18/20 09:48 • (MS) R3572094-3 09/18/20 10:02 • (MSD) R3572094-4 09/18/20 10:15												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.2	7.18	39.9	43.5	64.0	71.0	1	50.0-150			8.59	20
(S) o-Terphenyl					76.4	84.1		18.0-148				

SDG: L1260251 DATE/TIME: 09/21/20 17:03

PAGE: 14 of 17

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1260251 DATE/TIME: 09/21/20 17:03

Received by OCD: 3/5/2021 3:12:10 PMACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
ldaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP.LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/8/2021 11:24:56 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02250

SDG: L1260251

DATE/TIME: 09/21/20 17:03 PAGE:

16 of 17

Τс Ss Cn Sr Qc Gl AI Sc

Received by OCD: 3/5/2021 3:12:10 PM Analysis Request of Chain of Custody Record

æ	Tetra Tech, Inc.					Midla Tel	nd, 1 (432	Street Texas) 682-4) 682-	7970 4559)1_)	0								A	09	4					
Client Name:	ConocoPhillips	Site Manage	er:	Chr	istian	Llull																UES				
Project Name:	James A #011 Stuffing Box Release	Contact Info	»:		ail: chi one: (5			@tetra 667	tech	.com			1	1	(Ci 	rcl	e o	r S	pe 	cif	y Ⅳ 	leth 	boi	No	.) 	11
Project Location: (county, state)	Eddy County, New Mexico	Project #:		212	C-MD	-0225	0																			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970)1				4	ette i ke i				-221-5		-							1.6	đ			ist)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	o	17	fler	7						NOAM - OAO -		Se Hg	Cr Pb Se Hg								(see attached list)		
Comments: COPTE	TRA Acctnum		(9	0							8260B	C35)		Cd Cr Pb	Cd Cr Pb	1		4)C/625						
1 1260251		SAME	LING	MA	ATRIX	10000		RVATI	VE	RS	(N/N)		(Ext to C3		Ag As Ba C	g As Ba	Volatilae	auico	60B / 624	ol. 8270	608		OUT	emi	alance	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	NONE		CONTAINERS	FILTERED (Y	X 8021B	FPH TX1005 (Ext to		als	CLP Metals Ag As Ba	TCLP Volatiles		GC/MS Vol. 8260B /	1.1	PCB's 8082 / 6	PLM (Asbestos)	Chloride 300.0	ieneral Water Ch	Anion/Cation Balar	U IOH
-01	BH-10 (0'-1')	09/04/20	1200	>	X	-		x _	+	# 1	N	X			H	H			0	0		2 4	X		< F	
0)	BH-10 (3'-4')	09/04/20	1220		X		1	x	1	1	N	X	,	(+		1		+		x	1		
03	BH-11 (0'-1')	09/04/20	1300		X	Ħ		x	+	1	N	X	,	(x			
où	BH-11 (3'-4')	09/04/20	1320		X			x	-	1	N	X)	(x			
					7																					
Relinguished by:	Date: Time:	Received by	.9			Da	101	Tie	ne:									ARK								
	9-08-2020 1400	ACK	AN		Je	~	-2		1E		D		LAE O	B US			_	< si		lard						
Relinquished by: Relinquished by:	Date: Time: <u> <u> <u> </u> <u> </u></u></u>	Received by	X	7	0	Da <u>1-8</u> Da	=2	Tin J Tin J	lé ne:	5:	31	Sam Z	ple T				E	_					24 hr orized		hr 72	hr
COC Seal Present/Int COC Signed/Accurate: Bottles arrivé intac Correct bottles used	<pre>mple Receipt Checklist act: Y_N If Applicable</pre>	ORIGINA	ALCOPY	14	122	09				9.2		gain.	-							100		arai an	ng #:			

.

APPENDIX D Soil Boring Logs

eived by (<mark>)CD: 3/</mark> 5	5/2021 .	<u>3:12</u>	:10	<u>PM</u>								Page 221 of
212C-MD-	-02250	T	ŀ	ETR	ATEC	CH				L	OG OF BORING BG-	1	Page 1 of 1
Project Nar	me: Jan	nes A #	011	Stuff	fing E	Box F	Relea	ase					
Borehole L	ocation:	GPS: 32.4	42620	8, -10	3.849	582				Surface Elevation:	3195 ft		
Borehole N	lumber:	BG-1						Bc Dia	oreh ame	ole 8 eter (in.):	Date Started: 8/26/2020	Date Finished	l: 8/26/2020
YPE	E FIELD VG (ppm)	JG (ppm)	OVERY (%)	ONTENT (%)	r (pcf)	МІТ	Y INDEX	00 (%)	(J	V	VATER LEVEL OBSERVA		<u>RY</u> ft

ш	(mqq	(mqq	ERY (9	TENT (cf)		NDEX	(%		Remarks:
DEPTH (ft) OPERATION TYPE	SAMPLE SCREENING (ppm) screening (ppm)	UNC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%	MOISTURE CONTENT (DRY DENSITY (pcf)	ב בומטום בואוד	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION
	95									-SM- SILTY SAND: Brown, loose, with occasional caliche, no hydrocarbon odor, no BG-1 (0-1') staining dry.
	68.1									 BG-1 (4-5')
	120									CALICHE: White, hard, with occasional SILT (ML), no hydrocarbon odor, no staining dry. BG-1 (6-7')
	88.6								$\rangle \stackrel{\sim}{\longrightarrow} \langle \\ - \Diamond \\ - \\ \rangle \stackrel{\sim}{\longrightarrow} \langle \rangle $	Bottom of borehole at 10.0 feet.
Sampler Types:	Split Spoon Shelby Bulk Sample	Va			T		: Mud Rota Con Fligh	ary tinuous nt Auge sh	s er	Hand Auger Notes: Air Rotary Analytical sample intervals are shown in the "Remarks" column above. Surface elevation is based on Google Earth data. Direct Push Core Barrel
Logger:		1/8/ <u>2</u> 62	USTI	N-24		Drilling	g Equ /ELL3`	uipmei 2015 T	nt: Air I T TEMF	Rotary Driller: Scarborough Drilling PLATE DECEMBER WELL.GDT' Revised 5-16-12 (RH)

.

2120	C-ME	D-02250	٦	ť	ETR	ATEC	CH				LOG OF BORING BH-1	Page 1 of 1
Proje	ct Na	ame: Ja	ames A #	011	Stuff	fing E	Box I	Relea	ase			I
Boreh	ole	Location:	GPS: 32.	42658	39, -10	3.849	291				Surface Elevation: 3196 ft	
Boreh	ole	Number:	BH-1						E	Boreho Diame	ble ter (in.): 8 Date Started: 8/26/2020 Date Finisher	d: 8/26/2020
	и түре	MPLE CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	L SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	TY (pcf)	IMIT	PLASTICITY INDEX			WATER LEVEL OBSERVATIONS	P <u>RY_</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE EX CHLORI SCREEN		SAMPLE RE	MOISTURE	DRY DENSITY (pcf)		DLASTIC	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION 문	REMARKS
										$ \diamond - \langle \rangle $	CALICHE: Light tan, cemented, with occasional brown SILTY SAND (SM), no hydrocarbon odor, heavy staining, dry.	BH-1 (0-1')
		$\overline{\mathbf{A}}$								$ \rangle = \langle \rangle $		BH-1 (2-3')
5_		1760								$\sum_{i=1}^{n} \langle$	5.5 -SM- SILTY SAND: Brown, medium dense, with occasional caliche, no hydrocarbon odor, heavy ctaining, dry	BH-1 (4-5') BH-1 (6-7')
- - 10		305									staining, dry.	BH-1 (0-7) BH-1 (9-10')
5_		342										BH-1 (14-15')
-		X										
 20												BH-1 (19-20')
											Bottom of borehole at 20.0 feet.	
amp ypes	ller S:	Split Spo She Bulk Sarr Grai Sarr	lby			r T		Muc Rota	ary itinuou ht Aug sh	s er	Hand Auger Notes: Air Rotary Analytical sample intervals are shown in the "Re column above. Surface elevation is based on Go data. Direct Push Core Barrel	marks" oogle Earth
0000	er:	Joe Tyler					Drillin	g Eai	uipme	ent: Air	Rotary Driller: Scarborough Drilling	

JAMES A 11 LOGS GRJ 1-22-21. TT AUSTIN GEOTECH NOWELL3 2015 TT TEMPLATE DECEMBER WELL.GDT''

212C-MD-02250

TE TETRATECH

	<u>Page 223 of</u> 249
BORING BH-2	Page 1 of 1

Broic	oct N	lom	o: lan	nes A #	011	Stuff	ing F	Box F	کمام	200				
							-		Telea	150		2400 #		
				GPS: 32.4	42636	51, -10	3.849	171		В	oreho	Surface Elevation: 3196 ft le 8 Date Started: 8/26/2020 Date		
Bore	nole	Nu 	mber:	BH-2							iame	le er (in.): 8 Date Started: 8/26/2020 Date WATER LEVEL OBSERVATIONS	+ FINISNE	ed: 8/26/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	WATER LEVEL OBSERVATIONS While Drilling <u>V DRY</u> ft Upon Completion of Drilling Remarks: MATERIAL DESCRIPTION	DEPTH (ft)	DRY_ft REMARKS
	$\overline{)}$		ExStik	PID		-			PI	-		-SM- SILTY SAND: Brown, loose, with	+	
-												occasional caliche, no hydrocarbon odor, heavy staining, dry. CALICHE: Light tan, hard, no hydrocarbon odor, no staining, dry.	1.5	BH-2 (0-1') BH-2 (2-3')
5		Å	900									 -SM- SILTY SAND: Reddish brown, medium dense, with occasional caliche. no hydrocarbon odor, no staining, dry. -SM- SILTY SAND: Light reddish tan, dense, 	5.5	BH-2 (4-5')
-		Å	140									with caliche, no hydrocarbon odor, no staining, dry.		BH-2 (6-7')
		X	250										_	BH-2 (9-10')
-		\mathbb{N}										MUDSTONE: Brown, very hard, no hydrocarbon odor, no staining, dry.	12 	
<u>15</u> - -			112										-	BH-2 (14-15')
20			100										-	BH-2 (19-20')
													25	BH-2 (24-25')
Sam Type	S:		Split Spoon Shelby Bulk Sample Grab Sample Tyler					Dpera	Muc Rota Con Fligh Was Rota	ary tinuous nt Auge sh		Hand Auger Bottom of borehole at 25.0 feet. Notes: Air Rotary Analytical sample intervals are shown in column above. Surface elevation is base data. Direct Push Core Barrel Rotary Driller: Scarborough Drilling	the "Re ⊧d on Ge	emarks" oogle Earth

LOG OF

Receive.

5

10

1080

948

641

eive.	<u>d by</u>	0	<u>CD: 3/</u>	5/2021	3:12	2:10	<u>PM</u>									Page 224 o
212	C-M	D-0	2250	٦	ť	ETR	ATE	CH				LOG	OF BORING BH-3			Page 1 of 1
Proje	ect N	am	e: Jar	mes A #	011	Stuf	fing I	Box I	Relea	ase						
Borel	hole	Loc	cation:	GPS: 32.	42670	07, -10)3.849	297				Surface Elevation: 3	196 ft			
Bore	hole	Nu	mber:	BH-3						E	Boreh Diame	ole Da	ate Started: 8/26/2020	Date Fi	nishe	d: 8/26/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	XX CHLORIDE FIELD SCREENING (ppm)	UCC FIELD SCREENING (ppm)	L SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	While Drilling <u>V</u> D Remarks:	TER LEVEL OBSERVATION		DEPTH (ft)	PRY_ft REMARKS
	<u>}</u>	Å	243 451									CALICHE: Ligh occasional brown hydrocarbon odor	nt tan, cemented, with SILTY SAND (SM), no , no staining, dry.			BH-3 (0-1') BH-3 (2-3')

 \Diamond

Bottom of borehole at 10.0 feet.

-SM- SILTY SAND: Brown, medium dense, with occasional caliche, no hydrocarbon odor, no staining, dry.

5.5

10

	Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:
		Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical sample intervals are shown in the "Remarks" column above. Surface elevation is based on Google Earth
		Bulk Sample	California	Continuous Flight Auger	Direct Push	data.
		Grab Sample	Test Pit	Wash	Core Barrel	
	Logger:	,		Drilling Equipment	,	Driller: Scarborough Drilling
Rei	JAMES A 11	LOGS GRJ 1-22	12/27-24STIN-GEOTE	CH NOWELL3 ` 2015 TT `	TEMPLATE DECEMBE	R WELL.GDT' ' ` Revised 5-16-12 (RHM)
nu	cuscu iv	1	0/2021 11.244.0			

212C-MD-0	02250	Т	t '	ETR	ATE	CH				LOG OF BORING BH-4			Page 1 of 1
Project Nam	ne: Jar	nes A #	011	Stuf	fing l	Box	Relea	ase					
Borehole Lo	cation:	GPS: 32.4	42668	31, -10	3.849	163				Surface Elevation: 3196 ft			
Borehole Nu	Imber:	BH-4						E	Boreh Diame	ole Date Started: 8/26/2020	Date Fin	nishe	d: 8/26/2020
	D D	(mq	RY (%)	ENT (%)			DEX			WATER LEVEL OBSERVATION While Drilling <u>♀ DRY</u> ft Upon Completion of Dr Remarks:		Ā L	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	REMARKS
SA OF DE	ExStik	PID	SA	Ŭ	Б	LL	PI	Σ	ß			DE	
	2450									occasional brown SILTY SAND (SM), no	_	_	BH-4 (0-1')
	530									∑ < -	-	_	BH-4 (2-3')
5	736								$\rangle - \diamond$	4	-	- 5	BH-4 (4-5')
<u> </u>		_					1		K	Bottom of borehole at 5.0 feet.		<u> </u>	

Sampler	Split	Acetate Liner	Operation	Hand Auger	Ier Notes:	
Type's:	Spoon Shelby	Vane Shear	Types:	Air Rotary	Analytical completintervale are about in the "Domarka"	
	Bulk Sample	California	Continuous Flight Auger	Direct Push	5	
	Grab Sample	Test Pit	Wash	Core Barrel	el	
Logger:	Joe Tyler		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling	
JAMES A 11	LOGS GRI 1-22-	21. TT AUSTIN GEOTE	CH NOWELLS ' 2015 TT	TEMPI ATE DECEMBI	MBER WELL GDT'' `	6 40 (DU)

JAMES A 11 LOGS.GRU 1-22-22 TT AUSTIN GEOTECH NOWELLS 2015 TT TEMPLATE DECEMBER WELL.GDT Released to Imaging: 4/8/2021 11:24:50 AM

	Page 226 of 249
LOG OF BORING BH-5	Page

212C-N	ND-0	2250	Г	ť	ETR	TEC	H					L	OG OF BORING BH-5			Page 1 of 1
Project I	Nam	e: Jam	es A #	011	Stuff	ing E	Box F	Relea	ise	1						1
Borehol	e Lo	cation:	GPS: 32.	42655	51, -10	3.849 [.]	102				Surface Eleva	tion:	3196 ft			
Borehol	e Nu	mber: I	3H-5	_					Bo Di	oreho ame	ble ter (in.): 8		Date Started: 8/26/2020	Date F	inishe	d: 8/26/2020
		opm)	(mdc	ERY (%)	ENT (%)	sf)		IDEX			While Drilling Remarks:		VATER LEVEL OBSERVATI		<u>Ā</u> C)RY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UNC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)			MINUS NO. 200 (%)	GRAPHIC LOG			RIAL DESCRIPTION		DEPTH (ft)	REMARKS
		316								- \langle - - \langle - - \langle - - \langle - \l	CALICH occasional hydrocarbo	E: I bro on o	Light tan, cemented, with wn SILTY SAND (SM), no dor, no staining, dry.		_	BH-5 (0-1')
		101								- \ - \ - \ - \						BH-5 (2-3')
5		126								-						BH-5 (4-5')
	Å	83								>	(SM).	-	amount of brown SILTY SAND		8	BH-5 (6-7')
10		48									occasional staining, di	cali y.	AND: Brown, medium dense, iche, no hydrocarbon odor, no om of borehole at 10.0 feet.	with		BH-5 (9-10')
Sampler	r N	Split					Dpera	tion								
Sampler Types:	11 11 11	Split Spoon Shelby Bulk Sample Grab Sample		Acetat /ane \$ Califor Fest P	nia	r T		: │ Mud │ Rota │ Cont │ Fligh	inuous t Auger h		Air Rotary	Note Ana colu data	alytical sample intervals are sh umn above. Surface elevation	own in the	e "Re on Go	marks" oogle Earth
Logger:							Drilling	g Equ	ipmen	nt: Air	Rotary	Drille	er: Scarborough Drilling			
IAMES A 1		S.GRJ`1-2 Iaging:	4/8/20		1:24	DTECH	ANOW	ELL3 `	2015 TT	TEM	PLATE DECEMBER	RWEL	LL.GDT' ' `			Revised 5-16-12 (RHM)

212C-MD-02250

TETRATECH LOG OF BORING BH-6	Page 1 of 1

Project N	Name:	Jam	es A #0)11 ;	Stuffi	ing E	Box F	Relea	ase								
Borehole	e Loca	tion: (GPS: 32.4	2632	1, -103	3.8490)71				Surface Elevat	ion:	3196 ft		1		
Borehole	e Num	ber: E	3H-6						B	oreho	le ter (in.): 8		Date Started	d: 8/26/2020	Date F	inishe	d: 8/26/2020
DEPTH (ft) OPERATION TYPE	12	XX CHLORIDE FIELD Approximation (ppm)	D SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	While Drilling Remarks: MA	Ī		EL OBSERVATIO		DEPTH (ft)	DRY_ft REMARKS
		170 170 123 144									occasional staining, di CALICH hydrocarbo	cal <u>y.</u> E: on o dish	iche, no hydi Light reddish dor, no stain ı brown mude	n, loose, with rocarbon odor, no n tan, hard, no ing, dry. stone @ 4' to 6'. Y SAND (SM) @ 6	s' to	1.5 	BH-6 (0-1') BH-6 (2-3') BH-6 (4-5') BH-6 (6-7') BH-6 (9-10')
												3ott	om of boreho	ble at 10.0 feet.			
Sampler Types:		Split Spoon Shelby Bulk Sample Grab Sample		cetate ane S aliforr est Pi	nia			Mud Rota Cont Fligh Was Rota	ary tinuous at Auge sh ary	er 📕	Air Rotary	colu data	llytical samp ımn above. S a.	le intervals are sho Surface elevation is	own in th s based	e "Re on Go	marks" oogle Earth
Logger:	Joe Ty	er					Prilling	g Equ	ipmei	nt: Air	Rotary	Jrille	er: Scarborough I	Drilling			

	Page 228 of 249	
LOG OF BORING BH-7	Page	

212C-MD-02250	TE TETRAT	тесн	LOG OF BORING BH-7	Page 1 of 1
Project Name: Ja	ames A #011 Stuffin	ig Box Release		
Borehole Location:	GPS: 32.426388, -103.8	849342	Surface Elevation: 3196 ft	
Borehole Number:	BH-7	Bore Diam	hole 8 Date Started: 8/26/2020 Date Finished	: 8/26/2020
Y PE FIELD G (pom)	G (ppm) DVERY (%) DNTENT (%)	(pcf) T (NDEX (%)	WATER LEVEL OBSERVATIONS While Drilling <u>↓ DRY</u> ft Upon Completion of Drilling <u>↓ DI</u> Remarks:	<u>RY_</u> ft
DEPTH (ft) OPERATION TYPE SAMPLE SAMPLE CHLORIDE FIELD		DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%)		REMARKS
			- ↓ occasional brown SILTY SAND (SM), no	BH-7 (0-1')
				BH-7 (2-3') BH-7 (4-5')
			- ⊲ - ↓	BH-7 (6-7')
			-SM- SILTY SAND: Brown, medium dense, with occasional caliche, no hydrocarbon odor, no	BH-7 (9-10')
Sampler Types: Spo She San Mr Gra San	Iby Dane Shear	Operation Types: Mud Rotary Flight Auger Wash Rotary	 Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical sample intervals are shown in the "Rer column above. Surface elevation is based on God data. 	narks" ogle Earth
Logger: Joe Tyler		Drilling Equipment:	Air Rotary Driller: Scarborough Drilling	

Re

Sorehole Location: GPS: 32.426575, -103.849469 Sorehole Location: GPS: 32.426575, -103.849469 Sorehole Number: BH-8 U U U U U U U U U	Surface Elevation: 3196 ft Borehole Location: GPS: 32.426575, -103.849469 Surface Elevation: 3196 ft Borehole Number: BH-8 Borehole Diameter (in.): 8 Date Started: 8/26/2020 Date Finished: 8/26/2020 WATER LEVEL OBSERVATIONS WATER LEVEL OBSERVATIONS Water Level Observation of Drilling Y DRY ft Util Hand Open of the planeter (in.): 8 Date Started: 8/26/2020 Date Finished: 8/26/2020 Water Level OBSERVATIONS Water Level OBSERVATIONS Water Level OBSERVATIONS Water Level OBSERVATIONS Planeter (in.): 8 Date Started: 8/26/2020 Date Finished: 8/26/2020 While Drilling Y DRY ft Upon Completion of Drilling Y DRY ft MATERIAL DESCRIPTION Planeter (in.): August 200 of the planeter (in.): Planeter (in.): BH-8 (0-1') Water Level Observation August 200 of the planeter (in.): Planeter (in.): MATERIAL DESCRIPTION Planeter (in.): Planeter (in.): <th>Borehole Location:</th> <th></th> <th>:</th> <th></th> <th></th> <th>- I</th>	Borehole Location:		:			- I
Borehole Number: BH-8 Borehole Diameter (in.): 8 Date Started: 8/26/2020 Date Finished: 8/26/2020 WATER LEVEL OBSERVATIONS WATER LEVEL OBSERVATIONS While Drilling <u>DRY</u> ft Upon Completion of Drilling <u>Y</u> DRY ft Upon Completion of Drilling <u>Y</u> DRY ft Upon Completion of Drilling <u>Y</u> DRY ft Hard DO DATE FINISHED: 8/26/2020 WATER LEVEL OBSERVATIONS While Drilling <u>Y</u> DRY ft Upon Completion of Drilling <u>Y</u> DRY ft Hard DO DATE FINISHED: 8/26/2020 WATER LEVEL OBSERVATIONS While Drilling <u>Y</u> DRY ft Upon Completion of Drilling <u>Y</u> DRY ft Remarks: MATERIAL DESCRIPTION 4020 4020 4020 455 455 455 BH-8 (2-3) 5 BH-8 (4-5)	Borehole Number: BH-8 Borehole Number: BH-8 Burehole Diameter (in.): 8 Borehole Diameter (in.): 8 Borehole Diameter (in.): 8 Date Started: 8/26/2020 WATER LEVEL OBSERVATIONS While Drilling <u>DRY</u> ft Upon Completion of Drilling <u>Y</u> DRY ft Remarks: MATERIAL DESCRIPTION (i) Had 0 0 0 0 0 0 0 0 0 0 0 0 0		GPS: 32.426575, -103.849469				
Operation Diameter (in.): Diame	Bole Hole Number. Director (in.): Diameter (in.): <	Borehole Number:			Surface Elevation: 3196 ft		
(I) I	(i) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		BH-8	Boreh Diame	ole 8 Date Started: 8/26/2020 Date	e Finishe	ed: 8/26/2020
- -	- -		m) .Y (%) NT (%) EX		WATER LEVEL OBSERVATIONS While Drilling <u>V DRY</u> ft Upon Completion of Drilling	g <u>¥</u>	DRY_ft
- -	- -		VOC FIELD SCREENING (p) SAMPLE RECOVEI MOISTURE CONTE MOISTURE CONTE MINUS NO 200 (%	BRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
$ \begin{array}{c c} & & \\ \hline \\ 5 & \\ \hline \\ 238 & \\ \hline \\ 238 & \\ \hline \\ 5 & \\ \hline \hline \\ 5 & \\ \hline \\ $					 - CALICHE: Light tan, cemented, with occasional brown SILTY SAND (SM), no 	_	BH-8 (0-1')
		455				_	BH-8 (2-3')
	Bottom of borehole at 5.0 feet.	5 238		$-\diamond$		5	BH-8 (4-5')

San Typ	npler bes:	Split Spoon Shelby Bulk Sample Grab Sample	Acetate Liner Image: Acetate Liner Image: Vane Shear Image: California Image: Test Pit	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Notes: Analytical sample intervals are shown in the "Remarks" column above. Surface elevation is based on Google Earth data.	
	.0	Joe Tyler		Drilling Equipment		Driller: Scarborough Drilling	
Release	s <u>a 11</u> ed to	LOGS.GRJ 1-22,7 Imaging: 4	8/2021 11:24:5	CH_NOWELL3 ` 2015 TT T	TEMPLATE DECEMBE	R WELL.GDT' ' Revised 5-16-12	(RHM)

c <mark>eive</mark>	<u>d b</u> j	v O	CD: 3/5	5 <i>/2021</i> .	3:12	2:10	<u>PM</u>									Page 230 of 24
212	2C-N	1D-0	2250	T	t '	ETR	TEC	CH				L	OG OF BORING BH-9			Page 1 of 1
Proj	ect N	lam	e: Jan	nes A #	011	Stuff	ing E	Box I	Relea	ase						
Bore	ehole	e Lo	cation:	GPS: 32.4	42648	33, -10	3.849	690				Surface Elevation:	3194 ft			
Bore	ehole	e Nu	mber:	BH-9						B	oreh Diame	ole 8 eter (in.):	Date Started: 8/26/2020	Date F	inishe	d: 8/26/2020
			LD (mq	pm)	RY (%)	ENT (%)	()		DEX				VATER LEVEL OBSERVATIO		Ā C	DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)		MATERIAL DESCRIPTION				EPTH (ft)	REMARKS						
<u> </u>	٦ ۲	AS SA	ExStik	PID	Ś	Ŭ	Б	LL	ΡI	Σ						
-		M	143									 CALICHE: occasional bro hydrocarbon o 	Light tan, cemented, with own SILTY SAND (SM), no odor, no staining, dry.		_	BH-9 (0-1')
-		$\left \right\rangle$	460												_	BH-9 (2-3')
5	$ \langle \langle \rangle$	$\langle \rangle$	640								-0				5	

Bottom of borehole at 5.0 feet.

Sampler Types:	Split Spoon Shelby Bulk Sample	Acetate Liner Image: Acetate Liner<	Operation Types: Mud Rotary Flight Auger Wash Deter	Hand Auger Air Rotary Direct Push Core Barrel	Analy colum	tical sample intervals are shown in the "Remarks n above. Surface elevation is based on Google E	
Logger:	Joe Tyler	Test Pit	Drilling Equipment		Driller:	Scarborough Drilling	
JAMES A 11	LOGS.GRJ ` 1-22	21. TT AUSTIN GEOT	CH_NOWELL3 ` 2015 TT	TEMPLATE DECEMBI	R WELL.C	GDT' ' `	Revised 5-16-12 (

Rece.

ExStik

232

180

M

M

PID

LL

ΡI

- 🔿

- 🔷 \diamond

 \Diamond

<u>eived b</u>	<u>y 0</u>	CD: 3/5	5/2021 .	3:12	2:10	<u>PM</u>									Page 231 of
212C-N	MD-0	02250	T	t '	ETR	ATE	CH				LC	DG OF BORING BH-10			Page 1 of 1
Project	Nam	ie: Jan	nes A #	011	Stuf	fing B	Box	Relea	ase						
Borehol	e Lo	cation:	GPS: 32.4	42666	69, -10)3.849	556				Surface Elevation:	3196 ft			
Borehole Number: BH-10 Borehole Number: BH-10						ole 4 eter (in.):	Date Started: 9/4/2020	Date F	inishec	1: 9/4/2020					
		opm)	(mdc	ERY (%)	ENT (%)	sf)		INDEX	(%)			VATER LEVEL OBSERVATION		<u>Ā</u> D	<u>RY_</u> ft
DEPTH (ft) OPERATION TYPE		CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY	MOISTURE CONTENT	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY IN	MINUS NO. 200 (%	GRAPHIC LOG	MATE	RIAL DESCRIPTION		EPTH (ft)	REMARKS
법 b	; \$	FxStik	PID	ر ک	ΪŽ	Ľ۵	11	PI	Σ	15				B	

-- CALICHE: Light tan, cemented, with occasional brown SILTY SAND (SM), no hydrocarbon odor, no staining, dry.

Bottom of borehole at 4.0 feet.

Types: S S S S		Operation Types: Mud Rotary Flight Auger	Hand Auger Air Rotary Direct Push	Notes: Analytical sample intervals are shown in the "Remarks' column above. Surface elevation is based on Google E data.	' Earth
Logger: Joe Tyler Refeased to Image	Test Pit	Drilling Equipment:	•	Driller: Tetra Tech	Revised 5-16-12 (RHM)

BH-10 (0-1')

BH-10 (3-4')

4

			2250	T	9		TEC					LOG OF BORING BH-11	Page 1 of 1
				nes A #0			-		Relea	ase			
				GPS: 32.4	26719	9, -10	3.849 <i>′</i>	106				Surface Elevation: 3196 ft	
ore	hole	Nu	mber:	BH-11							oreho iame	ter (in.): Date Statted. 6/ 1/2020	hed: 9/4/2020
	PE		(ppm) IELD	(mqq)	VERY (%)	NTENT (%)	pcf)	Г	INDEX			WATER LEVEL OBSERVATIONS	DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	XZ CHLORIDE FIELD SCREENING (ppm)	UNC FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
		£₩2	201								- \ - \ - \ - \ - \ - \ - \ - \	CALICHE: Light tan, cemented, with occasional brown SILTY SAND (SM), no hydrocarbon odor, no staining, dry.	BH-11 (0-1')
_	ł	m									>—< ⊢⊘-		
			134									4	BH-11 (3-4')
												Bottom of borehole at 4.0 feet.	
												Bottom of borehole at 4.0 feet.	
												Bottom of borehole at 4.0 feet.	
												Bottom of borehole at 4.0 feet.	
												Bottom of borehole at 4.0 feet.	

Sampler Types:	Split Spoon Shelby Bulk Sample Grab Sample	Acetate Liner Image: Acetate Liner<	Operation Types: Mud Rotary Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Notes: Analytical sample intervals are shown in the "Remarks" column above. Surface elevation is based on Google Earth data.
Logger:	Joe Tyler		Drilling Equipment	: Hand Auger	Driller: Tetra Tech

LOG OF BORING BH-12	P	
		ł

212C-MD-02250	TE TETRA	TECH	LOG OF BORING BH-12	Page 1 of 1
Project Name: J	uames A #011 Stuffir	ng Box Release		
Borehole Location	: GPS: 32.426202, -103	.849039	Surface Elevation: 3198 ft	
Borehole Number:	BH-12	Bore	hole heter (in): 4 Date Started: 12/10/2020 Date Finished: 12	/10/2020
	BH-15 SCREENING (ppm) AMPLE RECOVERY (%) OISTURE CONTENT (%)		hole heter (in.): 4 Date Started: 12/10/2020 Date Finished: 12/10/2020 WATER LEVEL OBSERVATIONS While Drilling ✓ DRY ft Upon Completion of Drilling ✓ DRY ft Remarks: ✓ MATERIAL DESCRIPTION (E) H MATERIAL DESCRIPTION (E) H R -SM- SILTY SAND: Brown, loose, with Image: Completion of Drilling Image: Completion of Drilling	
Bul Sar Mg Gra	elby 🗍 Vane Shear hple California ab nple Test Pit	Operation Types: Mud Rotary Flight Auger Nash Rotary Drilling Equipment:	Image: Hand Auger Notes: Air Rotary Air Rotary Direct Push Analytical sample intervals are shown in the "Remarks column above. Surface elevation is based on Google E data. Hand Auger Driller: Tetra Tech	," Ξarth

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north of the impacted surface and surrounded area.	1
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	9/04/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest of the impacted surface and surrounded area.	2
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	9/04/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northeast of the impacted surface and surrounded area.	3
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	9/04/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east of the impacted surface and surrounded area.	4
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	9/04/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest of the impacted surface area.	5
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	8/26/2020

	TETRA TECH, INC. PROJECT NO. 212C-MD-02250	DESCRIPTION	View south of the impacted surface area.	6
		SITE NAME	James A #011 Stuffing Box Release	8/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west of the impacted pasture area.	7
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	8/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View south of the impacted surface area.	8
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	8/26/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east of the impacted surface area and surrounded pasture area.	9
212C-MD-02250	SITE NAME	James A #011 Stuffing Box Release	8/26/2020

•

APPENDIX F NMSLO Seed Mixture Details

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

James A #11 Release Remediation

Released to Imaging: 4/8/2021 11:24:56 AM

•

Custom Soil Resource Report

MAP LE	GEND	MAP INFORMATION	
Area of Interest (AOI)○Area of Interest (AOI)SoilsSoil Map Unit Polygons○Soil Map Unit Polygons○Soil Map Unit PointsSpecial P-int FeaturesSoil Map Unit Points○Blowout○Borrow Pit○Clay Spot○Closed Depression२२Gravel Pit	Spoil AreaImage: Spoil AreaImage: Spoil AreaImage: Stony SpotImage: Stony SpotImage: Spoil AreaImage:	The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:	
 Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water 	Major Roads Local Roads Background Aerial Photography	Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as	
 Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot 		of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 16, Jun 8, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
 Sinkhole Slide or Slip Sodic Spot 		Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PD	Pajarito-Dune land complex, 0 to 3 percent slopes	0.2	100.0%
Totals for Area of Interest		0.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

PD—Pajarito-Dune land complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w55 Elevation: 3,000 to 5,000 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 190 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Pajarito and similar soils: 46 percent Dune land: 45 percent Minor components: 9 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pajarito

Setting

Landform: Dunes, interdunes, plains Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 9 inches: fine sandy loam *H2 - 9 to 36 inches:* fine sandy loam *H3 - 36 to 72 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Description of Dune Land

Setting

Landform: Dune fields Landform position (two-dimensional): Footslope, shoulder, backslope Landform position (three-dimensional): Talf Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 6 inches: sandy loam *H2 - 6 to 60 inches:* sandy loam

Interpretive groups

Land capability classification (irrigated): None specified Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 5 percent Hydric soil rating: No

Largo

Percent of map unit: 4 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

NMSLO Seed Mix

Sandy Loam (SL)

SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	F	
Little bluestem	Cimmaron, Pastura	2.5	F	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	F	
Sand dropseed	VNS, Southern	1.0	S	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	F	
Apache plume	VNS, Southern	0.75	F	
	Total PLS/acro	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

• VNS, Southern – No Variety Stated, seed should be from a southern latitude collection of this species.

• Double above seed rates for broadcast or hydroseeding.

• If Parry penstemon is not available, substitute firecracker penstemon.

- If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.
- If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

CONDITIONS

Action 19890

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 <u>District IV</u> 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:	OGRID:	Action Number:	Action Type:
CONOCOPHILLIPS COMPANY P.O.Box 2197	217817	19890	C-141
Office SP2-12-W156 Houston, TX77252			
	•		•
OCD Reviewer	Condition		
chenslev	None		