

December 7, 2020

Vertex Project #: 19E-00575-011

Spill Closure Report:	Cockburn Fed #002	
	Unit M, Section 10, Township 18 South, Range 33 East	
	County: Lea	
	API 30-025-36282	
	Incident Tracking Number: NAB1908655364	
Prepared For:	Devon Energy Production Company	
	6488 Seven Rivers Highway	

Artesia, New Mexico 88210

New Mexico Oil Conservation Division – District 1 – Hobbs

1625 North French Drive Hobbs, New Mexico 88240

Devon Energy Production Company (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a spill assessment and remediation for an oil and produced water release that occurred on February 23, 2019, at Cockburn Fed #002, API 30-025-36282 (hereafter referred to as "Cockburn"). Devon provided immediate notification of the release to New Mexico Oil Conservation Division (NM OCD) District 1 on February 23, 2019, followed by submission of the initial C-141 Release Notification on March 7, 2019 (Attachment 1). The NM OCD incident tracking number assigned to this release is NAB1908655364.

This letter provides a description of the spill assessment and remediation activities, and demonstrates that closure criteria established in 19.15.29.12 *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) have been met and all applicable regulations are being followed. This document is intended to serve as the final report to obtain approval from NM OCD for closure of this release.

Incident Description

On February 23, 2019, a release occurred at Devon's Cockburn site when a water tank was struck by lightning and caught fire. This incident resulted in the release of approximately 127 barrels (bbls) of produced water and 6 bbls of oil into an unlined containment and onto the wellpad. Upon extinguishing the fire, a hydrovac truck was dispatched to the site to recover free fluid. Approximately 44 bbls of produced water and 6 bbls of oil were recovered and removed from the site for disposal at an approved location. No produced water or oil were released off-lease or into undisturbed areas or waterways.

Site Characterization

The release at Cockburn occurred on federally-owned land, N 32.75660, W 103.65738, approximately 22 miles southwest of Lovington, New Mexico. The legal description for the site is Unit M, Section 10, Township 18 South, Range 33 East, Lea County, New Mexico. This location is within the Permian Basin in southeast New Mexico and has historically been used for oil and gas exploration and production, and rangeland. An aerial photograph and site schematic are included in

vertex.ca

Attachment 2 (Figure 1).

Cockburn is typical of oil and gas exploration and production sites in the western portion of the Permian Basin, and is currently used for oil and gas production, and storage. The following sections specifically describe the area surrounding the constructed wellpad.

The surrounding landscape is associated with dune fields and sandy plains, originating from eolian deposits and alluvium derived from sandstone, typical at elevations of 3,000 to 4,400 feet above sea level. The climate is semi-arid, with average annual precipitation ranging between 10 and 12 inches. The plant community has historically been dominated by giant dropseed and other dropseed grass species, with scattered shinnery oak and soapweed yucca. Bare ground and litter compose a significant proportion of ground cover while grasses make up the remainder (United States Department of Agriculture, Natural Resources Conservation Service, 2020). Limited to no vegetation is allowed to grow on the compacted wellpad.

The Geological Map of New Mexico indicates the surface geology at Cockburn is comprised primarily of Qep – interlaid eolian sands and piedmont-slope deposits from the Holocene to middle Pleistocene ages (New Mexico Bureau of Geology and Mineral Resources, 2020). The Natural Resources Conservation Service Web Soil Survey characterizes the soil at the site as Kermit-Palomas fine sands, predominately found on dunes. These soils are comprised of deep layers of fine sand and tend to be excessively drained with very low runoff and low available moisture in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2020). There is low potential for karst geology to be present near Cockburn, though some erosional karst may be possible (United States Department of the Interior, United States Geological Survey, 2020a).

There is no surface water located at Cockburn. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is an intermittent stream located approximately 7 miles east-northeast of the Cockburn (United States Department of the Interior, United States Geological Survey, 2020b). An intermittent/seasonal pond is located approximately 2.3 miles to the northeast (United States Fish and Wildlife Service, 2020). At Cockburn, there are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

The nearest recent well to Cockburn is a New Mexico Office of the State Engineer (OSE) well from 2014 located approximately 0.85 miles east-northeast of the release site. Data for that well show a depth to groundwater of 54 feet below ground surface (bgs; New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2020). An older OSE well from 1975, showing a depth to groundwater of 70 feet bgs, is located approximately 0.35 miles north of Cockburn (New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2020). Documentation pertaining to site characterization and depth to groundwater determination is included in Attachment 3.

Closure Criteria Determination

Using site characterization information, a closure criteria determination worksheet (Attachment 3) was completed to determine if the release is subject to any of the special case scenarios outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Based on data included in the closure criteria determination worksheet, the release at Cockburn is not subject to the vertex.ca

Devon Energy Production Company	
Cockburn Fed #002	

requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC. As the nearest recent groundwater well is farther than the recommended 0.5 miles from the release site, the depth to groundwater at Cockburn cannot be accurately determined; the closure criteria for the site are determined to be associated with the following constituent concentration limits.

Table 1. Closure Criteria for Soils Impacted by a Release		
Depth to Groundwater	Limit	
	Chloride	600 mg/kg
<50 feet	TPH ¹	100 mg/kg
	(GRO + DRO + MRO)	100 mg/kg
	BTEX ²	50 mg/kg
	Benzene	10 mg/kg

¹Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) ²Benzene, toluene, ethylbenzene and xylenes (BTEX)

Remedial Actions

An initial spill inspection, completed by Vertex on May 3, 2019, identified and mapped the boundaries of the release (Attachment 2 – Figure 1). The impacted area was determined to be approximately 88 feet wide and 102 feet long; the total affected area was determined to be approximately 7,805 square feet. On May 5, 2020, the burned tanks and damaged equipment were removed from the location. Remediation fieldwork was conducted at Cockburn between May 6 and May 9, 2019, with a Vertex environmental technician on-site to guide excavation of contaminated material using field screening methods. The Daily Field Reports (DFRs) and field screening data associated with the remediation fieldwork are included in Attachment 4.

To aid in the process of re-building the tank battery and getting Cockburn back in production, initial confirmatory sampling for the portion of the excavation where the containment and new tank battery were to be re-built was conducted on May 9, 2019. Several of these initial confirmatory samples did not meet closure criteria as outlined in Table 1. On May 11, 2019, additional excavation was completed, and the failed confirmatory samples re-collected. Initial confirmatory sampling analytical data are summarized in Table 2 (Attachment 5). Laboratory data reports and chain of custody forms are included in Attachment 6.

Following construction of the new tank battery, Vertex returned to complete confirmatory sampling from the remainder of the excavation area. On August 26, 2020, Vertex provided 48-hour notification of confirmatory sampling to NM OCD (Attachment 7), as required by Subparagraph (a) of Paragraph (1) of Subsection D 19.15.29.12 NMAC. On August 31, 2020, Vertex collected an additional 25 five-point composite samples from the base and side walls of the excavation, at depths ranging between 1 and 3 feet bgs. With the addition of these final confirmatory samples, each of the 40 total composite samples collected from the release site was representative of no more than 200 square feet per the alternate sampling method outlined in Subparagraph (c) of Paragraph (1) of Subsection D 19.15.29.12 NMAC, which does not require prior NM OCD approval. All confirmatory samples were placed into laboratory-provided containers, preserved on ice and submitted to a National Environmental Laboratory Accreditation Program-approved laboratory for chemical analysis.

Laboratory analyses included Method 300.0 for chlorides, Method 8021B for volatile organics, including BTEX, and EPA

vertex.ca

Devon Energy Production Company Cockburn Fed #002

Method 8015 for TPH, including MRO, DRO and GRO. The additional confirmatory sampling laboratory results are summarized in Table 2 (Attachment 5), alongside the initial confirmatory sampling data from the tank battery area.

A GeoExplorer 7000 Series Trimble GPS unit, or equivalent, was used to map the approximate center of each of the five-point composite samples. The confirmatory sampling locations are presented on Figure 2 (Attachment 2). Relevant equipment and prominent features/reference points, including the re-built tank battery, are shown as well.

Closure Request

Vertex recommends no additional remediation action to address the release at Cockburn. Laboratory analyses of the confirmatory samples showed constituent of concern concentration levels below NM OCD closure criteria for areas where depth to groundwater is less than 50 feet, or undetermined. There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

The excavation was backfilled with non-waste-containing, uncontaminated earthen material, sourced locally, and placed to meet the site's existing grade to prevent water ponding and erosion.

Vertex requests that this incident (NAB1908655364) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Devon certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NM OCD requirements to obtain closure on the February 23, 2019, release at Cockburn

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 505.506.0040 or ngordon@vertex.ca.

Sincerely,

atalie Jordon

Natalie Gordon PROJECT MANAGER

Attachments

- Attachment 1. NM OCD C-141 Initial Notification
- Attachment 2. Figures
- Attachment 3. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 4. Daily Field Report(s) with Photographs
- Attachment 5. Confirmatory Sampling Laboratory Results
- Attachment 6. Laboratory Data Reports/Chain of Custody Forms
- Attachment 7. Required 48-hr Notification of Confirmatory Sampling to Regulatory Agencies

vertex.ca

Devon Energy Production Company Cockburn Fed #002

References

- New Mexico Bureau of Geology and Mineral Resources. (2020). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2020). *Water Column/Average* Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2020). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of the Interior, United States Geological Survey. (2020a). *Caves and Karst in the U.S. National Park Service*. Retrieved from https://www.arcgis.com/home/webmap/viewer.html?webmap=14675403c3794 8129acb758138f2dd1e
- United States Department of the Interior, United States Geological Survey. (2020b). *National Water Information System*. Retrieved from https://maps.waterdata.usgs.gov/mapper/index.html?state=nm
- United States Fish and Wildlife Service. (2020). *National Wetlands Inventory*. Retrieved from https://www.fws.gov/ wetlands/data/Mapper.html

Devon Energy Production Company Cockburn Fed #002 2020 Spill Assessment and Closure December 2020

Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company (Devon). This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

imal places)				
(NAD 83 in decimal degrees to 5 decimal places)				
plicable)				

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Materia	al(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

pived by OCD: 12/7/202	0 2:04:52 PM State of New Mexico	Page 9 d Incident ID
2	Oil Conservation Division	District RP
		Facility ID
		Application ID
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible part	y consider this a major release?
f YES, was immediate n	otice given to the OCD? By whom? To whom? Whe	· · · ·
	AZ	3
	Initial Response	2
The responsible	party must undertake the following actions immediately unless they	could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
The impacted area ha	s been secured to protect human health and the enviro	onment.
Released materials h	ave been contained via the use of berms or dikes, abso	rbent pads, or other containment devices. **
All free liquids and r	ecoverable materials have been removed and managed	l appropriately.
f all the actions describe	d above have <u>not</u> been undertaken, explain why: **	

has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Kendra DeHoyos	Date:
email:	Telephone:
OCD Only Received by:	Date:

Received by OCD: 12/7/2020 2:04:52 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 10 of 1	60
Incident ID	NAB1908655364	
District RP	1RP-5406	
Facility ID		
Application ID	pAB1908654648	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>< 50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗴 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗴 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- × Field data
- **x** Data table of soil contaminant concentration data
- **X** Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- NA Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12	2/7/2020 2:04:52 PM State of New Mexico			Page 11 of 160
Form C-141			Incident ID	NAB1908655364
Page 4	Oil Conservation Divis	ion	District RP	1RP-5406
			Facility ID	
			Application ID	pAB1908654648
regulations all opera public health or the e failed to adequately addition, OCD accep and/or regulations.	the information given above is true and complete tors are required to report and/or file certain relea environment. The acceptance of a C-141 report by investigate and remediate contamination that pose otance of a C-141 report does not relieve the opera Lupe Carrasco Lupe Carrasco Lupe.Carrasco	se notifications and perform c y the OCD does not relieve th a threat to groundwater, surf ator of responsibility for comp Title: <u>Environme</u> Date:12/7/20	orrective actions for rele e operator of liability sh ace water, human health	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		

Oil Conservation Division

Page 12 of 160

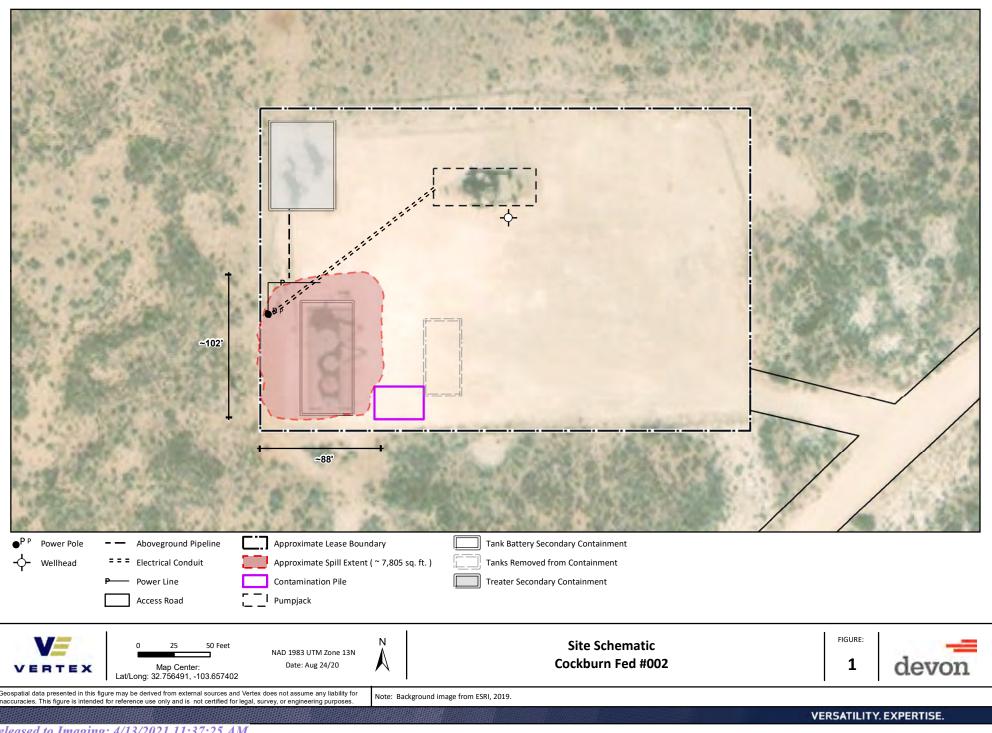
Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

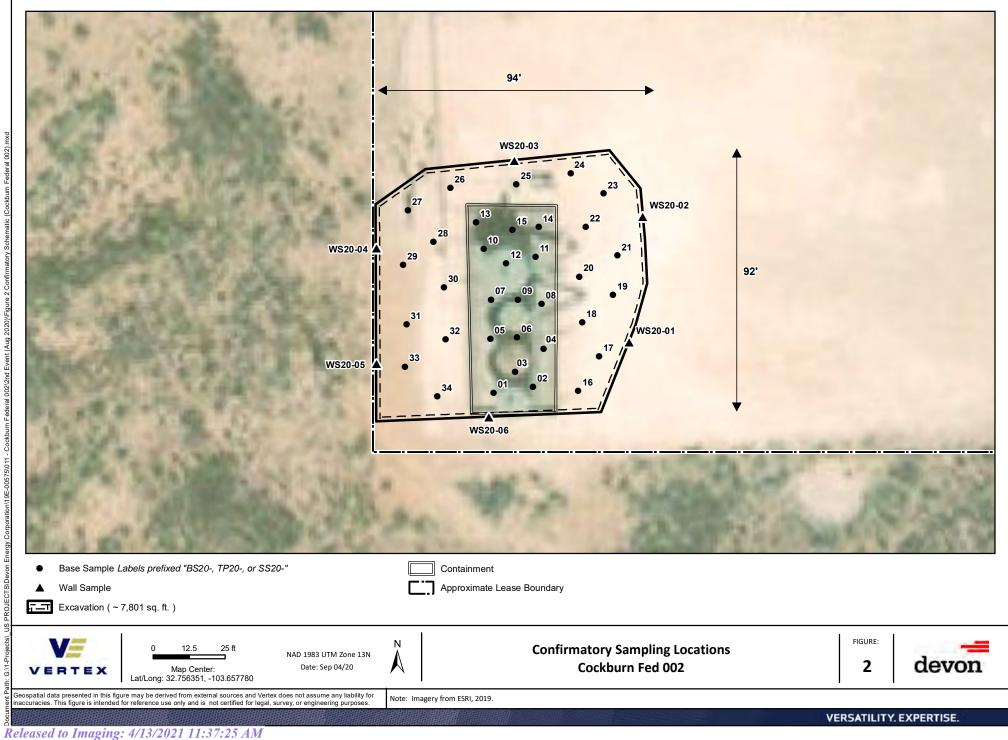
<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

X A scaled site and sampling diagram as described in 19.15.29.11 NMAC

X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)


X Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

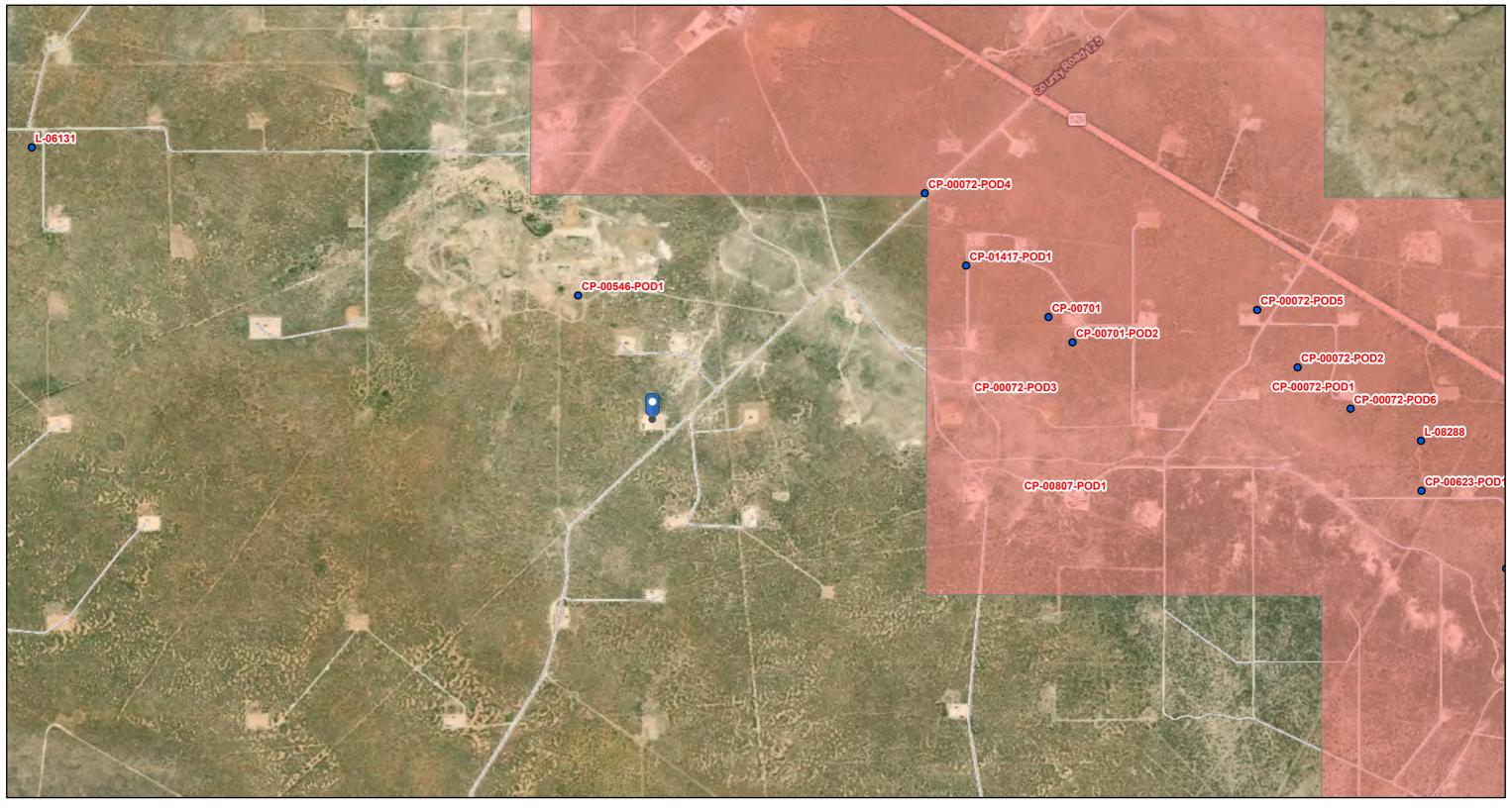
X Description of remediation activities


I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: LupeCarrasco	Title: Environmental Professional
Signature: Lupe Carrasco	Date:12/7/20
email: Lupe.Carrasco@dvn.com	Telephone: (575) 748-0176
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by:	Date:
Printed Name:	Title:

ATTACHMENT 2

Page 15 of 160

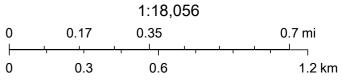


ATTACHMENT 3

•

te Nam	Closure Criteria Determination worksheet e: Cockburn Federal #002 1RP-5406 30-025-36282		
	rdinates: 32.4548009, -103.392713 651071.15 35919	86.05	
	ific Conditions	Value	Unit
1	Depth to Groundwater	70	feet
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	7,285	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	1,813	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	2,798	feet
5	 i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 	4,417	feet
	ii) Within 1000 feet of any fresh water well or spring	4,417	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27- 3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
7	Within 300 feet of a wetland	164,521 ft	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
9	Within an unstable area (Karst Map)		Critical High Medium Low
10	Within a 100-year Floodplain	Undetermined Zone D Shaded	year
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'2	<50' 51-100' >100'

Publicly Generated Map



12/1/2020, 12:02:41 PM **GIS WATERS PODs**

0 Active Water Right Regulations

Critical Management Area - Guidelines

OSE District Boundary SiteBoundaries

USDA FSA, GeoEye, Maxar, Esri, HERE, iPC, U.S. Department of Energy Office of Legacy Management, Esri, HERE, Garmin, iPC

8	D Number 00072 POE	(q Q	uarters ar	e smalle	2=NE 3=SW st to largest) ec Tws R 1 18S 3	(N. Rng	AD83 UTN X 28603	1 in meters) Y 3625179 🌍	
x Driller License: Driller Name:	1632 CALEB (ler Con	npany:	НОРІ	PER PUM	P & DRI	LLING, INC.	
Drill Start Date:		014 Dril	l Finish V Rcv I		12/0	01/2014	Pluş Sou	g Date: rce:	Shallow
Pump Type: Casing Size:	5.00	-	e Discha th Well	-		feet		mated Yield: th Water:	80 GPM 61 feet
x Wat	er Bearing	Stratifications	:	Тор 65	Bottom 80	-		Conglomerate	
x	Casi	ng Perforation	s:	Тор 60	Bottom 100				
x	er Number	: 17847	,		Meter M	ake:	MA	STERMETE	٤
Met	er Serial N	umber: 84232	52		Meter M	ultiplier:	100	0.0000	
Nur	nber of Dia	ls: 6			Meter Ty	ype:	Div	version	
Uni	t of Measu	re: Gallor	ıs		Return F	low Perce	ent:		
Usa	ge Multipli	er:			Reading	Frequenc	y: Mc	nthly	
Meter Readi	ngs (in Acr	e-Feet)							
Read Date	Year	Mtr Reading	Flag	Rdr	Commen	nt		Mtr 4	Amount Onlin
10/01/2018	3 2018	126095	А	RPT					0
06/01/2019	2019	168524	А	rr					13.021
07/01/2019		170174		rr					0.506
10/01/2019	2019	186415	А	RPT					4.984

Received by OCD: 12/7/2020 2:04:52 PM vrrs.ose.state.nm.us/ReportDispatcher?type=PODGHTML&name=PodGroundSummaryHTML.jrxml&basin=CP&nbr=00072&suffix=POD6

			•	
11/01/2019	2019	186415		RPT
12/01/2019	2019	186415	Α	RPT
01/01/2020	2020	186415	А	RPT
**YTD Met	er Amounts:	Year		Amount
		2018		0
		2019		18.511
		2020		0

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

8/31/20 11:04 AM

POINT OF DIVERSION SUMMARY

		(quarters	s are smalles	e ,	, ,	TM in meters) Y	
	P OD Number CP 00546 POD1	2 2	-	c Tws Rng 0 18S 33E	х 625464	¥ 3625597* 🧲	
Driller Licen	se: 208	Driller C	ompany:	VAN NO	Y, W.L.		
Driller Name	: VAN NOY, W.L						
Drill Start Da	ate: 06/01/1975	Drill Fini	ish Date:	06/03/19	975 Pl	ug Date:	
Log File Date	e: 10/02/1978	PCW Rc	v Date:		So	ource:	Shallow
Pump Type:		Pipe Disc	harge Siz	ze:	Es	timated Yield	:
Casing Size:	6.63	Depth W	ell:	90 feet	De	epth Water:	70 feet
	Water Bearing Strati	fications:	Тор	Bottom Des	cription		
			70	85 Othe	er/Unknown		

*UTM location was derived from PLSS - see Help

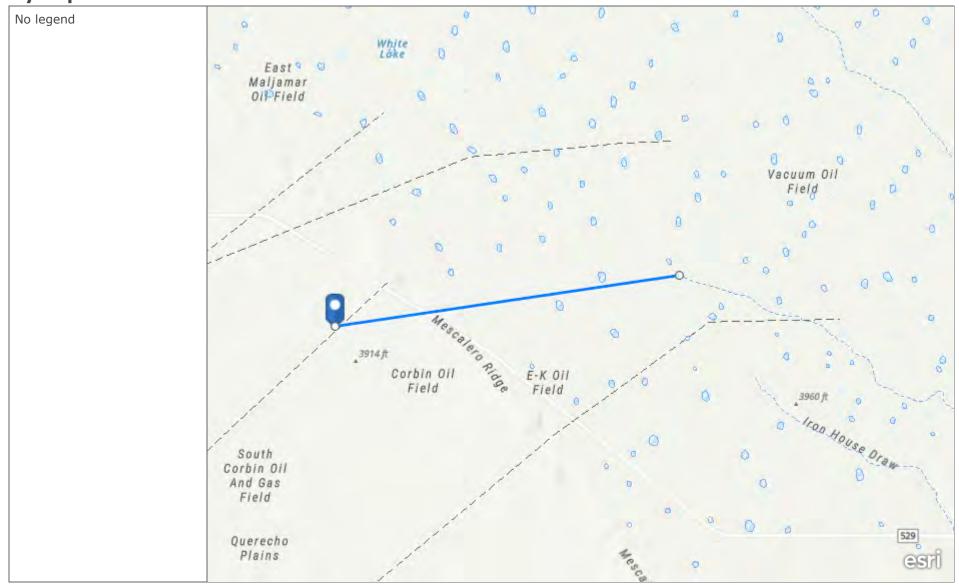
The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

8/31/20 11:03 AM

POINT OF DIVERSION SUMMARY

.

		< 1		2=NE 3=SW est to largest)		(NAD83 U'	TM in meters)	
Well Tag POE	Number	Q64 Q 1	16 Q4 S	ec Tws	Rng	Χ	Y	
CP ()1417 POD1		1	1 18S	33E	627036	3625738 🍯)
Driller License:	1632	Driller C	Company	: HOI	PPER PU	UMP & DR	ILLING, INC.	
Driller Name:	CALEB CURRY							
Drill Start Date:	12/01/2014	Drill Fin	ish Date:	: 12	/01/2014	4 Plu	ıg Date:	
Log File Date:	12/15/2014	PCW Rc	v Date:			So	urce:	Shallow
Pump Type:		Pipe Disc	charge Si	ize:		Es	timated Yield:	6 GPM
Casing Size:	5.00	Depth W	ell:	12	0 feet	De	pth Water:	54 feet
Wate	er Bearing Stratific	ations:	Тор	Bottom	Descri	ption		
			35	90	Sandst	one/Gravel	/Conglomerate	


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

8/31/20 5:26 PM

POINT OF DIVERSION SUMMARY

.

My Map

Esri, NASA, NGA, USGS | Texas Parks & Wildlife, Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS, EPA, NPS, USDA | USGS The National Map: National Hydrography Dataset. Data refreshed March, 2020. Received by OCD: 12/7/2020 2:04:52 PM U.S. Fish and Wildlife Service

Cockburn Federal #002 - Nearest Water

Page 24 of 160

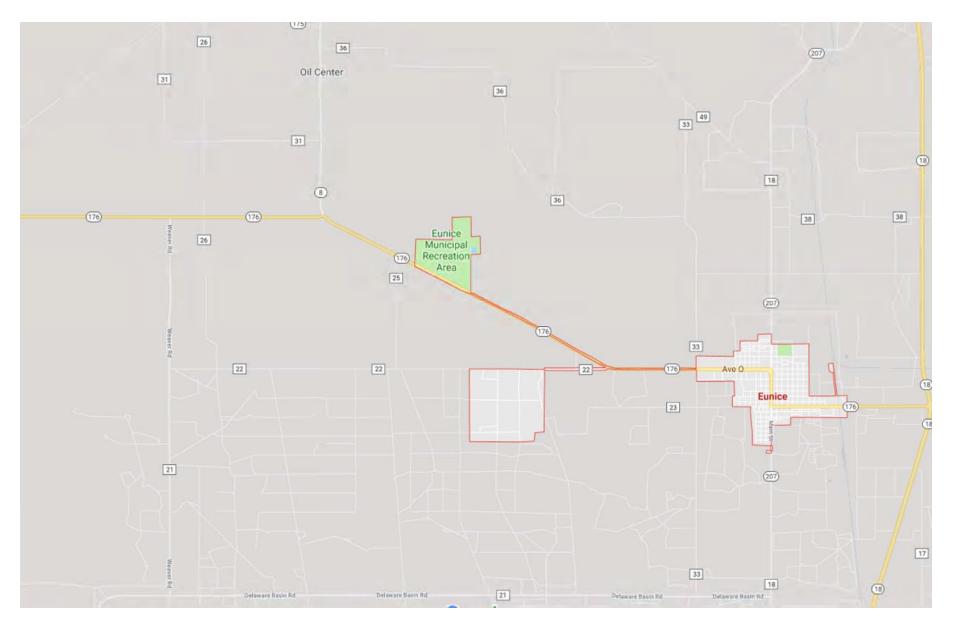
December 1, 2020

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.


. Released to Imaging: 4/13/2021 11:37:25 AM

Received by OCD: 12/7/2020 2:04:52 PM

Eunice

City Limits of Eunice

Released to Imaging: 4/13/2021 11:37:25 AM

Eunice New Mexico 88231

Mostly Sunny · 67°F 9:12 AM

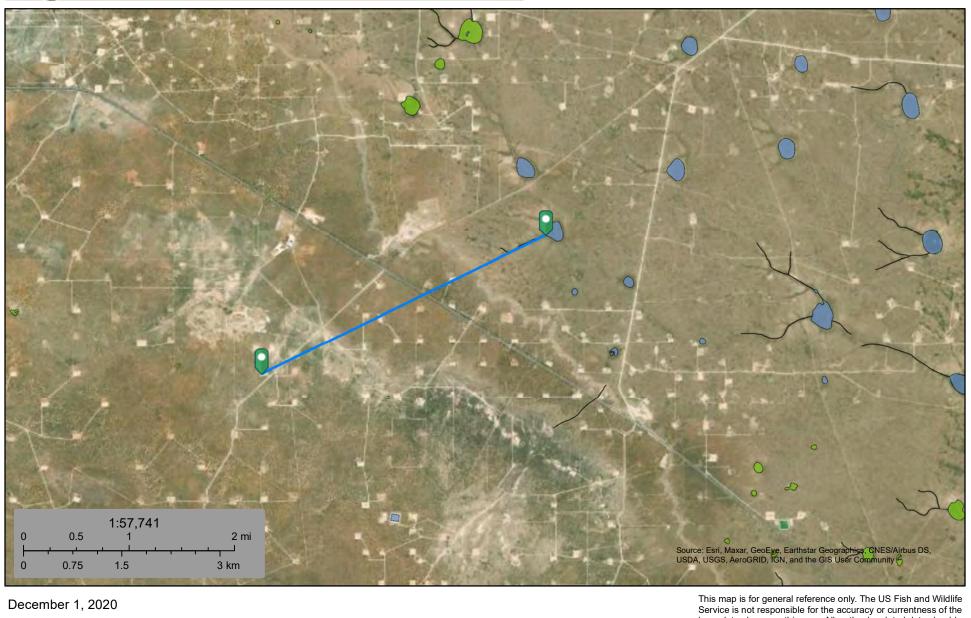
Photos

https://www.google.com/maps/place/Eunice,+NM+88231/@32.4490481,-103.226314,13z/data=!3m1!4b1!4m5!3m4!1s0x86fc9f... 5/6/2019

Quick facts

Released to Imaging: 4/13/2021 11:37:25 AM

Eunice is a city in Lea County, New Mexico, United States. The population was 2,562 at the 2000 census. The mayor of Eunice, as of March 2018, is Billy Hobbs. Ground was broken for construction of a National Enrichment Facility, which uses Zippe-type centrifuge technology, to enrich uranium in August, 2006. <u>Wikipedia</u>


Hotels

3-star averaging \$135 View Hotels

Received by OCD: 12/7/2020 2:04:52 PM U.S. Fish and Wildlife Service

National Wetlands Inventory

Cockburn Fed 2 - nearest pond

Wetlands

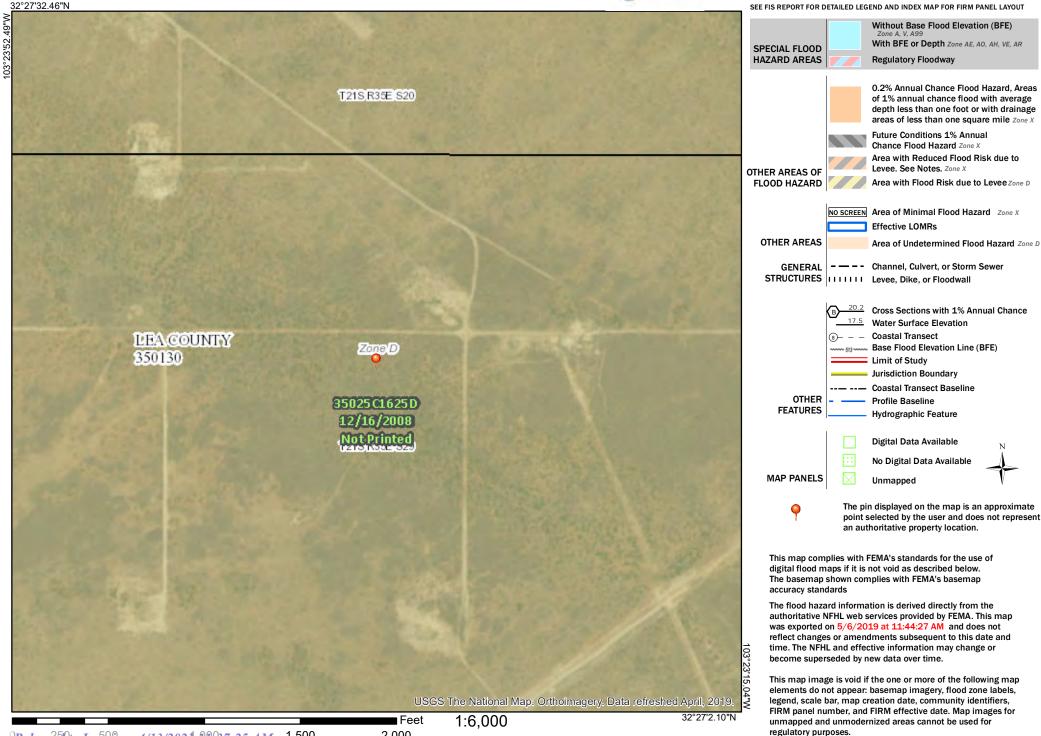
- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

. Released to Imaging: 4/13/2021 11:37:25 AM

Active Mine near Cockburn Fed 2

Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS


Received by OCD: 12/7/2020 2:04:52 PM INATIONAL FIOOD Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Page 30 of 160

2,000

Ecological site R042XC005NM Deep Sand

Accessed: 12/01/2020

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on terraces, Piedmonts, dunes fields, or upland plains. Parent material consists of eolian deposits and alluvium derived from sandstone. Slopes range from 0 to 15 percent, usually less than 5 percent. Low, stabilized hummocks or dunes frequently occur. Elevations range from 2,842 to 4,500 feet.

Landforms	(1) Dune(2) Parna dune(3) Terrace
Flooding frequency	None
Ponding frequency	None
Elevation	2,842–4,500 ft

Slope	0–15%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Both temperature and moisture favor warm season perennial plant growth. During years of abundant winter and early spring moisture, cool season growth and annual forbs, make up an important component of this site. Strong winds blow from the west from January through June, which accelerates soil drying during a critical period for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are deep or very deep. Surface textures are sand loam, fine sand or loamy fine sand, Underlying material textures are loamy fine sand, fine sand, sand or fine sandy loam. Because of the coarse textures and rapid drying of the surface, the soil, if unprotected by plant cover and organic residue, becomes windblown and low hummocks or dunes are formed around shrubs.

Characteristic soils are: Anthony Aguena Kermit Likes Pintura Bluepoint

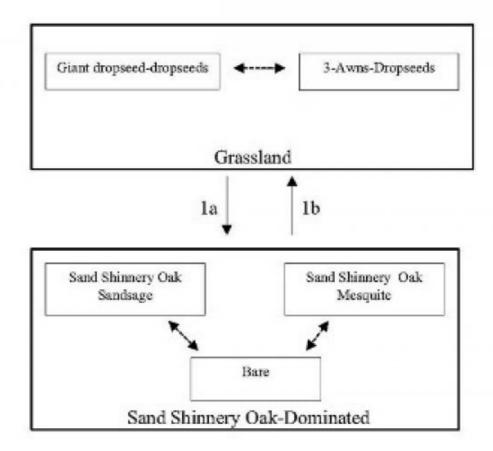
Table 4. Representative soil features

Surface texture	(1) Sand (2) Fine sand (3) Loamy fine sand
Family particle size	(1) Sandy
Drainage class	Well drained to excessively drained

Received by OCD: 12/7/2020 2:04:52 PM

Permeability class	Moderate to very rapid
Soil depth	60–72 in
Surface fragment cover <=3"	0–5%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	3–5 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0–2
Soil reaction (1:1 water) (0-40in)	6.6–7.8
Subsurface fragment volume <=3" (Depth not specified)	5–10%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics


Overview

The Deep Sand site occurs adjacent to and/or intergraded with the Sandhills and Sandy sites (SD-3). The Deep Sand site can be distinguished by slopes less than eight percent (approximately five percent) and textural changes at depths greater than 40 inches. The Deep Sand site has well drained soils with a surface texture of sand or loamy fine sand. The Sandhills site has slopes greater than eight percent and textural depths greater than 60 inches. Conversely, the Sandy site has slopes less than five percent and depths to textural change commonly around 20 inches. The historic plant community of the Deep Sand site is dominated primarily by giant dropseed (*Sporobolus giganteus*) and other dropseeds (*S. flexuosus, S. contractus, S. cryptandrus*), with scattered shinnery oak (*Quercus havardii*) and soapweed yucca (*Yucca glauca*). Other herbaceous species include threeawns (Aristida spp.), bluestems (*Schizachyrium scoparium* and *Andropogon hallii*), and annual and perennial forbs distributed relative to precipitation occurrences. Bare ground and litter compose a significant proportion of ground cover while grasses are the remainder. Shinnery oak will increase with an associated decrease in dropseed and bluestem abundance possibly due to climatic change, fire suppression, interspecific competition, and excessive grazing. Continued grass cover loss may result in a transition to a shinnery oak dominated state with increases in sand sage (*Artemisia filifolia*) and honey mesquite (*Prosopis glandulosa*). However, brush management may restore the grassland component and reverse the shinnery oak state back toward the historic plant community.

State and transition model

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Deep Sand

1.a Climate, fire suppression, competition, over grazing

1.b Brush control, Prescribed grazing

Figure 4.

State 1

Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

State Containing Historic Plant Community

Grassland: The historic plant community is dominated by giant dropseed, other dropseeds, threeawns, and bluestems. Dominant woody plants include shinnery oak and soapweed yucca. Forb abundance and distribution varies and is dependent on annual rainfall. The Deep Sand site typically exists in sandy plains and dunes (Sosebee 1983). Grass dominance stabilizes the potentially erosive sandy soils. Historical fire suppression, however, may have contributed to increased woody plant abundance, which has reduced grass species. Further, drought conditions compounded with excessive grazing likely has driven most grass species out of competition with shrubs which has resulted in a shinnery oak dominated state with sand sage and mesquite (Young et al. 1948).

Diagnosis: Grassland dominated by dropseeds, threeawns, and bluestems. Small shrubs, such as shinnery oak and soapweed yucca, and subshrubs are dispersed throughout the grassland.

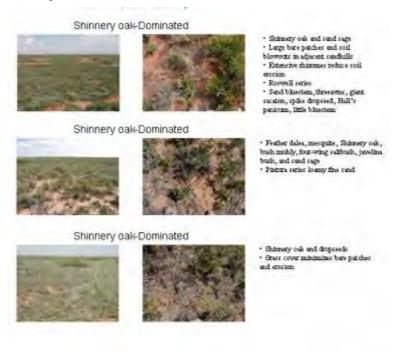
Other grasses that could appear on this site would include: flatsedge, almejita signalgrass, big bluestem, Indiangrass, fall witchgrass, hairy grama and red lovegrass

Other shrubs include: fourwing saltbush, mesquite, ephedra and broom snakeweed.

Other forbs include: wooly and scarlet gaura, wooly dalea, phlox heliotrope, scorpionweed, deerstongue, fleabane, nama, hoffmanseggia, lemon beebalm and stickleaf.

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	396	858	1320
Shrub/Vine	108	234	360
Forb	96	208	320
Total	600	1300	2000

Table 5. Annual production by plant type


Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	15-20%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	35-40%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	35-40%

Figure 6. Plant community growth curve (percent production by month). NM2805, HCPC. SD-3 Deep Sand - Warm season plant community .

State 2 Shinnery Oak Dominated

Community 2.1 Shinnery Oak Dominated

Shinnery Oak Dominated: This state is dominated by shinnery oak with subdominants of sand sage or mesquite. Bare ground is a significant component in this state as well. shinnery oak is characterized by dense stands in sandy soils; however, as clay percentage increases, shinnery oak decreases. Shinnery oak abundance and distribution increase with disturbances, such as excessive grazing and fire, due to an aggressive rhizome system. As shinnery oak abundance increases, an associated increase of mesquite, sand sage, and soapweed yucca also occurs. Shinnery oak's extensive root system allows the oak to competitively exclude grasses and forbs. Sand sage, however, stabilizes light sandy soils from wind erosion and can co-exist with herbaceous species by protecting them in heavily grazed conditions (Davis and Bonham 1979). Shinnery oak has been found primarily in very deep, excessively drained, and rapidly permeable soils. Shinnery oak is associated with landforms which are gently undulating to rolling uplands, very gently sloping to moderately steep slopes, and upland plains, alluvial fans and valley sideslopes. Shinnery oak and sand sage can be controlled with herbicide if applied in the spring with a subsequent rest from grazing (Herbel et al. 1979, Pettit 1986). In addition, repetitive seasons of goat browsing can also reduce shinnery oak abundance. Patches should be maintained during brush control, however, to prevent erosion and to provide wildlife cover and forage. Further, as shinnery oak and other shrubs increase, bare patches and erosion will increase due to a lack of herbaceous ground cover.

Diagnosis: Shinnery oak dominated with subdominant sand sage, honey mesquite, and soapweed yucca with increasing frequency and size of bare patches.

Received by OCD: 12/7/2020 2:04:52 PM

Transition to Shinnery oak dominated state (1a): The historic plant community begins to shift toward the shinnery oak dominated state as drivers such as climate change, fire suppression, interspecific competition, and excessive grazing contribute to alterations in soil properties and herbaceous cover. Cover loss and surface soil erosion are initial indicators of transition followed by an increase of shrub species abundance and bare patch expansion.

Key indicators of approach to transition:

- Loss of grass and forb cover
- Surface soil erosion
- Bare patch expansion
- Increased shrub species abundance and composition

Transition to Historic Plant Community (1b): The shinnery oak dominated state may transition back toward the historic plant community as new drivers are introduced such as prescribed grazing, brush control, and discontinued drought conditions.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			450–585	
	spike dropseed	SPCO4	Sporobolus contractus	450–585	-
	sand dropseed	SPCR	Sporobolus cryptandrus	450–585	-
	mesa dropseed	SPFL2	Sporobolus flexuosus	450–585	-
	giant dropseed	SPGI	Sporobolus giganteus	450–585	-
2	Warm Season			65–104	
	sand bluestem	ANHA	Andropogon hallii	65–104	-
	little bluestem	SCSC	Schizachyrium scoparium	65–104	-
3	Warm Season		-	39–91	
	threeawn	ARIST	Aristida	39–91	-
4	Warm Season			13–39	
	thin paspalum	PASE5	Paspalum setaceum	13–39	-
5	Warm Season			13–39	
	black grama	BOER4	Bouteloua eriopoda	13–39	-
6	Warm Season			13–39	
	mat sandbur	CELO3	Cenchrus longispinus	13–39	-
7	Warm Season	•	·	13–39	
	Havard's panicgrass	PAHA2	Panicum havardii	13–39	_
8	Warm Season	•	·	13–65	
	plains bristlegrass	SEVU2	Setaria vulpiseta	13–65	_
9	Other Annual Grasses			13–65	
	Grass, annual	2GA	Grass, annual	13–65	_
Shrub	/Vine	-			
10	Shrub			65–130	
	Havard oak	QUHA3	Quercus havardii	65–130	_
11	Shrub			13–39	

Received by OCD: 12/7/2020 2:04:52 PM

	sand sagebrush	ARFI2	Artemisia filifolia	13–39	_
12	Shrub		·	65–130	
	уисса	YUCCA	Yucca	65–130	_
13	Shrub		·	13–39	
	rabbitbrush	CHRYS9	Chrysothamnus	13–39	_
14	Other Shrubs	-		13–39	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	13–39	_
Forb		•			
15	Forb			39–91	
	croton	CROTO	Croton	39–91	_
	Indian blanket	GAPU	Gaillardia pulchella	39–91	_
16	Forb		·	39–91	
	aster	ASTER	Aster	39–91	_
	whitest evening primrose	OEAL	Oenothera albicaulis	39–91	_
	beardtongue	PENST	Penstemon	39–91	_
17	Forb			39–91	
	touristplant	DIWI2	Dimorphocarpa wislizeni	39–91	-
	buckwheat	ERIOG	Eriogonum	39–91	_
	sunflower	HELIA3	Helianthus	39–91	_
	spiny false fiddleleaf	HYSP	Hydrolea spinosa	39–91	_
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	39–91	_
18	Other Forbs			13–65	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	13–65	_

Animal community

This site provides habitat which supports a resident animal population characterized by pronghorn, antelope, blacktailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, southern plains woodrat, badger, meadowlark, roadrunner, white-necked raven, cactus wren, lesser prairie chicken, morning dove, scaled quail, Harris hawk, side blotched lizard, marbled whiptail, Texas horned lizard, western diamondback rattlesnake and ornate box turtle. In the area called Mescalero Sands, there are white-tailed and mule deer.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Anthony B Bluepoint A Kermit A Aguena A Likes A Pintura A

Recreational uses

This site offers limited recreation potential for hiking, horseback riding, nature observation and photography; game bird, predator, antelope, and deer hunting.

Wood products

This site has no potential for wood products.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Shinnery oak is toxic in the late bud or early leaf stage. Shinnery oak will increase, as will sand sagebrush following drought. Changes in the fire return interval have also favored an increase in shrub cover. The dropseeds and bluestem will decrease. This site responds very well to brush manangement and deferment. This site is well suited to a grazing system that rotates the season of use. Nesting habitat for lesser prairie chicken can be improved by providing residual cover that is at least 14 inches high.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month

Similarity Index Ac/AUM 100 - 76 2.0 - 3.8 75 - 51 3.0 - 6.0 50 - 26 5.0 - 10.0 25 - 0 10.1 +

Inventory data references

Other References:

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature Cited

Davis, Joseph H., III and Bonham, Charles D. 1979. Interference of sand sagebrush canopy with needleandthread. Journal of Range Management 32(5):384-386.

Herbel, C. H, Steger, R, Gould, W. L. 1974. Managing semidesert ranges of the Southwest. Circular 456. Las Cruces, NM: New Mexico State University, Cooperative Extension Service. 48 p.

Pettit, Russell D. 1986. Sand shinnery oak: control and management. Management Note 8. Lubbock, TX: Texas Tech University, College of Agricultural Sciences, Department of Range and Wildlife Management. 5 p.

Sosebee, Ronald E. 1983. Physiological, phenological, and environmental considerations in brush and weed control. In: McDaniel, Kirk C., ed. Proceedings--brush management symposium; 1983 February 16; Albuquerque, NM. Denver, CO: Society for Range Management: 27-43.

Young, Vernon A., Anderwald, Frank R.,McCully, Wayne G. 1948. Brush problems on Texas ranges. Miscellaneous Publication 21. College Station, TX: Texas Agricultural Experiment Station. 19 p.

Contributors

Don Sylvester Quinn Hodgson

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

Received by OCD: 12/7/2020 2:04:52 PM

USA Karst

A map showing karst areas in the United States based on the U.S. Geological Survey Open-File Report 2004-1352

U.S. Geological Survey Open-File Report 2004-1352, Caves and Karst in the U.S. National Park Service, AGI Karst Map of the US. | Earthstar Geographics

Received by OCD: 12/7/2020 2:04:52 PM

Page 43 of 160

Qep

NMBGMR, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census Bureau TIGER/Line data; USFS Road *Released to Imaging: 4713/2021a/19-37-2253/MP*. Department of State Humanitarian Information Unit; and NOAA National Centers for Environmental Information, U.S. Coastal Relief Model. Data refreshed May, 2020.

Lea County, New Mexico

KD—Kermit-Palomas fine sands, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpv Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 70 percent Palomas and similar soils: 20 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kermit

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e

Map Unit Description: Kermit-Palomas fine sands, 0 to 12 percent slopes---Lea County, New Mexico

Hydrologic Soil Group: A *Ecological site:* R042XC005NM - Deep Sand *Hydric soil rating:* No

Description of Palomas

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave Across-slope shape: Convex Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 16 inches: fine sand Bt - 16 to 60 inches: sandy clay loam Bk - 60 to 66 inches: sandy loam

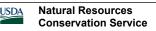
Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 50 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0

Available water capacity: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No


Minor Components

Pyote

Percent of map unit: 4 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Maljamar

Percent of map unit: 4 percent *Ecological site:* R042XC003NM - Loamy Sand

Map Unit Description: Kermit-Palomas fine sands, 0 to 12 percent slopes---Lea County, New Mexico

Hydric soil rating: No

Palomas


Percent of map unit: 1 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Dune land

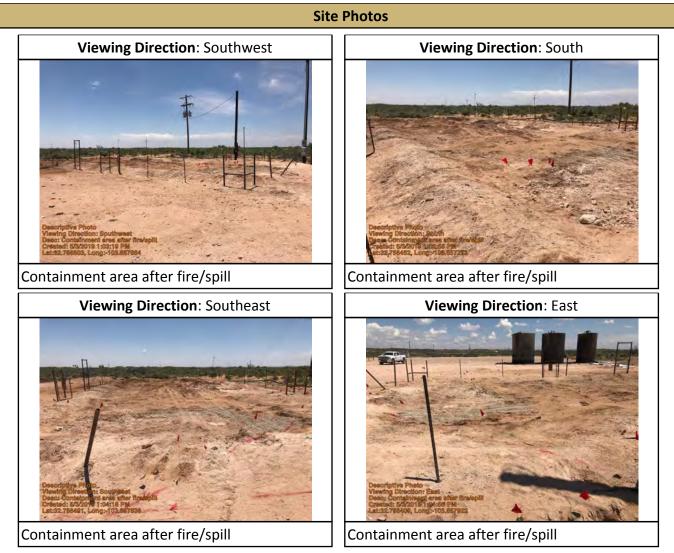
Percent of map unit: 1 percent Hydric soil rating: No

Data Source Information

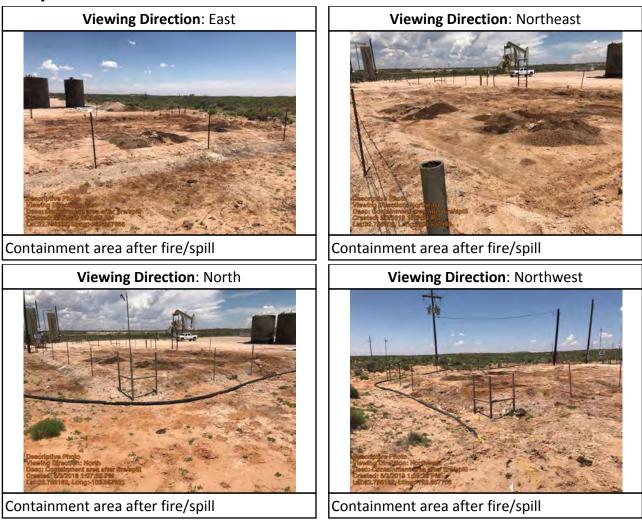
Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

ATTACHMENT 4

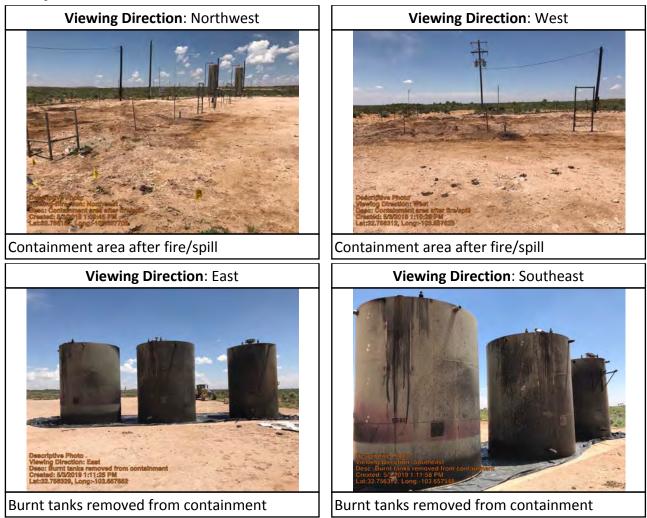
Client:	Devon Energy Corporation	Inspection Date:	5/3/2019
Site Location Name:	Cockburn Federal #002	Report Run Date:	8/10/2019 10:46 PM
Project Owner:	Amanda Davis	File (Project) #:	19E-00575
Project Manager:	Dennis Williams	API #:	30-025-36282
Client Contact Name:	Amanda Davis	Reference	Facility Fire
Client Contact Phone #:	(575) 748-0176		
		Summary of	Times
Left Office	5/3/2019 11:00 AM		
Arrived at Site	5/3/2019 12:15 PM		
Departed Site	5/3/2019 2:00 PM		
Returned to Office	5/3/2019 3:15 PM		

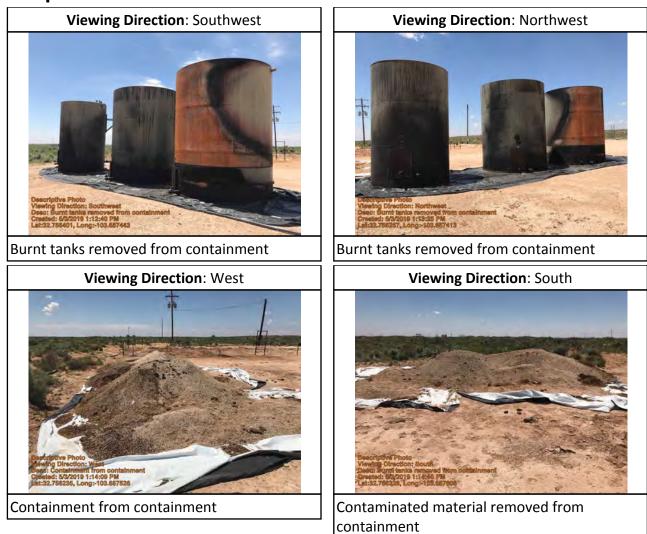

Summary of Daily Operations

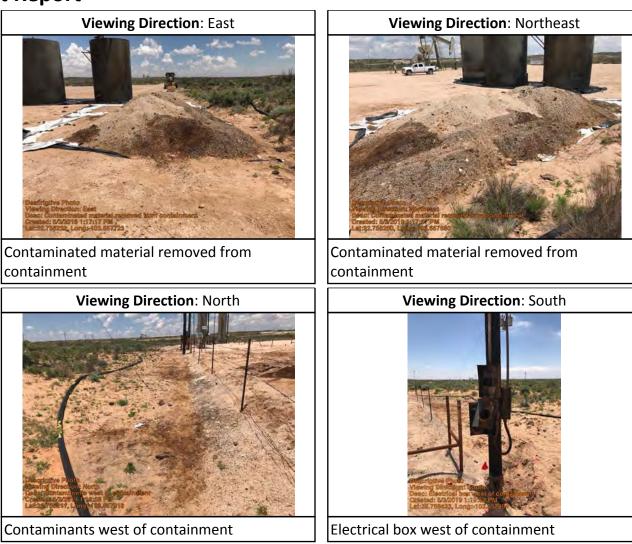
12:54 Arrive on location
Fill out safety paperwork
Conduct initial site inspection
GPS spill
Outline spill w/ white paint and white pin flags
Complete DFR
Return to office


Next Steps & Recommendations

1 Create Field File folder Determine clean up plan Excavate spill area and Field Screen







Page 52 of 160

Pump jack

Run on 8/10/2019 10:46 PM UTC

.

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

•

Client:	Devon Energy Corporation	Inspection Date:	5/6/2019
Site Location Name:	Cockburn Federal #002	Report Run Date:	5/7/2019 2:58 AM
Project Owner:	Amanda Davis	File (Project) #:	19E-00575
Project Manager:	Dennis Williams	API #:	30-025-36282
Client Contact Name:	Amanda Davis	Reference	Facility Fire
Client Contact Phone #:	(575) 748-0176		
		Summary of	Times
Left Office	5/6/2019 8:00 AM		
Arrived at Site	5/6/2019 9:30 AM		
Departed Site	5/6/2019 6:26 PM		
Returned to Office	5/6/2019 7:55 PM		

Summary of Daily Operations

18:12 Excavate based on field screening results to meet closure criteria

Next Steps & Recommendations

- **1** Continue field screening.
- **2** Continue excavation
- **3** Haul contaminated material

Sampling

VOC PID

Petro Flag TPH ppm

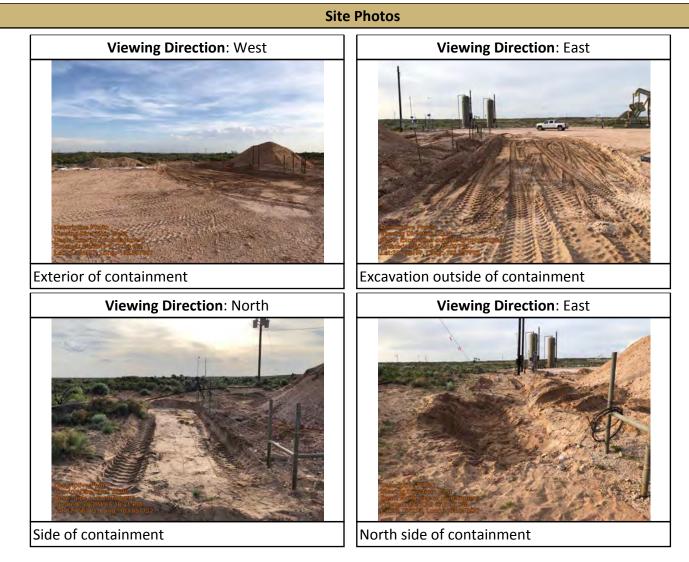
Quantab

Range ppm

Quantab

Reading ppm

			VERTEX
Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?


ΤР

TP19-01

Depth ft

Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch
19-03	I		Quentah	Owentah				Marilaad Or
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch

Containment

Run on 5/7/2019 2:58 AM UTC

Daily Site Visit Signature

Inspector: Dennis Williams

.

Client:	Devon Energy Corporation	Inspection Date:	5/8/2019
Site Location Name:	Cockburn Federal #002	Report Run Date:	5/9/2019 1:10 AM
Project Owner:	Amanda Davis	File (Project) #:	19E-00575
Project Manager:	Dennis Williams	API #:	30-025-36282
Client Contact Name:	Amanda Davis	Reference	Facility Fire
Client Contact Phone #:	(575) 748-0176		
		Summary of	Times
Left Office	5/8/2019 7:30 AM		
Arrived at Site	5/8/2019 9:00 AM		
Departed Site	5/8/2019 5:09 PM		
Returned to Office	5/8/2019 6:30 PM		

Summary of Daily Operations

16:58 Fill out arrival, safety, and ground disturbance forms

 Tailgate safety meeting
 Continue excavating and field screening
 Have contaminated soil hauled off
 Fill out DFR
 Demobilize

Next Steps & Recommendations

- 1 Continue excavation
- 2 Have rest of contaminated soil hauled off
- **3** Take and ship samples

Sampling

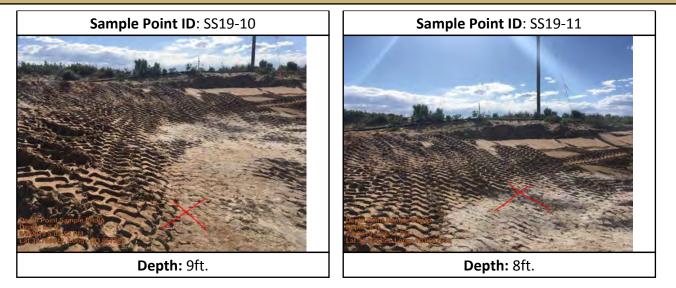
Run on 5/9/2019 1:10 AM UTC

Page 1 of 5

VERTEX

Daily Site Visit Report

9-10								
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
9 ft.	0 ppm	73 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	,	Yes
9-11	•							
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
8 ft.	0 ppm	61 ppm	Low (30-600 ppm)	74 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	,	Yes


.

Site Photos Viewing Direction: West Viewing Direction: North Soil being loaded into belly dump Excavation area Viewing Direction: Northwest Contaminated soil pile

Depth Sample Photos

Daily Site Visit Signature

Inspector: Jason Crabtree Signature:

•

Client:	Devon Energy Corporation	Inspection Date:	5/9/2019
Site Location Name:	Cockburn Federal #002	Report Run Date:	5/10/2019 3:30 AM
Project Owner:	Amanda Davis	File (Project) #:	19E-00575
Project Manager:	Dennis Williams	API #:	30-025-36282
Client Contact Name:	Amanda Davis	Reference	Facility Fire
Client Contact Phone #:	(575) 748-0176		
		Summary of	Times
Left Office	5/9/2019 7:45 AM		
Arrived at Site	5/9/2019 9:15 AM		
Departed Site	5/9/2019 5:00 PM		
Returned to Office	5/9/2019 7:00 PM		

Summary of Daily Operations

9:21 Fill out arrival, safety, and ground disturbance forms Continue excavation and field screening Haul off contaminated soil Take pictures Collect samples Fill out DFR Meet Skip to ship samples Return to office

Next Steps & Recommendations

1 Haul off remainder of contaminated soil

Sampling

Run on 5/10/2019 3:30 AM UTC

V=

VERTEX

	<u> </u>						VERIEA
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	70 ppm	Low (30-600 ppm)	86 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75625574, - 103.65792699	Yes
-			-		-		-
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	85 ppm	Low (30-600 ppm)	30 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75636740, - 103.65792582	Yes
-			-		-		
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ppm	77 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75640918, - 103.65784198	Yes
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ppm	58 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75641085, - 103.65788052	Yes
	VOC PID VOC PID 0 ppm	VOC PIDTPH ppm70 ppmVOC PIDPetro Flag TPH ppm85 ppmVOC PIDPetro Flag TPH ppm0 ppm77 ppmVOC PIDPetro Flag TPH ppm	VOC PIDTPH ppmRange ppm70 ppmLow (30-600 ppm)VOC PIDPetro Flag TPH ppmQuantab Range ppm85 ppmLow (30-600 ppm)VOC PIDPetro Flag TPH ppmQuantab Range ppm0 ppm77 ppmQuantab Range ppmVOC PIDPetro Flag TPH ppmQuantab Range ppm0 ppm77 ppmQuantab Range ppmVOC PIDPetro Flag TPH ppmQuantab Range ppm	VOC PIDTPH ppmRange ppmReading ppm70 ppmLow (30-600 ppm)86 ppmVOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppm85 ppmLow (30-600 ppm)30 ppmVOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppm	VOC PIDTPH ppmRange ppmReading ppmLab Analysis70 ppmLow (30-600 ppm)86 ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 	VOC PIDTPH ppmRange ppmReading ppmLab AnalysisPicture70 ppmLow (30-600 ppm)86 ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)VOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)VOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)VOC PIDPetro Flag TPH ppmQuantab Range ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8021B/8260B), Chloride (EPA	VOC PIDTPH ppmRange ppmReading ppmLab AnalysisPictureFrimble Location70 ppmLow (30-600 ppm)86 ppmBTEX (EPA SW-846 Method 80218/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)✓32.75625574, - 103.65792699VOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppmLab AnalysisPictureTrimble Location0 ppm85 ppmLow (30-600 ppm)30 ppmBTEX (EPA SW-846 Method 80218/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)✓32.75636740, - 103.65792582VOC PIDPetro Flag TPH ppmQuantab Range ppmQuantab Reading ppmEab AnalysisPictureTrimble Location0 ppm77 ppmQuantab Range ppmQuantab Reading ppmBTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8021B/8260B), Chloride (EPA SW-846 Method 8021B/8260B), Chlori

SS19-05

SS19-06

SS19-07

Depth ft

5 ft.

Depth ft

3 ft.

Depth ft

3 ft.

Daily Site Visit Report

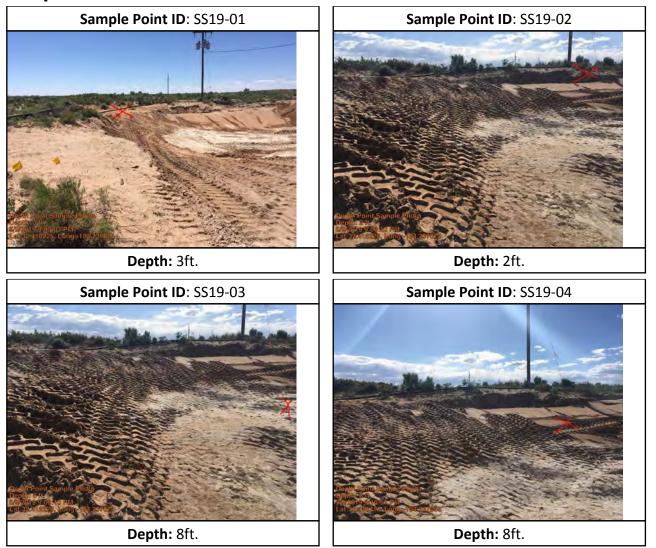
Visit Re	port						VERTEX
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
1 ppm	72 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75634539, - 103.65789035	Yes
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ppm	81 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75633362, - 103.65773970	Yes
	-	•	•	•			•
VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
0 ppm	66 ppm	Low (30-600 ppm)	37 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75620656, - 103.65782761	Yes
	Petro Elag	Quantab	Quantab				Marked On

SS19-08									
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	3 ft.	0 ppm	63 ppm	Low (30-600 ppm)	314 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	<	32.74534843, - 103.65765820	Yes

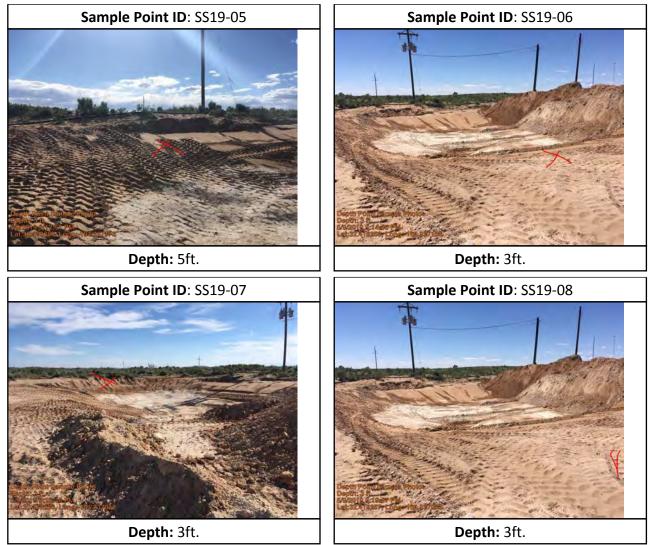
•

19-09								
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch
3 ft.	0 ppm	54 ppm	Low (30-600 ppm)	74 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75647715, - 103.65778209	Yes
19-10								
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
8 ft.	0 ppm	73 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75623696, - 103.65778678	Yes
19-11								
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
8 ft.	0 ppm	62 ppm	Low (30-600 ppm)	74 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75623278, - 103.65785975	Yes
19-12								
Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch
8 ft.	2 ppm	88 ppm	Low (30-600 ppm)	30 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75636931, - 103.65779380	Yes

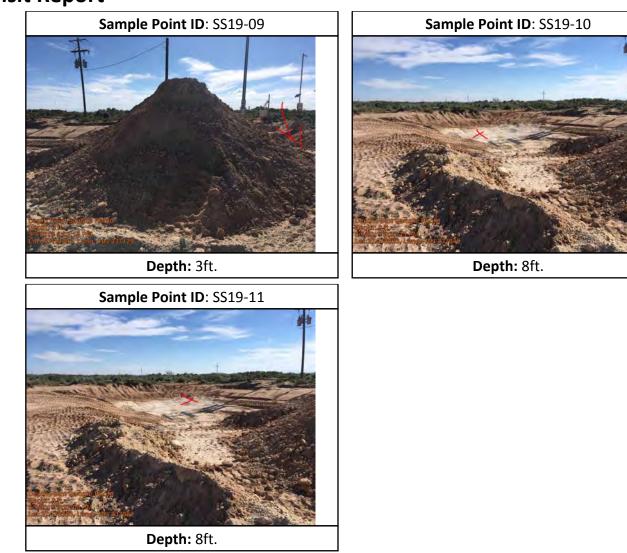
SS19	9 -13								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	8 ft.	2 ppm	54 ppm	Low (30-600 ppm)	30 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75636721, - 103.65787270	Yes
SS19	SS19-14								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	2 ft.	4 ppm	74 ppm	Low (30-600 ppm)	62 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75643434, - 103.65771565	Yes
SS19	SS19-15								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	8 ft.	1 ppm	69 ppm	Low (30-600 ppm)	51 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75630927, - 103.65778284	Yes


Site Photos Viewing Direction: West Viewing Direction: West Contaminated soil pile Excavation area Viewing Direction: Southwest Excavation area

Run on 5/10/2019 3:30 AM UTC



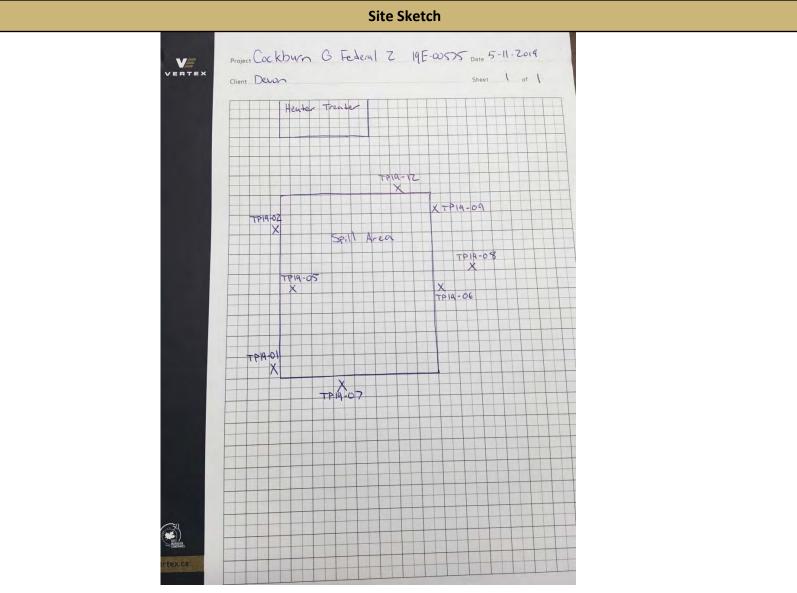
Depth Sample Photos Sample Point ID: SS19-12 Sample Point ID: SS19-13 Depth: 8ft. Depth: 8ft. Sample Point ID: SS19-14 Sample Point ID: SS19-15 Depth: 2ft. Depth: 8ft.



Daily Site Visit Signature

Inspector: Jason Crabtree Signature:

•


VERTEX

Bully one visit hepoirt	Daily	Site	Visit	Report
-------------------------	-------	------	-------	--------

Client:	Devon Energy Corporation	Inspection Date:	5/11/2019
Site Location Name:	Cockburn Federal #002	Report Run Date:	5/11/2019 8:46 PM
Project Owner:	Amanda Davis	File (Project) #:	19E-00575
Project Manager:	Dennis Williams	API #:	30-025-36282
Client Contact Name:	Amanda Davis	Reference	Facility Fire
Client Contact Phone #:	(575) 748-0176		
		Summary of	Times
Left Office	5/11/2019 8:00 AM		
Arrived at Site	5/11/2019 9:15 AM		
Departed Site	5/11/2019 1:15 PM		
Returned to Office	5/11/2019 2:30 PM		

•

VERTEX

Run on 5/11/2019 8:46 PM UTC

VERTEX

	Summary of Daily Operations										
12	12:19 Fill out arrival, safety, and ground disturbance forms										
	Tailgate safety meeting										
	Excavate and sample										
	Field screen										
	Take pictures										
	Fill out DFR										
	Demob	ilize									
	Ship samples										
	Return to office										
	Next Steps & Recommendations										
	1 Ship san	nples									
	2 Backfill										
					Sam	npling					
TP19) -01										
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?		
	6 ft.	0 ppm	33 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75625574, - 103.65792699	Yes		

TP19-02

Depth ft		Petro Flag	Quantab	Quantab	Lab Analysis	Picture	Trimble Location	Marked On
•		TPH ppm	Range ppm	Reading ppm				Site Sketch?
5 ft.	0 ppm	39 ppm			BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	$\boldsymbol{\boldsymbol{<}}$	32.75636740, - 103.65792582	Yes

Run on 5/11/2019 8:46 PM UTC

.

TP19-05

TP19-06

TP19-07

TP19-08

6 ft.

2 ppm

V

Daily Site Visit Report

	ily Sile	VISIT NE	ροιι						VERTEX
ĉ	-05								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	8 ft.	0 ppm	35 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75634539, - 103.65789035	Yes
ĉ	-06								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	6 ft.	1 ppm	32 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75633362, - 103.65773970	Yes
ĉ	-07								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	6 ft.	1 ppm	37 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75620656, - 103.65782761	Yes
ĉ	-08								
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
						BTEX (EPA SW-846 Method		00 7500 40 40	

8021B/8260B), Chloride (EPA

300.0), TPH (EPA SW-846

Method 8015M)

High (300-6000ppm)

274 ppm

40 ppm

Yes

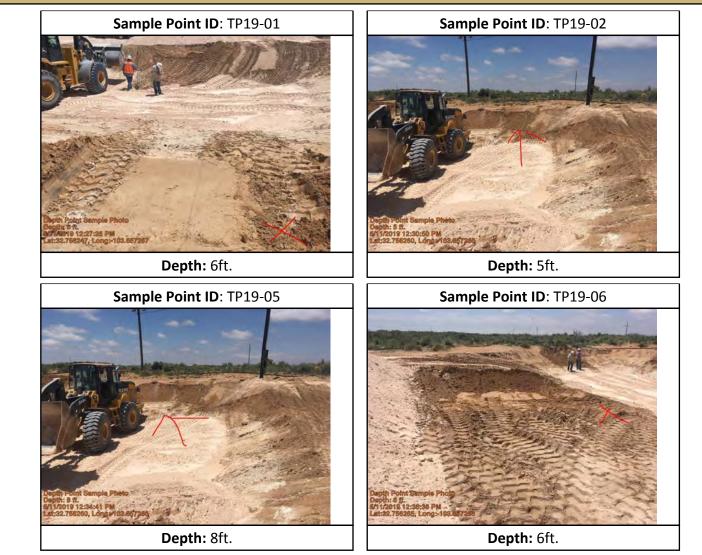
32.75634843, -

V=

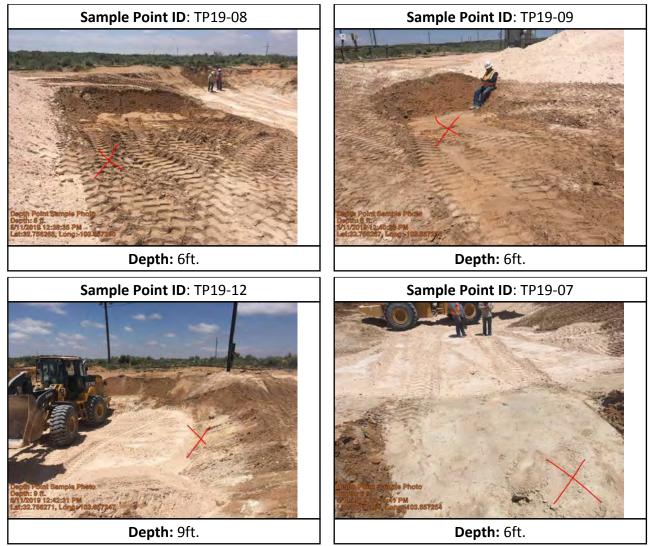
VERTEX

Daily Site Visit Report

TP19	9-09								
	Depth ft	VOC PID	IPH ppm Range ppm Reading ppm		Picture	Trimble Location	Marked On Site Sketch?		
	6 ft.	1 ppm	26 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75647715, - 103.65778209	Yes
۲ Ρ 1۹	9 -12			-					
	Depth ft	VOC PID	Petro Flag TPH ppm	Quantab Range ppm	Quantab Reading ppm	Lab Analysis	Picture	Trimble Location	Marked On Site Sketch?
	9 ft.	0 ppm	26 ppm	High (300- 6000ppm)	274 ppm	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	32.75636931, - 103.65779380	Yes



Site Photos

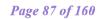


Depth Sample Photos

Daily Site Visit Signature

Inspector: Jason Crabtree Signature:

•


Received by OCD: 12/7/2020 2:04:52 PM

	viise dill	d Samplin	State of the local division of the local div		-		and a state of the	v	EATE
Client:		Person				Initial Spill Information	1 - Record on Firs	st Visit	
Date:		831 Cockt				Spill Date:			
Site Name:		Cockt	naw			Spill Volume:	Commission and	Rame (I	and the Constraint Constraints and
Site Location:						Spill Cause:			anali e serie anna anna anna anna ann
Project Owner:						Spill Product:	and the second second		no - por la ser en participa de la segui
Project Manager:						Recovered Spill Volume	 Here are set of the set of the	ай — — —	and and a second of the second of the second of
Project#:						Recovery Method:	A comparison of the second sec	dar concernent of the second	ny mahanan dan karang ang ang ang ang ang ang ang ang ang
			Field Screening	Sampling					
Sample ID	Depth (ft)	VOC (PID)	PetroFlag TPH (ppm)	Quantab (High/Low) + or -		Data Collect Lab Analysis	tion (Check for Y Picture	es) Trimble	Marked or
SS/TP/BH - Year - Number Ex. BH18-01	Ex. '2ft	Ex. 400 ppm	200 ppm	Ex. 'High +	f	x. Hydrocarbon Chloride		Coordinates	Site Sketch
BSIL	1		25 - 7						100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
17	1		44	0.62/24.2 0.25/24.6 0.13/24.1	10:36				
18	3			0.13/	10:25.6	() () () () () () () () () () () () () (1) 1)	a because and the end of a second state of the second
19	2			129.1					anton como lasta destructor parte
	1		20	0.08/25.2		11 and a second s			
20	3		38	0.14/23.8					
21			single	0.16/24.6			and the second		ritmen ((min recommend) (Antone)
27	3		62	0.18/23.8				- 1	nan in general de la seconda de la second
23		and and a second s	51	0.16/25.4			a and a company of		Alasi
24	1	and and the second s		0141					peri) tana kanalakan kanalaran janana
05	1		20	0.34/		ea			
20		· · · · · · · · · · · · · · · · · · ·	27	125.7		time -			
26	1		66	2.5%25.6					
27	1			0.33/28.5	-				and the and the first of the second states the
28	3		24	0.34					ara tu tu ka maanini ka maangi
29	1			0.27/00				(······································
32	2			017/2/0					
21	>		d.6	2071					
201	-	March		1/27.1					1. 1.1
25 26 27 28 27 28 29 30 30 30 30 30 30 30 30	3	and the second		0.08/27.4	>		9		
33	1		37	0.09/286					
34	3		58	0.34/25.7 0.34/25.7 0.39/25.6 0.33/28.6 0.34/26.2 0.17/26.5 0.17/26.5 0.17/27.1 0.08/27.6 0.08/27.6 0.29/28.6 0.12/21.9					
		and a second difficulture to the second s							
and the second sec				a - 100 - 14 distance (Constance)		and the second sec		Annual of the providence of the state of the	er fondelski en om det skrigen og se
			1				and the second data and the second seco		

Hr.

Page 86 of 160

Received by OCD: 12/7/2020 2:04:52 PM

Spill Res	ponse an	d Sampling	ġ,						V
Client:		Devor	2	абраналиция са да боли у насели на прода на сели и сели сели на сели на сели на сели на сели на сели на сели н			and the second of the second secon		ERTEX
Date:		8/31			-	Initial Spill Information) - Record on Firs	t Visit	
Site Name:	23	8/31 Cockbi	urn			Spill Date;		and a second	
Site Location:		promise the property of the second second second second	n (na 2004) fan tean an a	and an end of the second s		Spill Volume;	1. The Statement of Statements	1999	Of some of the stand bullet of a standard strategy of
Project Owner:				10.00		Spill Cause:		109 a 101 a 101 (1997) - 101 (1997) - 102 (1997)	the state of the s
Project Manager	•					Spill Product:			
Project #:						Recovered Spill Volume	(i	Re) = 9 + C = 1.144 Support of a strength	March 1997 Statements & Band March 1997 Statements
			Etald Course 1	Sampling	L	Recovery Method:			
Sample ID	Depth (ft)	VOC (PID)	Field Screening PetroFlag TPH	Quantab			tion (Check for Ye		
SS/TP/BH - Year - Number Ex. BH18-01	Ex. '2ft	Ex. 400 ppm	(ppm) 200 ppm	(High/Low) + or - Ex. 'High +	F	Lab Analysis	Picture	Trimble Coordinates	Marked on Site Sketch
WS1	0-1			0.10/010		Chloride			ant 1114 a success of section and designed appendix
2	0-1		59	0.16/21.9			in an		
3	0~1			0.07/21.7	y 4600 (100 m (100 k (100 m			ana bahara li sangangan sanga	
4	0-1		56	21.9			and the second		no i Milani i Angela ang
5	0-1			0.12/21.9	34				and the second
G	0-1	and and the second s	57	0.17/21.9	30				
1113) - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111 - 2111	and the second			an the production of the designed for the transition of the					Marcoll, Marcollege and Andrews
and the second		an and the second s	·	terretaria de la constructiva de la construcción de la construcción de la construcción de la construcción de la					197 In (1991 - 1971) Consideration (1981) (198
				and a start of the second s		a jan biyan a	111 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Active and the second	Server (1997) Martin (1998) Martin (1997)
an ya sabadi e ya dan dan dan dan sa sa sa			·····				times of the space of the second		an - a fan an an an an an an an
and an							annes deservatives in the states		an an is an
					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		e restant de la companya de la comp		
							an an Arapitanaan j	NUTER Soci è la motori i la marco	ererbiannela
	and a second								
	- 1000000 (1000000) (10000000) (100000000) (10000000000							A CONTRACTOR CONTRACTOR	and the second
								an a	to militar () i forma france en transmission de la construction de la construction de la construction de la co
	and a statistical (decrements of the states								
103		214443				[anima()]anima()](anima)			
- (s)ees(ue							111 11 11 11 11 11 11 11 11 11 11 11 11		

ATTACHMENT 5

Client Name: Devon Energy Production Company Site Name: Cockburn Fed #002 NM OCD Tracking #: NAB1908655364 Project #: 19E-00575-011 Lab Reports: 1905519, H901724 and 2009111

		Table 2. Confirmator	ry Sampling L	aboratory Dat	ta - Depth to	Groundwater	< 50 feet			
	Sample Description				Petro	oleum Hydroca				Inorganic
			Vol	atile			Extractable			inorganie
					е (Drganics	a ()		m (TPH)	
Sample ID*	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SS19-01	3	May 9, 2019	<0.025	<0.225	<5.0	210	170	210	380	860
TP19-01	6	May 11, 2019	<0.050	<0.300	<10.0	<10.0	<10.0	<20.0	<30.0	<16
SS19-02	2	May 9, 2019	<0.025	<0.225	<5.0	89	81	89	170	410
TP19-02	5	May 11, 2019	<0.050	<0.300	<10.0	<10.0	<10.0	<20.0	<30.0	<16
SS19-03	8	May 9, 2019	<0.025	<0.225	<5.0	<9.7	<48	<14.7	<62.7	62
SS19-04	8	May 9, 2019	<0.025	<0.225	<5.0	<10.0	<50	<15.0	<65.0	95
SS19-05	5	May 9, 2019	<0.025	<0.225	<5.0	160	130	160	290	740
TP19-05	8	May 11, 2019	< 0.050	< 0.300	<10.0	<10.0	<10.0	<20.0	<30.0	16
SS19-06	3	May 9, 2019	< 0.025	<0.225	<5.0	150	130	150 <20.0	280	640
TP19-06	6	May 11, 2019	<0.050	<0.300	<10.0	<10.0	<10.0		<30.0	16
SS19-07	3	May 9, 2019	<0.025 <0.050	<0.225 <0.300	<5.0 <10.0	260 <10.0	210 <10.0	260 <20.0	470 <30.0	610 48
TP19-07 SS19-08	3	May 11, 2019 May 9, 2019					170	200	370	
TP19-08	6	May 11, 2019	<0.025 <0.050	<0.225 <0.300	<5.0 <10.0	200 <10.0	<10.0	<20.0	<30.0	830 64
SS19-09	3	May 9, 2019	<0.035	<0.225	<5.0	180	140	180	320	570
TP19-09	6	May 11, 2019	<0.023	<0.300	<10.0	<10.0	<10.0	<20.0	<30.0	80
SS19-10	8	May 9, 2019	< 0.025	<0.225	<5.0	<9.3	<46	<14.3	<60.3	38
S\$19-10	8	May 9, 2019	< 0.025	<0.225	<5.0	<9.8	<49	<14.8	<63.8	37
S\$19-12	8	May 9, 2019	< 0.025	<0.225	<5.0	56	60	56	116	490
TP19-12	9	May 11, 2019	< 0.050	< 0.300	<10.0	<10.0	<10.0	<20.0	<30.0	<16
SS19-13	8	May 9, 2019	<0.025	<0.225	<5.0	<9.8	<49	<14.8	<63.8	210
SS19-14	2	May 9, 2019	<0.025	<0.225	<5.0	<9.9	<49	<14.9	<63.9	71
SS19-15	8	May 9, 2019	<0.025	<0.225	<5.0	<9.5	<47	<14.5	<61.5	150
BS20-16	1	August 31, 2020	<0.025	<0.222	<4.9	<9.4	<47	<14.3	<61.3	60
BS20-17	1	August 31, 2020	<0.024	<0.219	<4.9	<9.2	<46	<14.1	<60.1	170
BS20-18	3	August 31, 2020	<0.025	<0.221	<4.9	<9.5	<47	<14.4	<61.4	77
BS20-19	1	August 31, 2020	<0.024	<0.22	<4.9	<9.6	<48	<14.5	<62.5	<60
BS20-20	3	August 31, 2020	<0.025	<0.222	<4.9	<8.9	<45	<13.8	<58.8	<60
BS20-21	1	August 31, 2020	<0.024	<0.215	<4.8	<9.7	<49	<14.5	<63.5	<60
BS20-22	3	August 31, 2020	<0.024	<0.216	<4.8	<10	<50	<14.8	<64.8	86
BS20-23	1	August 31, 2020	<0.024	<0.22	<4.9	<9.7	<49	<14.6	<63.6	72
BS20-24	1	August 31, 2020	<0.024	<0.219	<4.9	<9.8	<49	<14.7	<63.7	63
BS20-25	1	August 31, 2020	<0.025	<0.244	<5.0	<9.8	<49	<14.8	<63.8	81
BS20-26	1	August 31, 2020	<0.025	<0.225	<5.0	<10	<50	<15	<65	200
BS20-27	1	August 31, 2020	<0.025	<0.225	<5.0	<9.7	<48	<14.7	<62.7	110
BS20-28 BS20-29	3	August 31, 2020 August 31, 2020	<0.025 <0.025	<0.225 <0.222	<5.0 <4.9	<9.7 <9.9	<48 <50	<14.7 <14.8	<62.7 <64.8	68 <60
BS20-29 BS20-30	3	August 31, 2020 August 31, 2020	<.025	<0.222	<4.9	<9.9	<30	<14.8	<63.8	83
BS20-30	1	August 31, 2020	<0.025	<0.222	<4.9	<9.6	<43	<14.8	>62.5	<60
BS20-31 BS20-32	3	August 31, 2020	<0.025	<0.222	<4.9	<10	<50	<14.9	<64.9	<60
BS20-32 BS20-33	1	August 31, 2020	<0.023	<0.222	<4.6	<9.6	<48	<14.2	<62.2	75
BS20-34	3	August 31, 2020	< 0.025	<0.225	<5.0	<9.8	<49	<14.8	<63.8	<60
WS20-01	0-1	August 31, 2020	< 0.025	<0.224	<5.0	<9.7	<48	<14.7	<62.7	<60
WS20-02	0-1	August 31, 2020	<0.025	<0.225	<5.0	<9.8	<49	<14.8	<63.8	<60
WS20-03	0-1	August 31, 2020	<0.025	<0.224	<5.0	<9.6	<48	<14.6	<62.6	<60
WS20-04	0-1	August 31, 2020	<0.025	<0.221	<4.9	<10	<50	<14.9	<64.9	<60
WS20-05	0-1	August 31, 2020	<0.025	<0.225	<5.0	<9.8	<49	<14.8	<63.8	<60
WS20-06	0-1	August 31, 2020	<0.025	<0.224	<5.0	<9.4	<47	<14.4	<61.4	92

Bold and grey shaded indicates exceedance outside of NM OCD Closure Criteria

Bold and green shaded indicates a re-sample of areas previously exceeding closure criteria

* Sampling nomenclature was recorded incorrectly for re-collected samples from SS to TP. Locations did not change.

ATTACHMENT 6

September 11, 2020

Natalie Gordon Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (575) 748-0176 FAX:

RE: Cockburn G Federal 002

OrderNo.: 2009111

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Natalie Gordon:

Hall Environmental Analysis Laboratory received 25 sample(s) on 9/2/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-16 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 10:30:00 AM Lab ID: 2009111-001 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.4 mg/Kg 1 9/4/2020 7:46:08 PM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 9/4/2020 7:46:08 PM Surr: DNOP 82.8 30.4-154 %Rec 1 9/4/2020 7:46:08 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride ND 9/9/2020 9:51:34 PM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/6/2020 7:21:55 PM 1 Toluene ND 0.049 mg/Kg 9/6/2020 7:21:55 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/6/2020 7:21:55 PM Xylenes, Total ND 0.099 mg/Kg 1 9/6/2020 7:21:55 PM Surr: 1.2-Dichloroethane-d4 102 70-130 %Rec 1 9/6/2020 7:21:55 PM Surr: 4-Bromofluorobenzene 98.3 70-130 %Rec 1 9/6/2020 7:21:55 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/6/2020 7:21:55 PM 112 Surr: Toluene-d8 103 70-130 %Rec 1 9/6/2020 7:21:55 PM

EPA METHOD 8015D MOD: GASOLINE RANGE Analyst: JMR Gasoline Range Organics (GRO) ND 4.9 mg/Kg 1 9/6/2020 7:21:55 PM Surr: BFB 98.2 70-130 %Rec 1 9/6/2020 7:21:55 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-17 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 10:40:00 AM Lab ID: 2009111-002 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.2 mg/Kg 1 9/4/2020 8:59:23 PM Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 9/4/2020 8:59:23 PM Surr: DNOP 88.7 30.4-154 %Rec 1 9/4/2020 8:59:23 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 9/9/2020 10:28:48 PM 170 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.024 mg/Kg 9/6/2020 7:50:35 PM 1 Toluene ND 0.049 mg/Kg 9/6/2020 7:50:35 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/6/2020 7:50:35 PM Xylenes, Total ND 0.097 mg/Kg 1 9/6/2020 7:50:35 PM Surr: 1.2-Dichloroethane-d4 101 70-130 %Rec 1 9/6/2020 7:50:35 PM Surr: 4-Bromofluorobenzene 99.5 70-130 %Rec 1 9/6/2020 7:50:35 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/6/2020 7:50:35 PM 116 Surr: Toluene-d8 108 70-130 %Rec 1 9/6/2020 7:50:35 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/6/2020 7:50:35 PM 49 1

102

70-130

%Rec

1

9/6/2020 7:50:35 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Surr: BFB

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-18 3' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 10:50:00 AM Lab ID: 2009111-003 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.5 mg/Kg 1 9/4/2020 9:23:58 PM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 9/4/2020 9:23:58 PM Surr: DNOP 87.3 30.4-154 %Rec 1 9/4/2020 9:23:58 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 77 9/9/2020 10:41:13 PM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/6/2020 8:19:11 PM 1 Toluene ND 0.049 mg/Kg 9/6/2020 8:19:11 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/6/2020 8:19:11 PM Xylenes, Total ND 0.098 mg/Kg 1 9/6/2020 8:19:11 PM Surr: 1.2-Dichloroethane-d4 97.4 70-130 %Rec 1 9/6/2020 8:19:11 PM Surr: 4-Bromofluorobenzene 99.5 70-130 %Rec 1 9/6/2020 8:19:11 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/6/2020 8:19:11 PM 110 Surr: Toluene-d8 103 70-130 %Rec 1 9/6/2020 8:19:11 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/6/2020 8:19:11 PM 49 1 Surr: BFB 99.7 70-130 %Rec 1 9/6/2020 8:19:11 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-19 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 11:00:00 AM Lab ID: 2009111-004 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.6 mg/Kg 1 9/4/2020 9:48:25 PM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 9/4/2020 9:48:25 PM Surr: DNOP 96.4 30.4-154 %Rec 1 9/4/2020 9:48:25 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride ND 9/9/2020 11:18:26 PM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.024 mg/Kg 9/6/2020 8:47:45 PM 1 Toluene ND 0.049 mg/Kg 9/6/2020 8:47:45 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/6/2020 8:47:45 PM Xylenes, Total ND 0.098 mg/Kg 1 9/6/2020 8:47:45 PM Surr: 1.2-Dichloroethane-d4 99.4 70-130 %Rec 1 9/6/2020 8:47:45 PM Surr: 4-Bromofluorobenzene 104 70-130 %Rec 1 9/6/2020 8:47:45 PM Surr: Dibromofluoromethane 108 70-130 %Rec 1 9/6/2020 8:47:45 PM Surr: Toluene-d8 101 70-130 %Rec 1 9/6/2020 8:47:45 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/6/2020 8:47:45 PM 49 1 Surr: BFB 101 70-130 %Rec 1 9/6/2020 8:47:45 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit POL
- Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 33

CLIENT: Devon Energy

Cockburn G Federal 002

Project:

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BS20-20 3' Collection Date: 8/31/2020 11:10:00 AM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-005	Matrix: SOIL	Recei	ved Date:	9/2/20	20 8:00:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	9/4/2020 10:37:33 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	9/4/2020 10:37:33 PM
Surr: DNOP	90.6	30.4-154	%Rec	1	9/4/2020 10:37:33 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/9/2020 11:30:51 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	9/6/2020 9:16:16 PM
Toluene	ND	0.049	mg/Kg	1	9/6/2020 9:16:16 PM
Ethylbenzene	ND	0.049	mg/Kg	1	9/6/2020 9:16:16 PM
Xylenes, Total	ND	0.099	mg/Kg	1	9/6/2020 9:16:16 PM
Surr: 1,2-Dichloroethane-d4	99.8	70-130	%Rec	1	9/6/2020 9:16:16 PM
Surr: 4-Bromofluorobenzene	99.0	70-130	%Rec	1	9/6/2020 9:16:16 PM
Surr: Dibromofluoromethane	109	70-130	%Rec	1	9/6/2020 9:16:16 PM
Surr: Toluene-d8	102	70-130	%Rec	1	9/6/2020 9:16:16 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/6/2020 9:16:16 PM
Surr: BFB	98.4	70-130	%Rec	1	9/6/2020 9:16:16 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 33

CLIENT: Devon Energy

Cockburn G Federal 002

Project:

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BS20-21 1' Collection Date: 8/31/2020 11:20:00 AM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-006	Matrix: SOIL	Rece	ived Date:	9/2/20	20 8:00:00 AM
Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/4/2020 11:02:07 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/4/2020 11:02:07 PM
Surr: DNOP	91.0	30.4-154	%Rec	1	9/4/2020 11:02:07 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	80	60	mg/Kg	20	9/9/2020 11:43:15 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	9/8/2020 5:11:52 PM
Toluene	ND	0.048	mg/Kg	1	9/8/2020 5:11:52 PM
Ethylbenzene	ND	0.048	mg/Kg	1	9/8/2020 5:11:52 PM
Xylenes, Total	ND	0.095	mg/Kg	1	9/8/2020 5:11:52 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	9/8/2020 5:11:52 PM
Surr: 4-Bromofluorobenzene	97.6	70-130	%Rec	1	9/8/2020 5:11:52 PM
Surr: Dibromofluoromethane	117	70-130	%Rec	1	9/8/2020 5:11:52 PM
Surr: Toluene-d8	100	70-130	%Rec	1	9/8/2020 5:11:52 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/8/2020 5:11:52 PM
Surr: BFB	102	70-130	%Rec	1	9/8/2020 5:11:52 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL
 - Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-22 3' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 11:30:00 AM Lab ID: 2009111-007 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 10 mg/Kg 1 9/4/2020 11:26:37 PM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 9/4/2020 11:26:37 PM Surr: DNOP 80.5 30.4-154 %Rec 1 9/4/2020 11:26:37 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 9/9/2020 11:55:39 PM 86 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.024 mg/Kg 9/8/2020 5:40:29 PM 1 Toluene ND 0.048 mg/Kg 9/8/2020 5:40:29 PM 1 Ethvlbenzene ND 0.048 mg/Kg 1 9/8/2020 5:40:29 PM Xylenes, Total ND 0.096 mg/Kg 1 9/8/2020 5:40:29 PM Surr: 1.2-Dichloroethane-d4 96.7 70-130 %Rec 1 9/8/2020 5:40:29 PM Surr: 4-Bromofluorobenzene 99.3 70-130 %Rec 1 9/8/2020 5:40:29 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 5:40:29 PM 113 Surr: Toluene-d8 99.5 70-130 %Rec 1 9/8/2020 5:40:29 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 5:40:29 PM 4.8 1 Surr: BFB 99.9 70-130 %Rec 1 9/8/2020 5:40:29 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-23 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 11:40:00 AM Lab ID: 2009111-008 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.7 mg/Kg 1 9/4/2020 11:51:10 PM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 9/4/2020 11:51:10 PM Surr: DNOP 59.6 30.4-154 %Rec 1 9/4/2020 11:51:10 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS 72 Chloride 9/10/2020 12:08:04 AM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.024 mg/Kg 9/8/2020 6:09:04 PM 1 Toluene ND 0.049 mg/Kg 9/8/2020 6:09:04 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/8/2020 6:09:04 PM Xylenes, Total ND 0.098 mg/Kg 1 9/8/2020 6:09:04 PM Surr: 1.2-Dichloroethane-d4 98.2 70-130 %Rec 1 9/8/2020 6:09:04 PM Surr: 4-Bromofluorobenzene 104 70-130 %Rec 1 9/8/2020 6:09:04 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 6:09:04 PM 111 Surr: Toluene-d8 100 70-130 %Rec 1 9/8/2020 6:09:04 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 6:09:04 PM 49 1 Surr: BFB 103 70-130 %Rec 1 9/8/2020 6:09:04 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 33

CLIENT: Devon Energy

Cockburn G Federal 002

Project:

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BS20-24 1' Collection Date: 8/31/2020 11:50:00 AM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-009	Matrix: SOIL	Receiv	ed Date:	9/2/20	020 8:00:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/5/2020 12:15:35 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/5/2020 12:15:35 AM
Surr: DNOP	71.9	30.4-154	%Rec	1	9/5/2020 12:15:35 AM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	63	60	mg/Kg	20	9/10/2020 12:20:28 AM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	9/8/2020 6:37:33 PM
Toluene	ND	0.049	mg/Kg	1	9/8/2020 6:37:33 PM
Ethylbenzene	ND	0.049	mg/Kg	1	9/8/2020 6:37:33 PM
Xylenes, Total	ND	0.097	mg/Kg	1	9/8/2020 6:37:33 PM
Surr: 1,2-Dichloroethane-d4	98.2	70-130	%Rec	1	9/8/2020 6:37:33 PM
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	9/8/2020 6:37:33 PM
Surr: Dibromofluoromethane	111	70-130	%Rec	1	9/8/2020 6:37:33 PM
Surr: Toluene-d8	102	70-130	%Rec	1	9/8/2020 6:37:33 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/8/2020 6:37:33 PM
Surr: BFB	99.7	70-130	%Rec	1	9/8/2020 6:37:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-25 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 12:00:00 PM Lab ID: 2009111-010 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.8 mg/Kg 1 9/5/2020 12:40:04 AM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 9/5/2020 12:40:04 AM Surr: DNOP 80.2 30.4-154 %Rec 1 9/5/2020 12:40:04 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 9/10/2020 12:32:53 AM 81 59 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/8/2020 7:06:02 PM 1 Toluene ND 0.050 mg/Kg 9/8/2020 7:06:02 PM 1 Ethvlbenzene ND 0.050 mg/Kg 1 9/8/2020 7:06:02 PM Xylenes, Total ND 0.099 mg/Kg 1 9/8/2020 7:06:02 PM Surr: 1.2-Dichloroethane-d4 97.2 70-130 %Rec 1 9/8/2020 7:06:02 PM Surr: 4-Bromofluorobenzene 104 70-130 %Rec 1 9/8/2020 7:06:02 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 7:06:02 PM 113 Surr: Toluene-d8 100 70-130 %Rec 1 9/8/2020 7:06:02 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 7:06:02 PM 5.0 1 Surr: BFB 103 70-130 %Rec 1 9/8/2020 7:06:02 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit POL
- Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 33

Released to Imaging: 4/13/2021 11:37:25 AM

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-26 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 12:10:00 PM Lab ID: 2009111-011 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 10 mg/Kg 1 9/5/2020 1:04:23 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 9/5/2020 1:04:23 AM Surr: DNOP 86.0 30.4-154 %Rec 1 9/5/2020 1:04:23 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 200 9/10/2020 12:45:18 AM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/8/2020 7:34:40 PM 1 Toluene ND 0.050 mg/Kg 9/8/2020 7:34:40 PM 1 Ethvlbenzene ND 0.050 mg/Kg 1 9/8/2020 7:34:40 PM Xylenes, Total ND 0.10 mg/Kg 1 9/8/2020 7:34:40 PM Surr: 1.2-Dichloroethane-d4 97.2 70-130 %Rec 1 9/8/2020 7:34:40 PM Surr: 4-Bromofluorobenzene 102 70-130 %Rec 1 9/8/2020 7:34:40 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 7:34:40 PM 117 Surr: Toluene-d8 99.6 70-130 %Rec 1 9/8/2020 7:34:40 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 7:34:40 PM 5.0 1 Surr: BFB 101 70-130 %Rec 1 9/8/2020 7:34:40 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 33

Project:

Lab ID:

Analyses

Chloride

Benzene

Toluene

Analytical Report Lab Order 2009111

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/11/2020 **CLIENT:** Devon Energy Client Sample ID: BS20-27 1' Cockburn G Federal 002 Collection Date: 8/31/2020 12:20:00 PM 2009111-012 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.7 mg/Kg 1 9/5/2020 1:28:57 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 9/5/2020 1:28:57 AM Surr: DNOP 81.5 30.4-154 %Rec 1 9/5/2020 1:28:57 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS 9/10/2020 12:57:43 AM 110 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR ND 0.025 mg/Kg 9/8/2020 8:03:08 PM 1 ND 0.050 mg/Kg 1 9/8/2020 8:03:08 PM 0.050 9/8/2020 8:03:08 PM Ethvlbenzene ND mg/Kg 1

			3.3		
Xylenes, Total	ND	0.10	mg/Kg	1	9/8/2020 8:03:08 PM
Surr: 1,2-Dichloroethane-d4	99.5	70-130	%Rec	1	9/8/2020 8:03:08 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	9/8/2020 8:03:08 PM
Surr: Dibromofluoromethane	113	70-130	%Rec	1	9/8/2020 8:03:08 PM
Surr: Toluene-d8	98.9	70-130	%Rec	1	9/8/2020 8:03:08 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/8/2020 8:03:08 PM
Surr: BFB	100	70-130	%Rec	1	9/8/2020 8:03:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix
- D Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 33

Project:

Lab ID:

Analyses

Surr: DNOP

Analytical Report Lab Order 2009111

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/11/2020 Client Sample ID: BS20-28 3' **CLIENT:** Devon Energy Cockburn G Federal 002 Collection Date: 8/31/2020 12:30:00 PM 2009111-013 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.7 mg/Kg 1 9/5/2020 1:53:33 AM Motor Oil Range Organics (MRO) ND 9/5/2020 1:53:33 AM 48 mg/Kg 1 84.8 30.4-154 %Rec 1 9/5/2020 1:53:33 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS

Chloride	68	59	mg/Kg	20	9/10/2020 1:10:07 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	9/8/2020 8:31:39 PM
Toluene	ND	0.050	mg/Kg	1	9/8/2020 8:31:39 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/8/2020 8:31:39 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/8/2020 8:31:39 PM
Surr: 1,2-Dichloroethane-d4	97.8	70-130	%Rec	1	9/8/2020 8:31:39 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	9/8/2020 8:31:39 PM
Surr: Dibromofluoromethane	110	70-130	%Rec	1	9/8/2020 8:31:39 PM
Surr: Toluene-d8	100	70-130	%Rec	1	9/8/2020 8:31:39 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/8/2020 8:31:39 PM
Surr: BFB	102	70-130	%Rec	1	9/8/2020 8:31:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 13 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-29 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 12:40:00 PM Lab ID: 2009111-014 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.9 mg/Kg 1 9/5/2020 2:18:03 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 9/5/2020 2:18:03 AM Surr: DNOP 84.8 30.4-154 %Rec 1 9/5/2020 2:18:03 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride ND 9/10/2020 1:47:21 AM 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/8/2020 9:00:09 PM 1 Toluene ND 0.049 mg/Kg 9/8/2020 9:00:09 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/8/2020 9:00:09 PM Xylenes, Total ND 0.099 mg/Kg 1 9/8/2020 9:00:09 PM Surr: 1.2-Dichloroethane-d4 97.2 70-130 %Rec 1 9/8/2020 9:00:09 PM Surr: 4-Bromofluorobenzene 106 70-130 %Rec 1 9/8/2020 9:00:09 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 9:00:09 PM 110 Surr: Toluene-d8 99.6 70-130 %Rec 1 9/8/2020 9:00:09 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 9:00:09 PM 49 1 Surr: BFB 103 70-130 %Rec 1 9/8/2020 9:00:09 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 33

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-30 3' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 12:50:00 PM Lab ID: 2009111-015 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.9 mg/Kg 1 9/5/2020 2:42:28 AM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 9/5/2020 2:42:28 AM Surr: DNOP 89.5 30.4-154 %Rec 1 9/5/2020 2:42:28 AM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 9/10/2020 1:59:45 AM 83 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.025 mg/Kg 9/8/2020 9:28:36 PM 1 Toluene ND 0.049 mg/Kg 9/8/2020 9:28:36 PM 1 Ethvlbenzene ND 0.049 mg/Kg 1 9/8/2020 9:28:36 PM Xylenes, Total ND 0.099 mg/Kg 1 9/8/2020 9:28:36 PM Surr: 1.2-Dichloroethane-d4 101 70-130 %Rec 1 9/8/2020 9:28:36 PM Surr: 4-Bromofluorobenzene 96.4 70-130 %Rec 1 9/8/2020 9:28:36 PM Surr: Dibromofluoromethane 70-130 %Rec 1 9/8/2020 9:28:36 PM 117 Surr: Toluene-d8 97.8 70-130 %Rec 1 9/8/2020 9:28:36 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND mg/Kg 9/8/2020 9:28:36 PM 49 1 Surr: BFB 97.8 70-130 %Rec 1 9/8/2020 9:28:36 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 33

Project:

Lab ID:

Analyses

Surr: DNOP

Analytical Report Lab Order 2009111

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/11/2020 Client Sample ID: BS20-31 1' **CLIENT:** Devon Energy Cockburn G Federal 002 Collection Date: 8/31/2020 1:00:00 PM 2009111-016 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM **Diesel Range Organics (DRO)** 9/5/2020 3:07:00 AM ND 9.6 mg/Kg 1 Motor Oil Range Organics (MRO) ND 9/5/2020 3:07:00 AM 48 mg/Kg 1 82.8 30.4-154 %Rec 1 9/5/2020 3:07:00 AM **EPA METHOD 300.0: ANIONS** Analvst: CAS

EFA METHOD 300.0. ANIONS					Analyst. CAS
Chloride	ND	60	mg/Kg	20	9/10/2020 2:12:09 AM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	9/8/2020 9:57:07 PM
Toluene	ND	0.049	mg/Kg	1	9/8/2020 9:57:07 PM
Ethylbenzene	ND	0.049	mg/Kg	1	9/8/2020 9:57:07 PM
Xylenes, Total	ND	0.099	mg/Kg	1	9/8/2020 9:57:07 PM
Surr: 1,2-Dichloroethane-d4	95.4	70-130	%Rec	1	9/8/2020 9:57:07 PM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	9/8/2020 9:57:07 PM
Surr: Dibromofluoromethane	110	70-130	%Rec	1	9/8/2020 9:57:07 PM
Surr: Toluene-d8	106	70-130	%Rec	1	9/8/2020 9:57:07 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/8/2020 9:57:07 PM
Surr: BFB	102	70-130	%Rec	1	9/8/2020 9:57:07 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix
- D Н Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit PQL
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 33

EPA METHOD 300.0: ANIONS

Chloride

Analytical Report
Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-32 3' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 1:10:00 PM Lab ID: 2009111-017 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 10 mg/Kg 1 9/5/2020 3:31:27 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 9/5/2020 3:31:27 AM Surr: DNOP 83.0 30.4-154 %Rec 1 9/5/2020 3:31:27 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 9/5/2020 7:33:51 PM 4.9 mg/Kg 1 Surr: BFB 96.4 75.3-105 %Rec 1 9/5/2020 7:33:51 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB 9/8/2020 1:17:54 PM Benzene ND 0.025 mg/Kg 1 Toluene ND 0.049 mg/Kg 1 9/8/2020 1:17:54 PM Ethylbenzene ND 0.049 mg/Kg 1 9/8/2020 1:17:54 PM Xylenes, Total ND 0.099 mg/Kg 1 9/8/2020 1:17:54 PM Surr: 4-Bromofluorobenzene 98.6 80-120 %Rec 1 9/8/2020 1:17:54 PM

ND

60

ma/Ka

20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 33

Analyst: CAS

9/10/2020 2:24:34 AM

Analytical Report
Lab Order 2009111

Date Reported: 9/11/2020

9/10/2020 3:01:47 AM

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BS20-33 1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 1:20:00 PM Lab ID: 2009111-018 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM Diesel Range Organics (DRO) ND 9.6 mg/Kg 1 9/5/2020 3:55:57 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 9/5/2020 3:55:57 AM Surr: DNOP 75.9 30.4-154 %Rec 1 9/5/2020 3:55:57 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 9/5/2020 8:44:07 PM 4.6 mg/Kg 1 Surr: BFB 95.3 75.3-105 %Rec 1 9/5/2020 8:44:07 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.023 mg/Kg 9/8/2020 2:28:34 PM 1 Toluene ND 0.046 mg/Kg 1 9/8/2020 2:28:34 PM Ethylbenzene ND 0.046 mg/Kg 1 9/8/2020 2:28:34 PM Xylenes, Total ND 0.092 mg/Kg 1 9/8/2020 2:28:34 PM Surr: 4-Bromofluorobenzene 95.1 80-120 %Rec 1 9/8/2020 2:28:34 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS

75

60

ma/Ka

20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloride

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 33

CLIENT: Devon Energy

Cockburn G Federal 002

2009111-019

Project:

Lab ID:

Analytical Report
Lab Order 2009111

Hall Environmental Analysis Laboratory, Inc.

 Client Sample ID: BS20-34 3'

 Collection Date: 8/31/2020 1:30:00 PM

 Matrix: SOIL
 Received Date: 9/2/2020 8:00:00 AM

 Result
 RL Qual Units
 DF
 Date Analyzed

 GE ORGANICS
 Analyst: BRN

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/5/2020 4:20:21 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/5/2020 4:20:21 AM
Surr: DNOP	76.5	30.4-154	%Rec	1	9/5/2020 4:20:21 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/5/2020 9:54:18 PM
Surr: BFB	96.0	75.3-105	%Rec	1	9/5/2020 9:54:18 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	9/8/2020 2:52:08 PM
Toluene	ND	0.050	mg/Kg	1	9/8/2020 2:52:08 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/8/2020 2:52:08 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/8/2020 2:52:08 PM
Surr: 4-Bromofluorobenzene	98.0	80-120	%Rec	1	9/8/2020 2:52:08 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/10/2020 3:39:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 33

. Released to Imaging: 4/13/2021 11:37:25 AM

CLIENT: Devon Energy

Cockburn G Federal 002

Project:

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: WS20-01 0-1' Collection Date: 8/31/2020 1:40:00 PM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-020	Matrix: SOIL Received				20 8:00:00 AM
Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: BRM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/5/2020 4:44:47 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/5/2020 4:44:47 AM
Surr: DNOP	82.3	30.4-154	%Rec	1	9/5/2020 4:44:47 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/5/2020 10:17:42 PM
Surr: BFB	94.4	75.3-105	%Rec	1	9/5/2020 10:17:42 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	9/8/2020 3:15:46 PM
Toluene	ND	0.050	mg/Kg	1	9/8/2020 3:15:46 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/8/2020 3:15:46 PM
Xylenes, Total	ND	0.099	mg/Kg	1	9/8/2020 3:15:46 PM
Surr: 4-Bromofluorobenzene	99.9	80-120	%Rec	1	9/8/2020 3:15:46 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/10/2020 4:16:14 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 20 of 33

Analytical Report
Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: WS20-02 0-1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 1:50:00 PM Lab ID: 2009111-021 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: mb Diesel Range Organics (DRO) ND 9.8 mg/Kg 1 9/6/2020 12:25:02 AM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 9/6/2020 12:25:02 AM Surr: DNOP 76.8 30.4-154 %Rec 1 9/6/2020 12:25:02 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 9/5/2020 10:40:59 PM 5.0 mg/Kg 1 Surr: BFB 93.6 75.3-105 %Rec 1 9/5/2020 10:40:59 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 mg/Kg 9/8/2020 3:39:13 PM 1 Toluene ND 0.050 mg/Kg 1 9/8/2020 3:39:13 PM Ethylbenzene ND 0.050 mg/Kg 1 9/8/2020 3:39:13 PM Xylenes, Total ND 0.10 mg/Kg 1 9/8/2020 3:39:13 PM Surr: 4-Bromofluorobenzene 97.2 80-120 %Rec 1 9/8/2020 3:39:13 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride ND 60 9/10/2020 4:28:39 AM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 33

CLIENT: Devon Energy

Project:

Cockburn G Federal 002

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: WS20-03 0-1' Collection Date: 8/31/2020 2:00:00 PM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-022	Matrix: SOIL	OIL Received Date: 9/2/2020 8:00:00 AM				
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: mb	
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/6/2020 1:13:39 AM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/6/2020 1:13:39 AM	
Surr: DNOP	88.2	30.4-154	%Rec	1	9/6/2020 1:13:39 AM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/5/2020 11:04:24 PM	
Surr: BFB	95.8	75.3-105	%Rec	1	9/5/2020 11:04:24 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.025	mg/Kg	1	9/8/2020 4:02:43 PM	
Toluene	ND	0.050	mg/Kg	1	9/8/2020 4:02:43 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	9/8/2020 4:02:43 PM	
Xylenes, Total	ND	0.099	mg/Kg	1	9/8/2020 4:02:43 PM	
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	9/8/2020 4:02:43 PM	
EPA METHOD 300.0: ANIONS					Analyst: CAS	
Chloride	ND	60	mg/Kg	20	9/10/2020 4:41:03 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 22 of 33

Analytical Report
Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: WS20-04 0-1' **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 2:10:00 PM Lab ID: 2009111-023 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: CLP Diesel Range Organics (DRO) ND 10 mg/Kg 1 9/5/2020 6:28:05 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 9/5/2020 6:28:05 AM Surr: DNOP 84.2 30.4-154 %Rec 1 9/5/2020 6:28:05 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 9/5/2020 11:27:52 PM 4.9 mg/Kg 1 Surr: BFB 95.4 75.3-105 %Rec 1 9/5/2020 11:27:52 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 mg/Kg 9/8/2020 4:26:07 PM 1 Toluene ND 0.049 mg/Kg 1 9/8/2020 4:26:07 PM Ethylbenzene ND 0.049 mg/Kg 1 9/8/2020 4:26:07 PM Xylenes, Total ND 0.098 mg/Kg 1 9/8/2020 4:26:07 PM Surr: 4-Bromofluorobenzene 97.8 80-120 %Rec 1 9/8/2020 4:26:07 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride ND 60 9/10/2020 4:53:28 AM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 33

CLIENT: Devon Energy

Cockburn G Federal 002

Project:

Analytical Report Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: WS20-05 0-1' Collection Date: 8/31/2020 2:20:00 PM Received Date: 9/2/2020 8:00:00 AM

Lab ID: 2009111-024	Matrix: SOIL	Rece	eived Date:	9/2/20	20 8:00:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: mb
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/6/2020 1:37:48 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/6/2020 1:37:48 AM
Surr: DNOP	84.3	30.4-154	%Rec	1	9/6/2020 1:37:48 AM
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/5/2020 11:51:21 PM
Surr: BFB	91.5	75.3-105	%Rec	1	9/5/2020 11:51:21 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	9/8/2020 4:49:33 PM
Toluene	ND	0.050	mg/Kg	1	9/8/2020 4:49:33 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/8/2020 4:49:33 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/8/2020 4:49:33 PM
Surr: 4-Bromofluorobenzene	98.8	80-120	%Rec	1	9/8/2020 4:49:33 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/10/2020 5:05:52 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 24 of 33

Analytical Report
Lab Order 2009111

Date Reported: 9/11/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: WS20-06 0-1 **Project:** Cockburn G Federal 002 Collection Date: 8/31/2020 2:30:00 PM Lab ID: 2009111-025 Matrix: SOIL Received Date: 9/2/2020 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: mb Diesel Range Organics (DRO) ND 9.4 mg/Kg 1 9/6/2020 2:01:58 AM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 9/6/2020 2:01:58 AM Surr: DNOP 84.6 30.4-154 %Rec 1 9/6/2020 2:01:58 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 9/6/2020 12:14:39 AM 5.0 mg/Kg 1 Surr: BFB 95.5 75.3-105 %Rec 1 9/6/2020 12:14:39 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 mg/Kg 9/8/2020 5:13:02 PM 1 Toluene ND 0.050 mg/Kg 1 9/8/2020 5:13:02 PM Ethylbenzene ND 0.050 mg/Kg 1 9/8/2020 5:13:02 PM Xylenes, Total ND 0.099 mg/Kg 1 9/8/2020 5:13:02 PM Surr: 4-Bromofluorobenzene 98.3 80-120 %Rec 1 9/8/2020 5:13:02 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 92 60 9/10/2020 5:18:16 AM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 33

Client:

Environmental Analysis Laboratory, Inc.	WO#: 2009111	
Environmental Analysis Laboratory, Inc.	11-Sep-20	
Devon Energy		

	purn G Federal 002			
Sample ID: MB-55056	SampType: mblk	TestCode: EPA Method	300.0: Anions	
Client ID: PBS	Batch ID: 55056	RunNo: 71728		
Prep Date: 9/9/2020	Analysis Date: 9/9/2020	SeqNo: 2509221	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-55056	SampType: Ics	TestCode: EPA Method	300.0: Anions	
Client ID: LCSS	Batch ID: 55056	RunNo: 71728		
Prep Date: 9/9/2020	Analysis Date: 9/9/2020	SeqNo: 2509222	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	14 1.5 15.00	0 92.4 90	110	
Sample ID: MB-55062	SampType: mblk	TestCode: EPA Method	300.0: Anions	
Client ID: PBS	Batch ID: 55062	RunNo: 71728		
Prep Date: 9/9/2020	Analysis Date: 9/10/2020	SeqNo: 2509277	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-55062	SampType: Ics	TestCode: EPA Method	300.0: Anions	
Client ID: LCSS	Batch ID: 55062	RunNo: 71728		
Prep Date: 9/9/2020	Analysis Date: 9/10/2020	SeqNo: 2509278	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	14 1.5 15.00	0 93.8 90	110	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 26 of 33

.

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Devon EProject:Cockbur	Energy n G Federal 002					
Sample ID: MB-54939	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: PBS	Batch ID: 54939	RunNo: 71644				
Prep Date: 9/3/2020	Analysis Date: 9/5/2020	SeqNo: 2504470	Units: mg/Kg			
Analyte		SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Diesel Range Organics (DRO)	ND 10					
Motor Oil Range Organics (MRO) Surr: DNOP	ND 50 6.7 10.00	67.3 30.4	154			
Sample ID: LCS-54939	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: LCSS	Batch ID: 54939	RunNo: 71644				
Prep Date: 9/3/2020	Analysis Date: 9/5/2020	SeqNo: 2504473	Units: mg/Kg			
Analyte		SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Diesel Range Organics (DRO)	56 10 50.00	0 111 70	130			
Surr: DNOP	2.7 5.000	54.4 30.4	154			
Sample ID: LCS-54951	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: LCSS	Batch ID: 54951	RunNo: 71657				
Prep Date: 9/4/2020	Analysis Date: 9/5/2020	SeqNo: 2505398	Units: %Rec			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Surr: DNOP	4.0 5.000	79.7 30.4	154			
Sample ID: LCS-54955	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: LCSS	Batch ID: 54955	RunNo: 71657				
Prep Date: 9/4/2020	Analysis Date: 9/5/2020	SeqNo: 2505399	Units: mg/Kg			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Diesel Range Organics (DRO)	53 10 50.00	0 106 70	130			
Surr: DNOP	3.9 5.000	77.3 30.4	154			
Sample ID: MB-54951	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: PBS	Batch ID: 54951	RunNo: 71657				
Prep Date: 9/4/2020	Analysis Date: 9/5/2020	SeqNo: 2505403	Units: %Rec			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Surr: DNOP	8.4 10.00	84.3 30.4	154			
Sample ID: MB-54955	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics			
Client ID: PBS	Batch ID: 54955	RunNo: 71657				
Prep Date: 9/4/2020	Analysis Date: 9/5/2020	SeqNo: 2505404	Units: mg/Kg			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
Diesel Range Organics (DRO)	ND 10					

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 33

2009111

11-Sep-20

WO#:

QC SUMMARY REPORT Hall

Page 11	9 of 160
---------	----------

L.	Hall Environmental Analysis Laboratory, Inc.						
	Ironmental Analysis Laboratory, Inc.		11-Sep-20				
Client:	Devon Energy						

Project: Cockburr	n G Federal	002								
Sample ID: MB-54955	SampTy	vpe: ME	BLK	Tes	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	ID: 549	955	R	unNo: 71	657				
Prep Date: 9/4/2020	Analysis Da	ate: 9/	5/2020	S	eqNo: 2	505404	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Motor Oil Range Organics (MRO) Surr: DNOP	ND 8.3	50	10.00		82.6	30.4	154			
Sample ID: 2009111-001AMS	SampTy	/pe: MS	5	Tes	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: BS20-16 1'	Batch	ID: 549	921	R	unNo: 71	526				
Prep Date: 9/3/2020	Analysis Da	ate: 9/	4/2020	S	eqNo: 2	506722	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	49.85	0	100	47.4	136			
Surr: DNOP	4.2		4.985		84.8	30.4	154			
Sample ID: 2009111-001AMSI	D SampTy	/pe: MS	D	Tes	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: BS20-16 1'	Batch	ID: 549	921	R	unNo: 71	1526				
Prep Date: 9/3/2020	Analysis Da	ate: 9/ 4	4/2020	S	SeqNo: 2506723 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	50.00	0	99.6	47.4	136	0.504	43.4	
Surr: DNOP	4.3		5.000		85.0	30.4	154	0	0	
Sample ID: LCS-54921	SampTy	vpe: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch	ID: 549	921	R	unNo: 71	526				
Prep Date: 9/3/2020	Analysis Da	ate: 9/ 4	4/2020	S	eqNo: 2	506732	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	93.2	70	130			
Surr: DNOP	3.7		5.000		75.0	30.4	154			
Sample ID: MB-54921	SampTy	vpe: ME	BLK	Tes	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	ID: 549	921	R	unNo: 71	526				
Prep Date: 9/3/2020	Analysis Da	ate: 9/ 4	4/2020	S	eqNo: 2	506733	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.3		10.00		82.9	30.4	154			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

•

QC SUMMARY REPORT Hall Environmental Analysis Laboratory. Inc.

Client: Devon I Project: Cockbu	Energy rn G Federal 002						
Sample ID: mb-54909	SampType: MBLK	TestCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch ID: 54909	RunNo: 71	1654				
Prep Date: 9/2/2020	Analysis Date: 9/5/2020	SeqNo: 2	505130	Units: mg/K	g		
Analyte	Result PQL SPK va	ue SPK Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 960 10	00 96.3	75.3	105			
Sample ID: Ics-54909	SampType: LCS	TestCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID: 54909	RunNo: 71	1654				
Prep Date: 9/2/2020	Analysis Date: 9/5/2020	SeqNo: 2	505131	Units: mg/K	g		
Analyte	Result PQL SPK va	ue SPK Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23 5.0 25.		72.5	106			
Surr: BFB	1100 10	00 108	75.3	105			S
		TestCode: EPA Method 8015D: Gasoline Range					
Sample ID: 2009111-018ams	s SampType: MS	TestCode: EF	PA Method	8015D: Gaso	line Rang	e	
Sample ID: 2009111-018ams Client ID: BS20-33 1'	s SampType: MS Batch ID: 54909	TestCode: EF RunNo: 7		8015D: Gaso	line Rang	e	
			1654	8015D: Gaso Units: mg/K	•	e	
Client ID: BS20-33 1'	Batch ID: 54909 Analysis Date: 9/5/2020	RunNo: 71	1654	Units: mg/K	•	e RPDLimit	Qual
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO)	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24.	RunNo: 7 ′ SeqNo: 2! ue SPK Ref Val %REC 73 0 88.1	1654 505134 LowLimit 61.3	Units: mg/K HighLimit 114	g		
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK va	RunNo: 7 ′ SeqNo: 2! ue SPK Ref Val %REC 73 0 88.1	1654 505134 LowLimit	Units: mg/K HighLimit	g		Qual
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO)	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24 1100 985	RunNo: 7' SeqNo: 2! ue SPK Ref Val %REC 73 0 88.1 9.1 106	1654 505134 LowLimit 61.3 75.3	Units: mg/K HighLimit 114	g %RPD	RPDLimit	
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24 1100 985	RunNo: 7' SeqNo: 2! ue SPK Ref Val %REC 73 0 88.1 9.1 106	1654 505134 LowLimit 61.3 75.3 PA Method	Units: mg/K HighLimit 114 105	g %RPD	RPDLimit	
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 989 sd SampType: MSD	RunNo: 7' SeqNo: 2 ue SPK Ref Val %REC 73 0 88.1 0.1 106 TestCode: EF	1654 505134 61.3 75.3 PA Method 1654	Units: mg/K HighLimit 114 105	g %RPD line Rang	RPDLimit	
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams Client ID: BS20-33 1'	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 983 sd SampType: MSD Batch ID: 54909 Analysis Date: 9/5/2020	RunNo: 7' SeqNo: 2 <u>ue SPK Ref Val %REC</u> 73 0 88.1 9.1 106 TestCode: EF RunNo: 7' SeqNo: 2	1654 505134 61.3 75.3 PA Method 1654	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K	g %RPD line Rang	RPDLimit	
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO)	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 989 sd SampType: MSD Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 20 4.8 23.	RunNo: 7' SeqNo: 2 ue SPK Ref Val %REC 73 0 88.1 0.1 106 TestCode: EF RunNo: 7' SeqNo: 2 ue SPK Ref Val %REC 90 0 83.2	1654 505134 LowLimit 61.3 75.3 PA Method 1654 505135 LowLimit 61.3	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K HighLimit 114	g %RPD line Rang g %RPD 9.19	RPDLimit e RPDLimit 20	S Qual
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 985 sd SampType: MSD Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val	RunNo: 7' SeqNo: 2 ue SPK Ref Val %REC 73 0 88.1 0.1 106 TestCode: EF RunNo: 7' SeqNo: 2 ue SPK Ref Val %REC 90 0 83.2	1654 505134 61.3 75.3 PA Method 1654 505135 LowLimit	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K HighLimit	g %RPD line Rang g %RPD	RPDLimit e RPDLimit	S
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO)	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 989 sd SampType: MSD Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 20 4.8 23.	RunNo: 7' SeqNo: 2 <u>ue SPK Ref Val %REC</u> 73 0 88.1 0.1 106 TestCode: EF RunNo: 7' SeqNo: 2 <u>ue SPK Ref Val %REC</u> 90 0 83.2 5.0 106	1654 505134 61.3 75.3 PA Method 1654 505135 LowLimit 61.3 75.3	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K HighLimit 114	g %RPD line Rang g %RPD 9.19 0	RPDLimit e RPDLimit 20 0	S Qual
Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID: 2009111-018ams Client ID: BS20-33 1' Prep Date: 9/2/2020 Analyte Gasoline Range Organics (GRO) Surr: BFB	Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 22 4.9 24. 1100 989 sd SampType: MSD Batch ID: 54909 Analysis Date: 9/5/2020 Result PQL SPK val 20 4.8 23. 1000 956	RunNo: 7' SeqNo: 2 <u>ue SPK Ref Val %REC</u> 73 0 88.1 0.1 106 TestCode: EF RunNo: 7' SeqNo: 2 <u>ue SPK Ref Val %REC</u> 90 0 83.2 5.0 106	1654 505134 61.3 75.3 PA Method 1654 505135 LowLimit 61.3 75.3 PA Method	Units: mg/K HighLimit 114 105 8015D: Gaso Units: mg/K HighLimit 114 105	g %RPD line Rang g %RPD 9.19 0	RPDLimit e RPDLimit 20 0	S Qual

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 940 1000 94.0 75.3 105 Sample ID: Ics-54964 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID:	LCSS	Batch	ID: 54	964	R	lunNo: 7	1681				
Prep Date:	9/4/2020	Analysis D	ate: 9 /	/8/2020	S	eqNo: 2	506603	Units: %Rec	:		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1100		1000		108	75.3	105			S

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

в Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 29 of 33

2009111

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	WO#:	2009111
Inc.		11-Sep-20

Client: Project:	Devon Er Cockburn		1 002								
Sample ID:	mb-54909	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	PBS	Batc	h ID: 54	909	F	RunNo: 7	1681				
Prep Date:	9/2/2020	Analysis E	Date: 9/	8/2020	5	SeqNo: 2	506639	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bron	nofluorobenzene	1.0		1.000		101	80	120			
Sample ID:	lcs-54909	SampT	Type: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	LCSS	Batc	h ID: 54	909	F	RunNo: 7	1681				
Prep Date:	9/2/2020	Analysis E	Date: 9/	8/2020	5	SeqNo: 2	506640	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.82	0.025	1.000	0	81.5	80	120			
Toluene		0.86	0.050	1.000	0	85.9	80	120			
Ethylbenzene		0.87	0.050	1.000	0	87.1	80	120			
Xylenes, Total		2.6	0.10	3.000	0	87.2	80	120			
Surr: 4-Bron	nofluorobenzene	1.0		1.000		100	80	120			
Sample ID:	2009111-017ams	SampT	Гуре: М	6	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	BS20-32 3'	Batc	h ID: 54	909	F	RunNo: 7	1681				
Prep Date:	9/2/2020	Analysis E	Date: 9/	8/2020	S	SeqNo: 2	506642	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.82	0.025	0.9980	0	82.0	76.3	120			
Toluene		0.88	0.050	0.9980	0	87.9	78.5	120			
Ethylbenzene		0.90	0.050	0.9980	0	89.9	78.1	124			
Xylenes, Total		2.7	0.10	2.994	0	90.9	79.3	125			
Surr: 4-Bron	nofluorobenzene	0.98		0.9980		98.4	80	120			
Sample ID:	2009111-017amsd	SampT	Гуре: М	SD	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	BS20-32 3'	Batc	h ID: 54	909	F	RunNo: 7	1681				
Prep Date:	9/2/2020	Analysis E	Date: 9/	8/2020	S	SeqNo: 2	506643	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.84	0.025	0.9970	0	84.1	76.3	120	2.44	20	
Toluene		0.87	0.050	0.9970	0	87.6	78.5	120	0.499	20	
Ethylbenzene		0.89	0.050	0.9970	0	88.9	78.1	124	1.27	20	
Xylenes, Total		2.7	0.10	2.991	0	89.7	79.3	125	1.39	20	
Surr: 4-Bron	nofluorobenzene	0.98		0.9970		97.8	80	120	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Client:	Devon Energy							
Project:	Cockburn G Federal 0	02						
Sample ID: mb-54	964 SampType	e: MBLK	TestCod	e: EPA Method	8021B: Volatil	es		
Client ID: PBS	Batch ID): 54964	RunN	o: 71681				
Prep Date: 9/4/20	Analysis Date	e: 9/8/2020	SeqN	D: 2506653	Units: %Rec			
Analyte	Result F	PQL SPK value	SPK Ref Val %F	EC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobe	nzene 0.98	1.000	ç	7.8 80	120			
Sample ID: LCS-54	964 SampType	e: LCS	TestCod	e: EPA Method	8021B: Volatil	es		
Client ID: LCSS	Batch ID): 54964	RunN	o: 71681				
Prep Date: 9/4/20	Analysis Date	e: 9/8/2020	SeqN	o: 2506654	Units: %Rec			
Analyte	Result F	PQL SPK value	SPK Ref Val %F	EC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobe	nzene 0.98	1.000	(8.1 80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 33

2009111

11-Sep-20

WO#:

Devon Energy

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampT									
	ype: LC	S4	Tes	tCode: EF	PA Method	8260B: Volat	iles Short	List	
Batch	n ID: 549	903	R	lunNo: 7 1	1660				
alysis D	ate: 9/	6/2020	S	eqNo: 2	505690	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.86	0.025	1.000	0	86.3	80	120			
0.98	0.050	1.000	0	98.1	80	120			
1.0	0.050	1.000	0	101	80	120			
3.1	0.10	3.000	0	103	80	120			
0.48		0.5000		96.0	70	130			
0.49		0.5000		98.6	70	130			
0.54		0.5000		109	70	130			
0.51		0.5000		103	70	130			
SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: Volat	iles Short	List	
Batch	n ID: 549	903	R	unNo: 71	1660				
alysis D	ate: 9/	6/2020	S	eqNo: 2	505691	Units: mg/K	g		
alysis D Result	ate: 9/ PQL		S SPK Ref Val		505691 LowLimit	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
						•	•	RPDLimit	Qual
Result	PQL					•	•	RPDLimit	Qual
Result ND	PQL 0.025					•	•	RPDLimit	Qual
Result ND ND	PQL 0.025 0.050					•	•	RPDLimit	Qual
Result ND ND ND	PQL 0.025 0.050 0.050					•	•	RPDLimit	Qual
Result ND ND ND ND ND	PQL 0.025 0.050 0.050	SPK value		%REC	LowLimit	HighLimit	•	RPDLimit	Qual
Result ND ND ND ND ND 0.50	PQL 0.025 0.050 0.050	SPK value 0.5000		%REC 100	LowLimit 70	HighLimit	•	RPDLimit	Qual
Result ND ND ND ND 0.50 0.50	PQL 0.025 0.050 0.050	SPK value 0.5000 0.5000		%REC 100 101	LowLimit 70 70	HighLimit 130 130	•	RPDLimit	Qual
	esult 0.86 0.98 1.0 3.1 0.48 0.49 0.54 0.51 SampT	esult PQL 0.86 0.025 0.98 0.050 1.0 0.050 3.1 0.10 0.48 0.49 0.54 0.51	esult PQL SPK value 0.86 0.025 1.000 0.98 0.050 1.000 1.0 0.050 1.000 3.1 0.10 3.000 0.48 0.5000 0.49 0.5000 0.54 0.5000	esult PQL SPK value SPK Ref Val 0.86 0.025 1.000 0 0.98 0.050 1.000 0 1.0 0.050 1.000 0 3.1 0.10 3.000 0 0.48 0.5000 0 0 0.54 0.5000 0 0 0.51 0.5000 0 0	PQL SPK value SPK Ref Val %REC 0.86 0.025 1.000 0 86.3 0.98 0.050 1.000 0 98.1 1.0 0.050 1.000 0 101 3.1 0.10 3.000 0 103 0.48 0.5000 98.6 98.6 0.54 0.5000 109 103 0.51 0.5000 103 103	PQL SPK value SPK Ref Val %REC LowLimit 0.86 0.025 1.000 0 86.3 80 0.98 0.050 1.000 0 98.1 80 1.0 0.050 1.000 0 101 80 3.1 0.10 3.000 0 103 80 0.48 0.5000 98.6 70 0.49 0.5000 98.6 70 0.54 0.5000 103 70 0.51 0.5000 103 70	PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.86 0.025 1.000 0 86.3 80 120 0.98 0.050 1.000 0 98.1 80 120 1.0 0.050 1.000 0 101 80 120 3.1 0.10 3.000 0 103 80 120 0.48 0.5000 96.0 70 130 0.49 0.5000 98.6 70 130 0.54 0.5000 109 70 130 0.51 0.5000 103 70 130 SampType: MBLK TestCode: EPA Method 8260B: Volat Volat	PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.86 0.025 1.000 0 86.3 80 120 0.98 0.050 1.000 0 98.1 80 120 1.0 0.050 1.000 0 101 80 120 3.1 0.10 3.000 0 103 80 120 0.48 0.5000 96.0 70 130 0.49 0.5000 98.6 70 130 0.54 0.5000 109 70 130 0.51 0.5000 103 70 130	PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.86 0.025 1.000 0 86.3 80 120 0.98 0.050 1.000 0 98.1 80 120 1.0 0.050 1.000 0 101 80 120 3.1 0.10 3.000 0 103 80 120 0.48 0.5000 96.0 70 130 100 0.49 0.5000 98.6 70 130 100 0.54 0.5000 109 70 130 100 0.51 0.5000 103 70 130 100 100

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 33

WO#: **2009111**

11-Sep-20

Client: Project:	Devon Energy Cockburn G Feder	ral 002								
Sample ID: Ics-549	03 Samp	oType: LC	s	Tes	tCode: Ef	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS	Bat	ch ID: 54	903	F	anNo: 7	1660				
Prep Date: 9/2/20	20 Analysis	Date: 9/	6/2020	S	eqNo: 2	505705	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organic	s (GRO) 22	5.0	25.00	0	89.0	70	130			
Surr: BFB	490		500.0		98.6	70	130			
Sample ID: mb-549	03 Samp	Type: MI	BLK	Tes	tCode: EF	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PBS	Bat	ch ID: 54	903	F	unNo: 7	1660				
Prep Date: 9/2/20	20 Analysis	Date: 9/	6/2020	S	eqNo: 2	505712	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organic	s (GRO) ND	5.0								
Surr: BFB	510		500.0		103	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 33

2009111

11-Sep-20

WO#:

HALL ENVIRONMENTA ANALYSIS LABORATORY	L TEL: 505-345	nental Analysis Labor 4901 Hawki Albuquerque, NM 6 5-3975 FAX: 505-345 ents.hallenvironmenta	ns NE 87109 San -4107	nple Log-In Cł	neck List
Client Name: Devon Ener	gy Work Order Nu	umber: 2009111		RcptNo:	1
Received By: Juan Rojas	9/2/2020 8:00:00	AM	Hunday		
Completed By: Juan Rojas	9/2/2020 10:46:1	5 AM	Guarrang Guarrang		
Reviewed By: JR 9/2/	70		20000		
Chain of Custody					
1. Is Chain of Custody comple	te?	Yes 🔽	No 🗌	Not Present	
2. How was the sample delive	red?	Courier			
Log In 3. Was an attempt made to co	ol the samples?	Yes 🔽	No 🗌	NA 🗌	
4. Were all samples received a	at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗔		
5. Sample(s) in proper contain	er(s)?	Yes 🔽	No 🗌		
6. Sufficient sample volume for	rindicated test(s)?	Yes 🔽	No 🗌		
7. Are samples (except VOA a	nd ONG) properly preserved?	Yes 🔽	No 🗌		
8. Was preservative added to t	pottles?	Yes 🗌	No 🔽	NA 🗌	
9. Received at least 1 vial with	headspace <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🔽	/
10, Were any sample container	s received broken?	Yes 🗆	No 🗹	# of preserved bottles checked	
11. Does paperwork match bottl (Note discrepancies on chair		Yes 🗹	No 🗆	for pH:	12 unless noted)
2. Are matrices correctly identit	fied on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?	
3. Is it clear what analyses wer	e requested?	Yes 🔽	No 🗌	/ /	0.0
 Were all holding times able t (If no, notify customer for au 		Yes 🗹	No 🗌	Checked by: S	PA. g. z. zo
Special Handling (if appl	icable)				
15, Was client notified of all dis	crepancies with this order?	Yes 🗌	No 🗌	NA 🔽	
Person Notified:	Da	te			
By Whom:	Via		Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u>					
Cooler No Temp °C 1 3.8	Condition Seal Intact Seal No Good	Seal Date	Signed By		
	Good				

Page 1 of 1

Recei	. >			/7/2020 2		:52 PM																		11 :	e 126 of	
	HALL ENVIRONMENTAL ANALYSIS LABORATOR		Albuqueraue. NM 87109			PO4, S, QA	(AC	-۸c	(AO)	S) 0728 V) 0928	7												MM. 132.038. AL, RUDEVON	Gordon	If necessary summitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this nossibility. Any sub-contracted data will be clearly notated on the analytical report
	HALL ENVI	llah.www	4901 Hawkins NE -			SMISC	1	ol	018	y 83	EDB (N PAHs b RCRA 8													MM. 132	Julie	uh-contracted data v
			-	Tel. 5	1.	ьсв, ^а (0 / МК(, ¹ а (8051	אם ו	02	(GF	19D		11	()										1	Remarks: (J) (35 # :	cc : Nataliu	ie noceihility. Any s
(hon		te delle 1 # (00)			Gordon		ON D		- 0.3- 7.5 (°C)	2009111	100	200-	-663	1001	7007	2006	trut	2002	1001	010-	101		Date Time 9/1/20 1300	Pate Time 9/120 4.00	 This serves as notice of th
ime.		<	D	00575	ager:		JJP	Z Yes	1.1	(including CF): 7.1	Preservative Type	100											N	Via:	Via: Towers	incredited laboratories
Turn-Around T	D'Standard	Project Name:	COCKBUIN	Project #: 9E-(Project Manager:	Natalia	Sampler: 17	On Ice:	# of Coolers:	Cooler Temp(including CF):	Container Type and #	70 H											N C	Received by	Received by:	contracted to other a
	cold					Validation)					e	11	c)	ā	1.	ŝ	1.	3,	1	11		1,1	1	h		the state of the state
od whote	the Devon Energy					Level 4 (Full Validation)	Az Compliance				Sample Name	8520-16	F1-ocsa	B1 - 0628	BS20-19	BS20-20	16-0ESB	BS20-23	R520-23	BS20-24	Bsau-25	10-005A	BS20-27		:kq pa	mitted to Hall Environm
	Jevon F		SS:		- 14			□ Other	()		Matrix	Soil	0 1		2	0	0	0	0	0	0	,	N	Relinquish	Relinquished by:	anu esmolas sub
	Client:		Mailing Address:	Phone #:	email or Fax#:	QA/QC Package:	Accreditation:		EDD (Type)		te Time	31 10:30	01:01	10:50	11:00	01:11	11:20	11:30	01:11	05:11	19:00	13:10	V 12:20	20		If naracci
Relea	⊡ I sed to 1	may		සි 4/13/202	en	∂ □ 1:37:25	AM				Date	B	-				_			_				Date	Date:	1

100								52 PM														uge	128 of UND
	HALL ENVIDONMENTAL	ANALYSTS LABORATORY	www.hallenvironmental.com	Albuqueraue. NM 87109	Fax 505-345-4107	Analysis Request	(ĵu	ləsdA∖	tnəse		0	·ime	8260 (V 8270 (Sc Total Co	3							100200		190 M (21 Course gales 8:00 Who # MM.132038. AL. R
		AI VSI	w hallenviro			Analysi	*O	S '⁺Oc	1 ^{,2} 01	_	103	۲, ۱	8 АЯОЯ С), F, B 8 260 ())>							195	ite G.	1.132
	H			4901 Hawkins NE -	Tel. 505-345-3975			SMIS				_	EDB (M	ALC: N		-				-		St	M
		¥		H 106	Tel. 50		10			_			108:H9T 99 1808								ks:	Z	#
													X TEN				-		-		Remarks:	JU	solv
	5 001			Cochburn G Fideral #002	× L ×	5100		norder		ON D		3.1-13-22 (°C)	e.4-0.3-01		212						Ē	1/1/20 /300 Date Time	~ 9/2/20 8.00
	Time:	□ Rush		5 um		20-1	ger:	<u>,</u>	020	- Yes	2		Preservative Type	100							Via:	Via	Coverse
1	Turn-Around Time:	Standard	Project Name:	Cochbi	Project #:	E D	Project Manager:	Netali	Sampler: N	On Ice:	# of Coolers: 2	Cooler Temp(including CF):	Container Type and #								Received by:	Redeved for	(and
	Chain-of-Custody Record	Lord	-					Level 4 (Full Validation)	nce				Sample Name	1-0 0/0-065								4	
	-of-Custo	エシン		::						□ Other			Matrix	Suil							Relinquished by:		M
	hain	0		Mailing Address:		#	r Fax#:	QA/QC Package:	tation:	AC	(Type)		Time	0::C							Time:	1 500 Time:	[4 00
		Client:		Mailing		Phone #:	email or Fax#:	QA/QC Packa	Accreditation:		□ EDD (Type)		Date	8/s/2:20							Date: /	1/20 te:	. 9

May 14, 2019

AMANDA DAVIS Devon Energy Corp- Artesia P.O. Box 250 Artesia, NM 88211

RE: COCKBURN FED

Enclosed are the results of analyses for samples received by the laboratory on 05/13/19 10:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 01 6' (H901724-01)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/14/2019	ND	400	100	400	4.08	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	91.7	% 41-142	2						
Surrogate: 1-Chlorooctadecane	93.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 02 5' (H901724-02)

BTEX 8021B	mg,	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/14/2019	ND	400	100	400	4.08	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	92.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.3	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 05 8' (H901724-03)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/14/2019	ND	400	100	400	4.08	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	89.6	% 41-142	2						
Surrogate: 1-Chlorooctadecane	91.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 06 6' (H901724-04)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/14/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	96.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	97.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072 05/13/2019 Sampling Date:

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 07 6' (H901724-05)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/14/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	95.6	% 41-142	,						
Surrogate: 1-Chlorooctadecane	98.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 08 6' (H901724-06)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/14/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	95.0	% 41-142	2						
Surrogate: 1-Chlorooctadecane	97.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072

Received:	05/13/2019	Sampling Date:	05/11/2019
Reported:	05/14/2019	Sampling Type:	Soil
Project Name:	COCKBURN FED	Sampling Condition:	Cool & Intact
Project Number:	19E - 00575	Sample Received By:	Tamara Oldaker
Project Location:	DEVON - EDDY CO NM		

Sample ID: TP 19 - 09 6' (H901724-07)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/13/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/13/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/13/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/13/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/14/2019	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	87.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Devon Energy Corp- Artesia AMANDA DAVIS P.O. Box 250 Artesia NM, 88211 Fax To: (505) 746-9072 Received: 05/13/2019 Sampling Date: 05/11/2019 Reported: 05/14/2019 Sampling Type: Soil Project Name: COCKBURN FED Sampling Condition: Cool & Intact Sample Received By: Project Number: 19E - 00575 Tamara Oldaker Project Location: **DEVON - EDDY CO NM**

Sample ID: TP 19 - 12 9' (H901724-08)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/14/2019	ND	1.99	99.6	2.00	1.52	
Toluene*	<0.050	0.050	05/14/2019	ND	2.09	105	2.00	0.951	
Ethylbenzene*	<0.050	0.050	05/14/2019	ND	2.02	101	2.00	0.924	
Total Xylenes*	<0.150	0.150	05/14/2019	ND	6.09	102	6.00	0.854	
Total BTEX	<0.300	0.300	05/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/14/2019	ND	400	100	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2019	ND	201	100	200	0.780	
DRO >C10-C28*	<10.0	10.0	05/13/2019	ND	188	94.1	200	0.0654	
EXT DRO >C28-C36	<10.0	10.0	05/13/2019	ND					
Surrogate: 1-Chlorooctane	92.5	% 41-142	,						
Surrogate: 1-Chlorooctadecane	93.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celecz D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Company Name:	Devon Energy			BILL	LTO				ANALYSIS REQUEST	
Project Manager:	Amanda Davis			P.O. #:		and been with the state of the second	-	-		
Address: 6488 7	6488 7 Rivers HWY			ny:	Devon Energy		-			
City: Artesia	W	St NM	Zip 88210		Amanda Davis		-			
Phone #: 5	575-748-0176	Fax #:		Address:			21			
Project #: 19E-00575)575	Project Owner:	er: Amanda Davis	City:			502			
Project Name:	Cockburn Fed				Zip:		4			
Project Location:	Eddy County			#			rd 1	0		
Sampler Name:	Jason Crabtree			Fax #:			The	20		
FOR LAB USE ONLY			MATRIX	PRESERV.	SAMPLING		ne	30		
Lab I.D.	Sample I.D.		(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	DATE	TIME	an.	Chloride		
	TP19-01	סַ	G		2019-05-11	10:05	1			
2	TP19-02	IJ	G X	×	2019-05-11	10:15		×		
5	TP19-05	8	ଜ ×	×	2019-05-11	10:25	××			
, c	TP19-06	6	ର ×	×	2019-05-11	10:35		×-		
0	TP19-07	ŋ	G ×	×	2019-05-11	10:45	XX	1.21		
1-6	TP19-08	<u>2</u> თ		×	2019-05-11	10:55	XX	X		
x	TP19-12	o o	~ ×	< >	2019-05-11	11:05	< X FX	2		
							_	2		
 PLEASE NOT LET Labulity and Damages. Cardinals lability and clie analyses. All claims including those for neglence and any other or service. In no event shall Cardinal be liable for incidential or consec affiliates or successors arising out of or related to the performance 	FLEASE MUT LE: Labality and Jamages. Gardinal's liability and client's exclusive remedy for analyses. Al claims including those for negligence and any other cause whatsoever shall be service. In no event shall Cardinal be liable for incidental or consequental damages, including affiliates or successors arising out of or related to the performance of services hereunder by affiliates.	's exclusive remedy for any se whatsoever shall be dee ental damages, including wit f services hereunder by Car	claim arising whether med waived unless m hout limitation, busine dinal. recoardless of w	based in criticat or tort, shall be limited to the amount paid by the cilent for the add in writing and received by Cardinal within 30 days after completion of the ap ses interruptions, loss of use, or loss of profits incurred by cilent, its subsidiaries ses interruptions, loss of use, or loss of profits incurred by cilent, its subsidiaries hether such claim to based inton awy of the above stated rescore or orbanvice.	the amount paid by the client in 30 days after completion of its incurred by client, its subsid	or the the applicable aries.				
Relinquished By:	Thee	Date: <i>1019-05-11</i> Time: 4:00	D _c	445		Phone Resul Fax Result: REMARKS:	7 00	Yes I No Yes No	Add'l Phone #: Add'l Fax #:	
Relinquished By: Demais Williams	S parts	Date: 2019 05 13 Time:	Received By:	Nichaten						
Delivered By: (Circle One)	Circle One)		Sample Condition	CH	DBY:			Ru	Rush!!	
Sampler - UPS - Bus FORM-006 R 2.0	us - Other: 20	O.lec	H97 Aves Aves	linitials)	s)			-		

Page 139 of 160

ЦD

oratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

D

U

Page 11 of 11

Received by OCD: 12/7/2020 2:04:52 PM

. Released to Imaging: 4/13/2021 11:37:25 AM

Page 1 of 0

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: D	Devon Energy	Client Sample ID: SS01-3'				
Project: C	Cockburn G Fed 2			Collection Date: 5/9/2019 3:00:00 PM		
Lab ID: 19	905519-001	Matrix:	MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM		

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	210	10	mg/Kg	1	5/10/2019 11:09:01 AM
Motor Oil Range Organics (MRO)	170	50	mg/Kg	1	5/10/2019 11:09:01 AM
Surr: DNOP	88.9	70-130	%Rec	1	5/10/2019 11:09:01 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 9:59:04 AM
Surr: BFB	97.7	73.8-119	%Rec	1	5/10/2019 9:59:04 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 9:59:04 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 9:59:04 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 9:59:04 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 9:59:04 AM
Surr: 4-Bromofluorobenzene	94.8	80-120	%Rec	1	5/10/2019 9:59:04 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	860	30	mg/Kg	20	5/10/2019 12:47:53 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Control Control Control		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 2 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy	Client Sample ID: SS02-2'
Project: Cockburn G Fed 2	Collection Date: 5/9/2019 3:05:00 PM
Lab ID: 1905519-002	Matrix: MEOH (SOIL) Received Date: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	89	9.5	mg/Kg	1	5/10/2019 11:33:14 AM
Motor Oil Range Organics (MRO)	81	48	mg/Kg	1	5/10/2019 11:33:14 AM
Surr: DNOP	87.3	70-130	%Rec	1	5/10/2019 11:33:14 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 10:22:34 AM
Surr: BFB	97.6	73.8-119	%Rec	1	5/10/2019 10:22:34 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 10:22:34 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 10:22:34 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 10:22:34 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 10:22:34 AM
Surr: 4-Bromofluorobenzene	94.4	80-120	%Rec	1	5/10/2019 10:22:34 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	410	30	mg/Kg	20	5/10/2019 1:00:17 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded	NAB	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 3 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy	Client Sample ID: SS03-8'
Project: Cockburn G Fed 2	Collection Date: 5/9/2019 3:10:00 PM
Lab ID: 1905519-003	Matrix: MEOH (SOIL) Received Date: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	5/10/2019 12:21:35 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/10/2019 12:21:35 PM
Surr: DNOP	91.9	70-130	%Rec	1	5/10/2019 12:21:35 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 10:46:00 AM
Surr: BFB	96.6	73.8-119	%Rec	1	5/10/2019 10:46:00 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 10:46:00 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 10:46:00 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 10:46:00 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 10:46:00 AM
Surr: 4-Bromofluorobenzene	93.9	80-120	%Rec	1	5/10/2019 10:46:00 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	62	30	mg/Kg	20	5/10/2019 1:37:31 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 4 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy		Client Sample ID: SS04-8'			
Project:	Cockburn G Fed 2		Collection Date: 5/9/2019 3:15:00 PM		
Lab ID:	1905519-004	Matrix: MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM		

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	5/10/2019 12:45:46 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	5/10/2019 12:45:46 PM
Surr: DNOP	92.4	70-130	%Rec	1	5/10/2019 12:45:46 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:09:20 AM
Surr: BFB	101	73.8-119	%Rec	1	5/10/2019 11:09:20 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:09:20 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:09:20 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:09:20 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:09:20 AM
Surr: 4-Bromofluorobenzene	98.6	80-120	%Rec	1	5/10/2019 11:09:20 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	95	30	mg/Kg	20	5/10/2019 1:49:56 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded ELININ	JÅ	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 5 of 0

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Ene	rgy	Client Sample ID: SS05-5'			
Project: Cockburn	G Fed 2	Collection Date: 5/9/2019 3:20:00 PM			
Lab ID: 1905519-0	05 Matrix: MEOH (SO	DIL) Received Date: 5/10/2019 8:50:00 AM			

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	160	9.3	mg/Kg	1	5/10/2019 1:10:06 PM
Motor Oil Range Organics (MRO)	130	47	mg/Kg	1	5/10/2019 1:10:06 PM
Surr: DNOP	92.1	70-130	%Rec	1	5/10/2019 1:10:06 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:32:57 AM
Surr: BFB	98.3	73.8-119	%Rec	1	5/10/2019 11:32:57 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:32:57 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:32:57 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:32:57 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:32:57 AM
Surr: 4-Bromofluorobenzene	96.0	80-120	%Rec	1	5/10/2019 11:32:57 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	740	30	mg/Kg	20	5/10/2019 2:02:20 PM

Qualifiers:	* D	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix PRE FL (IVI)		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	Н	Holding times for preparation or analysis exceeded		Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 6 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devo	n Energy	Client Sample ID: SS06-3'			
Project: Cock	burn G Fed 2			Collection Da	ate: 5/9/2019 3:25:00 PM
Lab ID: 1905	519-006 N	Matrix:	MEOH (SOIL)	Received Da	ate: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	150	9.5	mg/Kg	1	5/10/2019 1:34:19 PM
Motor Oil Range Organics (MRO)	130	48	mg/Kg	1	5/10/2019 1:34:19 PM
Surr: DNOP	92.0	70-130	%Rec	1	5/10/2019 1:34:19 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:56:32 AM
Surr: BFB	96.3	73.8-119	%Rec	1	5/10/2019 11:56:32 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:56:32 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:56:32 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:56:32 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:56:32 AM
Surr: 4-Bromofluorobenzene	93.8	80-120	%Rec	1	5/10/2019 11:56:32 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	640	30	mg/Kg	20	5/10/2019 2:14:45 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 7 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon En	ergy	Client Sample ID: SS07-3'			
Project: Cockburn	G Fed 2	Collection Date: 5/9/2019 3:30:00 PM			
Lab ID: 1905519-0	007 Matrix: MEO	OH (SOIL) Received Date: 5/10/2019 8:50:00 AM			

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: TOM
Diesel Range Organics (DRO)	260	10	mg/Kg	1	5/10/2019 1:58:37 PM
Motor Oil Range Organics (MRO)	210	50	mg/Kg	1	5/10/2019 1:58:37 PM
Surr: DNOP	96.2	70-130	%Rec	1	5/10/2019 1:58:37 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 12:20:00 PM
Surr: BFB	97.7	73.8-119	%Rec	1	5/10/2019 12:20:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 12:20:00 PM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 12:20:00 PM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 12:20:00 PM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 12:20:00 PM
Surr: 4-Bromofluorobenzene	94.7	80-120	%Rec	1	5/10/2019 12:20:00 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	610	30	mg/Kg	20	5/10/2019 2:27:09 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix PREELIVIN Holding times for preparation or analysis exceeded		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 8 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Devon Energy		Client Sample ID: SS08-3'			
Project:	Cockburn G Fed 2			Collection Date: 5/9/2019 3:45:00 PM		
Lab ID:	1905519-008	Matrix:	MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM		

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	200	9.6	mg/Kg	1	5/10/2019 2:01:12 PM
Motor Oil Range Organics (MRO)	170	48	mg/Kg	1	5/10/2019 2:01:12 PM
Surr: DNOP	110	70-130	%Rec	1	5/10/2019 2:01:12 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 12:43:28 PM
Surr: BFB	97.6	73.8-119	%Rec	1	5/10/2019 12:43:28 PM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 12:43:28 PM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 12:43:28 PM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 12:43:28 PM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 12:43:28 PM
Surr: 4-Bromofluorobenzene	95.4	80-120	%Rec	1	5/10/2019 12:43:28 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	830	30	mg/Kg	20	5/10/2019 2:39:34 PM

Qualifiers:	* D н	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded	NA^{B}	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND PQL S	Not Detected at the Reporting Limit Practical Quanitative Limit % Recovery outside of range due to dilution or matrix	P RL	Sample pH Not In Range Reporting Limit

Page 9 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: De	evon Energy	Client Sample ID: SS09-3'			
Project: Co	ockburn G Fed 2			Collection D	ate: 5/9/2019 3:40:00 PM
Lab ID: 19	005519-009	Matrix:	MEOH (SOIL)	Received D	ate: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: TOM
Diesel Range Organics (DRO)	180	9.8	mg/Kg	1	5/10/2019 1:39:07 PM
Motor Oil Range Organics (MRO)	140	49	mg/Kg	1	5/10/2019 1:39:07 PM
Surr: DNOP	109	70-130	%Rec	1	5/10/2019 1:39:07 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 10:38:53 AM
Surr: BFB	89.1	73.8-119	%Rec	1	5/10/2019 10:38:53 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 10:38:53 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 10:38:53 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 10:38:53 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 10:38:53 AM
Surr: 4-Bromofluorobenzene	92.3	80-120	%Rec	1	5/10/2019 10:38:53 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	570	30	mg/Kg	20	5/10/2019 2:51:58 PM

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 10 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy	Client Sample ID: SS10-8'				
Project: Cockburn G Fed 2	Collection Date: 5/9/2019 3:45:00 PM				
Lab ID: 1905519-010	Matrix: MEOH (SOIL) Received Date: 5/10/2019 8:50:00 AM				

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	5/10/2019 1:17:08 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	5/10/2019 1:17:08 PM
Surr: DNOP	104	70-130	%Rec	1	5/10/2019 1:17:08 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:01:44 AM
Surr: BFB	87.3	73.8-119	%Rec	1	5/10/2019 11:01:44 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:01:44 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:01:44 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:01:44 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:01:44 AM
Surr: 4-Bromofluorobenzene	88.3	80-120	%Rec	1	5/10/2019 11:01:44 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	38	30	mg/Kg	20	5/10/2019 3:04:22 PM

Qualifiers:	* D	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded ELINII		Analyte detected in the associated Method Blank Value above quantitation range
	л ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 11 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT	Devon Energy		Client Sample ID: SS11-8'			
Project:	Cockburn G Fed 2			Collection Date: 5/9/2019 3:50:00 PM		
Lab ID:	1905519-011	Matrix:	MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM		

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	5/10/2019 12:55:04 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	5/10/2019 12:55:04 PM
Surr: DNOP	105	70-130	%Rec	1	5/10/2019 12:55:04 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:24:30 AM
Surr: BFB	87.0	73.8-119	%Rec	1	5/10/2019 11:24:30 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:24:30 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:24:30 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:24:30 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:24:30 AM
Surr: 4-Bromofluorobenzene	87.1	80-120	%Rec	1	5/10/2019 11:24:30 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	37	30	mg/Kg	20	5/10/2019 3:16:46 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded ELINII	NAE	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits	
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	
	PQL	Practical Quanitative Limit	RL	Reporting Limit	
	S	% Recovery outside of range due to dilution or matrix			

. Released to Imaging: 4/13/2021 11:37:25 AM

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy	Client Sample ID: SS12-8'
Project: Cockburn G Fed 2	Collection Date: 5/9/2019 3:55:00 PM
Lab ID: 1905519-012	Matrix: MEOH (SOIL) Received Date: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	ial Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	ORGANICS				Analyst: TOM
Diesel Range Organics (DRO)	56	9.7	mg/Kg	1	5/10/2019 12:33:07 PM
Motor Oil Range Organics (MRO)	60	48	mg/Kg	1	5/10/2019 12:33:07 PM
Surr: DNOP	98.5	70-130	%Rec	1	5/10/2019 12:33:07 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 11:47:14 AM
Surr: BFB	87.2	73.8-119	%Rec	1	5/10/2019 11:47:14 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 11:47:14 AM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 11:47:14 AM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 11:47:14 AM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 11:47:14 AM
Surr: 4-Bromofluorobenzene	88.9	80-120	%Rec	1	5/10/2019 11:47:14 AM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	490	30	mg/Kg	20	5/10/2019 3:29:11 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	* D н	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded	NA^{B}	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND PQL S	Not Detected at the Reporting Limit Practical Quanitative Limit % Recovery outside of range due to dilution or matrix	P RL	Sample pH Not In Range Reporting Limit

Page 12 of 0

.

Page 13 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy	Client Sample ID: SS13-8'				
Project: Cockburn G Fed 2	Collection Date: 5/9/2019 4:00:00 PM				
Lab ID: 1905519-013	Matrix: MEOH (SOIL) Received Date: 5/10/2019 8:50:00 AM				

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	5/10/2019 12:11:04 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	5/10/2019 12:11:04 PM
Surr: DNOP	102	70-130	%Rec	1	5/10/2019 12:11:04 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 12:09:52 PM
Surr: BFB	90.0	73.8-119	%Rec	1	5/10/2019 12:09:52 PM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 12:09:52 PM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 12:09:52 PM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 12:09:52 PM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 12:09:52 PM
Surr: 4-Bromofluorobenzene	90.7	80-120	%Rec	1	5/10/2019 12:09:52 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	210	60	mg/Kg	20	5/10/2019 12:00:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	* D н	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded	NA^{B}	Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND PQL S	Not Detected at the Reporting Limit Practical Quanitative Limit % Recovery outside of range due to dilution or matrix	P RL	Sample pH Not In Range Reporting Limit

. Released to Imaging: 4/13/2021 11:37:25 AM

Page 14 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Devon Energy		Client Sample ID: SS14-2'			
Project:	Cockburn G Fed 2			Collection Date: 5/9/2019 4:05:00 PM		
Lab ID:	1905519-014	Matrix:	MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM		

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	EPA METHOD 8015M/D: DIESEL RANGE ORGANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	5/10/2019 11:49:11 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	5/10/2019 11:49:11 AM
Surr: DNOP	100	70-130	%Rec	1	5/10/2019 11:49:11 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 12:32:43 PM
Surr: BFB	87.5	73.8-119	%Rec	1	5/10/2019 12:32:43 PM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 12:32:43 PM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 12:32:43 PM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 12:32:43 PM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 12:32:43 PM
Surr: 4-Bromofluorobenzene	86.8	80-120	%Rec	1	5/10/2019 12:32:43 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	71	60	mg/Kg	20	5/10/2019 12:00:00 PM

Qualifiers:	* D	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix PREFILININ Holding times for preparation or analysis exceeded ELININ		Analyte detected in the associated Method Blank Value above quantitation range
	Н	Holding times for preparation or analysis exceeded		Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

Page 15 of 0

.

Analytical Report Lab Order 1905519

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy		Client Sample ID: SS15-8'		
Project:	Cockburn G Fed 2			Collection Date: 5/9/2019 4:10:00 PM
Lab ID:	1905519-015	Matrix:	MEOH (SOIL)	Received Date: 5/10/2019 8:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: TOM
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	5/10/2019 11:27:08 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	5/10/2019 11:27:08 AM
Surr: DNOP	105	70-130	%Rec	1	5/10/2019 11:27:08 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	5/10/2019 12:55:27 PM
Surr: BFB	87.1	73.8-119	%Rec	1	5/10/2019 12:55:27 PM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.025	mg/Kg	1	5/10/2019 12:55:27 PM
Toluene	ND	0.050	mg/Kg	1	5/10/2019 12:55:27 PM
Ethylbenzene	ND	0.050	mg/Kg	1	5/10/2019 12:55:27 PM
Xylenes, Total	ND	0.10	mg/Kg	1	5/10/2019 12:55:27 PM
Surr: 4-Bromofluorobenzene	86.5	80-120	%Rec	1	5/10/2019 12:55:27 PM
EPA METHOD 300.0: ANIONS					Analyst: MRA
Chloride	150	60	mg/Kg	20	5/10/2019 12:00:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	* D H	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded		Analyte detected in the associated Method Blank Value above quantitation range Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Limit
	S	% Recovery outside of range due to dilution or matrix		

. Released to Imaging: 4/13/2021 11:37:25 AM

ATTACHMENT 7

Natalie Gordon

From:	Dhugal Hanton <vertexresourcegroupusa@gmail.com></vertexresourcegroupusa@gmail.com>
Sent:	Wednesday, August 26, 2020 5:41 PM
То:	Natalie Gordon
Subject:	Fwd: NAB1908655364: Cockburn Federal #002 - 48-hr Notification of Confirmation
	Sampling

------ Forwarded message -------From: **Dhugal Hanton** <<u>vertexresourcegroupusa@gmail.com</u>> Date: Wed, Aug 26, 2020 at 5:40 PM Subject: NAB1908655364: Cockburn Federal #002 - 48-hr Notification of Confirmation Sampling To: <<u>OCD.Enviro@state.nm.us</u>>, <<u>tom.bynum@dvn.com</u>>, <<u>amanda.davis@dvn.com</u>>, <<u>Lupe.Carrasco@dvn.com</u>>, <<u>wesley.mathews@dvn.com</u>>

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled final confirmatory sampling to be conducted at Cockburn Federal #002 for the release that occurred on February 23, 2019, incident # NAB1908655364 (1RP-5406).

This work will be completed on behalf of Devon Energy Production Company.

On Monday, August 31, 2020 at approximately 8:00 a.m., Monica Peppin of Vertex will be onsite to conduct final confirmatory sampling. She can be reached at 575-361-9880. If you need directions to the site, please do not hesitate to contact her.

If you have any questions or concerns regarding this notification, please give me a call at 505-506-0040.

Thank you, Natalie

Natalie Gordon Project Manager

Vertex Resource Group Ltd. 213 S. Mesa Street Carlsbad, NM 88220

P 575.725.5001 ext 709 C 505.506.0040

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

Natalie Gordon

From:	Dhugal Hanton <vertexresourcegroupusa@gmail.com></vertexresourcegroupusa@gmail.com>
Sent:	Thursday, August 27, 2020 3:46 PM
То:	Natalie Gordon
Subject:	Fwd: NAB1908655364: Cockburn Federal #002 - 48-hr Notification of Confirmation
	Sampling

------ Forwarded message ------From: **Dhugal Hanton** <<u>vertexresourcegroupusa@gmail.com</u>> Date: Thu, Aug 27, 2020 at 3:45 PM Subject: Fwd: NAB1908655364: Cockburn Federal #002 - 48-hr Notification of Confirmation Sampling To: CFO_Spill, BLM_NM <<u>blm_nm_cfo_spill@blm.gov</u>>, Amos, James A <<u>Jamos@blm.gov</u>>, <<u>amanda.davis@dvn.com</u>>, Kelsey <<u>KWade@blm.gov</u>>

------ Forwarded message -------From: **Dhugal Hanton** <<u>vertexresourcegroupusa@gmail.com</u>> Date: Wed, Aug 26, 2020 at 5:40 PM Subject: NAB1908655364: Cockburn Federal #002 - 48-hr Notification of Confirmation Sampling To: <<u>OCD.Enviro@state.nm.us</u>>, <<u>tom.bynum@dvn.com</u>>, <<u>amanda.davis@dvn.com</u>>, <<u>Lupe.Carrasco@dvn.com</u>>, <<u>wesley.mathews@dvn.com</u>>

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled final confirmatory sampling to be conducted at Cockburn Federal #002 for the release that occurred on February 23, 2019, incident # NAB1908655364 (1RP-5406).

This work will be completed on behalf of Devon Energy Production Company.

On Monday, August 31, 2020 at approximately 8:00 a.m., Monica Peppin of Vertex will be onsite to conduct final confirmatory sampling. She can be reached at 575-361-9880. If you need directions to the site, please do not hesitate to contact her.

If you have any questions or concerns regarding this notification, please give me a call at 505-506-0040.

Thank you, Natalie

Natalie Gordon Project Manager

Vertex Resource Group Ltd. 213 S. Mesa Street Carlsbad, NM 88220

P 575.725.5001 ext 709 C 505.506.0040

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

Oil Conservation Division

Page 159 of 160

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

X A scaled site and sampling diagram as described in 19.15.29.11 NMAC

X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

X Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

X Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: LupeCarrasco	Title: Environmental Professional
Signature: Lupe Carrasco	Date:12/7/20
email: Lupe.Carrasco@dvn.com	Telephone: (575) 748-0176
OCD Only	
Received by: Robert Hamlet	Date:4/13/2021
	y of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible
party of compliance with any other federal, state, or local laws and	
Closure Approved by: <u><i>Robert Hamlet</i></u>	Date: <u>4/13/2021</u>
Printed Name: Robert Hamlet	Title: Environmental Specialist - Advanced

District I 1625 N. French Dr., Hobbs, NM 88240	State of New Mexico	CONDITIONS
Phone:(575) 393-6161 Fax:(575) 393-0720 District II	Energy, Minerals and Natural Resources	Action 11447
811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720	Oil Conservation Division	
<u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170	1220 S. St Francis Dr.	
District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462	Santa Fe, NM 87505	
	CONDITIONS OF APPROVAL	

Operator:				OGRID:	Action Number:	Action Type:	
DEVO	N ENERGY PRODUCTION COMPAN	333 West Sheridan Ave.	Oklahoma City, OK73102	6137	11447	C-141	
OCD Reviewer	OCD Reviewer Condition						
rhamlet	manlet We have received your closure report and final C-141 for Incident #NAB1908655364 COCKBURN FEDERAL #002, thank you. This closure is approved.						