SITE INFORMATION

Report Type: Work Plan NRM1930958355 / 1RP-5782													
General Site I	nformation:												
Site:		VGEU 01-02 Flowline Release											
Company:		ConocoPhillips											
	nship and Range	Unit Letter J/K	Sec. 28	T 17S	R 35E								
Lease Numbe	r:	N/A											
County:			Lea										
<mark>GPS:</mark> Surface Owne		State of New Mex	32.803350°		-103.462965°								
Surface Owne Mineral Owne		N/A											
Directions:	1.		eve (NM238/Buck	eve Rd). H	Head east on Buckeye Rd for 2.45 mil								
Silverions.					es. Arrive at location.								
		_											
Release Data:													
Date Released	1:	10/10/2019											
Type Release:		Crude Oil and Pro	duced Water										
Source of Con		Flowline rupture											
Fluid Released		11 bbls crude oil, 362 bbls produced water											
Fluids Recover	red:	5.5 bbls crude oil, 174.5 bbls produced water											
Official Comm	nunication:												
	Marvin Soriwei				Christian M. Llull								
Name:													
	Conoco Phillips - F	RMR			Tetra Tech								
Company:	Conoco Phillips - F 935 N. Eldridge Pl				Tetra Tech 8911 North Capital of Texas Highway								
Company:													
Company: Address:	935 N. Eldridge Pl	κwy.			8911 North Capital of Texas Highway								
Company: Address: City:	935 N. Eldridge Pl 832-486-2730 Houston, Texas 77	κwy.			8911 North Capital of Texas Highway Building 2, Suite 2310								
Company: Address: City: Phone number	935 N. Eldridge Pl 832-486-2730 Houston, Texas 77	κwy.			8911 North Capital of Texas Highway Building 2, Suite 2310 Austin, Texas								
Name: Company: Address: City: Phone number Fax: Email:	935 N. Eldridge Pl 832-486-2730 Houston, Texas 77	xwy. 7079			8911 North Capital of Texas Highway Building 2, Suite 2310 Austin, Texas								

Site Characterization	
Shallowest Depth to Groundwater:	80' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa lake:	Yes
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water well:	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	Low
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

Recommended I	Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides					
10 mg/kg	50 mg/kg	-	100 mg/kg	600 mg/kg					
	55			J 10 J 3 J					

February 2, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips VGEU 01-02 Flowline Release Unit Letter J/K, Section 28, Township 17 South, Range 35 East Lea County, New Mexico 1RP-5782 Incident ID nRM1930958355

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from a flowline associated with the Vacuum Glorietta East Unit (VGEU) 01-02 well. The release site footprint is located in Public Land Survey System (PLSS) Unit Letters J and K, Section 28, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.803350°, -103.462965°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report (Appendix A), the release was discovered on October 10, 2019. The C-141 mistakenly identifies the Site as "VGEU 02-01;" when in fact, the release occurred from a ruptured flowline associated with the VGEU 01-02 well (located in Section 28), API # 30-025-20719. As documented on the C-141 form, a flowline rupture led to the release of approximately 11 barrels (bbls) of oil and 362 bbls of produced water. During the initial response, 5.5 bbls of oil and 174.5 bbls of produced water were recovered. The release notification was received by the NMOCD on October 16, 2019 and subsequently assigned the District Remediation Permit (RP) number 1RP-5782 and the Incident ID nRM1930958355.

SITE CHARACTERIZATION

A site characterization was performed and per 19.15.29.12 NMAC, no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances and the Site is in a low karst potential area. The Site is within a New Mexico oil and gas production area. However, a portion of the release is located within a New Mexico Office of State Engineer water body (lakebed) and a possible playa lake.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one water well within $\frac{1}{2}$ mile (800 meters) of the Site. The well has a depth to groundwater of 80 feet below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total

ConocoPhillips

petroleum hydrocarbons (TPH), and chlorides in soil. Based on the Site's proximity to a water body/playa lake, the RRALs for the Site are as follows:

CONSTITUENT	RRAL
Chloride	600 mg/kg
TPH	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE AND ASSESSMENT ACTIVITIES

According to information provided by COP, the release extent was identified as an area extending from the aboveground flowline approximately 800 feet southeast of the VGEU 01-02 well. Fluids released from the steel surface flowline ran in a pasture area from the release origination point toward the southeast for approximately 265 feet (ft) to a lease road, then continued along the lease road to the northeast for approximately 240 ft toward another well pad (API # 30-025-33710) (Figure 3). The released fluids then pooled southwest of the well pad and then continued on approximately 200 ft south in a pasture area. The entire release area covers approximately 30,000 square ft.

Per 19.15.29.8 B. (4) NMAC, the responsible party may commence remediation immediately after discovery of a release. The release footprint was fenced to limit access to the site as necessary to protect human health and the environment. COP initiated remediation activities in late 2019. During remediation, the visibly impacted soils within the release extent were excavated to 0.5 feet below ground surface (bgs). Following initial response remediation activities, COP personnel collected soil samples from twenty-four (24) locations on November 1 through 4, 2019 within the excavated area. These soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000CI-B. Sample locations are shown in Figure 3.

Analytical results associated with all twenty-four (24) sample locations exceed the reclamation concentration (0-4 ft bgs) of 600 mg/kg chloride. Analytical results from the initial assessment are summarized in Table 1. The laboratory analytical report is included in Appendix C. After the initial response remediation activities, further remediation efforts were halted to assess soils both vertically and horizontally for potential environmental impacts.

ADDITIONAL SITE ASSESSMENT

Tetra Tech personnel were onsite on March 25, 2020 to conduct soil sampling to achieve horizontal and vertical delineation of the release extent. A total of ten (10) borings (BH-1 through BH-10) were installed using an air rotary drilling rig. Four borings, BH-1 through BH-4, were installed within the preexisting excavated area at depths ranging from 7 ft (BH-4) to 45 ft (BH-1) bgs to achieve vertical delineation. The remaining six borings were installed along the perimeter of the release extent at depths ranging from 3 ft (BH-10) and 5 ft (BH-5 through BH-9) bgs to achieve horizontal delineation. Boring termination depths were determined by field screening results as well as the presence of caprock, which was encountered in seven of the ten borings (BH-1, BH-2, BH-3, BH-4, BH-6, BH-9, and BH-10) at depths ranging from 3 ft to 7 ft bgs. Boring logs, included as Appendix D, present soil descriptions, sample depths, and field screening data from the March 2020 assessment activities.

A total of thirty-eight (38) samples were collected from the ten borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Figure 4 depicts the release extent, excavated area and the March 2020 soil boring locations. Photographic documentation of the additional site assessment is included in Appendix E.

Release Characterization and Remediation Work Plan February 2, 2021 Page 4 of 153

SUMMARY OF SAMPLING RESULTS

Results from the March 2020 soil sampling event are summarized in Table 2. The analytical results associated with borings BH-2 and BH-3 exceeded the Site reclamation/remediation RRAL for TPH (100 mg/kg) down to 4 ft bgs. The analytical results associated with boring BH-1 exceeded the Site RRAL for chloride (600 mg/kg) down to 30 ft bgs. The analytical results associated with borings BH-2, BH-3, and BH-4 exceeded the RRAL for chloride down to 4 ft bgs. The analytical results associated with all samples analyzed were below the BTEX Site RRAL of 50 mg/kg. There were no exceedances of Site RRALs in any of the perimeter borings. Therefore, both horizontal and vertical delineation was achieved during the March 2020 soil assessment activities.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to excavate further and remove the remaining impacted material as depicted in Figure 5. Screening samples will be collected during the excavation process to determine if the remediation footprint for the site will be modified based on field conditions. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 4 ft below surface or until a representative sample from the walls and bottom of the excavation is below the RRALs. The caprock in the area will present significant challenges during the excavation. The area of the release extent that runs along the buried line within the release extent will be hand-dug to a depth of 4 ft or the maximum extent practicable and heavy machinery will come no more than 3 ft from any pressurized lines.

Excavated soils will be transported offsite and disposed of an NMOCD approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 6,420 cubic yards.

VARIANCE REQUEST

In accordance with 19.15.29.14(A) NMAC, COP requests a variance for the remediation of the release area should excavation floor concentrations below 4 ft bgs exceed 600 mg/kg for chlorides or 100 mg/kg for TPH. A 20-mil reinforced poly liner will be installed and properly seated throughout the base of the excavation (at 4 feet below surrounding grade) in any areas which contain constituent concentrations exceeding the proposed RRALs. The existing caprock in the area largely limits most downward migration. The liner will provide an engineering control that will serve as a barrier and further inhibit the downward migration of residual constituents.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 4. Eighty-six (86) confirmation floor samples and sixty-two (62) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 43,330 square ft.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chlorides (USEPA Method 300.0). Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per Release Characterization and Remediation Work Plan February 2, 2021

ConocoPhillips

acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 90 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

50

Greg W. Pope, P.G. Program Manager

cc:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Release Characterization and Remediation Work Plan February 2, 2021

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

- Figure 1 Overview Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Initial Site Assessment Map
- Figure 4 Proposed Remediation Extent
- Figure 5 Additional Assessment Map
- Figure 6 Alternative Confirmation Sampling Plan

Tables:

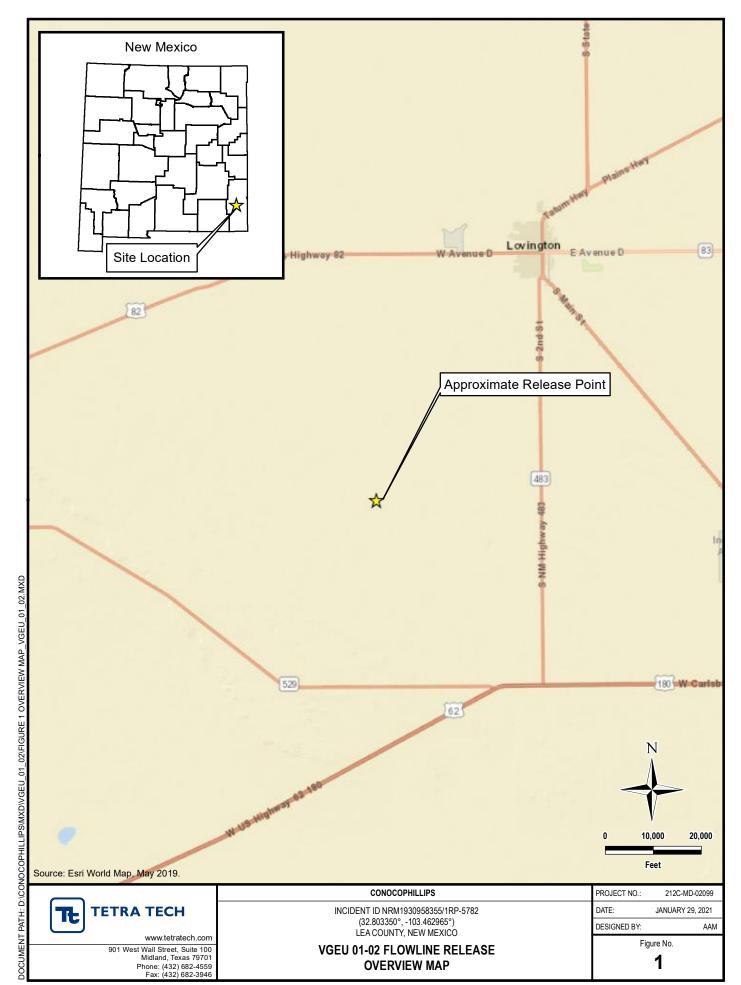
Table 1 – Summary of Analytical Results – Initial Soil Assessment

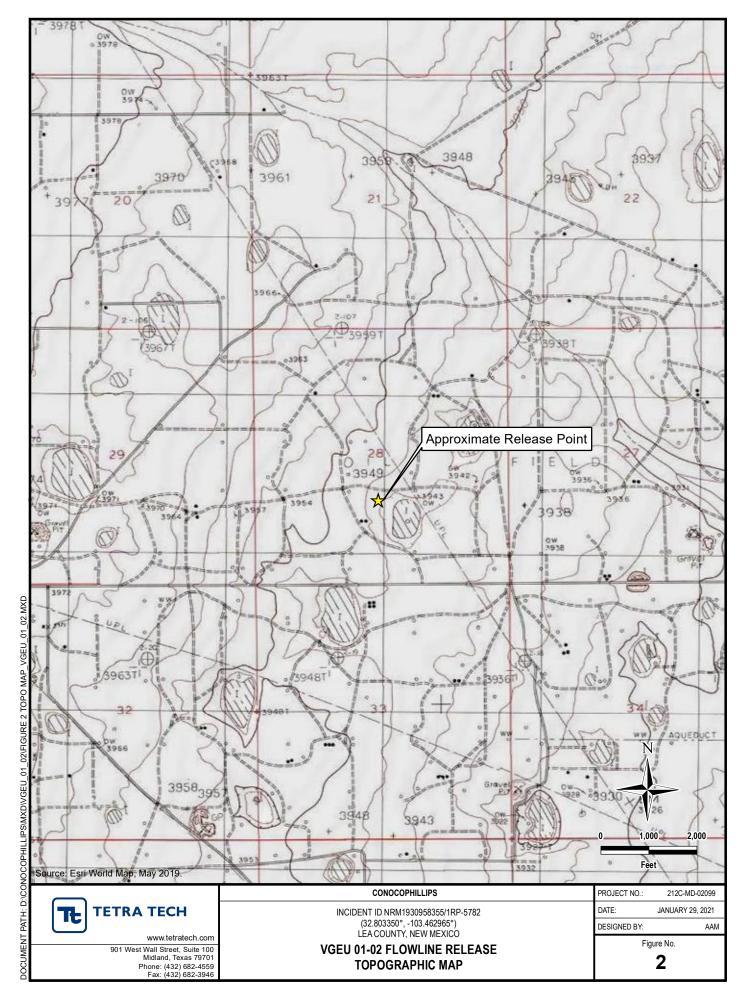
Table 2 – Summary of Analytical Results – Additional Soil Assessment

Appendices:

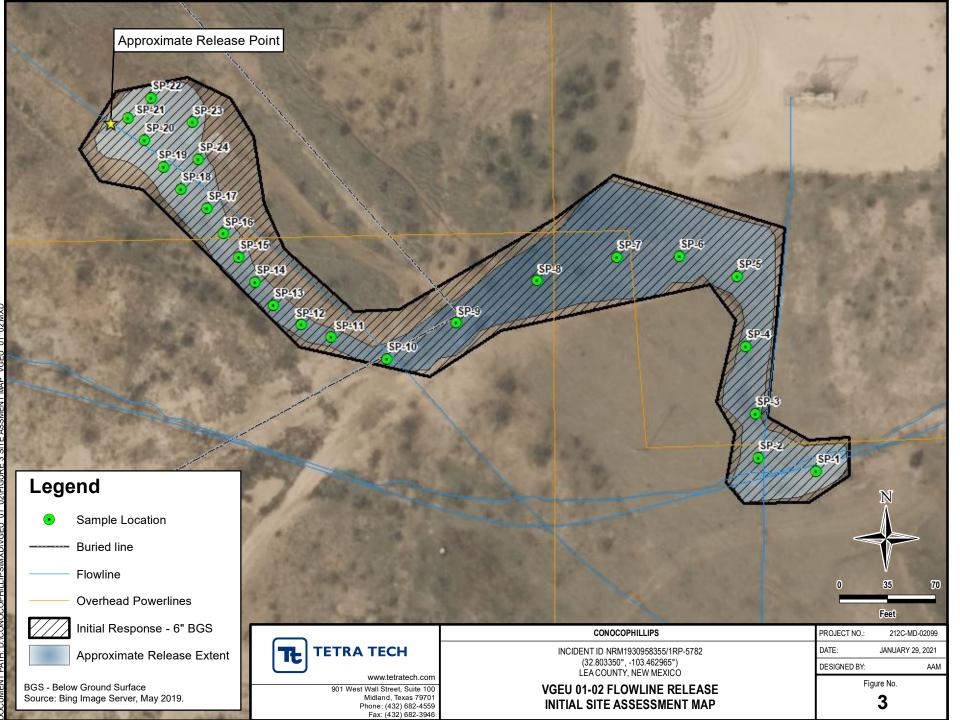
Appendix A – C-141 Form

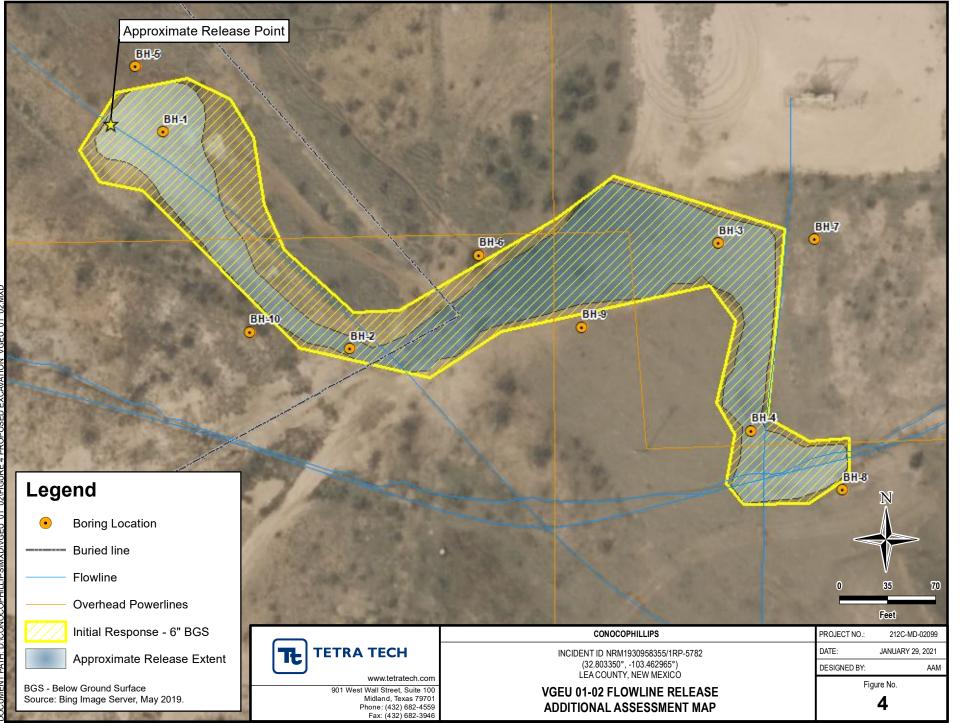
Appendix B – Site Characterization Data


Appendix C – Laboratory Analytical Data

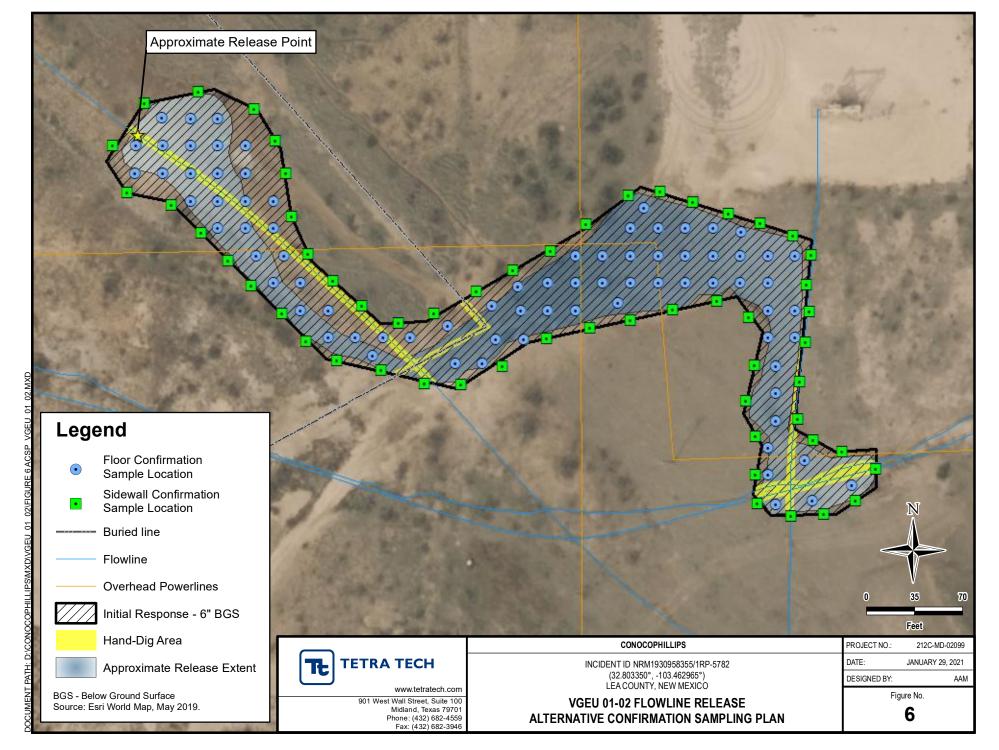

Appendix D – Boring Logs

Appendix E – Photographic Documentation


Appendix F – NMSLO Seed Mixture Details


FIGURES





Released to Imaging: 6/10/2021 9:19:59 AM

TABLES

TABLE 1

SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - 1RP-5782 CONOCOPHILLIPS VGEU 01-02 FLOWLINE RELEASE LEA COUNTY, NM

Sample ID	Sample Date	Sample Interval	Chloride	1
		ft bgs	mg/kg	Q
SP-1	11/04/19	0.5	8720	
SP-2	11/04/19	0.5	8800	
SP-3	11/04/19	0.5	7330	
SP-4	11/04/19	0.5	10000	
SP-5	11/04/19	0.5	32800	
SP-6	11/04/19	0.5	16200	
SP-7	11/04/19	0.5	640	
SP-8	11/04/19	0.5	10200	
SP-9	11/04/19	0.5	11600	
SP-10	11/04/19	0.5	4640	
SP-11	11/01/19	0.5	1600	
SP-12	11/01/19	0.5	4000	
SP-13	11/01/19	0.5	12100	
SP-14	11/01/19	0.5	30800	
SP-15	11/01/19	0.5	13400	
SP-16	11/01/19	0.5	25600	
SP-17	11/01/19	0.5	21000	
SP-18	11/01/19	0.5	20200	
SP-19	11/01/19	0.5	23000	
SP-20	11/01/19	0.5	18800	QM-07
SP-21	11/01/19	0.5	6240	
SP-22	11/01/19	0.5	21400	
SP-23	11/01/19	0.5	18800	
SP-24	11/01/19	0.5	15400	

NOTES:

ft Feet

1 Method SM45000Cl-B

bgs Below ground surface

mg/kg Milligrams per kilogram

Q Qualifier

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - 1RP-5782 CONOCOPHILLIPS VGEU 01-02 FLOWLINE RELEASE LEA COUNTY, NM

Released to Imaging: 6/10/2021 9:19:59 AM

											BTEX ²									TPH ³			
		Sample Depth Interval	Field Screer	ning Results	Chloride1										Total BTEX	GRO⁴		DRO		ORO		Total TPH	
Sample ID	Sample Date	interval	Chloride	PID	1		Benzene		Toluene		Ethylbenzen	e	Total Xylene	Total Ayleries		C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)	
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
		0-1	11730	1.1	12200		< 0.00112		< 0.00562		< 0.00281		< 0.00731		ND	< 0.112		8.77		15.3		24.1	
		2-3	6860	2.6	6670		< 0.00108		< 0.00538		< 0.00269		< 0.00699		ND	< 0.108		1.92	1	1.29	J	3.21	
		3-4	5410	3.8	7120		< 0.00108		< 0.00541		< 0.00270		< 0.00703		ND	< 0.108		< 4.33		1.16	J	1.16	
		4-5	10530	1.2	-		-		-		-		-		-	-		-		-		-	
		6-7	-	1.4	-		-		-		-		-		-	-		-		-		-	
BH-1	3/25/2020	9-10	-	1.6	-		-		-		-		-		-	-		-		-		-	
511 2	5/25/2020	14-15	6620	1.8	-		-		-		-		-		-	-		-		-		-	
		19-20	5770	2.1	-		-		-		-		-		-	-		-		-		-	
		24-25	4310	2.3	-		-		-		-		-		-	-		-		-		-	
		29-30	3670	1.7	1220		< 0.00108		< 0.00542		< 0.00271		< 0.00705		ND	< 0.108		3.50	J	1.96	J	5.46	
		39-40	718	1.1	-		-		-		-		-		-	-		-		-		-	
		44-45	321	1.2	110		< 0.00105		< 0.00523		< 0.00261		< 0.00680		ND	< 0.105		< 4.18		0.306	J	0.306	
		0-1	1420	2.3	1580		< 0.00111		< 0.00557		< 0.00279		< 0.00725	1	ND	< 0.111		998		1830		2828	
		2-3	1380	4.5	1600		0.00205	J	0.00842	J	0.00535	J	< 0.0296		0.01582	< 0.114		850		1510		2360	
BH-2	3/25/2020	3-4	1170	6.1	1890		< 0.00114		< 0.00570		< 0.00285		< 0.00741		ND	< 0.114		115		187		302	
		4-5	1210	4.1	-		-		-		-		-		-	-		-		-		-	
		19-20	296	1.1	322		< 0.00105		< 0.00524		< 0.00262		< 0.00681		ND	< 0.105		3.99	J	1.59	J	5.58	
	T	0-1	>15000	8.2	22500		< 0.00117	T	< 0.00583	1	0.000641	J	< 0.00758		0.000641	0.0266	J	343		242		585	
		2-3	11340	3.2	19900		< 0.00117		< 0.00587		< 0.00293		< 0.00763		ND	< 0.117		201		124		325	
	0/05/0000	3-4	1710	1.6	14100		< 0.00123		< 0.00613		< 0.00307		< 0.00797		ND	< 0.123		283		184		467	
BH-3	3/25/2020	4-5	1210	1.6	-		-		-		-		-		-	-		-				-	
		6-7	727	1.5	-		-		-		-		-		-	-		-		-		-	
		19-20	220	1.8	108		< 0.00104		< 0.00522		< 0.00261		< 0.00679		ND	< 0.104		< 4.18		< 4.18		ND	
		0-1	2950	1.9	2920		< 0.00113	1	< 0.00565	1	< 0.00282		< 0.00734		ND	< 0.113	1	5.88		5.32		11.2	
		2-3	2460	2.1	2730		< 0.00112		< 0.00558		< 0.00279		< 0.00726		ND	< 0.112		3.81	J	4.48		8.29	
BH-4	3/25/2020	3-4	1560	1.1	1730	1	< 0.00111		< 0.00557		< 0.00279		< 0.00725		ND	0.0346	ВJ	8.09		6.13		14.3	
		4-5	1210	1.1	-		-		-		-		-		-	-		-		-		-	
		6-7	489	1.2	23.8		< 0.00105		< 0.00523		< 0.00262		< 0.00680		ND	0.0239	ΒJ	7.23		4.09	J	11.3	
	1	0-1	98.1	1.2	17.1	В	< 0.00123	1	< 0.00613		< 0.00306		< 0.00797		ND	0.0501	ВJ	13.2		19.9		33.2	
		2-3	106	0.9	25.6	В	< 0.00123		< 0.00614		< 0.00307		< 0.00798		ND	0.0647	BJ	8.00	J3	17.8	-	25.9	
BH-5	3/25/2020	3-4	121	0.9	25.7	В	< 0.00125	1	< 0.00623		< 0.00312		< 0.00810		ND	0.0437	BJ	4.61	1	8.65	+	13.3	
		4-5	138	0.8	30.2	1	< 0.00107	1	< 0.00536		< 0.00268		< 0.00696		ND	0.104	ΒJ	2.52	1	4.07	J	6.69	
		0-1	177	0.4	37.5	1	< 0.00107	1	< 0.00536		< 0.00268		< 0.00697	1	ND	0.0404	ВJ	5.66		6.94		12.6	
		2-3	184	0.3	10.3	ВJ	< 0.00108	\mathbf{t}	< 0.00540		< 0.00270		< 0.00703		ND	0.0265	BJ	4.77	+	4.43		9.23	
BH-6	3/25/2020	3-4	124	0.9	7.52	ВJ			< 0.00533		< 0.00266		< 0.00693		ND	< 0.107	1	3.15	J	2.16	ВJ	5.31	
		4-5	117	1.1	-		-	1		1				\mathbf{h}		-	1	_				-	

TABLE 2 SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT - 1RP-5782 CONOCOPHILLIPS VGEU 01-02 FLOWLINE RELEASE LEA COUNTY, NM

											BTEX ²									rph ³		
Sample ID	Sample Date	Sample Depth Interval	Field Screen	ing Results	Chloride1		Benzene		Toluene		Ethvibenzen		Total Xylenes		Total BTEX	GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Delizene		Toluelle		Luiyibelizeli	-	Total Aylenes	5	TOTALDIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	206	1.2	62.6		< 0.00114		< 0.00568		< 0.00284		< 0.00739		ND	0.246	В	18.1		38.5		56.8
BH-7	3/25/2020	2-3	193	1.4	45.4		< 0.00114		< 0.00571		< 0.00286		< 0.00743		ND	0.0599	ΒJ	15.0		24.9		40.0
B11-7	3/23/2020	3-4	184	1.2	152		< 0.00114		< 0.00568		< 0.00284		< 0.00738		ND	0.0369	ΒJ	6.35		12.5		18.9
		4-5	208	1.3	260		< 0.00114		< 0.00571		< 0.00286		< 0.00742		ND	0.0248	J	2.52	J	4.51	J	7.05
	1	0-1	270	1.1	114	1	< 0.00115		< 0.00576	1	< 0.00288		< 0.00749		ND	0.0316	ВJ	5.08		5.50		10.6
		2-3	262	0.9	295		< 0.00115		< 0.00573		< 0.00287		< 0.00745		ND	0.0315	BI	6.67		7.58		14.3
BH-8	3/25/2020	3-4	257	1.0	69.9		< 0.00115		< 0.00579		< 0.00289		< 0.00752		ND	0.0326	BJ	15.2	-	27.9		43.1
		4-5	156	1.3	25.2		< 0.00109		< 0.00546		< 0.00273		< 0.00709		ND	0.0679	BJ	3.55	J	6.84		10.5
			<u>.</u>			-																
		0-1	110	1.1	9.92	ΒJ	< 0.00111		< 0.00556		< 0.00278		< 0.00723		ND	0.0534	ΒJ	15.5		30.8		46.4
BH-9	3/25/2020	2-3	146	1.1	7.66	ВJ	< 0.00105		< 0.00523		< 0.00261		< 0.00679		ND	0.0265	ВJ	4.21		6.41		10.6
611-5	5/25/2020	3-4	137	0.9	7.52	ΒJ	< 0.00104		< 0.00522		< 0.00261		< 0.00679		ND	0.0306	ΒJ	3.83	J	3.55	J	7.41
		4-5	123	0.8	7.88	ΒJ	< 0.00122		< 0.00612		< 0.00306		< 0.00795		ND	< 0.122		3.54	J	0.688	J	4.23
		0-1	320	1.1	39.6		< 0.00107		< 0.00535	1	< 0.00267		< 0.00695		ND	0.0461	J	7.41		4.16	J	11.6
BH-10	3/25/2020	2-3	350	1.7	7.20	ВJ	< 0.00108		< 0.00541		< 0.00271		< 0.00704		ND	0.0258	J	3.84	J	1.35	J	5.22

NOTES:

Released to Imaging: 6/10/2021 9:19:59 AM

ft. Feet

- bgs Below ground surface
- ppm Parts per million
- mg/kg Milligrams per kilogram
- HOLD Hold on sample analysis

TPH Total Petroleum Hydrocarbons

- GRO Gasoline range organics
- DRO Diesel range organics
- ORO Oil range organics
- ND Non-detect

- Bold and italicized values indicate exceedance of proposed RRALs
- 1 EPA Method 300.0
- 2 EPA Method 8260B
- 3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.

•

APPENDIX A C-141 Forms

Received by OCD: 10/16/2019 12:23:06 PM Received by OCD: 2/2/2021 3:58:40 PM

> District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM1930958355
District RP	1RP-5782
Facility ID	fGRL0928155860
Application ID	pRM1930959194

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817
Contact Name Gustavo Fejervary	Contact Telephone 432/210-7037
Contact email g.fejervary@cop.com	Incident # (assigned by OCD)
Contact mailing address 5735 SW 7000 Andrews,	TX 79714

Location of Release Source

Latitude 32.80340

Longitude -103.46305 (NAD 83 in decimal degrees to 5 decimal places)

Site Name VGEU 02-01 Flowline leak	Site Type flowline
Date Release Discovered 10/10/19	API# (if applicable)

Unit Letter	Section	Township	Range	County
K&J	28	17S	35E	Lea

Surface Owner: 🔽 State 🗌 Federal 🔲 Tribal 🛄 Private (*Name:*______

Nature and Volume of Release

Material(s) Refeased (Select all that apply and attach calculations or specific justification for the volumes provided below)

🗹 Crude Oil	Volume Released (bbls) 11	Volume Recovered (bbls) 5.5
Produced Water	Volume Released (bbls) 362	Volume Recovered (bbls) 174.5
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release Flowline rupture

Page 20 of 153

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	it was more than 25 bbls.
Yes 🗌 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Yes, email sent to Bradford Billings, District 1 spill reporting email address and Dylan Rose-Coss

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

I The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Gustavo Fejervary	Title: Environmental Coordinator
Signature: email:g.fejervary@cop.com	Date: <u>10/16/19</u> Telephone: <u>432/210-7037</u>
OCD Only Received by: Ramona Marcus	Date: 11/5/2019

Received by OCD: 2/2/2021 3:58:40 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

Application ID

Incident ID

District RP Facility ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

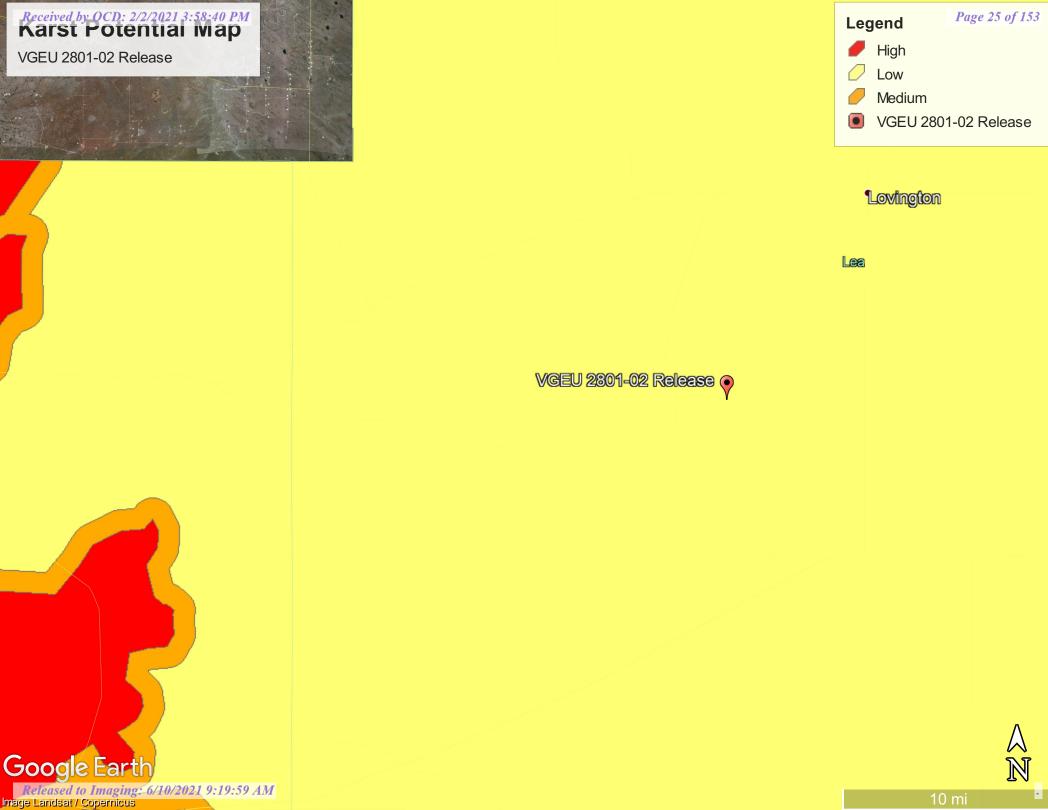
Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 2/2/2021 3:58:40 PM Form C-141 State of New Mexic			Page 22 of 153
		Incident ID	
Page 4 Oil Conservation Divis	sion	District RP	
		Facility ID	
		Application ID	
I hereby certify that the information given above is true and complete regulations all operators are required to report and/or file certain relea public health or the environment. The acceptance of a C-141 report by failed to adequately investigate and remediate contamination that pose addition, OCD acceptance of a C-141 report does not relieve the opera and/or regulations. Printed Name: Signature:	se notifications and perform co y the OCD does not relieve the e a threat to groundwater, surfa ator of responsibility for comp Title: Date:	orrective actions for rele e operator of liability sh- ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only			
Received by:	Date:		

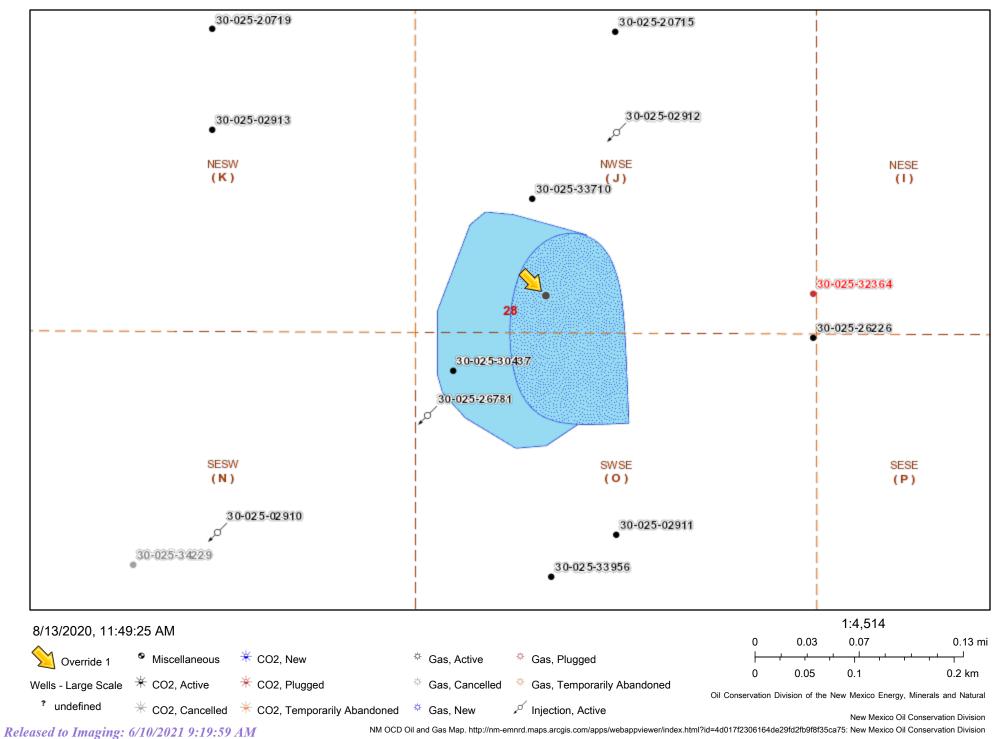
Received by OCD: 2/2/2021 3:58:40 PM Form C-141 State of New Mexico

Oil Conservation Division


<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan


Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: _____ Date: _____ Telephone: email: OCD Only Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

APPENDIX B Site Characterization Data

Page 26 of 153

VGEU 01-02

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quarters are 1=NW (quarters are smalle		=SE) (NAD83 UTM in mo	eters) (In feet)
POD Number	POD Sub- Code basin Cou	QQQ unty 64 16 4 Sec Tws	Rng	X Y		Depth Water Water Column
L 05362	LL	E 3 4 4 28 17S	35E 6444	444 3630117* 🌍	676 140	80 60
				Avera	ige Depth to Water:	
					Minimum Depth:	
					Maximum Depth:	80 feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 643909.13

Northing (Y): 3630531.947

Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

•

APPENDIX C Boring Logs

212C-N	-		2/2021			<u>PM</u>	н				LOG OF BORING BH-1	Page 29 Page 1 of 2
roject N	Nam	e: VGI	EU 01-0)2 FI	owlir	ne Re	eleas	se				
orehole	e Loo	ation:	GPS: 32	2.803	372°	, -103	8.462	900°			Surface Elevation: 3940 ft	
orehole	e Nu	mber:	BH-1						E	Boreho Diame	ble ter (in.): 8 Date Started: 3/24/2020 Date Finished	: 3/24/2020
n) η) 17 (%)								DEX			WATER LEVEL OBSERVATIONS While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DI Remarks:	<u>RY_</u> ft
OPERATION TYPE	SAMPLE	The second secon	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	X	11.73	1.1								-SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining.	BH-1 (0'-1')
$\left \right\rangle$	\mathbb{H}	6.86	2.6								_	
$\left \right\rangle$	\mathbb{A}	5.41	3.8								-CL- SILTY CLAY; Brown, stiff, moist, with no	BH-1 (2'-3')
$\left \right\rangle$	\mathbb{A}	10.58	1.2								odor, with no staining.	BH-1 (3'-4') BH-1 (4'-5')
5	冶	10.30	1.2								-	ריוט (4 -ס)
	X		1.4								ary, interbedded with sandstone, with no odor, with \Box	BH-1 (6'-7')
-										× × × × × ×	no staining.	
	X		1.6							× × × × × × × × × × × × × × × × × × ×		BH-1 (9'-10')
										$\begin{array}{c} \cdot \\ \times \\$		
		6.62	1.8							××	-SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.	BH-1 (14'-15')
$\left \right\rangle$		5.77	2.1									BH-1 (19'-20')
		5.17										5/1 1 (10-20)
$\left \right\rangle$												
<u>5))</u>	<u>M</u>	4.31	2.3					4.				BH-1 (24'-25')
ampler /pes:		Split Spoon Shelby Bulk Sample		Acetate /ane S Califori	Shear nia	r T)pera ypes	Mud Rota	ary tinuou nt Auge sh	s er	Hand Auger Notes: Air Rotary Analytical samples are shown in the "Remarks" c Direct Push Surface elevation is an estimated value.	olumn.
	ľ	າ Grab ∠ Sample	e ⊟⊺	est Pi	t			Rota				

212C-MD-02099								н				LOG OF BORING BH-1	Page 2 of 2
Proje	ct N	am	e: VG	EU 01-0	2 FI	owlir	ne R	eleas	se		1		
Bore	hole	Loc	cation:	GPS: 32	.803	372°,	, -103	3.462	900°			Surface Elevation: 3940 ft	
Borehole Number: BH-1 Borehole Number: BH-1										B	oreh	ble ble ter (in.): 8 Date Started: 3/24/2020 Date Finished:	3/24/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	ΓΙΦΛΙΡ ΓΙΜΙΤ	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	WATER LEVEL OBSERVATIONS While Drilling <u>및 DRY</u> ft Upon Completion of Drilling <u>및 DF</u> Remarks: MATERIAL DESCRIPTION (문) 법입	REMARKS
DE	РO	SAI	ExStik	PID	SA	MO	DR	LL	ΡI	MIM	GR	DE	
			3.67 718 321	1.7									3H-1 (29'-30') 3H-1 (34'-35') 3H-1 (39'-40') 3H-1 (44'-45')
Samı Type	oler s:		Split Spoon Shelby Bulk Sample Grab Sample		cetate ane S alifori est Pi	nia	T		Mud Rota	ary tinuous nt Auge sh		Hand Auger Notes: Air Rotary Direct Push Core Barrel	blumn.

Driller: Scarborough Drilling

 Logger:
 Devin Dominguez
 Drilling Equipment: Air Rotary
 Driller:
 Science

 VGEU 2801-02 GPJ : 5-12-20 TT AUSTIN CEOTECH NOWFUL3 : 2015 TT TEMPLATE DECEMBER WELL.GDT : 5
 Driller:
 Science
 Science</t

Page 30 of 153

<u>Recei</u>

ceived by OCD:										Page 31 o
212C-MD-02099	T		RA TE	СН				LOG OF BORING BH-2		Page 1 of 1
Project Name:	/GEU 01-02	2 Flow	vline R	elea	se					·
Borehole Location	: GPS: 32.	80293	3°, -10	3.462	462°			Surface Elevation: 3938 ft		
Borehole Number	BH-2					B	oreho	ole Started: 3/24/2020 Date F	inishe	d: 3/24/2020
	(ind	RY (%) Гыт (%)	EN 1 (%)		DEX			WATER LEVEL OBSERVATIONS While Drilling Variable	Ī	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD	tit socreening (ppm)	SAMPLE RECOVERY (%)	MUISTURE CONTENT (%) DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
	2 2.3							-SM- SILTY SAND; Brown, dense, dry, with gravel, with no odor, with no staining.	_	BH-2 (0'-1')
	7 6.1							-CL- SILTY CLAY; Brown, stiff, moist, with no odor, with no staining. -SILTSTONE- SILTSTONE; Orangish tan, hard, dry, interbedded with sandstone, with no odor, with no staining.	6 	BH-2 (2'-3') BH-2 (3'-4') BH-2 (4'-5') BH-2 (6'-7') BH-2 (9'-10') BH-2 (14'-15')
20 29	6 1.1						× × × × × ×	-SM- SILTY SAND; LIght Brown, dense, dry, with no odor, with no staining. Bottom of borehole at 20.0 feet.	19 20	BH-2 (19'-20')

Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:
	Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
	Bulk Sample	California	Continuous Flight Auger	Direct Push	
	Grab Sample	Test Pit	Wash	Core Barrel	
Logger:	Devin Dominguez		Drilling Equipment	t: Air Rotary	Driller: Scarborough Drilling

Released to Imaging: 6/10/2021 9:19:59 MM 3: 2015 TT TEMPLATE DECEMBER WELL.GDT

212	C-M	D-0	2099	Т	Ŀ	ETRA	TEC	H				LOG OF BORING BH-3	Page 1 of 1
Proje	ect N	am	e: VG	EU 01-0)2 FI	owlir	ne Re	eleas	se				
Bore	hole	Loc	cation:	GPS: 32	2.803	139°,	-103	8.461	587°			Surface Elevation: 3938 ft	
Borehole Number: BH-3 Bor										B	Boreh Diame	ole ter (in.): 8 Date Started: 3/24/2020 Date Finished	: 3/24/2020
			LD pm)	(mq	RY (%)	ENT (%)	()		DEX			WATER LEVEL OBSERVATIONS While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DI Remarks:	<u>RY_</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	EXCREENING (ppm)	UNC FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (문) 변습권	REMARKS
	$\langle \rangle$	X	15000	8.2								-CL- SILTY CLAY; Dark Brown, stiff, moist, with no odor, with no staining.	BH-3 (0'-1')
_		X	11.34	3.2									BH-3 (2'-3')
_	$\langle \langle$	Å	1.71	1.6									BH-3 (3'-4')
5_	$\left \right\rangle$	Ą	1.21	1.6								-SM- SILTY SAND; Light brown, dense, dry, with gravel, with no odor, with no staining.	BH-3 (4'-5')
_	$\langle \rangle$	X	727	1.5									BH-3 (6'-7')
_	$\left\{ \right\}$											-SILTSTONE- SILTSTONE; Orangish tan, hard, dry, interbedded with sandstone, with no odor, with no staining.	
		X									****		BH-3 (9'-10')
		X									* * * * * * * * * * * * * * * * * * * *		BH-3 (14'-15')
20	$\langle \rangle$	X	220	1.8								- SM - SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.	BH-3 (19'-20')
Sam Type	pler s:		Split Spoon Shelby Sampl Grab Sampl		acetati Vane S Califor	nia	- T		: Mud Rota Con Fligh	ary tinuous nt Auge sh	s er	Hand Auger Notes: Air Rotary Analytical samples are shown in the "Remarks" cr Direct Push Core Barrel	olumn.

 Logger:
 Devin Dominguez
 Drilling Equipment: Air Rotary
 Driller:

 VGEU 2801-02-GPJ 3-12-20
 TAUSTIN-GEOTECH NOWELL3 2015 TT TEMPLATE DECEMBER WELL.GDT '
 Driller:
 Driller: Scarborough Drilling

Page 32 of 153

Т

LOG	OF	BOR	NG	BH-
	U .			

OG	OF	I

Т

Req

1.21

489

1.1

1.2

<u>ceive</u>	<u>d by</u>	? ()	<u>CD: 2/</u>	<u>2/2021 .</u>	<u>3:58</u>	<u>8:40</u>	<u>PM</u>					Page 33 oj
212	C-M	D-0	2099	T	ť	ETR	ΑΤΕ	сн				LOG OF BORING BH-4 Page 1 of 1
Proje	ect N	lam	e: VG	EU 01-0)2 F	lowli	ne R	elea	se			
Bore	hole	Lo	cation:	GPS: 32	2.802	2762°	, -10	3.461	514°			Surface Elevation: 3935 ft
Borehole Number: BH-4 Borehole Number: BH-4												hole eter (in.): 8 Date Started: 3/24/2020 Date Finished: 3/24/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	tit SCREENING (ppm) SCREENING (ppm)	UNC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	
			2.95 2.46 1.56	1.9 2.1 1.1								-CL- SILTY CLAY; Dark Brown, stiff, moist, with no odor, with no staining. BH-4 (0'-1')

-SM- SILTY SAND; Grayish brown, dense, dry, with gravel, with no odor, with no staining.

Bottom of borehole at 7.0 feet.

	Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:	
		Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical samples are shown in the "Remarks" column Surface elevation is an estimated value.	า.
		Bulk Sample	California	Continuous Flight Auger	Direct Push		
		Grab Sample	Test Pit	Wash	Core Barrel		
	Logger:	Devin Dominguez		Drilling Equipment	t: Air Rotary	Driller: Scarborough Drilling	
Re	VGEU 2801-0	Imaging: 6/	16/2021 9:19:5	NOWELL3 ` 2015 TT TEM	IPLATE DECEMBER W	/ELL.GDT' ``	Revised 5-16-12 (RH

f 53

BH-4 (4'-5')

BH-4 (6'-7')

6

7

eived	by C)CD: 2/	<u>/2/2021</u> .	3:58	3:40	<u>PM</u>					Page 34	
212C	-MD-	02099	T	ť	ETR/	A TEO	сн				LOG OF BORING BH-5 Page 1 of 1	
Projec	t Nar	ne: VO	GEU 01-0)2 F	lowliı	ne R	elea	se				
Boreho	ole Lo	ocation:	GPS: 32	2.803	3502°	, -10	3.462	963°			Surface Elevation: 3941 ft	
Borehole Number: BH-5 Borehole Diameter (in.): 8 Date Started: 3/25/2020 Date Finished:												
DEPTH (ft)	OPERATION TYPE SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	WATER LEVEL OBSERVATIONS While Drilling Image: DRY ft Upon Completion of Drilling Image: DRY ft Remarks: Image: DRY ft MATERIAL DESCRIPTION Image: DRY ft REMARKS	
DE	P R	ExStik	PID	SA	₽ N	R	LL	PI	MIN	GR B		
		98.1	1.2								-SM- SILTY SAND; Dark brown, dense, dry, with gravel, with no odor, with no staining.	
	' (2	106	0.9								3 BH-5 (2'-3')	
	$\left \left \right \right $	121	0.9								-SM- SILTY SAND; Tan, dense, dry, with gravel, with no odor, with no staining.	
5	$^{\prime}$	138	0.8								5 BH-5 (4'-5')	

Bottom of borehole at 5.0 feet.

	Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:	
		Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical samples are shown in the "Remarks" column Surface elevation is an estimated value.	۱.
		Bulk Sample	California	Continuous Flight Auger	Direct Push		
		Grab Sample	Test Pit	Wash	Core Barrel		
	Logger:	Devin Dominguez		Drilling Equipment	· Air Potony	Driller: Scarborough Drilling	
	88			0 1 1			
Re	leased to	<i>Imaging: 6/</i>	/16/2021 9:19:5	NOWELL3 ` 2015 TT TEM	IPLATE DECEMBER V	/ELL.GD1**	Revised 5-16-12 (RH

Re

212C-M	D-02	2099	T	₽Ţ	ETR	A TEC	сн				L	og of i	BORING BH-6			Page 1 of 1
Project N	lame	: VG	EU 01-0	2 FI	owlir	ne R	elea	se								1
Borehole Location: GPS: 32.803119°, -103.462156°											Surface Elevation:	3938 ft				
Borehole Number: BH-6 Bo										Boreh Diame	ole 8 eter (in.):	Date Star	ted: 3/25/2020	Date F	inishe	d: 3/25/2020
ш		ppm)	(mqq	ERY (%)	TENT (%)	sf)		JDEX			V V		EVEL OBSERVATIO Upon Completion of [<u>Ā</u> [DRY_ft
DEPTH (ft) OPERATION TYPE	AMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	RIAL DE	SCRIPTION		DEPTH (ft)	REMARKS
	s X	ExStik	PID 0.4	w v	2		LL	PI	2	0		AND; Brov	vn, dense, dry, with			BH-6 (0'-1')
		184 124 117	0.3 0.9 1.1								-SM - SILTY S	AND; Dark	k brown, dense, dry, v	vith	 _4 _5	BH-6 (2'-3') BH-6 (3'-4') BH-6 (4'-5')
										1.1.1			ehole at 5.0 feet.			

Sampler Types:	Split Spoon Shelby Bulk Sample	Acetate Liner Image: Acetate Liner Image: Vane Shear Image: California Image: Test Pit	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
Logger:	Devin Dominguez		Drilling Equipment	,	Driller: Scarborough Drilling

.

212	C-MD	-02099		t	ETR	A TE	сн				LOG OF BORING BH-7 Page 1 of
Proje	ect Na										
Bore	hole L	ocation:	GPS: 3	2.803	3144°	, -10	3.461	359°			Surface Elevation: 3938 ft
Bore	hole N	lumber:	BH-7						B	oreh jame	hole eter (in.): 8 Date Started: 3/25/2020 Date Finished: 3/25/2020
											WATER LEVEL OBSERVATIONS
				(%)	(%)						While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DRY ft
	ш		(mqq	ERY (IENT	6			(%		Remarks:
DEPTH (ft)	OPERATION TYPE SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION
DEF	0PI	ExSti		SAI	₩ W	DR	LL	PI	MIN	R, R	
_	<u>}</u>	206	1.2								-SM- SILTY SAND; Dark brown, dense, dry, with gravel, with no odor, with no staining.
-	$\left \right\rangle$	193	1.4								
	\mathbb{R}	184	1.2								-SM- SILTY SAND; Light brown, dense, dry, with gravel, with no odor, with no staining.
5	$\left \left\langle \right\rangle\right\rangle$	208	1.3								5 BH-7 (4'-5')
		•									Bottom of borehole at 5.0 feet.

	Sampler	Split		Operation			
	Types:	Spoon	Acetate Liner	Types:	Hand Auger	Notes:	
		Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical samples are shown in the "Remarks" colum Surface elevation is an estimated value.	ın.
		Bulk Sample	California	Continuous Flight Auger	Direct Push		
		Grab Sample	Test Pit	Wash	Core Barrel		
	Logger:	Devin Dominguez		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling	
1	VGEU 2801-	02 GP.1 5-12-20 .	TT AUSTIN GEOTECH	NOWELL 3 ' 2015 TT TEM	PLATE DECEMBER W	/FLL GDT''`	Povisod 5 16 12 (PUI

.

Re

Project Name: VGEU 01-02 Flowline Release Borehole Location: GPS: 32.802642°, -103.461298° Borehole Number: BH-8 University of the product
Borehole Number: BH-8 Borehole Number: BH-8 Borehole Diameter (in.): 8 Borehole Diameter (in.): 8 Date Started: 3/25/2020 WATER LEVEL OBSERVATIONS While Drilling <u>DRY</u> ft Upon Completion of Drilling <u>V DRY</u> ft Upon Completion of Drilling <u>V DRY</u> ft Upon Completion of Drilling <u>V DRY</u> ft DRY ft Construction of Drilling <u>V DRY</u> ft Remarks: MATERIAL DESCRIPTION
Billende Humbel. Director Diameter (in.): Origination Diameter (in.): Diameter
(i) I
- -
- -
257 1 5 156 156 1.3
5 257 1 gravel, with no odor, with no staining. 5 BH-8 (4'-5')
Bottom of borehole at 5.0 feet.

Sampler Types:	Split Spoon Shelby Bulk Sample M Grab Sample	Acetate Liner ✓ Acetate Liner ✓ Vane Shear ✓ California ✓ Test Pit	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Hand Auger Air Rotary Direct Push Core Barrel	Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
Logger:	Devin Dominguez		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling

.

eive	<u>d by</u>	, O	CD: 2/2	2/2021.	<u>3:58</u>	3:40	PM.									Page 38 of	
212	C-M	D-0	2099	T	ť	ETR	A TEO	СН				L	OG OF BORING BH-9			Page 1 of 1	
Proje	ect N	am	e: VG	EU 01-0)2 F	lowlir	ne R	eleas	se								
Bore	hole	Loc	cation:	GPS: 32	2.802	2973°	, -10	3.461	914°			Surface Elevation:	3938 ft				
Bore	hole	Nu	mber:	BH-9							oreh Jiame	ole 8 eter (in.):	Date Started: 3/25/2020	Date F	inishe	d: 3/25/2020	
			D D	(m	۲ (%)	NT (%))EX				VATER LEVEL OBSERVATIO		Ā	D <mark>RY_</mark> ft	
DEPTH (ft)	DPERATION TYPE	SAMPLE	CHLORIDE FIELD CHLORIDE FIELD EXStik	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	RIAL DESCRIPTION		EPTH (ft)	REMARKS	
<u> </u>		/s		PID 1.1	<i>S</i>	Σ		LL	PI	Σ	5		-SM- SILTY SAND; Brown, loose, dry, with gravel, with no odor, with no staining.				
_	$\left \right\rangle$	X	146	1.1											3	BH-9 (2'-3')	
_	K	Д	137	0.9								-SM- SILTY S gravel, with no	AND; Light brown, dense, dry, odor, with no staining.	with	4	BH-9 (3'-4')	
5	$\langle \langle$	Х	123	0.8									AND; Brown, dense, dry, with odor, with no staining.		5	BH-9 (4'-5')	

Bottom of borehole at 5.0 feet.

	Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:	
		Shelby	Vane Shear	Mud Rotary	Air Rotary	Analytical samples are shown in the "Remarks" column Surface elevation is an estimated value.	٦.
		Bulk Sample	California	Continuous Flight Auger	Direct Push		
		Grab Sample	Test Pit	Wash	Core Barrel		
	Logger:	Devin Dominguez		Drilling Equipment	· Air Rotary	Driller: Scarborough Drilling	
	00	-					
Re	leased to	Imaging: 6/	16/2021 9:19:5	NOWELL3 ` 2015 TT TEM	PLATE DECEMBER W		Revised 5-16-12 (RHM)

Re

212	2C-N	1D-0	2099	T	t]'	ETR	A TE	сн				LOG OF BORING BH-10		Page 1 of 1
Proj	ect N	lam	e: VGB	EU 01-0)2 F	lowlii	ne R	elea	se					
Bore	ehole	e Loo	cation:	GPS: 32	2.802	2969°	, -10	3.462	699°			Surface Elevation: 3939 ft		
Bore	ehole	e Nu	mber:	BH-10						E	Boreh Diame	ole beter (in.): 8 Date Started: 3/25/2020 Date F	inishe	ed: 3/25/2020
			D D	(mq	RY (%)	ENT (%)			DEX			WATER LEVEL OBSERVATIONSWhile Drilling $\underline{\nabla}$ DRY ftUpon Completion of DrillingRemarks:	<u>¥</u> (DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)		SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
DE	Р	AS SA	ExStik	PID	SA	M	DR	LL	PI	μ	R.		DE	
-								-SM- SILTY SAND; Dark brown, dense, dry, with gravel, with no odor, with no staining.	_	BH-1 (0'-1')0				
	$\langle \langle$	X	350	1.7								Bottom of borehole at 3.0 feet.	3	BH-10 (2'-3')

Sampler Types:	Split Spoon Shelby Bulk Sample Grab Sample Test Pit		Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
Logger:	Devin Dominguez	Drilling Equipment: Air Rotary	Driller: Scarborough Drilling
VGEU 2801-	02-GPJ ` 5-12-20 ` TT AUSTIN GEO	ECH_NOWEUL3 ` 2015 TT TEMPLATE DECEMBER \	NELL.GDT''` Revised 5-16-12 (RHM)

APPENDIX D Laboratory Analytical Data

November 08, 2019

JUSTIN WRIGHT Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: VGEU 01-02

Enclosed are the results of analyses for samples received by the laboratory on 11/05/19 15:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

LEA CO NM

Analytical Results For:

		Conoco Ph	illips - Hobbs		
		JUSTIN W	RIGHT		
		P. O. BOX	325		
		Hobbs NM	, 88240		
		Fax To:	(575) 297-1477	7	
Received:	11/05/2019			Sampling Date:	11/04/2019
Reported:	11/08/2019			Sampling Type:	Soil
Project Name:	VGEU 01-02			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker

Sample ID: SP # 1 (H903775-01)

Project Location:

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8720	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 2 (H903775-02)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8800	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 3 (H903775-03)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7330	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 4 (H903775-04)

Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10000	16.0	11/07/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phillips - Hobbs							
	JUSTIN WRIGHT								
		P. O. BOX 325							
		Hobbs NM	, 88240						
		Fax To:	(575) 297-1477	,					
Received:	11/05/2019			Sampling Date:	11/04/2019				
Reported:	11/08/2019			Sampling Type:	Soil				
Project Name:	VGEU 01-02			Sampling Condition:	Cool & Intact				
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker				
Project Location:	LEA CO NM								

Sample ID: SP # 5 (H903775-05)

Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32800	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 6 (H903775-06)

Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16200	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 7 (H903775-07)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 8 (H903775-08)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10200	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 9 (H903775-09)

Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11600	16.0	11/07/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Conoco Phillips - Hobbs								
JUSTIN WRIGHT								
	P. O. BOX 325							
	Hobbs NM,	, 88240						
	Fax To:	(575) 297-1477	7					
11/05/2019			Sampling Date:	11/04/2019				
11/08/2019			Sampling Type:	Soil				
VGEU 01-02			Sampling Condition:	Cool & Intact				
NONE GIVEN			Sample Received By:	Tamara Oldaker				
LEA CO NM								
	11/08/2019 VGEU 01-02 NONE GIVEN	JUSTIN WI P. O. BOX Hobbs NM, Fax To: 11/05/2019 11/08/2019 VGEU 01-02 NONE GIVEN	JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477 11/05/2019 11/08/2019 VGEU 01-02 NONE GIVEN	JUSTIN WRIGHT P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-1477 11/05/2019 Sampling Date: 11/08/2019 Sampling Type: VGEU 01-02 Sampling Condition: NONE GIVEN Sample Received By:				

Sample ID: SP # 10 (H903775-10)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4640	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 11 (H903775-11)

Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1600	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 12 (H903775-12)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 13 (H903775-13)

Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	12100	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 14 (H903775-14)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	30800	16.0	11/07/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Phi JUSTIN WR P. O. BOX 3 Hobbs NM,	325		
		Fax To:	(575) 297-1477		
Received:	11/05/2019			Sampling Date:	11/01/2019
Reported:	11/08/2019			Sampling Type:	Soil
Project Name:	VGEU 01-02			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker
Project Location:	LEA CO NM				

Sample ID: SP # 15 (H903775-15)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	13400	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 16 (H903775-16)

Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	25600	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 17 (H903775-17)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	21000	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 18 (H903775-18)

Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	20200	16.0	11/07/2019	ND	416	104	400	0.00	

Sample ID: SP # 19 (H903775-19)

Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	23000	16.0	11/07/2019	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Conoco Ph	illips - Hobbs							
		JUSTIN WRIGHT								
		P. O. BOX 325								
		Hobbs NM	, 88240							
		Fax To:	(575) 297-1477	,						
Received:	11/05/2019			Sampling Date:	11/01/2019					
Reported:	11/08/2019			Sampling Type:	Soil					
Project Name:	VGEU 01-02			Sampling Condition:	Cool & Intact					
Project Number:	NONE GIVEN			Sample Received By:	Tamara Oldaker					
Project Location:	LEA CO NM									

Sample ID: SP # 20 (H903775-20)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	18800	16.0	11/07/2019	ND	400	100	400	3.92	QM-07

Sample ID: SP # 21 (H903775-21)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6240	16.0	11/07/2019	ND	400	100	400	3.92	

Sample ID: SP # 22 (H903775-22)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	21400	16.0	11/07/2019	ND	400	100	400	3.92	

Sample ID: SP # 23 (H903775-23)

Chloride, SM4500Cl-B	mg/kg			Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	18800	16.0	11/07/2019	ND	400	100	400	3.92	

Sample ID: SP # 24 (H903775-24)

Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15400	16.0	11/07/2019	ND	400	100	400	3.92	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 8 of 10 Д П D J orator / SUL

Page 48 of 153

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

□ Nc □ No Corrected Temp. °C	Correction Factor + 0.4 °C	Yo.		mp. ~ (.0	Corrected Lemp. C	Sampler - UPS - Bus - Otner:	Samp
	Thermometer ID #97	(Initials)	Cool Intact				
Standard Bacteria (only) Sample Condition	Turnaround Time: Sta	CHECKED BY:	<u> </u>	np.°C 0.6	Observed Temp. °C	Delivered By: (Circle One)	Deliv
					Time:	s	0
	REMARKS:	U	Received By:	Receiv	Date: /	nquished By:	Relind
		da ful	anapa 14	2 Sec	Time:	F 111/10	
All Results are emailed. Please provide Email address:	All Results are emailed. Ple	21/1/20	Received By:	0	Date: //-5-/	Relinguished By	Relind
1.		of whether such claim is based upon any of the above stated reasons or otherwise.	dless of whether such claim is base	services hereunder by Cardinal, regardless	the performance of services herei	filiates or successors arising out of or related to the performance of	affiliates o
	r completion of the applicable slient, its subsidiaries,	ed by Cardinal within 30 days after use, or loss of profits incurred by	g micros page in writing and receiv tion, business interruptions, loss of t	r shall be deemed waive	is liability and citerit's exclusive re- ce and any other cause whatsoeve	PLEASE NOTE: Lability and Uamages, Cardinals stability and urefulls exclusive returns very on a surface or received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause without the transmission of the specificable analyses. All claims including the specificable analyses are applicable and the specificable and the specificable and the specificable analyses. All claims including the specificable and the specificable and the specificable analyses. All claims including the specificable and the specificable an	analyses.
	d by the client for the	shall be limited to the amount pai	n whether based in contract or tort	G G	the life hills and allows overlapping the	01215 1	
	~ ~	* 11-4	* *	ວ ດ		h spho	
	. <		*	ភ			
	V	* //-4/	*	G		7 59#7	
	٩	* 11-21	*	G		6 SP # 6	
	. <	* 11-4	*	G		55745	
	•	* 11-41	*	G		4 SP #4	
	. ~	* 11-4	*	ភ		57 43	
	4	* 1/-4	*	G		2 402 2	
	×	* //-4	*	ត		1 #ds 1	
	TIME Chlor, des	D.	SLUDGE OTHER :	(G)RAB OR (C)OMP. # CONTAINERS	Sample I.D.		Lat
	LING	PRESERV. SAMPLING	MATRIX	_			
		#	Fax #:		right	Justi	Sampl
		Phone #:	Pho		County Nm	Project Location: /ea. Co	Projec
		e: Zip:	State:		202	Project Name: VGEU 01-02	Projec
			PC City:	wner: COPC	Project Owner:	:#:	Project #:
		Address:	Add		Fax #:	#: 575-631-9092	Phone #:
			# Attn:	Zip:	St NM	Hobbs	City:
	sd	Company: ConocoPhillips	Com			S	Address:
		#	P.O.		right	Project Manager: Justin Wright	Project
ANALYSIS REQUEST		BILL TO			hillips	Company Name: ConocoPhillips	Compa
				93-2476	2326 FAX (575) 393-2476	(575) 393-2326	

Received by OCD: 2/2/2021 3:58:40 PM

FURIVI-UUD R J.U

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Released to Imaging: 6/10/2021 9:19:59 AM

ot Jo CARDINAL

Page 49 of 153

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

(575) 393-232	(575) 393-2326 FAX (575) 393-2476			
Company Name: ConocoPhillips	sd		BILL TO	ANALYSIS REQUEST
Project Manager: Justin Wright	Ē	P.C	P.O. #:	
Address:		Co	Company: ConocoPhillips	
City: Hobbs	St NM Zip:	# Attn:	8	
Phone #: 575-631-9092	Fax #:	Ad	Address:	
Project #:	Project Owner: C	COPC City:	Ÿ	
Project Name: VGEU 01-02	Ec.	State:	ite: Zip:	
Project Location: Leg County,	ty Nm	Ph	Phone #:	
	11	Fa	Fax #:	
		MATRIX	PRESERV. SAMPLING	
Lab I.D. Samp	(G)RAB OR (C)OM # CONTAINERS	GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER :	ACID/BASE: ICE / COOL OTHER : DATE	TIME
11 SP#11	G	*	* 11-1	
12 59 #12	G	*	* //-/	
EIHds EI	G	*	* //-/	4
	G	*	* //-/	
15 SPH 15	G	5*	* 11-1	
	G	*	* //-/	
17 SPAIT	G	*	* //-/	
8/HdS 81	G	*	* //-/	
1	G	*	* //-/	
06 H ds 02	G	*	* //-/	
PLEASE NOTE: Liability and Damages, Cardinat's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the cleant for me analyses. All claims including those for negligence and any other cause whatsever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use of profits incurred by client, its subsidiaries, artifiaes or successors arising out of or related to the performance of services hereunder by Cardinal, regulates of whether such claim is based upon any of the above stated reasons or otherwise.	Ility and client's exclusive remedy for any claim a any other cause whatsoever shall be deemed v al or consequental damages, including without l informance of services hereunder by Cardinal, r	arising whether based in contract or to waived unless made in writing and rec imitation, business interruptions, loss i egardless of whether such claim is ba	rt, shall be limited to the amount paid eived by Cardinal within 30 days afte of use, or loss of profits incurred by o sed upon any of the above stated re-	
Relinquished By:	Date: 5-19 Time: 3:55-24	Received By:	JAL MARKE	Verbal Result: □ Yes □ No Add'l Phone #: All Results are emailed. Please provide Email address:
Relinquisted By:		Received By:		REMARKS:
0	Time:			
Delivered By: (Circle One)	Observed Temp. °C 0.6	Sa	CHECKED BY: (Initials)	Rush Co
Sampler - UPS - Bus - Other:	Corrected Temp. °C 1.0		40.	Thermometer ID #97

ONINI-000

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Laboratories
101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476
Company Name: ConocoPhillips
Project Manager: Justin Wright P.O. #:
Address: Company: ConocoPhillips
City: Hobbs St NM Zip: # Attn:
Phone #: 575-631-9092 Fax #: Address:
Project #: Project Owner: COPC City:
Project Name: VCEV 01-02 State: Zip:
Project Location: Lea Country NM Phone #:
Sampler Name: Justin Wright Fax #:
(G)RAB OR (G)RAB OR # CONTAINE GROUNDW/ WASTEWAT SOIL OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER : ACID/BASE: ICE / COOL
31 SP#31 G * //-/ /
33 SPH 23 G * //-/ V
G *
G * //-/ V
G)
б С. *
*
GO G *
G * *
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after composition of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after composition of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profis incurred by client, its subsidiaries, and the service are analysis. Including which are consequentiated to the consequentiate by client to according to those to the consequentiate analysis.
Da
Reinquished By: Date: Received By: Received By: REMARKS:
le Condition CH
her: Corrected Temp. °C /.0 Pres Pres Collinate: (Initials) Thermometer ID #97 Correction Factor + 0.4 °C
al changes. Please email changes to celey.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 50 of 153

Page 10 of 10

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

03/28/2020 212CMD02099 VGEU 2801-02

L1204246

Christian Llull 901 West Wall Suite 100 Midland, TX 79701 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

Page 51 of 153

Entire Report Reviewed By:

Chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

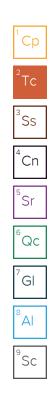
Released to Imaging: 0/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech PROJECT: 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

:: DO PAGE: 1 of 77

TABLE OF CONTENTS

		_	
Cp: Cover Page			1
Tc: Table of Contents			2
Ss: Sample Summary			4
Cn: Case Narrative			12
Sr: Sample Results			13
BH-1 0-1' L1204246-01			13
BH-1 2'-3' L1204246-02			14
BH-1 3'-4' L1204246-03			15
BH-1 29'-30' L1204246-04			16
BH-1 44'-45' L1204246-05			17
BH-2 0-1' L1204246-06			18
BH-2 2'-3' L1204246-07			19
BH-2 3'-4' L1204246-08			20
BH-2 19'-20' L1204246-09			21
BH-3 0-1' L1204246-10			22
BH-3 2'-3' L1204246-11			23
BH-3 3'-4' L1204246-12			24
BH-3 19'-20 L1204246-13			25
BH-4 0-1' L1204246-14			26
BH-4 2'-3' L1204246-15			27
BH-4 3'-4' L1204246-16			28
BH-4 6'-7' L1204246-17			29
BH-5 0-1' L1204246-18			30
BH-5 2'-3' L1204246-19			31
BH-5 3'-4' L1204246-20			32
BH-5 4'-5' L1204246-21			33
BH-6 0-1' L1204246-22			34
BH-6 2'-3' L1204246-23			35
BH-6 3'-4' L1204246-24			36
BH-7 0-1' L1204246-25			37
BH-7 2'-3' L1204246-26			38
BH-7 3'-4' L1204246-27			39
BH-7 4'-5' L1204246-28			40
BH-8 0-1' L1204246-29			41
BH-8 2'-3' L1204246-30			42
BH-8 3'-4' L1204246-31			43
BH-8 4'-5' L1204246-32			44
BH-9 0-1' L1204246-33			45
BH-9 2'-3' L1204246-34			46
BH-9 3'-4' L1204246-35			47
aging: 0/10/2021 9:19:59 AM	PROJECT:	SDG:	DATE/TIME:


Released to Imaging: 0/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246

04/07/20 10:00

PAGE: 2 of 77

BH-9 4'-5' L1204246-36	48
BH-10 0-1' L1204246-37	49
BH-10 2'-3' L1204246-38	50
Qc: Quality Control Summary	51
Total Solids by Method 2540 G-2011	51
Wet Chemistry by Method 300.0	56
Volatile Organic Compounds (GC) by Method 8015D/GRO	59
Volatile Organic Compounds (GC/MS) by Method 8260B	63
Semi-Volatile Organic Compounds (GC) by Method 8015	68
GI: Glossary of Terms	71
Al: Accreditations & Locations	72
Sc: Sample Chain of Custody	73

Released to Imaging: 0/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

TIME: 0 10:00 PAGE: 3 of 77

SAMPLE SUMMARY

ONE LAB. NAT Rage 54 of 153

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-1 0-1' L1204246-01 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received dat 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	50	04/02/20 10:05	04/02/20 20:59	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 16:25	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:21	04/01/20 19:18	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 03:24	KME	Mt. Juliet, TN
			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received dat 03/28/20 08	
BH-1 2'-3' L1204246-02 Solid						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	20	04/02/20 10:05	04/02/20 21:27	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 16:49	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:21	04/01/20 19:37	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 20:46	FM	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-1 3'-4' L1204246-03 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	20	04/02/20 10:05	04/02/20 21:37	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 17:12	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:21	04/01/20 19:56	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 04:14	KME	Mt. Juliet, TN
BH-1 29'-30' L1204246-04 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453693	1	04/01/20 22:17	04/01/20 22:24	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	5	04/02/20 10:05	04/02/20 21:56	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 17:36	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:21	04/01/20 20:15	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 04:27	KME	Mt. Juliet, TN
BH-1 44'-45' L1204246-05 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453894 WG1453916	1	04/02/20 10:05	04/02/20 22:05	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 18:00	ACG	Mt. Juliet, TN
- signing or and or and a loop by method 0013D/01/0	WG1453768	1	04/01/20 01:21	04/01/20 20:35	JHH	Mt. Juliet, Th Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	VV(=1453768					mu Juillu II

PROJECT: 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 4 of 77

SAMPLE SUMMARY

ONE LAB. NAT Page 55 of 153

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-2 0-1' L1204246-06 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453916	5	04/02/20 10:05	04/02/20 22:15	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 18:40	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453768	1	04/01/20 01:21	04/01/20 20:54	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	50	04/01/20 00:21	04/02/20 07:21	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-2 2'-3' L1204246-07 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	10	04/02/20 09:30	04/02/20 12:12	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 19:28	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1455868	4	04/01/20 01:21	04/06/20 09:34	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	50	04/01/20 00:21	04/02/20 07:34	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-2 3'-4' L1204246-08 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	10	04/02/20 09:30	04/02/20 12:21	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 19:52	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454287	1	04/01/20 01:21	04/02/20 04:49	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	5	04/01/20 00:21	04/02/20 07:09	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-2 19'-20' L1204246-09 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 12:31	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 20:15	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/01/20 21:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 04:52	KME	Mt. Juliet, TN
BH-3 0-1' L1204246-10 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	100	04/02/20 09:30	04/02/20 12:50	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 20:39	ACG	Mt. Juliet, TN
	WG1453794	1	04/01/20 01:21	04/01/20 21:58	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B		5	04/01/20 00:21	04/02/20 13:49	KME	Mt. Juliet, TN

PROJECT: 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

)

PAGE: 5 of 77

SAMPLE SUMMARY

ONE LAB. NAT Rage 56 of 153

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-3 2'-3' L1204246-11 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	100	04/02/20 09:30	04/02/20 12:59	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 21:28	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/01/20 22:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 06:44	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-3 3'-4' L1204246-12 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	100	04/02/20 09:30	04/02/20 13:09	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 21:52	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/01/20 22:39	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 06:56	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-3 19'-20 L1204246-13 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 13:19	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 22:16	ACG	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/01/20 22:59	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 05:05	KME	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-4 0-1' L1204246-14 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453694	1	04/01/20 22:07	04/01/20 22:15	KBC	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1453917	10	04/02/20 09:30	04/02/20 13:47	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 22:40	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/01/20 23:19	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453628	1	04/01/20 00:21	04/02/20 05:17	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-4 2'-3' L1204246-15 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1453917	10	04/02/20 09:30	04/02/20 13:57	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453878	1	04/01/20 01:21	04/01/20 23:04	ACG	Mt. Juliet, TN
	WG1453794	1	04/01/20 01:21	04/01/20 23:40	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B					•	

Released to Imaging: 10/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

VIE: 0:00 PAGE: 6 of 77

SAMPLE SUMMARY

ONE LAB. NAT Page 57 of 153

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-4 3'-4' L1204246-16 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	10	04/02/20 09:30	04/02/20 14:06	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 01:21	04/02/20 00:11	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/02/20 00:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 20:41	SHG	Mt. Juliet, TN
BH-4 6'-7' L1204246-17 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 14:16	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 01:21	04/02/20 00:32	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/02/20 00:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 20:57	SHG	Mt. Juliet, TN
BH-5 0-1' L1204246-18 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 14:44	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 01:21	04/02/20 00:52	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/02/20 00:40	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/03/20 00:09	SHG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-5 2'-3' L1204246-19 Solid	Detek	Dilution	Devin Dominguez	03/25/20 00:00	03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 14:54	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 01:21	04/02/20 01:13	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453794	1	04/01/20 01:21	04/02/20 01:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/03/20 01:44	SHG	Mt. Juliet, TN
BH-5 3'-4' L1204246-20 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Total Solids by Method 2540 G-2011	WG1453917	1	04/02/20 09:30	04/02/20 15:03	ST	Mt. Juliet, TN
		1	04/01/20 01:21	04/02/20 01:33	JHH	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453939					
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453939 WG1453794	1	04/01/20 01:21	04/02/20 01:20	DWR	Mt. Juliet, TN

Released to Imaging: 0/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 7 of 77

SAMPLE SUMMARY

ONE LAB. NAT Page 58 of 153

BH-5 4'-5' L1204246-21 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 15:13	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1456182	1	04/01/20 08:54	04/06/20 13:00	ACG	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 00:06	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 23:05	SHG	Mt. Juliet, TN
			Collected by	Collected date/time		
3H-6 0-1' L1204246-22 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
/ ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 15:41	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 02:45	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 00:25	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 23:21	SHG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-6 2'-3' L1204246-23 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 15:51	ST	Mt. Juliet, TN
latile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 04:08	JHH	Mt. Juliet, TN
platile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 00:44	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 23:37	SHG	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-6 3'-4' L1204246-24 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	8:00
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1453695	1	04/01/20 21:55	04/01/20 22:04	KBC	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 16:00	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 04:28	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 01:03	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 21:12	SHG	Mt. Juliet, TN
BH-7 0-1' L1204246-25 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 16:19	ST	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1456182	1	04/01/20 08:54	04/06/20 13:22	ACG	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 01:23	JHH	Mt. Juliet, TN
· · · · · · · · · · · · · · · · · · ·	WG1453629	1	04/01/20 05:23	04/03/20 01:28	SHG	Mt. Juliet, TN

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 8 of 77

153

Received by OCD: 2/2/2021 3:58:40 PM	SAMPLES	SUMN	IARY		ONE L	.AB. NAT Rage
BH-7 2'-3' L1204246-26 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453917	1	04/02/20 09:30	04/02/20 16:29	ST	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 05:35	JHH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 01:42	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/03/20 00:41	SHG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-7 3'-4' L1204246-27 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	::00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1453918	5	04/02/20 14:53	04/02/20 23:50	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 05:56	JHH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 02:01	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 23:53	SHG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-7 4'-5' L1204246-28 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
	WC14F2C07	1	date/time	date/time	KDC	MA LUISA TH
otal Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1453918	5	04/02/20 14:53	04/03/20 00:09	ELN	Mt. Juliet, TN
blatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 06:16	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 02:20	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 21:29	SHG	Mt. Juliet, TN
BH-8 0-1' L1204246-29 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 00:19	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 07:04	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1453033	1	04/01/20 08:54	04/02/20 02:39	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 21:45	SHG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-8 2'-3' L1204246-30 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Salida hu Mathad 2E40 C 2011	W/044E0007	1	date/time	date/time	VDC	M+ 1
otal Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
	WG1453918	1	04/02/20 14:53	04/03/20 00:28	ELN	Mt. Juliet, TN
	WG1453939	1	04/01/20 08:54	04/02/20 07:24	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO			04/01/20 08:54	04/02/20 02:58	JHH	Mt. Juliet, TN
Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1454074 WG1453629	1 1	04/01/20 05:23	04/02/20 22:01	SHG	Mt. Juliet, TN

Released to Imaging: 10/2021 9:19:59 AM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 9 of 77

SAMPLE SUMMARY

ONE LAB. NAT Rage 60 of 153

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-8 3'-4' L1204246-31 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 00:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 07:45	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 03:17	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/03/20 00:56	SHG	Mt. Juliet, TN
BH-8 4'-5' L1204246-32 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution				
		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 00:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 08:26	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 03:36	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 22:17	SHG	Mt. Juliet, TN
BH-9 0-1' L1204246-33 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received date/time 03/28/20 08:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 00:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 08:46	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 03:56	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/03/20 01:12	SHG	Mt. Juliet, TN
BH-9 2'-3' L1204246-34 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453697	1	04/01/20 21:38	04/01/20 21:50	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 01:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 09:07	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 04:15	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453629	1	04/01/20 05:23	04/02/20 22:33	SHG	Mt. Juliet, TN
BH-9 3'-4' L1204246-35 Solid			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received da 03/28/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1453699	1	04/01/20 21:22	04/01/20 21:33	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 01:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453939	1	04/01/20 08:54	04/02/20 09:27	JHH	Mt. Juliet, TN
	WG1454074	1	04/01/20 08:54	04/02/20 04:34	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B			04/01/20 05:23	04/02/20 22:49	SHG	Mt. Juliet, TN

Released to Imaging: 0/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 10 of 77

SAMPLE SUMMARY

ONE LAB. NAT Page 61 of 153

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
BH-9 4'-5' L1204246-36 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453699	1	04/01/20 21:22	04/01/20 21:33	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 02:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453948	1	04/01/20 08:54	04/02/20 23:57	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 04:54	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453630	1	04/01/20 05:24	04/03/20 03:38	SHG	Mt. Juliet, TN

			Collected by	Collected date/time	Received date/time		
BH-10 0-1' L1204246-37 Solid			Devin Dominguez	03/25/20 00:00	03/28/20 08	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1453699	1	04/01/20 21:22	04/01/20 21:33	KBC	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 02:13	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453948	1	04/01/20 08:54	04/03/20 00:18	JHH	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 05:13	JHH	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453630	1	04/01/20 05:24	04/03/20 08:24	SHG	Mt. Juliet, TN	

			Collected by Devin Dominguez	Collected date/time 03/25/20 00:00	Received dat 03/28/20 08:	
BH-10 2'-3' L1204246-38 Solid			Devin Dominguez	03/23/20 00.00	03/20/20 00.	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1453699	1	04/01/20 21:22	04/01/20 21:33	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1453918	1	04/02/20 14:53	04/03/20 02:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1453948	1	04/01/20 08:54	04/03/20 00:38	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1454074	1	04/01/20 08:54	04/02/20 05:32	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1453630	1	04/01/20 05:24	04/03/20 03:54	SHG	Mt. Juliet, TN

Imaging: 6/10/2021	
ConocoPhillips - Tetra Tech	

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 11 of 77

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: %/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00 PAGE: 12 of 77

SAMPLE RESULTS - 01

Cn

Sr

ΆI

Sc

Collected date/time: 03/25/20 00:00

Analyte

Chloride

	Result	Qualifier	Dilution	Analysis	Patch		(
• • •		Qualifier	Dilution	,	Batch		L
Analyte	%			date / time			2
Total Solids	88.9		1	04/01/2020 22:24	<u>WG1453693</u>		
Wet Chemistry	by Method 300.0)					3
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution Analysis	Batch	

50

mg/kg

562

date / time

04/02/2020 20:59

WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

mg/kg

44.8

mg/kg

12200

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	04/01/2020 16:25	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	96.5			59.0-128		04/01/2020 16:25	WG1453878	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis Analyte mg/kg mg/kg mg/kg date / time Benzene U 0.000450 0.00112 1 04/01/2020 19:18 Toluene U 0.00141 0.00562 1 04/01/2020 19:18 Ethylbenzene U 0.00596 0.00281 1 04/01/2020 19:18 Total Xylenes U 0.00538 0.00731 1 04/01/2020 19:18	Batch
Benzene U 0.000450 0.00112 1 04/01/2020 19:18 Toluene U 0.00141 0.00562 1 04/01/2020 19:18 Ethylbenzene U 0.000596 0.00281 1 04/01/2020 19:18 Total Xylenes U 0.00538 0.00731 1 04/01/2020 19:18	
Toluene U 0.00141 0.00562 1 04/01/2020 19:18 Ethylbenzene U 0.000596 0.00281 1 04/01/2020 19:18 Total Xylenes U 0.00538 0.00731 1 04/01/2020 19:18	
Ethylbenzene U 0.000596 0.00281 1 04/01/2020 19:18 Total Xylenes U 0.00538 0.00731 1 04/01/2020 19:18	<u>WG1453768</u>
Total Xylenes U 0.00538 0.00731 1 04/01/2020 19:18	<u>WG1453768</u>
	WG1453768
	<u>WG1453768</u>
(S) Toluene-d8 112 75.0-131 04/01/2020 19:18	WG1453768
(S) 4-Bromofluorobenzene 88.1 67.0-138 04/01/2020 19:18	<u>WG1453768</u>
(S) 1,2-Dichloroethane-d4 112 70.0-130 04/01/2020 19:18	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.77		1.81	4.50	1	04/02/2020 03:24	WG1453628
C28-C40 Oil Range	15.3		0.308	4.50	1	04/02/2020 03:24	<u>WG1453628</u>
(S) o-Terphenyl	41.4			18.0-148		04/02/2020 03:24	WG1453628

SDG: L1204246 DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 02 L1204246

ONE LAB. NAT Page 64 of 153

Â

Sc

Total Solids by Method 2540 G-2011

	,						. Ľ	Cn
		Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte		%			date / time		. 6	2
Total Solids		93.0		1	04/01/2020 22:24	WG1453693		Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	6670		17.1	215	20	04/02/2020 21:27	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	04/01/2020 16:49	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	97.3			59.0-128		04/01/2020 16:49	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000430	0.00108	1	04/01/2020 19:37	WG1453768
Toluene	U		0.00134	0.00538	1	04/01/2020 19:37	WG1453768
Ethylbenzene	U		0.000570	0.00269	1	04/01/2020 19:37	WG1453768
Total Xylenes	U		0.00514	0.00699	1	04/01/2020 19:37	WG1453768
(S) Toluene-d8	111			75.0-131		04/01/2020 19:37	WG1453768
(S) 4-Bromofluorobenzene	87.3			67.0-138		04/01/2020 19:37	WG1453768
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/01/2020 19:37	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.92	J	1.73	4.30	1	04/02/2020 20:46	WG1453628
C28-C40 Oil Range	1.29	J	0.295	4.30	1	04/02/2020 20:46	WG1453628
(S) o-Terphenyl	66.9			18.0-148		04/02/2020 20:46	WG1453628

SDG: L1204246

DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 03

ONE LAB. NAT Rage of 153

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	92.4		1	04/01/2020 22:24	WG1453693	7	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7120		17.2	216	20	04/02/2020 21:37	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg	Guaimer	mg/kg	mg/kg	Blidtoll	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	04/01/2020 17:12	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	97.6			59.0-128		04/01/2020 17:12	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00108	1	04/01/2020 19:56	WG1453768
Toluene	U		0.00135	0.00541	1	04/01/2020 19:56	WG1453768
Ethylbenzene	U		0.000573	0.00270	1	04/01/2020 19:56	WG1453768
Total Xylenes	U		0.00517	0.00703	1	04/01/2020 19:56	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 19:56	WG1453768
(S) 4-Bromofluorobenzene	86.3			67.0-138		04/01/2020 19:56	WG1453768
(S) 1,2-Dichloroethane-d4	113			70.0-130		04/01/2020 19:56	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.33	1	04/02/2020 04:14	WG1453628
C28-C40 Oil Range	1.16	J	0.296	4.33	1	04/02/2020 04:14	<u>WG1453628</u>
(S) o-Terphenyl	59.8			18.0-148		04/02/2020 04:14	WG1453628

SDG: L1204246 DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 04

ONE LAB. NAT Rage 66 of 153

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.2		1	04/01/2020 22:24	WG1453693	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1220		4.31	54.2	5	04/02/2020 21:56	WG1453916

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	04/01/2020 17:36	WG1453878
(S) a,a,a-Trifluorotoluene(FID)	98.0			59.0-128		04/01/2020 17:36	WG1453878

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	04/01/2020 20:15	WG1453768
Toluene	U		0.00136	0.00542	1	04/01/2020 20:15	WG1453768
Ethylbenzene	U		0.000575	0.00271	1	04/01/2020 20:15	WG1453768
Total Xylenes	U		0.00518	0.00705	1	04/01/2020 20:15	WG1453768
(S) Toluene-d8	113			75.0-131		04/01/2020 20:15	WG1453768
(S) 4-Bromofluorobenzene	86.3			67.0-138		04/01/2020 20:15	WG1453768
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/01/2020 20:15	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.50	J	1.75	4.34	1	04/02/2020 04:27	WG1453628
C28-C40 Oil Range	1.96	J	0.297	4.34	1	04/02/2020 04:27	<u>WG1453628</u>
(S) o-Terphenyl	58.1			18.0-148		04/02/2020 04:27	WG1453628

SDG: L1204246 DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 05 L1204246

ONE LAB. NAT Rage 67. of 153

ΆI

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.6		1	04/01/2020 22:15	WG1453694	ЪС

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	110		0.831	10.5	1	04/02/2020 22:05	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/01/2020 18:00	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	98.3			59.0-128		04/01/2020 18:00	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00105	1	04/01/2020 20:35	<u>WG1453768</u>
Toluene	U		0.00131	0.00523	1	04/01/2020 20:35	WG1453768
Ethylbenzene	U		0.000554	0.00261	1	04/01/2020 20:35	WG1453768
Total Xylenes	U		0.00500	0.00680	1	04/01/2020 20:35	WG1453768
(S) Toluene-d8	112			75.0-131		04/01/2020 20:35	WG1453768
(S) 4-Bromofluorobenzene	89.9			67.0-138		04/01/2020 20:35	WG1453768
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/01/2020 20:35	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	04/02/2020 04:39	WG1453628
C28-C40 Oil Range	0.306	J	0.286	4.18	1	04/02/2020 04:39	<u>WG1453628</u>
(S) o-Terphenyl	63.4			18.0-148		04/02/2020 04:39	WG1453628

SDG: L1204246

DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 06

ONE LAB. NAT Rage 68 of 153

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

· · · · · · · · · · · · · · · · · · ·						Cn
	Result	Qualifier	Dilution	Analysis	Batch	CP
Analyte	%			date / time		2
Total Solids	89.7		1	04/01/2020 22:15	<u>WG1453694</u>	⁻Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	1580		4.44	55.7	5	04/02/2020 22:15	WG1453916	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0242	0.111	1	04/01/2020 18:40	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	92.1			59.0-128		04/01/2020 18:40	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000446	0.00111	1	04/01/2020 20:54	WG1453768
Toluene	U		0.00139	0.00557	1	04/01/2020 20:54	WG1453768
Ethylbenzene	U		0.000591	0.00279	1	04/01/2020 20:54	WG1453768
Total Xylenes	U		0.00533	0.00725	1	04/01/2020 20:54	WG1453768
(S) Toluene-d8	107			75.0-131		04/01/2020 20:54	WG1453768
(S) 4-Bromofluorobenzene	83.6			67.0-138		04/01/2020 20:54	WG1453768
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/01/2020 20:54	WG1453768

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	998		89.7	223	50	04/02/2020 07:21	WG1453628
C28-C40 Oil Range	1830		15.3	223	50	04/02/2020 07:21	<u>WG1453628</u>
(S) o-Terphenyl	105	<u>J7</u>		18.0-148		04/02/2020 07:21	WG1453628

SDG: L1204246 DATE/TIME: 04/07/20 10:00

SAMPLE RESULTS - 07

Â

Sc

Collected date/time: 03/25/20 00:00

Chloride

Total Solids by	y Method 2540 G	i-2011						1	<u> </u>
	Result	Qualifier	Dilution	Analysis		Batch		(Ср
Analyte	%			date / time				2	
Total Solids	87.9		1	04/01/2020 22:	15	WG1453694		2	Тс
Wet Chemistry	y by Method 300.	.0						3	Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time	-	4	Cn

10

04/02/2020 12:12

WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

9.04

114

1600

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0247	0.114	1	04/01/2020 19:28	WG1453878
(S) a,a,a-Trifluorotoluene(FID)	88.9			59.0-128		04/01/2020 19:28	WG1453878

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00205	J	0.00182	0.00455	4	04/06/2020 09:34	WG1455868
Toluene	0.00842	J	0.00569	0.0228	4	04/06/2020 09:34	<u>WG1455868</u>
Ethylbenzene	0.00535	J	0.00241	0.0114	4	04/06/2020 09:34	WG1455868
Total Xylenes	U		0.0217	0.0296	4	04/06/2020 09:34	WG1455868
(S) Toluene-d8	106			75.0-131		04/06/2020 09:34	WG1455868
(S) 4-Bromofluorobenzene	108			67.0-138		04/06/2020 09:34	WG1455868
(S) 1,2-Dichloroethane-d4	105			70.0-130		04/06/2020 09:34	WG1455868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	850		91.6	228	50	04/02/2020 07:34	WG1453628
C28-C40 Oil Range	1510		15.6	228	50	04/02/2020 07:34	WG1453628
(S) o-Terphenyl	102	<u>J7</u>		18.0-148		04/02/2020 07:34	WG1453628

SDG: L1204246 DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 08 L1204246

ONE LAB. NAT Rage 70 of 153

Â

Sc

Total Solids by Method 2540 G-2011

_	·····						Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Anal	yte	%			date / time		2
Tota	Solids	87.7		1	04/01/2020 22:15	WG1453694	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1890		9.06	114	10	04/02/2020 12:21	WG1453917	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	batem	
TPH (GC/FID) Low Fraction	U		0.0247	0.114	1	04/01/2020 19:52	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	93.6			59.0-128		04/01/2020 19:52	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000456	0.00114	1	04/02/2020 04:49	<u>WG1454287</u>
Toluene	U		0.00143	0.00570	1	04/02/2020 04:49	<u>WG1454287</u>
Ethylbenzene	U		0.000604	0.00285	1	04/02/2020 04:49	WG1454287
Total Xylenes	U		0.00545	0.00741	1	04/02/2020 04:49	<u>WG1454287</u>
(S) Toluene-d8	110			75.0-131		04/02/2020 04:49	WG1454287
(S) 4-Bromofluorobenzene	107			67.0-138		04/02/2020 04:49	<u>WG1454287</u>
(S) 1,2-Dichloroethane-d4	106			70.0-130		04/02/2020 04:49	WG1454287

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	115		9.18	22.8	5	04/02/2020 07:09	WG1453628
C28-C40 Oil Range	187		1.56	22.8	5	04/02/2020 07:09	WG1453628
(S) o-Terphenyl	51.1			18.0-148		04/02/2020 07:09	WG1453628

SDG: L1204246

DATE/TIME: 04/07/20 10:00

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 09 L1204246

ONE LAB. NAT Rage 71 of 153

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.4		1	04/01/2020 22:15	WG1453694	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	322		0.833	10.5	1	04/02/2020 12:31	WG1453917	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time		
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/01/2020 20:15	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	98.4			59.0-128		04/01/2020 20:15	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/01/2020 21:38	<u>WG1453794</u>
Toluene	U		0.00131	0.00524	1	04/01/2020 21:38	WG1453794
Ethylbenzene	U		0.000555	0.00262	1	04/01/2020 21:38	WG1453794
Total Xylenes	U		0.00501	0.00681	1	04/01/2020 21:38	<u>WG1453794</u>
(S) Toluene-d8	107			75.0-131		04/01/2020 21:38	WG1453794
(S) 4-Bromofluorobenzene	105			67.0-138		04/01/2020 21:38	WG1453794
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/01/2020 21:38	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.99	J	1.69	4.19	1	04/02/2020 04:52	<u>WG1453628</u>
C28-C40 Oil Range	1.59	J	0.287	4.19	1	04/02/2020 04:52	<u>WG1453628</u>
(S) o-Terphenyl	53.6			18.0-148		04/02/2020 04:52	WG1453628

SDG: L1204246

DATE/TIME: 04/07/20 10:00

SAMPLE RESULTS - 10

Â

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifier	Dilution	Analysis	ļ	Batch		
Analyte	%			date / time				
Total Solids	85.8		1	04/01/2020 22:15	1	WG1453694		
Wet Chemistr	ry by Method 300.0	C						
Wet Chemistr	ry by Method 300.0 Result (dry)		MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Wet Chemistr Analyte	5 5	Qualifier N	MDL (dry) ng/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0266	J	0.0253	0.117	1	04/01/2020 20:39	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	82.9			59.0-128		04/01/2020 20:39	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000466	0.00117	1	04/01/2020 21:58	WG1453794
Toluene	U		0.00146	0.00583	1	04/01/2020 21:58	<u>WG1453794</u>
Ethylbenzene	0.000641	J	0.000618	0.00291	1	04/01/2020 21:58	WG1453794
Total Xylenes	U		0.00557	0.00758	1	04/01/2020 21:58	<u>WG1453794</u>
(S) Toluene-d8	110			75.0-131		04/01/2020 21:58	WG1453794
(S) 4-Bromofluorobenzene	109			67.0-138		04/01/2020 21:58	<u>WG1453794</u>
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		04/01/2020 21:58	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	343		9.38	23.3	5	04/02/2020 13:49	WG1453628
C28-C40 Oil Range	242		1.60	23.3	5	04/02/2020 13:49	WG1453628
(S) o-Terphenyl	54.6			18.0-148		04/02/2020 13:49	WG1453628

SDG: L1204246

C

SAMPLE RESULTS - 11 L1204246

Cn

Sr

Â

Sc

Collected date/time: 03/25/20 00:00 Total Solids by Method 2540 G-2011

Total Solius by N	vietnoù 2540 G-2	.011				1 Cp
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	85.2		1	04/01/2020 22:15	<u>WG1453694</u>	Tc
Wet Chemistry b	by Method 300.0					³ Ss

wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19900		93.3	1170	100	04/02/2020 12:59	WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Batch	
TPH (GC/FID) Low Fraction	U		0.0255	0.117	1	04/01/2020 21:28	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	86.2			59.0-128		04/01/2020 21:28	WG1453878	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00117	1	04/01/2020 22:19	<u>WG1453794</u>
Toluene	U		0.00147	0.00587	1	04/01/2020 22:19	WG1453794
Ethylbenzene	U		0.000622	0.00293	1	04/01/2020 22:19	WG1453794
Total Xylenes	U		0.00561	0.00763	1	04/01/2020 22:19	WG1453794
(S) Toluene-d8	109			75.0-131		04/01/2020 22:19	WG1453794
(S) 4-Bromofluorobenzene	108			67.0-138		04/01/2020 22:19	WG1453794
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/01/2020 22:19	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	201		1.89	4.69	1	04/02/2020 06:44	WG1453628
C28-C40 Oil Range	124		0.321	4.69	1	04/02/2020 06:44	WG1453628
(S) o-Terphenyl	84.1			18.0-148		04/02/2020 06:44	WG1453628

SDG: L1204246

SAMPLE RESULTS - 12

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/25/20 00:00

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	81.6		1	04/01/2020 22:15	WG1453694	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14100		97.5	1230	100	04/02/2020 13:09	WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Bliddon	date / time	baten	1	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0266	0.123	1	04/01/2020 21:52	WG1453878		
(S) a,a,a-Trifluorotoluene(FID)	88.0			59.0-128		04/01/2020 21:52	WG1453878		⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00123	1	04/01/2020 22:39	WG1453794
Toluene	U		0.00153	0.00613	1	04/01/2020 22:39	WG1453794
Ethylbenzene	U		0.000650	0.00307	1	04/01/2020 22:39	WG1453794
Total Xylenes	U		0.00586	0.00797	1	04/01/2020 22:39	WG1453794
(S) Toluene-d8	108			75.0-131		04/01/2020 22:39	WG1453794
(S) 4-Bromofluorobenzene	107			67.0-138		04/01/2020 22:39	WG1453794
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/01/2020 22:39	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	283		1.97	4.90	1	04/02/2020 06:56	WG1453628
C28-C40 Oil Range	184		0.336	4.90	1	04/02/2020 06:56	WG1453628
(S) o-Terphenyl	94.2			18.0-148		04/02/2020 06:56	WG1453628

SDG: L1204246

SAMPLE RESULTS - 13 L1204246

Cn

Â

Sc

Collected date/time: 03/25/20 00:00 Total Solids by Method 2540 G-2011

Total Solids by h	vietnoù 2040 0-2	-011				
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	95.7		1	04/01/2020 22:15	WG1453694	É T c
Wet Chemistry b	by Method 300.0					³ Ss

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	108		0.830	10.4	1	04/02/2020 13:19	WG1453917	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		-
Analyte	mg/kg	duamer	mg/kg	mg/kg	Dilution	date / time	Baten	6	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	04/01/2020 22:16	WG1453878		
(S) a,a,a-Trifluorotoluene(FID)	98.4			59.0-128		04/01/2020 22:16	WG1453878	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00104	1	04/01/2020 22:59	<u>WG1453794</u>
Toluene	U		0.00131	0.00522	1	04/01/2020 22:59	WG1453794
Ethylbenzene	U		0.000554	0.00261	1	04/01/2020 22:59	WG1453794
Total Xylenes	U		0.00499	0.00679	1	04/01/2020 22:59	WG1453794
(S) Toluene-d8	106			75.0-131		04/01/2020 22:59	WG1453794
(S) 4-Bromofluorobenzene	107			67.0-138		04/01/2020 22:59	WG1453794
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		04/01/2020 22:59	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	04/02/2020 05:05	<u>WG1453628</u>
C28-C40 Oil Range	U		0.286	4.18	1	04/02/2020 05:05	<u>WG1453628</u>
(S) o-Terphenyl	72.7			18.0-148		04/02/2020 05:05	WG1453628

SDG: L1204246

SAMPLE RESULTS - 14

Cn

Sr

ΆI

Sc

Collected date/time: 03/25/20 00:00

Chloride

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	88.5		1	04/01/2020 22:	15	WG1453694		
Wet Chemistry	by Method 300.	0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	

10

04/02/2020 13:47

WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

8.98

2920

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	04/01/2020 22:40	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	96.7			59.0-128		04/01/2020 22:40	WG1453878	⁷ Gl

113

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000452	0.00113	1	04/01/2020 23:19	WG1453794
Toluene	U		0.00141	0.00565	1	04/01/2020 23:19	WG1453794
Ethylbenzene	U		0.000599	0.00282	1	04/01/2020 23:19	WG1453794
Total Xylenes	U		0.00540	0.00734	1	04/01/2020 23:19	<u>WG1453794</u>
(S) Toluene-d8	108			75.0-131		04/01/2020 23:19	WG1453794
(S) 4-Bromofluorobenzene	108			67.0-138		04/01/2020 23:19	<u>WG1453794</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/01/2020 23:19	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.88		1.82	4.52	1	04/02/2020 05:17	WG1453628
C28-C40 Oil Range	5.32		0.310	4.52	1	04/02/2020 05:17	WG1453628
(S) o-Terphenyl	41.1			18.0-148		04/02/2020 05:17	WG1453628

SDG: L1204246

SAMPLE RESULTS - 15

Â

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifier	Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	89.5		1	04/01/2020 22	2:04	WG1453695	
Wet Chemistry	y by Method 300.0	С					
Wet Chemistry	-		MDL (dp/)	RDL (dry)			Batch
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Wet Chemistry Analyte	-	Qualifier	MDL (dry) mg/kg 8.88	RDL (dry) mg/kg 112			Batch WG1453917

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ĽQ
TPH (GC/FID) Low Fraction	U		0.0242	0.112	1	04/01/2020 23:04	WG1453878	
(S) a,a,a-Trifluorotoluene(FID)	97.5			59.0-128		04/01/2020 23:04	<u>WG1453878</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000447	0.00112	1	04/01/2020 23:40	WG1453794
Toluene	U		0.00140	0.00558	1	04/01/2020 23:40	WG1453794
Ethylbenzene	U		0.000592	0.00279	1	04/01/2020 23:40	WG1453794
Total Xylenes	U		0.00534	0.00726	1	04/01/2020 23:40	WG1453794
(S) Toluene-d8	109			75.0-131		04/01/2020 23:40	WG1453794
(S) 4-Bromofluorobenzene	107			67.0-138		04/01/2020 23:40	WG1453794
(S) 1,2-Dichloroethane-d4	100			70.0-130		04/01/2020 23:40	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.81	J	1.80	4.47	1	04/02/2020 05:30	WG1453628
C28-C40 Oil Range	4.48		0.306	4.47	1	04/02/2020 05:30	<u>WG1453628</u>
(S) o-Terphenyl	52.6			18.0-148		04/02/2020 05:30	WG1453628

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 16

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						I'Cr	2
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	89.7		1	04/01/2020 22:04	WG1453695	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1730		8.86	111	10	04/02/2020 14:06	WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner			Dilution	,	Bateri	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0346	<u>B J</u>	0.0242	0.111	1	04/02/2020 00:11	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		04/02/2020 00:11	WG1453939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000446	0.00111	1	04/02/2020 00:00	<u>WG1453794</u>
Toluene	U		0.00139	0.00557	1	04/02/2020 00:00	WG1453794
Ethylbenzene	U		0.000591	0.00279	1	04/02/2020 00:00	WG1453794
Total Xylenes	U		0.00533	0.00725	1	04/02/2020 00:00	WG1453794
(S) Toluene-d8	107			75.0-131		04/02/2020 00:00	WG1453794
(S) 4-Bromofluorobenzene	104			67.0-138		04/02/2020 00:00	WG1453794
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		04/02/2020 00:00	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.09		1.79	4.46	1	04/02/2020 20:41	WG1453629
C28-C40 Oil Range	6.13		0.305	4.46	1	04/02/2020 20:41	WG1453629
(S) o-Terphenyl	81.6			18.0-148		04/02/2020 20:41	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 17

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

,						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.5		1	04/01/2020 22:04	WG1453695	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.8		0.832	10.5	1	04/02/2020 14:16	WG1453917

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0239	ВJ	0.0227	0.105	1	04/02/2020 00:32	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		04/02/2020 00:32	<u>WG1453939</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	04/02/2020 00:20	WG1453794
Toluene	U		0.00131	0.00523	1	04/02/2020 00:20	WG1453794
Ethylbenzene	U		0.000555	0.00262	1	04/02/2020 00:20	WG1453794
Total Xylenes	U		0.00500	0.00680	1	04/02/2020 00:20	WG1453794
(S) Toluene-d8	107			75.0-131		04/02/2020 00:20	WG1453794
(S) 4-Bromofluorobenzene	104			67.0-138		04/02/2020 00:20	WG1453794
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/02/2020 00:20	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.23		1.69	4.19	1	04/02/2020 20:57	WG1453629
C28-C40 Oil Range	4.09	J	0.287	4.19	1	04/02/2020 20:57	WG1453629
(S) o-Terphenyl	95.7			18.0-148		04/02/2020 20:57	WG1453629

SDG: L1204246

SAMPLE RESULTS - 18 L1204246

Cn

Â

Sc

Collected date/time: 03/25/20 00:00 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Cp
Analyte	%			date / time		2
Total Solids	81.6		1	04/01/2020 22:04	WG1453695	^ˆ Tc

Wet Chemistry by Method 300.0

Wet Chemistry	v by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	17.1	В	0.975	12.3	1	04/02/2020 14:44	WG1453917	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic C	compounds ((GC) by Me	ethod 8015	5D/GRO				⁵ Sr
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	0.0501	ВJ	0.0266	0.123	1	04/02/2020 00:52	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.3			77.0-120		04/02/2020 00:52	<u>WG1453939</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00123	1	04/02/2020 00:40	WG1453794
Toluene	U		0.00153	0.00613	1	04/02/2020 00:40	WG1453794
Ethylbenzene	U		0.000650	0.00306	1	04/02/2020 00:40	WG1453794
Total Xylenes	U		0.00586	0.00797	1	04/02/2020 00:40	WG1453794
(S) Toluene-d8	110			75.0-131		04/02/2020 00:40	WG1453794
(S) 4-Bromofluorobenzene	106			67.0-138		04/02/2020 00:40	WG1453794
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/02/2020 00:40	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.2		1.97	4.90	1	04/03/2020 00:09	<u>WG1453629</u>
C28-C40 Oil Range	19.9		0.336	4.90	1	04/03/2020 00:09	<u>WG1453629</u>
(S) o-Terphenyl	67.8			18.0-148		04/03/2020 00:09	WG1453629

SDG: L1204246

SAMPLE RESULTS - 19 L1204246

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/25/20 00:00

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.4		1	04/01/2020 22:04	WG1453695	Tc

Wet Chemistry by Method 300.0

Wet Chemistry b	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	25.2	B	0.976	12.3	1	04/02/2020 14:54	<u>WG1453917</u>	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	ma/ka	quanner	mg/kg	mg/kg	Dilution	date / time	bach	1	6 G
TPH (GC/FID) Low Fraction	0.0647	<u>B J</u>	0.0267	0.123	1	04/02/2020 01:13	WG1453939		
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120		04/02/2020 01:13	WG1453939		⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00123	1	04/02/2020 01:00	WG1453794
Toluene	U		0.00154	0.00614	1	04/02/2020 01:00	<u>WG1453794</u>
Ethylbenzene	U		0.000651	0.00307	1	04/02/2020 01:00	WG1453794
Total Xylenes	U		0.00587	0.00798	1	04/02/2020 01:00	WG1453794
(S) Toluene-d8	107			75.0-131		04/02/2020 01:00	WG1453794
(S) 4-Bromofluorobenzene	104			67.0-138		04/02/2020 01:00	WG1453794
(S) 1,2-Dichloroethane-d4	99.2			70.0-130		04/02/2020 01:00	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.00	<u>J3</u>	1.98	4.91	1	04/03/2020 01:44	WG1453629
C28-C40 Oil Range	17.8		0.337	4.91	1	04/03/2020 01:44	WG1453629
(S) o-Terphenyl	60.7			18.0-148		04/03/2020 01:44	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 20 L1204246

ONE LAB. NAT Rage 82 of 153

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

						I'Cr
	Result	Qualifier	Dilution	Analysis	Batch	Ch
Analyte	%			date / time		2
Total Solids	80.2		1	04/01/2020 22:04	WG1453695	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	25.7	В	0.991	12.5	1	04/02/2020 15:03	WG1453917	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	buttin	6	6 G
TPH (GC/FID) Low Fraction	0.0437	<u>B J</u>	0.0270	0.125	1	04/02/2020 01:33	WG1453939		
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		04/02/2020 01:33	WG1453939	3	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00125	1	04/02/2020 01:20	WG1453794
Toluene	U		0.00156	0.00623	1	04/02/2020 01:20	<u>WG1453794</u>
Ethylbenzene	U		0.000660	0.00312	1	04/02/2020 01:20	WG1453794
Total Xylenes	U		0.00596	0.00810	1	04/02/2020 01:20	<u>WG1453794</u>
(S) Toluene-d8	108			75.0-131		04/02/2020 01:20	WG1453794
(S) 4-Bromofluorobenzene	107			67.0-138		04/02/2020 01:20	<u>WG1453794</u>
(S) 1,2-Dichloroethane-d4	98.7			70.0-130		04/02/2020 01:20	WG1453794

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.61	J	2.01	4.98	1	04/03/2020 00:25	WG1453629
C28-C40 Oil Range	8.65		0.341	4.98	1	04/03/2020 00:25	WG1453629
(S) o-Terphenyl	69.3			18.0-148		04/03/2020 00:25	WG1453629

SDG: L1204246

SAMPLE RESULTS - 21 L1204246

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 03/25/20 00:00

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	93.3		1	04/01/2020 22:04	WG1453695	⁻Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	30.2		0.852	10.7	1	04/02/2020 15:13	WG1453917	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.104	ВJ	0.0233	0.107	1	04/06/2020 13:00	WG1456182	
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		04/06/2020 13:00	WG1456182	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00107	1	04/02/2020 00:06	<u>WG1454074</u>
Toluene	U		0.00134	0.00536	1	04/02/2020 00:06	WG1454074
Ethylbenzene	U		0.000568	0.00268	1	04/02/2020 00:06	WG1454074
Total Xylenes	U		0.00512	0.00696	1	04/02/2020 00:06	WG1454074
(S) Toluene-d8	112			75.0-131		04/02/2020 00:06	WG1454074
(S) 4-Bromofluorobenzene	91.6			67.0-138		04/02/2020 00:06	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/02/2020 00:06	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.52	J	1.73	4.29	1	04/02/2020 23:05	<u>WG1453629</u>
C28-C40 Oil Range	4.07	J	0.294	4.29	1	04/02/2020 23:05	<u>WG1453629</u>
(S) o-Terphenyl	95.0			18.0-148		04/02/2020 23:05	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 22 L1204246

ONE LAB. NAT Rage 84 of 153

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.2		1	04/01/2020 22:04	WG1453695	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	37.5		0.853	10.7	1	04/02/2020 15:41	WG1453917	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Baten	6
TPH (GC/FID) Low Fraction	0.0404	ВJ	0.0233	0.107	1	04/02/2020 02:45	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		04/02/2020 02:45	<u>WG1453939</u>	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00107	1	04/02/2020 00:25	<u>WG1454074</u>
Toluene	U		0.00134	0.00536	1	04/02/2020 00:25	WG1454074
Ethylbenzene	U		0.000568	0.00268	1	04/02/2020 00:25	WG1454074
Total Xylenes	U		0.00513	0.00697	1	04/02/2020 00:25	WG1454074
(S) Toluene-d8	114			75.0-131		04/02/2020 00:25	WG1454074
(S) 4-Bromofluorobenzene	87.6			67.0-138		04/02/2020 00:25	WG1454074
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/02/2020 00:25	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.66		1.73	4.29	1	04/02/2020 23:21	WG1453629
C28-C40 Oil Range	6.94		0.294	4.29	1	04/02/2020 23:21	<u>WG1453629</u>
(S) o-Terphenyl	97.6			18.0-148		04/02/2020 23:21	WG1453629

SDG: L1204246

SAMPLE RESULTS - 23

ONE LAB. NAT Rage 85 of 153

[®]Al

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	92.5		1	04/01/2020 22:	04	WG1453695		
Wet Chemistry	y by Method 300.0	С						
Wet Chemistry	y by Method 300.0 Result (dry)		MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Wet Chemistry		Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0265	ВJ	0.0235	0.108	1	04/02/2020 04:08	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		04/02/2020 04:08	WG1453939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00108	1	04/02/2020 00:44	WG1454074
Toluene	U		0.00135	0.00540	1	04/02/2020 00:44	<u>WG1454074</u>
Ethylbenzene	U		0.000573	0.00270	1	04/02/2020 00:44	WG1454074
Total Xylenes	U		0.00517	0.00703	1	04/02/2020 00:44	<u>WG1454074</u>
(S) Toluene-d8	110			75.0-131		04/02/2020 00:44	WG1454074
(S) 4-Bromofluorobenzene	88.7			67.0-138		04/02/2020 00:44	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/02/2020 00:44	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.77		1.74	4.32	1	04/02/2020 23:37	WG1453629
C28-C40 Oil Range	4.43		0.296	4.32	1	04/02/2020 23:37	WG1453629
(S) o-Terphenyl	95.3			18.0-148		04/02/2020 23:37	WG1453629

SDG: L1204246

SAMPLE RESULTS - 24 L1204246

ONE LAB. NAT Rage 86 of 153

Al

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifie	r Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	93.8		1	04/01/2020 22	::04	WG1453695		
Wet Chemistry by	Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	7.52	<u>B J</u>	0.847	10.7	1	04/02/2020 16:00	WG1453917	
Volatile Organic C	compounds (C	GC) by Met	thod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	04/02/2020 04:28	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.6			77.0-120		04/02/2020 04:28	WG1453939	
-,-,								

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00107	1	04/02/2020 01:03	WG1454074
Toluene	U		0.00133	0.00533	1	04/02/2020 01:03	<u>WG1454074</u>
Ethylbenzene	U		0.000565	0.00266	1	04/02/2020 01:03	WG1454074
Total Xylenes	U		0.00509	0.00693	1	04/02/2020 01:03	<u>WG1454074</u>
(S) Toluene-d8	110			75.0-131		04/02/2020 01:03	WG1454074
(S) 4-Bromofluorobenzene	87.2			67.0-138		04/02/2020 01:03	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/02/2020 01:03	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.15	J	1.72	4.26	1	04/02/2020 21:12	WG1453629
C28-C40 Oil Range	2.16	<u>B J</u>	0.292	4.26	1	04/02/2020 21:12	<u>WG1453629</u>
(S) o-Terphenyl	92.6			18.0-148		04/02/2020 21:12	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 25 L1204246

ONE LAB. NAT Rage 87. of 153

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		88.0		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	Cn
Chloride	62.6		0.904	11.4	1	04/02/2020 16:19	WG1453917		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.246	B	0.0247	0.114	1	04/06/2020 13:22	WG1456182	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/06/2020 13:22	WG1456182	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00114	1	04/02/2020 01:23	WG1454074
Toluene	U		0.00142	0.00568	1	04/02/2020 01:23	WG1454074
Ethylbenzene	U		0.000603	0.00284	1	04/02/2020 01:23	WG1454074
Total Xylenes	U		0.00543	0.00739	1	04/02/2020 01:23	WG1454074
(S) Toluene-d8	112			75.0-131		04/02/2020 01:23	WG1454074
(S) 4-Bromofluorobenzene	88.7			67.0-138		04/02/2020 01:23	WG1454074
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/02/2020 01:23	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.1		1.83	4.55	1	04/03/2020 01:28	WG1453629
C28-C40 Oil Range	38.5		0.311	4.55	1	04/03/2020 01:28	WG1453629
(S) o-Terphenyl	65.9			18.0-148		04/03/2020 01:28	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 26 L1204246

ONE LAB. NAT Rage 88 of 153

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	C	%			date / time		2
Total Solids	č	37.5		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	45.4		0.909	11.4	1	04/02/2020 16:29	WG1453917		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0599	ВJ	0.0248	0.114	1	04/02/2020 05:35	WG1453939
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120		04/02/2020 05:35	WG1453939

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000457	0.00114	1	04/02/2020 01:42	WG1454074
Toluene	U		0.00143	0.00571	1	04/02/2020 01:42	<u>WG1454074</u>
Ethylbenzene	U		0.000606	0.00286	1	04/02/2020 01:42	WG1454074
Total Xylenes	U		0.00546	0.00743	1	04/02/2020 01:42	WG1454074
(S) Toluene-d8	112			75.0-131		04/02/2020 01:42	WG1454074
(S) 4-Bromofluorobenzene	90.1			67.0-138		04/02/2020 01:42	WG1454074
(S) 1,2-Dichloroethane-d4	115			70.0-130		04/02/2020 01:42	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.0		1.84	4.57	1	04/03/2020 00:41	WG1453629
C28-C40 Oil Range	24.9		0.313	4.57	1	04/03/2020 00:41	WG1453629
(S) o-Terphenyl	83.3			18.0-148		04/03/2020 00:41	WG1453629

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 38 of 77

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 27

ONE LAB. NAT Rage 89 of 153

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.0		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	152		4.52	56.8	5	04/02/2020 23:50	WG1453918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0369	ВJ	0.0247	0.114	1	04/02/2020 05:56	WG1453939
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		04/02/2020 05:56	WG1453939

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000454	0.00114	1	04/02/2020 02:01	WG1454074
Toluene	U		0.00142	0.00568	1	04/02/2020 02:01	WG1454074
Ethylbenzene	U		0.000602	0.00284	1	04/02/2020 02:01	WG1454074
Total Xylenes	U		0.00543	0.00738	1	04/02/2020 02:01	WG1454074
(S) Toluene-d8	109			75.0-131		04/02/2020 02:01	WG1454074
(S) 4-Bromofluorobenzene	83.4			67.0-138		04/02/2020 02:01	WG1454074
(S) 1,2-Dichloroethane-d4	105			70.0-130		04/02/2020 02:01	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.35		1.83	4.54	1	04/02/2020 23:53	WG1453629
C28-C40 Oil Range	12.5		0.311	4.54	1	04/02/2020 23:53	<u>WG1453629</u>
(S) o-Terphenyl	87.7			18.0-148		04/02/2020 23:53	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 28 L1204246

ONE LAB. NAT Rage 90 of 153

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	87.6		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	260		4.55	57.1	5	04/03/2020 00:09	WG1453918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner			Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0248	J	0.0248	0.114	1	04/02/2020 06:16	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		04/02/2020 06:16	WG1453939	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000457	0.00114	1	04/02/2020 02:20	WG1454074
Toluene	U		0.00143	0.00571	1	04/02/2020 02:20	<u>WG1454074</u>
Ethylbenzene	U		0.000605	0.00286	1	04/02/2020 02:20	WG1454074
Total Xylenes	U		0.00546	0.00742	1	04/02/2020 02:20	WG1454074
(S) Toluene-d8	111			75.0-131		04/02/2020 02:20	WG1454074
(S) 4-Bromofluorobenzene	88.9			67.0-138		04/02/2020 02:20	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/02/2020 02:20	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.52	J	1.84	4.57	1	04/02/2020 21:29	WG1453629
C28-C40 Oil Range	4.51	J	0.313	4.57	1	04/02/2020 21:29	WG1453629
(S) o-Terphenyl	75.0			18.0-148		04/02/2020 21:29	WG1453629

SDG: L1204246

SAMPLE RESULTS - 29

ONE LAB. NAT Rage 91 of 153

*Q*c

Gl

Al

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifie	er Dilution	Analysis	Ē	Batch		
Analyte	%			date / time				
Total Solids	86.8		1	04/01/2020 21:50	V	WG1453697		
wei Chemistry i	by Method 300.	0						
wet Chemistry t	·		MDL (dp.)	PDI (dn)	Vilution	Analysis	Datch	
	Result (dry)	() Qualifier	MDL (dry)		Dilution	Analysis	Batch	
Analyte Chloride	·		MDL (dry) mg/kg 0.915	RDL (dry) D mg/kg 11.5 1	Dilution	Analysis date / time 04/03/2020 00:19	Batch WG1453918	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0316	ВJ	0.0250	0.115	1	04/02/2020 07:04	WG1453939
(S) a.a.a-Trifluorotoluene(FID)	96.0			77.0-120		04/02/2020 07:04	WG1453939

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000461	0.00115	1	04/02/2020 02:39	WG1454074
Toluene	U		0.00144	0.00576	1	04/02/2020 02:39	WG1454074
Ethylbenzene	U		0.000610	0.00288	1	04/02/2020 02:39	WG1454074
Total Xylenes	U		0.00550	0.00749	1	04/02/2020 02:39	WG1454074
(S) Toluene-d8	111			75.0-131		04/02/2020 02:39	WG1454074
(S) 4-Bromofluorobenzene	88.1			67.0-138		04/02/2020 02:39	WG1454074
(S) 1,2-Dichloroethane-d4	117			70.0-130		04/02/2020 02:39	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.08		1.85	4.61	1	04/02/2020 21:45	WG1453629
C28-C40 Oil Range	5.50		0.316	4.61	1	04/02/2020 21:45	<u>WG1453629</u>
(S) o-Terphenyl	69.3			18.0-148		04/02/2020 21:45	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 30

ONE LAB. NAT Rage 92 of 153

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		87.2		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	295		0.911	11.5	1	04/03/2020 00:28	WG1453918	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	batch	
TPH (GC/FID) Low Fraction	0.0315	<u>B J</u>	0.0249	0.115	1	04/02/2020 07:24	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		04/02/2020 07:24	WG1453939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000459	0.00115	1	04/02/2020 02:58	WG1454074
Toluene	U		0.00143	0.00573	1	04/02/2020 02:58	<u>WG1454074</u>
Ethylbenzene	U		0.000608	0.00287	1	04/02/2020 02:58	WG1454074
Total Xylenes	U		0.00548	0.00745	1	04/02/2020 02:58	WG1454074
(S) Toluene-d8	110			75.0-131		04/02/2020 02:58	WG1454074
(S) 4-Bromofluorobenzene	86.8			67.0-138		04/02/2020 02:58	WG1454074
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/02/2020 02:58	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.67		1.85	4.59	1	04/02/2020 22:01	WG1453629
C28-C40 Oil Range	7.58		0.314	4.59	1	04/02/2020 22:01	<u>WG1453629</u>
(S) o-Terphenyl	77.6			18.0-148		04/02/2020 22:01	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 31

ONE LAB. NAT Rage 93 of 153

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

							1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	_	Ср
Analyte	%			date / time		ī	2
Total Solids	86.4		1	04/01/2020 21:50	WG1453697		ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	69.9		0.920	11.6	1	04/03/2020 00:38	WG1453918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0326	ВJ	0.0251	0.116	1	04/02/2020 07:45	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		04/02/2020 07:45	<u>WG1453939</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000463	0.00116	1	04/02/2020 03:17	WG1454074
Toluene	U		0.00145	0.00579	1	04/02/2020 03:17	WG1454074
Ethylbenzene	U		0.000613	0.00289	1	04/02/2020 03:17	WG1454074
Total Xylenes	U		0.00553	0.00752	1	04/02/2020 03:17	WG1454074
(S) Toluene-d8	109			75.0-131		04/02/2020 03:17	WG1454074
(S) 4-Bromofluorobenzene	84.6			67.0-138		04/02/2020 03:17	WG1454074
(S) 1,2-Dichloroethane-d4	116			70.0-130		04/02/2020 03:17	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.2		1.86	4.63	1	04/03/2020 00:56	<u>WG1453629</u>
C28-C40 Oil Range	27.9		0.317	4.63	1	04/03/2020 00:56	<u>WG1453629</u>
(S) o-Terphenyl	72.3			18.0-148		04/03/2020 00:56	WG1453629

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 32 L1204246

ONE LAB. NAT Rage 94 of 153

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.6		1	04/01/2020 21:50	WG1453697	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	25.2		0.868	10.9	1	04/03/2020 00:47	WG1453918	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analuta		Guainer			Dilation	,	Bateri
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0679	<u>B J</u>	0.0237	0.109	1	04/02/2020 08:26	WG1453939
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120		04/02/2020 08:26	WG1453939

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000436	0.00109	1	04/02/2020 03:36	WG1454074
Toluene	U		0.00136	0.00546	1	04/02/2020 03:36	<u>WG1454074</u>
Ethylbenzene	U		0.000578	0.00273	1	04/02/2020 03:36	WG1454074
Total Xylenes	U		0.00522	0.00709	1	04/02/2020 03:36	WG1454074
(S) Toluene-d8	113			75.0-131		04/02/2020 03:36	WG1454074
(S) 4-Bromofluorobenzene	87.8			67.0-138		04/02/2020 03:36	WG1454074
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/02/2020 03:36	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.55	J	1.76	4.36	1	04/02/2020 22:17	WG1453629
C28-C40 Oil Range	6.84		0.299	4.36	1	04/02/2020 22:17	<u>WG1453629</u>
(S) o-Terphenyl	97.4			18.0-148		04/02/2020 22:17	WG1453629

SDG: L1204246

SAMPLE RESULTS - 33

ONE LAB. NAT Rage 95 of 253

AI

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifie	r Dilution	Analysis		Batch		
Analyte	%		•	date / time				
Total Solids	89.9		1	04/01/2020 21:50	0	WG1453697		
Wet Chemistry by	Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	9.92	<u>B J</u>	0.884	11.1	1	04/03/2020 00:57	WG1453918	
Volatile Organic C	Compounds (C	GC) by Met	thod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0534	ВJ	0.0241	0.111	1	04/02/2020 08:46	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		04/02/2020 08:46	WG1453939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000445	0.00111	1	04/02/2020 03:56	WG1454074
Toluene	U		0.00139	0.00556	1	04/02/2020 03:56	WG1454074
Ethylbenzene	U		0.000589	0.00278	1	04/02/2020 03:56	WG1454074
Total Xylenes	U		0.00532	0.00723	1	04/02/2020 03:56	WG1454074
(S) Toluene-d8	109			75.0-131		04/02/2020 03:56	WG1454074
(S) 4-Bromofluorobenzene	85.7			67.0-138		04/02/2020 03:56	WG1454074
(S) 1,2-Dichloroethane-d4	113			70.0-130		04/02/2020 03:56	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.5		1.79	4.45	1	04/03/2020 01:12	WG1453629
C28-C40 Oil Range	30.8		0.305	4.45	1	04/03/2020 01:12	WG1453629
(S) o-Terphenyl	93.7			18.0-148		04/03/2020 01:12	WG1453629

SDG: L1204246

SAMPLE RESULTS - 34

ONE LAB. NAT Rage 96 of \$3

Sr

AI

Sc

Collected date/time: 03/25/20 00:00

Chloride

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	95.7		1	04/01/2020 21:5	0	WG1453697		
Wet Chemistry	by Method 300.	0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		

1

04/03/2020 01:25

WG1453918

Volatile Organic Compounds (GC) by Method 8015D/GRO

<u>B J</u>

0.831

7.66

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0265	ВJ	0.0227	0.105	1	04/02/2020 09:07	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		04/02/2020 09:07	WG1453939	⁷ Gl

10.5

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00105	1	04/02/2020 04:15	<u>WG1454074</u>
Toluene	U		0.00131	0.00523	1	04/02/2020 04:15	<u>WG1454074</u>
Ethylbenzene	U		0.000554	0.00261	1	04/02/2020 04:15	WG1454074
Total Xylenes	U		0.00500	0.00679	1	04/02/2020 04:15	WG1454074
(S) Toluene-d8	113			75.0-131		04/02/2020 04:15	WG1454074
(S) 4-Bromofluorobenzene	85.4			67.0-138		04/02/2020 04:15	WG1454074
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/02/2020 04:15	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.21		1.68	4.18	1	04/02/2020 22:33	WG1453629
C28-C40 Oil Range	6.41		0.286	4.18	1	04/02/2020 22:33	<u>WG1453629</u>
(S) o-Terphenyl	82.0			18.0-148		04/02/2020 22:33	WG1453629

SDG: L1204246 C

SAMPLE RESULTS - 35

ONE LAB. NAT Rage 97 of 153

Cn

ΆI

Sc

Collected date/time: 03/25/20 00:00

Analyte

Chloride

I otal Solids by	Method 2540 (5-2011						1 C n
	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				2
Total Solids	95.7		1	04/01/2020 21:33		WG1453699		² Tc
Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	

1

date / time

04/03/2020 01:54

WG1453918

mg/kg

10.4

Volatile Organic Compounds (GC) by Method 8015D/GRO

ΒJ

mg/kg

0.831

mg/kg

7.52

volatile Organic Co	Inpounds (G	ic) by live	20100 6015	D/GRO				01
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0306	<u>B J</u>	0.0227	0.104	1	04/02/2020 09:27	WG1453939	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		04/02/2020 09:27	<u>WG1453939</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00104	1	04/02/2020 04:34	<u>WG1454074</u>
Toluene	U		0.00131	0.00522	1	04/02/2020 04:34	<u>WG1454074</u>
Ethylbenzene	U		0.000554	0.00261	1	04/02/2020 04:34	WG1454074
Total Xylenes	U		0.00499	0.00679	1	04/02/2020 04:34	<u>WG1454074</u>
(S) Toluene-d8	110			75.0-131		04/02/2020 04:34	WG1454074
(S) 4-Bromofluorobenzene	84.9			67.0-138		04/02/2020 04:34	WG1454074
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/02/2020 04:34	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.83	J	1.68	4.18	1	04/02/2020 22:49	<u>WG1453629</u>
C28-C40 Oil Range	3.55	J	0.286	4.18	1	04/02/2020 22:49	<u>WG1453629</u>
(S) o-Terphenyl	83.0			18.0-148		04/02/2020 22:49	WG1453629

SDG: L1204246

SAMPLE RESULTS - 36

ONE LAB. NAT Rage 98 of 153

Â

Sc

Collected date/time: 03/25/20 00:00

		Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	81.7		1	04/01/2020 21:33	WG1453699	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	7.88	<u>B J</u>	0.973	12.2	1	04/03/2020 02:03	WG1453918	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0266	0.122	1	04/02/2020 23:57	WG1453948	
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		04/02/2020 23:57	WG1453948	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00122	1	04/02/2020 04:54	WG1454074
Toluene	U		0.00153	0.00612	1	04/02/2020 04:54	WG1454074
Ethylbenzene	U		0.000649	0.00306	1	04/02/2020 04:54	WG1454074
Total Xylenes	U		0.00585	0.00795	1	04/02/2020 04:54	<u>WG1454074</u>
(S) Toluene-d8	112			75.0-131		04/02/2020 04:54	<u>WG1454074</u>
(S) 4-Bromofluorobenzene	85.2			67.0-138		04/02/2020 04:54	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/02/2020 04:54	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.54	J	1.97	4.89	1	04/03/2020 03:38	WG1453630
C28-C40 Oil Range	0.688	J	0.335	4.89	1	04/03/2020 03:38	WG1453630
(S) o-Terphenyl	85.8			18.0-148		04/03/2020 03:38	WG1453630

SDG: L1204246

Collected date/time: 03/25/20 00:00

SAMPLE RESULTS - 37 L1204246

ONE LAB. NAT Rage 99 of 153

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.5		1	04/01/2020 21:33	WG1453699	Tc

Wet Chemistry by Method 300.0

Wet Chemist	try by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	39.6		0.851	10.7	1	04/03/2020 02:13	WG1453918	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	0.0461	1	0.0232	0.107	1	04/03/2020 00:18	WG1453948	
, , , , , , , , , , , , , , , , , , ,	0.0401	<u> </u>	0.0232	0.107	I	04/03/2020 00.18	W01433346	
(S) a,a,a-Trifluorotoluene(FID)	95.6			77.0-120		04/03/2020 00:18	WG1453948	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00107	1	04/02/2020 05:13	<u>WG1454074</u>
Toluene	U		0.00134	0.00535	1	04/02/2020 05:13	WG1454074
Ethylbenzene	U		0.000567	0.00267	1	04/02/2020 05:13	WG1454074
Total Xylenes	U		0.00511	0.00695	1	04/02/2020 05:13	WG1454074
(S) Toluene-d8	110			75.0-131		04/02/2020 05:13	WG1454074
(S) 4-Bromofluorobenzene	88.8			67.0-138		04/02/2020 05:13	WG1454074
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/02/2020 05:13	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.41		1.72	4.28	1	04/03/2020 08:24	<u>WG1453630</u>
C28-C40 Oil Range	4.16	J	0.293	4.28	1	04/03/2020 08:24	<u>WG1453630</u>
(S) o-Terphenyl	93.4			18.0-148		04/03/2020 08:24	WG1453630

SDG: L1204246

SAMPLE RESULTS - 38

ONE LAB. NAPagev100 of 153

AI

Sc

Collected date/time: 03/25/20 00:00

	Result	Qualifie	er Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	92.3		1	04/01/2020 21:3	33	WG1453699		
	y by Method 300.							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte			MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Analyte Chloride	Result (dry)				Dilution 1		Batch WG1453918	
-	Result (dry) mg/kg	Qualifier	mg/kg	mg/kg	Dilution	date / time		
Chloride	Result (dry) mg/kg	Qualifier	mg/kg 0.861	mg/kg 10.8	Dilution	date / time		

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ଁ Q
TPH (GC/FID) Low Fraction	0.0258	J	0.0235	0.108	1	04/03/2020 00:38	WG1453948	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		04/03/2020 00:38	WG1453948	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00108	1	04/02/2020 05:32	<u>WG1454074</u>
Toluene	U		0.00135	0.00541	1	04/02/2020 05:32	<u>WG1454074</u>
Ethylbenzene	U		0.000574	0.00271	1	04/02/2020 05:32	<u>WG1454074</u>
Total Xylenes	U		0.00518	0.00704	1	04/02/2020 05:32	<u>WG1454074</u>
(S) Toluene-d8	111			75.0-131		04/02/2020 05:32	<u>WG1454074</u>
(S) 4-Bromofluorobenzene	87.2			67.0-138		04/02/2020 05:32	<u>WG1454074</u>
(S) 1,2-Dichloroethane-d4	111			70.0-130		04/02/2020 05:32	WG1454074

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.84	J	1.74	4.33	1	04/03/2020 03:54	WG1453630
C28-C40 Oil Range	1.35	J	0.297	4.33	1	04/03/2020 03:54	<u>WG1453630</u>
(S) o-Terphenyl	97.2			18.0-148		04/03/2020 03:54	WG1453630

SDG: L1204246

Reg @ q 4 by 9 G by 2/2/2021 3:58:40 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204246-01,02,03,04

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blauk						1
(MB) R3514960-1 (04/01/20 22:24					· `
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	%		%	%		-
Total Solids	0.00100					Ľ
						3

L1204240-28 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-28 04/0	01/20 22:24 • ([DUP) R3514960-	3 04/01/2	0 22:24		
	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.2	92.4	1	0.181		10

Laboratory Control Sample (LCS)

(LCS) R3514960-2 04/	/01/20 22:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 04/07/20 10:00

PAGE: 51 of 77

Req @ q 4 by 9 G by 4/2/2021 3:58:40 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204246-05,06,07,08,09,10,11,12,13,14

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3514957-1 04	· · · · ·				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00800				

L1204246-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1204246-05 0	4/01/20 22:15 • (D	UP) R3514957-3	3 04/01/20) 22:15		
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.6	95.6	1	0.0774		10

Laboratory Control Sample (LCS)

(LCS) R3514957-2 04	/01/20 22:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 52 of 77

Reg @ q 4 by 9 G by 2/2/2021 3:58:40 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204246-15,16,17,18,19,20,21,22,23,24

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Bidlik							
(MB) R3514956-1 0	4/01/20 22:04						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00400						

L1204246-16 Original Sample (OS) • Duplicate (DUP)

L1204246-16 Or	riginal Sample	e (OS) • Du	plicate (DUP)				
(OS) L1204246-16 04	/01/20 22:04 • (DL	JP) R3514956-3	3 04/01/20	22:04				
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	%	%		%		%		
Total Solids	89.7	89.4	1	0.385		10		

Laboratory Control Sample (LCS)

(LCS) R3514956-2 04	/01/20 22:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.9	85.0-115	

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 53 of 77

Reg @ q 4 by 9 G by 7/2/2021 3:58:40 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1204246-25,26,27,28,29,30,31,32,33,34

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

01/20 21:50				
MB Result	MB Qualifier	MB MDL	/B RDL	
%		%	6	
0.00100				
	MB Result %	MB Result <u>MB Qualifier</u> %	MB Result MB Qualifier MB MDL N % % %	MB Result MB Qualifier MB MDL MB RDL % %

L1204246-27 Original Sample (OS) • Duplicate (DUP)

(OS) L1204246-27 04/	/01/20 21:50 • (DI	JP) R3514955-3	3 04/01/20	21:50		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	88.0	88.0	1	0.0888		10

Laboratory Control Sample (LCS)

(LCS) R3514955-2 04	/01/20 21:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.1	100	85.0-115	

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 54 of 77

Reg @ q 4 by 9 G by 2/2021 3:58:40 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

4/01/20 21:33					
MB Result	MB Qualifier	MB MDL	IB RDL		2
%		%			T
0.00500					
					³ S
	04/01/20 21:33 MB Result %	4/01/20 21:33 MB Result <u>MB Qualifier</u> %	14/01/20 21:33 MB Result <u>MB Qualifier</u> MB MDL N % % %	14/01/20 21:33 MB Result MB Qualifier MB MDL MB RDL % % %	14/01/20 21:33 MB Result MB Qualifier MB MDL MB RDL % % %

L1204246-38 Original Sample (OS) • Duplicate (DUP)

(OS) L1204246-38 04	/01/20 21:33 • (DUF	P) R3514954-3	04/01/20	21:33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.3	92.5	1	0.138		10

Laboratory Control Sample (LCS)

(LCS) R3514954-2 04/	01/20 21:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 55 of 77

Received by 960 -2/2/2021 3:58:40 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204246-01,02,03,04,05,06

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515160-1 04/0	2/20 17:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.55	J	0.795	10.0

L1204240-23 Original Sample (OS) • Duplicate (DUP)

(OS) L1204240-23 04/02/	′20 18:45 • (DUF) R3515160-3	04/02/20	18:55					
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/kg	mg/kg		%		%			
Chloride	22.3	22.6	1	1.31		20			

L1204246-03 Original Sample (OS) • Duplicate (DUP)

L1204246-03 Ori	ginal Sample	(OS) • Du	plicate	(DUP)			
OS) L1204246-03 04/0)2/20 21:37 • (DUI	P) R3515160-6	04/02/2	0 21:46			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	7120	6590	20	7.70		20	

Laboratory Control Sample (LCS)

(LCS) R3515160-2 04/02/	/20 17:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	182	90.8	90.0-110	

L1204240-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204240-31 04/02/2	20 20:30 • (MS)	R3515160-4 (4/02/20 20:40	• (MSD) R3515	5160-5 04/02/2	20 20:49						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	524	9.82	505	506	94.6	94.7	1	80.0-120			0.0649	20

Released to	Imaging ^A 6/90/2021	
	ConocoPhillips - Tetra Te	ch

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 56 of 77

Regeired by 960:72/2021 3:58:40 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204246-07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515144-1 04/0	02/20 11:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.19	J	0.795	10.0

L1204246-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1204246-09 04/02	2/20 12:31 • (DUP) R3515144-3	04/02/20	12:40		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	322	307	1	4.55		20

L1204246-24 Original Sample (OS) • Duplicate (DUP)

L1204246-24	Original Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1204246-24	04/02/20 16:00 · (DU	P) R3515144-6	6 04/02/20	D 16:10		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	7.52	7.08	1	5.99	J	20

Laboratory Control Sample (LCS)

(LCS) R3515144-2 04/02/2	20 11:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	184	91.8	90.0-110	

L1204246-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-17 04/02/2	20 14:16 • (MS) F	23515144-4 04	/02/20 14:25 •	(MSD) R351514	4-5 04/02/20	14:35						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	523	23.8	536	491	97.9	89.3	1	80.0-120			8.75	20

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 57 of 77

Received by 960.2/2/2021 3:58:40 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1204246-27,28,29,30,31,32,33,34,35,36,37,38

ONE LAB. NAPagev108 of 253

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515206-1 04/0	2/20 23:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.23	J	0.795	10.0

L1204246-27 Original Sample (OS) • Duplicate (DUP)

(OS) L1204246-27 04/02	2/20 23:50 • (DU	P) R3515206-3	3 04/03/2	0 00:00				
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	152	156	5	2.19		20		

L1204259-04 Original Sample (OS) • Duplicate (DUP)

L1204259-04 Orig	inal Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1204259-04 04/03	3/20 03:20 • (DL	IP) R3515206-	-6 04/03/2	20 03:29		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	11100	10800	100	2.82		20

Laboratory Control Sample (LCS)

(LCS) R3515206-2 04/02	(LCS) R3515206-2 04/02/20 23:31						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie		
Analyte	mg/kg	mg/kg	%	%			
Chloride	200	191	95.6	90.0-110			

L1204246-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-34 04/03/20 01:25 • (MS) R3515206-4 04/03/20 01:35 • (MSD) R3515206-5 04/03/20 01:44												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	523	7.66	505	504	95.1	95.0	1	80.0-120			0.103	20

Released to	Imaging? 6/10/2021 9:19:59 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00

PAGE: 58 of 77

Reg cire 4 by 9 8 Dr 8/2/2021 3:58:40 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1204246-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

°Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3515024-2 04/01/20 12:36							
	MB Result	MB Qualifier	MB MDL	MB RDL	2		
Analyte	mg/kg		mg/kg	mg/kg	Tc		
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120	³ Ss		

Laboratory Control Sample (LCS)

(LCS) R3515024-1 04/01/2	6) R3515024-1 04/01/20 11:48									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	6.16	112	72.0-127						
(S) a.a.a-Trifluorotoluene(FID)			106	77.0-120						

DATE/TIME: 04/07/20 10:00

PAGE: 59 of 77

Reg cire 4 by 8 Gby 8/2/2021 3:58:40 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY 1204246-16,17,18,19,20,22,23,24,26,27,28,29,30,31,32,33,34,35

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)						
(MB) R3515681-2 04/01/20 23:51							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	0.0299	J	0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120			

Laboratory Control Sample (LCS)

(LCS) R3515681-1 04/01/2	S) R3515681-1 04/01/20 22:14									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.39	98.0	72.0-127						
(S) a.a.a-Trifluorotoluene(FID)			113	77.0-120						

PROJECT: 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 60 of 77

Reg to a day 3 302 8/2/2021 3:58:40 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NARagevill of 253

¹Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

	<i>'</i>)							
(MB) R3515682-2 04/02/20 22:55								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120				

Laboratory Control Sample (LCS)

(LCS) R3515682-1 04/02	_CS) R3515682-1 04/02/20 22:14										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.83	106	72.0-127							
(S) a.a.a-Trifluorotoluene(FID)			115	77.0-120							

L1204246-38 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-38 04/03/	(OS) L1204246-38 04/03/20 00:38 • (MS) R3515682-3 04/03/20 06:49 • (MSD) R3515682-4 04/03/20 07:09											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.96	0.0258	3.53	3.10	58.8	51.6	1	10.0-151			13.1	28
(S) a,a,a-Trifluorotoluene(FID)					102	100		77.0-120				

DATE/TIME: 04/07/20 10:00

Reg @ q4by @ CB:2/2/2021 3:58:40 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

	9						
(MB) R3515941-2 04/06/20 12:13							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	0.0624	J	0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120			

Laboratory Control Sample (LCS)

(LCS) R3515941-1 04/06/2	S) R3515941-1 04/06/20 09:21									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.82	106	72.0-127						
(S) a.a.a-Trifluorotoluene(FID)			112	77.0-120						

Sc

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 62 of 77

QUALITY CONTROL SUMMARY

ONE LAB. NAPageville of 153

Qc

Method Blank (MB)

(MB) R3515599-1 04/01/2	20 10:28				• •
	MB Result	MB Qualifier	MB MDL	MB RDL	ĺ
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	112			75.0-131	
(S) 4-Bromofluorobenzene	89.2			67.0-138	
(S) 1,2-Dichloroethane-d4	110			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3515599-2 04/0	(LCS) R3515599-2 04/01/20 12:10									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Í GI				
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.116	92.8	70.0-123		8				
Ethylbenzene	0.125	0.101	80.8	74.0-126		A				
Toluene	0.125	0.109	87.2	75.0-121		9				
Xylenes, Total	0.375	0.314	83.7	72.0-127		Sc				
(S) Toluene-d8			101	75.0-131						
(S) 4-Bromofluorobenzen	ê		94.4	67.0-138						
(S) 1,2-Dichloroethane-d4			121	70.0-130						

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 63 of 77

QUALITY CONTROL SUMMARY L1204246-09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3514759-2 04/01/20 11:45										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Benzene	U		0.000400	0.00100						
Ethylbenzene	U		0.000530	0.00250						
Toluene	U		0.00125	0.00500						
Xylenes, Total	U		0.00478	0.00650						
(S) Toluene-d8	110			75.0-131						
(S) 4-Bromofluorobenzene	106			67.0-138						
(S) 1,2-Dichloroethane-d4	105			70.0-130						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3514759-1 04/01/2	20 10:43 • (LCSE	D) R3514759-3	04/01/20 15:03	3							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í G
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.0996	0.0997	79.7	79.8	70.0-123			0.100	20	8
Ethylbenzene	0.125	0.129	0.127	103	102	74.0-126			1.56	20	
Toluene	0.125	0.111	0.108	88.8	86.4	75.0-121			2.74	20	9
Xylenes, Total	0.375	0.370	0.350	98.7	93.3	72.0-127			5.56	20	Sc
(S) Toluene-d8				108	108	75.0-131					
(S) 4-Bromofluorobenzene				105	101	67.0-138					
(S) 1,2-Dichloroethane-d4				104	103	70.0-130					

L1204246-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-20 04/02/	20 01:20 • (MS))R3514759-4 (04/02/20 01:40	• (MSD) R3514	759-5 04/02/2	20 02:00						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.156	U	0.123	0.117	78.7	74.8	1	10.0-149			5.11	37
Ethylbenzene	0.156	U	0.158	0.155	102	99.2	1	10.0-160			2.39	38
Toluene	0.156	U	0.136	0.126	87.2	80.8	1	10.0-156			7.62	38
Xylenes, Total	0.467	U	0.454	0.431	97.1	92.3	1	10.0-160			5.07	38
(S) Toluene-d8					109	110		75.0-131				
(S) 4-Bromofluorobenzene					109	107		67.0-138				
(S) 1,2-Dichloroethane-d4					103	101		70.0-130				

SDG: L1204246 DATE/TIME: 04/07/20 10:00

QUALITY CONTROL SUMMARY 1204246-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3515600-2 04/01/2	20 23:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	112			75.0-131
(S) 4-Bromofluorobenzene	87.7			67.0-138
(S) 1,2-Dichloroethane-d4	112			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3515600-1 04/01/	20 22:50					Ē
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.116	92.8	70.0-123		
Ethylbenzene	0.125	0.104	83.2	74.0-126		
Toluene	0.125	0.110	88.0	75.0-121		Ī
Xylenes, Total	0.375	0.299	79.7	72.0-127		ľ
(S) Toluene-d8			103	75.0-131		L
(S) 4-Bromofluorobenzene			89.9	67.0-138		
(S) 1,2-Dichloroethane-d4			117	70.0-130		

L1204246-27 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-27	04/02/20 02:01 • (MS) R3515600-3	04/02/20 06:30 • (1	MSD) R3515600-4	04/02/20 06:49

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.142	U	0.128	0.125	90.4	88.0	1	10.0-149			2.69	37
Ethylbenzene	0.142	U	0.116	0.112	81.6	78.6	1	10.0-160			3.80	38
Toluene	0.142	U	0.128	0.125	90.4	88.0	1	10.0-156			2.69	38
Xylenes, Total	0.426	U	0.331	0.319	77.6	74.9	1	10.0-160			3.50	38
(S) Toluene-d8					106	105		75.0-131				
(S) 4-Bromofluorobenzene					87.6	82.8		67.0-138				
(S) 1,2-Dichloroethane-d4					108	116		70.0-130				

Released to Imaging. 69(9)/2021 9:19:59 AM ConocoPhillips - Tetra Tech **PROJECT:** 212CMD02099

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 65 of 77

QUALITY CONTROL SUMMARY L1204246-08

Qc

Method Blank (MB)

	/				
(MB) R3514888-2 04/02/2	20 04:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	108			75.0-131	
(S) 4-Bromofluorobenzene	106			67.0-138	
(S) 1,2-Dichloroethane-d4	103			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3514888-1 04/02	2/20 03:00					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.0971	77.7	70.0-123		8
Ethylbenzene	0.125	0.124	99.2	74.0-126		A
Toluene	0.125	0.104	83.2	75.0-121		9
Xylenes, Total	0.375	0.354	94.4	72.0-127		Sc
(S) Toluene-d8			108	75.0-131		
(S) 4-Bromofluorobenzene	2		108	67.0-138		
(S) 1,2-Dichloroethane-d4			105	70.0-130		

DATE/TIME: 04/07/20 10:00

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev117 of 153

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3515895-3 04/06/2	20 08:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	110			75.0-131
(S) 4-Bromofluorobenzene	107			67.0-138
(S) 1,2-Dichloroethane-d4	99.6			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3515895-1 04/06	/20 07:23 • (LCS	SD) R3515895	-2 04/06/20 0	7:43							7	
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	΄GΙ	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Benzene	0.125	0.102	0.104	81.6	83.2	70.0-123			1.94	20	8	
Ethylbenzene	0.125	0.127	0.129	102	103	74.0-126			1.56	20	A	
Toluene	0.125	0.110	0.111	88.0	88.8	75.0-121			0.905	20	9	
Xylenes, Total	0.375	0.352	0.371	93.9	98.9	72.0-127			5.26	20	Sc	
(S) Toluene-d8				110	107	75.0-131						
(S) 4-Bromofluorobenzene				103	103	67.0-138						
(S) 1,2-Dichloroethane-d4				107	103	70.0-130						

DATE/TIME: 04/07/20 10:00

PAGE: 67 of 77 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1204246-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Gl

Â

Sc

Method Blank (MB)

	ID)				¹ C
(MB) R3514866-1 04/02	2/20 01:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	3
(S) o-Terphenyl	62.5			18.0-148	Ľ
					4
					C

Laboratory Control Sample (LCS)

(LCS) R3514866-2 04/0	02/20 01:45								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	29.2	58.4	50.0-150					
(S) o-Terphenyl			51.2	18.0-148					

L1204246-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-02 04/02/20 20:46 • (MS) R3514866-3 04/02/20 20:59 • (MSD) R3514866-4 04/02/20 21:11												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.8	1.92	37.0	39.7	65.2	70.2	1	50.0-150			7.01	20
(S) o-Terphenyl					53.9	47.0		18.0-148				

DATE/TIME: 04/07/20 10:00 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1204246-16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35

Method Blank (MB)

	D)				
(MB) R3515134-1 04/02	/20 15:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.313	J	0.274	4.00	
(S) o-Terphenyl	94.1			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3515134-2 04/02	2/20 15:24					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	49.6	99.2	50.0-150		
(S) o-Terphenyl			118	18.0-148		

L1204246-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-19 04/03/20 01:44 • (MS) R3515134-3 04/03/20 02:00 • (MSD) R3515134-4 04/03/20 02:16												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	61.4	8.00	47.9	61.9	65.0	87.8	1	50.0-150		<u>J3</u>	25.5	20
(S) o-Terphenyl					75.5	98.3		18.0-148				

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

⁺Cn

Â

Sc

Method Blank (MB)

MB) R3515135-1 04/02	/20 15:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	93.5			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3515135-2 04/0	2/20 15:56				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	50.4	101	50.0-150	
(S) o-Terphenyl			121	18.0-148	

L1204246-37 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1204246-37 04/03/20 08:24 • (MS) R3515135-3 04/03/20 08:39 • (MSD) R3515135-4 04/03/20 08:55												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.5	7.41	56.0	62.2	90.7	102	1	50.0-150			10.5	20
(S) o-Terphenyl					110	118		18.0-148				

SDG: L1204246 DATE/TIME: 04/07/20 10:00

PAGE: 70 of 77

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Delinitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1204246

Received by OCD: 2/2/2021 3:58:40 PMACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Ne
Alaska	17-026	Ne
Arizona	AZ0612	Ne
Arkansas	88-0469	Ne
California	2932	Ne
Colorado	TN00003	Ne
Connecticut	PH-0197	No
Florida	E87487	No
Georgia	NELAP	No
Georgia ¹	923	No
Idaho	TN00003	Oh
Illinois	200008	Ok
Indiana	C-TN-01	Ore
lowa	364	Per
Kansas	E-10277	Rhe
Kentucky ¹⁶	90010	Sou
Kentucky ²	16	Sou
Louisiana	AI30792	Ter
Louisiana ¹	LA180010	Tex
Maine	TN0002	Tex
Maryland	324	Uta
Massachusetts	M-TN003	Ver
Michigan	9958	Vir
Minnesota	047-999-395	Wa
Mississippi	TN00003	We
Missouri	340	Wis
Montana	CERT0086	Wy

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: %/10/2021 9:19:59 AM ConocoPhillips - Tetra Tech

PROJECT: 212CMD02099

SDG: L1204246

DATE/TIME: 04/07/20 10:00 Received by OCD: 2/2/2021 3:58:40 PM

L1204246

TŁ	Tetra Tech, Inc.			90	Tel (id,Texa 432) 68	reet, St s 7970 2-4559 2-3946	1																		
lient Name:	ConocoPhillips	Site Manager:		Chri	stian	Llull								10	ire		NAL						I No	,		
roject Name:	VGEU 2801-02											1	1					1	1			L	L	.)	11	
Project Location: county, state)	Lea County, New Mexico	Project #:		2	212C-	MD-	0209	19										10)3.	-2	24	•			1	
nvoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701												MBOI		Hg	вн			1					attached lis		
Receiving Laboratory:	Pace Analytical	Sampler Signat	ure:	۵	Devin	Don	ningu	iez					ORO - MROI		b Se	PD 26								(see atta		
Comments: Contac	t PM regarding holds ; COPTETRA acctnum							1				X 8260E	DRO - C	1000	Cd Cr	5		69A	270C/625				TDS	stry		
		SAMPL	.ING	MA	TRIX	P	RESER		E	RS	(N/N)	BTE	GRO -	2	Ag As Ba	nı	F	22					Sulfate			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020 ELEV	TIME	WATER	SOIL	HCL	HNO ₃	None		¢ CONTAINERS	FILTERED (Y	3TEX 8021B	TPH R015M (AH 8270C	tals	ICLP Metal	TCLP Semi	RCI SCINE VOI	GC/MS Sem	PCB's 8082	NORM	PLM (Asbest	Chloride S	General Water Anion/Cation B	FPH 8015R	Hold
1	BH-1 0-1' 🕐	3/25/2020	F		X	-				1	N	X	>	<			Í			-			x			-
-01 '	BH-1 2'-3'	3/25/2020	Constant of the		x		>			1	N	X)	<								>	X			
-02.	BH-1 3'-4' 🔰	3/25/2020	and the		X		>			1	N	X	>	<			1	1				>	X			
-0),	 BH-1 4'-5' 1 	3/25/2020	Card of the		X		>		1	1	N															
	BH-1 14'-15' •	3/25/2020			X		>			1	N						4	100								
and the second second	BH-1 19'-20'	3/25/2020			X		>	(1	N							1								
	BH-1 24'-25'	3/25/2020			X)	(1	N								-							
-041	BH-1 29'-30' 🖌	3/25/2020			X)			1	N	X	>	×								>	X			
	BH-1 39'-40'	3/25/2020			X		-)	(1	N									1						_ >
-051	BH-1 44'-45' 🔹	3/25/2020			X	1		(1	1	N	X)	X		1						>	X			
Relinquished by:	Date: Time:	Received by: Received by:	AL)	5	Date: Date:	the	ime: D ime:		~~ ~	يـــ		0	B US				5	STA		ARD		24 hr	48 h	r 72 hr	
Relinguished by:	1 3hapa 1500	Sot	to	•	30	7/2	30	L	-	èe	>	10000000		empe 1, [>0				Rust	n Cha	arge	s Aut	thoriz	zed			
Relinquished by:	¹ Date: Time:	Received by:	What	the	5	Date:	28		0	08	noc	1												RP Re	port	
	C	ORIGINAL	COPY			/	,					(Circ	cle) H	1	17252		D F	2.7.1	1213			1.1	:			

1

Page 124 of 153 LLL Page 2 of

5

Analysis Request of Chain of Custody Record

Ŧ	Tetra Tech, Inc.				Midlar Tel (4	nd,Tex 432) 6	Street, 1 xas 797 582-455 682-394	01 9																				
Client Name:	ConocoPhillips	Site Manager:		Christ	tian	Llu								-	C :	ala						JES		No	,			
Project Name:	VGEU 2801-02	-												1				1							.,	11	1	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		21	2C-	MD	-020	99																	()			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701													IRO)	ß	Hg									attached list)			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:	De	evin	Do	ming	uez						RO - N	b Se H	Pb Se Hg												
Comments: Cont	act PM regarding holds ; COPTETRA acctnum											X 8260B	C35)	8015M (GRO - DRO - ORO - MRO)	B	Ba Cd Cr Pb			624	270C/625				TDS	Chemistry (see	Ce		
	and the second	SAMF	LING	MAT	RIX		PRESE	RVAT	VE	ERS	(N/N)	BTE	(Ext to	(GRO -	Ag As	Ag As	es	olatiles	8260B /		/ 608	nel	len	Sulfate	- 1	Balar		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		E.						CONTAINERS	RED (8021B	TX1005	8015M	Aetals .	Metals.	Volatile	Semi Volat		S Semi	8082 /	VORM PI M (Ashestos)	le		al Water	n/Cation I 8015R		
(LAB USE)		DATE	TIME	WATEF SOIL		HCL	HNO ₃	None		# CON	FILTERED	BTEX		PAU 8	Total N	TCLP I	TCLP	BCI	GC/MS Vol.	GC/MS	PCB's	PI M (1	Chloride	Chloride	General	Anion/C TPH 80		Hold
-06.	BH-2 0-1'	3/25/2020		X	_			X		1	N	X		X									X					
-07.	BH-2 2'-3' •	3/25/2020		X				X		1	N	X		X									X					
-051	BH-2 3'-4' Y	3/25/2020		X				X		1	N	X		X									X					
	BH-2 4'-5' *	3/25/2020		X				X		1	N																	X
-091	BH-2 19'-20' 🖌	3/25/2020		X	1			X		1	N	X		X									X					
-10	BH-3 0-1' /	3/25/2020		X				X		1	N	X		X									X					
- 11	• BH-3 2'-3' •	3/25/2020		X				X		1	N	X		X	1	100							X					
-12	BH-3 3'-4' «	3/25/2020		X				X		1	N	X		X									X					
	BH-3 4'-5' *	3/25/2020		X				X		1	N																	X
Contraction of the	BH-3 6'-7' y	3/25/2020		X				X		1	N					1												X
Relinquished by:	Date: Time: 3/27 /2/20	Received by	Ju		3/2		12	Time	12	i	3			AB L	JSE _Y				S			RD		1 br	19	hr 721	hr	
Relinquished by:	Date: Time: 3/27/22 15-22	Preceived by	he	1-3	TE	Date	12	Time	K	Te	0	Sa 0	.24	Temp	0.3	ire Sac							norize		401	11 721	"	
Refinquished by:	Date: Thme:	Received by	(1/01	At	-	Jate	3/2	81	ai	De	8:0	D)				E	s	pecia	al Re	port	Limi	ts or	TRF	RP R	Report		
Select the	1	ORIGINA	L COPY			1		1				(Ci	ircle)	HAN	D DE	LIVE	RED	FED	DEX	UPS	S T	racki	ng #:	_				_
			17													,	RAF	101	-	-		05	mC	2/her				

Page 125 of 153

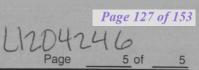
5

•

1204246 3 of

Analysis Request of	Chain of Custody Record	
Analysis	Totro Tecl	n Inc

nalysis Request of	Chain of Custody Record	State State		900 W	lest Wa	all Stre	et, Ste	e 100																			
	Tetra Tech, Inc.				lidland, Tel (43 Fax (43	2) 682	4559																				
TE		Site Manager:		Christi	anl	hull															QUE						
lient Name:	ConocoPhillips			J1115u	ant	I'un						-	1	((Circ	le	or	Sp	eci	fy	Met	hoo	Ne	D.)	11	1	
roject Name:	VGEU 2801-02	in the second					1.51																				
Project Location:	Lea County, New Mexico	Project #:		212	2C-N	ND-C)209	99		12 August														list)			
(county, state)	Accounts Payable 901 West Wall St. Suite												10 dv		f	Hg								attached			
Invoice to:	100, Midland TX 79701	Sampler Signatur	re:	De	evin l	Dom	ing	uez					IOAM OAO	- 02	b Se Hg	^{ob} Se								ee atta			
Receiving Laboratory:	Pace Analytical											8260B			Cd Cr Pb S	d Cr			+	8270C/625			TDS	try (see			
Comments:	ct PM regarding holds ; COPTETRA acctnum											X	to C35)	10-0	Ba Cd	s Ba C	0	2D		8270				E	Balance		
Conta		SAMPLI	NG	MAT	RIX	Р		RVATIV	/E	ERS	(N/A		5 (Ext to	(GHO -	Ag As Ba C	AgA	Volatilae	VOIGUIL	8260	i. Vol.	8082 / 608	estos)	Sulfate	Iter Cl	n Bala		
	and the second	YEAR: 2020		m						CONTAINERS	RED (8021B	TX1005	8015M (8270C	letals	Metals	Volatil	Illiao	S Vol.	S Semi.	8082	sbi		al Wa	Catio	HGLO	
LAB #	SAMPLE IDENTIFICATION	Ψ	LIME	WATER		HCL	NO3	None		CON	FILTERED (Y/N)	BTEX	T Hd	PAH 8		FCLP Metals	rcLP Volatil		GC/MS Vol.	GC/MS	PCB's	PLM (Chloride	Gener	Anion/Cation E	РНА	Hold
(LAB USE)		DATE	TIN	N N	_	T		X		#	N	X		X		5	-						X	Ť	Ì		
ONLY /	BH-3 19-20'	3/25/2020		1	-			X		1	N	X		X									X				
-13	BH-4 0-1'	3/25/2020		-	x			x		1	N	X		X									X				
-14	BH-4 2'-3'	3/25/2020			x	-		X		1	N	X		X									X				
-15	BH-4 3'-4'	3/25/2020			x			x		1	N																
-16	• BH-4 4'-5' I	3/25/2020			X	-		X		1	N	X		X									X				
	/ BH-4 6'-7' i	3/25/2020		-	x	-		X	-	1	N	X		X									X				
-17	BH-5 0-1' +	3/25/2020	and a second		X			X		1	N	X		X									X	T			
-13	BH-5 2'-3'	3/25/2020		-	× ×	+		X		1	N	-	-	X									X	T	T		
-19	BH-5 3'-4' 6	3/25/2020			-	-	-	X	-	1	N			X									X	T	T		
-20	BH-5 4'-5' •	3/25/2020	-		X	Date	e:	Time	e:		-	+	1	ABI	JSE		1000	MAR									
-21	Date: Time:	Received by	M.	1	2	1/m	he	7	15	?:0	>			ONI				X	S	TAN	IDA	RD					
Relinquished by:	3/27 12:00	Oll	n		4	Dat	a.	Time				-		-				F	RUSH	l: S	ame	Day	24 hr	48	8 hr	72 hr	
	Date: Time:	Received by	1		1	15	h		200	5200	5	Sa	ample 121	0.1 4	ogg	s.		_		01	1		1				
Relinquished by:	hill 3/2/10 15-		-		10	Dat	U	Tim	-	/		-1	,			10			Rusn	Gna	rges /	Author	zeu				
Relinquished by:	Date: Time:	Received by	Y.	. 1	24	Da	3/	781	120	00	8:0	4							Specia	al Re	eport	Limits	or TF	RRP	Repo	rt	
Reinquismou by.		5.6	All	le	h	1 -	10	201	-			(0	Circle)	HAN	ND DE	LIVE	RED	FE	DEX	UP	S Tr	acking	#:				
	and the second state of the second	ORIGINA	AL COPY	(


Page 126 of 153 L12D4246 Page

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.				Mi T	est Wall idland, Te fel (432) ax (432)	exas 79	701 59)																		
Client Name:	ConocoPhillips	Site Manager	:	Ch	ristia	an Llu													SIS F						1		
Project Name:	VGEU 2801-02											1.	1	(0	irc	le	or S	Spe I I	ecif	fy N	Net I	ho	d N	lo.)	11	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:			2120	C-MD	-020	099																			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701					i de							MRO)			0								ned list)			
Receiving Laboratory:	Pace Analytical	Sampler Sign	ature:		Dev	in Do	ming	guez					ORO - MF	1000	Se Hg	b Se H								e attached			
Comments: Conta	act PM regarding holds ; COPTETRA acctnum											8260B	DRO - OF	0.000	Cd	Cq C			624 2700/626	no			TDC	emistry (see			
		SAMF	PLING	м	ATRI	x		ERVATI	VE	3S	(Z	BTEX	GRO - D		Ast	Ag As Ba	latiles		à	608 608		()	Culfata	Che	alan		
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 JUAT	TIME	WATER	OIL	HCL	HNO ₃	ICE None		# CONTAINERS	FILTERED (Y/N)		TPH 8015M (8270C	Metals /	CLP Metals A	TCLP Semi Vol		GC/MS Vol. 82	Semi.	0000	PLM (Asbestos)	oride	oride neral Wa	on/Cation	PH 8015R	Liold
- 77	BH-6 0-1'	3/25/2020	F	5	S X	I	I	⊇ z X		#	IL N	E F		-	Ĕ	F F	Ĕ	Ť	00	5 4	Ž	P	X	Gel	Ar	F	2
-2?	BH-6 2'-3'	3/25/2020			X			x		1	N	X	X										X				
-24	BH-6 3'-4'	3/25/2020			X			X		1	N	X	X	-									X				
and the second second	BH-6 4'-5' •	3/25/2020			X			x		1	N																
-25	BH-7 0-1' (3/25/2020			x			x		1	N	x	X										X				
-26	BH-7 2'-3' •	3/25/2020			X			x		1	N	X	X										X				
-27	BH-7 3'-4' •	3/25/2020	The second second		X	1		x		1	N	X	X	-									X				
-196	BH-7 4'-5'	3/25/2020			X			x		1	N	X	X										X				
-29	BH-8 0-1'	3/25/2020			X			x		1	N	X	X										X				
30	BH-8 2'-3'	3/25/2020			X			X		1	N	X	X										X			100	
Relinquished by:	Date: Time: 3 37 12 mod Date: Time: 3 27/20 55 Eco Date: Time:	Received by: Received by: Received by:	1		2	Date: Date: Date: Date:	20	Time:		ie e	U	L Samp 0, 24	OI ole Te		ature]]RU:]Rus	STA SH:	Sar	me D es A	ay utho	24 h rized			72 hr	
											-	10										1011					
		ORIGINAL	COPY									(Circle	e) H/	AND	DELIN	/ERE	DF	EDE	X U	JPS	Tra	cking	#:				

Analysis Request of Chain of Custody Record

TŁ	Tetra Tech, Inc.			ç	Tel	(432)	Street exas 7 682-4 682-3	9701 559	100														•					
Client Name:	ConocoPhillips	Site Manager:		Chr	ristian	Llu	ull								(0)				YSIS									
Project Name:	VGEU 2801-02												1			rci	e o	rs 	pec					NO.	.)	11	1	1
Project Location: (county, state)	Lea County, New Mexico	Project #:			212C-	-ME	D-02	099)																()			
Invoice to:	Accounts Payable 901 West Wall St. Suite 100, Midland TX 79701													MRO)	-to	Hg									attached lis			
Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:		Devin	Do	omin	gue	ez					ORO - N	Dh Sa I	Pb Se Hg												
Comments: Conta	ct PM regarding holds ; COPTETRA acctnum											ADACA		DRO - O	CAC	Cd Cr			324	8270C/625					mistry (see ce			
		SAMP	LING	M	ATRIX	Γ		ERV	ATIVE	0		BTEV	(Ext to C	GRO - [n Ac Ra	Ag As Ba		latiles	8260B / 624	10.50	608	(5)		late	r Chem Balance			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		EB			3			CONTAINEDS		0001B	TX1005	8015M (AH 8270C	1 0		Semi Vo	ACI GC/MS Vol. 82	Semi.	8082 /	Asbestos)			General Water Chemi Anion/Cation Balance	TPH 8015R		
(LAB USE)		DATE	TIME	WATE	SOIL	HCL	HNO3	ICE	None	00 #		DTEV	TPH .	TPH	PAH	TCLP	TCLP	TCLP	GC/M	GC/MS	PCB's	PLM (Asi	Chloride	Chloride	General Anion/Cé	TPH 8		Hold
-31	BH-8 3'-4' /	3/25/2020			X			Х			1		X	X									X					
-32	BH-8 4'-5'	3/25/2020			X			X			1		X	X									X					
-33	BH-9 0-1' r	3/25/2020			X			X			1	V)	×	X									X					
-34	BH-9 2'-3' 🍂	3/25/2020			X			X			1	1)	×	X									X					
-35	BH-9 3'-4'	3/25/2020			X			X			1	1)	X	X									X					
-36	✓ BH-9 4'-5' ♦	3/25/2020			X			X			1	1)	×	X									X					
-31	- BH-10 0-1' (3/25/2020			X			X			1	1)	X	X									X					
-38	BH-10 2'-3' 🖌	3/25/2020			X			X			1 1	4	×	X									X					
Relinquished by:	Date: Time:	Received by	A.		1	Dat	te:	Tir	me:			+	L		USE			MAR				BD						
Relipquisbed by:	5 3/37 12:00 Date: Time: 3/2720 15:00	Received by:	1ac		7	Dat	1/2 te:	Tir	7 / . me:	2:	in the				LY nperat			F	RUSH	l: S	ame	Day			48 hr	72	hr	
Relinquished by:	Date. Time:	Received by	11/0	12	the	Dat	te: 3/0	1		0	08:0	2)				1		Rush (Specia						P Re	port		
	C	ORIGINAL	CORV				1		·		- Ann	(Circle) HAI	ND DI	ELIVE	ERED) FE	DEX	UP	S T	rackin	g #: _					

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View SE of flowline and release area, with adjacent well (API # 30-025-33710) in the background.	1
212C-MD-02099	SITE NAME	VGEU 01-02 Flowline Release	3/25/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View SE of the eastern portion of the scraped release area.	2
212C-MD-02099	SITE NAME	VGEU 01-02 Flowline Release	3/25/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View N of release extent. Lease pad for adjacent well (API # 30-025-33710) and access road to the north visible in the background.	3
212C-MD-02099	SITE NAME	VGEU 01-02 Flowline Release	3/25/2020

RA TECH, INC.	DESCRIPTION	View NW of the release area and the source of the release on the flowline.	4
 C-MD-02099	SITE NAME	VGEU 01-02 Flowline Release	3/25/2020

APPENDIX F NMSLO Seed Mixture Details

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New **Mexico**

VGEU 2801-02 Flowline Release

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Lea County, New Mexico	13
KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes	
SS—Stegall and slaughter soils	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Page 140 of 153

Released to Imaging: 6/10/2021 9:19:59 AM

.

•

Custom Soil Resource Report

	MAP L	EGEND		MAP INFORMATION
Area of Ir	iterest (AOI)	33	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	6	Stony Spot	1:20,000.
Soils		å	Very Stony Spot	
	Soil Map Unit Polygons	8	Wet Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines		Other	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	\triangle		misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Special	Point Features	-	Special Line Features	contrasting soils that could have been shown at a more detailed
ၑ	Blowout	Water Fea	tures Streams and Canals	scale.
\boxtimes	Borrow Pit	Transport		Please rely on the bar scale on each map sheet for map
*	Clay Spot	+++	Rails	measurements.
\diamond	Closed Depression	~	Interstate Highways	
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0 0 0	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercato
A.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts
عليه	Marsh or swamp	No.	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
R	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data
0	Perennial Water			of the version date(s) listed below.
v	Rock Outcrop			Soil Survey Area: Lea County, New Mexico
+	Saline Spot			Survey Area Data: Version 16, Sep 15, 2019
	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Sep 18, 2016—No
à	Slide or Slip			20, 2017
ø	Sodic Spot			
<u>e</u> j	·			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
КU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	5.2	31.7%	
SS	Stegall and slaughter soils	11.1	68.3%	
Totals for Area of Interest		16.3	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent *Lea and similar soils:* 25 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 95 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Description of Lea

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 22 to 30 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 90 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 3.0
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Sandy Loam 12-17" PZ (R077DY047TX) Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Loam 12-17" PZ (R077DY047TX) Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 12-17" PZ (R077DY038TX) Hydric soil rating: No

Custom Soil Resource Report

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

SS—Stegall and slaughter soils

Map Unit Setting

National map unit symbol: dmr4 Elevation: 3,600 to 4,400 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 58 to 60 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Stegall and similar soils: 40 percent Slaughter and similar soils: 35 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stegall

Setting

Landform: Plains Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock

Typical profile

A - 0 to 9 inches: loam Bt - 9 to 28 inches: clay loam Bkm - 28 to 38 inches: cemented material BCk - 38 to 60 inches: variable

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Custom Soil Resource Report

Calcium carbonate, maximum in profile: 90 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

Description of Slaughter

Setting

Landform: Plains Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous alluvium and/or calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 2 inches: loam Bt - 2 to 15 inches: clay Bkm - 15 to 25 inches: cemented material BCk - 25 to 60 inches: variable

Properties and qualities

Slope: 0 to 1 percent Depth to restrictive feature: About 15 inches to petrocalcic; About 25 inches to petrocalcic Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 90 percent Gypsum, maximum in profile: 1 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 2.0 Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

Minor Components

Arvana

Percent of map unit: 10 percent Ecological site: Sandy 16-21" PZ (R077CY035TX) Hydric soil rating: No

Kimbrough

Percent of map unit: 9 percent Ecological site: Very Shallow 16-21" PZ (R077CY037TX) Hydric soil rating: No

Portales

Percent of map unit: 6 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Loamy (L)

LOAMY (L) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Black grama	VNS, Southern	1.0	D
Blue grama	Lovington	1.0	D
Sideoats grama	Vaughn, El Reno	4.0	F
Sand dropseed	VNS, Southern	2.0	S
Alkali sacaton	VNS, Southern	1.0	
Little bluestem	Cimarron, Pastura	1.5	F
<u>Forbs:</u> Firewheel (<i>Gaillardia</i>)	VNS, Southern	1.0	Ð
Shrubs: Fourwing saltbush	Marana, Santa Rita	1.0	D
Common winterfat	VNS, Southern	0.5	F
	Total PLS/acr	e 18.0	S B

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

Received by OCD: 2/2/2021 3:58:40 PM State of New Mexico

Page 5

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

	Incident ID	
	District RP	
ĺ	Facility ID	
ĺ	Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: Date: Telephone: _____ email: **OCD Only** Received by: Robert Hamlet Date: 6/10/2021 Approved X Approved with Attached Conditions of Approval Denied Deferral Approved Robert Hamlet Date: 6/10/2021Signature:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	16718
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
	The Remediation Plan is approved with the following conditions: Surface to 4' below ground surface sidewall/floor samples need to comply with the strictest closure criteria limits 600 mg/kg for Chlorides and 100 mg/kg TPH. In the pasture area, 4 feet below the ground surface, soil contamination limits revert back to Table 1 in the spill rule. If rock refusal is encountered, use hydrovac to clean contaminated soil off rock. After rock surface is clean, layer rock with microbial strains to digest organics and hydrocarbons if present. Back-fill with clean material. Alternative sample plan is approved with 500 ft2 closure confirmation samples. Liner at the base of excavation is denied.	

CONDITIONS

Action 16718