

VIA ELECTRONIC MAIL

March 17, 2021

Ms. Cory Smith Environmental Specialist NMOCD 1000 Rio Brazos Road Aztec, New Mexico 87410

Subject: 2020 Annual Groundwater Report

Sullivan Gas Com D#1E

3RP-1035

San Juan County, New Mexico

Dear Mr. Smith:

WSP USA Inc. (WSP) presents this annual report on behalf of Hilcorp Energy Company (Hilcorp) to the New Mexico Oil Conservation Division (NMOCD) to document groundwater monitoring activities conducted at the Sullivan Gas Com D#1E natural gas production well during 2020. Historical impact to soil and groundwater was identified by the former operator, XTO Energy, Inc. (XTO), during replacement of a fiberglass pipeline between the separator and production tanks. Hilcorp acquired the production well in August 2017 from XTO, which previously acquired the well from Amoco Production Company (Amoco) in January 1998. This is a gas producing well in the Dakota Sandstone Formation and is currently active.

The site is located in Unit F of Section 26 within Township 29 North and Range 11 West in San Juan County, New Mexico. The Hammond Ditch is located approximately 300 feet south and upgradient of the location, while the San Juan River is located approximately 1,100 feet north and downgradient of the site. A topographic map is depicted on Figure 1. Currently, there are 14 monitoring wells on site which are monitored quarterly. A limited soil vapor extraction (SVE) system operated from April 2016 until August 2018 to remediate source soils. Product recovery is ongoing and details of 2020 activities are provided in the subsequent sections of this report.

HISTORY

Historical records indicate the natural gas well was drilled and completed in March 1980 by Amoco, which operated the well until the change of operator to XTO occurred in 1998. During facility upgrades in June of 2015, XTO encountered suspected petroleum hydrocarbon impacted soil while replacing a fiberglass pipeline between the separator and production tanks. The analytical results for a grab sample exceeded the remediation action levels defined in the 1993 New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* and an initial Form C-141 was submitted (Enclosure A).

Following the identification of the impacted soil, further site investigation was completed via hand auger and direct-push soil borings. A total of 14 hand auger borings and nine direct-push soil borings were used to delineate and characterize petroleum hydrocarbon impacts to soil and groundwater (Figure 2). A copy of a summary report of the results and an initial remediation work plan were submitted to the NMOCD in September 2015 (Enclosure B).

In October 2015, XTO conducted additional site characterization to asses impacts to groundwater and monitor groundwater quality (Figure 3). During this investigation six monitoring wells (MW01 through MW06) and one product recovery well (PR-1) were installed. Of the seven wells installed, product recovery well PR-1 and monitoring wells MW-1, MW-2, MW-5, and MW-6 contained phase-separated hydrocarbons (PSH) on the groundwater table. Monitoring wells MW-3 and MW-4 did not contain measurable PSH but dissolved-phase hydrocarbon impacts were identified in the groundwater through laboratory analysis of groundwater samples. XTO

WSP USA 848 EAST 2ND AVENUE DURANGO CO 81301

Tel.: 970-385-1096 wsp.com

Released to Imaging: 6/25/2021 10:25:52 AM

began PSH recovery from the petroleum hydrocarbon impacted groundwater using both active and passive recovery via vacuum truck and oil-absorbent socks. A total volume of approximately 28 barrels (bbl) of petroleum hydrocarbon impacted groundwater and PSH were recovered through November 2015. Additionally, to investigate viability, XTO conducted dual-phase extraction of groundwater and tested the applicability of limited SVE tests. The purpose of these activities was to investigate the efficacy of an SVE system as a means of *in-situ* remediation by promoting volatilization of petroleum hydrocarbon constituents adsorbed onto soil particles in the vadose zone. Following the additional delineation and remediation recommendations, XTO submitted an updated *Remediation Work Plan* and Form C-141 in November 2015 (Enclosure C), which was approved by the NMOCD.

In April 2016, based on the site lithology, successful dual-phase extraction, and initial SVE testing, XTO installed a limited SVE system to target the source area using existing monitoring wells MW-01, MW-02, MW-05, and MW-06 and product recovery well PR-1. The system was powered by an electric single-phase, 3-horsepower regenerative blower capable of approximately 100 cubic feet per minute (CFM) of flow and an applied vacuum of 50 inches of water column (IWC). The expected area of influence on each SVE well was estimated to be approximately 40 feet. Figure 3 depicts the system layout and approximate area of influence. A PSH recovery tank was installed on the system to capture liquids that accumulated while extracting soil vapors. Based on the volumes and concentrations of the initial air samples in April 2016, XTO filed a Notice of Intent with the New Mexico Environment Department – Air Quality Bureau in anticipation of potential emissions exceeding 10 tons per year of regulated contaminants.

Following installation of the limited SVE system in April 2016, XTO conducted regular operations and maintenance (O&M) and monitored depth to groundwater and PSH thickness (if any) in the monitoring wells. Monitoring wells that contained PSH were manually bailed to recover PSH. XTO continued to conduct quarterly sampling of the monitoring wells that did not contain PSH. A vapor sample was collected in January 2018 and July 2018 for monitoring emissions and observing the decline of petroleum hydrocarbon impacts adsorbed in the subsurface.

Upon receipt of a letter from the NMOCD in June 2017 requesting additional delineation and remediation activities, XTO submitted a Continued Remediation Plan in August 2017 (Enclosure D). This plan proposed continued SVE system operations, semi-annual groundwater monitoring events, and additional delineation of existing petroleum hydrocarbon impacts to groundwater.

In October 2017, XTO conducted an additional site investigation with a hollow-stem auger to further delineate petroleum hydrocarbon impacts to soil and groundwater. Six additional monitoring wells (MW07 through MW12) and one potential product/total fluids recovery well (PR-2) were installed to monitor petroleum hydrocarbon impacts to groundwater. The results of the October 2017 investigation were documented in the 2017 Annual Groundwater Report and submitted to the NMOCD in March of 2018. Soil analytical results are also included in Figure 2.

On September 5, 2018, the SVE system was shut down due to failure of the blower motor, and the SVE system has not been restarted; however, Hilcorp is investigating replacement options. Hilcorp has installed a product skimmer in well MW-5 that is rotated between wells PR-1, MW-8, and MW-12 to address remaining PSH on the groundwater table.

During 2020, Hilcorp conducted groundwater elevation monitoring, sampling, and PSH recovery via manual bailing and a pneumatic product skimmer.

METHODOLOGY

The following methods were used to monitor and sample groundwater at the site during 2020.

WATER LEVEL MEASUMENTS

Groundwater elevations were measured in March, June, September, and December 2020 from the monitoring wells and the product recovery wells. Static groundwater level monitoring included recording depth to groundwater and total depth of each monitoring well using a Keck® oil/water interface probe. Presence of PSH was investigated using the interface probe. The interface probe was decontaminated with AlconoxTM soap and rinsed with de-ionized water prior to each measurement to prevent cross contamination.

GROUNDWATER SAMPLING

Groundwater samples were collected and submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) in March, June, September, and December 2020 from monitoring wells that did not contain PSH and had sufficient water to sample. Groundwater samples were submitted under strict chain-of-custody (COC) protocol to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico, for analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021B. Due to an overall increase in sediment within the water and a reduction of available water within the monitoring wells, WSP collected groundwater samples during the March, June, September, and December sampling events using PVC disposal bailers. During these events, WSP purged a minimum of three casing volumes, or until the wells were bailed dry, prior to collecting groundwater samples. WSP used an Oakton® multi-probe water quality field meter to record pH, EC, and temperature of the groundwater during the purging process to monitor for stabilization.

Laboratory reports from the 2020 sampling events are included as Enclosure E, and the 2020 sample collection forms are included as Enclosure F.

GROUNDWATER CONTOUR MAPS

Groundwater elevations and PSH thickness measured in monitoring wells and product recovery wells during the quarterly 2020 monitoring events were used to draft groundwater potentiometric surface maps with isopach representations of product thickness (Figures 4 through Figure 7). Contours were inferred based on groundwater elevations, product thickness, and observations of physical characteristics at the site (topography, proximity to irrigation ditches and significant water courses, etc.).

FLUID RECOVERY

On January 24, 2019, Hilcorp installed a pneumatic product skimmer in MW-05 in order to recover PSH from the groundwater table. The product skimmer was moved to MW-8 on April 3, 2020. Product recovery socks were also installed in monitoring wells MW-05 and MW-12 in April of 2020 to increase product recovery. The product recovery socks were replaced quarterly in 2020. PSH was also manually bailed from wells in 2020 using a PVC bailer during each quarter of 2020.

RESULTS

The following section describe the results from groundwater sampling and product recovery efforts in 2020.

GROUNDWATER MONITORING

Groundwater elevations measured during site monitoring events in 2020 indicated a general northwest-west trending gradient toward the San Juan River, but product recovery and well screen setting cause variations in the overall groundwater gradient at the site. Figures 4 through Figure 7 depict groundwater elevations, groundwater analytical results, and PSH thickness for the 2020 monitoring events. A summary of measured depths to groundwater and PSH thickness is summarized in Table 1. Figure 8 shows the wells in cross-section lines A to A' and B to B' and Figures 9 and 10 provide subsurface cross-sections across the site.

During the March sampling event, monitoring wells MW-01 and MW-04 were not sampled due to insufficient groundwater in the wells. Laboratory analytical results from the March groundwater sampling event indicated BTEX concentrations exceeded the New Mexico Water Quality Control Commission (NMWQCC) standards for groundwater sampled from product recovery wells PR-1 and monitoring wells MW-02, MW-05 and MW-06 for at least one BTEX constituent. Monitoring wells MW-03, MW-07, MW-09, MW-10, and MW-11 were compliant with NMWQCC standards.

During the June sampling event, monitoring wells MW-01, MW-02, MW-03 and MW-04 were not sampled due to insufficient groundwater in the wells. Laboratory analytical results from the June groundwater sampling event indicated BTEX concentrations exceeded the NMWQCC standards for groundwater sampled from monitoring well

MW-06 for BTEX. Monitoring wells MW-07, MW-09, MW-10, and MW-11 were all in compliance with NMWQCC standards.

During the September monitoring event, product recovery wells PR-1 and PR-2 and monitoring wells MW-01, MW-02 and MW-04 were not sampled due to insufficient groundwater in the wells. Laboratory analytical results from the September groundwater sampling indicated BTEX concentrations exceeded the NMWQCC standards for BTEX for groundwater sampled from monitoring well MW-06. Monitoring wells MW-07, MW-09, MW-10, and MW-11 were compliant with NMWQCC standards.

During the December sampling event monitoring well MW-02 was dry and not sampled. Monitoring wells MW-01 and MW-04 were not sampled due to insufficient groundwater in the well. Laboratory analytical results from the December groundwater sampling indicated concentrations exceeded the NMWQCC standards for groundwater sampled from monitoring well MW-06 for all BTEX constituents. Monitoring wells MW-03, MW-07, MW-09, MW-10, and MW-11 were compliant with NMWQCC standards.

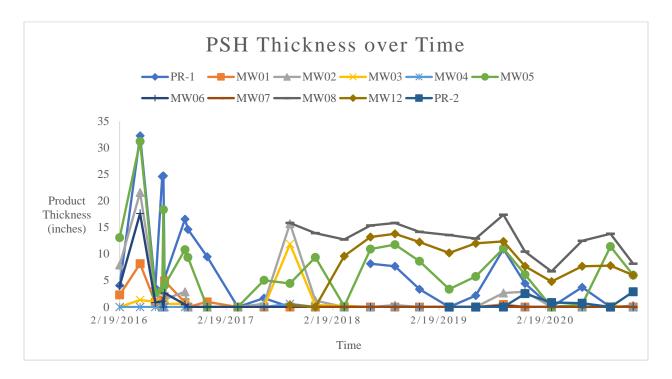
A summary of the groundwater analytical results is presented in Table 2. Complete laboratory analytical reports are included as Enclosure E.

PRODUCT THICKNESS AND RECOVERY

The 2020 monitoring events indicated monitoring wells MW-08 and MW-12 contained PSH during each quarterly monitoring event and, therefore, were not sampled. Monitoring well MW-05 contained PSH during the June, September, and December monitoring events. Product Recovery Well PR-2 contained PSH during the March, June and December monitoring event. Product recovery well PR-1 contained PSH during the June and December sampling events. Monitoring well MW-03 contained PSH during the September sampling event.

PSH thickness generally increased in between March 2020 to June 2020 except for PR-2 decreasing slightly. Between the June 2020 and September 2020 monitoring event PR-1 and PR-2 showed a decrease in PSH thickness while MW-03, MW-05, MW-08, and MW-12 all showed increased thickness of PSH. The December 2020 monitoring event showed decreased product thickness in MW-03, MW-05, MW-08, and MW-12 as compared to the September 2020 monitoring event while PR-1 and PR-2 should slight increases in PSH occurrence.

Monitoring wells MW-01, MW-02, MW-04, MW-06, MW-07, MW-09, MW-10, and MW-11 contained no detectable PSH during 2020 monitoring events.


As of August 2018, when the SVE system shut down, a total of 8,110 gallons of impacted groundwater had been recovered from the limited SVE system and via manual removal, of which approximately 1,880 gallons was PSH.

The below table summarizes PSH recovery efforts at the Site since the beginning of 2019. As of December 2020, manual removal activities along with the product skimmer have recovered a total of 1,986 gallons of PSH since product recovery records have been kept.

Well	PSH recovery via product recovery sock (oz)	PSH recover via manual bailing (oz)	PSH recovery via product skimmer (gallons)	Total PSH recovery (gallons)	
MW-05	26.35	18	50	50.35	
MW-08	NA	228	20	21.78	
MW-12	34.85	153	NA	1.47	
PR-1	NA	11	NA	0.09	
PR-2	NA	12.5	NA	0.10	
MW-02	NA	3.25	NA	0.02	
TOTAL	61.20	425.75	70	73.81	

A graph of the monitoring wells with observed PSH thickness over time is depicted below and, although fluctuations are evident, product recovery efforts have resulted in overall reduction in PSH measured in the monitoring wells.

CONCLUSIONS

Groundwater flow direction and elevation fluctuations at the site appear to be in response to the seasonal volume variations in the groundwater table elevation. Groundwater elevations at MW-01 and MW-06 are considerably different from other wells at the site and the lithological logs indicate MW-01 and MW-06 reached a dry bedrock interval in the bottom few inches of each boring. It is possible that MW-01 and MW-06 are more strongly influenced by groundwater in surrounding bedrock and/or lower hydraulic conductivity for soil surrounding these wells result in a less rapid response to the groundwater elevation changes in MW-01 and MW-06 compared to that observed in the other wells on site. Monitoring wells MW-02, MW-03, and MW-04 were installed to a total depth of 23 feet below ground surface and exhibit different responses to groundwater elevation changes than the other wells due to the limited saturated interval in these monitoring wells. The shallow depths of MW-02, MW-03, and MW-04 have resulted in the absence of groundwater in these wells during different parts of the year and an inconsistent groundwater gradient at the site.

The observed PSH impacts appear to be in contact with the groundwater. Overall product thickness has decreased in monitoring wells installed during the 2017 delineation event. PSH levels in the wells installed prior to the 2017 delineation event (PR-01, MW-01, MW-02, MW-03, MW-04, MW-05) had shown a decrease in PSH while the SVE system was operational. PSH thickness seemed to rebound slightly during the first three quarters of 2019 due to the shut-down of the limited SVE system in October of 2018. The variations in product thickness tend to suggest isolated pockets of PSH were no longer being entrained by the influence of the SVE system. By the end of 2019, a significant decrease in PSH thickness suggested the groundwater and product thicknesses were equilibrating. During the September 2020 monitoring event, PSH thickness spiked in MW-05 after consistent decline in occurrence after the pneumatic product skimmer was installed. This is likely attributed to the product skimmer being removed from this well, allowing for more accumulation of PSH. Conversely, in 2020, PSH thickness in MW-08 consistently declined and reach all-time low levels as the product skimmer was moved to this well. Seasonal fluctuations in groundwater elevations continue to be a dominant factor affecting PSH thickness in 2020. When groundwater elevations are at their highest after the spring melt and fall monsoons, there appears to be a general increase in PSH thickness as groundwater contacts impacted soil in the overlying smear zone.

The groundwater analytical results and PSH measurements indicate that PSH is still in contact with groundwater. Laboratory analytical results indicate groundwater is impacted by BTEX concentrations, which exceed the

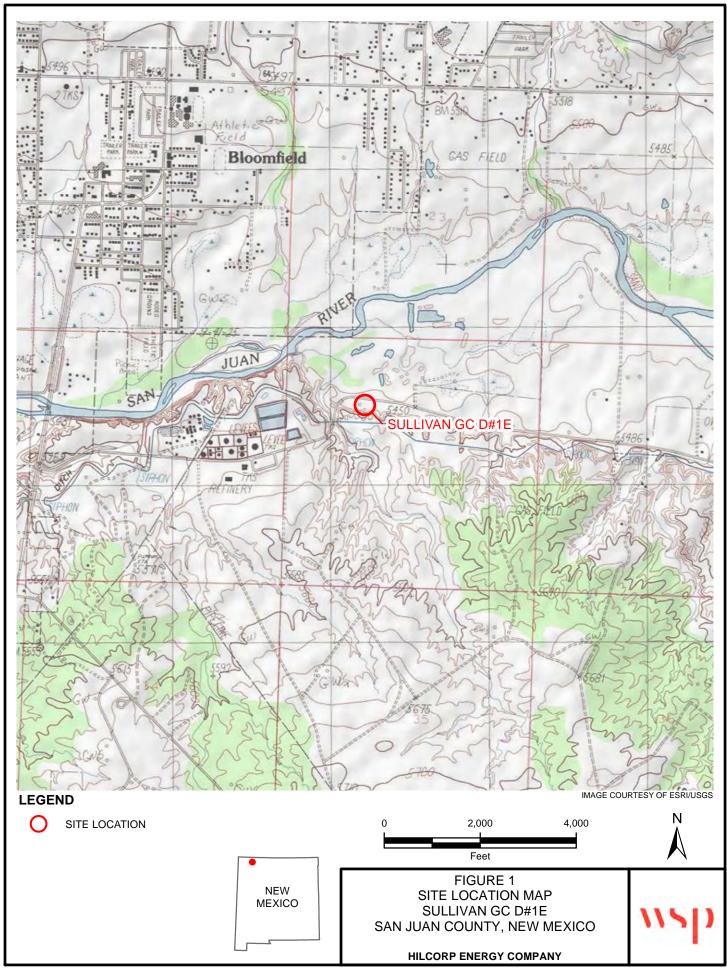
NMWQCC groundwater standards in product recovery well PR-1 and monitoring wells MW-02, MW-05 and MW-06 for at least one BTEX constituent. The full lateral extent of the impacts to groundwater is currently not fully delineated to the west near monitoring well MW-12.

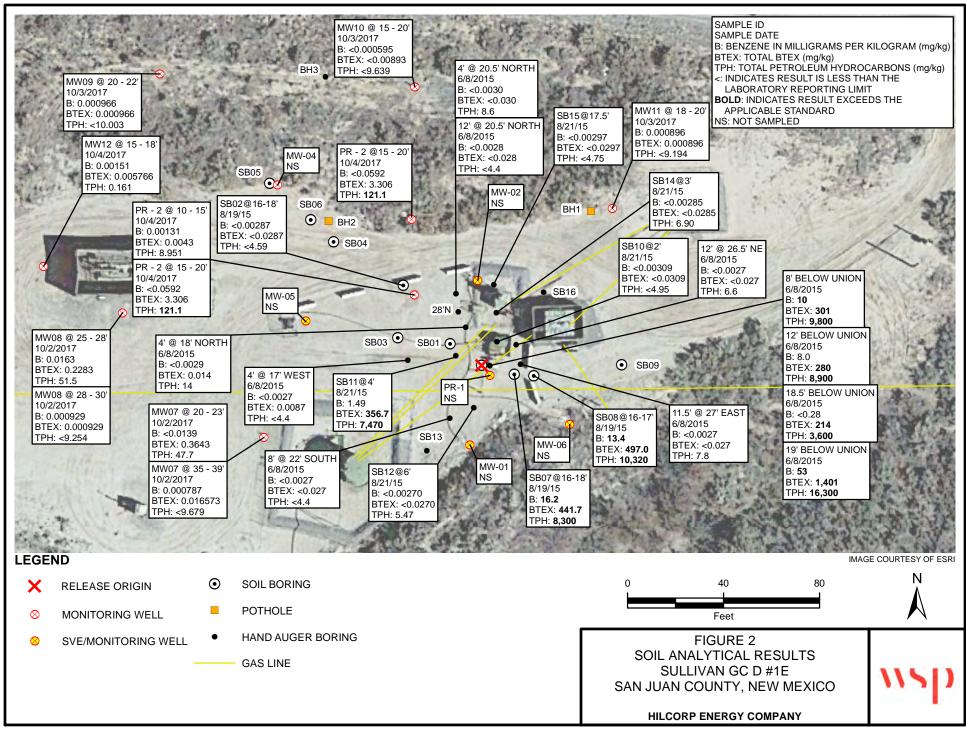
RECOMMENDATIONS

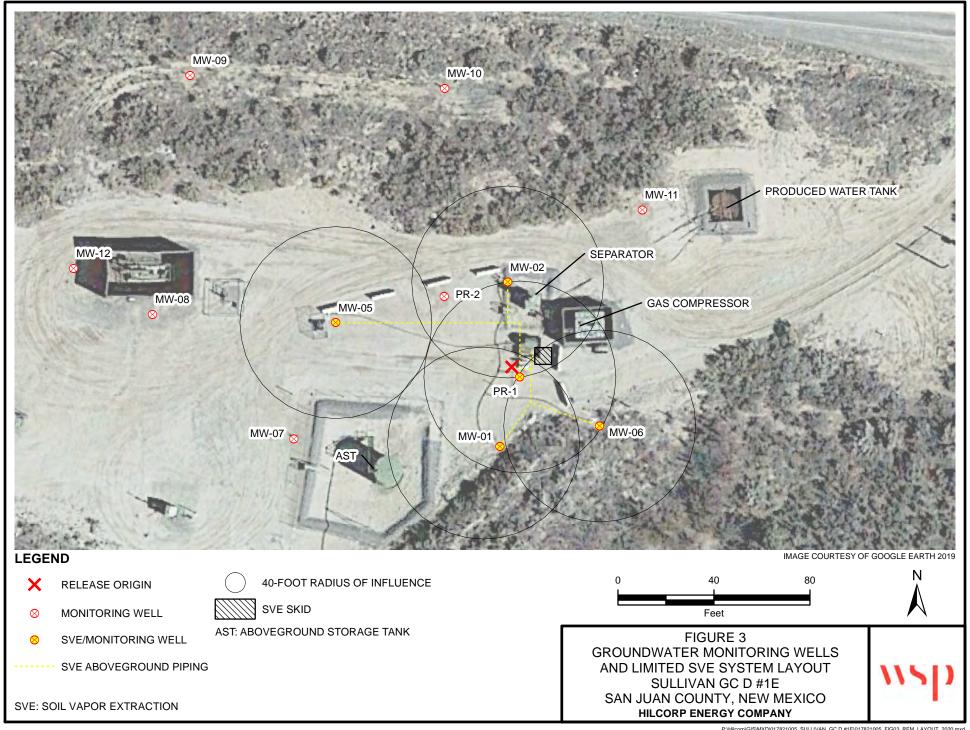
Based on the successful removal of PSH by SVE operation, WSP recommends the following:

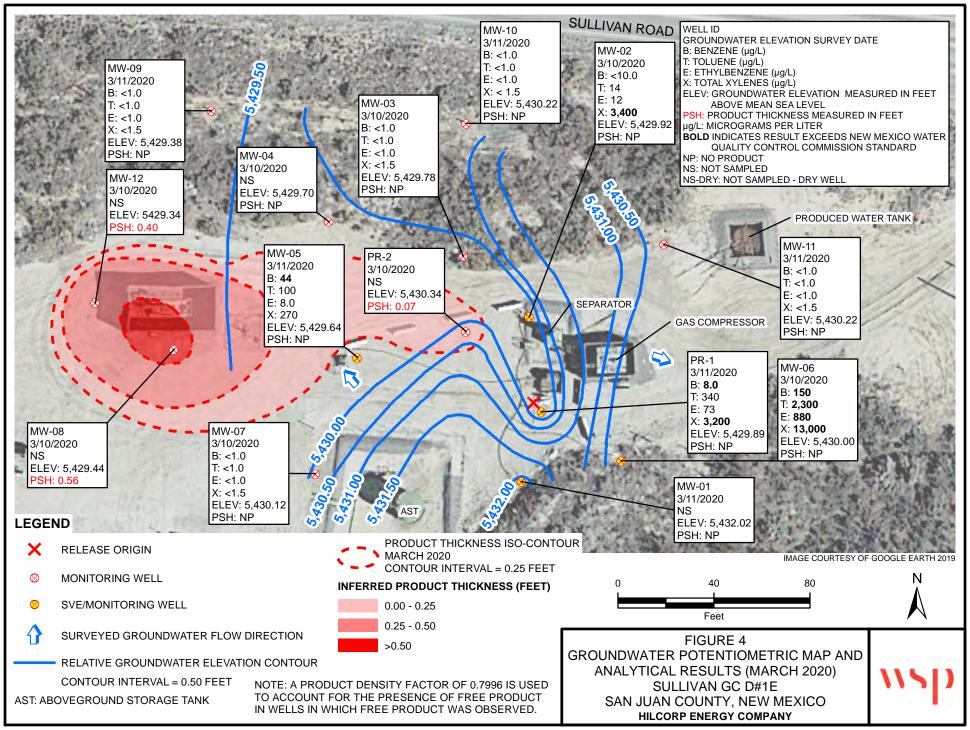
- Continue PSH recovery via the product skimmer and manual bailing
- Rotate the skimmer to other wells containing measurable PSH throughout the year
- Continue quarterly fluid elevation measurements and groundwater sampling in all accessible monitoring wells and product recovery wells
- Review the results of the 2020 efforts and evaluate revisions to active remediation of groundwater.

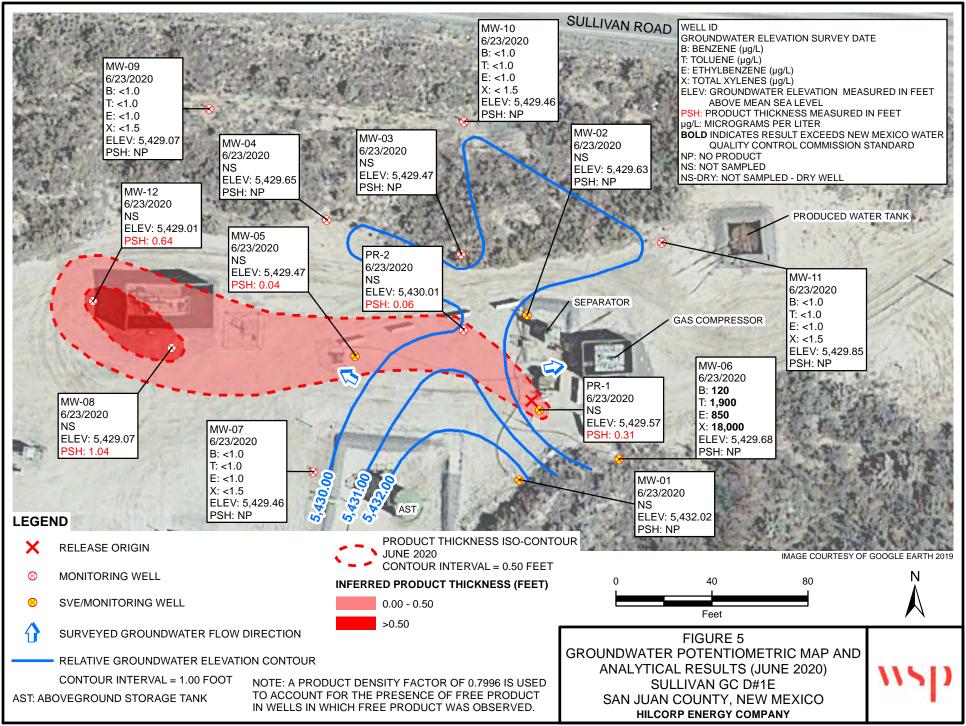
Kind regards,

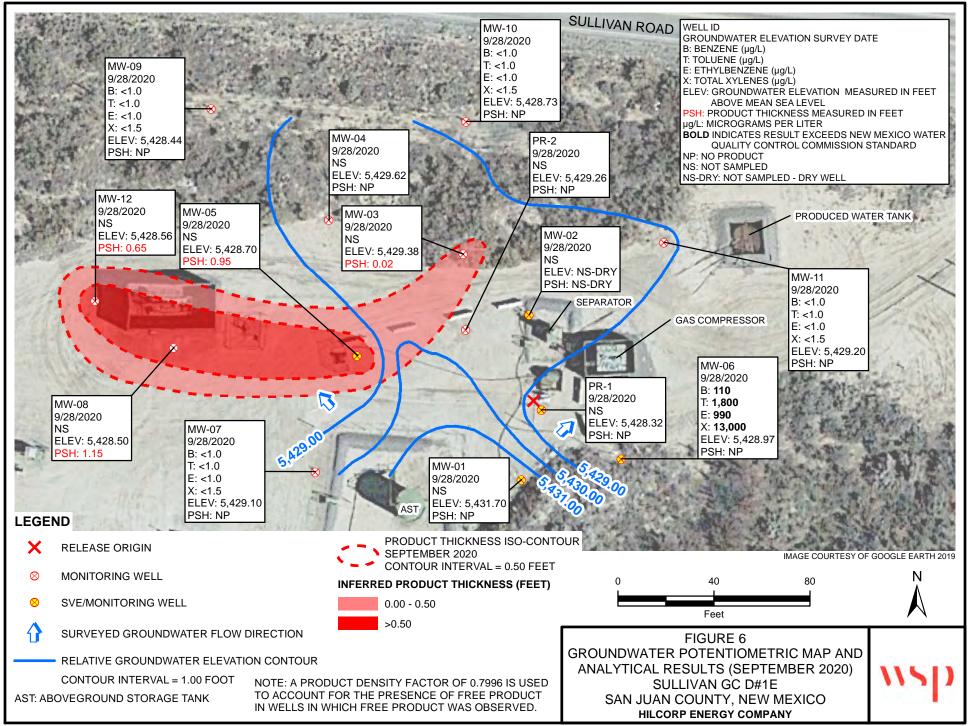

Josh Adams, PG Geologist

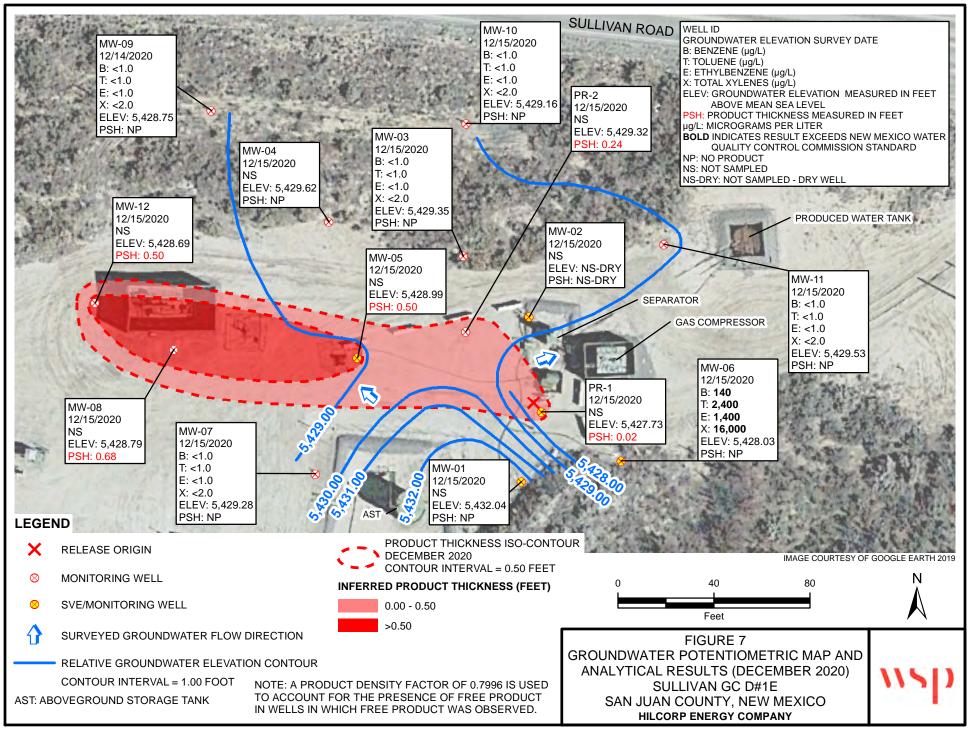

cc: Jenifer Deal

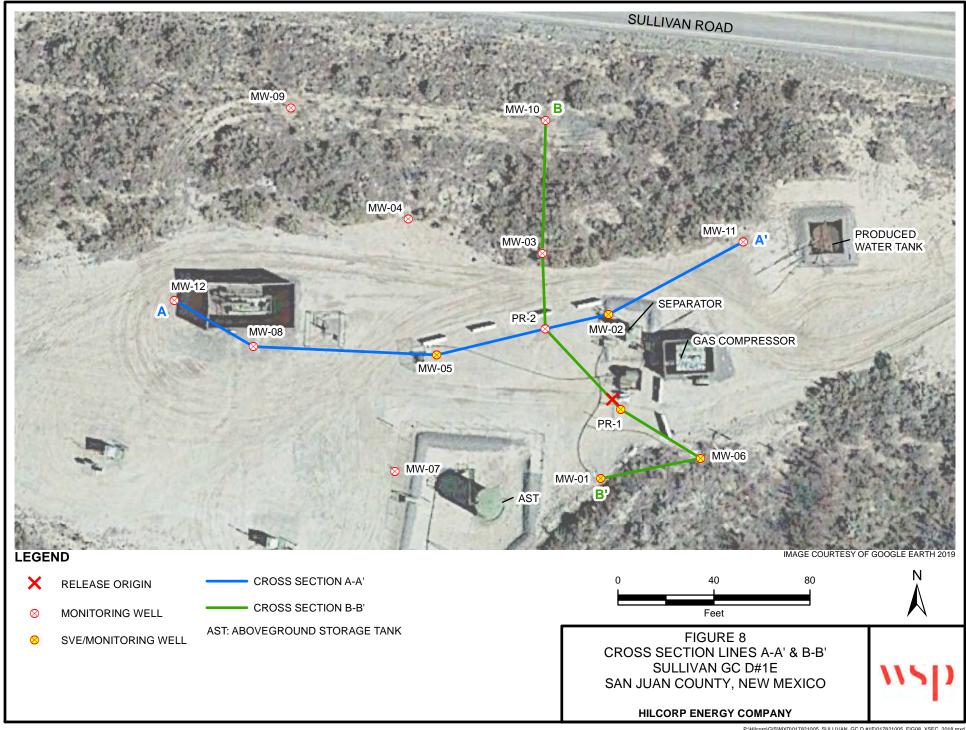

Ashley Ager, PG Managing Director

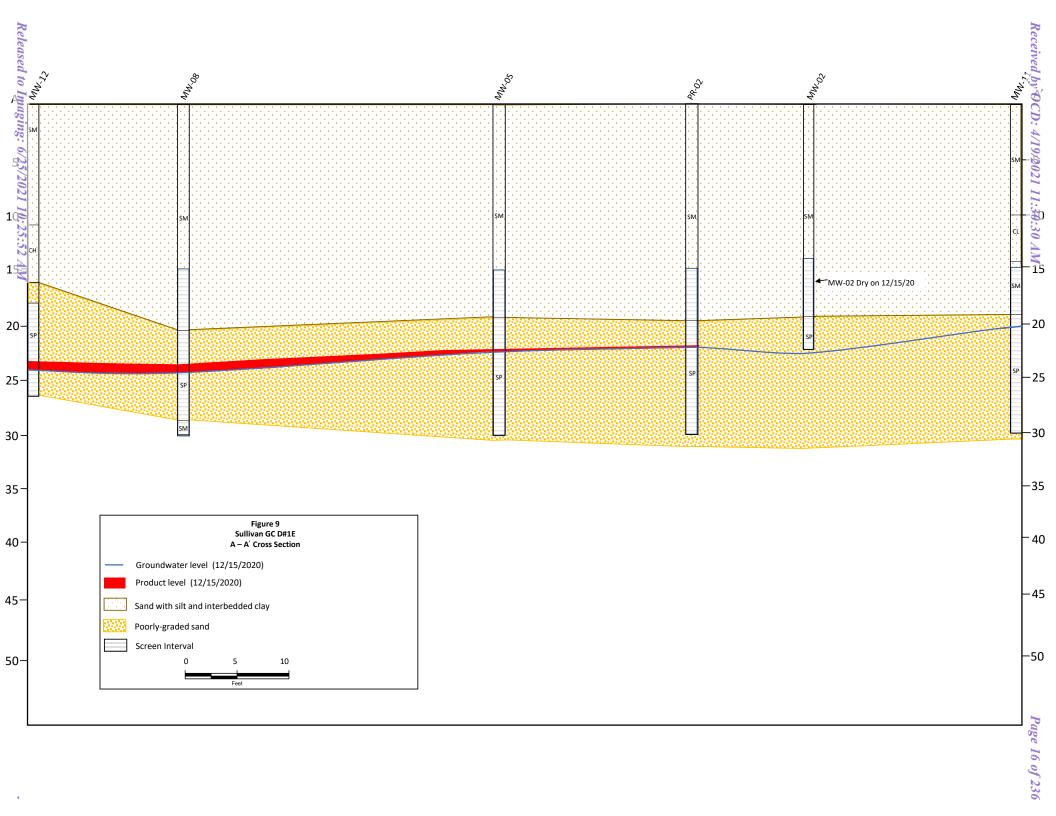

Ashley L. Ager

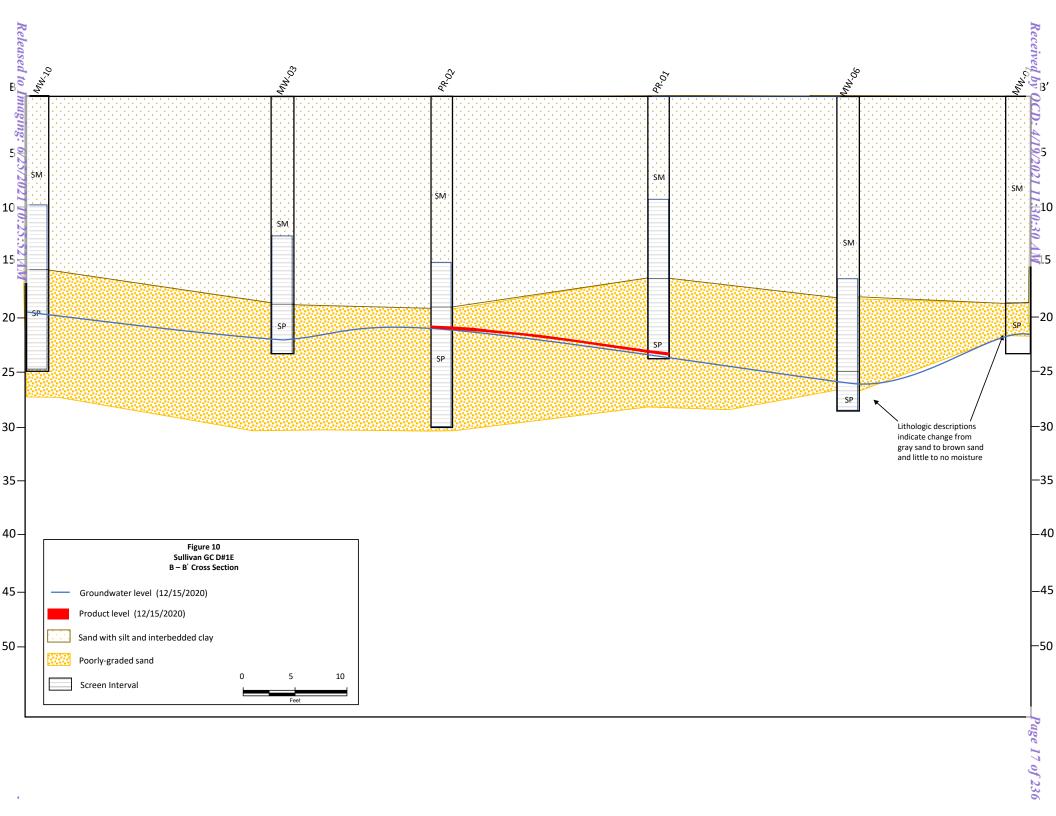

FIGURES











TABLES

Table 1 **Groundwater Elevations** Sullivan Gas Com D#1E San Juan County, New Mexico

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
PR-1A	9/9/2015		19.24	19.69	0.45	5.40	5,446.67
PR-1A	9/19/2015	5466.00				0.08	
PR-1A	9/25/2015	3400.00				0.40	
PR-1A	9/28/2015		19.3	19.83	0.53	6.36	5,446.59
	_						
PR-1	9/10/2015		21.55	21.82	0.27	3.24	5,430.63
PR-1	9/19/2015	1				0.21 **	
PR-1	9/25/2015	1				0.19 **	
PR-1	9/28/2015	-	20.95	21.51	0.56	6.72	5,431.17
PR-1	11/4/2015	-	19.09	19.58	0.49	5.88	5,433.04
PR-1	11/11/2015	-	19.23	19.39	0.16	1.92	5,432.97
PR-1	11/18/2015	-	19.28	19.44	0.16	1.92	5,432.92
PR-1	2/19/2016	-	19.97 19.32	20.31	0.34 2.69	4.08	5,432.19
PR-1 PR-1	4/29/2016	-	20.75	22.01 21.05	0.30	32.28 3.60	5,432.37
	6/20/2016	-		20.91		-	5,431.42
PR-1	7/14/2016	1	18.86	20.91	2.05	24.60 24.72	5,432.96 5,432.93
PR-1	7/18/2016	-	18.89 19.43	19.88	0.45	-	
PR-1 PR-1	7/22/2016 9/30/2016	1	19.43	20.10	1.38	5.40 16.56	5,432.71 5,433.23
PR-1	10/10/2016	-	18.72	19.94	1.22	14.64	5,433.27
PR-1	12/15/2016	-	19.35	20.14	0.79	9.48	5,432.72
PR-1	3/30/2017	5,452.23	NP	19.90	NP	NP	5,432.33
PR-1	6/28/2017		20.21	20.35	0.14	1.68	5,431.99
PR-1	9/25/2017		NP	21.00	NP	NP	5,431.23
PR-1	12/21/2017		NP	22.46	NP	NP	5,429.77
PR-1	3/30/2018		NP	21.36	NP	NP	5,430.87
PR-1	6/26/2018	-	21.70	22.38	0.68	8.16	5,430.39
PR-1	9/20/2018	-	23.44	24.08	0.64	7.68	5,428.66
PR-1	12/13/2018	1	22.05	22.33	0.28	3.36	5,430.12
PR-1	3/25/2019	1	NP	21.51	NP	NP	5,430.72
PR-1	6/24/2019		22.11	22.29	0.18	2.16	5,430.08
PR-1	9/27/2019		22.74	23.65	0.91	10.92	5,429.31
PR-1	12/10/2019		22.58	22.95	0.37	4.44	5,429.58
PR-1	3/10/2020		NP	22.34	NP	NP	5,429.89
PR-1	6/23/2020	1	22.60	22.91	0.31	3.72	5,429.57
PR-1	9/28/2020	1	NP	23.91	NP	NP	5,428.32
PR-1	12/15/2020	1	24.50	24.52	0.02	0.24	5,427.73
PR-2	12/21/2017		NP	20.71	NP	NP	5,431.37
PR-2	3/30/2018]	NP	20.92	NP	NP	5,431.16
PR-2	6/26/2018]	NP	21.38	NP	NP	5,430.70
PR-2	9/20/2018]	NP	21.79	NP	NP	5,430.29
PR-2	12/13/2018]	NP	21.67	NP	NP	5,430.41
PR-2	3/25/2019]	NP	21.99	NP	NP	5,430.09
PR-2	6/24/2019	5,452.08	NP	22.81	NP	NP	5,429.27
PR-2	9/27/2019]	NP	22.48	NP	NP	5,429.60
PR-2	12/10/2019]	22.15	22.36	0.21	2.52	5,430.04
PR-2	3/10/2020]	21.88	21.95	0.07	0.84	5,430.34
PR-2	6/23/2020]	22.21	22.27	0.06	0.72	5,430.01
PR-2	9/28/2020]	NP	22.82	NP	NP	5,429.26
PR-2	12/15/2020		22.52	22.76	0.24	2.88	5,429.32
MW-01	9/10/2015		21.55	21.82	0.27	3.24	5,432.55
MW-01	9/19/2015	1				0.21 **	
MW-01	9/25/2015	5,454.15				0.19 **	
MW-01	9/28/2015	1	20.95	21.51	0.56	6.72	5,433.09

Table 1

Groundwater Elevations
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
MW-01	11/4/2015		20.98	21.60	0.62	7.44	5,433.05
MW-01	11/11/2015		21.05	21.74	0.69	8.28	5,432.96
MW-01	11/18/2015		21.08	21.81	0.73	8.76	5,432.92
MW-01	2/19/2016	1	21.65	21.84	0.19	2.28	5,432.46
MW-01	4/29/2016		21.11	21.79	0.68	8.16	5,432.90
MW-01	6/20/2016	1	22.96	23.03	0.07	0.84	5,431.18
MW-01	7/14/2016		NP	20.71	NP	NP	5,433.44
MW-01	7/18/2016		20.80	20.91	0.11	1.32	5,433.33
MW-01	7/22/2016		21.18	21.59	0.41	4.92	5,432.89
MW-01	9/30/2016		20.74	20.81	0.07	0.84	5,433.40
MW-01	10/10/2016		NP	20.69	NP	NP	5,433.46
MW-01	12/15/2016		22.41	22.33	0.08	0.96	5,431.88
MW-01	3/30/2017		NP	21.76	NP	NP	5,432.39
MW-01	6/28/2017	5,454.15	Trace	21.88	NP	NP	5,432.27
MW-01	9/25/2017	3,434.13	NP	21.85	NP	NP	5,432.30
MW-01	12/21/2017			I	Ory - No Product o	r Groundwater Obse	rved
MW-01	3/30/2018		NP	21.85	NP	NP	5,432.30
MW-01	6/26/2018		NP	21.90	NP	NP	5,432.25
MW-01	9/20/2018			Ι	Ory - No Product o	r Groundwater Obse	rved
MW-01	12/13/2018			Dry @	22.30' - No Prod	uct or Groundwater	Observed
MW-01	3/25/2019		NP	22.03	NP	NP	5,432.12
MW-01	6/24/2019		NP	22.16	NP	NP	5,431.99
MW-01	9/27/2019		22.04	22.00	0.04	0.48	5,432.18
MW-01	12/10/2019			Dry @	22.40' - No Prod	uct or Groundwater	Observed
MW-01	3/10/2020		NP	22.13	NP	NP	5,432.02
MW-01	6/23/2020		NP	22.13	NP	NP	5,432.02
MW-01	9/28/2020		NP	22.45	NP	NP	5,431.70
MW-01	12/15/2020		NP	22.11	NP	NP	5,432.04
		1		1		T T	
MW-02	9/10/2015	-	NP	18.85	NP	NP	5,433.10
MW-02	9/19/2015	-				0.05 **	
MW-02	9/25/2015	-	10.05			0.15 **	
MW-02	9/28/2015	-	18.85	19.04	0.19	2.28	5,433.06
MW-02	11/4/2015	-	18.88	19.21	0.33	3.96	5,433.00
MW-02	11/11/2015	-	18.97	19.31	0.34	4.08	5,432.91
MW-02	11/18/2015	-	18.98	19.30	0.32	3.84	5,432.91
MW-02 MW-02	2/19/2016 4/29/2016	1	19.63 19.47	20.29	0.66 1.80	7.92 21.60	5,432.19 5,432.12
MW-02 MW-02	6/20/2016	1	20.30	20.55	0.25	3.00	5,431.60
MW-02 MW-02	7/14/2016	1	20.30 NP	19.04	0.25 NP	NP	5,432.91
MW-02 MW-02	7/14/2016	1	NP NP	19.04	NP NP	NP NP	5,432.90
MW-02 MW-02	7/18/2016	1	19.07	19.05	0.12	1.44	·
	9/30/2016	5 451 05				2.88	5,432.86
MW-02 MW-02	10/10/2016	5,451.95	18.69 NP	18.93 18.64	0.24 NP	2.88 NP	5,433.21 5,433.31
MW-02	12/15/2016	1	NP NP	19.20	NP NP	NP NP	5,432.75
		1	NP NP			NP NP	5,432.75
MW-02 MW-02	3/30/2017	1		19.69	NP		· · · · · · · · · · · · · · · · · · ·
	6/28/2017	1	19.90	19.95	0.05	0.60	5,432.04
MW-02	9/25/2017	1	22.05	21.85	1.31	15.72	5,431.15
MW-02	12/21/2017 3/30/2018	1	22.05 NP	22.15	0.10 NP	1.20 NP	5,429.88
MW-02		1		21.10			5,430.85
MW-02	6/26/2018	1	NP 22.12	21.42	NP	NP	5,430.53
MW-02	9/20/2018	-	23.12	23.15	0.03	0.36	5,428.82
MW-02	12/13/2018	-	NP	22.47	NP	NP	5,429.48
MW-02	3/25/2019		NP	22.92	NP	NP	5,429.03
MW-02	6/24/2019		NP	23.02	NP	NP	5,428.93
MW-02	9/27/2019		22.56	22.78	0.22	2.64	5,431.55

Table 1

Groundwater Elevations
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
MW-02	12/10/2019		22.54	22.78	0.24	2.88	5,431.56
MW-02	3/10/2020	1	NP	22.03	NP	NP	5,429.92
MW-02	6/23/2020	5,451.95	NP	22.32	NP	NP	5,429.63
MW-02	9/28/2020	1	DRY	DRY	DRY	DRY	DRY
MW-02	12/15/2020		DRY	DRY	DRY	DRY	DRY
MW-03	9/10/2015		NP	19.45	NP	NP	5,433.05
MW-03	9/28/2015		NP	19.49	NP	NP	5,433.01
MW-03	11/4/2015		19.54	19.56	0.02	0.24	5,432.96
MW-03	11/11/2015		NP	19.65	NP	NP	5,432.85
MW-03	11/18/2015		NP	19.67	NP	NP	5,432.83
MW-03	2/19/2016		NP	20.44	NP	NP	5,432.06
MW-03	4/29/2016	-	20.54	20.65	0.11	1.32	5,431.94
MW-03	6/20/2016	-	19.70	19.78	0.08	0.96	5,432.78
MW-03	7/14/2016	-	19.59	19.65	0.06	0.72	5,432.90
MW-03	7/18/2016	-	19.65	19.69	0.04	0.48	5,432.84
MW-03 MW-03	7/22/2016	-	19.61	19.66	0.05	0.60	5,432.88
	9/30/2016	-	19.28	19.33	0.05	0.60	5,433.21
MW-03	10/10/2016	-	NP	19.23	NP	NP	5,433.27
MW-03 MW-03	12/15/2016	-	NP NP	19.82 20.36	NP ND	NP NP	5,432.68
MW-03	3/30/2017	5,452.50	NP NP	20.36	NP NP	NP NP	5,432.14
MW-03	6/28/2017 9/25/2017	-	21.14	22.13	0.99	11.88	5,431.73
MW-03	12/21/2017	1	21.14	21.55	0.99	0.36	5,431.16 5,430.97
MW-03	3/30/2018	1	21.75	21.77	0.03	0.36	5,430.75
MW-03	6/26/2018	1	NP	22.20	NP	NP	5,430.30
MW-03	9/20/2018	1	NP	22.62	NP NP	NP NP	5,429.88
MW-03	12/13/2018	1	NP	22.47	NP	NP	5,430.03
MW-03	3/25/2019	-	NP	22.35	NP	NP	5,430.15
MW-03	6/24/2019	1	NP	22.53	NP	NP	5,429.97
MW-03	9/27/2019	1	NP	22.34	NP	NP	5,430.16
MW-03	12/10/2019	1	NP	23.01	NP	NP	5,429.49
MW-03	3/10/2020	1	NP	22.72	NP	NP	5,429.78
MW-03	6/23/2020		NP	23.03	NP	NP	5,429.47
MW-03	9/28/2020		23.12	23.14	0.02	0.24	5,429.38
MW-03	12/15/2020	1	NP	23.15	NP	NP	5,429.35
MW-04	9/10/2015		NP	18.94	NP	NP	5,432.98
MW-04	9/28/2015]	NP	19.98	NP	NP	5,431.94
MW-04	11/4/2015]	NP	19.08	NP	NP	5,432.84
MW-04	11/11/2015]	NP	19.20	NP	NP	5,432.72
MW-04	11/18/2015]	NP	19.21	NP	NP	5,432.71
MW-04	2/19/2016]	NP	20.04	NP	NP	5,431.88
MW-04	4/29/2016]	NP	20.11	NP	NP	5,431.81
MW-04	6/20/2016]	NP	19.10	NP	NP	5,432.82
MW-04	7/14/2016		NP	19.01	NP	NP	5,432.91
MW-04	7/18/2016	5,451.92	NP	19.00	NP	NP	5,432.92
MW-04	7/22/2016		NP	18.99	NP	NP	5,432.93
MW-04	9/30/2016		NP	18.72	NP	NP	5,433.20
MW-04	10/10/2016		NP	18.62	NP	NP	5,433.30
MW-04	12/15/2016		NP	19.36	NP	NP	5,432.56
MW-04	3/30/2017		NP	19.98	NP	NP	5,431.94
MW-04	6/28/2017	-	NP	20.30	NP	NP	5,431.62
MW-04	9/25/2017	-	20.86 NP	20.91 21.12	0.05 NP	0.60 NP	5,431.05 5,430.80
MW-04	12/21/2017						

Table 1

Groundwater Elevations
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
MW-04	6/26/2018		NP	21.78	NP	NP	5,430.14
MW-04	9/20/2018			Г	Ory - No Product of	r Groundwater Obser	rved
MW-04	12/13/2018			Dry @	22.39' - No Prod	uct or Groundwater (Observed
MW-04	3/25/2019		NP	22.31	NP	NP	5,429.61
MW-04	6/24/2019		NP	22.11	NP	NP	5,429.81
MW-04	9/27/2019	5,451.92	NP	22.14	NP	NP	5,429.78
MW-04	12/10/2019		NP	22.18	NP	NP	5,429.74
MW-04	3/10/2020		NP	22.22	NP	NP	5,429.70
MW-04	6/23/2020		NP	22.27	NP	NP	5,429.65
MW-04	9/28/2020		NP	22.30	NP	NP	5,429.62
MW-04	12/15/2020		NP	22.26	NP	NP	5,429.66
MW-05	11/4/2015]	18.82	19.51	0.69	8.28	5,432.93
MW-05	11/11/2015]	18.9	19.69	0.79	9.48	5,432.83
MW-05	11/18/2015]	18.93	19.73	0.8	9.60	5,432.80
MW-05	2/19/2016]	19.66	20.75	1.09	13.08	5,432.01
MW-05	4/29/2016]	19.35	21.95	2.60	31.20	5,432.02
MW-05	6/20/2016]	20.18	20.40	0.22	2.64	5,431.67
MW-05	7/14/2016		18.63	18.89	0.26	3.12	5,433.21
MW-05	7/18/2016		18.60	20.13	1.53	18.36	5,432.98
MW-05	7/22/2016		18.84	19.18	0.34	4.08	5,432.98
MW-05	9/30/2016		18.44	19.34	0.90	10.80	5,433.27
MW-05	10/10/2016		18.39	19.17	0.78	9.36	5,433.34
MW-05	12/15/2016		NP	19.24	NP	NP	5,432.65
MW-05	3/30/2017		NP	20.42	NP	NP	5,431.47
MW-05	6/28/2017	5,451.89	19.98	20.40	0.42	5.04	5,431.83
MW-05	9/25/2017		20.57	20.94	0.37	4.44	5,431.25
MW-05	12/21/2017		22.03	22.81	0.78	9.36	5,429.70
MW-05	3/30/2018		21.15	21.16	0.01	0.12	5,430.74
MW-05	6/26/2018		21.48	22.39	0.91	10.92	5,430.23
MW-05	9/20/2018		23.02	24.00	0.98	11.76	5,428.67
MW-05	12/13/2018		21.83	22.55	0.72	8.64	5,429.92
MW-05	3/25/2019	-	21.79	22.07	0.28	3.36	5,430.04
MW-05	6/24/2019	-	21.94	22.42	0.48	5.76	5,429.85
MW-05	9/27/2019	-	22.60	23.52	0.92	11.04	5,429.11
MW-05	12/10/2019	-	22.46	22.97	0.51	6.12	5,429.33
MW-05	3/10/2020	-	NP	22.25	NP 0.04	NP	5,429.64
MW-05 MW-05	6/23/2020 9/28/2020	1	22.41	22.45 23.95	0.04	0.48 11.40	5,429.47 5,428.70
MW-05 MW-05	12/15/2020	1	22.80	23.30	0.95	6.00	5,428.70
1V1 VV -U.S	12/13/2020		22.00	23.30	0.30	0.00	J, 4 20.77
MW-06	11/4/2015		21.81	22.12	0.31	3.72	5,433.08
MW-06	11/4/2015	1	21.88	22.12	0.31	5.04	5,432.99
MW-06	11/11/2015	1	21.89	22.3	0.42	4.92	5,432.98
MW-06	2/19/2016	1	22.58	22.91	0.33	3.96	5,432.30
MW-06	4/29/2016	1	22.02	23.49	1.47	17.64	5,432.64
MW-06	6/20/2016	1	23.53	23.60	0.07	0.84	5,431.41
MW-06	7/14/2016	1	21.94	22.03	0.07	1.08	5,432.99
MW-06	7/18/2016	5,454.95	NP	21.79	NP	NP	5,433.16
MW-06	7/22/2016	5,154.75	22.09	22.31	0.22	2.64	5,432.82
MW-06	9/30/2016	1	21.70	21.74	0.22	0.48	5,433.24
MW-06	10/10/2016	1	NP	21.64	NP	NP	5,433.31
MW-06	12/15/2016	1	NP	22.11	NP	NP	5,432.84
MW-06	3/30/2017	1	NP	22.55	NP	NP	5,432.40
MW-06	6/28/2017	1	Trace	23.00	NP	NP	5,431.95
MW-06	9/25/2017	1	NP	23.67	NP	NP	5,431.28

Table 1

Groundwater Elevations
Sullivan Gas Com D#1E
San Juan County, New Mexico

		Top of Casing	Depth to	Depth to	Product	Product	Groundwater Elevation
Well ID	Date	Elevation	Product	Groundwater	Thickness	Thickness	(feet)
		(feet*)	(feet BTOC)	(feet BTOC)	(feet)	(inches)	
MW-06	12/21/2017	-	NP	24.92	NP	NP	5,430.03
MW-06	3/30/2018	-	NP	23.97	NP	NP	5,430.98
MW-06	6/26/2018	-	NP	24.46	NP	NP	5,430.49
MW-06	9/20/2018	-	NP	26.18	NP	NP	5,428.77
MW-06	12/13/2018	-	NP	25.75	NP	NP	5,429.20
MW-06	3/25/2019	5 454 05	NP	24.59	NP	NP	5,430.36
MW-06	6/24/2019	5,454.95	NP	24.76	NP	NP	5,430.19
MW-06	9/27/2019	-	25.55	25.57	0.02	0.24	5,429.40
MW-06	12/10/2019	-	NP	26.26	NP	NP	5,428.69
MW-06	3/10/2020	-	NP	24.95	NP	NP	5,430.00
MW-06	6/23/2020	-	NP	25.27	NP	NP ND	5,429.68
MW-06 MW-06	9/28/2020 12/15/2020	-	NP NP	25.98 26.92	NP NP	NP NP	5,428.97
M W -00	12/15/2020		NP	26.92	NP	NP	5,428.03
MW-07	10/13/2017		28.37	28.39	0.02	0.24	5,427.63
MW-07	12/21/2017]	NP	24.72	NP	NP	5,431.28
MW-07	3/30/2018]	NP	25.26	NP	NP	5,430.74
MW-07	6/26/2018]	NP	24.16	NP	NP	5,431.84
MW-07	9/20/2018]	NP	25.83	NP	NP	5,430.17
MW-07	12/13/2018		NP	25.87	NP	NP	5,430.13
MW-07	3/25/2019	5,456.00	NP	25.69	NP	NP	5,430.31
MW-07	6/24/2019	3,430.00	NP	26.03	NP	NP	5,429.97
MW-07	9/27/2019		NP	26.48	NP	NP	5,429.52
MW-07	12/10/2019		NP	26.53	NP	NP	5,429.47
MW-07	3/10/2020		NP	25.88	NP	NP	5,430.12
MW-07	6/23/2020		NP	26.54	NP	NP	5,429.46
MW-07	9/28/2020		NP	26.90	NP	NP	5,429.10
MW-07	12/15/2020		NP	26.72	NP	NP	5,429.28
MIN 00	10/10/2015	ı	21.21	22.52	1.22	15.04	5 421 01
MW-08	10/13/2017	-	21.21	22.53	1.32	15.84	5,431.01
MW-08	12/21/2017	-	21.48	22.64	1.16	13.92	5,430.77
MW-08	3/30/2018	-	21.80	22.86	1.06	12.72	5,430.47
MW-08	6/26/2018	-	22.11	23.39	1.28	15.36	5,430.11
MW-08	9/20/2018	-	22.46	23.78	1.32	15.84	5,429.76
MW-08	12/13/2018	-	22.47	23.65	1.18	14.16	5,429.77
MW-08 MW-08	3/25/2019 6/24/2019	5,452.48	22.43	23.56	1.13	13.56	5,429.82
MW-08 MW-08	9/27/2019	1	22.58 23.29	23.66 24.74	1.08	12.96 17.40	5,429.68
MW-08	12/10/2019	1	23.29	24.74	0.87	10.44	5,428.90 5,429.14
		1		23.49		 	· · · · · · · · · · · · · · · · · · ·
MW-08 MW-08	3/10/2020 6/23/2020	1	22.93 23.20	23.49	0.56 1.04	6.72 12.48	5,429.44 5,429.07
MW-08	9/28/2020	1	23.75	24.24	1.15	13.80	5,428.50
MW-08	12/15/2020	1	23.55	24.23	0.68	8.16	5,428.79
111 11 -00	14/13/4040		43.33	24.23	0.00	0.10	3,740.17
MW-09	10/13/2017		NP	20.30	NP	NP	5,430.87
MW-09	12/21/2017]	NP	20.52	NP	NP	5,430.65
MW-09	3/30/2018]	NP	20.80	NP	NP	5,430.37
MW-09	6/26/2018]	NP	21.21	NP	NP	5,429.96
MW-09	9/20/2018]	NP	21.51	NP	NP	5,429.66
MW-09	12/13/2018	5 451 17	NP	21.55	NP	NP	5,429.62
MW-09	3/25/2019	5,451.17	NP	21.39	NP	NP	5,429.78
MW-09	6/24/2019	1	NP	21.59	NP	NP	5,429.58
MW-09	9/27/2019	1				uct or Groundwater (
MW-09	12/10/2019	1	NP	22.10	NP	NP	5429.07
MW-09	3/10/2020	1	NP	21.79	NP	NP	5,429.38
MW-09	6/23/2020	1	NP	22.10	NP	NP	5,429.07

Table 1

Groundwater Elevations
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
MW-09	9/28/2020		NP	22.73	NP	NP	5,428.44
MW-09	12/14/2020	5,451.17	NP	22.42	NP	NP	5,428.75
MW-10	10/13/2017		NP	17.62	NP	NP	5,431.09
MW-10	12/21/2017		NP	17.75	NP	NP	5,430.96
MW-10	3/30/2018		NP	17.97	NP	NP	5,430.74
MW-10	6/26/2018		NP	18.42	NP	NP	5,430.29
MW-10	9/20/2018		NP	18.84	NP	NP	5,429.87
MW-10	12/13/2018		NP	18.74	NP	NP	5,429.97
MW-10	3/25/2019	5,448.71	NP	18.54	NP	NP	5,430.17
MW-10	6/24/2019	3,446.71	NP	18.72	NP	NP	5,429.99
MW-10	9/27/2019		NP	19.89	NP	NP	5,428.82
MW-10	12/10/2019		NP	19.19	NP	NP	5,429.52
MW-10	3/10/2020		NP	18.90	NP	NP	5,429.81
MW-10	6/23/2020		NP	19.25	NP	NP	5,429.46
MW-10	9/28/2020		NP	19.98	NP	NP	5,428.73
MW-10	12/15/2020		NP	19.55	NP	NP	5,429.16
MW-11	10/13/2017		NP	19.10	NP	NP	5,431.30
MW-11	12/21/2017		NP	19.18	NP	NP	5,431.22
MW-11	3/30/2018		NP	19.34	NP	NP	5,431.06
MW-11	6/26/2018		NP	19.83	NP	NP	5,430.57
MW-11	9/20/2018		NP	20.31	NP	NP	5,430.09
MW-11	12/13/2018		NP	20.01	NP	NP	5,430.39
MW-11	3/25/2019	5,450.40	NP	19.84	NP	NP	5,430.56
MW-11	6/24/2019	3,430.40	NP	20.82	NP	NP	5,429.58
MW-11	9/27/2019		NP	20.75	NP	NP	5,429.65
MW-11	12/10/2019		NP	20.48	NP	NP	5,429.92
MW-11	3/10/2020		NP	20.18	NP	NP	5,430.22
MW-11	6/23/2020		NP	20.55	NP	NP	5,429.85
MW-11	9/28/2020		NP	21.20	NP	NP	5,429.20
MW-11	12/15/2020		NP	20.87	NP	NP	5,429.53
MW-12	10/13/2017		21.51	21.54	0.03	0.36	5,430.92
MW-12	12/21/2017]	NP	21.81	NP	NP	5,430.63
MW-12	3/30/2018		21.91	22.71	0.80	9.60	5,430.37
MW-12	6/26/2018		22.15	23.25	1.10	13.20	5,430.07
MW-12	9/20/20108]	22.50	23.65	1.15	13.80	5429.71
MW-12	12/13/2018]	22.60	23.62	1.02	12.24	5429.64
MW-12	3/25/2019	5,452.44	22.50	23.35	0.85	10.20	5429.77
MW-12	6/24/2019	3,432.44	22.66	23.66	1.00	12.00	5429.58
MW-12	9/27/2019		23.39	24.42	1.03	12.36	5428.84
MW-12	12/10/2019]	23.27	23.91	0.64	7.68	5429.04
MW-12	3/10/2020		23.02	23.42	0.40	4.80	5429.34
MW-12	6/23/2020		23.30	23.94	0.64	7.68	5429.01
MW-12	9/28/2020		23.75	24.40	0.65	7.80	5428.56
MW-12	12/15/2020		23.65	24.15	0.50	6.00	5428.69

BTOC - below top of casing

NP - no product

Trace - visible sheen/product in bailer, but not detected by interface probe

 $A\ product\ density\ correction\ factor\ of\ 0.7996\ was\ applied\ to\ the\ groundwater\ elevation\ in\ wells\ that\ contained\ free\ product.$

 $[\]ensuremath{^*}$ - survyed using North American Vertical Datum 1988 geoid 12B in U.S. survey feet

^{** -} Estimated based on volume recovered in a bailer

^{-- -} not measured

Table 2

Groundwater Analytical Results
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	
NMWQC	C Standard	5	1,000	700	620	
PR-1	9/25/2017	3,580	19,500	<100	82,700	
PR-1	3/25/2019	18	650	130	4,200	
PR-1	3/11/2020	8.0	340	73	3,200	
PR-2	10/13/2017	2,070	6,450	555	6,900	
PR-2	6/27/2018	1,100	810	400	2,100	
PR-2	9/20/2018	1,100	1,200	430	2,100	
PR-2	12/13/2018	1,900	3,600	840	4,300	
PR-2	3/25/2019	65	41	120	270	
PR-2	6/24/2019	170	180	130	390	
PR-2	9/27/2019	170	230	180	690	
MW-01	9/25/2017	415	1,990	222	8,270	
MW-02	9/10/2015	6,500	24,200	1,770	11,400	
MW-02	12/15/2016	2,730	5,960	440	9,450	
MW-02	6/27/2018	220	820	<100	5,500	
MW-02	3/25/2019	<10	<10	13	2,500	
MW-02	3/10/2020	<10	14	12	3,400	
MW-03	9/10/2015	2,050	420	390	2,890	
MW-03	9/14/2015	6,800	1,800	900	7,600	
MW-03	2/19/2016	919	232	130	830	
MW-03	12/15/2016	1,440	251	283	2,810	
MW-03	6/28/2017	334	146	117	1,260	
MW-03	6/27/2018	<10	<10	<10	<15	
MW-03	9/20/2018	<1.0	<1.0	<1.0	<2.0	
MW-03	12/13/2018	<1.0	<1.0	<1.0	<2.0	
MW-03	3/25/2019	<1.0	<1.0	<1.0	<1.5	
MW-03	6/24/2019	<1.0	<1.0	<1.0	<2.0	
MW-03	12/10/2019	<1.0	<1.0	<1.0	<2.0	
MW-03	3/10/2020	<1.0	<1.0	<1.0	<1.5	
MW-03	12/15/2020	<1.0	<1.0	<1.0	<2.0	
MW-04	9/10/2015	3,480	30	60	180	
MW-04	9/14/2015	2,900	25	110	290	
MW-04	2/19/2016	< 0.5	< 5.0	< 0.5	<1.50	

Table 2

Groundwater Analytical Results
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	
NMWQC	CC Standard	5	1,000	700	620	
MW-04	6/20/2016	1,680	< 50.0	297	2,210	
MW-04	9/30/2016	630	72	94	640	
MW-04	12/15/2016	1,520	15.8	17.3	166	
MW-04	6/28/2017	24	154	67.2	2,350	
MW-04	6/27/2018	<10	<10	<10	<15	
MW-05	12/15/2016	2,440	6,700	638	8,470	
MW-05	3/11/2020	44	100	8.0	270	
MW-06	12/15/2016	1,810	3,640	811	14,200	
MW-06	9/25/2017	1,450	3,840	271	7,970	
MW-06	6/27/2018	<10	93	46	840	
MW-06	9/20/2018	170	2,200	970	18,000	
MW-06	12/13/2018	57	1,500	660	11,000	
MW-06	3/25/2019	57	1,200	750	12,000	
MW-06	6/24/2019	120	1,800	870	14,000	
MW-06	12/10/2019	76	1,200	620	11,000	
MW-06	3/10/2020	150	2,300	880	13,000	
MW-06	6/23/2020	120	1,900	850	18,000	
MW-06	9/28/2020	110	1,800	990	13,000	
MW-06	12/15/2020	140	2,400	1,400	16,000	
MW-07	6/27/2018	<1.0	<1.0	<1.0	<1.5	
MW-07	9/20/2018	<2.0	< 2.0	<2.0	<4.0	
MW-07	12/13/2018	<1.0	<1.0	<1.0	<2.0	
MW-07	3/25/2019	<2.0	<2.0	<2.0	<3.0	
MW-07	6/24/2019	<2.0	< 2.0	<2.0	<4.0	
MW-07	9/27/2019	<1.0	<1.0	<1.0	<2.0	
MW-07	12/10/2019	<1.0	<1.0	<1.0	<2.0	
MW-07	3/11/2020	<1.0	<1.0	<1.0	<1.5	
MW-07	6/23/2020	<1.0	<1.0	<1.0	<1.5	
MW-07	9/28/2020	<1.0	<1.0	<1.0	<1.5	
MW-07	12/15/2020	<1.0	<1.0	<1.0	<2.0	
	1	_			-	
MW-09	10/13/2017	0.9	4.51	<0.5	8.98	
MW-09	6/27/2018	<1.0	<1.0	<1.0	<1.5	

Table 2

Groundwater Analytical Results
Sullivan Gas Com D#1E
San Juan County, New Mexico

Well ID	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
NMWQC	C Standard	5	1,000	700	620
MW-09	9/20/2018	<1.0	<1.0	<1.0	<2.0
MW-09	12/13/2018	<1.0	<1.0	<1.0	<2.0
MW-09	3/25/2019	<1.0	<1.0	<1.0	<1.5
MW-09	6/24/2019	<1.0	<1.0	<1.0	<1.5
MW-09	12/17/2019	<1.0	<1.0	<1.0	<2.0
MW-09	3/11/2020	<1.0	<1.0	<1.0	<1.5
MW-09	6/23/2020	<1.0	<1.0	<1.0	<1.5
MW-09	9/28/2020	<1.0	<1.0	<1.0	<1.5
MW-09	12/14/2020	<1.0	<1.0	<1.0	<2.0
MW-10	10/13/2017	< 0.5	2.28	< 0.5	3.33
MW-10	6/27/2018	<1.0	<1.0	<1.0	<1.5
MW-10	9/20/2018	<1.0	<1.0	<1.0	<2.0
MW-10	12/13/2018	<1.0	<1.0	<1.0	<2.0
MW-10	3/25/2019	<1.0	<1.0	<1.0	<1.5
MW-10	6/24/2019	<1.0	<1.0	<1.0	<2.0
MW-10	9/27/2019	<1.0	<1.0	<1.0	<2.0
MW-10	12/10/2019	<1.0	<1.0	<1.0	<2.0
MW-10	3/11/2020	<1.0	<1.0	<1.0	<1.5
MW-10	6/23/2020	<1.0	<1.0	<1.0	<1.5
MW-10	9/28/2020	<1.0	<1.0	<1.0	<1.5
MW-10	12/15/2020	<1.0	<1.0	<1.0	<2.0
MW-11	10/13/2017	< 0.5	<1.0	< 0.5	<1.5
MW-11	6/27/2018	<1.0	<1.0	<1.0	<1.5
MW-11	9/20/2018	<1.0	<1.0	<1.0	<2.0
MW-11	12/13/2018	<1.0	<1.0	<1.0	<2.0
MW-11	3/25/2019	<1.0	<1.0	<1.0	<1.5
MW-11	6/24/2019	<1.0	<1.0	<1.0	<2.0

Table 2

Groundwater Analytical Results Sullivan Gas Com D#1E San Juan County, New Mexico

Well ID	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
NMWQCO	NMWQCC Standard		1,000	700	620
MW-11	9/27/2019	<1.0	<1.0	<1.0	<2.0
MW-11	12/10/2019	<1.0	<1.0	<1.0	<2.0
MW-11	3/11/2020	<1.0	<1.0	<1.0	<1.5
MW-11	6/23/2020	<1.0	<1.0	<1.0	<1.5
MW-11	9/28/2020	<1.0	<1.0	<1.0	<1.5
MW-11	12/15/2020	<1.0	<1.0	<1.0	<2.0

μg/L - micrograms per liter

NMWQCC - New Mexico Water Quality Control Commission

BOLD - indicates result exceeds applicable standar

< indicates result is less than the stated laboratory method detection limit

ENCLOSURE A – FORM C-141 RELEASE NOTIFICATION

Form C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztee, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Revised August 8, 2011 Submit 1 Copy to appropriate District Office in

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ease Notific	35500.255	and Co		ction		al Panart	П	Final Report
Name of Co	ımnanıv: Y	TO Energy,	Inc			Contact: Ku			M Imiti	al Report		mai Keport
		00, Aztec, N		ico 87410			No.: (505) 333-3	3100				
		an Gas Com		100 07410			e: Gas Well (Ba		kota)			
Surface Ow	ner: Privat	te		Mineral C	wner				API No	o.: 30-045-2	4083	
				LOCA	TION	OF REI	EASE					_
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/V	West Line	ne County		
F	26	29N	11W	1475	F	NL	1500	F	WL	San Juan		
				Latitude 36.70	0002	Longitu	ide -107. 96414	1				
				NAT	URE	OF REL	EASE					
Type of Rele						Volume of	Release: Unknow	vn		Recovered: N		
Source of Retank.	Source of Release: Fiberglass line from the separator to the production tank.						lour of Occurrence	ee:	Date and 10:06 am	Hour of Disc	covery:6	-5-2015
Was Immedi	ate Notice (Yes 🗵	No Not Re	equired	If YES, To	Whom? N/A					
By Whom?						Date and F	lour: N/A					
Was a Water	course Read		Yes 🗵	No		If YES, Vo	lume Impacting t	the Wate	ercourse.			
Describe Cat soil with a hy source of the Releases at 54 NMOCD Gu feet, distance ppm benzend Describe Arc USEPA Meti	use of Probl ydrocarbon impacted s 400 ppm TP idelines for to a water to, and 50 pp a Affected hod 8021, a	order was discoil. The samp PH USEPA M the Remediat well greater t m total BTEX and Cleanup / release has be	dial Actio covered. Covered. C	n Taken.* On 6-1 on 6-2-2015 a gral vas obtained on 6- 5 and Total BTEX iks, Spills and Rel feet, and distance ken.*Based on the med at this location is true and comp	o sample 5-2015, t of 521. leases. The to surface e sample on. Reme	was collected these results 2 ppm USEP the site was rate water greater sults of 54 ediation activ	d six feet below to were above the st A Method 8021. Inked a 20 due to ter than 1000 feet 00 ppm TPH US: ities are in progre	he surfa andards The site an estin This so EPA Me	ce under a for the Re was then in nated depth et the closu	pipe union the mediation of ranked according to groundware standard to and Total Br	Leaks, Siding to the atter of leaks of STEX of STEX	be the Spills and he ess than 50 om TPH, 10
regulations a public health should their or or the enviro	Il operators or the envi operations h nment. In a	are required to ronment. The nave failed to addition, NMC	o report a acceptana adequately OCD accep	nd/or file certain r ce of a C-141 repo investigate and r otance of a C-141	elease no ort by the emediate	otifications as NMOCD m contaminati	nd perform correct arked as "Final R on that pose a thr e the operator of	ctive act eport" d eat to gr respons	ions for rel loes not rel round wate ibility for o	eases which ieve the oper r, surface wa compliance w	may end rator of l iter, hum with any o	langer liability nan health
Signature: Kurt Hoekstra						Approved by	OIL CON Environmental S		/	DIVISIO	7	9
Title: EHS C						Approval Da	e: 7/5/15		Expiration	Date:		
E-mail Addr	ess: Kurt_H	loekstra@xtoe				Conditions o	Approval:			Attached		
		5 Phone: 50		00	5	submit	Rondialon	plan	2			
Attach Addi	tional She	ets If Necess	sary				151895	4				79

ENCLOSURE B – INVESTIGATION AND REMEDIATION PLAN

LT Environmental Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

September 11, 2015

Mr. James McDaniel XTO Energy, Inc. 382 County Road 3100 Aztec, New Mexico 87410

RE: Subsurface Investigation Results and Remediation Work Plan

XTO Energy, Inc. Sullivan Gas Com D #1E API# 30-045-24083 Bloomfield, New Mexico

Dear Mr. McDaniel:

LT Environmental, Inc. (LTE) is pleased to present to XTO Energy, Inc. (XTO) this letter summarizing the results of a subsurface investigation and a remediation work plan to address identified soil and groundwater impacts at the Sullivan GC D #1E (Site). The Site is located south of Sullivan Road in Bloomfield, New Mexico approximately one quarter mile southeast of the San Juan River in Unit F of Section 26 of Township 29 North and Range 11 West (Figure 1). The subsurface investigation consisted of soil and groundwater sampling to delineate hydrocarbon impacts. Based on site conditions, LTE proposes *in situ* remediation consisting of enhanced fluid recovery and an air sparging/soil vapor extraction (AS/SVE) system.

SITE BACKGROUND

XTO identified a release at the Site on June 1, 2015. The source was a failed union in a fiberglass pipeline connecting the separator and aboveground storage tank. XTO responded by collecting subsurface soil samples from potholes and with a hand auger in locations depicted on Figure 2. Soil sampling results are presented on Table 1 and on Figure 3. The laboratory analytical results indicated soil was impacted at the source from approximately 4 feet below ground surface (bgs) to the depth that saturated sediments were observed at approximately 18.5 feet bgs. Concentrations of benzene from samples collected under the source ranged from 10 milligrams per kilogram (mg/kg) at 8 feet bgs to 53 mg/kg at 19 feet bgs. Total petroleum hydrocarbons (TPH) were detected in the soil samples as high as 16,300 mg/kg at 19 feet bgs.

Based on the presence of saturated sediments, XTO attempted to collect groundwater samples from BH-1, BH-2, and BH-3. The sidewalls of BH-1 collapsed and no groundwater was sampled at that location. A groundwater sample was collected from BH-2 and BH-3 for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX). The concentrations of benzene, toluene, and total xylenes in the sample collected from BH-2 exceeded New Mexico Water Quality Control Commission (NMWQCC) standards as presented in Table 2. The groundwater sample collected from BH-3 contained no detectable concentrations of benzene, toluene, and ethylbenzene. Although total xylenes were detected, the concentration did not exceed NMWQCC standards.

SOIL INVESTIGATION

On August 19, 2015, LTE utilized a Geoprobe® 6620-DT direct-push drilling rig operated by Earth Worx Environmental Services, LLC to better delineate impacted soil near the source of the release. Soil borings

SB01 through SB09 were advanced to the saturated zone in locations depicted on Figure 2. During the advancement of soil borings, a geologist described soil samples according to the Unified Soil Classification System and evaluated soil for potential signs of environmental impacts by means of visual observations (i.e., inspection for staining/mottling) and olfactory assessment (i.e., odors). LTE conducted field screening for volatile aromatic hydrocarbons using a photoionization detector (PID) with a 10.6 electron-volt lamp on the soil sample collected from the interval immediately beneath the ground surface and every five feet thereafter in addition to any soil that was visibly stained or had a hydrocarbon odor. Field screening was conducted in accordance with the New Mexico Oil Conservation Division's (NMOCD) *Guidelines for Remediation of Leaks, Spills, and Releases*, dated August 13, 1993. Soil boring logs are included as Attachment A.

Soil samples for laboratory analysis were collected from soil borings SB02, SB07, and SB08 from the unsaturated section of core containing the highest field screening results. Soil samples were not collected from soil borings where volatile organic compounds were not detected above 100 parts per million (ppm) during field screening. To minimize loss of volatile aromatic hydrocarbons, the soil samples were firmly packed into glass soil jars supplied by the laboratory and immediately placed on ice in a cooler. The sample jars were labeled with the date and time of collection, sample identifier, project name, collector's name, and parameters to be analyzed. Samples were shipped on ice to ESC Lab Sciences in Mt. Juliet, Tennessee (ESC) for analysis. Strict chain-of-custody (COC) protocol was followed from sampling through shipment. The date and time sampled, sample identifier, sampler's name, required analyses, and sampler's signatures were included on the COC. Soil samples were analyzed for BTEX and TPH-gasoline range organics (GRO) by United States Environmental Protection Agency (EPA) Method 8021 and TPH-diesel range organics (DRO) by EPA Method 8015.

The number of soil borings advanced by the Geoprobe[®] near the release origin was limited to maintain a safe distance from subsurface pipelines. On August 21, 2015, LTE personnel returned to the Site to utilize a hand auger due to a high concentration of subsurface utilities and equipment in the vicinity of the source area. Soil borings SB10 through SB16 were advanced to the saturated zone or until refusal (large cobbles). Soil samples were collected from SB10, SB11, SB12, SB14, and SB15 and submitted to ESC for analysis of BTEX and TPH.

GROUNDWATER INVESTIGATION

LTE collected groundwater grab samples from SB03, SB05, and SB06 by advancing HydropunchTM tooling with the Geoprobe® and using a peristaltic pump with clean disposable tubing to fill three non-preserved 40 milliliter glass vials with zero headspace to prevent degradation of the samples. The groundwater samples were shipped on ice at 4 degrees Celsius under strict chain-of-custody procedures to the laboratory to be analyzed for BTEX according to EPA Method 8021B within the required holding time.

On September 4, 2015, LTE used a hand auger to install a product recovery well near the origin of the release (PR-1). The well is constructed of schedule 40, 2-inch polyvinyl chloride (PVC) and includes 10 feet of 0.01-inch machine slotted flush-threaded PVC well screen. A clean 10-20 grade silica sand pack was placed from the bottom of the boring to two feet above the top of the screen. Above the gravel pack, 3/8-inch natural bentonite chips were set to the ground surface. A completion diagram is included in Appendix A.

During the week of September 7, 2014, LTE utilized a CME-75 drilling rig equipped with hollow stem augers to install four groundwater monitoring wells in locations depicted on Figure 2. The groundwater

monitoring wells were constructed of 2-inch diameter schedule 40 PVC and included 10 feet of 0.01 inch machine slotted flush-threaded PVC well screen. A clean 10-20 grade silica sand gravel pack was placed from the bottom of the soil boring to two feet above the top of the screen. Two feet of three-eighths inch bentonite chips were set above the gravel pack, followed by a neat cement slurry to the surface, containing a minimum of 5 percent powdered bentonite. The wells were set in a flush-mount casing.

Following installation, the locations of the four monitoring wells and the product recovery well were obtained using a Trimble GeoXT global positioning system. The wells were surveyed for top-of casing elevations to an accuracy of plus or minus 0.01 feet so that groundwater flow direction and gradient could be determined. Total depth of each monitoring well was obtained using a Keck oil/water interface probe. The monitoring wells were developed utilizing a new PVC bailer. LTE purged fluid until at least 10 casing volumes had been removed and turbidity was reduced to the greatest possible extent or until the well bailed dry. All purged water was disposed of at a produced water tank on site.

RESULTS

The observed subsurface lithology consisted of a sandy silt to a silty sand that is 13 feet to 17 feet thick underlain by a saturated sand occurring at 13 feet to 17.5 feet. Varying sized cobbles were observed dispersed vertically throughout the subsurface. In MW01, a consolidated silty sand existed under the saturated interval at approximately 22 feet bgs. Although the saturated interval was stained and yielded field screening results suggesting soil and groundwater were impacted, the underlying consolidated layer did not exhibit petroleum hydrocarbon impact. As such, LTE did not advance the borehole further into the subsurface and set the well at 23 feet bgs. Soil boring logs are provided in Attachment A.

Soil Sampling Results

In accordance with the NMOCD *Guidelines for Remediation of Leaks, Spills, and Releases* (August 1993), remediation action levels for soil at the Site were determined to be 10 mg/kg for benzene, 50 mg/kg for BTEX, and 100 mg/kg for TPH because groundwater is less than 50 feet bgs. Soil samples 8' Below Union, 12' Below Union, 18.5' Below Union, 19' Below Union, SB07@16-18', SB08@16-17', and SB11@4' exceeded the NMOCD action levels for BTEX and TPH. Soil samples 8' Below Union, 19' Below Union, SB07@16-18', and SB08@16-17' also exceeded the action level for benzene. The soil analytical results are summarized in Table 1 and illustrated on Figure 3. Soil analytical reports are included as Attachment B.

Groundwater Sampling Results

Groundwater samples collected from BH-2, SB03, and SB06 exceeded the NMWQCC standards for BTEX, although BH-2 did not exceed the standard for ethylbenzene. The groundwater analytical results are summarized in Table 2 and illustrated on Figure 4. Groundwater analytical reports are included as Attachment B. Groundwater analytical results for MW02 through MW04 will be provided when final results are available.

Depth to groundwater data are summarized in Table 3. Groundwater flow direction was determined to be to the north-northwest as depicted on Figure 4. Free product was detected in PR-1 and MW01 at a thickness of 0.45 feet and 0.27 feet respectively. LTE installed sorbent product recovery socks in PR-1 and MW01 until additional work can be completed.

DISCUSSION

Analytical laboratory results, field screening results, and field observations of staining and odor indicated petroleum hydrocarbon impact to soil is localized around the release origin. Petroleum hydrocarbon impact to soil was encountered at the shallowest depth of 1.5 feet bgs near the release origin and at SB11 and extended to saturated sediments at 17.5 feet to 18 feet bgs. Depth to impacted soil increases away from the release origin and source material appears to be approximately 35 feet by 40 feet in extent as illustrated on Figure 5. Soil impacted below 15 feet bgs is restricted to the smear zone ranging from approximately 17 feet bgs to 22 feet bgs. As documented in MW01, soil below 22 feet bgs does not appear to be impacted and may be restricting vertical migration to a deeper interval.

Groundwater sampling results and soil staining observed in saturated sediments suggest free product exists near the release location and approximately 30 feet away from the release location. A dissolved phase groundwater plume extends in the downgradient direction to the location of SB06, but is delineated by clean groundwater sampled from SB05. Downgradient monitoring wells MW03 and MW04 do not appear to contain groundwater exceeding NMWQCC standards based on visual observations.

Distribution of the soil impact was likely controlled by the subsurface lithology of loose silty sand and cobbles with limited silty sand that promoted vertical migration. Once the release reached groundwater, horizontal migration resulted in distribution of free product around the source. Dissolved-phase impact migrated downgradient and extends approximately 100 feet to the northwest.

PROPOSED REMEDIATION PLAN

The depth of the impact and current surface use suggests an *in-situ* remedy is most practical and appropriate for the Site. Based on lithology and soil sampling results identified during initial soil sampling by XTO and subsequent sampling efforts accomplished by LTE, interim enhanced free product recovery followed by operation of an air sparging/soil vapor extraction (AS/SVE) mechanical system to treat the impact near the source is proposed. These methods will also promote aerobic biodegradation processes in areas extending beyond the area of direct influence of the proposed remediation wells and restrict potential downgradient migration of free product.

Delineation

LTE will collect groundwater samples from the newly installed monitoring wells immediately. Prior to sampling groundwater monitoring wells, depth to groundwater and total depth of each monitoring well will be measured with a Keck oil/water interface probe. The volume of water in each monitoring well will be calculated, and a minimum of three well casing volumes of water will be purged from each well using a new disposable PVC bailer. Once each monitoring well is purged, groundwater samples will be collected by filling laboratory-supplied bottles, stored on ice, and delivered to a laboratory for analysis of BTEX under strict COC procedures.

Currently, the free product plume is not fully defined. LTE proposes to advance three or more boreholes at the Site in the general locations depicted on Figure 6 and convert the boreholes to product recovery wells depending on the presence or absence of product in the completed wells. LTE may step out from the proposed locations and advance additional boreholes based on the results of field observations. Additional upgradient delineation is restricted by the presence of the steep hillside on the southeastern boundary of the well pad.

Product Recovery

XTO will recover and change the product recovery socks in PR-1 and MW01 weekly until a remediation plan is approved by the NMOCD and implementation begins. The weekly visits will include measuring product thickness and recording the volume of product recovered.

To minimize free product present in the source area, product recovery will be implemented in the recovery wells using a vacuum extraction method applied by a mobile vehicle. The expected volume of recovered fluids is relatively limited based on the saturated interval expected to be affected (18 feet to 23 feet bgs). A stinger will be lowered into the wells and extracted air and fluid will be accumulated in a liquid/air separation tank. The expected duration of each extraction event will be up to 2 hours. The fluid elevations will be measured before and after each event and depending on the observations following two initial extraction events spaced one week apart, one of the following will be implemented as needed:

- Additional events using the mobile vacuum extraction unit;
- Additional events using a bailer to manually remove product;
- Installation of product recovery socks in the wells; and/or
- Product skimming by installation of a mechanical automated skimmer pump and a storage tank.

XTO will document product thickness and track the total volume of product removed throughout the enhanced fluid recovery phase. Product recovery efforts will cease and transition to AS/SVE system described below when less than approximately 1-inch in measured thickness of product is achieved in the product recovery wells. At this measurable level, any additional movement of liquid petroleum impact is expected to be minimal and AS/SVE has typically proven to be effective in mitigating remaining impact.

Soil Vapor Extraction

Because sampling indicates soil is impacted at the source area in the vadose zone and saturated zone, SVE at the source area is recommended. SVE is an industry standard, cost-effective technology for *in-situ* remediation of petroleum hydrocarbons, especially in sandy soils. The observed impacted soil at the Site consists of silty sand with minor amounts of clayey sand. The impact has resulted from a release of natural gas condensate which is comprised mostly of light, readily volatilized petroleum hydrocarbon compounds. SVE will promote volatilization of the hydrocarbon impact distributed within the vadose zone and any remaining liquid free product that has accumulated on top of the groundwater. The SVE system will be designed to optimize extraction in areas where the impact has been observed in the unsaturated soil intervals. The SVE is estimated to provide an influence of approximately 30 feet from the well, and based on this estimate, three SVE wells will be installed as depicted on Figure 7 along with using location PR-1. The SVE wells will be constructed with 2-inch PVC casing and have 0.02-slot PVC screened across the impacted interval.

A blower capable of optimizing vapor recovery from several wells will be selected. An extraction blower capable of operating at approximately 80 cubic feet per minute (cfm) and an applied vacuum of 30 inches of water column will be installed. Operations and maintenance (O&M) of the system will be conducted weekly for the first 2 months, then be reduced based on system performance. O&M will consist of adjusting the SVE air flow distribution and field screening recovered hydrocarbon vapors.

McDaniel, J. Page 6

Air Sparging

In addition to the SVE technology, LTE proposes to install six AS wells near the known source area to address impacted groundwater in this area and in the areas where residual free product may be present. The AS system will be designed to volatilize entrained product beneath the saturated interval and strip dissolved hydrocarbons dissolved in the groundwater. The influence from a single AS well is estimated to extend 10 feet from the sparging locations. With this estimate, four AS wells are planned for the source area and two downgradient wells are proposed (Figure 7). The initial row of AS wells will be designed to address the source area, and the second row will be designed to treat downgradient groundwater impact. Biological enhanced degradation and other natural attenuation processes will be relied on to address other areas of impacted groundwater. The well locations will be adjusted as needed to avoid subsurface utilities, surface structures, and to minimize the effect on traffic patterns.

The AS wells will be constructed with 1-inch PVC casing and have one foot of 0.010-slot PVC screen with the top of the screen placed approximately 5.5 feet below the groundwater elevation (immediately on top of a consolidated interval observed at approximately 23 feet bgs). During construction of the AS wells, a soil sample will be collected and if the consolidated interval is not observed, the top of the sparging screen will be set to an optimum depth of 8 feet below the groundwater elevation. A 10-20 silica sand gravel pack will be placed around the screen to 6-inches above the screened interval. Three feet of bentonite pellets will be installed above the screened interval and the well will be completed with neat cement grout to near the ground surface. Concrete will be placed at the surface well completion.

An AS blower capable of providing approximately 30 cfm at 15 pounds per square inch (psi) will be installed and the wells will be connected to the blower via surface or subsurface piping depending on traffic requirements.

Oxygenating the subsurface soil and groundwater through the AS/SVE system operation will promote biodegradation of impacted groundwater beyond the direct influence of the AS well and help address potential migration of free-phase and dissolved phase impact. The effectiveness of the AS and SVE will be evaluated through groundwater monitoring efforts.

Groundwater Monitoring

Groundwater monitoring for BTEX will be conducted quarterly during AS/SVE operation. Once BTEX concentrations have been reduced by the remediation system, XTO will turn off the systems and continue quarterly sampling with the goal of observing eight consecutive quarters with analytical results in compliance with NMWQCC standards.

Reporting

Groundwater monitoring results will be submitted in annual reports to the NMOCD. Reports will additionally include product recovery volumes; AS/SVE data including applied pressure, flow and vacuum with air emission estimates; groundwater elevations; and analytical results. Data will be presented on relevant figures including site location, potentiometric surface maps, product thickness and groundwater analytical results. The initial annual report will include soil borings and monitoring well completion logs and a cross section depicting the subsurface observations.

McDaniel, J. Page 7

LTE appreciates the opportunity to provide this remediation work plan to XTO. If you have any questions or comments regarding this work plan, do not hesitate to contact me at (970) 385-1096 or via email at aager@ltenv.com.

Sincerely,

LT ENVIRONMENTAL, INC.

Ashley L. Ager

Senior Geologist/Office Manager

Christopher E. Shephard, P.E.

Chief Engineer

Attachments:

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Soil Analytical Results

Figure 4 – Groundwater Analytical Results

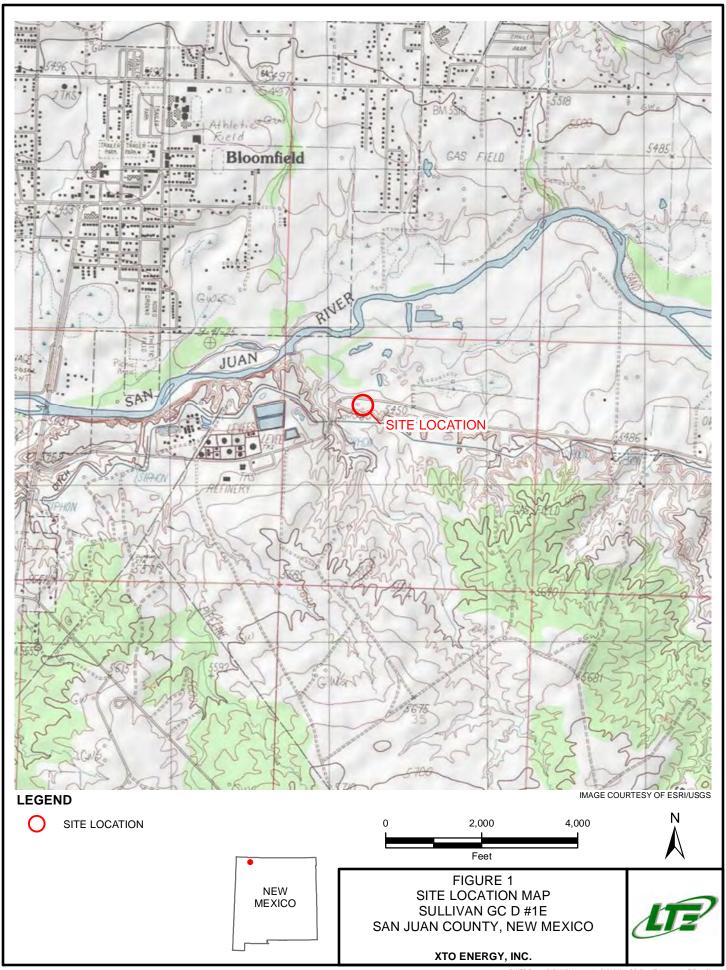
Figure 5 – Estimated Depth to Soil Impact

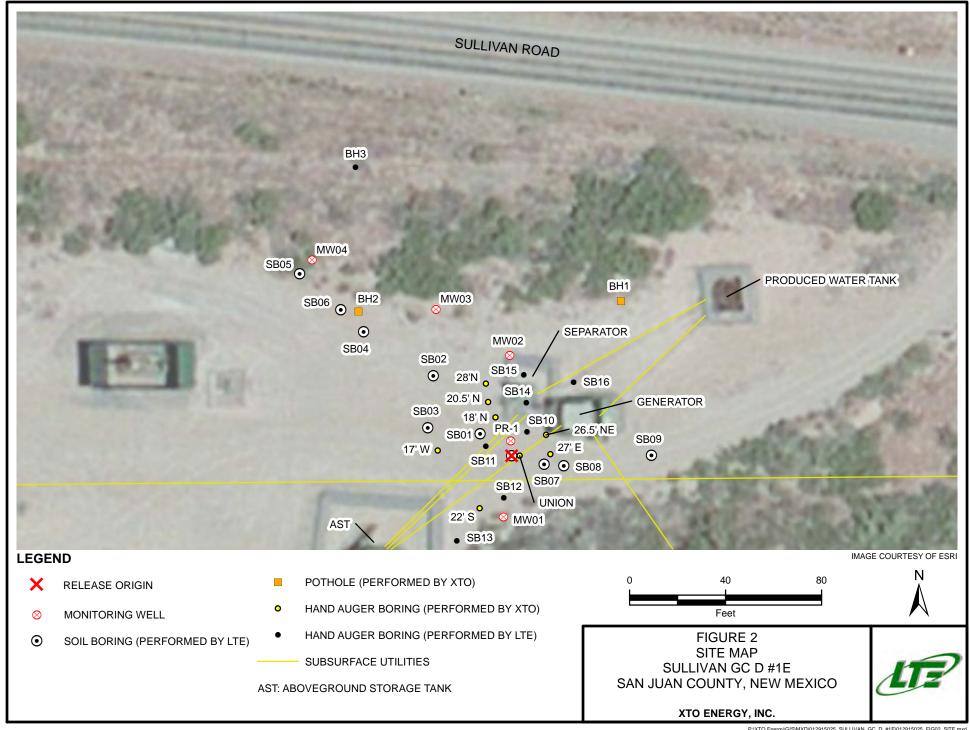
Figure 6 – Enhance Fluid Recovery Plan

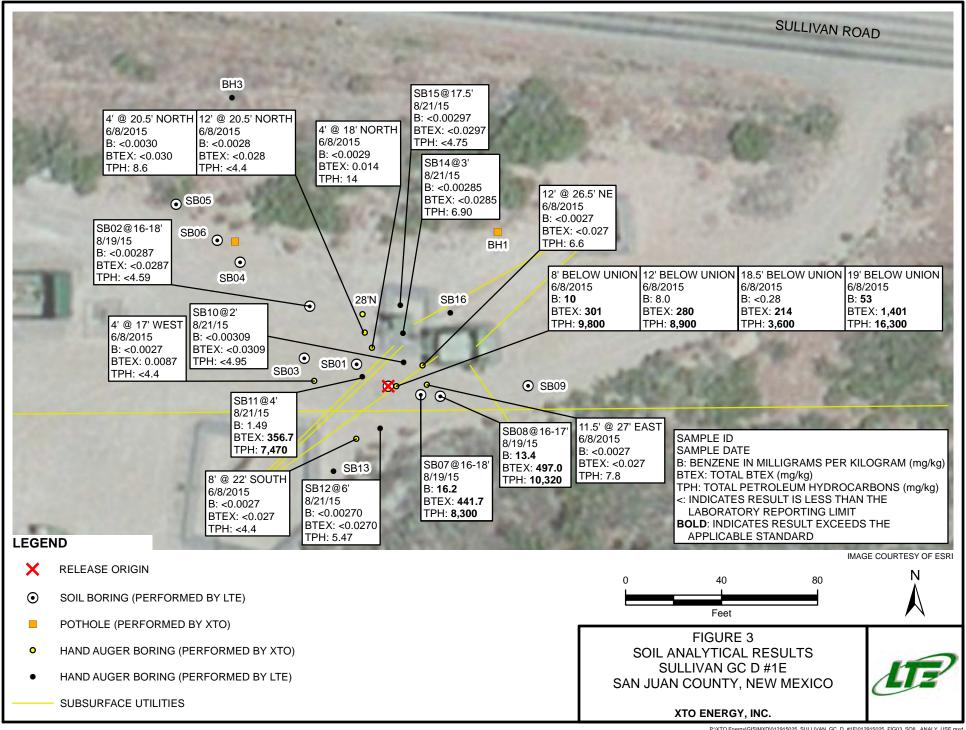
Figure 7 – Remediation System Plan

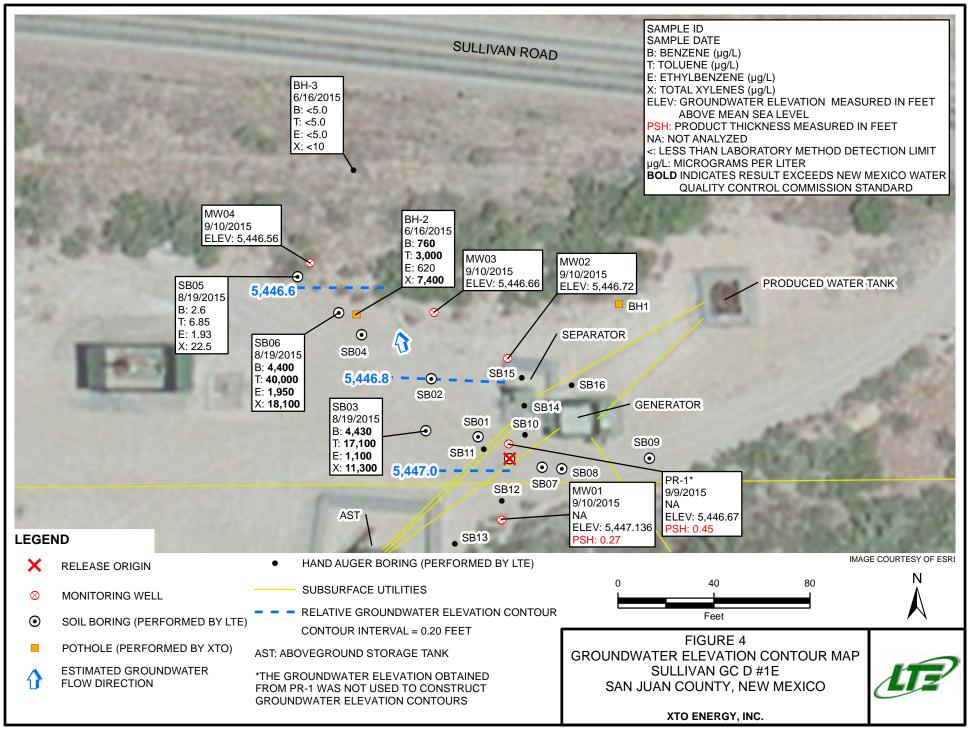
Table 1 – Soil Analytical Results

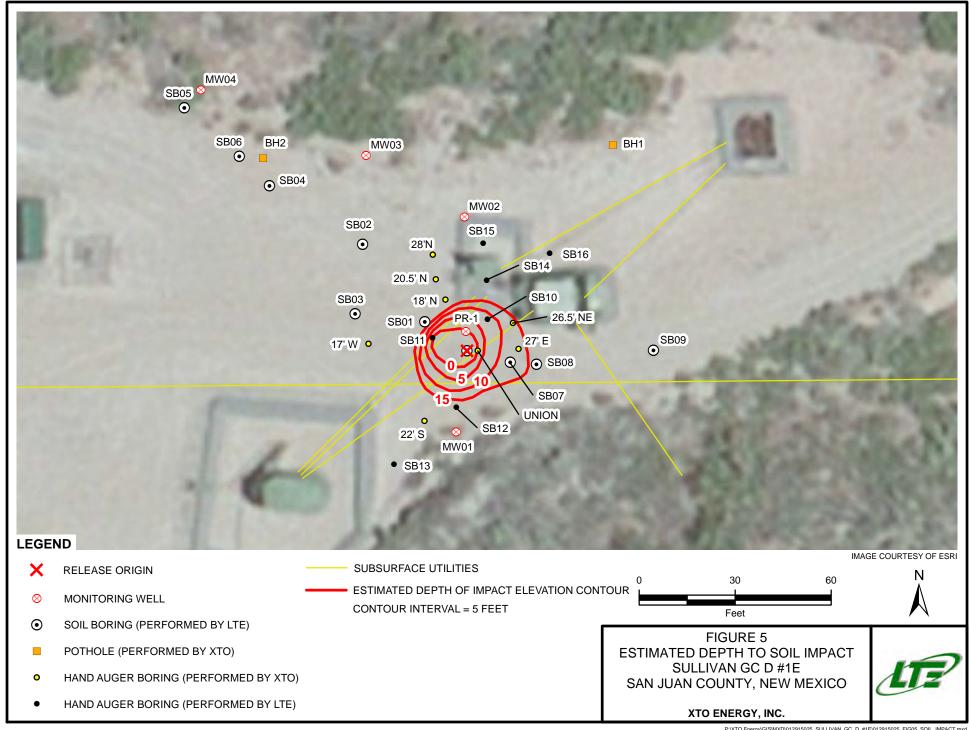
Table 2 – Groundwater Analytical Results

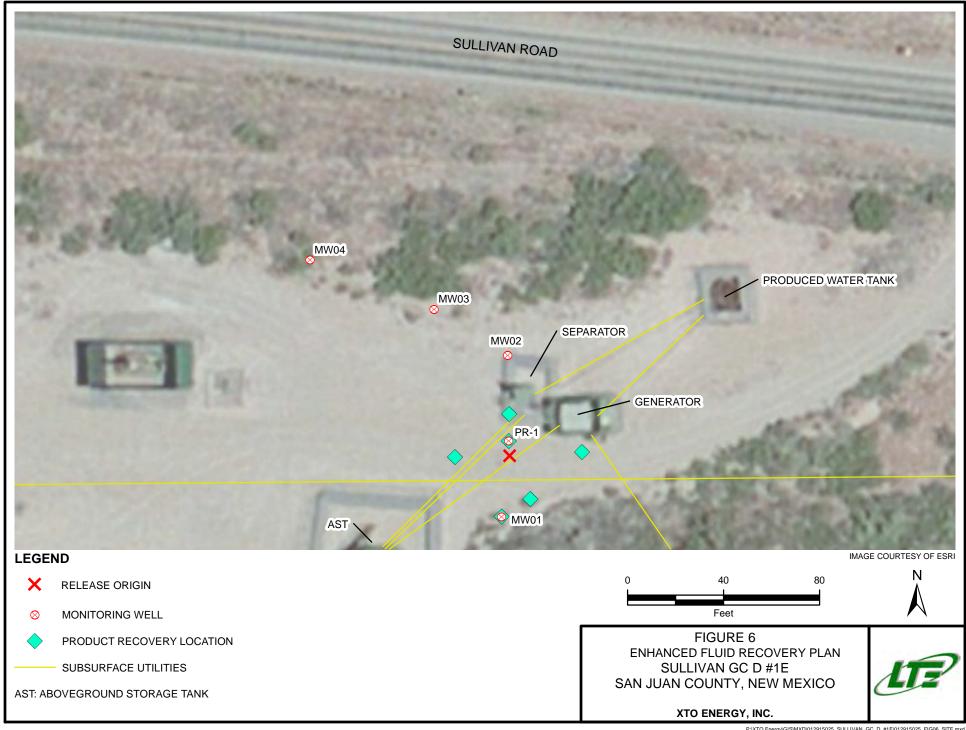

Table 3 – Groundwater Elevations

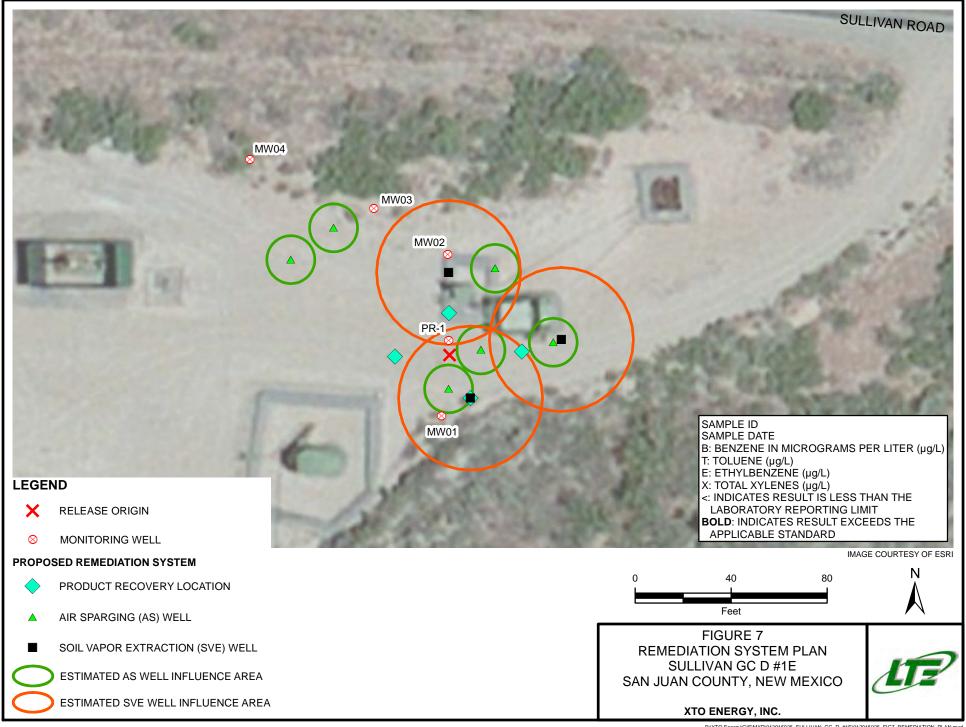

Attachment A – Soil Boring Logs


Attachment B – Laboratory Analytical Reports


FIGURES







TABLES

TABLE 1

SOIL ANALYTICAL RESULTS SULLIVAN GAS COM D #1E XTO ENERGY, INC.

Sample ID	Sample Name	Sample Date	Field Headspace Reading (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	DRO (mg/kg)	GRO (mg/kg)	TPH (mg/kg)
FARRF-060815-1020	8' Below Union	6/8/2015	984	10	67	14	210	301	6,300	3,500	9,800
FARRF-060815-1038	12' Below Union	6/8/2015	1,581	8.0	58	14	200	280	5,400	3,500	8,900
FARRF-060815-1105	4' @ 17' West	6/8/2015	248	< 0.0027	< 0.027	< 0.0027	0.0087	0.0087	<4.4	< 0.55	<4.4
FARRF-060815-1210	4' @ 18' North	6/8/2015	364	< 0.0029	< 0.029	< 0.0029	0.014	0.014	14	< 0.58	14
FARRF-060815-0130	4' @ 20.5' North	6/8/2015	66.5	< 0.0030	< 0.030	< 0.0030	< 0.0089	< 0.030	8.6	< 0.59	8.6
FARRF-060815-0215	12' @ 20.5' North	6/8/2015	161	< 0.0028	< 0.028	< 0.0028	< 0.0083	< 0.028	<4.4	< 0.56	<4.4
FARRF-060815-0300	8' @ 22' South	6/8/2015	41	< 0.0027	< 0.027	< 0.0027	< 0.0082	< 0.027	<4.4	< 0.54	<4.4
FARRF-060815-0435	11.5' @ 27' East	6/8/2015	172	< 0.0027	< 0.027	< 0.0027	< 0.0080	< 0.027	7.8	< 0.53	7.8
FARRF-060815-0535	12' @ 26.5' NE	6/8/2015	130	< 0.0027	< 0.027	< 0.0027	< 0.0082	< 0.027	6.6	< 0.54	6.6
FARRF-060815-0930	18.5' Below Union	6/8/2015	1,278	< 0.28	3	11	200	214	<4.5	3,600	3,600
FARRF-060815-0947	19' Below Union	6/8/2015	NM	53	420	68	860	1,401	3,300	13,000	16,300
FARMW-081915-0930	SB02@16-18'	8/19/15	82.1	< 0.00287	< 0.0287	< 0.00287	< 0.00861	< 0.0287	<4.59	< 0.574	<4.59
FARMW-081915-1500	SB07@16-18'	8/19/15	1,913	16.2	102	22.5	301	441.7	2,780	5,520	8,300
FARMW-081915-1540	SB08@16-17'	8/19/15	2,175	13.4	105	27.6	351	497	3,550	6,770	10,320
FARMW-082115-1035	SB10@2'	8/21/15	74.3	< 0.00309	< 0.0309	< 0.00309	< 0.00928	< 0.0309	<4.95	< 0.619	<4.95
FARMW-082115-1100	SB11@4'	8/21/15	2,754	1.49	53	24.2	278	356.69	2,720	4,750	7,470
FARMW-082115-1145	SB12@6'	8/21/15	91.2	< 0.00270	< 0.0270	< 0.00270	0.0119	0.0119	5.47	< 0.541	5.47
FARMW-082115-1425	SB14@3'	8/21/15	41.5	< 0.00285	< 0.0285	< 0.00285	< 0.00855	< 0.0285	6.90	< 0.570	6.90
FARMW-082115-1624	SB15@17.5'	8/21/15	209	< 0.00297	< 0.0297	< 0.00297	0.0186	0.0186	<4.75	< 0.593	<4.75
NMC	OCD Standard		NE	10	NE	NE	NE	50	NE	NE	100

Notes:

Bold - indicates values exceeding NMOCD standards

BTEX - benzene, toluene, ethylbenzene, and total xylenes

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligrams per kilogram

NE- not established

NM- not measured

NMOCD - New Mexico Oil Conservation Division

ppm - parts per million

TPH - total petroleum hydrocarbons (sum of DRO and GRO)

^{&#}x27; - feet below ground surface

< indicates result is less than the stated laboratory method detection limit

TABLE 2

GROUNDWATER ANALYTICAL RESULTS SULLIVAN GAS COM D #1E XTO ENERGY, INC.

Sample ID	Date Sampled	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
BH-2	6/16/2015	760	3,000	620	7,400
BH-3	6/16/2015	< 5.0	< 5.0	< 5.0	<10
SB03	8/19/2015	4,430	17,100	1,100	11,300
SB05	8/19/2015	2.60	6.85	1.93	22.5
SB06	8/19/2015	4,400	40,000	1,950	18,100
NMWQCC S	tandard	10	750	750	620

Notes:

< indicates result is less than the stated laboratory method detection limit NMWQCC - New Mexico Water Quality Control Commission $\mu g/l$ - micrograms per liter

TABLE 3

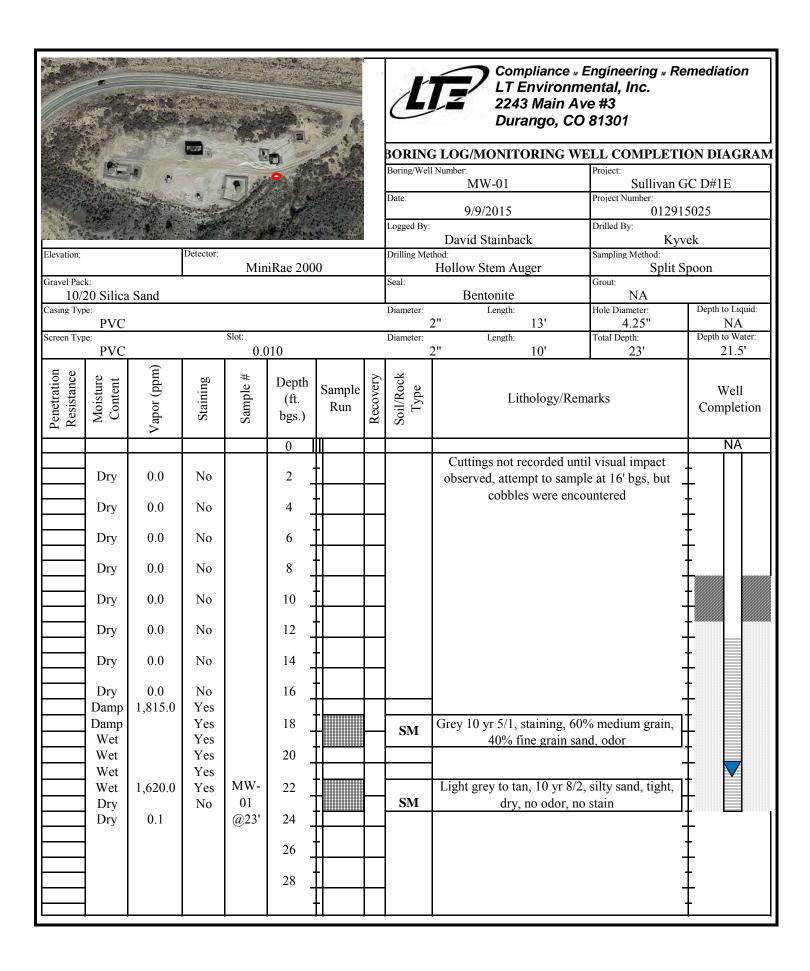
GROUNDWATER ELEVATIONS SULLIVAN GAS COM D #1E XTO ENERGY, INC.

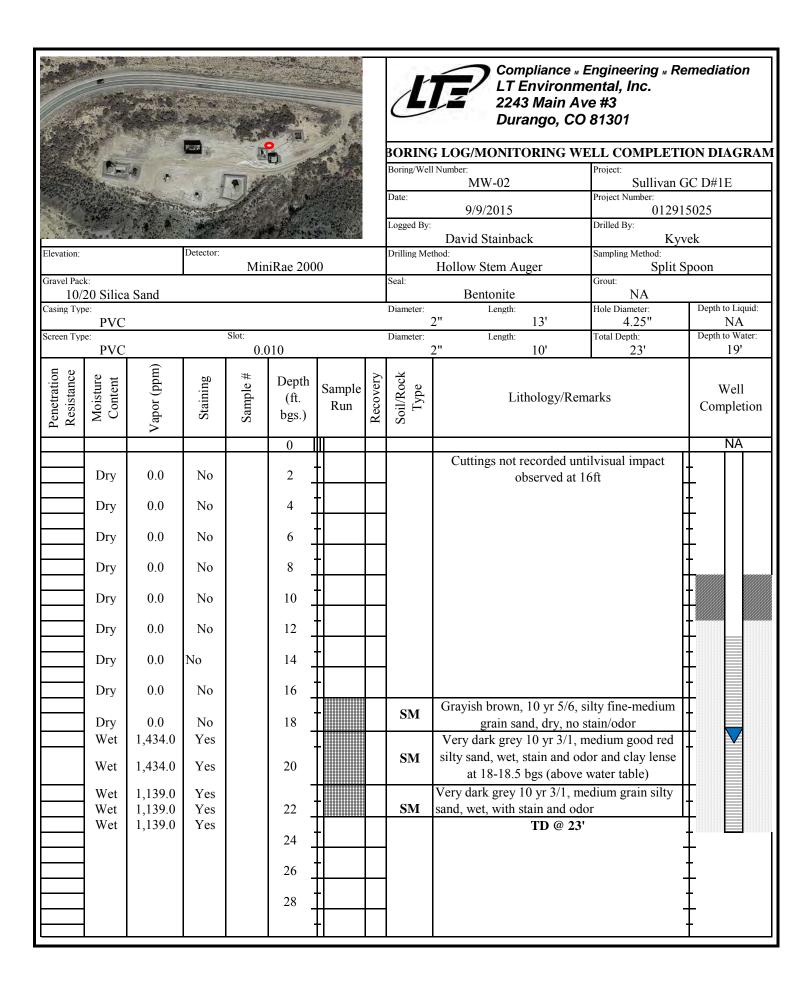
Well ID	Date	Top of Casing Elevation (feet AMSL)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
PR-1	9/9/2015	5466.00	19.24	19.69	0.45	5,446.67
MW01	9/10/2015	5468.74	21.55	21.82	0.27	5,447.14
MW02	9/10/2015	5465.57	NP	18.85	NP	5,446.72
MW03	9/10/2015	5466.11	NP	19.45	NP	5,446.66
MW04	9/10/2015	5465.50	NP	18.94	NP	5,446.56

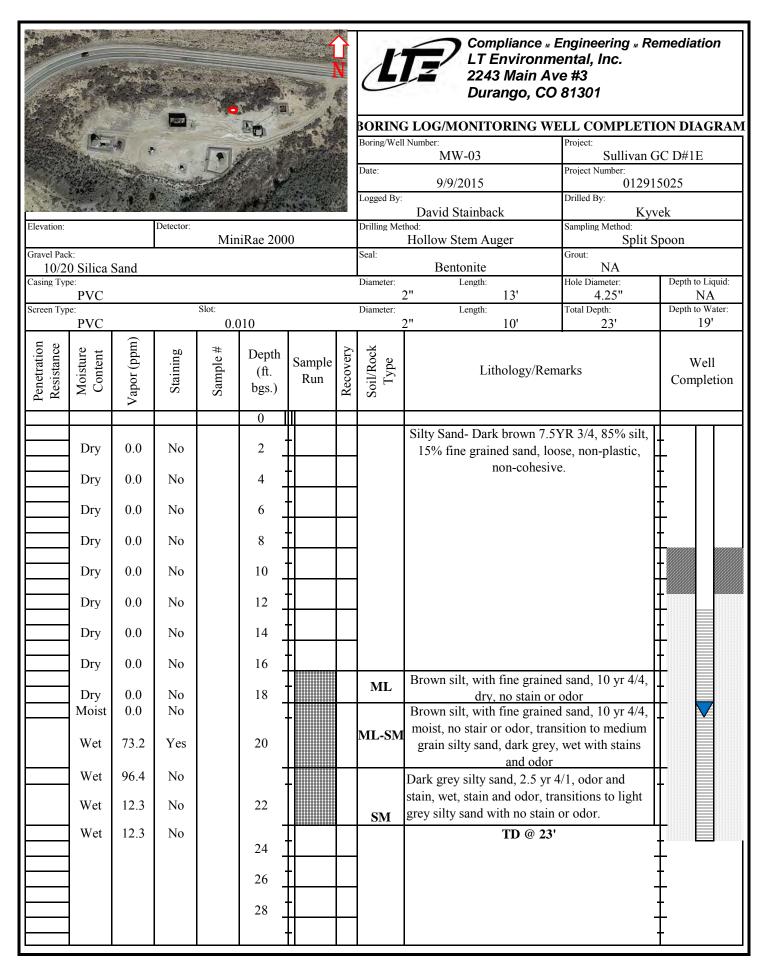
Notes:

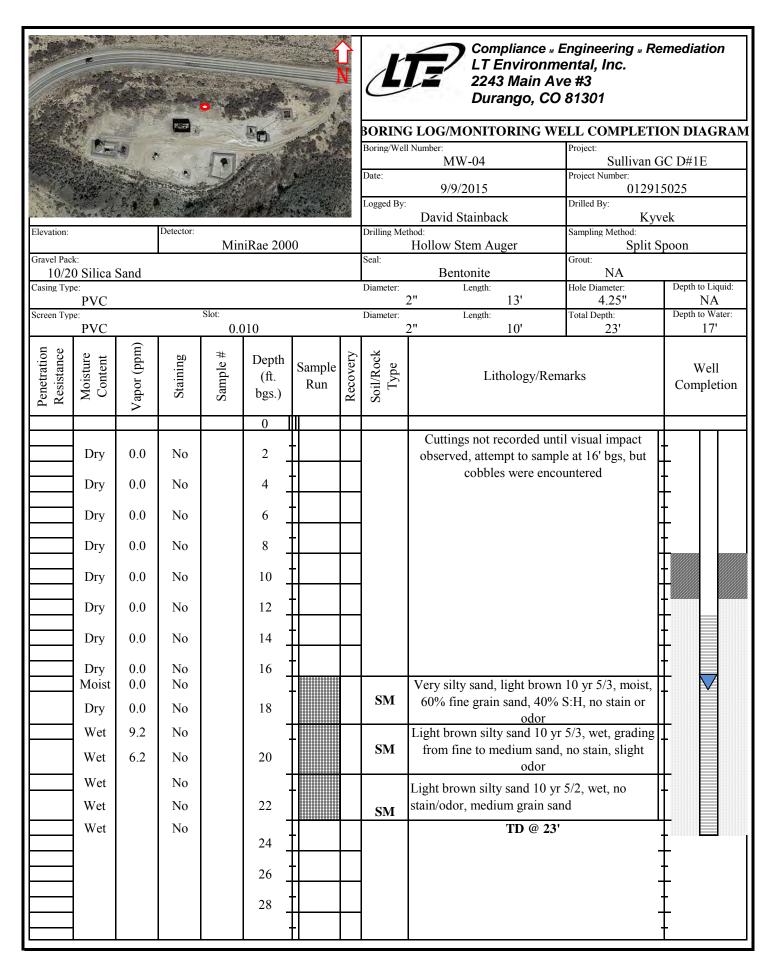
A product density factor of 0.8 is used to account for the presence of free product in PR-1 and MW01.

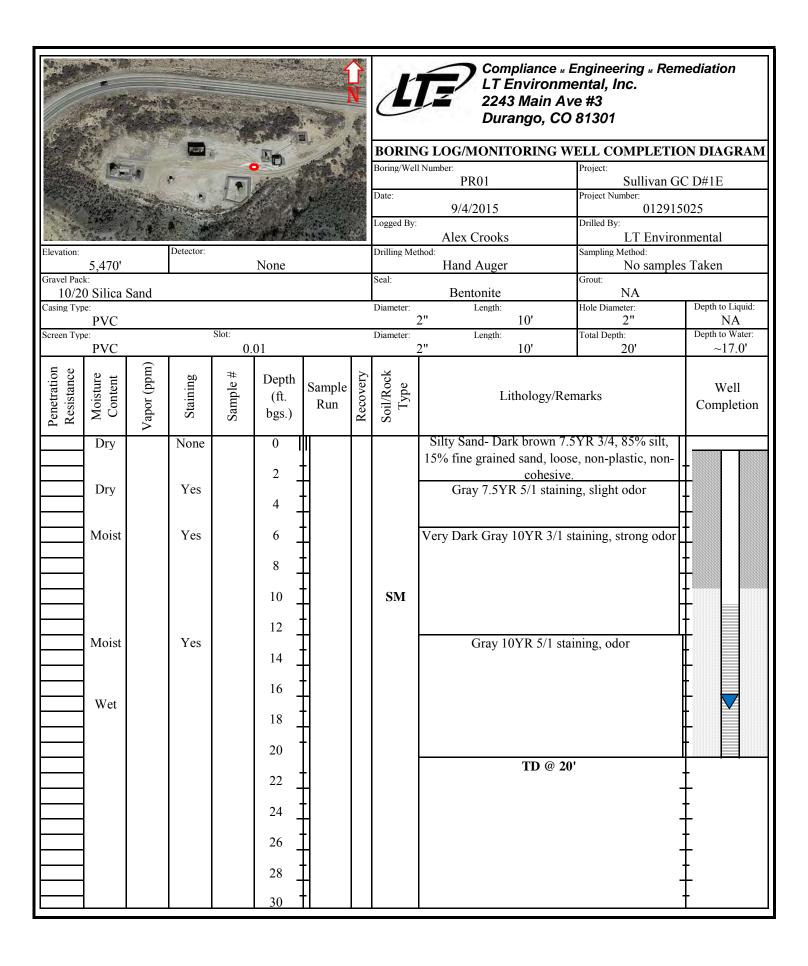
AMSL - Above Mean Sea Level

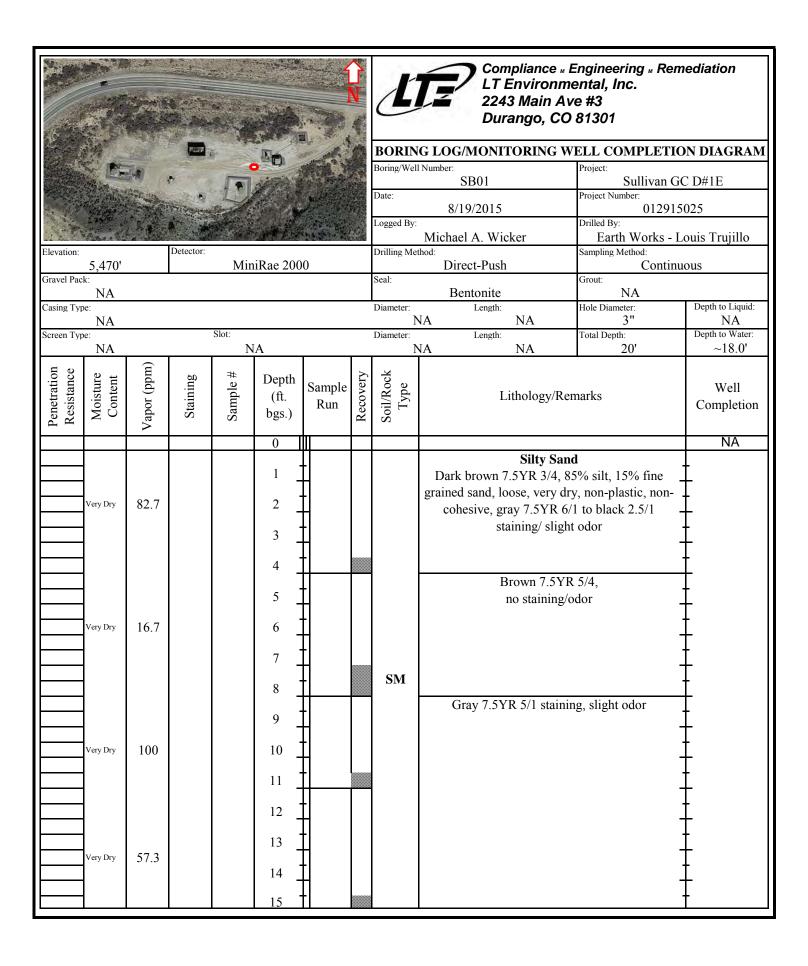

BTOC - Below Top of Casing

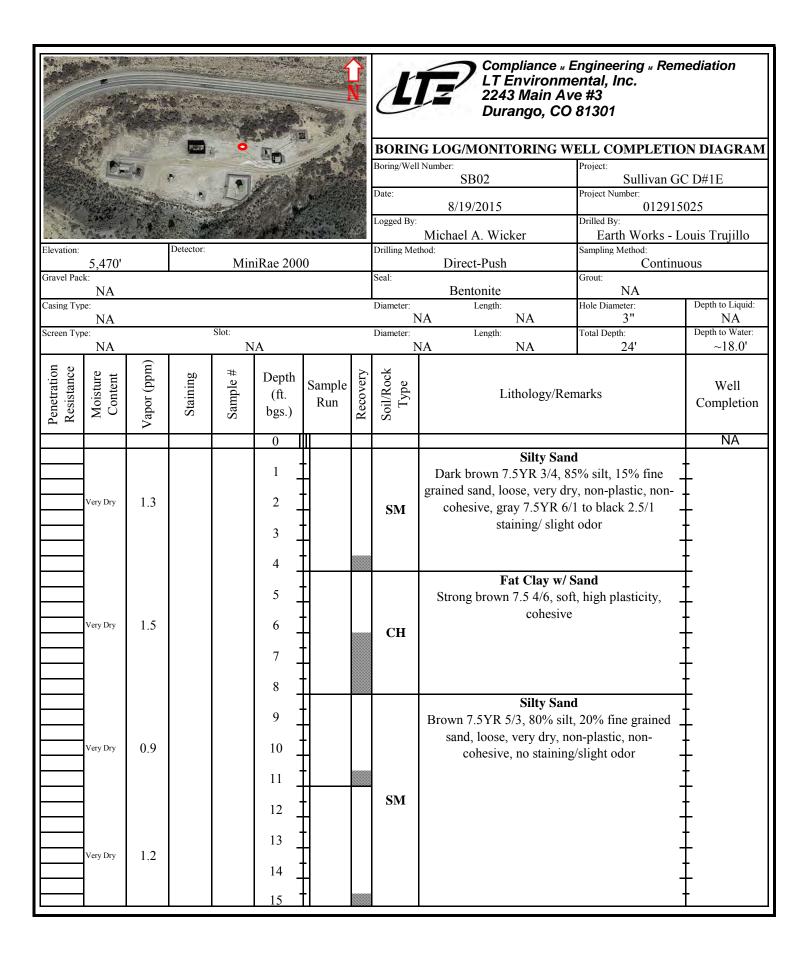

NP - No Product

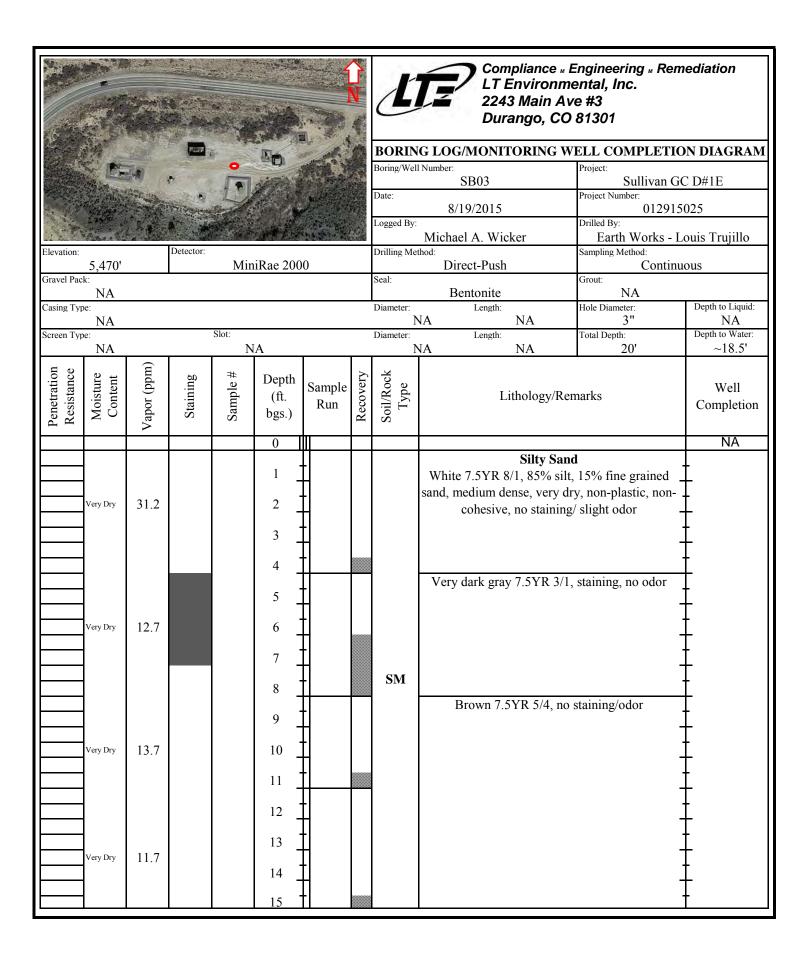


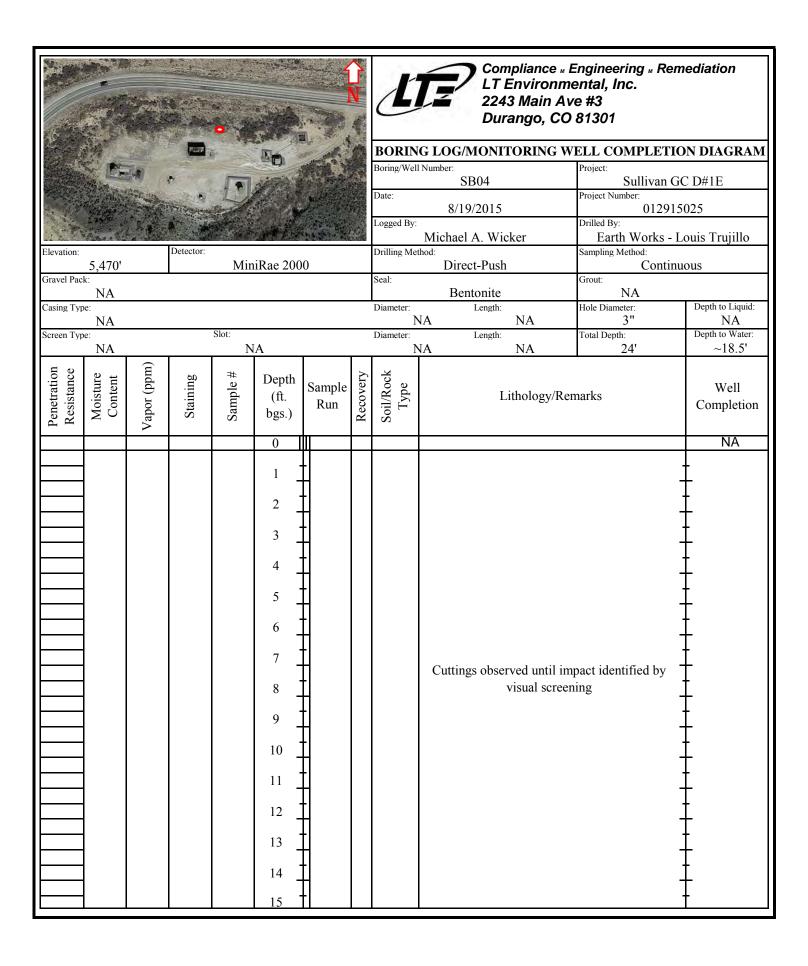

ATTACHMENT A
SOIL BORING LOGS

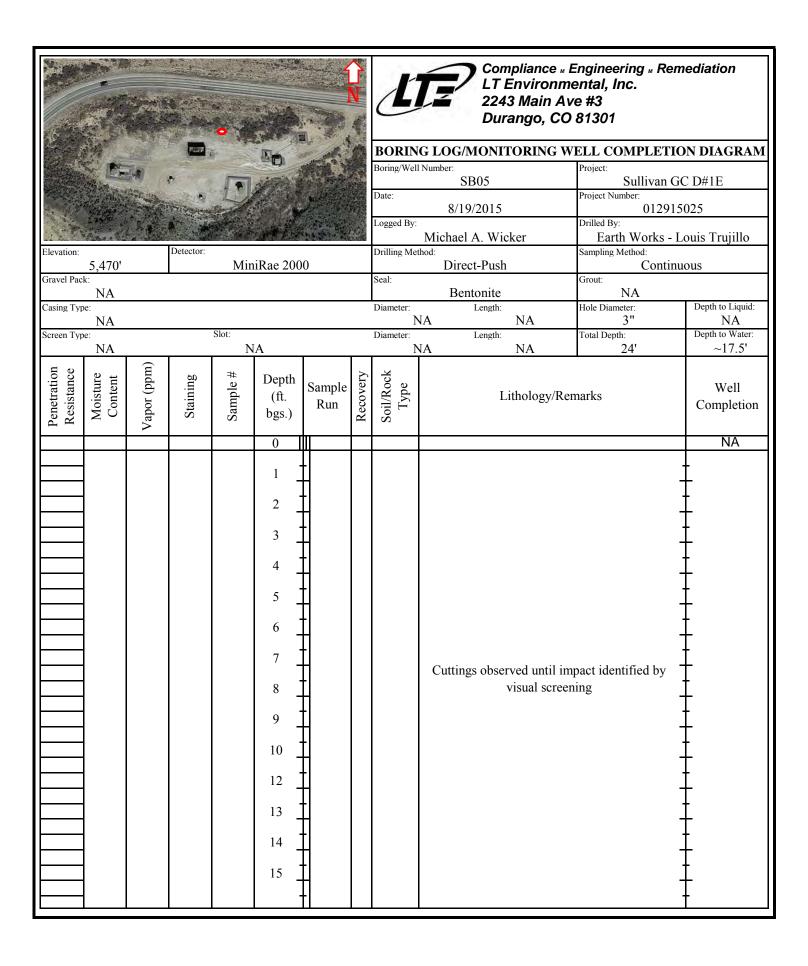


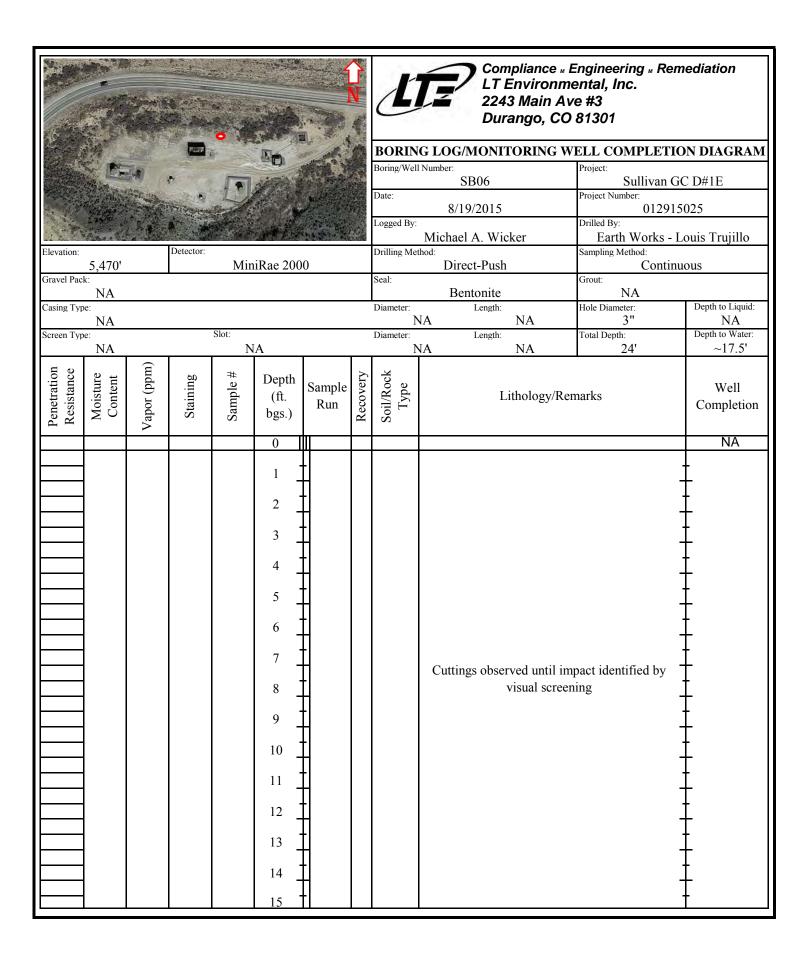


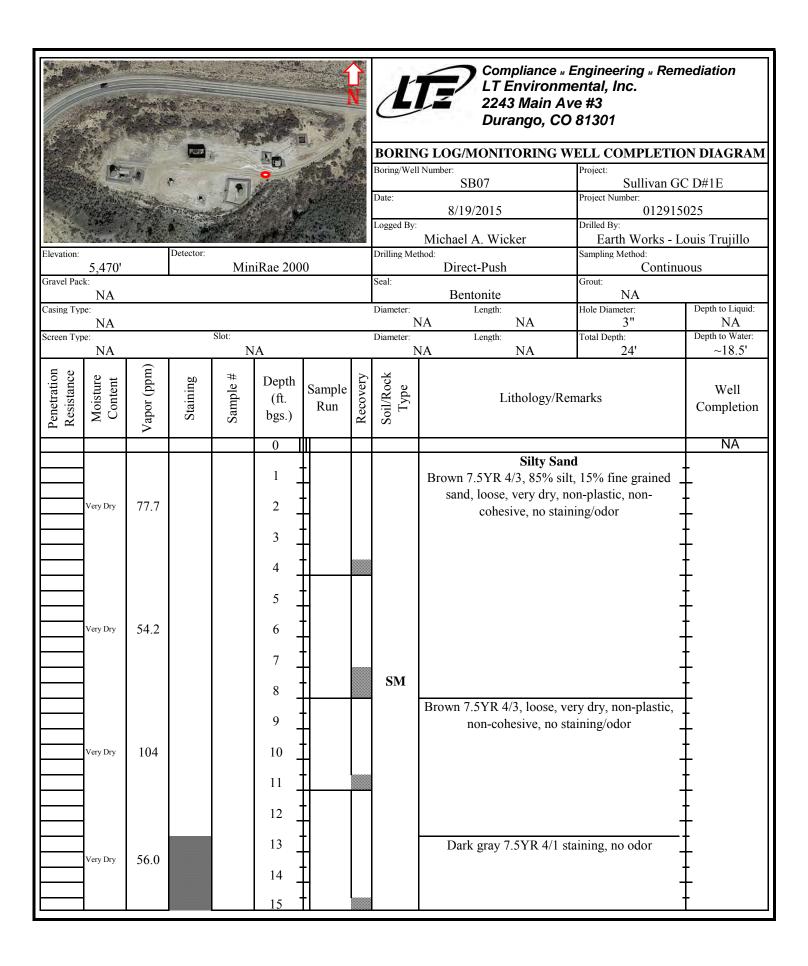


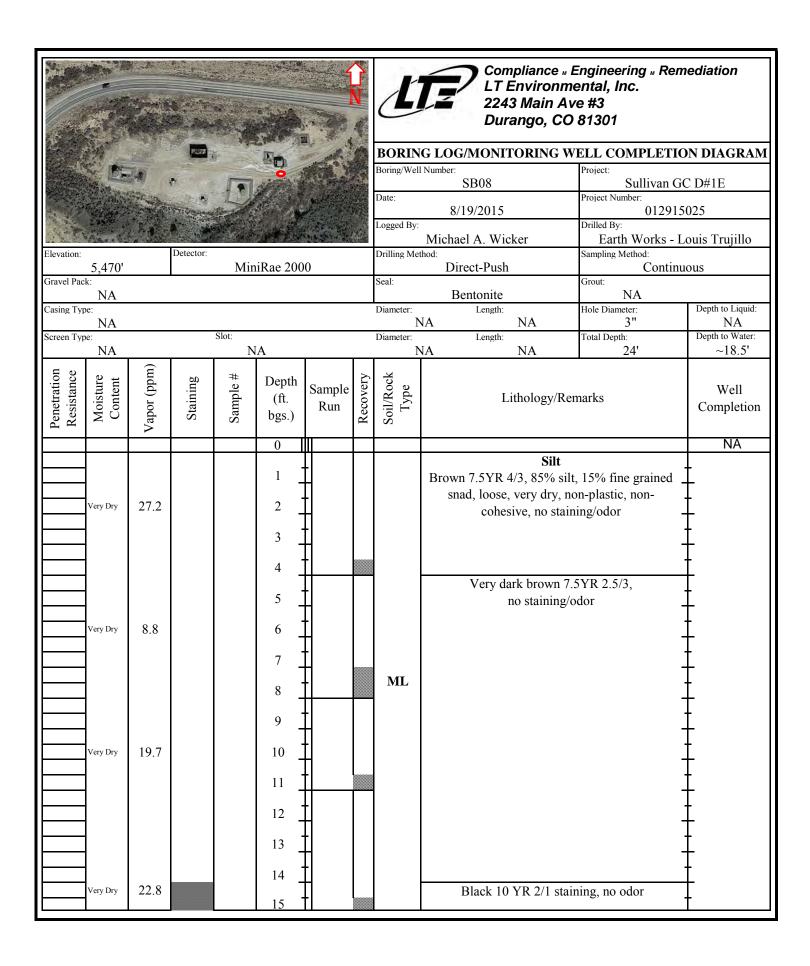


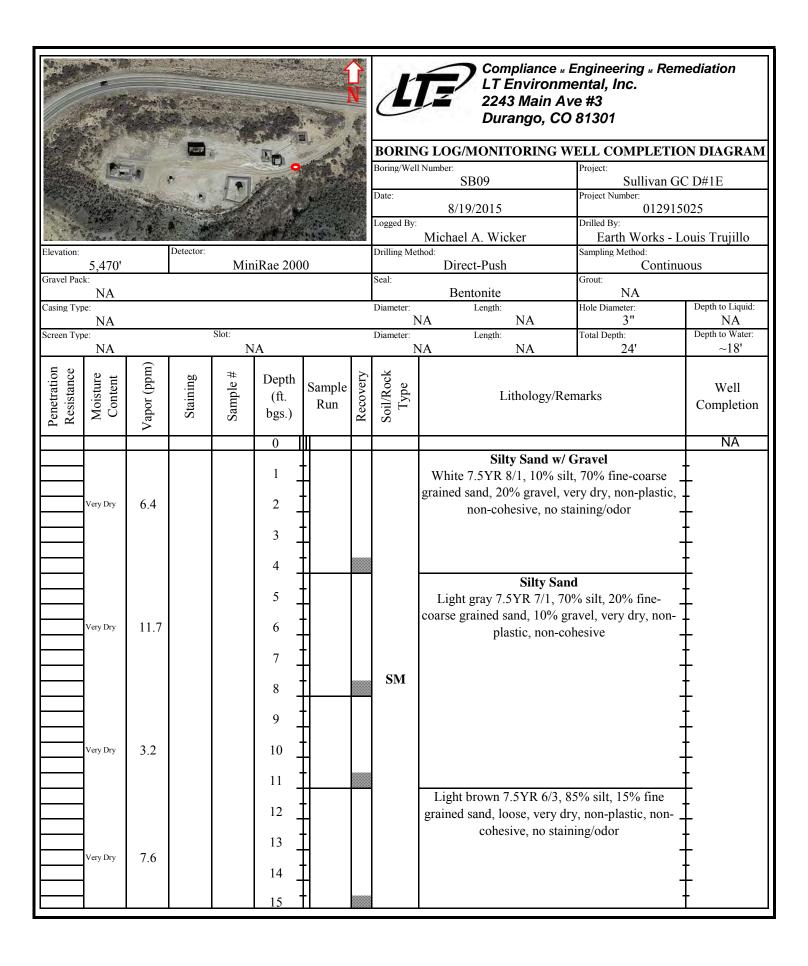

			_	_	_	_			Boring/Well #	SB01	
17		Compli	iance ™	Engine	ering M	Remedia	atio	n	Project:	Sullivan GC D#11	Ξ
	_	LT En	vironn	nental,	Inc.				Project #	012915025	
12-52-12				1		ı			Date	8/19/2015	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Very Dry	77.7		SB01	16 _ 17 _ 18 _	- - - -		SM	so	tainable due to insufficient oil recovery	‡ ‡ ‡
	Wet	3,974		@ 18-20' 0900	19	+ - -			Gray 10YR 5/1 and 70% medium grain sand, 10% fines,	Silty Sand ad black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	‡
					21 22 23	 			,	TD @ 20'	†
					24 <u> </u>						Ţ ‡
					26 <u> </u>	† - -					‡
					28 _						‡
					30 -	 					‡
					32						‡
					34	 - -					‡
					36	 					<u>† </u>

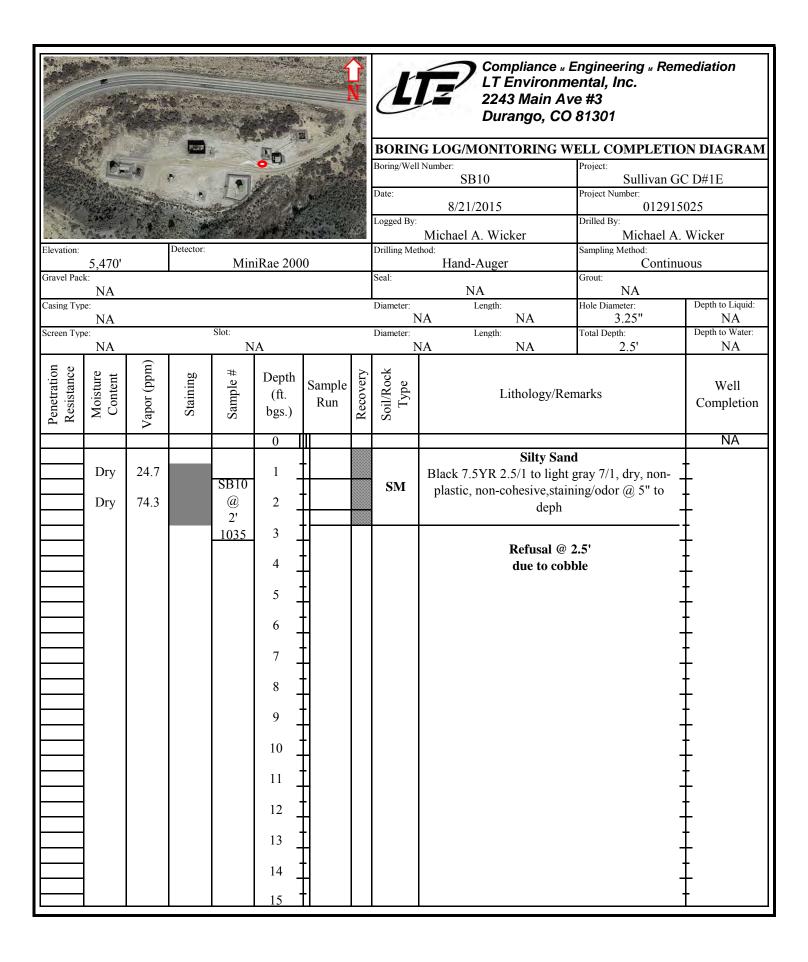

Compilance - Engineering - Remediation Project Subura GC DPIU Project Project Subura GC DPIU Project P										<u> </u>		
Depth Depth Depth Sample Depth Sample Depth De	TIL		_		_	_	_			Boring/Well #	SB02	
Date			Compl	iance ™	Engine	ering " i	Remedia	atio	n	<u>-</u>		3
Sample S			LT En	vironn	nental,	inc.						
SB02 16 18 19 SM Sity Sand Gray 10YR 5/1 and black 10YR 2/1 staining, 70% medium grained sand, 20% fine grained sand, 10% fines, wet, non-plastic, cohesive, staining/odor TD @ 20' TD @ 20' TD @ 20' TD @ 30 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3			,	1	1	1	ı			Date	8/19/2015	
Net SB02 16 SB02 17 16-18* 0930 18 SM Silty Sand Gray 10YR 5/1 and black 10YR 2/1 staining, 70% medium grained sand, 20% fine grained sand, 10% fines, wet, non-plastic, cohesive, staining/odor TD @ 20* TD @ 30 31 32 33 34 35 36 36 36 36 36 36 36	Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	(ft. bgs.)	Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	
Note Section Section						15	Щ					
	P. B. R. B.	Very Dry			SB02 @ 16-18'	15 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 32 - 32 - 32 - 32 - 32 - 33 - 32 - 34 - 32 - 34 - 32 - 34 - 32 - 34 - 32 - 34 -		1		Gray 10YR 5/1 an 70% medium grain sand, 10% fines, sta	nd black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	
						35						-
						_						<u> </u>

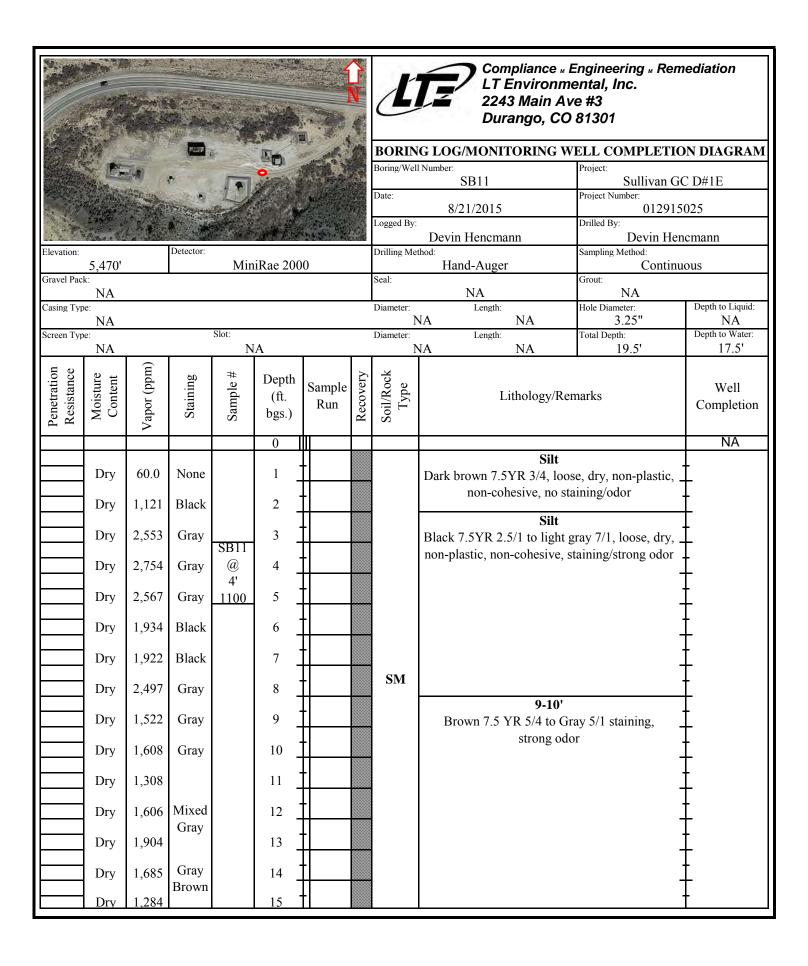

											1
									Boring/Well #	SB03	
17		Compl	iance м	Engine	ering "	Remedia	atio	n	Project:	Sullivan GC D#1E	Į.
		LT En	vironn	nental,	Inc.				Project #	012915025	
									Date	8/19/2015	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Very Dry	14.1		SB03	16	+ + - -		SM	so	tainable due to insufficient bil recovery	+ + + + +
	Wet	3,587		@ 18.5-20' 1030	19	† - 			Gray 10YR 5/1 and 70% medium grain sand, 10% fines,	and black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	‡ +
					21					TD @ 20'	† †
					23 -	- - -					+
					25 <u>-</u> 26 <u>-</u>	 					† †
					27 - 28	 					†
					30	 					‡
					31	 					† +
					33	† - -					-
					35	† - -					‡ ‡
					37	<u> </u>					<u>†</u>


1											1
7.20		_	_	_	_	_	_		Boring/Well #	SB04	,
		Compl	iance ™	Engine	ering M	Remedia	atio	n	Project:	Sullivan GC D#1E	į.
		LT En	vironm	nental,	inc.				Project #	012915025	
C		ı			I	1			Date	8/19/2015	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15	Щ					
Per Re-	Very Dry Wet	12.7 2,247 2,948	SS SI	Sa Sa			Re Re	SM SM	Brown 7.5YR 5/4, sand, loose, non-j dry, n S Gray 10YR 5/1 an 70% medium grain sand, 10% fines, sta	Silty Sand 85% silt, 15% fine grained plastic, non-cohesive, very o staining/odor Silty Sand ad black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	
	- - - -				31 - 32 - 33 -						+ + + +
	- - - - -				34 <u>-</u> 35 <u>-</u> 36 <u>-</u> 37						T - - - -

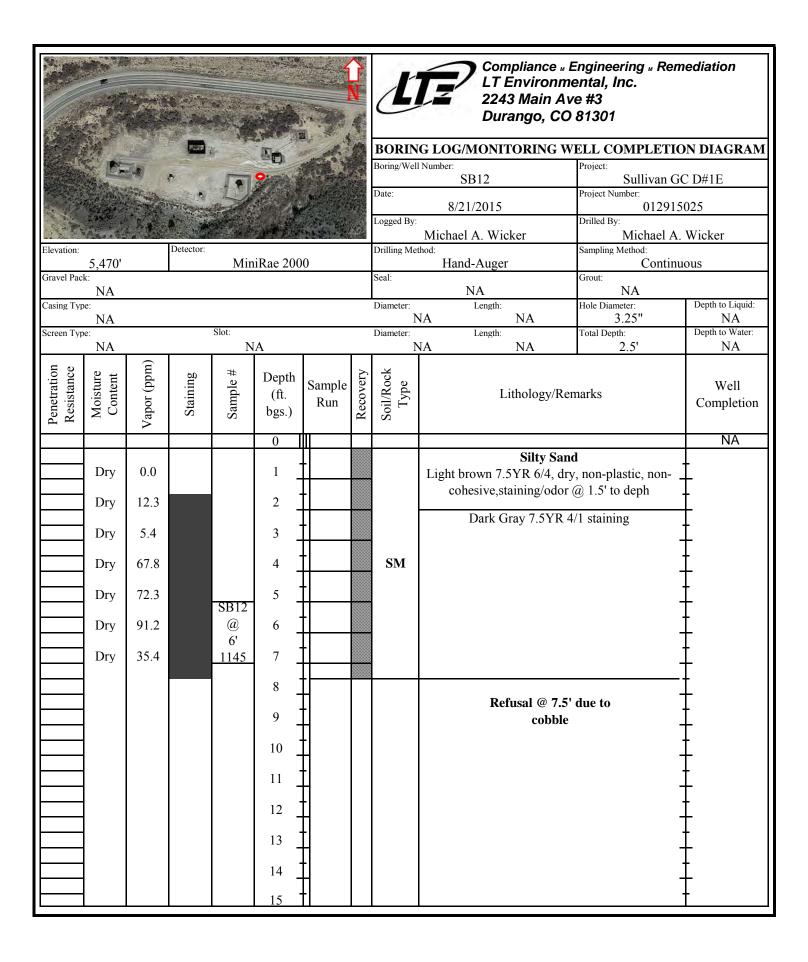

								T		1
		_		_	_	_		Boring/Well #	SB06	
	Compl	iance м	Engine	ering " I	Remedia	atio	n	Project:	Sullivan GC D#1E	5
	LT En	vironm	iental,	inc.				Project #	012915025	
.	1	1			I			Date	8/19/2015	
Penetration Resistance Moisture	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
				15	Щ					
We We	32.7 t 1,955			15 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 29 -			SM	Brown 7.5YR 4/3, non-plastic, non- Gray 10YR 5/1 an 70% medium grain sand, 10% fines, sta	Silty Sand 100% silt, loose, very dry, cohesive, no staining/odor ad black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	
				20	-					+ 1
				30 _	H					+
				31	†					†
				_	П					†
				32	†					†
				_	П				•	Ţ
				33						<u>I</u>
				_					•	1
				34	Ц					<u>↓</u>
					[]					1
				35	Ц					∔
				26	41					+
 				36	Н					+
				37	+					+
		<u> </u>		31	<u> </u>					

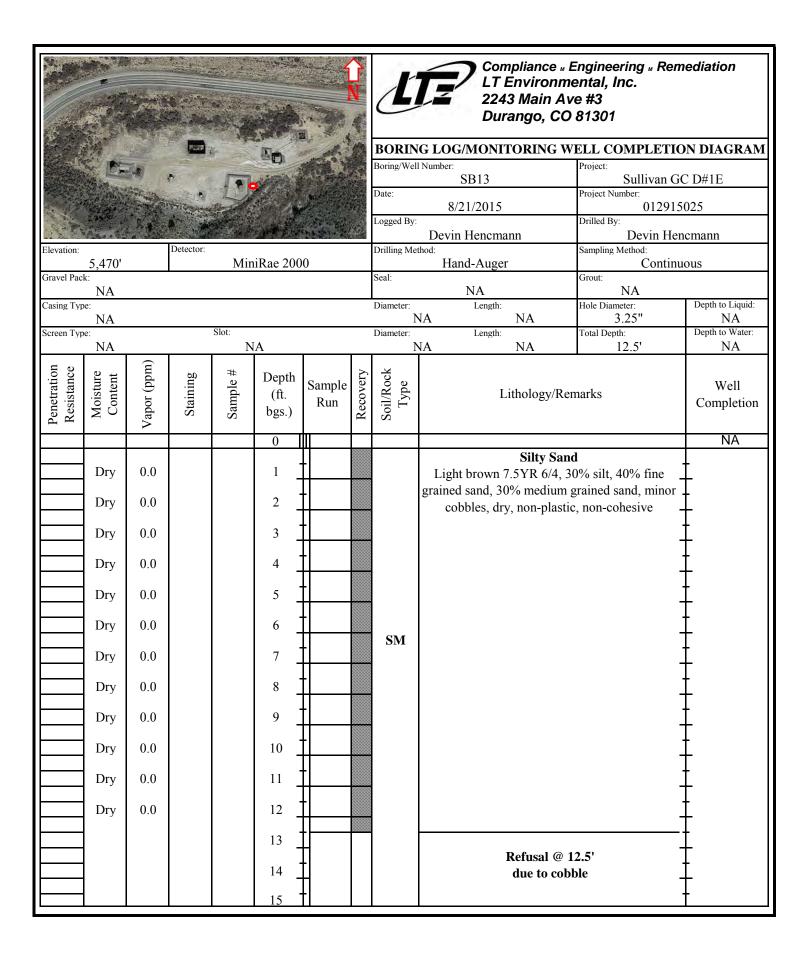

								1	D : WY II !!	anos.	1
			_		_		_		Boring/Well #	SB05	
		Compli	iance м	Engine	ering "	Remedia	atio	n	Project:	Sullivan GC D#1E	
		LT En	vironm	ental,	Inc.				Project #	012915025	
-			1			ı			Date	8/19/2015	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Very Dry	1.7			16	-			C	layey Sand	
					17 _					4, 70% silt, 30% clay, soft,	
					18	 			50% fine grained s	plasticity, cohesive, no and, 50% clay, low plasticty	
	Wet	17.6			19	† - -		SC		-	<u> </u>
					20 -	+		2		-	+
	Wet	32			22					- -	<u> </u>
					23	 				-	
					24	<u>†</u>					<u>†</u>
					25 _	 - -				TD @ 24'	<u> </u>
					26 <u>-</u> 27	 				-	†
					28	†				- -	Ī
					29	<u>-</u>				-	+
					30	<u> </u>				-	†
					31					-	<u> </u>
					32					-	
					33 _	+				•	†
					35					-	<u> </u>
					36	 				-	
					37	<u> </u>					†

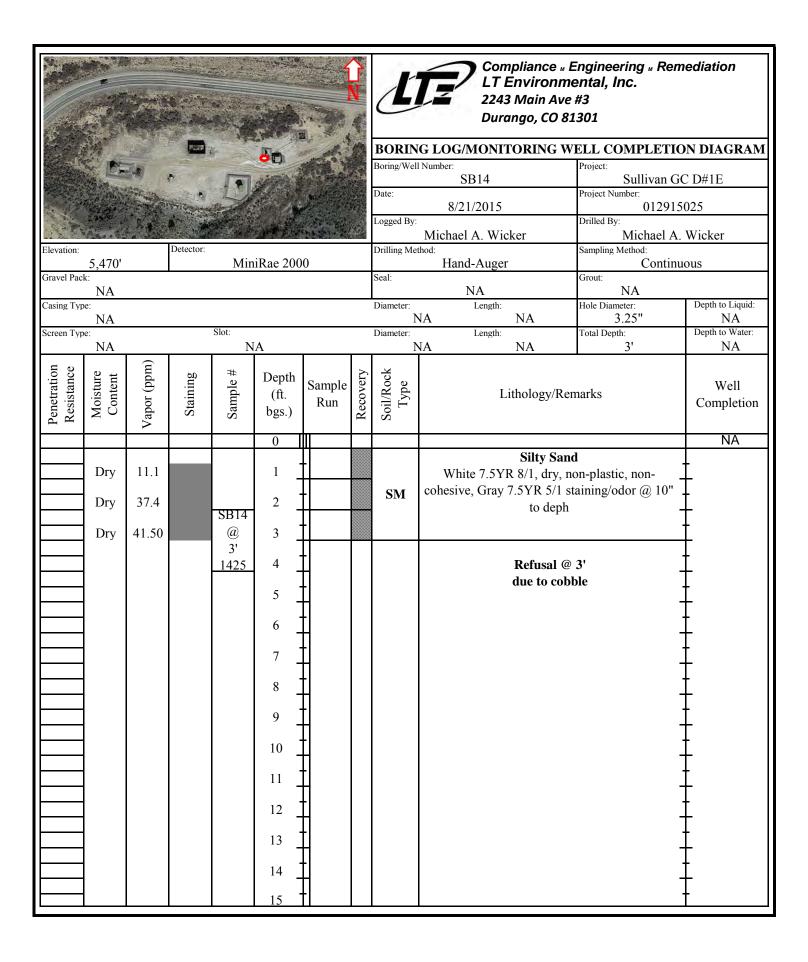

								1	D		1
			_		_		_		Boring/Well #	SB07	
/1		Compl	iance м	Engine	ering "	Remedia	atio	n	Project:	Sullivan GC D#1E	5
		LT En	vironm	iental,	Inc.				Project #	012915025	
		,	1	1		ı			Date	8/19/2015	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Very Dry	1,913		SB07 @ 16-18' 1500	16 <u> </u>	- - -			Gray 10YR 5/1 ar	nd black 10YR 2/1 staining	- - -
	Wet	2,231			19			SM	70% medium grain sand, 10% fines,	nd black 10YR 2/1 staining, ned sand, 20% fine grained wet, non-plastic, cohesive, aining/odor	
	Wet	2,589			21 <u>-</u> 22 <u>-</u> 23 <u>-</u> 24	- - - - - -					- - -
					24					TD @ 24'	
					37	<u> </u>					†

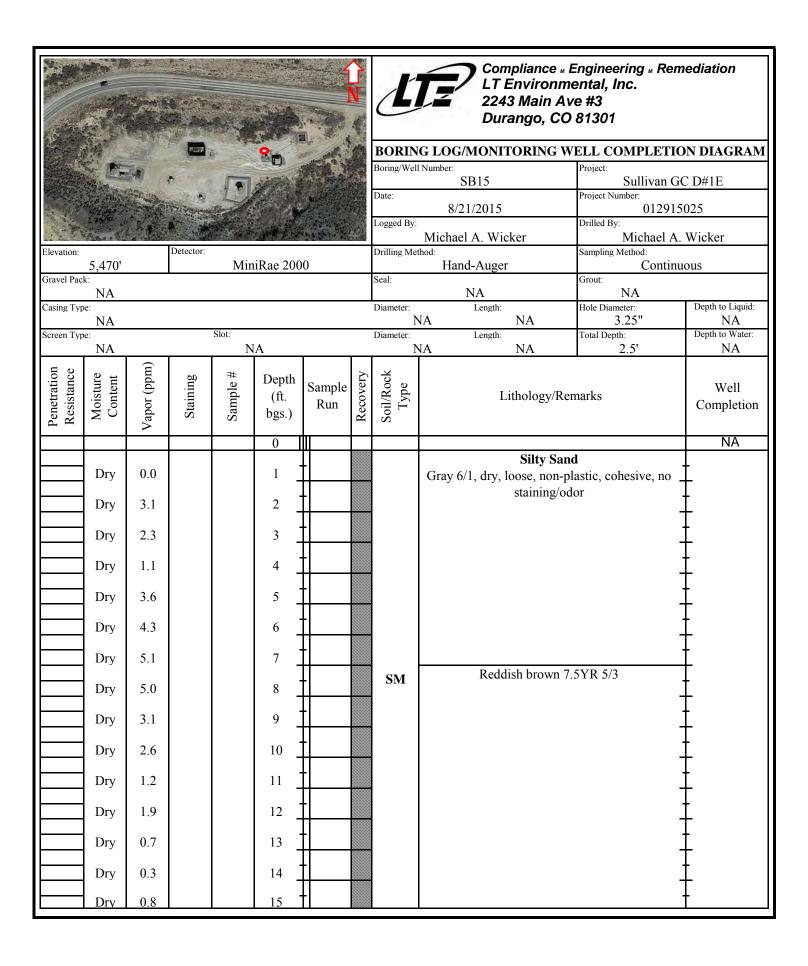


									D · · · · · · · · · · · · · · · · · · ·		
		_		_	_	_			Boring/Well #	SB08	
		Compl	iance M	Engine	ering "	Remedia	atio	n	Project:	Sullivan GC D#1E	<u> </u>
		LT En	vironm	iental,	Inc.				Project #	012915025	
									Date	8/19/2015	•
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Lith	ology/Remarks	Well Completion
					15						
	Very Dry	2,175		SB08 @ 16-17' 1540	16 <u> </u>	-		ML		nd black 10YR 2/1 staining, strong odor	 - -
	Wet	1,937			18 <u>-</u> 19 <u>-</u> 20 <u>-</u>	- - - -			Gray 10YR 5/1 a 70% medium gra sand, 10% fines,	Silty Sand nd black 10YR 2/1 staining, ined sand, 20% fine grained wet, non-plastic, cohesive, taining/odor	† †
	Wet	2,068			21 <u>-</u> 22 <u>-</u> 23 <u>-</u> 24	 		SM			† † †
					25					TD @ 24'	+ - - - - - - - - - - - -
					32						† - - - - - -

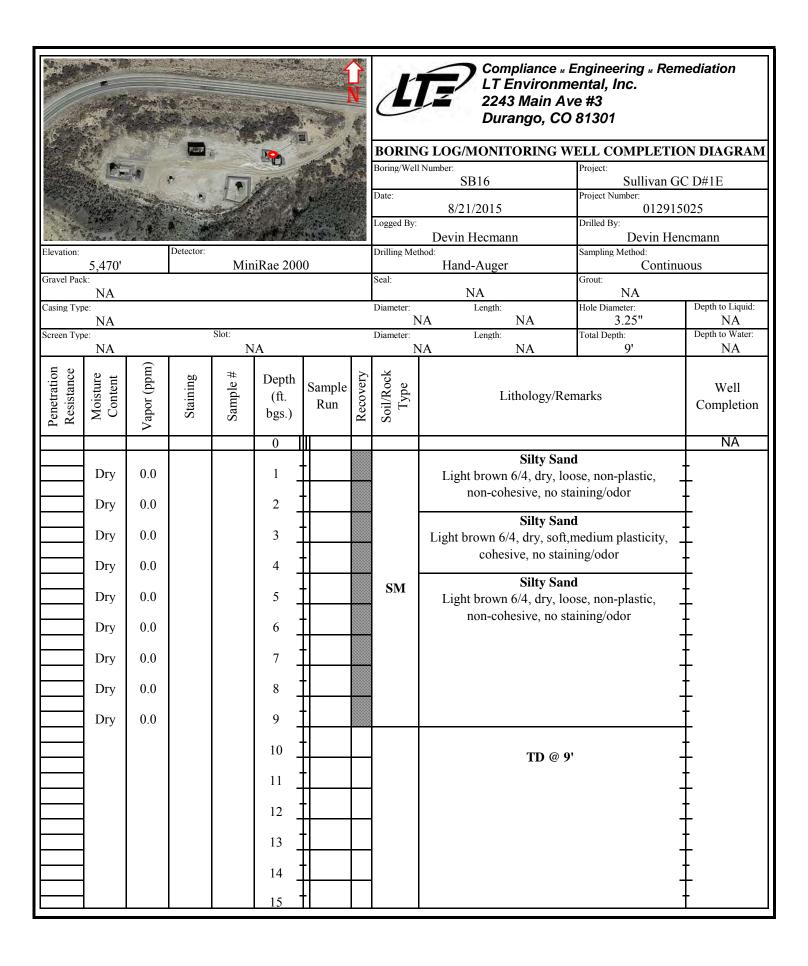



Somplance Engineering Remediation Project Salinara (C Dark Salinara (C Dark)										D : WY II !!	ana:	1
Depth Sample Depth Depth Sample Depth Depth				_		_		_		Boring/Well #	SB09	
Date National Completion Date National Completion Nation	17	_/	Compli	ance M	Engine	ering "	Remedia	atio	n			ž.
			LTEn	vironm	nental,	inc.						
7.8	-		1				I			Date	8/19/2015	
New 1,808 16	Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	(ft. bgs.)	Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	
New 1,808 18 18 18 18 19 18 18 1						15	Щ					
Wet	v	/ery Dry	7.8			17	- - -					‡ ‡
Wet 2,102		Wet	1,808		@ 18-20'	19	† † †		SM	70% medium grain sand, 10% fines,	ned sand, 20% fine grained wet, non-plastic, cohesive,	† †
26		Wet	2,102			22	• •					† †
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						25					TD @ 24'	





									Boring/Well#	SB11	1
		Compl	ianco	Engine	orina	Remedia	oti o	n	Project:	Sullivan GC D#11	E
	2	LT En	vironm	Eligilie Dental	enng ∞. Inc	Remedia	1110	11	Project #	012915025	
		-	• 11 01111	ısıılaı,	1110.				Date	8/21/2015	
on Se	0			#	ъ л		y	k			
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Dry	1,634	Black		16	-					<u> </u>
	Dry	1,258	Black		17						‡
		1,295	Black Gray		18	-		SM	50% \$	Sand. 50% Silt	
	Wet		Gray Black		19						
	-				20	 - -			1	TD @ 19.5	‡ ‡
					22 _	† -					‡
					24						† †
					25 26						<u> </u>
					_						+
					28 _						+
					30	<u> </u>					+
	<u> </u>				31	+					†
					33						+
					34 _						+
					36	 					+
					37						



									Dagin =/W/ U //	on i	1
75-6-		0				Da	_ , •	_	Boring/Well # Project:	SB15 Sullivan GC D#1E	
	—	Compi	ance M	Engine	ering Mi	Remedia	atio	n			
		LIEN	vironn	nental,	INC.				Project # Date	012915025 8/21/2015	
u 0				I					Date	8/21/2013	
Penetration Resistance	Moisture Content	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Litho	ology/Remarks	Well Completion
					15						
	Dry	1.6		SB15	16	 					‡
		209		@ 17.5'	17						‡
				1624	18 19	- - -			1	ΓD @ 17.5'	†
					20	<u> </u>					<u>†</u>
					21						<u> </u>
					22	 					†
					23						1
					24 _	 					†
					26	<u> </u>					<u> </u>
					27	 					<u> </u>
					28	+					†
					29						
					30	 					+
					32	 				•	†
					33					,	<u> </u>
					34	 					<u> </u>
					35	 					‡
					36						‡
					37						

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

Report Summary

Sunday June 21, 2015

Report Number: L770289 Samples Received: 06/10/15 Client Project:

Description:

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364, EPA - TN002

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-01

Date Received : 10, 2015 June

Description

Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-1020

Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 10:20

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	91.9		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	10. 67. 14. 210 3500	1.1 11. 1.1 3.3 220	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8021	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	2000 2000 2000 2000 2000
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	96.5 104.		% Rec. % Rec.	8015 8021	06/15/15 06/15/15	1 1
TPH (GC/FID) High Fraction	6300	440	mg/kg	3546/DRO	06/13/15	100
Surrogate recovery(%) o-Terphenyl	88.2		% Rec.	3546/DRO	06/13/15	100

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 2 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-02

Date Received : 10, 2015 June

Description

Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-1038

Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 10:38

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	90.8		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	8.0 58. 14. 200 3500 96.4 105.	2.8 28. 2.8 8.2 550	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015 8015	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	5000 5000 5000 5000 5000
TPH (GC/FID) High Fraction Surrogate recovery(%) o-Terphenyl	5400 79.5	440	mg/kg % Rec.	3546/DRO 3546/DRO	06/13/15 06/13/15	100

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 3 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-03

Date Received : 10, 2015 June

Description

Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-1105 Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 11:05

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	91.2		%	2540 G-2011	06/12/15	1
Benzene Toluene	BDL BDL	0.0027 0.027	mg/kg mg/kg	8021 8021	06/15/15 06/15/15	5 5
Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	BDL 0.0087 BDL	0.0027 0.0082 0.55	mg/kg mg/kg mg/kg	8021 8021 8015	06/15/15 06/15/15 06/15/15	5 5 5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID)	96.9	0.33	% Rec.	8015	06/15/15	1
a,a,a-Trifluorotoluene(PID)	103.	4.4	% Rec.	8021	06/15/15	1
TPH (GC/FID) High Fraction Surrogate recovery(%) o-Terphenyl	BDL 60.2	4.4	mg/kg % Rec.	3546/DRO 3546/DRO	06/13/15 06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 4 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

Date Received : 10, 2015 June

Description

ESC Sample # : L770289-04 Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-1210

Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 12:10

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	86.7		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction Surrogate Recovery-%	BDL BDL BDL 0.014 BDL	0.0029 0.029 0.0029 0.0086 0.58	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015	06/15/15 06/15/15 06/15/15 06/15/15 06/15/15	5 5 5 5
a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	95.7 103.		% Rec. % Rec.	8015 8021	06/15/15 06/15/15	1 1
TPH (GC/FID) High Fraction	14.	4.6	mg/kg	3546/DRO	06/13/15	1
Surrogate recovery(%) o-Terphenyl	71.3		% Rec.	3546/DRO	06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 5 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-05

Date Received : 10, 2015 June

Description

Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-130 Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 13:30

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	84.1		ફ	2540 G-2011	06/12/15	1
Benzene	BDL	0.0030	mg/kg	8021	06/16/15	5
Toluene	BDL	0.030	mg/kg	8021	06/16/15	5
Ethylbenzene	BDL	0.0030	mg/kg	8021	06/16/15	5
Total Xylene	BDL	0.0089	mg/kg	8021	06/16/15	5
TPH (GC/FID) Low Fraction	BDL	0.59	mg/kg	8015	06/16/15	5
Surrogate Recovery-%						
a,a,a-Trifluorotoluene(FID)	90.9		% Rec.	8015	06/16/15	1
a,a,a-Trifluorotoluene(PID)	102.		% Rec.	8021	06/16/15	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	8.6	4.8	mg/kg	3546/DRO	06/13/15	1
o-Terphenyl	63.2		% Rec.	3546/DRO	06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 6 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-06

Date Received : 10, 2015 June

FARRF-060815-215

Description

Sample ID

Site ID : SULLIVAN G.C.D #1E

Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 14:15

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	89.9		&	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	BDL BDL BDL BDL BDL	0.0028 0.028 0.0028 0.0083 0.56	mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015	06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	5 5 5 5
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	90.6 102.	0.30	% Rec. % Rec.	8015 8021	06/16/15 06/16/15	1
TPH (GC/FID) High Fraction Surrogate recovery(%) o-Terphenyl	BDL 78.5	4.4	mg/kg % Rec.	3546/DRO 3546/DRO	06/13/15 06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 7 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-07

Date Received : 10, 2015 June

Description

Site ID : SULLIVAN G.C.D #1E

Sample ID FARRF-060815-300

Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 15:00

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	91.7		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction Surrogate Recovery-% a.a.a-Trifluorotoluene(FID)	BDL BDL BDL BDL BDL	0.0027 0.027 0.0027 0.0027 0.0082 0.54	mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015	06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	5 5 5 5 5
a,a,a-Trifluorotoluene(FID)	102.		% Rec.	8021	06/16/15	1
TPH (GC/FID) High Fraction Surrogate recovery(%)	BDL	4.4	mg/kg	3546/DRO	06/13/15	1
o-Terphenyl	79.7		% Rec.	3546/DRO	06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 8 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-08

Project # :

Date Received : June 10, 2015

Description :

Site ID : SULLIVAN G.C.D #1E

Sample ID : FARRF-060815-435

Collected By : Rex Farnsworth Collection Date : 06/08/15 16:35

Dry Result Det. Limit Units Method Date Dil. Parameter Total Solids 93.7 왕 2540 G-2011 06/12/15 1 0.0027 Benzene BDL mg/kg 8021 06/16/15 5 06/16/15 0.027 8021 Toluene BDL mg/kg 0.0027 8021 06/16/15 Ethylbenzene BDT. mg/kg 5 0.0080 06/16/15 5 Total Xylene BDL mg/kg 8021 TPH (GC/FID) Low Fraction 0.53 BDL mg/kg 8015 06/16/15 5 Surrogate Recovery-% 90.7 06/16/15 a,a,a-Trifluorotoluene(FID) % Rec. 8015 1 a,a,a-Trifluorotoluene(PID) 102. % Rec. 8021 06/16/15 1 7.8 TPH (GC/FID) High Fraction 4.3 mg/kg 3546/DRO 06/13/15 1 Surrogate recovery(%) o-Terphenyl 94.8 % Rec. 3546/DRO 06/13/15 1

Results listed are dry weight basis.

BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 9 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-09

Date Received : 10, 2015 June

Description

Sample ID

Site ID : SULLIVAN G.C.D #1E

FARRF-060815-535 Project # :

Collected By : Rex Farnsworth Collection Date : 06/08/15 17:35

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	91.6		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction Surrogate Recovery-%	BDL BDL BDL BDL	0.0027 0.027 0.0027 0.0027 0.0082 0.54	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015	06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	5 5 5 5
a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	90.7 102.		% Rec. % Rec.	8015 8021	06/16/15 06/16/15	1 1
TPH (GC/FID) High Fraction	6.6	4.4	mg/kg	3546/DRO	06/13/15	1
Surrogate recovery(%) o-Terphenyl	97.3		% Rec.	3546/DRO	06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 10 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

ESC Sample # : L770289-10

Date Received : Description

Site ID : SULLIVAN G.C.D #1E

Project # :

Sample ID FARRF-060815-930

June

10, 2015

Collected By : Rex Farnsworth Collection Date : 06/08/15 09:30

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	88.4		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	BDL 3.0 11. 200 3600	0.28 2.8 0.28 0.85 56.	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8021	06/16/15 06/16/15 06/16/15 06/16/15 06/16/15	500 500 500 500 500
<pre>Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)</pre>	90.7 102.		% Rec. % Rec.	8015 8021	06/16/15 06/16/15	1
TPH (GC/FID) High Fraction	BDL	4.5	mg/kg	3546/DRO	06/13/15	1
Surrogate recovery(%) o-Terphenyl	75.1		% Rec.	3546/DRO	06/13/15	1

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 11 of 19

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859

Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 21,2015

James McDaniel XTO Energy - San Juan Division 382 County Road 3100 Aztec, NM 87410

Date Received : 10, 2015 June

Description

Sample ID

Site ID : SULLIVAN G.C.D #1E

ESC Sample # : L770289-11

FARRF-060815-947

Project # :

Collected By : Rex Farnsworth Collection Date : 06/09/15 09:47

Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	86.7		%	2540 G-2011	06/12/15	1
Benzene Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction	53. 420 68. 860 13000	2.9 29. 2.9 8.6 580	mg/kg mg/kg mg/kg mg/kg mg/kg	8021 8021 8021 8021 8015	06/19/15 06/19/15 06/19/15 06/19/15 06/19/15	5000 5000 5000 5000 5000
Surrogate Recovery-% a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)	92.2 92.4		% Rec. % Rec.	8015 8021	06/19/15 06/19/15	1 1
TPH (GC/FID) High Fraction	3300	92.	mg/kg	3546/DRO	06/11/15	20
Surrogate recovery(%) o-Terphenyl	78.4		% Rec.	3546/DRO	06/11/15	20

Results listed are dry weight basis.

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted

Reported: 06/21/15 19:40 Printed: 06/21/15 19:40

Page 12 of 19

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group 	Sample Type	Analyte	Run ID	Qualifier
L770289-01	WG794936	SAMP	o-Terphenyl	R3043222	J7
L770289-02	WG794936	SAMP	o-Terphenyl	R3043222	J7
L770289-11	WG794934	SAMP	o-Terphenyl	R3042967	J7

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 14 of 19

XTO Energy - San Juan Division James McDaniel 382 County Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L770289

June 21, 2015

		T.a	boratory B	lank					
Analyte	Result		nits	% Re	С	Limit	Batch	Date A	nalyzed
Total Solids	< .1	8					WG794915	06/12/	15 07:02
Total Solids	< .1	8					WG794917	06/12/	15 07:15
								,,	
TPH (GC/FID) High Fraction	< 4		g/kg				WG794934	, ,	
o-Terphenyl		8	Rec.	100.	0	50-150	WG794934	06/11/	15 18:18
TPH (GC/FID) High Fraction	< 4	m	q/kq				WG794936	06/12/	15 14:57
o-Terphenyl	` 1		Rec.	100.	0	50-150	WG794936		
• •									
Benzene	< .0005		g/kg				WG795391		
Ethylbenzene	< .0005		g/kg				WG795391	,	
Toluene TPH (GC/FID) Low Fraction	< .005 < .1		g/kg g/kg				WG795391 WG795391		
Total Xylene	< .0015		g/kg g/ka				WG795391 WG795391		
a,a,a-Trifluorotoluene(FID)			Rec.	96.	30	59-128	WG795391		
a,a,a-Trifluorotoluene(PID)		8	Rec.	104.	0	54-144	WG795391		
Benzene	< .0005		g/kg				WG795956		
Ethylbenzene	< .0005		g/kg				WG795956		
Toluene TPH (GC/FID) Low Fraction	< .005 < .1		g/kg g/kg				WG795956 WG795956		
Total Xylene	< .0015		g/kg g/kg				WG795956 WG795956		
a,a,a-Trifluorotoluene(FID)	< .0013		Rec.	91.	40	59-128	WG795956	, - ,	
a,a,a-Trifluorotoluene(PID)			Rec.	102.		54-144	WG795956		
, , , , ,									
Benzene	< .0005		g/kg				WG796950		
Ethylbenzene	< .0005		g/kg				WG796950		
Toluene	< .005		g/kg				WG796950		
TPH (GC/FID) Low Fraction	< .1		g/kg				WG796950		
Total Xylene	< .0015		g/kg	0.0	0.0	59-128	WG796950		
a,a,a-Trifluorotoluene(FID) a,a,a-Trifluorotoluene(PID)			Rec. Rec.	98.1 92.1		59-128 54-144	WG796950 WG796950		
a,a,a-IIIIIuululululululululululululululululu		70	Rec.	22.	30	34-144	WG790930	00/19/	13 17.31
			Duplicat						
Analyte	Units	Result	Dupli	cate	RPD	Limit	Ref Sam	ıp qı	<u>Batc</u> h
Total Solids	ક	82.0	82.1		0.0334	5	L770280	-02	WG794915
Total Solids	%	78.5	78.3		0.254	5	L770294	-01	<u>WG7</u> 94917
		Labora	tory Contr	ol Samı	ple				
Analyte	Units	Known			sult	% Rec	Limit		Batch
	0	F.0		F0 0		100	05 115		
Total Solids	૪	50		50.0		100.	85-115		WG794915
Total Solids	%	50		50.0		100.	85-115		WG794917
TPH (GC/FID) High Fraction	mg/kg	60		52.1		86.8	50-150		WG794934
o-Terphenyl						99.20	50-150		WG794934

^{*} Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 15 of 19

XTO Energy - San Juan Division James McDaniel 382 County Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L770289

June 21, 2015

		Labor	atory Cont	rol Sample				
Analyte	Units	Know	n Val	Result	% Rec	Li	mit	Batch
TPH (GC/FID) High Fraction	mg/kg	60		50.9	84.8	5.0	-150	WG794936
o-Terphenyl	ilig/kg	00		30.9	99.30		-150	WG794936
o respicity i					33.30	30	130	WG751550
Benzene	mg/kg	.05		0.0452	90.5		-130	WG795391
Ethylbenzene	mg/kg	.05		0.0460	92.0		-130	WG795391
Toluene	mg/kg	.05		0.0448	89.6		-130	WG795391
Total Xylene	mg/kg	.15		0.139	92.4		-130	WG795391
a,a,a-Trifluorotoluene(FID)					95.70		-128	WG795391
a,a,a-Trifluorotoluene(PID)					102.0		-144	WG795391
TPH (GC/FID) Low Fraction	mg/kg	5.5		5.97	109.		.5-137	WG795391
a,a,a-Trifluorotoluene(FID)					105.0		-128	WG795391
a,a,a-Trifluorotoluene(PID)					110.0	54	-144	WG795391
Benzene	mg/kg	.05		0.0407	81.4	70	-130	WG795956
Ethylbenzene	mg/kg	.05		0.0456	91.3	70	-130	WG795956
Toluene	mg/kg	.05		0.0435	87.1	70	-130	WG795956
Total Xylene	mg/kg	.15		0.135	90.3	70	-130	WG795956
a,a,a-Trifluorotoluene(FID)					90.90	59	-128	WG795956
a,a,a-Trifluorotoluene(PID)					101.0		-144	WG795956
TPH (GC/FID) Low Fraction	mg/kg	5.5		4.89	88.9		.5-137	WG795956
a,a,a-Trifluorotoluene(FID)					98.30		-128	WG795956
a,a,a-Trifluorotoluene(PID)					112.0	54	-144	WG795956
Benzene	mg/kg	.05		0.0425	84.9	70	-130	WG796950
Ethylbenzene	mg/kg	.05		0.0432	86.3		-130	WG796950
Toluene	mg/kg	.05		0.0431	86.2		-130	WG796950
Total Xylene	mg/kg	.15		0.129	86.2	70	-130	WG796950
a,a,a-Trifluorotoluene(PID)					102.0	54	-144	WG796950
TPH (GC/FID) Low Fraction	mg/kg	5.5		3.99	72.6	63	.5-137	WG796950
a,a,a-Trifluorotoluene(FID)					99.80	59	-128	WG796950
		Laboratory	Control S	ample Duplicat	۵			
Analyte	Units	_	Ref	Rec %Rec	Limit	RPD	Limit	Batch
TPH (GC/FID) High Fraction	mg/kg	52.3	52.1	87.0	50-150	0.370	20	WG794934
o-Terphenyl				98.00	50-150			WG794934
TPH (GC/FID) High Fraction	mg/kg	50.0	50.9	83.0	50-150	1.71	20	WG794936
o-Terphenyl	5, 5			93.80	50-150			WG794936
Benzene	mg/kg	0.0445	0.0452	89.0	70-130	1.74	20	WG795391
Ethylbenzene	mg/kg	0.0452	0.0460	90.0	70-130	1.64	20	WG795391
Toluene	mg/kg	0.0438	0.0448	88.0	70-130	2.28	20	WG795391
Total Xylene	mg/kg	0.136	0.139	91.0	70-130	1.93	20	WG795391
a,a,a-Trifluorotoluene(FID)				96.80	59-128			WG795391
a,a,a-Trifluorotoluene(PID)				103.0	54-144			WG795391
TPH (GC/FID) Low Fraction	mg/kg	6.39	5.97	116.	63.5-137	6.84	20	WG795391
a,a,a-Trifluorotoluene(FID)				104.0	59-128			WG795391
a,a,a-Trifluorotoluene(PID)				110.0	54-144			WG795391
Benzene	mg/kg	0.0403	0.0407	80.0	70-130	1.05	20	WG795956
Ethylbenzene	mg/kg	0.0454	0.0456	91.0	70-130	0.490	20	WG795956
Toluene	mg/kg	0.0427	0.0435	85.0	70-130	1.82	20	WG795956
* Performance of this Analyte	ie outeida	of ogtabli	ahod arito	ria				

^{*} Performance of this Analyte is outside of established criteria.

Page 16 of 19

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

XTO Energy - San Juan Division James McDaniel 382 County Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L770289

June 21, 2015

		Tabazataz	y Control S	lampla Dupl	igato				
Analyte	Units	Result	Ref	Rec %Rec		Limit	RPD	Limit	Batch
indir oc	0111.00	RODULO	1102	01100		3220	1012	Dimi	
Total Xylene	mg/kg	0.135	0.135	90.0	7	70-130	0.260	20	WG795956
a,a,a-Trifluorotoluene(FID)				91.00	5	59-128			WG795956
a,a,a-Trifluorotoluene(PID)				102.0	5	54-144			WG795956
TPH (GC/FID) Low Fraction	mg/kg	4.86	4.89	88.0		53.5-137	0.670	20	WG795956
a,a,a-Trifluorotoluene(FID)				98.10		59-128			WG795956
a,a,a-Trifluorotoluene(PID)				112.0	5	54-144			WG795956
	(1	0.0456	0.0405	01 0	_			0.0	
Benzene	mg/kg	0.0456	0.0425	91.0		70-130	7.03	20	WG796950
Ethylbenzene	mg/kg	0.0465	0.0432	93.0		70-130	7.52	20	WG796950
Toluene	mg/kg	0.0461	0.0431	92.0		70-130	6.63	20	WG796950
Total Xylene	mg/kg	0.138	0.129	92.0		70-130	6.60	20	WG796950
a,a,a-Trifluorotoluene(PID)		4 15	2 00	101.0		54-144	2 05	20	WG796950
TPH (GC/FID) Low Fraction	mg/kg	4.15	3.99	76.0		53.5-137	3.95	20	WG796950
a,a,a-Trifluorotoluene(FID)				101.0	5	59-128			WG796950
			Matrix Sp	oike					
Analyte	Units	MS Res	Ref Res		% Rec	Limit		Ref Samp	Batch
Benzene	mg/kg	0.171	0.0	.05	68.0	49.7-	127	L769595-01	WG795391
Ethylbenzene	mg/kg	0.182	0.0	.05	73.0	40.8-	141	L769595-01	WG795391
Toluene	mg/kg	0.172	0.0	.05	69.0	49.8-	132	L769595-01	WG795391
Total Xylene	mg/kg	0.545	0.00138	.15	72.0	41.2-	140	L769595-01	WG795391
a,a,a-Trifluorotoluene(FID)					95.30	59-12	8		WG795391
a,a,a-Trifluorotoluene(PID)					102.0	54-14	4		WG795391
TPH (GC/FID) Low Fraction	mg/kg	19.9	0.0557	5.5	72.0	28.5-	138	L769595-01	WG795391
a,a,a-Trifluorotoluene(FID)	5, 5				101.0	59-12			WG795391
a,a,a-Trifluorotoluene(PID)					106.0	54-14			WG795391
, . , . ,									
Benzene	mg/kg	0.175	0.00041	.05	70.0	49.7-	127	L770289-05	WG795956
Ethylbenzene	mg/kg	0.179	0.00039	0 .05	71.0	40.8-	141	L770289-05	WG795956
Toluene	mg/kg	0.181	0.00429	.05	71.0	49.8-	132	L770289-05	WG795956
Total Xylene	mg/kg	0.531	0.00348	.15	70.0	41.2-	140	L770289-05	WG795956
a,a,a-Trifluorotoluene(FID)					90.60	59-12	8		WG795956
a,a,a-Trifluorotoluene(PID)					101.0	54-14	4		WG795956
TPH (GC/FID) Low Fraction	mg/kg	15.0	0.0	5.5	54.0	28.5-	138	L770289-05	WG795956
a,a,a-Trifluorotoluene(FID)					95.10	59-12	8		WG795956
a,a,a-Trifluorotoluene(PID)					107.0	54-14	4		WG795956
Benzene	mg/kg	0.195	0.0	.05	78.0	49.7-	127	L771109-01	WG796950
Ethylbenzene	mg/kg	0.188	0.0	.05	75.0	40.8-		L771109-01	WG796950
Toluene	mg/kg	0.190	0.0	.05	76.0	49.8-	132	L771109-01	WG796950
Total Xylene	mg/kg	0.578	0.00056	.15	77.0	41.2-	140	L771109-01	WG796950
a,a,a-Trifluorotoluene(PID)					96.20	54-14	4		WG796950
TPH (GC/FID) Low Fraction	mg/kg	14.0	0.0	5.5	51.0	28.5-	138	L771109-01	WG796950
a,a,a-Trifluorotoluene(FID)					97.50	59-12	8		WG796950
			rix Spike I	_	-1.1.		- 1 1.		
Analyte	Units	MSD	Ref %	Rec	Limit	RPD	Limit	Ref Samp	Batch
Benzene	mg/kg	0.170	0.171 6	58.0	49.7-127	7 0.510	22 F	L769595-01	WG795391
Ethylbenzene		0.170		72.9	49.7-127		23.8	L769595-01	WG795391 WG795391
Toluene	mg/kg mg/kg	0.182		58.4	49.8-141		23.8	L769595-01	WG795391 WG795391
				72.0				L769595-01	
Total Xylene	mg/kg	0.541	0.545 7		41.2-140	0.760	23.1	T102232-0T	WG795391
a,a,a-Trifluorotoluene(FID)			-1	95.50	59-128				WG795391
a,a,a-Trifluorotoluene(PID)	ma /lea	20 5		102.0 74.2	54-144	3 2.56	22 E	L769595-01	WG795391 WG795391
TPH (GC/FID) Low Fraction * Performance of this Analyte is	mg/kg				28.5-138	2.50	23.0	T10=CECE01T	MG/3237T
For additional information ple					with oc	Onalifiere			

Page 17 of 19

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

XTO Energy - San Juan Division James McDaniel 382 County Road 3100

Quality Assurance Report Level II Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 21, 2015

Analyte	Units	MSD Ma	trıx Spık Ref	e Duplicate %Rec	Limit	RPD	Timit	Ref Samp	Batch
Analyte	UIIICS	MSD	Ker	*NEC	шитс	KFD	штипт	. KEL Salip	Batten
a,a,a-Trifluorotoluene(FID)				101.0	59-128				
a,a,a-Trifluorotoluene(PID)				107.0	54-144				
Benzene	mg/kg	0.181	0.175	72.3	49.7-127	3.32	23.5	L770289-05	WG79595
Ethylbenzene	mg/kg	0.182	0.179	72.5	40.8-141	1.69	23.8	L770289-05	WG79595
Toluene	mg/kg	0.185	0.181	72.2	49.8-132	2.21	23.5	L770289-05	WG79595
Total Xylene	mg/kg	0.536	0.531	71.0	41.2-140	0.820	23.7	L770289-05	WG79595
a,a,a-Trifluorotoluene(FID)				90.80	59-128				WG79595
a,a,a-Trifluorotoluene(PID)				101.0	54-144				WG79595
TPH (GC/FID) Low Fraction	mg/kg	17.0	15.0	61.8	28.5-138	12.6	23.6	L770289-05	WG79595
a,a,a-Trifluorotoluene(FID)				95.80	59-128				WG79595
a,a,a-Trifluorotoluene(PID)				108.0	54-144				WG79595
Benzene	mg/kg	0.187	0.195	74.9	49.7-127	3.84	23.5	L771109-01	WG79695
Ethylbenzene	mg/kg	0.177	0.188	71.0	40.8-141	5.71	23.8	L771109-01	WG79695
Toluene	mg/kg	0.180	0.190	72.1	49.8-132	5.22	23.5	L771109-01	WG79695
Total Xylene	mg/kg	0.541	0.578	72.1	41.2-140	6.56	23.7	L771109-01	WG79695
a,a,a-Trifluorotoluene(PID)				98.90	54-144				WG79695
TPH (GC/FID) Low Fraction	mg/kg	14.7	14.0	53.4	28.5-138	4.53	23.6	L771109-01	WG79695
a,a,a-Trifluorotoluene(FID)				97.20	59-128				WG79695

L770289

Batch number /Run number / Sample number cross reference

WG794915: R3042943: L770289-01 02 03 04 05 06 07 08

WG794917: R3042949: L770289-09 10 11

WG794934: R3042967: L770289-11

WG794936: R3043222: L770289-01 02 03 04 05 06 07 08 09 10 WG795391: R3043799: L770289-01 02 03 04

WG795956: R3044022: L770289-05 06 07 08 09 10 WG796950: R3044762: L770289-11

Page 18 of 19

 $^{^{\}star}$ * Calculations are performed prior to rounding of reported values.

 $[\]mbox{\scriptsize \star}$ Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

XTO Energy - San Juan Division James McDaniel 382 County Road 3100

Aztec, NM 87410

Quality Assurance Report Level II

T-770289

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

appropriate qualifier in Appendix B of the analytic report.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate — is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

June 21, 2015

ANALYTICAL REPORT

August 26, 2015

XTO Energy - San Juan Division

Sample Delivery Group: L784324

Samples Received: 08/21/2015

Project Number:

Description: LT Environmental

Report To: James McDaniel

382 County Road 3100

Aztec, NM 87410

Entire Report Reviewed By:

Dapline R Richards

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
FARMW-081915-1100 L784324-04	5
FARMW-081915-1230 L784324-05	6
FARMW-081915-1330 L784324-06	7
⁶ Qc: Quality Control Summary	8
Volatile Organic Compounds (GC) by Method 8021B	8
⁷ Gl: Glossary of Terms	11
⁸ Al: Accreditations & Locations	12
⁹ Sc: Chain of Custody	13

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time
FARMW-081915-1100 L784324-04 GW			MIchael A Wicker	08/19/15 11:00	08/21/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8021B	WG810927	20	08/23/15 09:01	08/23/15 09:01	MCB
Volatile Organic Compounds (GC) by Method 8021B	WG810932	250	08/24/15 14:36	08/24/15 14:36	MCB
FARMW-081915-1230 L784324-05 GW			Collected by Michael A Wicker	Collected date/time 08/19/15 12:30	Received date/time 08/21/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8021B	WG810927	1	08/23/15 09:24	08/23/15 09:24	MCB
			Collected by	Collected date/time	Received date/time
FARMW-081915-1330 L784324-06 GW			Michael A Wicker	08/19/15 13:30	08/21/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8021B	WG810927	20	08/23/15 09:45	08/23/15 09:45	MCB
Volatile Organic Compounds (GC) by Method 8021B	WG810932	250	08/24/15 14:58	08/24/15 14:58	MCB
Volatile Organic Compounds (GC) by Method 8021B	WG811603	2000	08/26/15 13:47	08/26/15 13:47	MCB

Daphne Richards

Technical Service Representative

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the

²Tc

³Ss

SAMPLE RESULTS - 04

ONE LAB. NAPage 198 of 26

Collected date/time: 08/19/15 11:00

L784324

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	4.43		0.0100	20	08/23/2015 09:01	WG810927
Toluene	17.1		1.25	250	08/24/2015 14:36	WG810932
Ethylbenzene	1.10		0.0100	20	08/23/2015 09:01	WG810927
Total Xylene	11.3		0.0300	20	08/23/2015 09:01	WG810927
(S) a,a,a-Trifluorotoluene(PID)	103		55.0-122		08/23/2015 09:01	WG810927

SAMPLE RESULTS - 05

ONE LAB. NAPage 199 of 236

Collected date/time: 08/19/15 12:30

Volatile Organic Compounds (GC) by Method 8021B

	•					
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Benzene	0.00260		0.000500	1	08/23/2015 09:24	WG810927
Toluene	0.00685		0.00500	1	08/23/2015 09:24	WG810927
Ethylbenzene	0.00193		0.000500	1	08/23/2015 09:24	WG810927
Total Xylene	0.0225		0.00150	1	08/23/2015 09:24	WG810927
(S) a a a-Trifluorotoluene(PID)	104		55 0-122		08/23/2015 09:24	WG810927

SAMPLE RESULTS - 06

ONE LAB. NA Page 110 of 26

Collected date/time: 08/19/15 13:30

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	4.40		0.0100	20	08/23/2015 09:45	WG810927
Toluene	40.0		1.25	250	08/24/2015 14:58	WG810932
Ethylbenzene	1.95		0.0100	20	08/23/2015 09:45	WG810927
Total Xylene	18.1		3.00	2000	08/26/2015 13:47	WG811603
(S) a,a,a-Trifluorotoluene(PID)	100		55.0-122		08/23/2015 09:45	WG810927

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 11 of 236

L784324-04,05,06 Volatile Organic Compounds (GC) by Method 8021B

Method Blank (MB)

(MB) 08/23/15 06:27					
	MB Result	MB Qualifier	MB RDL		
Analyte	mg/l		mg/l		
Benzene	ND		0.000500		
Toluene	ND		0.00500		
Ethylbenzene	ND		0.000500		
Total Xylene	ND		0.00150		
(S) a,a,a-Trifluorotoluene(PID)	105		55.0-122		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 08/23/15 05:21 • (LCSD) 0	08/23/15 05:43									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0500	0.0384	0.0434	76.9	86.8	70.0-130			12.1	20
Toluene	0.0500	0.0405	0.0442	81.0	88.3	70.0-130			8.62	20
Ethylbenzene	0.0500	0.0409	0.0453	81.9	90.5	70.0-130			9.98	20
Total Xylene	0.150	0.126	0.138	84.0	92.1	70.0-130			9.19	20
(S) a,a,a-Trifluorotoluene(PID)				104	104	55.0-122				

L783444-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 08/23/15 07:55 • (MS) 08/23/15 06:49 • (MSD) 08/23/15 07:11

(O3) 06/23/13 07.33 • (IVI3) 06/2	23/13/00.49 • (W3D) 06/23/13 07	.11									
	Spike Amou	ınt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0500	0.00727	0.0507	0.0497	86.8	84.9	1	57.2-131			1.89	20
Toluene	0.0500	ND	0.0533	0.0527	107	105	1	63.7-134			1.28	20
Ethylbenzene	0.0500	0.00407	0.0489	0.0482	89.7	88.3	1	67.5-135			1.42	20
Total Xylene	0.150	0.00388	0.143	0.141	92.6	91.5	1	65.9-138			1.23	20
(S) a,a,a-Trifluorotoluene(PID)					104	104		55.0-122				

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 112 of 236

3.17

20

Volatile Organic Compounds (GC) by Method 8021B

L784324-04,06

Method Blank (MB)

Toluene

(MB) 08/24/15 11:39			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/l		mg/l
Toluene	ND		0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 08/24/15 09:02 • (LCSD) 08/	/24/15 09:24									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Toluene	0.0500	0.0448	0.0461	89.6	92.1	70.0-130			2.83	20

GI

L784743-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.000365

0.0500

0.0471

(OS) 08/24/15 14:14 • (MS) 08/	24/15 12:23 • (N	1SD) 08/24/15 12:45	5									
	Spike Amo	ount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%

93.4

96.5

0.0486

63.7-134

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 113 of 26

Volatile Organic Compounds (GC) by Method 8021B

L784324-06

Method Blank (MB)

(MB) 08/26/15 12:56						
	MB Result	MB Qualifier	MB RDL			
Analyte	mg/l		mg/l			
Total Xylene	ND		0.00150			

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 08/26/15 10:50 · (LCSD) 08/2	26/15 11:15									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Total Xvlene	0.150	0.140	0.132	93.1	87.9	70.0-130			5.80	20

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG. $\frac{1}{2} \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} \left(\frac$

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.**

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

^{1.} Drinking Water ^{2.} Underground Storage Tanks ^{3.} Aquatic Toxicity ^{4.} Chemical/Microbiological ^{5.} Mold ^{n/a} Accreditation not applicable

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
Canada	1461.01	DOD	1461.01	
EPA-Crypto	TN00003	USDA	S-67674	

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

//		Quo	te Number	r	Т	- 1	1			Anal	ysis			Lab Information
ENERGY		James	Contact McDanie			Page of XTO Contact Photo (5) 333-37 to:	ne #							
Western Division	1	AAgere	LTENV.	com	/ DHe	nemannel	TENN. (AVI			+				ffice Abbreviations nington = FAR
Sullivan GC D#1E		API Number				Test Reason	- IPPIVICON		0				Dur	ango = DUR ken = BAK
Michael A Wicke		Samples on Ice (V/N)				<u>Turnaround</u> andard		e .	DR	3				on = RAT ance = PC
LT Environmenta		QA/QC Stan	Requeste	ed	T	ext Day wo Day hree Day		(1208)	6R0/				Roos La B	revelt = RSV rarge = LB rageville = OV
Sort Set		Gray Areas		e Only!	Sta	l. 5 Bus. Days (by eeded	contract)) X						C157
Sample ID	Sam	ple Name	Media	Date	Time	Preservative	No. of Conts.	BTEX	TH					Sample Number
FARMW-081915-0930	SB02	e 16-18	S	8-19-15	0930	Cool	100	X	X	+		+		L784324-01
FARMW-081915-1500	SBO		3	8-19-15	1500	(60)	2	\times						02
FARMW-001915-1540	SBOS		S	8-14-15	1540	Cool	2	\times	X					9
FARMW-001915-1100	SBO		GW	8-19-15	1100	Cool	3	\times				14	- 600	óÝ
FARMW-081915-1230	SBO		GW	8-19-15	1230	Cool	3	\times		9				05
FARMW-081915-1330	SBO	6	GW	81915	1330	Cool	3	\times				jes		06
						, 4						烧		
Media : Filter = F Soil = S Wastew	inter = Wi	V Groundwat	or - CW D	winhing U	Harbon - D	W Shides - CC S	urface III ake	- (1)	Ale			DV 0		
Relinquished By: (Signature)	rater - WY	Groundwate	Date:		Time: 1330	Received By: (Sig		r = 3W	AIr=	A Dri	455000	4.5	Bottles	Sample Condition
Relinquished By: (Signature)			Date:		Time:	Received By: (Sig	inature)	-	,		Temp	eratur	e: 2.12	Other Information
Relinquished By: (Signature)			Date:		Time:	Received for Lab	by: (Signat	ure)			Date:	S Ti	me: 0900	
Comments			A TOP	, , ,										Tol

o 0174

^{*} Sample ID will be the office and sampler-date-military time FARJM-MMDDYY-1200

								Α	naly	sis		Lab Inf	ormation
//	Qu	ote Numbe	r		Page _1_ of _1_		\top	T	\top	Т	\top	A	137
		TO Contact:			Contact Phone								
		ne McDanie	Email Resu		505) 333-3701	- 1		- 1			Office Abbreviations Farmington = FAR Durango = DUR Bakken = BAK Raton = RAT Piceance = PC Roosevelt = RSV La Barge = LB Orangeville = OV Sample Number	hreviations	
ENERG			AAger@lten	v.com;			1	1			- 1		Office Abbreviations Farmington = FAR Durango = DUR Bakken = BAK Raton = RAT Piceance = PC Roosevelt = RSV La Barge = LB Orangeville = OV Sample Number
Western Division	ı .	Dł	Hencmann@	ltenv.com			- 1	١	- 1	- 1	- 1	Office Abbreviations Farmington = FAR Durango = DUR Bakken = BAK Raton = RAT Piceance = PC Roosevelt = RSV La Barge = LB Orangeville = OV Sample Number 7889 - 01	UR
Well Site/Location		API Number	,		Test Reason Release			١	- 1	١			
Sullivan GC D#1E	Sample	es on Ice	(Yes)		Turnaround			١	- 1	١	- 1	Office Abbreviations Farmington = FAR Durango = DUR Bakken = BAK Raton = RAT Piceance = PC Roosevelt = RSV La Barge = LB Orangeville = OV Sample Number	
Collected By Michael A Wicker			^{24-H}					- 1	١	- 1	Office Abbreviations Farmington = FAR Durango = DUR Bakken = BAK Raton = RAT Piceance = PC Roosevelt = RSV La Barge = LB Orangeville = OV Sample Number 78187 - 01		
Company LT Environmental, Inc.		/QC Reques	ted		xt Day o Day		윤		- 1	- 1		- 1	
		Standard		X Three Day				<u>ह</u>	- 1		뭥	Orangeville = OV	
gnature	Games And	eas for Lab	Use Only!	Std.5 Date Ne	Bus. Days(by	contract)	%	8	- 1		ᇫ		
Jung - C	Cirdy Are	TO LOS				No. of Conts.	TPH-GRO/DRO	BTEX (8021)	SAR	2	CHLORIDE		
Sample ID	Sample Name	Media	Date	Time	Preservative Cool	1	X	X	<u>.</u>		-	7848	n-01
FARMW-082115-1035	SB10@2'	S	8/21/2015	1035	Cool	1	X	X					
FARMW-082115-1100	SB11@4'	S	8/21/2015		Cool	1	X	X					03
FARMW-082115-1145	SB12@6'	S	8/21/2015	-	Cool	1	X	X					
FARMW-082115-1425	SB14@3'	S	8/21/2015	1001	Cool	1:30	X	X		1 1			Ch.
FARMW-082115-1624	SB15@17.5'	S	8/21/2015	1024	Coor		1						
									-				
		+			j.		\perp	_	1	_	+		
. %					1		4	-	+-	┼	1		
							\bot	+	+-	+	+		
		S 1					+	+	+-	+	+-		
							+	+	+	+		Water Street	
70 T. agra						2 1 1	lli-ti-	- (1	U Air	r = A	Drill I	Mud = DM Other	= OT
Media : Filter = F Soil = S Wa	stewater = WW Gro	undwater = (GW Drinking	Waster =	DW \$ludge = \$	G Surface	wate	H = 3V			Num		Sample Condition
Relinquished By: (Signatur	eV /	Date:	-24-15	Time: 1345	Received by	(Signate					13.85	9	
Relinquished By: (Signatur	re) (Date:		Time:	Received By						-5103		Other Informatio
Relinquished By: (Signatur	re)	Date:		Time:	Received for	Lab by:	(Signo	ature)		Dot 8/3	25/15 09UX	
Comments	Grant Francisco				-0							2.	TOI

Released to Imaging: 6/25/2021 10:25:52 AM

^{*} Sample ID will be the office and sampler-date-military time-sampler initials FARJM-MMDDYY-1200

ENCLOSURE C – UPDATED C-141 AND APPROVED WORK PLAN

Received by OCD: 4/19/2021 11:30:30 AM

District I
1625 N. French Dr., Hobbs, NM 88240

District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fa NM 97505

OIL CONS. DIV DIST. 3 Page 119 of 236

FEB 1 0 2016

Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Delege		c, IVIVI 675		-41				
Release	Notificatio			_	7			
N. CO. WEG. D. J.		OPERA'		2	Initi	al Report		Final Repor
Name of Company: XTO Energy, Inc.			nes McDaniel	7701	_			
Address: 382 Road 3100, Aztec, New Mexico 87	410		No.: (505) 333-3					
Facility Name: Sullivan Gas COM D #1E		Facility Typ	e: Gas Well (Da	akota)				
Surface Owner: Fee	Mineral Owner				API No	. 30-045-2	4083	
	LOCATIO	N OF RE	LEASE					
Unit Letter Section Township Range Feet F 26 29 N 11W 147	The same of the sa	/South Line FNL	Feet from the 1500	East/We		County San Juan		
L	atitude: 36.7001	the state of the s						
	NATURE	OF REL						
Type of Release: Produced Oil			Release: 4 bbls			Recovered:		
Source of Release: Leaking union on oil flow line		Date and I June 1, 20	Iour of Occurrence 15		Date and 2015	Hour of Dis	covery	: June 1,
Was Immediate Notice Given? ☐ Yes ☐ No	Not Required ■	If YES, To						
By Whom?		Date and I	lour:					
Was a Watercourse Reached? ☐ Yes ☐ No			olume Impacting t	the Watero	course.			
If a Watercourse was Impacted, Describe Fully.* Groundwater Impacts discovered on 6/10/2015. Exten NMOCD on 1/7/2016; see attached email. Describe Cause of Problem and Remedial Action Take On June 1, 2015, a small release was discovered at the was estimated at 4 bbls due to the volume of the separa flow line beneath the ground. Additional spill assessm the NMOCD Guidelines for the Remediation of Leaks, activities also showed that the leak had impacted groungroundwater impacts. Describe Area Affected and Cleanup Action Taken.* XTO proposes to remediate the location pursuant to the I hereby certify that the information given above is true regulations all operators are required to report and/or function public health or the environment. The acceptance of a should their operations have failed to adequately investor the environment. In addition, NMOCD acceptance federal, state, or local laws and or regulations.	en. surface when the ator. Upon investinent activities show, Spills and Releas andwater. Immediate attached remediate and complete to all certain release (C-141 report by the tigate and remediate a	separator was gation, the releved impacted ses due to a depte notification ation plan, appthe best of mynotifications and NMOCD mete contamination at the co	manually dumped the soil beneath the flooth to groundwate was given to the moved on 1/7/2010 knowledge and und perform correct arked as "Final Right from that pose a thr	d by the lend to common line. The of less the NMOCD by the Nunderstand trive action departs and the common line of the less than	ase opera e from a The site v nan 50 fe on June MOCD; that pure as for releas not rel and wate	tor. The voleaking uniquested at Addition 11, 2015, up see attached suant to NM eases which ieve the oper, surface was	lume of on in the ked a 2 mal asset on the lemail. OCD remay errator of other, human in the lemail.	of the release the fiberglass to pursuant to the essment discovery of the release the fiberglass to pursuant to the release the fiberglass th
Signature: Printed Name: James McDaniel	_	Approved by	OIL CON		//	DIVISIO	N.	5
Title: EHS Supervisor		Approval Da	te: 2/25/1	6 Ex	piration	Date:		
E-mail Address: james_medaniel@xtoenergy.com		Conditions o	f Approval:			Attached		

* Attach Additional Sheets If Necessary

#1005 151895 2648 Assigned to 3R-1035

McDaniel, James

From: Smith, Cory, EMNRD <Cory.Smith@state.nm.us>

Sent: Thursday, January 07, 2016 9:37 AM

To: McDaniel, James

Cc: Nee, Martin; Hixon, Logan; 'Ashley Ager (aager@ltenv.com)'; Powell, Brandon, EMNRD;

Fields, Vanessa, EMNRD

Subject: RE: Sullivan GC D #1E

Categories: External Sender

James,

As per our phone conversation, Santa Fe has no issues with the proposed Work Plan for the Sullivan Gas Com D #1 E. XTO may move forward with the approved work plan.

If you have any questions please give me a call.

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: McDaniel, James [mailto:James McDaniel@xtoenergy.com]

Sent: Thursday, December 31, 2015 7:45 AM

To: Smith, Cory, EMNRD; Powell, Brandon, EMNRD

Cc: Nee, Martin; Hixon, Logan; 'Ashley Ager (aager@ltenv.com)'

Subject: Sullivan GC D #1E

Any word on the approval of our workplan for this location?

James McDaniel EH&S Supervisor CHMM #15676

CSP #30009

XTO Energy Inc.

382 Road 3100

Aztec, New Mexico 87410

Phone: 505.333.3701 | Mobile: 505.787.0519

james mcdaniel@xtoenergy.com

An ExxonMobil Subsidiary

LT Environmental, Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

November 30, 2015

Mr. Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

RE: Updated Remediation Work Plan XTO Energy, Inc. Sullivan GC D #1E, API # 30-045-24083 San Juan County, New Mexico

Dear Mr. Powell:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), presents the following updated remediation work plan to continue addressing soil and groundwater impact at the Sullivan GC D #1E natural gas production well (Site). The Site is located south of Sullivan Road in Bloomfield, New Mexico approximately one quarter mile southeast of the San Juan River in Unit F of Section 26 of Township 29 North and Range 11 West (Figure 1). In June 2015, XTO identified a historical condensate release originating at a union on a fiberglass pipeline between the separator and aboveground storage tank. Following the results of the initial hand auger and pothole investigation, LTE conducted a soil and groundwater investigation utilizing a Geoprobe® direct-push drilling rig. The results of the initial investigations were reported in the letter report Subsurface Investigation Results and Remediation Work Plan submitted to the New Mexico Oil Conservation Division (NMOCD) on September 11, 2015. In that report, LTE proposed additional delineation, investigation of product recovery, and active in situ remediation at the Site. This report documents groundwater investigation and product recovery conducted since the letter report was submitted, presents the results of a limited soil vapor extraction (SVE) pilot test, and updates the remediation plan proposed for the Site based on these results.

ADDITIONAL DELINEATION

As documented in the September 11, 2015 letter report, XTO and LTE conducted several investigations consisting of soil and groundwater sampling from potholes, hand auger and Geoprobe® boreholes, a product recovery well (PR-1), and three monitoring wells installed via hollow stem auger drill rig (MW01, MW02, MW03, and MW04). The locations of the sampling points are depicted on Figure 2. On October 8, 2015, LTE replaced the original PR-1 with a 4-inch diameter product recovery well and installed monitoring wells MW05 and MW06 in the locations identified on Figure 2.

The wells were installed using a CME-75 drilling rig equipped with hollow stem augers. Product recovery well PR-1 was advanced to approximately 29.5 feet below ground surface (bgs), at which depth, field screening and visual observations indicated the depth of impact could be defined (approximately 26.5 bgs). The monitoring well was constructed with 4-inch diameter schedule 40

polyvinyl chloride (PVC). Blank casing was installed in the bottom three feet of the well and 15 feet of 0.02-inch machine slotted flush-threaded PVC well screen were set from 26.5 feet to 11.5 feet bgs. Monitoring wells MW05 and MW06 were constructed with 2-inch diameter schedule 40 PVC and included 10 feet of 0.01 inch PVC well screen. A clean 10-20 grade silica sand gravel pack was placed from the bottom of the soil borings to two feet above the top of the screen. Two feet of three-eighths inch bentonite chips were set above the gravel pack, followed by a neat cement slurry to the surface, containing a minimum of 5 percent powdered bentonite. The wells were set in a locking flush-mount casing. Borehole logs and well construction diagrams for PR-1, MW05, and MW06 are included in Attachment 1.

The new wells were developed utilizing a new PVC bailer. LTE purged fluid until at least 10 casing volumes had been removed from each well and turbidity was reduced to the greatest possible extent. All purged water was disposed of at a produced water tank on site. New and existing groundwater monitoring wells were professionally surveyed for top-of casing elevations to an accuracy of plus or minus 0.01 feet so that groundwater flow direction and gradient could be determined.

The groundwater elevations and product thickness were periodically gauged in the groundwater monitoring wells and results are provided in Table 1. The most recent groundwater elevations and product thickness results were obtained on November 18, 2015 and depicted on Figure 3. Groundwater flow direction is north-northwest. Free-phase product is present in PR-1, MW01, MW02, MW05, and MW06. Product is thickest at MW05, which contains 0.8 feet of product.

Groundwater samples were collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) from monitoring wells where product was not observed (MW03 and MW04). Results from the most recent samples collected on September 14, 2015 indicated all BTEX constituents exceeded New Mexico Water Quality Control Commission (NMWQCC) standards in the groundwater sample collected from MW03 and benzene exceeded NMWQCC standards in the groundwater sample collected from MW04. Groundwater analytical results are summarized in Table 2 and results from September 14, 2015 are provided on Figure 3.

PRODUCT RECOVERY

XTO and LTE have conducted active and passive product recovery at the Site. Product was removed with disposable bailers and a vacuum truck and by utilizing oil-absorbent socks in monitoring wells between site visits. The total volume of fluids (groundwater plus product) recovered from the Site is approximately 1,213 gallons to date.

LTE performed a dual phase extraction (DPE) test with a mobile vacuum truck on October 19, 2015. A stinger was lowered into the monitoring wells PR-1, MW01, MW02, MW05, and MW06 to extract air and fluid. The fluid elevations were measured before and after each event. Test results indicated a relatively stable extraction rate of 8.5 gallons per minute, a drawdown of approximately 4.5 feet was achieved in the 4-inch diameter extraction well PR-1. Fluid recovery from the 2-inch monitoring wells was less, averaging 2.3 gallons per minute.

A combination fluid extraction and vapor extraction test (dual phase extraction) was accomplished on November 4, 2015. During the test, the top of the extraction well PR-1 was sealed and an applied vacuum of 15 inches of mercury was measured at the well. The fluid recovery rate was slowly increased during the test as drop pipe was lowered within the well. The short duration test primarily provided an estimated flow rate of 10.5 gallons per minute. During the pilot test, approximately 15 barrels of impacted groundwater were removed with an estimated 13 gallons of free product recovered.

LIMITED SVE PILOT TEST

Based on the subsurface site lithology and potential hydrocarbon impact footprint, *in-situ* remediation of the soil and groundwater was recommended in the September 11, 2015 letter report. In order to test the efficacy of a SVE system as a potential means of remediation at the Site, LTE conducted a pilot test on November 4, 2015. Using a mobile vacuum truck to apply vacuum to the product recovery well PR-1, several different flow rates were tested to evaluate the effective area of influence at the different flow rates. The influence was evaluated by monitoring the vacuum observed in monitoring wells MW01, MW02, MW05 and MW06. An effective area of influence of 40 feet using 30 inches of water column (IWC) on PR-1 was achieved during the pilot test at a flow rate of 12 cubic feet per minute. The observed vacuum was higher in monitoring wells located closer to the upgradient hillside and this is likely caused by less permeable soil in the unsaturated zone closer to the hillside. Petroleum vapor concentrations were monitored in the extraction piping during the test and elevated concentrations were observed indicating SVE was effectively removing petroleum impact.

UPDATED REMEDIATION WORK PLAN

Delineation

Soil and groundwater sampling observations and laboratory analytical results suggest soil is impacted near the source and a groundwater plume extends downgradient from the source to the northwest at MW04. Since additional monitoring wells did not fully define the areas affected by free product or the groundwater plume extent, LTE proposes installing five monitoring wells in locations depicted on Figure 3. LTE may step out from the proposed locations and advance additional boreholes should field screening, visual, and olfactory observations indicate groundwater is impacted. The installation of additional monitoring wells will define the extent of the impacted groundwater footprint and ensure that impacts are not migrating off location.

Soil Sampling

LTE will provide a geologist trained in conducting groundwater investigations to oversee drilling activities at the Site and collect soil samples from the borehole with a split spoon hammer sampler. Samples from immediately beneath the ground surface and then every five feet thereafter will be field screened for volatile aromatic hydrocarbons. Samples with the highest field screening result will be shipped on ice via overnight courier under strict chain-of-custody protocol to Environmental Science Corporation (ESC) to be analyzed for BTEX and total petroleum

hydrocarbon (TPH) – gasoline range organics (GRO) and diesel range organics (DRO) according to USEPA Method 8021B and 8015M, respectively. Samples that field screen less than 100 parts per million (ppm) using a photoionization detector for hydrocarbons will not be analyzed.

Groundwater Monitoring Well Installation and Sampling

LTE will convert the soil borings to monitoring wells. Monitoring wells will be constructed of schedule 40 polyvinyl chloride (PVC) and will include 0.01-inch machine slotted flush-threaded PVC well screen. The groundwater monitoring wells will be 2-inches in diameter. LTE will set at least 5 feet of screen beneath the groundwater elevation and approximately 5 feet above the groundwater elevation to allow for seasonal fluctuations and a proper seal for the 2-inch diameter wells. A clean 10-20 grade silica sand gravel pack will be placed from the bottom of the borings to two feet above the top of the screen. A total of 2 feet of 3/8-inch bentonite chips will be set above the gravel pack, followed by a neat cement slurry, containing a minimum of 5 percent (%) powdered bentonite to the surface. LTE will install a concrete surface completion and a steel well protector with locking cap around the PVC stick-up. For any monitoring wells within or near vehicle right-of-ways, surface completions will include a flush-mounted locking vault. All monitoring wells will be surveyed after construction using a Trimble GeoXT Global Positioning System (GPS) and surveyor's level. The top-of-casing elevation will be measured to an accuracy of no less than plus or minus 0.01 feet.

After installation, the newly constructed monitoring wells will be developed by removing a minimum of 10 saturated well casing volumes of water while monitoring pH, specific conductivity, and temperature. LTE will then allow the monitoring wells to recharge a minimum of 24 hours prior to sampling. Groundwater samples will be analyzed for BTEX according to USEPA Method 8021B.

Soil Vapor Extraction

Because free product has been observed in five monitoring points (PR-1, MW01, MW02, MW05, and MW06), LTE recommends implementation of SVE operations immediately followed by a remedy to address impacted groundwater based on SVE results. The impact has resulted from a release of natural gas condensate which is comprised mostly of light, readily volatilized petroleum hydrocarbon compounds. SVE will promote volatilization of the hydrocarbon impact distributed within the vadose zone and any remaining liquid free product that has accumulated on top of the groundwater. The SVE system will be designed to optimize extraction in areas where the impact has been observed in the unsaturated soil intervals.

The SVE is estimated to provide an influence of approximately 40 feet from the well, and based on this estimate, four existing monitoring well locations (MW01, MW02, MW05, and MW06) will be utilized as SVE wells along with a new SVE well near PR-1 (Figure 4). LTE will install a 2-inch diameter SVE well near PR-1. The well will include 0.02-inch screen from approximately 3 feet bgs to 26.5 feet bgs to include the entire impacted soil column for effective vapor extraction.

An extraction blower capable of operating at approximately 100 cubic feet per minute (cfm) and an applied vacuum of 30 IWC will be installed. Operations and maintenance (O&M) of the system will be conducted weekly for the first 2 months, then be reduced based on system performance. O&M will consist of adjusting the SVE air flow distribution and field screening recovered hydrocarbon vapors. The design will be further evaluated based on results from additional monitoring wells, and if the extent of free product is greater than current estimates, an additional SVE well will be included.

Air samples of recovered vapors will be collected and analyzed for total volatile petroleum hydrocarbons (TVPH) and BTEX by modified United States Environmental Protection Agency (EPA) Method TO-15M to calculate the hydrocarbon recovery rate during system operation. The recovery rate will be compared to NMAQB air emissions regulations.

Groundwater Monitoring/Product Gauging and Recovery

Depth to groundwater and product thickness in all monitoring wells will be gauged monthly. At the same time, any wells containing free product will be manually bailed for product removal. Groundwater will be sampled from all wells that do not contain free product twice during an initial 6-month SVE operation to be analyzed for BTEX. Six months after installing the SVE system, or once product thickness and BTEX concentrations have been reduced significantly by the SVE system, XTO will reassess the remediation scope and propose future remediation designs, such as air sparging or enhanced fluid recovery, with the ultimate goal of observing eight consecutive quarters with analytical results in compliance with NMWQCC standards. If product thickness does not decrease or the groundwater impact plume exhibits signs of migration, additional investigation and installation of more active product recovery will occur.

Reporting

Groundwater monitoring results will be submitted in monthly reports to the NMOCD Aztec field office. Data will be presented on relevant figures including potentiometric surface maps, and tabular groundwater elevations and analytical results. More complete details including product recovery volumes, SVE data (applied pressure, flow, and vacuum with air emission estimates), groundwater elevations, and analytical results will be provided in annual reports to the NMOCD Santa Fe office. The initial annual report will include soil borings and monitoring well completion logs and a cross section depicting the subsurface observations.

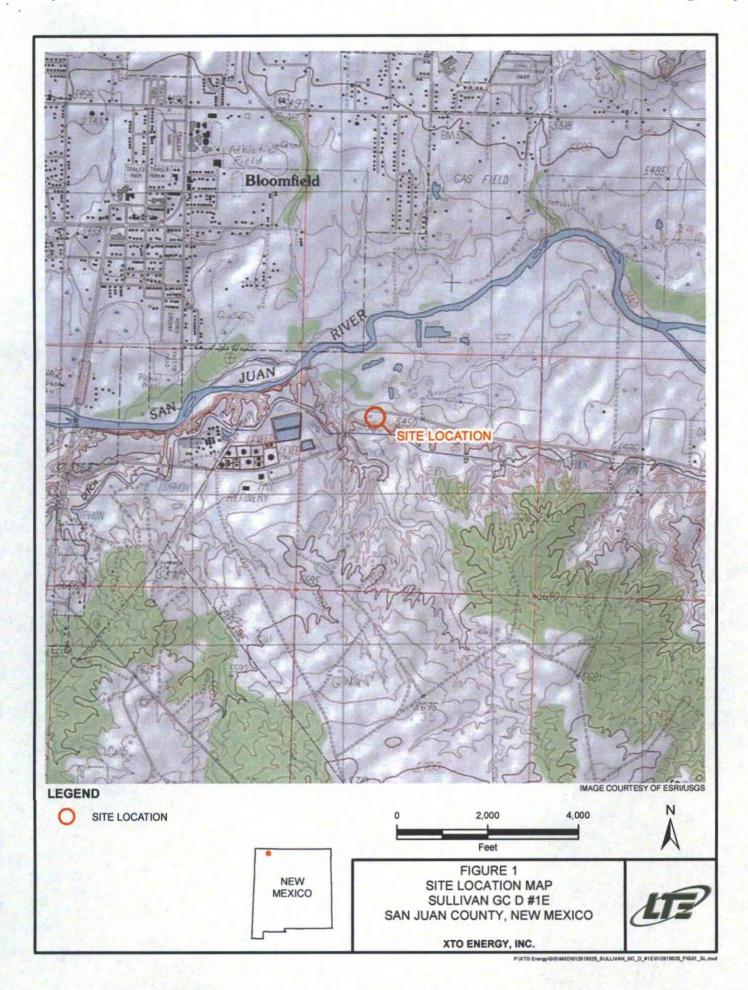
XTO has requested land use access to install the off-site monitoring wells from the private property owner, Western Refining Southwest, Inc. Once the landowner grants access, XTO will initiate the delineation as described in this work plan. Implementation of the SVE system will begin once an electrical drop is installed at the Site. XTO is currently working with the City of Bloomfield to determine cost and schedule the installation.

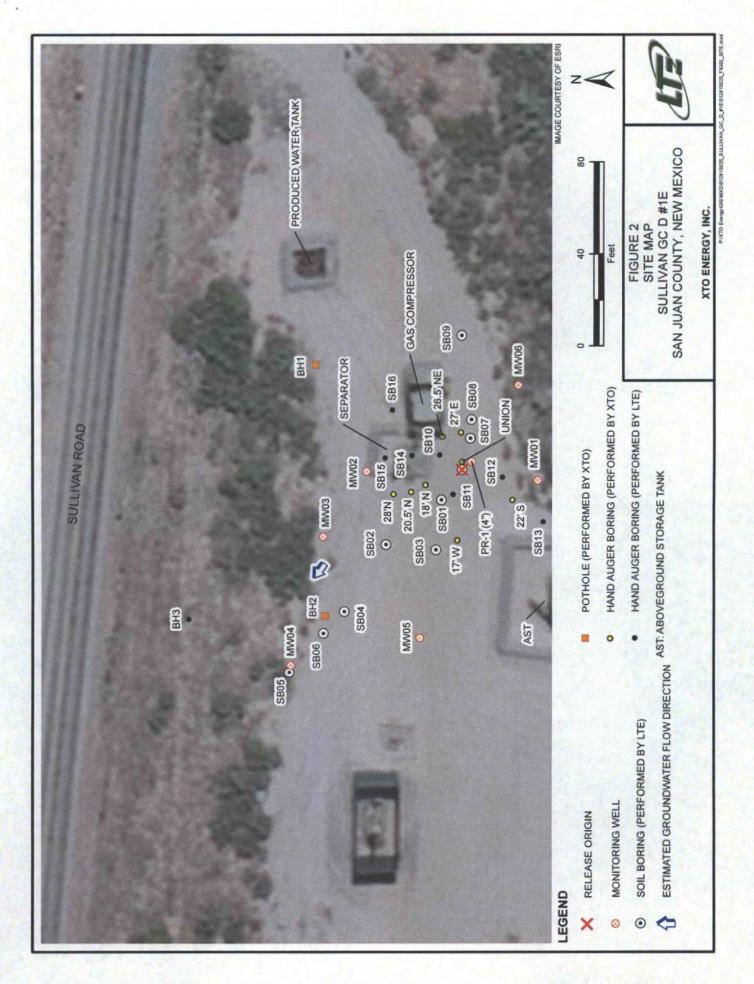
LTE appreciates the opportunity to provide this remediation work plan to the NMOCD. If you have any questions or comments regarding this work plan, do not hesitate to contact me at (970)

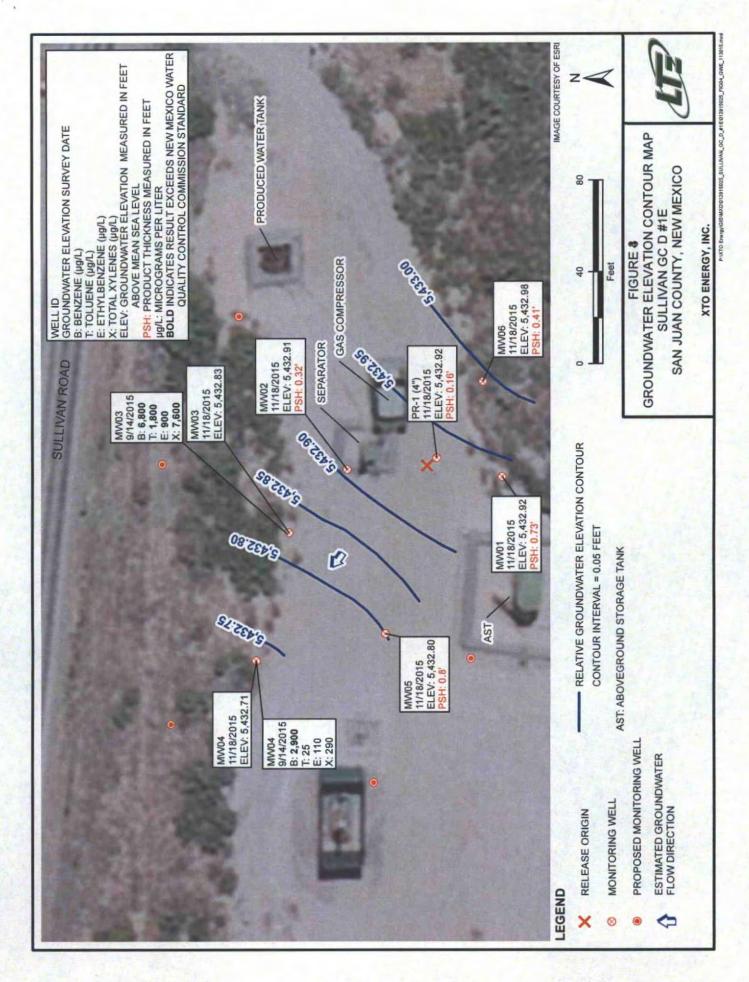
385-1096 or via email at <u>aager@ltenv.com</u> or James McDaniel at (505) 787-0519 or at <u>james mcdaniel@xtoenergy.com</u>.

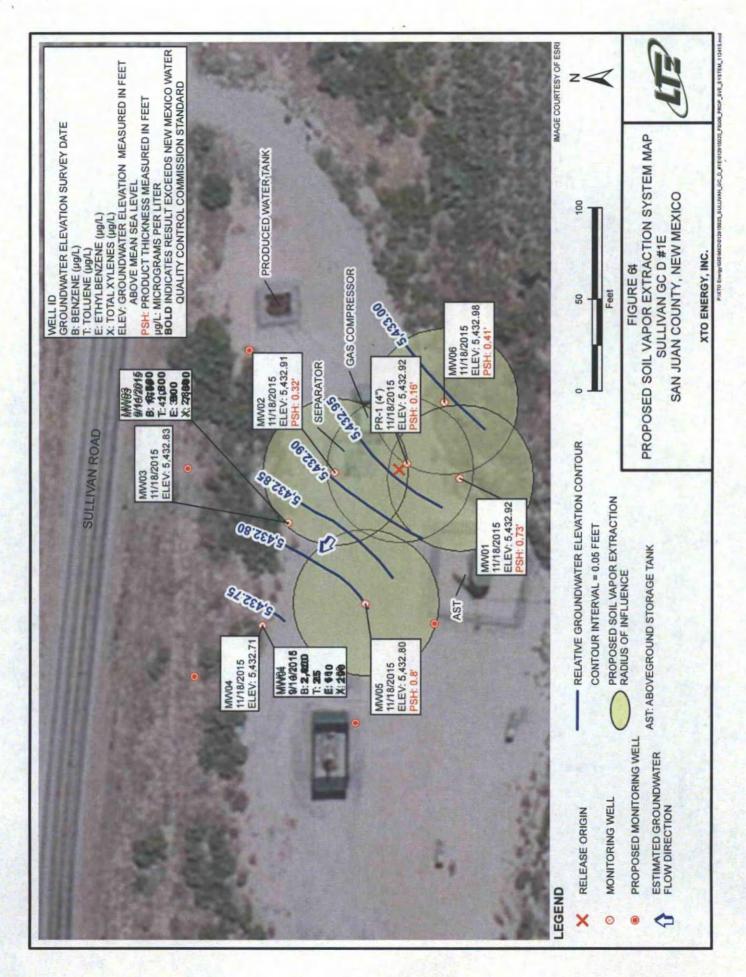
Sincerely,

LT ENVIRONMENTAL, INC.


Ashley L. Ager, M.S. Senior Geologist


ashley L. ager


Attachments


Cc: James McDaniel, XTO Martin Nee, XTO **FIGURES**

TABLES

TABLE 1

GROUNDWATER ELEVATIONS SULLIVAN GAS COM D#1E XTO ENERGY, INC.

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
	9/10/2015	-	21.55	21.82	0.27	3.24	5,430.63
	9/19/2015		-	-	-	0.21	-
	9/25/2015		-	- 1	-	0.19	5 m - 110
PR-1	9/28/2015	5,452.23	20.95	21.51 .	0.56	6.72	5,431.17
	11/4/2015		19.09	19.58	0.49	5.88	5,433.04
	11/11/2015		19.23	19.39	0.16	1.92	5,432.97
	11/18/2015		19.28	19.44	0.16	1.92	5,432.92
	9/10/2015		21,55	21.82	0.27	3.24	5,432.55
	9/19/2015		-	-	-	0.21	-
	9/25/2015		_	-	-	0.19	-
MW01	9/28/2015	5,454.15	20.95	21.51	0.56	6.72	5,433.09
21911,2011	11/4/2015		20.98	21.60	0.62	7.44	5,433.05
	11/11/2015		21.05	21.74	0.69	8.28	5,432.96
	11/18/2015		21.08	21.81	0.73	8.76	5,432.92
	9/10/2015		NP	18.85	NP	NP	5,433.10
	9/19/2015		_		-	0.05	-
	9/25/2015		-	-	-	0.15	- 4
MW02	9/28/2015	5,451.95	18.85	19.04	0.19	2.28	5,433.06
	11/4/2015	_	18.88	19.21	0.33	3.96	5,433.00
	11/11/2015		18.97	19.31	0.34	4.08	5,432.91
	11/18/2015		18.98	19.30	0.32	3.84	5,432.91
	9/10/2015		NP	19.45	NP	NP	5,433.05
	9/28/2015		NP	19.49	NP	NP	5,433.01
MW03	11/4/2015	5,452.50	19.54	19.56	0.02	0.24	5,432.96
	11/11/2015		NP	19.65	NP	NP	5,432.85
	11/18/2015		NP	19.67	NP	NP	5,432.83
	9/10/2015		NP	18.94	NP	NP	5,432.98
	9/28/2015		NP	19.98	NP	NP	5,431.94
MW04	11/4/2015	5,451.92	NP	19.08	NP	NP	5,432.84
	11/11/2015		NP	19.2	NP	NP	5,432.72
	11/18/2015		NP	19.21	NP	NP	5,432.71
	11/4/2015		18.82	19.51	0.69	8.28	5,432.93
MW05	11/11/2015	5,451.89	18.90	19.69	0.79	9.48	5,432.83
	11/18/2015		18.93	19.73	0.80	9.60	5,432.80
	11/4/2015		21.81	22.12	0.31	3.72	5,433.08
MW06	11/11/2015	5,454.95	21.88	22.30	0.42	5.04	5,432.99
	11/11/2015	2,121,12	21.89	22.30	0.41	4.92	5,432.98

A product density factor of 0.7996 is used to account for the presence of free product in wells in which free product was observed

* - surveyed using North American Vertical Datum 1988 geoid 12B in U.S. survey feet

BTOC - Below Top of Casing

NP - No Product

TABLE 2

GROUNDWATER ANALYTICAL RESULTS SULLIVAN GAS COM D #1E XTO ENERGY, INC.

Total Xylenes (µg/l)	7,400	<10	11,300	22.5	18,100	11,400	2,890	7,600	180	290	620
Ethylbenzene (µg/l)	620	<5.0	1,100	1.93	1,950	1,770	390	006	09	110	750
Toluene (µg/l)	3,000	<5.0	17,100	6.85	40,000	24,200	420	1,800	30	25	750
Benzene (µg/l)	092	<5.0	4,430	2.60	4,400	6,500	2,050	008'9	3,480	2,900	10
Date Sampled	6/16/2015	6/16/2015	8/19/2015	8/19/2015	8/19/2015	9/10/2015	9/10/2015	9/14/2015	9/10/2015	9/14/2015	andard
Sample ID	BH-2	BH-3	SB03	SB05	SB06	MW02	MWO	MWO	MANOA	M W 04	NMWQCC Standard

Notes:

indicates result is less than the stated laboratory method detection limit
 NMWQCC - New Mexico Water Quality Control Commission
 µg/l - micrograms per liter

ATTACHMENTS

1		7	ompliar T Envir	ronme	ingineer ental, in enue, S	ing Rei	mediati	lon	Boring/Well Number: MW - S Project:	Date: 10/8/15 Project Number:
C		Ď	urango	, Cole	orado 8	1301			Sullivan 60 DAI	9
		G/MON	ITORIN	G WE	LL COM	PLETIC			K	Drilled By: KYVLK
Lat/Lon			Elevation	t	Mini	Ree		gw	Sampling Method: S011+S0800	Hole Dialneter Total Depth: 4,25
Casing	BVC		Casing D	iamoter:	Casing La	ngth: OF4	Slot Size	01	Slot Length: /	Depth to Water:
	Pack: 70 SI		Seal:			chips	Commen	ts:		
Penetration Resistance	Moisture	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample	성		Lithology/Rem	arks
		ŕ			也0.			Cott	ings not Worder	
	201	0.0	No		74			in	ings not biorded +11 visual impact observed	
	Dey		100		6-		17	-	opserved	
	To.				8-					1/ 89/
	Day	0.0	NO		10-					41 1
					12-					- 15 Ft
			8		14-					-
	must	0.0	grs		16			2.54	2.5/1	- 7 19Ft
	me +	2802	Sues		18-			Stan	2.5/1 ing, oder, Black Sand Coarse in in fine 6030	1 · = ·
			0		70		SM	medie	m + fine 60%	: -
					22			SIH !	1984	
	met	2315	No		24-			7.50	lola Light bruns	1-30ft
					28		SM	gray	Course, No odor	JUTT
	wet	0.0	po		30					
					+			TO	50++	Sand:
					Ŧ					3.5 bags
					1					Solb Colord
					+					bout:
					‡					1909
					#					Soib Hole
					#					2012 106

Released to Imaging: 6/25/2021 10:25:52 AM

		2243 M	ain Av	ingineer antal, in enue, S orado 8	uite 3			MW-6 Project: Sullivan be 1#	Project Number:
BORING	LOG/MOI	VITORI	NG WE	LL COM	PLETIC	N DIA	GRAM	Logged By: AC	Drilled By: KYVEK
Lat/Long:		Elevation	OH:	Min c	200	Drilling Avg	Method:	Sampling Method: (Plit, SPEDY)	Hole Diameter Total Depth:
Casing Type	PVC	Casing 2	Diameter:	Casing Lo	ngth:	Slot Size		Slot Length:	Depth to Water:
Gravel Pack:	Silica	Seal:		Count	Chur	Commar	_		
Resistance Moisture		Vapor (ppm) Staining	Sample #	1	Sample	×		Lithology/R	emarks
D	24 24 24 250 24 230.2 24 29.1	No so sys		20 2 4 6 8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		SM.	259 5 Strong 51145 7570 2.549 5. 1145 2.54	things not Jecord 1 observed Sit 2890 In charle graup Ind, SHA bla light brown Coarse, medium to grain 6590 3550	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.

1	Í	2	243 M	lain Av	ngineeri ental, In enue, S	uite 3	mediati	ion	Boring/Well Number: PR-) Project: SvihVan 61	and the second	Project Number:	5
_					orado 8				Logged By:	0#/6	Drilled By:	
BORI Lat/Lon		G/MON	ITORI Elevation		LL COM	AND PROPERTY.	Drilling		Sampling Method:	12 =	LUVELL Diameter Total D	enth:
Casing '		/ .		Diameter.	Detegtor:	_	AVA)	m	Solit Som		Holl Diameter Total D	3
	1	1		y "	Casing Le	5	1.0		Siot Length:		Depth to Water:	
0 70	Sili	19	Seal:		3/4" (hips	Commen	its:	Me -			2
Penetration . Resistance	Moisture	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Run	Soil/Rock		Litho	ology/Remar	ks	
	DE SE LES LES LES LES LES LES LES LES LES	199.0	NO	SE 30 1100	150 2 14 6 8 10 12 14 16 13 20 22 24 26 80		SM	* Total Our TO Sand	k reading to was to 25th Dough 19.5 Pt	Sand Sand Sand Sand Sand Sand	859	- Same 11 Same 20 3.29

ENCLOSURE D - XTO CONTINUED REMEDIATION PLAN

August, 2017

Mr. Randy Bayliss New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. New Mexico 87505

RE: August 2017 – Continued Remediation Plan XTO Energy, Inc. Sullivan GC D #1E, API # 30-045-24083 San Juan County, New Mexico 3RP – 1035

Dear Mr. Bayliss:

XTO Energy Inc. (XTO) is submitting the following *Continued Remediation Plan* for the Sullivan Gas COM D #1E groundwater site, 3RP-1035, in response to a letter received on June 15, 2017 requesting a work plan for continued remediation at this location; see *June 15, 2017 Letter*.

BACKGROUND

The Sullivan Gas COM D #1E is located in Unit F of Section 26, Township 29N, Range 11W, San Juan County, New Mexico, API 30-045-24083; see attached Aerial Photograph. A release was identified at the Site on June 8, 2015. The source was a failed union in a fiberglass flow line connecting the separator and aboveground storage tank. The site was ranked a 30 pursuant to the NMOCD Guidelines for the Remediation of Leaks, Spills and Releases due to a depth to groundwater of less than 50 feet, and surface water features existing less than 1,000 feet from the Site. XTO responded by collecting subsurface soil samples from potholes and with a hand auger in locations depicted on the attached Figure 2 Diagram, created by LT Environmental. The observed subsurface lithology consisted of a silty to clayey sand that is 13 feet to 17 feet thick underlain by saturated gravel occurring at 13 feet to 17.5 feet bgs. The laboratory analytical results indicated soil is impacted at the source from approximately 4 feet bgs to the saturated sediments at approximately 18.5 feet bgs. Concentrations of benzene from samples collected under the source ranged from 10 mg/kg at 8 feet bgs to 53 mg/kg at 19 feet bgs. TPH was detected in the soil samples as high as 16,300 mg/kg at 19 feet bgs.

Based on the presence of saturated sediments, XTO attempted to collect groundwater samples from BH-1, BH-2, and BH-3. The sidewalls of BH-1 collapsed and no groundwater was sampled at that location. A sample was collected from BH-2 and BH-3 for BTEX analysis. The concentrations of benzene, toluene, and total xylenes in the sample collected from BH-2 exceeded New Mexico Water Quality Control Commission (NMWQCC) standards. The sample collected from BH-3 contained no detectable concentrations of benzene, toluene, and ethylbenzene. Although total xylenes were detected, the concentration did not exceed NMWQCC standards.

REMEDIATION WORK TO DATE

On August 19, 2015, additional delineation was performed by LT Environmental using a Geoprobe push rig. A report detailing the delineation findings is attached; see attached *Subsurface Investigation Results*, dated September 1, 2015.

Monitoring wells MW-1, 2, 3, 4, 5 and 6 were installed, as well as a product recovery well, PR-1 in September of 2015. The locations of these wells can be referenced on the attached *Figure 2 Diagram*, created by LT Environmental. Monitoring wells MW-1, 2, 5 and 6, as well as product recovery well PR-1, were modified to act as soil vapor extraction (SVE) wells beginning in April of 2016. The system has been monitored weekly since its installation, and has removed a total of 12.91 bbls of liquid product from the groundwater table through a liquid knockout attached to the SVE system piping. An estimated additional 275 bbls of hydrocarbons have been removed through the SVE system exhaust based on calculations of the total volatile petroleum hydrocarbons released through the system exhaust since it began operation in April of 2016.

Since the installation of the monitoring wells on location in September of 2015, product levels have shown a decreasing trend across all wells. Product recovery well PR-1 has shown a decrease in measured product level from a maximum of 32.28 inches in April of 2016, to current measurable levels of 1.68 inches, measured in June of 2017. Monitoring well MW-1 did not have any measurable product in June of 2017. This is a decrease from a maximum measurable product of 8.76 inches in November of 2015. Monitoring well MW-2 has shown a decrease from a maximum measured product level of 21.6 inches in April of 2016, to 0.6 inches in June of 2017. Monitoring well MW-3 and MW-4 showed no measurable product in June of 2017, a decrease in MW-3 from a maximum measured product thickness of 1.32 inches in April of 2016. Monitoring well MW-4 has never shown measurable product. Monitoring well MW-5 has shown a decrease in product levels to 5.05 inches, measured in June of 2017, a decrease from a maximum measured product thickness of 31.2 inches in April of 2016. Monitoring well MW-6 had a trace of product in June of 2017, but not enough to be measured. The total product thickness in this well has shown a decrease from the maximum measured product thickness of 17.64 inches in April of 2016. All product thickness values can be referenced on Table 1 -Groundwater Elevations, created by LT Environmental and attached to this report for reference.

Since installation of the monitoring wells on location, periodic groundwater monitoring has taken place. Groundwater levels have been measured, and water samples have been collected and analyzed for BTEX via USEPA Method 8021. Monitoring wells that have free product are not sampled during monitoring events. Monitoring wells MW-3 and MW-4 have had the most frequent samples collected since their installation, and have shown an overall decrease in BTEX concentrations since their first sample was collected in September of 2015. Monitoring well MW-3 has shown a decrease in benzene concentrations from 6,500 ug/l in September of 2015, to current levels of 334 ug/l, from samples collected in June of 2017. Levels of toluene, ethylbenzene and total xylenes have decreased during this time period as well. Monitoring well MW-4 has shown a sharp decline in benzene levels as well from initial levels of 3,480 ug/l measured in September of 2015. The most recent sampling event took place in June of 2017, and the water sample collected from MW-4 returned benzene results of 24 ug/l. During the same time period, toluene and ethyl-benzene levels have remained constant, but levels of total xylenes have shown an overall increase from levels of 180 ug/l in September of 2015, to levels of 2,350 ug/l in June

of 2017. Sampling results for all wells can be referenced on *Table 2 – Groundwater Analytical Results*, completed by LT Environmental and attached to this report.

CONTINUED REMEDIATION PLAN

Soil Vapor Extraction

PID readings collected from the SVE exhaust have shown continued removal of volatile organic vapors from the oil and groundwater over the operating period. Due to volatile organic vapor results of 1,711 ppm collected from the exhaust during the most recent SVE system check, XTO proposes the continued operation of the SVE system to continue removal of volatile hydrocarbons at this site.

Groundwater Monitoring

Additional monitoring wells will be installed at locations as previously approved by the NMOCD. Approved monitoring well locations are outlined on the attached Figure 6, created by LT Environmental. The additional monitoring wells will be installed and completed as temporary monitoring wells, and may be plugged based on results of BTEX sampling collected after the well's installation. Should a temporary well return groundwater results below WOCC standards for two (2) consecutive sampling events after initial installation. Assessment of the necessity of the well will take place at that time. Groundwater monitoring will be conducted semi-annually moving forward, and will include water level monitoring in all monitoring wells. the documentation of product thickness, if applicable, in all monitoring wells, and the sampling of monitoring wells that do not have measurable product. Samples will be analyzed for BTEX Sample collection will continue in monitoring wells which have via USEPA Method 8021. shown BTEX results in groundwater above WQCC standards until eight (8) consecutive quarters of sampling results indicate BTEX levels are below WQCC standards. The temporary monitoring wells will be installed off pad once approval is received from the landowner. Andeavor. XTO has been in discussion with Andeavor regarding the off-pad monitoring wells, and a revised lease agreement has been submitted to them and is pending approval.

Product Recovery

XTO proposes to continue product recovery utilizing the SVE system in place. The need to convert the newly installed temporary monitoring wells into SVE wells will be based on conditions observed once the temporary monitoring wells have been installed.

Reporting

Semi-annual groundwater monitoring will be submitted in annual reports to the NMOCD. Reports will additionally include product recovery volumes; SVE data including applied pressure, flow and vacuum with air emission estimates; groundwater elevations and analytical results.

James McDaniel XTO Energy Inc. EH&S Supervisor

Rockies District, Central Division

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Ken McQueen Cabinet Secretary

Matthias Sayer

David R. Catanach, Division Director Oil Conservation Division

Deputy Cabinet Secretary

15 June 2017

James McDaniel EH&S Supervisor XTO Energy 382 Road 3100 Aztec, NM 87410

Subject: Work Plans Needed for 2017

Re: 3RP Site Name

1035 Sullivan GC D#1E 106 Bruington GC #1

Mr. McDaniel:

I have reviewed the six 2016 Annual Groundwater Monitoring Reports you submitted on 05Apr17. OCD comments on the two AGWMRs referenced above follow. At this time, we have no comments on the other 3RPs.

RP-1035 SVE recovered 15,000 lbs of TPH and 800 lbs BTEX in about 60 days of operation in 2016.

NAPL thickness reduced in several wells. You've proposed four new monitoring wells but, even so, delineation of NAPL plumes have yet to be defined as follows. Recall the WQCC standard for NAPL is non-detect.

MW6 North, East, South (0.33 ft NAPL)
MW1 South, Southwest (0.19 ft NAPL)
MW2 East (0.66 ft NAPL)

Your 2016 AGWMR indicates the preliminary SVE system will continue to operate so long as NAPL is reduced and vapor is present. Your OCD-approved Work Plan covered the 2016 monitoring and recovery operations. On or before 14Aug17, please submit a Work Plan for 2017 monitoring and recovery operations. Please include details on further delineation (see above) and specifics of SVE operations (timing, duration, notifications to District III staff, monitoring, equipment used, and so forth). OCD appreciates your aggressive and successful remediation work in 2016 and encourages the same for the future. Please keep us informed on negotiations with Western for access for more MWs.

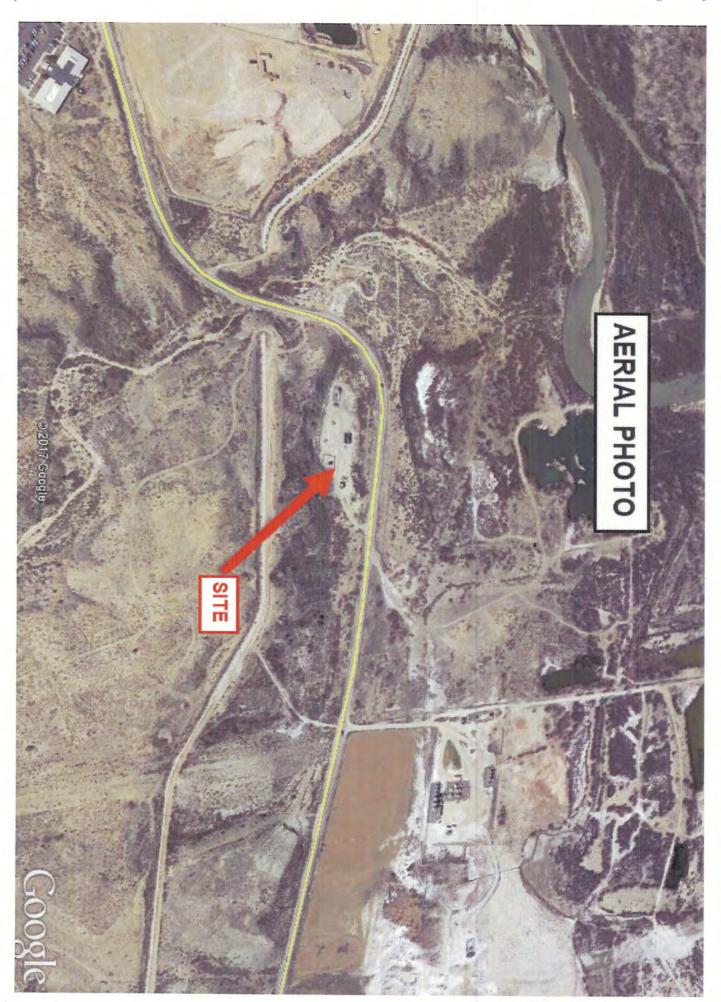
3RP-106 Test results indicate source material is still in contact with ground water. Delineation of groundwater plumes of BTEX has yet to be defined as follows. Recall the WQCC standard for benzene is 10 ppb.

MW6North(21,300 ppb benzene)MW7North, South(7,520 ppb benzene)MW8North, East, South(15,300 ppb benzene)MW2RSouth(14,000 ppb benzene)

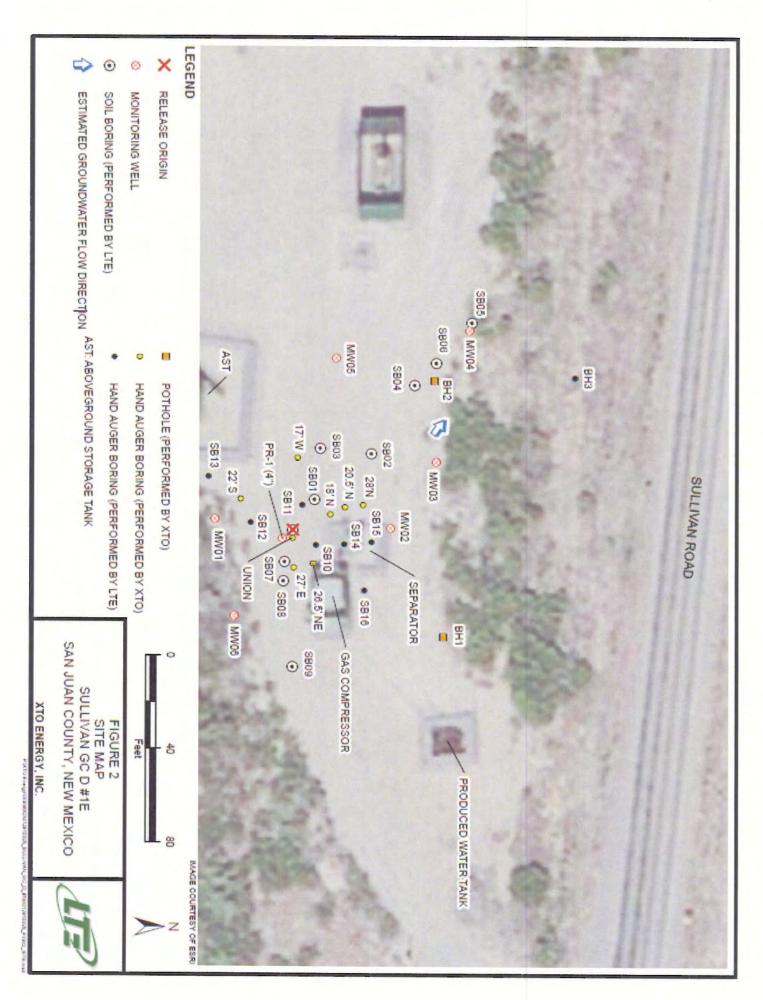
We note a history of a) proposed remediation schemes, b) attempts to involve EPFS in investigation and cleanup efforts and c) attempts to elicit responses from OCD on proposals and assistance. This monitoring project has been going on since 1996 and the levels of benzene in the groundwater have remained about the same. We appreciate your long-standing efforts to get resolution on this project. Let's get together and start some movement. Meanwhile, be thinking about more MWs to fill the gaps above and about remediation strategies to a) find and remove any remaining source material, and b) to get the BTEX out of the groundwater.

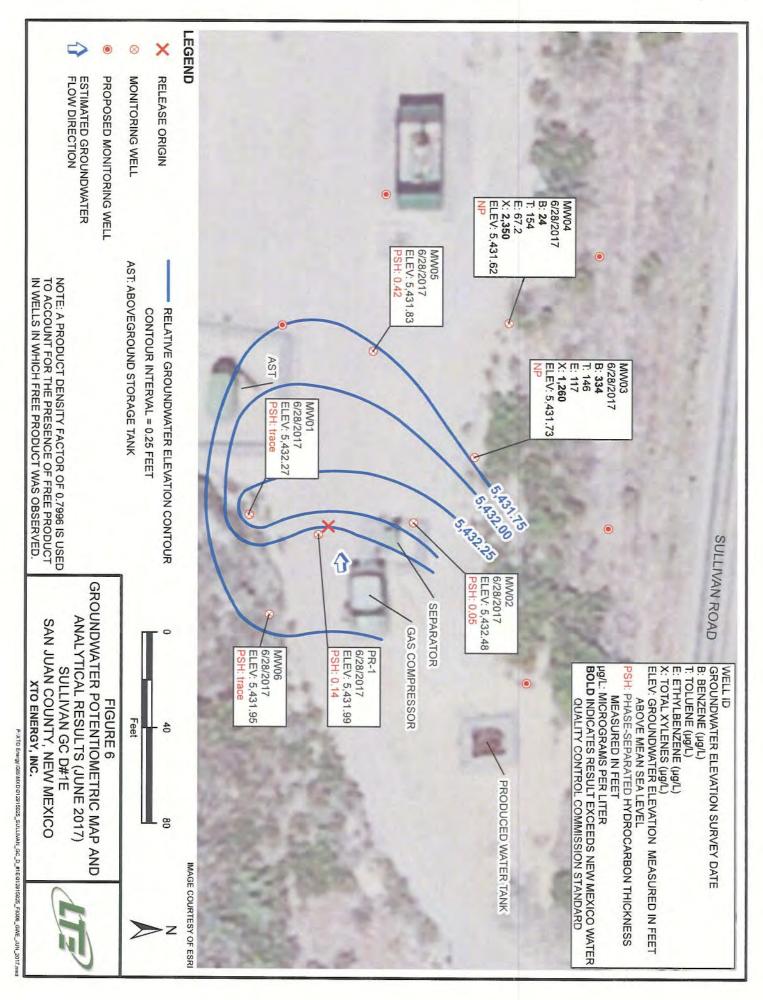
1220 South St. Francis Drive • Santa Fe, New Mexico 87505 Phone (505) 476-3441 • Fax (505) 476-3462 • www.emnrd.state.nm.us/ocd June 15, 2017 Page 2

Once we have the strategies worked out, OCD will want you to a) submit a remediation plan approved by us ("us" meaning jointly by the District III staff and by the Santa Fe Environmental Bureau) pursuant to 19.15.29.11 NMAC, or b) submit an abatement plan proposal to the OCD director for approval pursuant to 19.15.30 NMAC.


In the recent past, OCD in District III has used option a) above to handle groundwater contamination cases. In the future, OCD will handle new District III groundwater cases using option b). In the transition mode, existing cases may be handled using either option, depending on circumstances and the histories of cases.

After you have reviewed this letter, give me a call (505-476-3084) and we can discuss details. Or if you're in Aztec on my next trip (now scheduled 27-29Jun17), maybe we can talk face-to-face.


Respectfully,


P.E., Hydrologist, District III

cc: Jim Griswold, Charlie Perrin, Brandon Powell, Cory Smith, Vanessa Fields, Jeff Blagg

Released to Imaging: 6/25/2021 10:25:52 AM

TABLE 1 GROUNDWATER ELEVATIONS

SULLIVAN GAS COM D#1E SAN JUAN COUNTY, NEW MEXICO XTO ENERGY, INC.

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwate Elevation (feet)
	9/10/2015		21.55	21.82	0.27	3.24	5,430.63
	9/19/2015			-	-	0.21 **	
	9/25/2015	1		> -	4	0.19 **	L. L.
	9/28/2015		20.95	21.51	0.56	6.72	5,431.17
	11/4/2015		19.09	19.58	0.49	5.88	5,433.04
	11/11/2015		19.23	19.39	0.16	1.92	5,432.97
	11/18/2015		19.28	19.44	0,16	1.92	5,432.92
	2/19/2016		19.97	20.31	0.34	4.08	5,432.19
PR-1	4/29/2016	5 452 22	19.32	22.01	2.69	32.28	5,432.37
PK-1	6/20/2016	5,452.23	20.75	21.05	0.30	3.60	5,431.42
	7/14/2016		18.86	20.91	2.05	24.60	5,432.96
	7/18/2016		18.89	20.95	2.06	24.72	5,432.93
	7/22/2016		19.43	19.88	0.45	5.40	5,432.71
	9/30/2016		18.72	20.10	1.38	16.56	5,433.23
	10/10/2016		18.72	19.94	1.22	14.64	5,433.27
	12/15/2016		19.35	20.14	0.79	9.48	5,432.72
	3/30/2017		NP	19.90	NP	NP	5,432.33
	6/28/2017		20.21	20.35	0.14	1.68	5,431.99
	9/10/2015		21.55	21.82	0.27	3.24	5,432.55
	9/19/2015		3-1	24		0.21 **	- J-4
	9/25/2015			744		0.19 **	
	9/28/2015		20.95	21,51	0.56	6.72	5,433.09
	11/4/2015		20.98	21.60	0.62	7.44	5,433.05
	11/11/2015		21.05	21.74	0.69	8.28	5,432.96
	11/18/2015		21.08	21.81	0.73	8.76	5,432.92
	2/19/2016		21.65	21.84	0.19	2.28	5,432.46
MW01	4/29/2016	5,454.15	21.11	21.79	0.68	8.16	5,432.90
MWUI	6/20/2016	3,434.13	22.96	23.03	0.07	0.84	5,431.18
	7/14/2016		NP	20.71	NP	NP	5,433.44
	7/18/2016		20.80	20.91	0.11	1.32	5,433.33
	7/22/2016		21.18	21.59	0.41	4.92	5,432.89
	9/30/2016		20.74	20.81	0.07	0.84	5,433.40
	10/10/2016	(V)	NP	20.69	NP	NP	5,433.46
	12/15/2016		22.41	22.33	0.08	0.96	5,431.88
	3/30/2017		NP	21.76	NP	NP	5,432.39
	6/28/2017		Trace	21.88	NP	NP	5,432.27
	9/10/2015		NP	18.85	NP	NP	5,433.10
	9/19/2015		er.	-	-1-2-1	0.05 **	-
	9/25/2015	10	**			0.15 **	-
MW02	9/28/2015	5,451.95	18.85	19.04	0.19	2.28	5,433.06
IVI VV UZ	11/4/2015	3,431.93	18.88	19.21	0.33	3.96	5,433.00
	11/11/2015		18.97	19.31	0.34	4.08	5,432.91
	11/18/2015		18.98	19.30	0.32	3.84	5,432.91
	2/19/2016		19.63	20.29	0.66	7.92	5,432.19

TABLE 1 GROUNDWATER ELEVATIONS

SULLIVAN GAS COM D#1E SAN JUAN COUNTY, NEW MEXICO XTO ENERGY, INC.

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwate Elevation (feet)
	4/29/2016		19.47	21.27	1.80	21.60	5,432.12
	6/20/2016		20.30	20.55	0.25	3.00	5,431.60
	7/14/2016		NP	19.04	NP	NP	5,432.91
	7/18/2016		NP	19.05	NP	NP	5,432.90
MW02	7/22/2016	5.451.05	19.07	19.19	0.12	1.44	5,432.86
W W U Z	9/30/2016	5,451.95	18.69	18.93	0.24	2.88	5,433.21
	10/10/2016		NP	18.64	NP	NP	5,433.31
	12/15/2016		NP	19.20	NP	NP	5,432.75
	3/30/2017		NP	19.69	NP	NP	5,432.26
	6/28/2017		19.90	19.95	0.05	0.60	5,432.48
	9/10/2015		NP	19.45	NP	NP	5,433.05
	9/28/2015		NP	19.49	NP	NP	5,433.01
	11/4/2015		19.54	19.56	0.02	0.24	5,432.96
	11/11/2015		NP	19.65	NP	NP	5,432.85
	11/18/2015		NP	19.67	NP	NP	5,432.83
	2/19/2016		NP	20.44	NP	NP	5,432.06
	4/29/2016		20.54	20.65	0.11	1.32	5,431.94
MW03	6/20/2016	5 452 50	19.70	19.78	0.08	0.96	5,432.78
IVI W US	7/14/2016	5,452.50	19.59	19.65	0.06	0.72	5,432.90
	7/18/2016		19.65	19.69	0.04	0.48	5,432.84
	7/22/2016		19.61	19.66	0.05	0.60	5,432.88
	9/30/2016		19.28	19.33	0.05	0.60	5,433.21
	10/10/2016		NP	19.23	NP	NP	5,433.27
	12/15/2016		NP	19.82	NP	NP	5,432.68
1 10	3/30/2017		NP	20.36	NP	NP	5,432.14
	6/28/2017		NP	20.77	NP	NP	5,431.73
	9/10/2015		NP	18.94	NP	NP	5,432.98
	9/28/2015	1 m	NP	19.98	NP	NP	5,431.94
- 0	11/4/2015	Y 1	NP	19.08	NP	NP	5,432.84
	11/11/2015		NP	19.20	NP	NP	5,432.72
))	11/18/2015		NP	19.21	NP	NP	5,432.71
	2/19/2016		NP	20.04	NP	NP	5,431.88
	4/29/2016		NP	20.11	NP	NP	5,431.81
MW04	6/20/2016	5 451 02	NP	19.10	NP	NP	5,432.82
AT AA O.	7/14/2016	5,451.92	NP	19.01	NP	NP	5,432.91
	7/18/2016		NP	19.00	NP	NP	5,432.92
	7/22/2016		NP	18.99	NP	NP	5,432.93
1	9/30/2016		NP	18.72	NP	NP	5,433.20
	10/10/2016		NP	18.62	NP	NP	5,433.30
[12/15/2016		NP	19.36	NP	NP	5,432.56
	3/30/2017		NP	19.98	NP	NP	5,431.94
	6/28/2017		NP	20.30	NP	NP	5,431.62

TABLE 1 GROUNDWATER ELEVATIONS

SULLIVAN GAS COM D#1E SAN JUAN COUNTY, NEW MEXICO XTO ENERGY, INC.

Well ID	Date	Top of Casing Elevation (feet*)	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Product Thickness (inches)	Groundwater Elevation (feet)
	11/4/2015		18.82	19.51	0.69	8.28	5,432.93
	11/11/2015		18.9	19.69	0.79	9.48	5,432.83
	11/18/2015		18.93	19.73	0.8	9.60	5,432.80
	2/19/2016		19.66	20.75	1.09	13.08	5,432.01
	4/29/2016		19.35	21.95	2.60	31.20	5,432.02
	6/20/2016		20.18	20.40	0.22	2.64	5,431.67
MANUAE	7/14/2016	5 451 90	18.63	18.89	0.26	3.12	5,433,21
MW05	7/18/2016	5,451.89	18.60	20.13	1.53	18.36	5,432.98
	7/22/2016		18.84	19.18	0.34	4.08	5,432.98
	9/30/2016		18.44	19.34	0.90	10.80	5,433.27
	10/10/2016		18.39	19.17	0.78	9.36	5,433.34
	12/15/2016		NP	19.24	NP	NP	5,432.65
	3/30/2017		NP	20.42	NP	NP	5,431.47
	6/28/2017		19.98	20.40	0.42	5.04	5,431.83
	11/4/2015		21.81	22.12	0,31	3.72	5,433.08
	11/11/2015		21.88	22.3	0.42	5.04	5,432.99
	11/11/2015		21.89	22.3	0.41	4.92	5,432.98
	2/19/2016		22.58	22.91	0.33	3.96	5,432.30
	4/29/2016		22.02	23.49	1.47	17.64	5,432.64
	6/20/2016		23.53	23.60	0.07	0.84	5,431.41
141100	7/14/2016		21.94	22.03	0.09	1.08	5,432.99
MW06	7/18/2016	5,454.95	NP	21.79	NP	NP	5,433.16
	7/22/2016		22.09	22.31	0.22	2.64	5,432.82
	9/30/2016		21.70	21.74	0.04	0.48	5,433.24
	10/10/2016		NP	21.64	NP	NP	5,433.31
	12/15/2016		NP	22.11	NP	NP	5,432.84
	3/30/2017		NP	22.55	NP	NP	5,432.40
	6/28/2017	7	Trace	23.00	NP	NP	5,431.95

Notes:

A product density factor of 0.7996 is used to account for the presence of free product in wells in which free product was observed

BTOC - Below Top of Casing

NP - No Product

Trace - visible sheen/product in bailer, but not detected by interface probe

^{* -} survyed using North American Vertical Datum 1988 geoid 12B in U.S. survey feet

^{** -} Estimated based on volume recovered in a bailer

^{-- -} Not Measured

TABLE 2 GROUNDWATER ANALYTICAL RESULTS

SULLIVAN GAS COM D #1E SAN JUAN COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample ID	Date Sampled	Benzene (μg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/l)
MW02	9/10/2015	6,500	24,200	1,770	11,400
MW02	12/15/2016	2,730	5,960	440	9,450
	9/10/2015	2,050	420	390	2,890
	9/14/2015	6,800	1,800	900	7,600
MW03	2/19/2016	919	232	130	830
	12/15/2016	1,440	251	283	2,810
	6/28/2017	334	146	117	1,260
	9/10/2015	3,480	30	60	180
	9/14/2015	2,900	25	110	290
1	2/19/2016	<0.5	<5.0	<0.5	<1.50
MW04	6/20/2016	1,680	<50.0	297	2,210
	9/30/2016	630	72	94	640
	12/15/2016	1,520	15.8	17.3	166
1	6/28/2017	24.0	154	67.2	2,350
MW05	12/15/2016	2,440	6,700	638	8,470
MW06	12/15/2016	1,810	3,640	811	14,200
MWQCC S	tandard	10	750	750	620

Notes:

< indicates result is less than the stated laboratory method detection limit NMWQCC - New Mexico Water Quality Control Commission µg/l - micrograms per liter

ENCLOSURE E – LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 25, 2020

Clara Cardoza HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Sullivan GC D 1E OrderNo.: 2003577

Dear Clara Cardoza:

Hall Environmental Analysis Laboratory received 9 sample(s) on 3/12/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-02

 Project:
 Sullivan GC D 1E
 Collection Date: 3/10/2020 2:00:00 PM

 Lab ID:
 2003577-001
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst: CCM
Benzene	ND	10	D	μg/L	20	3/20/2020 11:57:00 PM
Toluene	14	10	D	μg/L	20	3/20/2020 11:57:00 PM
Ethylbenzene	12	10	D	μg/L	20	3/20/2020 11:57:00 PM
Xylenes, Total	3400	30	D	μg/L	20	3/20/2020 11:57:00 PM
Surr: 1,2-Dichloroethane-d4	94.3	70-130	D	%Rec	20	3/20/2020 11:57:00 PM
Surr: 4-Bromofluorobenzene	97.8	70-130	D	%Rec	20	3/20/2020 11:57:00 PM
Surr: Dibromofluoromethane	99.8	70-130	D	%Rec	20	3/20/2020 11:57:00 PM
Surr: Toluene-d8	96.5	70-130	D	%Rec	20	3/20/2020 11:57:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-03

 Project:
 Sullivan GC D 1E
 Collection Date: 3/10/2020 2:40:00 PM

 Lab ID:
 2003577-002
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	ND	1.0	μg/L	1	3/20/2020 11:09:00 PM
Toluene	ND	1.0	μg/L	1	3/20/2020 11:09:00 PM
Ethylbenzene	ND	1.0	μg/L	1	3/20/2020 11:09:00 PM
Xylenes, Total	ND	1.5	μg/L	1	3/20/2020 11:09:00 PM
Surr: 1,2-Dichloroethane-d4	93.9	70-130	%Rec	1	3/20/2020 11:09:00 PM
Surr: 4-Bromofluorobenzene	94.5	70-130	%Rec	1	3/20/2020 11:09:00 PM
Surr: Dibromofluoromethane	101	70-130	%Rec	1	3/20/2020 11:09:00 PM
Surr: Toluene-d8	94.5	70-130	%Rec	1	3/20/2020 11:09:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-06

 Project:
 Sullivan GC D 1E
 Collection Date: 3/10/2020 3:10:00 PM

 Lab ID:
 2003577-003
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	150	50	μg/L	50	3/21/2020 12:45:00 AM
Toluene	2300	50	μg/L	50	3/21/2020 12:45:00 AM
Ethylbenzene	880	50	μg/L	50	3/21/2020 12:45:00 AM
Xylenes, Total	13000	750	μg/L	500	3/21/2020 12:21:00 AM
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%Rec	50	3/21/2020 12:45:00 AM
Surr: 4-Bromofluorobenzene	96.7	70-130	%Rec	50	3/21/2020 12:45:00 AM
Surr: Dibromofluoromethane	98.5	70-130	%Rec	50	3/21/2020 12:45:00 AM
Surr: Toluene-d8	96.2	70-130	%Rec	50	3/21/2020 12:45:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 11

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-09

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 10:25:00 AM

 Lab ID:
 2003577-004
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	ND	1.0	μg/L	1	3/21/2020 3:07:00 AM
Toluene	ND	1.0	μg/L	1	3/21/2020 3:07:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/21/2020 3:07:00 AM
Xylenes, Total	ND	1.5	μg/L	1	3/21/2020 3:07:00 AM
Surr: 1,2-Dichloroethane-d4	92.5	70-130	%Rec	1	3/21/2020 3:07:00 AM
Surr: 4-Bromofluorobenzene	96.0	70-130	%Rec	1	3/21/2020 3:07:00 AM
Surr: Dibromofluoromethane	99.6	70-130	%Rec	1	3/21/2020 3:07:00 AM
Surr: Toluene-d8	95.7	70-130	%Rec	1	3/21/2020 3:07:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-10

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 11:00:00 AM

 Lab ID:
 2003577-005
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	ND	1.0	μg/L	1	3/21/2020 4:19:00 AM
Toluene	ND	1.0	μg/L	1	3/21/2020 4:19:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/21/2020 4:19:00 AM
Xylenes, Total	ND	1.5	μg/L	1	3/21/2020 4:19:00 AM
Surr: 1,2-Dichloroethane-d4	89.8	70-130	%Rec	1	3/21/2020 4:19:00 AM
Surr: 4-Bromofluorobenzene	94.9	70-130	%Rec	1	3/21/2020 4:19:00 AM
Surr: Dibromofluoromethane	98.0	70-130	%Rec	1	3/21/2020 4:19:00 AM
Surr: Toluene-d8	91.9	70-130	%Rec	1	3/21/2020 4:19:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 11

Lab Order **2003577**

Date Reported: 3/25/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-07

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 11:45:00 AM

 Lab ID:
 2003577-006
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	ND	1.0	μg/L	1	3/21/2020 4:42:00 AM
Toluene	ND	1.0	μg/L	1	3/21/2020 4:42:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/21/2020 4:42:00 AM
Xylenes, Total	ND	1.5	μg/L	1	3/21/2020 4:42:00 AM
Surr: 1,2-Dichloroethane-d4	94.5	70-130	%Rec	1	3/21/2020 4:42:00 AM
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	3/21/2020 4:42:00 AM
Surr: Dibromofluoromethane	99.1	70-130	%Rec	1	3/21/2020 4:42:00 AM
Surr: Toluene-d8	94.8	70-130	%Rec	1	3/21/2020 4:42:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-05

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 12:25:00 PM

 Lab ID:
 2003577-007
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	44	2.0	μg/L	2	3/21/2020 5:06:00 AM
Toluene	100	2.0	μg/L	2	3/21/2020 5:06:00 AM
Ethylbenzene	8.0	2.0	μg/L	2	3/21/2020 5:06:00 AM
Xylenes, Total	270	3.0	μg/L	2	3/21/2020 5:06:00 AM
Surr: 1,2-Dichloroethane-d4	90.8	70-130	%Rec	2	3/21/2020 5:06:00 AM
Surr: 4-Bromofluorobenzene	94.2	70-130	%Rec	2	3/21/2020 5:06:00 AM
Surr: Dibromofluoromethane	97.9	70-130	%Rec	2	3/21/2020 5:06:00 AM
Surr: Toluene-d8	95.6	70-130	%Rec	2	3/21/2020 5:06:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: PR-1

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 1:00:00 PM

 Lab ID:
 2003577-008
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	8.0	5.0	μg/L	5	3/21/2020 5:53:00 AM
Toluene	340	5.0	μg/L	5	3/21/2020 5:53:00 AM
Ethylbenzene	73	5.0	μg/L	5	3/21/2020 5:53:00 AM
Xylenes, Total	3200	75	μg/L	50	3/21/2020 5:30:00 AM
Surr: 1,2-Dichloroethane-d4	90.2	70-130	%Rec	5	3/21/2020 5:53:00 AM
Surr: 4-Bromofluorobenzene	92.3	70-130	%Rec	5	3/21/2020 5:53:00 AM
Surr: Dibromofluoromethane	98.1	70-130	%Rec	5	3/21/2020 5:53:00 AM
Surr: Toluene-d8	96.6	70-130	%Rec	5	3/21/2020 5:53:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 11

Lab Order **2003577**Date Reported: **3/25/2020**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-11

 Project:
 Sullivan GC D 1E
 Collection Date: 3/11/2020 1:40:00 PM

 Lab ID:
 2003577-009
 Matrix: AQUEOUS
 Received Date: 3/12/2020 8:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: CCM
Benzene	ND	1.0	μg/L	1	3/21/2020 6:17:00 AM
Toluene	ND	1.0	μg/L	1	3/21/2020 6:17:00 AM
Ethylbenzene	ND	1.0	μg/L	1	3/21/2020 6:17:00 AM
Xylenes, Total	ND	1.5	μg/L	1	3/21/2020 6:17:00 AM
Surr: 1,2-Dichloroethane-d4	89.7	70-130	%Rec	1	3/21/2020 6:17:00 AM
Surr: 4-Bromofluorobenzene	94.6	70-130	%Rec	1	3/21/2020 6:17:00 AM
Surr: Dibromofluoromethane	97.4	70-130	%Rec	1	3/21/2020 6:17:00 AM
Surr: Toluene-d8	95.1	70-130	%Rec	1	3/21/2020 6:17:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 11

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003577 25-Mar-20**

Client: HILCORP ENERGY
Project: Sullivan GC D 1E

Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: LCSW	Batch	n ID: SL	67467	F	RunNo: 6	7467				
Prep Date:	Analysis D	ate: 3/	20/2020	8	SeqNo: 2	328091	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.0	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.0	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.4	70	130			
Surr: Toluene-d8	9.5		10.00		95.2	70	130			

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	Method 8260: Volatiles Short List							
Client ID: PBW	Batch	ID: SL	67467	F	RunNo: 6	7467								
Prep Date:	Analysis D	ate: 3/	20/2020	9	SeqNo: 2	328092	Units: µg/L							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene	ND	1.0												
Toluene	ND	1.0												
Ethylbenzene	ND	1.0												
Xylenes, Total	ND	1.5												
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.8	70	130							
Surr: 4-Bromofluorobenzene	9.6		10.00		96.2	70	130							
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130							
Surr: Toluene-d8	9.6		10.00		96.1	70	130							

Sample ID: 100ng lcs2	Sampl	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	s Short L	ist	
Client ID: LCSW	Batc	n ID: B6	7467	F	RunNo: 6	7467				
Prep Date:	Analysis [Date: 3/	21/2020	5	SeqNo: 2	328115	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.1	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.3	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.5	70	130			
Surr: Toluene-d8	9.4		10.00		93.9	70	130			

Sample ID: mb2	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: PBW	Batch	ID: B6	7467	R	RunNo: 6	7467				
Prep Date:	Analysis D	ate: 3/	21/2020	S	SeqNo: 2	328116	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								

Toluene ND 1.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 11

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2003577**

25-Mar-20

Client: HILCORP ENERGY
Project: Sullivan GC D 1E

Sample ID: mb2 Client ID: PBW	·	ype: ME n ID: B6			tCode: EI RunNo: 6		8260: Volatile	es Short L	ist	
Prep Date:	Analysis D	ate: 3/	21/2020	8	SeqNo: 2	328116	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.2	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130			
Surr: Dibromofluoromethane	9.9		10.00		99.5	70	130			
Surr: Toluene-d8	9.5		10.00		94.6	70	130			

Sample ID: 2003577-004ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: MW-09	Batch	n ID: B6	7467	F	RunNo: 6	7467				
Prep Date:	Analysis D	oate: 3/	21/2020	5	SeqNo: 2	328118	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	21	1.0	20.00	0	104	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.5	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.5	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.2	70	130			
Surr: Toluene-d8	9.5		10.00		94.9	70	130			

Sample ID: 2003577-004amsd	SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: MW-09	Batch	ID: B6	7467	F	RunNo: 6	7467				
Prep Date:	Analysis D	ate: 3/	21/2020	8	SeqNo: 2	328119	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130	4.77	20	
Toluene	19	1.0	20.00	0	97.3	70	130	6.80	20	
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.0	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.5		10.00		95.1	70	130	0	0	
Surr: Dibromofluoromethane	9.9		10.00		98.6	70	130	0	0	
Surr: Toluene-d8	9.3		10.00		93.2	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 11

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	HILCORP ENERGY FAR	Work Order Numb	er: 200	03577			RcptNo: 1
Received By:	Yazmine Garduno	3/12/2020 8:30:00 A	М		Magminel	leftratari	T6
Completed By:	Desiree Dominguez	3/12/2020 1:58:08 P	М		TE	2	
Chain of Cus	stody						
1. Is Chain of C	custody sufficiently complete?		Yes	· •	No		Not Present
2. How was the	sample delivered?		Cou	urier			
Laulu							
Log In 3. Was an atten	npt made to cool the samples?		in)				
o. Was all atten	inprimade to cool the samples		Yes	V	No		NA 🗌
4. Were all samp	ples received at a temperature	of >0° C to 6.0°C	Yes	V	No [NA 🗆
5. Sample(s) in	proper container(s)?		Yes	V	No [
6. Sufficient sam	nple volume for indicated test(s	s)?	Yes	✓	No [
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes	V	No [
8. Was preserva	tive added to bottles?		Yes		No 🕨	/	NA 🗆
9. Received at le	east 1 vial with headspace <1/4	I" for AQ VOA?	Yes	V	No [NA 🗆
10. Were any san	nple containers received broke	en?	Yes		No S	/	
							# of preserved bottles checked
	ork match bottle labels? ancies on chain of custody)		Yes	✓	No 🗆		for pH:
	correctly identified on Chain of	Custody?	Yes	V	No [(<2 or >12 unless noted) Adjusted?
	analyses were requested?	ouotody:	Yes		No [
4. Were all holding	ng times able to be met?		Yes		No [Checked by: 123122
(If no, notify cu	stomer for authorization.)					1	/ 01 311 10
pecial Handli	ing (if applicable)						
15. Was client not	tified of all discrepancies with	this order?	Yes		No [NA 🗹
Person I	Notified:	Date:				Samon's	
By Who	m: [Via:	eMa	ail 🔲 P	Phone F	ax	In Person
Regardin	ng:						
Client In	structions:					*************	
Additional ren	narks:						
7. Cooler Inform	mation						
Cooler No		eal Intact Seal No	Seal Da	ate	Signed By		
1	3.7 Good Yes				31		
2	5.6 Good Yes						

O	hain	-of-C	Chain-of-Custody Record	Turn-Around Time:	Time:								Recei
Client:	Clara		areloca	Standard	I 🗆 Rush	4		Ī	ANAL	EN	VIR S	HALL ENVIRONMENTAL ANALYSTS LABORATOP	. >
Mailing	Hill	Hill pin Mailing Address: 389	Energy Company	Project Name:	101	C D#1E	4901	www.h	ww.hal	www.hallenvironmental.com	ments	environmental.com	POR .
Phone #:	1	12tec, WWN 505-79	1W 8740	Project #:	17820002	2002	Tel. 8	Tel. 505-345-3975		Fax 505-345-Analysis Request	505-3 Regu	Fax 505-345-4107	/19/2021
email o	email or Fax#:	ccardozal	oza@ hilcorp.com	Project Manage		-				†O		(ju	11:3
QA/QC Packa	QA/QC Package:		☐ Level 4 (Full Validation)	h	Josh A	Adams	AM \ O		CIALIC	PO₄, S		ıəsdA\1	30:30 A
Accreditation:	itation: AC		☐ Az Compliance ☐ Other	Sampler: W	Mary Mrg	mrajenovich	Я व / С	(1.40	0.170.10	' ⁷ ON	(4	resen	M
EDD	EDD (Type)	1		# of Coolers:	5	<u>2</u>	ева)g p		, _E O	/O/	<u> </u>	
				Cooler Temp(including CF):		3.6 to 1=3.1	2D(oqje				lifori	
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	5.5 to 1.5.0 HEAL No.	TEX 108:Hq 1808	EDB (We	SAHs by	3), F, Bi	S) 072	oO lsto	
3	14:00	35	MW-62	3 vors	HCI	100-		3				L	
_	1440		MW-03.	_	Hcl	- 002	-						
>	ar;SI		MW-06.		49012	- 003							
alula	57:91		MW-09		Ha	h00-							
	00111		MW-10		HCI	-005							
	11.45		MW-07		HCI	-000				-			
	11:15		MW- 05		4901z	-00±							
	13:00		18-1		Hgaz	-008							
>	13:40	>	Mw-[]	A	HCI	-009	-						
) Date:	Time:	Relinquished by:	ed by:	Received by:	Via:	Jul 72 1442	Remarks:	Please		MM	die	cc: mmrdjerovich@ltenu.com	
3/11/26 1864	Time: 1864	Relinquished by:	ed by:	Received by:	by: Via:	- 10	7+3	بر	883	results) 4		ge 166 oj
-	f necessary,	samples sub	Jall Ei	ontracted to other ac	credited laboratorie	es. This serves as notice of this	possibility. Any s	ub-contract	ed data w	III be clear	ly notated	on the analytical repor	

July 01, 2020

Josh Adams
HILCORP ENERGY
PO Box 4700
Farmington, NM 87499
TEL: (505) 564-0733

FAX:

RE: Sullivan GC D #1E

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2006C05

Dear Josh Adams:

Hall Environmental Analysis Laboratory received 5 sample(s) on 6/24/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order 2006C05

Date Reported: 7/1/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW 06

 Project:
 Sullivan GC D #1E
 Collection Date: 6/23/2020 2:00:00 PM

 Lab ID:
 2006C05-001
 Matrix: AQUEOUS
 Received Date: 6/24/2020 8:00:00 AM

Result **RL Qual Units DF** Date Analyzed **Analyses** Batch **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: DJF Benzene 120 50 Ρ µg/L 6/26/2020 9:04:19 PM SL69947 Toluene 1900 50 Р μg/L 6/26/2020 9:04:19 PM SL69947 Ethylbenzene 850 50 Ρ μg/L 6/26/2020 9:04:19 PM SL69947 50 Xylenes, Total Ρ μg/L SL69947 18000 750 500 6/26/2020 8:35:39 PM Surr: 1.2-Dichloroethane-d4 110 70-130 %Rec 6/26/2020 9:04:19 PM SL69947 Surr: 4-Bromofluorobenzene 99.4 70-130 Ρ %Rec 50 6/26/2020 9:04:19 PM SL69947 Surr: Dibromofluoromethane 108 70-130 Ρ %Rec 50 6/26/2020 9:04:19 PM SL69947 Ρ SL69947 Surr: Toluene-d8 105 70-130 %Rec 50 6/26/2020 9:04:19 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order 2006C05

Date Reported: 7/1/2020

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW 07

 Project:
 Sullivan GC D #1E
 Collection Date: 6/23/2020 11:10:00 AM

 Lab ID:
 2006C05-002
 Matrix: AQUEOUS
 Received Date: 6/24/2020 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: DJF
Benzene	ND	1.0	μg/L	1	6/26/2020 9:32:56 PM	SL69947
Toluene	ND	1.0	μg/L	1	6/26/2020 9:32:56 PM	SL69947
Ethylbenzene	ND	1.0	μg/L	1	6/26/2020 9:32:56 PM	SL69947
Xylenes, Total	ND	1.5	μg/L	1	6/26/2020 9:32:56 PM	SL69947
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	6/26/2020 9:32:56 PM	SL69947
Surr: 4-Bromofluorobenzene	92.6	70-130	%Rec	1	6/26/2020 9:32:56 PM	SL69947
Surr: Dibromofluoromethane	105	70-130	%Rec	1	6/26/2020 9:32:56 PM	SL69947
Surr: Toluene-d8	108	70-130	%Rec	1	6/26/2020 9:32:56 PM	SL69947

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Lab Order 2006C05

Date Reported: 7/1/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW 09

 Project:
 Sullivan GC D #1E
 Collection Date: 6/23/2020 12:00:00 PM

 Lab ID:
 2006C05-003
 Matrix: AQUEOUS
 Received Date: 6/24/2020 8:00:00 AM

Result **RL Qual Units DF** Date Analyzed **Analyses** Batch **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 1.0 µg/L 6/26/2020 10:01:28 PM SL69947 Toluene ND μg/L 6/26/2020 10:01:28 PM SL69947 1.0 Ethylbenzene ND 1.0 μg/L 6/26/2020 10:01:28 PM SL69947 Xylenes, Total ND 6/26/2020 10:01:28 PM SL69947 1.5 μg/L Surr: 1.2-Dichloroethane-d4 107 70-130 %Rec 6/26/2020 10:01:28 PM SL69947 Surr: 4-Bromofluorobenzene 95.0 70-130 %Rec 6/26/2020 10:01:28 PM SL69947 Surr: Dibromofluoromethane 104 70-130 %Rec 1 6/26/2020 10:01:28 PM SL69947 6/26/2020 10:01:28 PM SL69947 Surr: Toluene-d8 106 70-130 %Rec

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 6

Lab Order 2006C05

Date Reported: 7/1/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW 10

 Project:
 Sullivan GC D #1E
 Collection Date: 6/23/2020 12:40:00 PM

 Lab ID:
 2006C05-004
 Matrix: AQUEOUS
 Received Date: 6/24/2020 8:00:00 AM

Result **RL Qual Units DF** Date Analyzed **Analyses** Batch **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 1.0 µg/L 6/26/2020 10:30:00 PM SL69947 Toluene ND μg/L 6/26/2020 10:30:00 PM SL69947 1.0 Ethylbenzene ND 1.0 μg/L 6/26/2020 10:30:00 PM SL69947 Xylenes, Total ND 6/26/2020 10:30:00 PM SL69947 1.5 μg/L Surr: 1.2-Dichloroethane-d4 109 70-130 %Rec 6/26/2020 10:30:00 PM SL69947 Surr: 4-Bromofluorobenzene 97.1 70-130 %Rec 6/26/2020 10:30:00 PM SL69947 Surr: Dibromofluoromethane 109 70-130 %Rec 1 6/26/2020 10:30:00 PM SL69947 6/26/2020 10:30:00 PM SL69947 Surr: Toluene-d8 105 70-130 %Rec

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

Lab Order 2006C05

Date Reported: 7/1/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW 11

 Project:
 Sullivan GC D #1E
 Collection Date: 6/23/2020 1:30:00 PM

 Lab ID:
 2006C05-005
 Matrix: AQUEOUS
 Received Date: 6/24/2020 8:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analys	: DJF
Benzene	ND	1.0	μg/L	1	6/26/2020 10:58:41 PM	1 SL69947
Toluene	ND	1.0	μg/L	1	6/26/2020 10:58:41 PM	1 SL69947
Ethylbenzene	ND	1.0	μg/L	1	6/26/2020 10:58:41 PM	1 SL69947
Xylenes, Total	ND	1.5	μg/L	1	6/26/2020 10:58:41 PM	1 SL69947
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	6/26/2020 10:58:41 PM	1 SL69947
Surr: 4-Bromofluorobenzene	93.9	70-130	%Rec	1	6/26/2020 10:58:41 PM	1 SL69947
Surr: Dibromofluoromethane	110	70-130	%Rec	1	6/26/2020 10:58:41 PM	1 SL69947
Surr: Toluene-d8	103	70-130	%Rec	1	6/26/2020 10:58:41 PM	1 SL69947

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

11

10

2006C05 01-Jul-20

WO#:

Client: HILCORP ENERGY
Project: Sullivan GC D #1E

Surr: Dibromofluoromethane

Surr: Toluene-d8

Sample ID: mb1	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	n ID: SL	69947	F	RunNo: 6	9947				
Prep Date:	Analysis D	ate: 6/	26/2020	9	SeqNo: 24	129275	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	70	130			

106

103

70

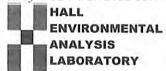
70

130

130

Sample ID: 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batch	h ID: SL	.69947	F	RunNo: 6 9	9947				
Prep Date:	Analysis D	Date: 6/	26/2020	5	SeqNo: 2	429276	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	114	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		111	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.6	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.4	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

10.00


10.00

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Hilcorp Energy Work Order Number: 2006C05 RcptNo: 1 Received By: **Emily Mocho** 6/24/2020 8:00:00 AM Completed By: 6/24/2020 9:14:08 AM **Emily Mocho** 6/24/20 Reviewed By: Chain of Custody No 🗌 1. Is Chain of Custody complete? Yes V Not Present 2. How was the sample delivered? Courier 3. Was an attempt made to cool the samples? No 🗌 NA 🗌 Yes 🗸 4. Were all samples received at a temperature of >0° C to 6.0°C No L NA 🗌 Yes 🗸 Yes 🗸 5. Sample(s) in proper container(s)? No 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? No 🗌 No V NA \square 8. Was preservative added to bottles? Yes 9. Received at least 1 vial with headspace <1/4" for AQ VOA? No 🗌 NA 🗌 No V 10. Were any sample containers received broken? Yes # of preserved bottles checked No 🗌 11. Does paperwork match bottle labels? Yes 🗸 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) Adjusted? No 🗌 12. Are matrices correctly identified on Chain of Custody? Yes V Yes V No 🗌 13. Is it clear what analyses were requested? Checked by: 9M 6(24)70 No 🗌 14. Were all holding times able to be met? Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) No 🗌 15. Was client notified of all discrepancies with this order? Yes NA V Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1.4 Good Not Present

ceived by OCD: 4/19/202.	Air Bubbles (Y or N)		Page 175 of
HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	TPH (Method 418.1) EDB (Method 504.1) PAH's (8310 or 8270 SIMS) RCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides \ 8082 PCB's 8260B (VOA) 8270 (Semi-VOA)		Please Cc' Jadams@Ltenv.com Tshort@Ltenv.com
1901 Hz	BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO)		
	BTEX + MTBE + TMB's (8021)-		Remarks:
A Standard Ime: A Standard Ime: Project Name: SCINIVAN (人 D 神)后 Project #:	Project Manager: Sampler: Travis Short On Ice: A Yes D No Sample Temperature: 1. 6-6.2= 1.4 Container Preservative HEAL No. Type and # Type 2006.05	Z	Received by: Received by: Date Time Date Time Date Time
Chain-of-Custody Record Clark Cordoza Hilarp Energy Address: 382 (a 3100, Aztec, NM) ### Sos-793-784	CCOLGOZOLONINOP, Colh Level 4 (Full Validation) Other PDE Matrix Sample Request ID NA OS	MWO7 MWO9 MW10 MW11	inquished by: Inquished by:
1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017 1/2017	Other Matrix		Re Re
Clear Hill Hill Address	©A/QC Package:	17000 1	Time: 1430 Time: 1920
Chain-O Client: ClowR Alling Address: (2/22/5)	©A/QC Package		Date: Time: 6/23 14 30. Date: Time: 14 30 920

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 05, 2020

Clara Cardoza Hilcorp Energy PO Box 61529 Houston, TX 77208-1529

TEL: (337) 276-7676

FAX:

RE: Sullivan GC D 1E OrderNo.: 2009H12

Dear Clara Cardoza:

Hall Environmental Analysis Laboratory received 5 sample(s) on 9/29/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Batch ID

Analytical Report

Lab Order: 2009H12 Date Reported: 10/5/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Lab Order: 2009H12

Project: Sullivan GC D 1E

Lab ID: 2009H12-001 Collection Date: 9/28/2020 11:20:00 AM

Client Sample ID: MW06 Matrix: GROUNDWATER Result

Analyses RL Qual Units DF Date Analyzed **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: JMR Benzene 110 50 Ρ 10/1/2020 12:09:32 AM L72279 µg/L 50 Toluene 1800 50 Ρ μg/L 10/1/2020 12:09:32 AM L72279 Р Ethylbenzene 990 50 μg/L 10/1/2020 12:09:32 AM L72279 Xylenes, Total 13000 750 Ρ 500 9/30/2020 11:40:52 PM L72279 μg/L Р 70-130 Surr: 1,2-Dichloroethane-d4 98.4 %Rec 10/1/2020 12:09:32 AM L72279 Surr: Dibromofluoromethane 104 70-130 %Rec 10/1/2020 12:09:32 AM L72279 Surr: Toluene-d8 104 70-130 %Rec 10/1/2020 12:09:32 AM L72279

Lab ID: **Collection Date:** 9/28/2020 12:15:00 PM 2009H12-002

Client Sample ID: MW07 **Matrix:** GROUNDWATER Dogult

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260: VOLATILES SHORT LIST					Analy	st: JMR
Benzene	ND	1.0	μg/L	1	10/1/2020 1:34:55 Al	M L72279
Toluene	ND	1.0	μg/L	1	10/1/2020 1:34:55 Al	M L72279
Ethylbenzene	ND	1.0	μg/L	1	10/1/2020 1:34:55 Al	M L72279
Xylenes, Total	ND	1.5	μg/L	1	10/1/2020 1:34:55 Al	M L72279
Surr: 1,2-Dichloroethane-d4	92.7	70-130	%Rec	1	10/1/2020 1:34:55 Al	M L72279
Surr: Dibromofluoromethane	110	70-130	%Rec	1	10/1/2020 1:34:55 Al	M L72279
Surr: Toluene-d8	101	70-130	%Rec	1	10/1/2020 1:34:55 Al	M L72279

Lab ID: 2009H12-003 **Collection Date:** 9/28/2020 12:40:00 PM Client Sample ID: MW09 Matrix: GROUNDWATER

Analyses Result RL Oual Units DF Date Analyzed **Batch ID**

EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JMR
Benzene	ND	1.0	μg/L	1	10/1/2020 2:03:22 AM	L72279
Toluene	ND	1.0	μg/L	1	10/1/2020 2:03:22 AM	L72279
Ethylbenzene	ND	1.0	μg/L	1	10/1/2020 2:03:22 AM	L72279
Xylenes, Total	ND	1.5	μg/L	1	10/1/2020 2:03:22 AM	L72279
Surr: 1,2-Dichloroethane-d4	96.0	70-130	%Rec	1	10/1/2020 2:03:22 AM	L72279
Surr: Dibromofluoromethane	106	70-130	%Rec	1	10/1/2020 2:03:22 AM	L72279
Surr: Toluene-d8	102	70-130	%Rec	1	10/1/2020 2:03:22 AM	L72279

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 4

Lab Order: 2009H12 Date Reported: 10/5/2020

Hall Environmental Analysis Laboratory, Inc.

2009H12

Lab Order:

CLIENT: Hilcorp Energy

Project: Sullivan GC D 1E

Lab ID: 2009H12-004 Collection Date: 9/28/2020 1:15:00 PM

Client Sample ID: MW10 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 1.0 10/1/2020 2:31:45 AM L72279 μg/L 1 Toluene ND 1.0 μg/L 10/1/2020 2:31:45 AM L72279 ND Ethylbenzene 1.0 μg/L 1 10/1/2020 2:31:45 AM L72279 Xylenes, Total ND 1.5 μg/L 1 10/1/2020 2:31:45 AM L72279 92.1 70-130 Surr: 1,2-Dichloroethane-d4 %Rec 1 10/1/2020 2:31:45 AM L72279 Surr: Dibromofluoromethane 109 70-130 %Rec 10/1/2020 2:31:45 AM L72279 Surr: Toluene-d8 101 70-130 %Rec 10/1/2020 2:31:45 AM L72279

Lab ID: Collection Date: 9/28/2020 1:40:00 PM 2009H12-005

Client Sample ID: MW11 Matrix: GROUNDWATER Pacult

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Ba	tch ID
EPA METHOD 8260: VOLATILES SHORT LIST					Ana	alyst:	JMR
Benzene	ND	1.0	μg/L	1	10/1/2020 3:00:17	AM	L72279
Toluene	ND	1.0	μg/L	1	10/1/2020 3:00:17	AM	L72279
Ethylbenzene	ND	1.0	μg/L	1	10/1/2020 3:00:17	AM	L72279
Xylenes, Total	ND	1.5	μg/L	1	10/1/2020 3:00:17	AM	L72279
Surr: 1,2-Dichloroethane-d4	96.8	70-130	%Rec	1	10/1/2020 3:00:17	AM	L72279
Surr: Dibromofluoromethane	104	70-130	%Rec	1	10/1/2020 3:00:17	AM	L72279
Surr: Toluene-d8	102	70-130	%Rec	1	10/1/2020 3:00:17	AM	L72279

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 2 of 4

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H12 05-Oct-20**

Client: Hilcorp Energy
Project: Sullivan GC D 1E

Sample ID: 100ng lcs	SampT	Type: LC	s	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: LCSW	Batcl	h ID: L7 :	2279	RunNo: 72279						
Prep Date:	Analysis D	Date: 9/	30/2020	5	SeqNo: 2	535572	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.0	70	130			
Toluene	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	8.9		10.00		88.5	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		105	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID: mb1	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatile	s Short L	ist	
Client ID: PBW	Batch	n ID: L7 :	2279	F	RunNo: 7	2279				
Prep Date:	Analysis D	ate: 9/	30/2020	S	SeqNo: 2	535573	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	11		10.00		111	70	130			
Surr: Toluene-d8	11		10.00		107	70	130			

Sample ID: 2009h12-001ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260: Volatile	s Short L	ist	
Client ID: MW06	Batch	1D: L7	2279	F	RunNo: 7	2279				
Prep Date:	Analysis D	ate: 10)/1/2020	5	SeqNo: 2	535578	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1000	50	1000	105.5	90.4	70	130			Р
Toluene	2800	50	1000	1848	96.8	70	130			Р
Surr: 1,2-Dichloroethane-d4	490		500.0		97.9	70	130			Р
Surr: 4-Bromofluorobenzene	500		500.0		101	70	130			Р
Surr: Dibromofluoromethane	510		500.0		102	70	130			Р
Surr: Toluene-d8	510		500.0		103	70	130			Р

Sample ID: 2009h12-001amsd	SampT	ype: MS	SD	Tes	tCode: EF	PA Method	8260: Volatile	s Short L	ist	
Client ID: MW06	Batch	ID: L7	2279	F	tunNo: 72	2279				
Prep Date:	Analysis D	ate: 10	0/1/2020	S	SeqNo: 2	535579	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	960	50	1000	105.5	85.6	70	130	4.85	20	Р
Toluene	2600	50	1000	1848	77.8	70	130	6.99	20	Р

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 4

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2009H12**

05-Oct-20

Client: Hilcorp Energy
Project: Sullivan GC D 1E

Sample ID: 2009h12-001amso	d SampT	уре: М	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: MW06	Batch	n ID: L7	2279	F	RunNo: 7 2	2279				
Prep Date:	Analysis D	Date: 10	0/1/2020	S	SeqNo: 2	535579	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	490		500.0		98.2	70	130	0	0	Р
Surr: 4-Bromofluorobenzene	480		500.0		95.3	70	130	0	0	Р
Surr: Dibromofluoromethane	530		500.0		107	70	130	0	0	Р
Surr: Toluene-d8	520		500.0		104	70	130	0	0	Р

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name:	Hilcorp Energy	Work Order Num	ber: 200	9H12		Rcp	tNo: 1
Received By:	Cheyenne Cason	9/29/2020 8:10:00	AM				
Completed By:	Isaiah Ortiz	9/29/2020 8:37:04	AM		In	CH	
Reviewed By:	JR 9/29/20	0					
Chain of Cus	<u>tody</u>						
1. Is Chain of Cu	ustody complete?		Yes	~	No I	Not Present	
2. How was the	sample delivered?		Cou	rier			
Log In							
	pt made to cool the samp	eles?	Yes	✓	No [NA [
4. Were all samp	ples received at a tempera	ture of >0° C to 6.0°C	Yes	~	No [NA [
5. Sample(s) in p	proper container(s)?		Yes	V	No [
6. Sufficient sam	ple volume for indicated to	est(s)?	Yes	V	No [
7. Are samples (except VOA and ONG) pro	operly preserved?	Yes	~	No [
8. Was preservat	tive added to bottles?		Yes		No S	NA [
9. Received at le	ast 1 vial with headspace	<1/4" for AQ VOA?	Yes	V	No [NA []
10. Were any san	nple containers received b	oroken?	Yes		No E	V	
					16.2	# of preserved bottles checked	
	ork match bottle labels? ancies on chain of custody		Yes	V	No L	for pH:	Z or >12 unless noted)
	correctly identified on Chai		Yes	V	No [Adjusted?	2 of >12 diffess floted)
	analyses were requested	and the second second	Yes	V	No [0
14. Were all holdir	ng times able to be met? ustomer for authorization.)		Yes	✓	No [Checked by	: an Ih Ih
Special Handli	ing (if applicable)						
	tified of all discrepancies	with this order?	Yes		No I	NA S	Z
Person	Notified:	Date				-	
By Who	m:	Via:	☐ eM	ail 🗍 I	Phone	Fax In Person	
Regardi	ng:						
Client In	nstructions:						
16. Additional rer	marks:						
17. Cooler Infor		Lacinities 6	0.14	3.5	0		
Cooler No	Temp °C Condition	Seal Intact Seal No Yes	Seal D	ate	Signed By	/	

f-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
Clusto Cordoza	以 Standard	YSIS LABORATORY
IERDY COMPUNITY	1	
Mailing Address:	Sollivan GCD#IE	37109
AZtec, NM	2.5	
N8LZ-5767,51	700078110	Analysis Request
email or Fax#: Ccoclozののかいのの	Project Manager:	(O)
□ Level 4 (Full Validation)	Josh Adams	10 AM 11 AD A 12 AD A 12 AD A 12 AD A 12 AD A 13 AD A 14 AD A 15 AD A 16 AD A
	Sampler: TRNIS Short	280 (1. 327(S 20 327(S
		8/8 8/8 504 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10
-	olers:	Sebijos po
	Cooler Temp(including cF): 13 55 1 3 100 (°C)	astic letho y 83 Me 3r, <i>N</i> (AO)
Molamo O	Container Preservative HEAL No.	PH:80 081 Pd PAHs b 11, F, E 11, F, E
00mm	3 VOA Hei 001	8 B B B B B B B B B B B B B B B B B B B
MMOG	003	×
MUIO	1500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
N WII	W W 065	\ \ \
Relinquished by:	Received by: Via: Date Time	Remarks: Color Color
R	and the	U. Jardams@ Ltenv.com
Relinquished by:	Received by: Via: Date Time	TShort@Ltenv.com

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

December 23, 2020

Josh Adams
HILCORP ENERGY
PO Box 4700
Farmington, NM 87499
TEL: (505) 564-0733

FAX

RE: Sullivan GC D 1E OrderNo.: 2012770

Dear Josh Adams:

Hall Environmental Analysis Laboratory received 6 sample(s) on 12/16/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

CLIENT:

Analytical Report

Lab Order: 2012770

Lab Order:

Date Reported: 12/23/2020

2012770

Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Project: Sullivan GC D 1E

Lab ID: 2012770-001 **Collection Date:** 12/14/2020 1:59:00 PM

Client Sample ID: MW-09 Matrix: AQUEOUS

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 12/18/2020 9:22:15 PM B74138 μg/L 1 Toluene ND 1.0 μg/L 12/18/2020 9:22:15 PM B74138 ND Ethylbenzene 1.0 μg/L 1 12/18/2020 9:22:15 PM B74138 Xylenes, Total ND 2.0 12/18/2020 9:22:15 PM B74138 μg/L Surr: 4-Bromofluorobenzene 102 80-120 %Rec 12/18/2020 9:22:15 PM B74138

Lab ID: 2012770-002 **Collection Date:** 12/15/2020 12:13:00 PM

Client Sample ID: MW-06 Matrix: AQUEOUS

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene 140 50 Ρ μg/L 50 12/18/2020 10:55:47 PM B74138 Ρ Toluene 2400 50 μg/L 12/18/2020 10:55:47 PM B74138 Р Ethylbenzene 1400 50 12/18/2020 10:55:47 PM B74138 μg/L Xylenes, Total 16000 1000 Ρ µg/L 500 12/18/2020 10:32:28 PM B74138 Surr: 4-Bromofluorobenzene 80-120 SP %Rec 12/18/2020 10:55:47 PM B74138 139

Lab ID: 2012770-003 **Collection Date:** 12/15/2020 12:57:00 PM

Client Sample ID: MW-07 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 μg/L 12/18/2020 11:42:22 PM B74138 1 Toluene ND 1.0 μg/L 12/18/2020 11:42:22 PM B74138 Ethylbenzene ND 1.0 12/18/2020 11:42:22 PM B74138 μg/L 1 Xylenes, Total ND 12/18/2020 11:42:22 PM B74138 2.0 μg/L 12/18/2020 11:42:22 PM B74138 Surr: 4-Bromofluorobenzene 103 80-120 %Rec

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 3

CLIENT:

Xylenes, Total

Surr: 4-Bromofluorobenzene

Analytical Report

Lab Order: 2012770

Date Reported: 12/23/2020

12/19/2020 12:05:39 AM B74138

12/19/2020 12:05:39 AM B74138

Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Lab Order: 2012770 **Project:** Sullivan GC D 1E Lab ID: 2012770-004 **Collection Date:** 12/15/2020 1:16:00 PM **Client Sample ID:** MW-03 Matrix: AQUEOUS **Analyses** Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 12/19/2020 12:05:39 AM B74138 μg/L 1 Toluene ND 1.0 μg/L 12/19/2020 12:05:39 AM B74138 ND Ethylbenzene 1.0 μg/L 1 12/19/2020 12:05:39 AM B74138

Lab ID: 2012770-005 **Collection Date:** 12/15/2020 1:58:00 PM

ND

97.5

2.0

80-120

μg/L

%Rec

Client Sample ID: MW-11 Matrix: AQUEOUS

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 μg/L 12/19/2020 12:28:53 AM B74138 1 Toluene ND 1.0 μg/L 12/19/2020 12:28:53 AM B74138 ND Ethylbenzene 1.0 12/19/2020 12:28:53 AM B74138 μg/L 1 Xylenes, Total ND 2.0 μg/L 1 12/19/2020 12:28:53 AM B74138 Surr: 4-Bromofluorobenzene 99.0 80-120 %Rec 12/19/2020 12:28:53 AM B74138

Lab ID: 2012770-006 **Collection Date:** 12/15/2020 2:26:00 PM

Matrix: AQUEOUS Client Sample ID:

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 μg/L 12/19/2020 12:52:07 AM B74138 1 Toluene ND 1.0 μg/L 12/19/2020 12:52:07 AM B74138 Ethylbenzene ND 1.0 12/19/2020 12:52:07 AM B74138 μg/L 1 Xylenes, Total ND 12/19/2020 12:52:07 AM B74138 2.0 μg/L Surr: 4-Bromofluorobenzene 102 80-120 %Rec 12/19/2020 12:52:07 AM B74138

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 2 of 3

OC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

22

WO#: 2012770

23-Dec-20

Client: HILCORP ENERGY **Project:** Sullivan GC D 1E

Sample ID: mb-II SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBW Batch ID: **B74138** RunNo: 74138 Prep Date: Analysis Date: 12/18/2020 SeqNo: 2616115 Units: µg/L SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte **PQL** LowLimit HighLimit Qual Benzene ND 1.0 ND 1.0 ND 1.0

Toluene Ethylbenzene Xylenes, Total ND 2.0

Surr: 4-Bromofluorobenzene 20 20.00 101 80 120

Sample ID: 100ng btex Ics-II SampType: LCS TestCode: EPA Method 8021B: Volatiles Client ID: LCSW Batch ID: **B74138** RunNo: 74138 Prep Date: Analysis Date: 12/18/2020 SeqNo: 2616116 Units: µg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 20.00 18 1.0 n 92.0 80 120 Benzene Toluene 19 1.0 20.00 0 94.6 80 120 0 94.2 80 Ethylbenzene 19 1.0 20.00 120 57 0 95.6 Xylenes, Total 2.0 60.00 80 120 Surr: 4-Bromofluorobenzene 21 20.00 104 80 120

Sample ID: 2012770-001ams SampType: MS TestCode: EPA Method 8021B: Volatiles Client ID: MW-09 Batch ID: **B74138** RunNo: 74138 Prep Date: Analysis Date: 12/18/2020 SeqNo: 2616118 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 19 20.00 94.8 80 1.0 120 Benzene O Toluene 20 20.00 0.1920 97.0 80 120 1.0 20 20.00 98.6 80 120 Ethylbenzene 1.0 n Xylenes, Total 60 2.0 60.00 0.7700 99.1 80 120

20.00

TestCode: EPA Method 8021B: Volatiles Sample ID: 2012770-001amsd SampType: MSD Client ID: MW-09 Batch ID: **B74138** RunNo: 74138 Prep Date: Analysis Date: 12/18/2020 SeqNo: 2616119 Units: µg/L PQL SPK value SPK Ref Val %REC **RPDLimit** Analyte Result LowLimit HighLimit %RPD Qual Benzene 19 1.0 20.00 0 94.5 80 120 0.264 20 Toluene 20 1.0 20.00 0.1920 97.2 80 120 0.184 20 Ethylbenzene 20 1.0 20.00 98.3 80 120 0.335 20 n Xylenes, Total 60 2.0 60.00 0.7700 98.7 80 120 0.472 20 Surr: 4-Bromofluorobenzene 22 20.00 108 80 120 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix

Surr: 4-Bromofluorobenzene

- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

109

80

120

- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 3 of 3

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Client Name: HILCORP ENERGY Work Orde	er Number: 20127	70	RcptNo: 1
Received By: Desiree Dominguez 12/16/2020 8	3:00:00 AM	100	
Completed By: Desiree Dominguez 12/16/2020 8	3:49:29 AM	T-D	
Reviewed By: \$2/16/26		113	
Chain of Custody			
1. Is Chain of Custody complete?	Yes V	No 🗆	Not Present
2. How was the sample delivered?	Courier		
Log In			
3. Was an attempt made to cool the samples?	Yes 🗸	No 🗆	NA 🗆
4. Were all samples received at a temperature of >0° C to 6.0	°C Yes 🗹	No 🗆	NA 🗆
5. Sample(s) in proper container(s)?	Yes 🔽	No 🗆	
6. Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗆	
7. Are samples (except VOA and ONG) properly preserved?	Yes 🗸		
8. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆
9. Received at least 1 vial with headspace <1/4" for AQ VOA?	Yes 🗸	No 🗌	NA 🗌
10. Were any sample containers received broken?	Yes -	No 🗸	
44 -			# of preserved bottles checked
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No 🗔	for pH: (<2 or >12 unless noted)
12. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗆	Adjusted?
13, Is it clear what analyses were requested?	Yes 🗸	No 🗆	
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗸	No 🗆	Checked by: SGC 12/14/20
Special Handling (if applicable)			
15. Was client notified of all discrepancies with this order?	Yes	No □	NA 🗸
Person Notified:	Date:		
By Whom:	Via: eMail	Phone Fax	In Person
Regarding:	Tid cividii	THORE TAX	III Felsoit
Client Instructions:			
16. Additional remarks:			
17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal 1 0.6 Good Yes	l No Seal Date	Signed By	

leased	Shain	-of-Cl	Chain-of-Custody Record	Turn-Around Tim	Time:			1	HALL	INN	ENVIDONMENT	ENTAI
Client:	1	orp E	Hilcord Energy	A Standard	Rush				MALY	SIS	ANALYSTS LABORATOR	ATORY
mae	Clara	ra C	Cordor e	Project Name:				>	ww.haller	nvironme	www.hallenvironmental.com	
gui	Mailing Address:			Sulliva	9	91 # O 25	4901	4901 Hawkins NE -		Albuquer	Albuquerque, NM 87109	60
6/25				Project #:			Tel.	505-345-3975		Fax 5	Fax 505-345-4107	
# euoud /202	#:			-Jost		TE 617820002			Ans	Analysis Request	ednest	1000
	or Fax#:	ccord	email or Fax#: CCOrdoza@hilcorp.com	Project Manager:					U	† O:	(ţu	
CS:57 QA/QC Packa	QA/QC Package: 阗 Standard		☐ Level 4 (Full Validation)	Josh	Sh Adams	rms	.508) 8' SMN \ O			S ԠOd	ıəsd∀∖tr	
M Accred	Accreditation:	□ Az Cc	☐ Az Compliance	Sampler: C	·McGil	UU	ו סצ	(1.				
□ NE	□ NELAC			On Ice:	₽	□ No	05	7 09	S			
X EDI	(Type)	PDF		# of Coolers:			(GI	ро	lete	(
				Cooler Temp	Cooler Temp(including CF): 0, 6 - 0.0 = 0.6	(0°) 4.0 = 0.0 -	d910	yeth	€M 8	AOV	15.45.13	
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO.)8:H9T	8081 P	PAHs I	() 0928	3) 0728 O lstoT	
OC HI CI	1359	Ag	MW-09	3 VOa	HCT	100-	×					
DE-51-61	1213		mW-06	-	None	200 -	×					
	1357		70-MM		HCL	- 003	×					
	1310		MW-03		#CL	h00 -	×					
	1358		MW-II		17	- 00S	×					
\rightarrow	1430	\rightarrow	MW-10	>	#CL	900-	×					
Date: O		Relinquished by:	ed by:	Received by:	Via:	Time	Remarks:					
Date: Time:	15.7°	Relinquished by:	could: Median Inquished by:	Received by:	Via:	Date Time		Piease	3	Josh,	cc. joshodams@wsp.com caitlin.mcginn@wsp.co	joshodams@wsp.com caiHin.mcginn@wsp.com

ENCLOSURE F – GROUNDWATER SAMPLE COLLECTION FORMS

No.	7
Chil	A proud member

	Ground	water Sample Colle	A provid member of WSP		848 E. 2nd Ai Durango, Colorado 813 T 970.385.10	01
	roject Name: ect Number:	Sullivan GC D #1E			Project Location: Su	
	Sample ID: Sample Date: Laboratory:	MW-02 3/9/2020 3/0/ Hall Environmental BTEX (no mtbe's or th		s	-	
Dep	th to Water:	000	10 3)	Tot. D	al Depth of Well: epth to Product:	27.73
of War Method ethod	ter to Purge: d of Purging: of Sampling:	.7 x.1631 = . 11 PVC haiter PVC bailer	1x3=0,3	35 (height	of water column * 0.1631 for	2" well or 0.6524 for 4" well) * 3 well
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments

Signature: may much

Date: 3/10/2020 3/9/2020

	•	ection Form		Durango, Colorado T 970.30	
	Sullivan GC D #1E 017820002				: Sullivan GC D #1E : Mary Mrdjenovich
mple Date: .aboratory:	3/9/2029 3/10 Hall Environmental		s	Sample Time	
of Purging:	PVL baller		(height	of water column * 0.163	1 for 2" well or 0.6524 for 4" well) * 3 well
Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us orms)	Comments
0.20	0.35	1.13	59.5	3.57 5.20	Clear, sheen, no
0.10	0.45	7.18	59.5	3.98	Saa
1					
Wate	er was	clear,	no col	orlodor	sheen.
viations fro	m SOP:				
	Sample ID: mple Date: aboratory: Analyses: n to Water: Time: r to Purge: of Purging: Sampling: Vol. Removed	Analyses: BTEX (no mtbe's or to no water: 22.12 Time: 0x1x.123 = of Purging: Fampling: PVC 12.12 Total Vol. Removed (gallons)	Sample ID: mple Date: 3/9/2020 aboratory: Hall Environmental Analyses: BTEX (no mtbe's or tmb's) n to Water: Time: 10244 Total Vol. Removed (gallons) Vol. Removed (gallons) 0.20 0.35 0.20 0.35 0.13 0.10 Water Was clear viations from SOP:	Sample ID: MW-03 mple Date: 3/9/2020-3/10/2020 aboratory: Hall Environmental Analyses: BTEX (no mtbe's or tmb's) In to Water: 22 12 In to Purge: 0 87 x . 1631 = 15 3 = 44 (height of Purging: 10 12 12 12 12 12 12 12 12 12 12 12 12 12	Sample ID: MW-03 mple Date: 3/9/2020- 3/10/2020 aboratory: Hall Environmental

	Ground	water Sample Colle	ection Form		848 E. 2nd . Durango, Colorado 81 T 970.385.1	1301
Pro	oject Name:	Sullivan GC D #1E			Project Location: S	Sullivan GC D #1F
Proje	ct Number:	017820002				Mary Mrdjenovich
	ımple Date: Laboratory:	3/9/2020 3 10 Hall Environmental BTEX (no mtbe's or the	2020 nb's)	S	Matrix: <u>(</u> Sample Time: _ hipping Method: <u>F</u>	
Dept	h to Water: Time:	24.95			al Depth of Well: _ epth to Product: _	26.80
Method	er to Purge: of Purging: f Sampling:	PUL briler	.3x3=0.	90 July height	/^^ of water column * 0.1631 fo	or 2" well or 0.6524 for 4" well) * 3 well vols
Time	Vol. Removed	Total Vol. Removed	pH (std_units)	Temp.	Conductivity	Comments

Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments
1458	0.25	0.25	7,410	60.8	11.07	Black HC or nr
1500	0.10	0.65	7.44	60.5	11.09	saa

Comments:	
Describe Deviations from SOP: Sampled of	ter purging 0.65 gallon
HICI VOA, Storted on Hacis	dry lad sacted with
FICT VOA, storted on HgC/2. Signature: Mix M	Date: 5/10/2020 <u>e/9/2028</u>

On management	3
ATT	/
	A proud member
Comment of the Commen	of WSP

## Property Total Vol. Removed (gallons) Std. units) Temp. Conductivity (us of ms) Commod (gallons) Commod (gallons	
Sample ID: MW- OG Sample Date: 346/2020 Sample Time: 10.25 Laboratory: Hall Environmental Analyses: BTEX (no mtbe's or tmb's) Depth to Water: 1.77 Total Depth of Well: 20.79 Depth to Product: Depth to Produc	
Sample Date: 3/6/2020 Laboratory: Hall Environmental Analyses: BTEX (no mtbe's or tmb's) Depth to Water: 2.79 Time: 10.25 Of Water to Purge: 5x. 1/31 = .42.3 = 2.45 Method of Purging: 24.45 Wethod of Sampling: 25.146 Total Vol. Removed (gallons) (std. units) (F) Conductivity (us of ms) AB 0.25 (1.25 1.25	***************************************
Analyses: BTEX (no mtbe's or tmb's) Depth to Water: 21.79 Time: 10:35 Depth to Product: 20.79 Method of Purging: Depth to Product: 20.19 Time Vol. Removed (gallons) (std. units) (F) (us of ms) Depth to Product: 20.79 Total Depth to Product: 20.79 Total Of Purging: Depth to Product: 20.79 Time Vol. Removed (gallons) (std. units) (F) (us of ms) Depth to Water to Purge: 20.79 Total Vol. Removed (gallons) (std. units) (F) (us of ms) Depth to Product: 20.79 Total Depth of Well: 20.79 Total Depth of Well: 20.79 Total Depth to Product: 20.79 To	
Time: 10:35 Depth to Product: Depth to	
of Water to Purge: Sx . \v3 = .82 \ 3 = 2.45 (height of water column * 0.1631 for 2* well or 0.6524 for the water column * 0.1631 for 2* well or 0.6524 for	
Time Vol. Removed (gallons) (std. units) (F) (us of ms) Commod (us of	
Time Vol. Removed (gallons) (std. units) (F) (us orms) Commod (gallons) (std. units) (F) (us orms) (or 4" well) * 3 well
Time Removed (gallons) (std. units) (F) (us of ms) Commod (std. units) (std	
010 0.15 0.70 5.07 59.4 5.18 Cloudy 18 012 0.15 0.25 1 5.09 59.4 5.17 50.01 0.50 1.5 5.04 59.2 5.21 50.01 0.50 2.5 5.05 59.2 5.20 50.00 0.50 2.5 5.03 59.2 5.20 50.00 0.50 2.5 5.03 59.2 5.20 50.00 0.50 2.5 5.03 59.2 5.20 50.00 0.50 2.5 5.03 59.2 5.20 50.00 0.50 2.5 5.03 59.2 5.20 50.00 50.00 0.50 2.5 5.00 59.2 5.20 50.00 50.00 0.50 2.5 5.00 59.2 5.20 50.00 50.00 0.50 2.5 5.00 59.2 5.20 50.00 50.00 0.50 2.5 5.00 59.2 5.20 50.00 50.00 0.50 2.5 50.00 59.2 5.20 50.00 5	nents
012 0.15 0.15 5.04 54.4 5.17 5.0 013 0.25 1 5.05 59.4 5.17 5.0 015 0.50 1.5 5.04 54.2 5.21 5.0 017 0.50 2 5.05 59.2 5.70 5.0 010 0.50 2.5 5.03 54.2 5.20 5.0	
015 0.50 15 5.04 54.2 \$.21 50 017 0.50 2 5.05 \$9.2 5.20 \$0 010 0.50 2.5 5.03 59.2 \$.20 \$0	ay lyt b
010 050 2 5.05 59.2 5.20 500 000 0.50 2.5 5.03 59.2 5.20 500	
	ier
	a
mments: (1) a + e/	
ador or sheen.	
0,000	
escribe Deviations from SOP:	

848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096

Project Location: Sullivan GC D #1E

Sample Time: 11200

Shipping Method: Hand Delivery

Sampler: Mary Mrdjenovich

Matrix: Groundwater

Groundwater Sample Collection Form

Project Name:	Sullivan GC D #1E	
Project Number:	017820002	

Sample ID: MW-10

Sample Date: 3/9/2020

Laboratory: Hall Environmental

Analyses: BTEX (no mtbe's or tmb's)

Depth to Water:

Time:

Total Depth of Well:

Depth to Product:

5 gallons (heigh of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Vol. of Water to Purge: 10.15 x 1.65

Method of Purging: Method of Sampling:

Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments
135	0.15	0.25	5,47	57.6	5,57	Clear, no odur no
0 57	0.15	0.50	5,49	57.6	5.55	500
0:38	0.75	0,75	5.51	57.9	5.55	Stahtly cloudy
0.39	0.25		5.38	57.7	5.63) 500
041	0,50	1,5	543	58.1	6.08	saa
013	0.50	2	5,45	58.3	7.06	50-9
045	0.50	2.5	5,44	58.6	7.37	saa
053	0.5	3	5,44	58.6	7-30	Saa
		4	5,51	58.6	6143	Sag
057		5	5,59	58.3	641	Saa
				-		
			-			

Comments:	Water	was.	slightly	cloudy.	no	color	Nδ
_ odor	OY	Sheen	3)'		-	

Describe Deviations from SOP:

Signature:

Date: 3/11/2000 3/9/2020

17=	7	
1	A proud me	mber

		water Sample Colle				
	roject Name: ect Number:	Sullivan GC D #1E		Р		Sullivan GC D #1E
FIO			_		Sampler:	Mary Mrdjenovich
		MW-07	- 3-			Groundwater
S	Sample Date:	3/9/2020 3 Hall Environmental	2020	CI-	Sample Time:	
	-	BTEX (no mtbe's or tn	nb's)	Sn	ipping Method:	Hand Delivery
Don	th to Water:		,	T-4-	I D + C 14 / II	21 97
Dep	Time:	11:05			I Depth of Well: epth to Product:	
Metho	ter to Purge: d of Purging: of Sampling:	PVL briler	1x3=3	MHeight o	f water column * 0.1631	L for 2" well or 0.6524 for 4" well) * 3 well vols
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments
124	0.25	0.25	5.39	61.2	18,29	clear, no odorical
126	0,25	0.50	5,52	621	18.30	399
129	0.75	0.75	5,89	61.9	18,33	Saa
131	0,05	1.5	5886	67	18,24	sad
133	0.5	2	5,46	61.9	18.37	Saa
135	0.5	2.5	5,43	1019	18.24	Saa M
1301	0,5	3	5,42	619	18.38	Stightly cloudy 10
)))
_						
nments	GW sheen	was slight	y cloud	Ly ver	y light b	rown, no odor,
1.7.	MOOK					
scribe [eviations fro	om SOP:				
			0			

11	r=	>	
May	1.2	A proud member of WSP	

848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096

Groundwater Sample Collection Form

Project Name:	Sullivan GC D #1E
Project Number:	017820002

Sample ID: NW-05 Sample Date: 3/9/2020 3 11120

Laboratory: Hall Environmental

Analyses: BTEX (no mtbe's or tmb's)

Depth to Water: Time: Project Location: Sullivan GC D #1E

Sampler: Mary Mrdjenovich

Matrix: Groundwater

Sample Time: 1225

Shipping Method: Hand Delivery

Total Depth of Well:

Depth to Product:

 $1631 = .85 \times 3 = 2$. Sheight of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Vol. of Water to Purge: Method of Purging: PVC

Method of Sampling: PUC

Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments
209	0.25	0.25	7.07	628	6:15	Clear, gray, H
015	0.75	0,50	7.07	63.1	612	sab 1
212	- U.C.	0.75	7.09	633	6.08	Saa
213	0.25	15	6.96	63.	6.13	Clear State H
7.17	0.5	1,5	6.81	63.1	6.10	
218	0.5	75	6.78	63.0	6.07	saa
210	0,3		41.10	Q), U	0.01	216 M
				1		

Comments:	Water	(5	clear	Very Gray Ho	rabar	Sheen	
				Will			

Describe Deviations from SOP:

Signature: Date:

Released to Imaging: 6/25/2021 10:25:52 AM

dor, sheen

11-1	7
Challen	A proud member

848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096

Groundwater Sample Collection Form

Project Name:	Sullivan	GC	D	#1E	

Project Number: 017820002

Sample ID: PR-

Sample Date: 3/9/2020

Laboratory: Hall Environmental

Analyses: BTEX (no mtbe's or tmb's)

Depth to Water:

22.34

Time:

Project Location: Sullivan GC D #1E

Sampler: Mary Mrdjenovich

Matrix: Groundwater

Sample Time: 13:00

Shipping Method: Hand Delivery

Total Depth of Well: Depth to Product:

Vol. of Water to Purge: 1.94 6 1163 = .32 3 = .96 (height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols

Method of Purging: DVC Method of Sampling: PVC

Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivity (us or ms)	Comments
245	0.25	0.25	7.55	622	6,55	Slightly along, gray, He od
248	0.25	0.75	7.73	62.2	6.52	Slightly claudy, gray, Hc odi Sheen Saa Gordy, black, HC odor, she

Comments: WHEV	Was	douda	Wack	had	41	ndar	and
aheen.	U.S.),	121.100	1		116	

Describe Deviations from SOP: 1 Jatek

Signature:

848 E. 2nd Ave. Durango, Colorado 81301 T 970.385,1096

Groundwater Sample Collection Form

Project Name: Sullivan GC D #1E	Project Location: Sullivan GC D #1E
Project Number: 017820002	Sampler: Mary Mrdjenovich
Sample ID: MW-II	Matrix: Groundwater
Sample Date: 3/9/2020 3 11 20 25	Sample Time: 1340
Laboratory: Hall Environmental	Shipping Method: Hand Delivery
Analyses: BTEX (no mtbe's or tmb's)	
Depth to Water: 20.19	Total Depth of Well: 27 L9
Time: 15:48	Depth to Product:

Vol. of Water to Purge: 7.5 \ .163 = 1.2 \ 3 = 3 \ Graph of (height of water column *0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging:

Method of Sampling:

Time	Vol. Removed	Total Vol. Removed (galions)	pH (std. units)	Temp. (F)	Conductivity (us orms)	Comments
316	0.25	0.75.	7.45	59,2	5.16	Clear white vegetation
318	0.15	0,50	7.41	79.0	4,94	odorisheen
319	0.25	0.15	7,40	54.2	5,25	Saa
320	0.50		7,40	59.2	5.03	Cloudy, 19t brown
325	0.50	1,5	7.46	59.0	5,29	Saal
327	6.50	2.5	1,42	59.0 59.0	5.20	saa
329	0.50	3	7.35		5.38	Saa
1334	0.50	3.5	121	59.2	5.36	Saa
334	6.50	4	719	59.2	5.38	saa
114	0.50		1. 1.	11.0	3178	Saca
		/	14			

comments: Whter was	closely, Vi	att brown	10	odor	tom
Describe Deviations from SOP:		J			
Signature: May M	28	Date	. 3/1/	12020	-2/ 9/20 3

	Ground	lwater Sample Colle	ı	_	Durango, Colorado 81301 T 970.385.1096	
Proje	oject Name:	: Semi-Annual Groundwate : 017818010	er Monitoring	P	Project Location: Sullivan GC D #1E	
					Sampler:	Travis Short Groundwater
		: MW 01				
	ample Date:			CI	Sample Time:	
	Laboratory: Hall Environmental Analyses: BTEX 8021		211	nipping Method:	Hand Delivery	
Dep		22.13		Total	Depth of Well:	22.19
		0.03 gal.				for 2" well or 0.6524 for 4" well) * 3 well
Method o	of Sampling:					
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
1		, , , , , , , , , , , , , , , , , , ,		3-6	J 1000 01 1110	
_						
				1		
					1	
		-				
mments:	<u>N</u>) Sample Coll	ected.	Insuf	ficient	amount of Wat
Describe I	Deviations f	irom SOP:	None			
ignature:	14)	Ew .			Date:_	6/23/202

848 E. 2nd Ave. Durango, Colorado 81301 T 970 385 1096

-	Ground	water Sample Coll	ection Form		-	Durango, Colorado 81301 T 970.385.1096
		Semi-Annual Groundwate 017818010	er Monitoring	P		Sullivan GC D#1E
-					Sampler:	Travis Short
	Sample ID:	WNOS		Matrix: Groundwater		
		6/23/2020 Hall Environmental		Sample Time: Shipping Method: Hand Delivery		
		BTEX 8021		SII	ipping Method: 1	Hand Delivery
Domi				70 . 1	D d CHI	92 (0
Бері	th to Water: Time:			De	Depth of Well: _epth to Product: _	-
	er to Purge: of Purging: f Sampling:	_		(height of v	water column * 0.1631 for	r 2" well or 0.6524 for 4" well) * 3 well vols
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
1						
					-	
-						
-						
7	1/11	- n ni - i - T	7			
Comments:		Sampled, I	nsothere	nt a	mant of	Water
Describe I	Deviations f	from SOP:	none			
Signature:	T	Que .			Date:	6/23/2020

LT Environmental, Inc. 848 E. 2nd Ave. Durango, Colorado 81301 Groundwater Sample Collection Form T 970.385.1096 Project Name: Semi-Annual Groundwater Monitoring Project Location: Sullivan GC D #1E Project Number: 017818010 Sampler: Travis Short Sample ID: MW 03 Matrix: Groundwater Sample Date: 6/23/2020 Sample Time: Laboratory: Hall Environmental Shipping Method: Hand Delivery Analyses: BTEX 8021 Depth to Water: 23.03 Total Depth of Well: 23.47 Time: Depth to Product: (height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging: Method of Sampling: Vol. Total Vol. Removed pН Temp. Conductivit Time **Comments** Removed (gallons) (std. units) (F) y (us or ms) NOT sampled. Insufficient abount of vuter none **Describe Deviations from SOP:** Signature: Date: 6/23/2020

Released to Imaging: 6/25/2021 10:25:52 AM

Groun	Groundwater Sample Collection Form			Durango, Colorado 81301 T 970.385.1096			
Project Nam Project Numbe	e: Semi-Annual Groundwater: 017818010	er Monitoring	Project Location: Sullivan GC D #1E Sampler: Travis Short				
Laborator	D: 04 e: 6/23/2020 y: Hall Environmental s: BTEX 8021	6/23/2020 Hall Environmental BTEX 8021		Matrix: Groundwater Sample Time: Hand Delivery			
	Depth to Water: 22.27 Time:			Depth of Well: epth to Product:	22.31		
ol. of Water to Purg Method of Purgin Method of Samplin			(height of v	vater column * 0.1631 fc	or 2" well or 0.6524 for 4" well) * 3 well vo		
Time Vol. Remove	Total Vol. Removed d (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments		
omments:	ot sanged.	Insufficie	ent ar	nount of	Vater		
Describe Deviations	from SOP:	none					
ignature:	ryl 7			Date:	6/23/2020		

	Groundwater Sample Collection Form				-/	Durango, Colorado 81301 T 970.385.1096	
		Semi-Annual Groundwater	er Monitoring	Project Location: Sullivan GC D#1E Sampler: Travis Short			
Sa	Sample ID: 6/23/2020 Laboratory: Hall Environmental Analyses: BTEX 8021			Matrix: Groundwater Sample Time: 1900 Shipping Method: Hand Delivery			
Deptl	Depth to Water: 25.27 Time: 1350			Depth of Well: epth to Product:			
	er to Purge: of Purging: Sampling:	0,7 gal baller baller		(beight of v	water column * 0.1631 :	for 2" well or 0.6524 for 4" well) * 3 well v	
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments	
						black, strong ador reacts with HCL	
omments:	60	lb Sample					
Describe D	eviations f	rom SOP:	None				
Signature:	Me	Pr			Date:	6/23/2020	

LT Environmental, Inc. Advancing Opportunity 848 E. 2nd Ave. Durango, Colorado 81301 Groundwater Sample Collection Form T 970.385.1096 Project Name: Semi-Annual Groundwater Monitoring Project Location: Sullivan GC D #1E Project Number: 017818010 Sampler: Travis Short Sample ID: MW 07 Matrix: Groundwater Sample Date: 6/23/2020 Sample Time: ///O Laboratory: Hall Environmental Shipping Method: Hand Delivery Analyses: BTEX 8021 Depth to Water: 26,54 Total Depth of Well: 3/,95 Time: 1050 Depth to Product: Vol. of Water to Purge: 2,6 gal, (height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging: Method of Sampling: Vol. Total Vol. Removed pH Temp. Conductivit Time Comments Removed (gallons) OFIC (std. units) y (us or ms) 1055 7.09 19,0 13.25 (Jear .5 no olor 1100 15 7.09 13.21 1105 7.09 bailed dry @ 1.5 gal Comments: Describe Deviations from SOP: None

Date:

6/23/2020

Released to Imaging: 6/25/2021 10:25:52 AM

Signature:

	Ground	water Sample Colle		Durango, Colorado 81301 T 970.385.1096		
		Semi-Annual Groundwate 017818010	er Monitoring	Project Location: Sullivan GC D #1E Sampler: Travis Short		
Sa	ample Date: Laboratory:	6/23/2020 Hall Environmental BTEX 8021		Sh	Matrix: Groundwater Sample Time: 1200 Shipping Method: Hand Delivery	
Dept	th to Water: Time:				Depth of Well: epth to Product:	26.19
	er to Purge: of Purging: f Sampling:	2 gal bailer bailer		(height of v	vater column * 0.1631 f	for 2" well or 0.6524 for 4" well) * 3 well vols
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
1142	0.5 0.5 0.5	0.5	7.07 7.07 7.07	20,2	7,15 3,90 1,91 1,91	Clear, no alor
Comments: Describe I	Deviations f	rom SOP:	None			
Signature:	t	Ju Ju			Date:	6/23/2020

LT Environmental, Inc. Advancing Opportunity 848 E. 2nd Ave. Durango, Colorado 81301 Groundwater Sample Collection Form T 970.385.1096 Project Location: Sullivan GC D #1E Project Name: Quarterly Groundwater Monitoring Project Number: 017818010 Sampler: Travis Short Sample ID: Matrix: Groundwater Sample Date: 9/28/2020 Sample Time: -Laboratory: Hall Environmental Shipping Method: Hand Delivery Analyses: BTEX 8021 Depth to Water: 23.91 Total Depth of Well: 24.01 Depth to Product: Time: (height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Vol. of Water to Purge: Method of Purging: Method of Sampling: Total Vol. Removed pН Vol. Temp. Conductivit Time Comments (gallons) (std. units) (F) y (us or ms) Removed

Comments:	Not s	sampled	Insoff	cur an	ant of wa	tor
Describe D	eviations fr	om SOP:				
Signature:	1 m			5,	Date:	9/28/2020

	Ground	water Sample Colle	ection Forn	n	_	Durango, Colorado 81301 T 970.385.1096
	Project Name: Semi-Annual Groundwater Monitoring					Sullivan GC D #1E
Proje	Project Number: 017818010				Sampler:	Travis Short
	Sample ID:	WMIO			Matrix:	Groundwater
	Sample Date: 6/23/2020 Laboratory: Hall Environmental		1	Sample Time:		
			Sh	ipping Method:	Hand Delivery	
	Analyses:	BTEX 8021				
Dept	th to Water:			Total	Depth of Well:	28,99
	Time:	1210		De	epth to Product:	
Method	er to Purge: of Purging:	bailer		(height of	water column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 wel
Method of	f Sampling:	bailer				
Time	Removed		pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
12/2	0.5	0.5	7.07	19.2	3.93	cleer, no odor
1218	0.5	/	7.07	16.6	3.90	1/2
220	2.5	2.5	7.07	15.9	3,88	
1724	1	3.5	7.07	15.7	3.88	cloudy, no adol
1726	45	Y	7.07	15,5	2.88	U
				13.10	4788	
	/=					
mments:		bailed dry a	P. U and			
		Control of the	7 701			
escribe E	Deviations f	rom SOP:	none	-		
		-				
om o trans	14	-				
gnature:	14	10			Date:	6/23/202

Grou	indwater Sample Co	llection Fori	n	-	Durango, Colorado 81301 T 970.385.1096	
	me: Semi-Annual Groundwher: 017818010	rater Monitoring	Project Location: Sullivan GC D #1E Sampler: Travis Short			
	1.		-			
	ID: ///		2		Groundwater	
	ory: Hall Environmenta	1	Shi	Sample Time:	Hand Delivery	
	ses: BTEX 8021		- 5111	pping Mediod.	Traile Derivery	
Depth to Wa	nter: 20.55 me: 1255			Depth of Well:		
11	me:	_	De	pth to Product:	ggilleres	
ol. of Water to Pu Method of Purg	ing: bailer		(height of w	ater column * 0.1631 t	for 2" well or 0.6524 for 4" well) * 3 well	
Method of Sampl	ing: <u>bailer</u>					
Time Vol Remo	ved (gallons)	(std. units)	Temp.	Conductivit y (us or ms)	Comments	
13/0 0.5		7.04	20,9	1441	clear, no adar	
1715 0.5		7.04	20.1	1456	Cloudy no afor	
omments:	bailed dry	@ 1-2-	5 991.			
Describe Deviatio	ns from SOP:	Not	16			
ignature:	myb			Date:	6/23/2020	

	Ground	water Sample Colle	ction Form		-	Durango, Colorado 81301 T 970.385.1096		
		Quarterly Groundwater M	onitoring	Project Location: Sullivan GC D #1E				
Proje	ct Number:	017818010		Sampler: Travis Short				
	Sample ID:				Matrix: (Groundwater		
	mple Date:			a.	Sample Time:			
1		Hall Environmental BTEX 8021		Sh	ipping Method: I	Hand Delivery		
	- 2					- 11-		
Dept	h to Water: Time:	22,45		Total De	Depth of Well:pth to Product:	22,47		
Method	er to Purge: of Purging: Sampling:			(height of w	vater column * 0.1631 for	2" well or 0.6524 for 4" well) * 3 well		
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments		
_								
				/				
					1	5		
					1			
nments:	NO	Sumple Collec	sted;	Inscft	scient ar	rount of White		
escribe I	Deviations 1	rom SOP:						
nature:	1	w			Date:	9/28/202		

_	Ground	water Sample Colle	ection Form	<u> </u>	<u> </u>	Durango, Colorado 81301 T 970.385.1096	
Project Name: Quarterly Groundwater Monitoring Project Number: 017818010				Project Location: Sullivan GC D #1E			
-					Sampler:	Travis Short	
		· MUOZ			_	Groundwater	
	ample Date:				Sample Time:		
J		Hall Environmental BTEX 8021		Sh	ipping Method: I	Hand Delivery	
Dept	th to Water:	dry		Total	Depth of Well:	22.70	
	Time:			De	epth to Product:		
of Wat	ter to Purge:			(height of s	water column * 0 1631 for	τ 2" well or 0.6524 for 4" well) * 3 well	
	of Purging:			(noight of 7.	7ater column 0,1031 tol	2 Well of 0.0524 for 4 Well) 5 Well	
	f Sampling:						
	Vol.	Total Vol. Removed	pН	Temp.	Conductivit		
Time	Removed	1	(std. units)	(F)	y (us or ms)	Comments	
/							
					1		
	+						
					+		
					+		
	-						
					+		
monte	161	no Sanpl	10 1-1/4	1 1			
Illenes.	CII7	110 3011	C (01/2	red			
scribe [Deviations f	irom SOP:					
	Me						

	Ground	water Sample Colle	ection Form	ı	_	Durango, Colorado 81301 T 970.385.1096	
Pro	oject Name:	Quarterly Groundwater M	lonitoring	Project Location: Sullivan GC D #1E			
	Project Number: 017818010 Sample ID: PR-7				Sampler:	Travis Short	
						Groundwater	
		9/28/2020			Sample Time:	-	
1		Hall Environmental BTEX 8021		Sh	ipping Method:	Hand Delivery	
Dept	th to Water: Time:	22.82		Total De	Depth of Well: epth to Product:	23.00	
l. of Wate	er to Purge: of Purging:			(height of	water column * 0,1631 fc	or 2" well or 0.6524 for 4" well) * 3 well v	
	f Sampling:	Total Vol. Removed	pН	Temp.	Conductivit		
Time	Removed		(std. units)	(F)	y (us or ms)	Comments	
					5		
	In Carry						
				1			
		1					
					-		
mments:	Not	Sanfled ,	th office	nt av	sount of	Mater	
escribe D	Deviations 1	from SOP:					
gnature:					Data	0/00/000	
şnature:	11				Date:	9/28/2020	

848 F 2nd Ave

_	Ground	water Sample Colle	ection Form			Durango, Colorado 81301 T 970.385.1096
Project Name: Quarterly Groundwater Monitoring Project Number: 017818010 Sample ID:			Project Location: Sullivan GC D #1E Sampler: Travis Short			
			Matrix: Groundwater Sample Time: Hand Delivery			
Depth to Water: 23.14 Time:		Total Depth of Well: Depth to Product: 27.12				
Method	ter to Purge: of Purging: of Sampling:			(height of wa	ater column * 0.1631 for 2"	well or 0.6524 for 4" well) * 3 well
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
	1/-	- 2014				
iments:	_/// >	SarPK Collec	ted, M.	advut	in bell.	
scribe I	Deviations f	irom SOP:				
nature:	1	Am			Date:	9/28/202

	Ground	water Sample Colle	ection Form		-	Durango, Colorado 81301 T 970.385.1096
		Quarterly Groundwater M	onitoring	P		Sullivan GC D#1E
Proje		017818010			Sampler:	Travis Short
Sample ID: MWOY					Matrix:	Groundwater
Sample Date: 9/28/2020 Laboratory: Hall Environmental Analyses: BTEX 8021				Sample Time:		
			Shipping Method: Hand Delivery			
Depth to Water: 22.30			Total	Depth of Well:	22.74	
	Time:			De	epth to Product:	-
l. of Wat	er to Purge:			(height of	water column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 well
	of Purging:			(noight of	water continuit (.1651 F	or 2 well of 0.0524 for 4 well) 3 well
lethod o	f Sampling:					
	Vol.	Total Vol. Removed	pH	Temp.	Conductivit	
Time	Removed	(gallons)	(std. units)	(F)	y (us or ms)	Comments
						_
			d. Insc	stice.	nt amoun	t of Whiter
escribe I	Deviations f	from SOP:				
<						2/20/2
nature:	11	4	_		Date:	9/28/202

LT Environmental, Inc. Advancing Opportunity 848 E. 2nd Ave. Durango, Colorado 81301 Groundwater Sample Collection Form T 970.385.1096 Project Name: Quarterly Groundwater Monitoring Project Location: Sullivan GC D #1E Project Number: 017818010 Sampler: Travis Short Sample ID: MUOT Matrix: Groundwater Sample Date: 9/28/2020 Sample Time: Laboratory: Hall Environmental Shipping Method: Hand Delivery Analyses: BTEX 8021 Depth to Water: 27.95 Total Depth of Well: Time: Depth to Product: Vol. of Water to Purge: (height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging: Method of Sampling: Vol. Total Vol. Removed pН Temp. Conductivit Time **Comments** Removed (gallons) (std. units) (F) y (us or ms) NO SAMPLE COLLECTED, Product in Well **Describe Deviations from SOP:** Signature: 9/28/2020 Date:

848 E. 2nd Ave. Durango, Colorado 81301

Project Sam Samp Lab	Number: mple ID: ple Date: boratory: Analyses:	9/28/2020 Hall Environmental	onitoring	Pi		Sullivan GC D #1E Travis Short	
San Sam Lab	mple ID: ple Date: boratory: Analyses:	MWOG 9/28/2020 Hall Environmental			Sampler:	Travis Short	
Samı Lat A	ple Date: boratory: Analyses:	9/28/2020 Hall Environmental					
Samı Lat A	ple Date: boratory: Analyses:	9/28/2020 Hall Environmental			Matrix:	Groundwater	
Lat A	boratory: Analyses:	Hall Environmental		Matrix: Groundwater Sample Time: // Zo			
A	Analyses:			Sh	ipping Method:		
Depth t	o Water:				11 8		
Deptil t	o water.	25,98 1/20		Total	Donth of Walls	20 90	
	Time:	1/20		De	Depth of Well:	26.00	
			1-	7	opin to Froduct.		
of Water t	to Purge:	0.92x0.1601=0.15.	4310.45	(height of	water column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 well	
vietnoa of S ethod of Sa	Purging:	bailer					
emon of 28	ampling:	bailer					
Time _	Vol.	Total Vol. Removed	pН	Temp.	Conductivit	Comments	
R	emoved	(gallons)	(std. units)	(F)	y (us or ms)		
					0	black strong	
						HC Odor	
	1						
_					1		
				1			
_						1	
	-						
					1		
		C 01					
ments:	6r	ab Sample					
scribe Dev	viations f	rom SOP:					
nature:						9/28/202	

848 E. 2nd Ave. Durango, Colorado 81301

Pro	ject Name:	Quarterly Groundwater N	Monitoring	Project Location: Sullivan GC D #1E		
Projec	Project Number: 017818010					Travis Short
5	Sample ID:	11200			Matriv.	Groundwater
	Sample Date: 9/28/2020			-	Sample Time:	
		Hall Environmental		Sh		Hand Delivery
	Analyses:	BTEX 8021		-		
Denth	to Water	76.90		Total	Denth of Well:	2/0/
Боры	Time:	76.90 1200		- De	Depth of Well: epth to Product:	31.91
		-,			pui to riodact.	
ol. of Wate	r to Purge:	S. 01x0.1631= .81:	2x7- 12.45	(height of y	vater column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 we
Method o	of Purging:	bailer	7.4- 10	(integrit of	, , , , , , , , , , , , , , , , , , ,	or a work or oldstation a world a week
Method of						
-	Vol.	Total Vol. Removed		(III)		
Time	Removed	(gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
1200	G.S	0-5	6.49	66.7	18.56	Clear, no abor
1202	0.5	1	6.98	65.7	14.72	9001/100001
1204	0.5	1-5	6.98	65.1	18.8E	
1206	0.5	2	6.98	65.1	15.89	11/
1708	0.5	2.5	6.98	65.0	18.87	
			V			
					No.	
	_					
mments:						
Describe De	evistione f	rom SOD.	none			
COLING D	c 11auvii3 l	TOM SOT,	INIT			
	_/					
gnature:	11 1					

	me: Quarterly Groundwater M	Aonitoring	Pr		Sullivan GC D #1E		
	er: 017818010				Travis Short		
Sample I Sample Da	D: <u>Mw8</u> tte: 9/28/2020			Matrix: Sample Time:	Groundwater		
Laborato	ry: Hall Environmental		Shipping Method: Hand Delivery				
Analyses: BTEX 8021							
Depth to Wat				Depth of Well:			
Tin	ie:		De	pth to Product:	23.75		
Water to Purp	ge:		(height of w	vater column * 0.1631 i	for 2" well or 0.6524 for 4" well) * 3		
thod of Purgir	ng: —		(114.6115	and committee of the co	01 2 Woll 01 01032 1 101 1 1101., C		
nod of Samplir							
me Vol. Remov		pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments		
		1					
	1						
_							
_							
ents: NOH	- Sampled +	Ocales +	10/10	11			
1 01	MITTER, P	100001	1700	11			

848 E. 2nd Ave. Durango, Colorado 81301 T 970 385 1096

Groundwater Sample Collection Form

G	Fround	water Sample Colle	ection Forn	n	2	Durango, Colorado 81301 T 970.385.1096
Projec	t Name:	Quarterly Groundwater M	onitoring	Pı		Sullivan GC D #1E
Project N	t Number: 017818010			Sampler:	Travis Short	
San	nple ID:	MWOG			Matrix:	Groundwater
Samp	le Date:	9/28/2020			Sample Time:	-
		Hall Environmental		Sh	ipping Method:	Hand Delivery
A	nalyses:	BTEX 8021				
Depth to	Water:	22.73		Total	Depth of Well:	26.52
	Time:	1220		De	Depth of Well: epth to Product:	With
l. of Water to Method of F Method of Sa	urging:	3.79×0.1631=0.63 beiler benier	(3= [1.85]	(height of v	vater column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 well
Time I	Vol.	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
	7-5	0.5	7.81	65.8	5.46	Clear no afor
225 0	7-5	1	7.81	65.4	5.41	- U
mments:		rom SOP:	none	9011		
gnature:	4	ing			Date:	9/28/202

848 E. 2nd Ave. Durango, Colorado 81301

	lwater Sample Colle				T 970.385.1096
Project Name: Quarterly Groundwater Monitoring Project Number: 017818010		Pr	-	Sullivan GC D #1E	
Project Number: 01/818010			Sampler:	Travis Short	
	:_MW10				Groundwater
Sample Date			01	Sample Time:	
	Hall Environmental BTEX 8021		Sh	ipping Method:	Hand Delivery
	-		T-4-1	D4. CW.11.	20 2
Depth to Water Time			Total De	Depth of Well: pth to Product:	21.03
	1300			P. 10 1 10 day	
. of Water to Purge Method of Purging Iethod of Sampling		= (4.4)	(height of v	vater column * 0.1631 f	or 2" well or 0.6524 for 4" well) * 3 wel
Vol.	Total Vol. Removed	pН	Temp.	Conductivit	
Time Removed		(std. units)	(F)	y (us or ms)	Comments
302 0.5	0.5	751	63.3	83.01	Clear, no odor
304	1.5	7.64	61.3	82.61	1
1306	2.5	7.75	60.8	82.55	
1308 1	3.5	7.78	60.5	82.55	
1312 -5	45	7.79	60.0	82.51	V
nments:					
escribe Deviations	from SOP:	none			
	2				

848 E. 2nd Ave. Durango, Colorado 81301

Groundwater Sample Collection Form

Ground	vaier Sample Colle	cuon Torn	· ·	-	T 970.385.1096
2	Quarterly Groundwater M	onitoring	Pr		Sullivan GC D #1E
Project Number:	017818010			Sampler:	Travis Short
Sample ID:	MWII			Matrix:	Groundwater
Sample Date:				Sample Time:	1340
	y: Hall Environmental		Sh	ipping Method:	Hand Delivery
Analyses:	BTEX 8021				
Depth to Water:	21.20		Total	Depth of Well:	27.78
Time:	1325		De	Depth of Well: pth to Product:	
Vol. of Water to Purge: Method of Purging: Method of Sampling:	6.58XO1631= baijer baijer	1.07 x 3 =	3.2 height of v	vater column * 0.1631 f	for 2" well or 0.6524 for 4" well) * 3 well vols
Time Vol.	Total Vol. Removed	pН	Temp.	Conductivit	Comments
Removed		(std. units)	(F)	y (us or ms)	
1226 0.5	0.5	7.30	69.8	3.08	Cler no odor
1228 0.5	l	7.30	69,7	3.08	V
		-			
1 - 4	1 100	1 - 1		1	
Comments: baile	ed dry @	gai			
Describe Deviations	from SOP:	Pone			
Signature:	To			Date:	9/28/2020

LT Environmental, Inc. 848 E. 2nd Ave. Durango, Colorado 81301

	Ground	water Sample Colle	ection Form		_	848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096
		Quarterly Groundwater M 017818010	onitoring	Pı	roject Location: Sul Sampler: Tra	
,	Sample ID: MW12			_		
S	Sample ID: ample Date:				Matrix: Gro	
b		Hall Environmental		Sh	ipping Method: Har	
		BTEX 8021				
Dep	th to Water:	24.40		Total	Depth of Well: -	
	Time:				epth to Product:	7.75
	ter to Purge:			(height of v	vater column * 0.1631 for 2" v	well or 0.6524 for 4" well) * 3 well
	of Purging: of Sampling:					
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
	1					
1						
				1		
mments	Not	sumpled p	rodut.	nlel	1	
Describe	Deviations 1	from SOP:				
ignature					Date:	9/28/202
0	1	A.W			Datt.	7,20,202

1	1	>	

	Groundy	water Sample Colle	ection Form	ı	.17	848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096
		Quarterly Groundwater Mo TE0178120002	onitoring	P		Sullivan GC D #1E Caitlin McGinn
Sam Lal	ple Date: boratory:	13-15-30 Hall Environmental BTEX 8021		Sh	Matrix: Sample Time: ipping Method:	Groundwater Hand Delivery
Depth t	to Water: Time:	əə.jj		Total De	Depth of Well: epth to Product:	29.30
l. of Water of Method of Method of S	Purging:	PVL bailer		(height of	water column * 0.1631 fi	or 2" well or 0.6524 for 4" well) * 3 well ve
Time R	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
				1		
nments:	nsuf	ficient con	nount	nf un	HIC NOT	Sampled
milents.		from SOP:	TOWN (100.1001	Sampua.

1	1	5	1	

848 E. 2nd Ave.

		water Sample Colle			-	T 970.385.1096
Project Name: Quarterly Groundwater Monitoring Project Number: TE0178120002			P		Sullivan GC D #1E Caitlin McGinn	
Sample ID: Sample Date: Laboratory: Hall Environmental Analyses: BTEX 8021		Matrix: Groundwater Sample Time: Shipping Method: Hand Delivery				
Dept	n to Water: Time:				Depth of Well: _epth to Product: _	
Aethod o	er to Purge: of Purging: Sampling:	PVC builer	-	(height of	water column * 0.1631 for	r 2" well or 0.6524 for 4" well) * 3 we
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
	1					
			1			
				1		
ments:	18/211	dry. Not	SUNA	100		
incires.	0000	ary. Not	Sump	ue.		
cribe D	eviations f	rom SOP:				

1	1	-		1
		7		4
			ш	

	Ground	lwater Sample Colle	ection Form	l .	-	Durango, Colorado 81301 T 970.385,1096
Project Name: Quarterly Groundwater Monitoring Project Number: TE0178120002				Pı	roject Location: Si Sampler: C	ullivan GC D #1E aitlin McGinn
Sa	Laboratory:	: Mu - 03 : 12 · 15 · 20 : Hall Environmental : BTEX 8021		Matrix: Groundwater Sample Time: 1316 Shipping Method: Hand Delivery		
Depth to Water: 23.15		Total De	Depth of Well:epth to Product:	23.61		
icinou (er to Purge: of Purging: f Sampling:		5	(height of v	water column * 0.1631 for 2	2" well or 0.6524 for 4" well) * 3 w
Three	Vol. Removed	Total Vol. Removed	pH (std. units)	Temp.	Conductivit y (us or ms)	Comments
			1			
						_
nents:	Grat	o sumpled	due to	o lit	the way	ter_
ribe D	eviations fi	rom SOP:	Did not	bai	1 0.2 ga	llons.
ature:	Court	un un	109.		Data: ()-15-20

1	1	>)

Pr		water Sample Colle Quarterly Groundwater M.			roject I contiant S	T 970.385.1096
Project Number: TE0178120002 Sample ID: Sample Date: ID: ID: ID: ID: ID: ID: ID: ID: ID: ID				P		Sullivan GC D #1E Caitlin McGinn
		Matrix: Groundwater Sample Time: Shipping Method: Hand Delivery				
lethod	er to Purge: of Purging: f Sampling:	PUC bailer PUC beginer	,	(height of	water column * 0.1631 for	2" well or 0.6524 for 4" well) * 3 we
ime	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
			_			
				1		
nents:	Not	sampled.1	nsu ffic	ient	amoun	t of water
ribe I	eviations f	rom SOP:				
	<u> </u>	n mes				

1	1	>)

	Ground	water Sample Colle	ection Form	1	D.	848 E. 2nd Ave. Jurango, Colorado 81301 T 970.385.1096
Prα Projε	oject Name: ect Number:	: Quarterly Groundwater Mo	onitoring	Pı	roject Location: Sul Sampler: Cai	
Sa	ample Date: Laboratory:	12 · 15 · 20 Hall Environmental		Sh	oundwater —— and Delivery	
Dept	Analyses: BTEX 8021 Depth to Water: 23.30 Time:		Total Depth of Well: Depth to Product: 22.80			
lethod (er to Purge: of Purging; f Sampling:	: PUL builer		(height of v	water column * 0.1631 for 2"	well or 0.6524 for 4" well) * 3 well
There	Vol. Removed	Total Vol. Removed		Temp. (F)	Conductivit y (us or ms)	Comments
ments:	Prod	uct in we	.u. N	ot so	in pled.	
scribe I	Deviations f	from SOP:				
nature:	Cail	- mea.			Date:	12:15:20

11	15	

	Ground	water Sample Colle	ection Form		- "	Durango, Colorado 81301 T 970.385.1096		
		Quarterly Groundwater M TE0178120002	onitoring	Project Location: Sullivan GC D #1E Sampler: Caitlin McGinn				
Sample ID: MW-06 Sample Date: 12.15.20 Laboratory: Hall Environmental Analyses: BTEX 8021 Depth to Water: 26.92 Time:		Matrix: Groundwater Sample Time: 10/13 Shipping Method: Hand Delivery Total Depth of Well: 28 25 Depth to Product:						
						Tethod	er to Purge: of Purging: f Sampling:	PVC builer
ime	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments		
1						Black, strong oda		
				_				
				1				
nente	Grah	SUM DISA		ls interes		1111111		
acto	dwl	HCL voois	. Voas	not	preserve	d.		
	Deviations f					e gallons.		
	0 11	ima						

1	12	

Sample ID: MW-07 Sample Date: 12-15-20 Laboratory: Hall Environmental Analyses: BTEX 8021		Sh	Sample Time: hipping Method:			
Dep	th to Water: Time:	24.72			Depth of Well: epth to Product:	
Method	er to Purge: of Purging: f Sampling:		75	(height of	water column * 0.1631	for 2" well or 0.6524 for 4" well) * 3 well vols
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
1243		-50	7.41	1-61	19.08	cloudy no odor Ishoen
245		15	7.57	4.6u	19.16	(1)
248		Igal	7.63	42.1	18.98	(C \)
153		agal	7.74	101.2	18.88	Brown, daudy no molaris
1257		2 ú gal	7.75	59.9	18.03	(())
			The state of the s			
			1			

Released to Imaging: 6/25/2021 10:25:52 AM

1	1	5	

Project Name: Quarterly Groundwater Monitoring Project Number: TE0178120002 Sample ID: Sample Date: 13 15 30 Laboratory: Hall Environmental Analyses: BTEX 8021 Depth to Water: 34.33 Time: 1. of Water to Purge: Method of Purging: PVC MAILE		onitoring	Project Location: Sullivan GC D #1E Sampler: Caitlin McGinn			
			Groundwater ————————————————————————————————————			
		Total Depth of Well: Depth to Product: (height of water column * 0.1631 for 2" well or 0.6524 for 4" well				
lethod of	Sampling:	PVC builer				
Thrue	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
	1					
	100					
						_
mments:	Produ	ut in well	Not s	umpl	eel.	
escribe D	eviations f	rom SOP:				

,,,,

WCD HCA Inc

Proje Sa	ect Number: Sample ID: ample Date: Laboratory:	Quarterly Groundwater Mo TE0178120002 Output Quarterly Groundwater Mo TE0178120002 Output Quarterly Groundwater Mo TE0178120002 Hall Environmental BTEX 8021	onitoring		Sampler: Matrix: Sample Time:	Sullivan GC D #1E Caitlin McGinn Groundwater 1359 Hand Delivery
Dept		22.42		Total De	Depth of Well: pth to Product:	26.57
Method	of Purging:	2 gallons PVC Bailer PVC Bailer		(height of v	vater column * 0.1631	for 2" well or 0.6524 for 4" well) * 3 well
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
49		.92	7.46	58.1	68.4	Cloudy, no odor 15
57		.50	7.49	59.4	4.82	(('1)
53		100 1100	7.7	40.4	5.14	d JI
59		1gallon 2gallon	7.79	58 3	4.80	(1 N

Comments:	
Describe Deviations from SOP:	
Signature: Calth Meds	Date: 18.14-20

112

WSP USA Inc.

848 E. 2nd Ave. Durango, Colorado 81301 T 970,385.1096

Groundwater Sample Collection Form	——————————————————————————————————————
Project Name: Quarterly Groundwater Monitoring Project Number: TE0178120002	Project Location: Sullivan GC D #1E Sampler: Caitlin McGinn
Sample ID: MW-ID Sample Date: 12.15.20 Laboratory: Hall Environmental Analyses: BTEX 8021	Matrix: Groundwater Sample Time: 1424 Shipping Method: Hand Delivery
Depth to Water: 19.55 Time:	Total Depth of Well: 29 04 Depth to Product:
Vol. of Water to Purge: Method of Purging: Method of Sampling: PVL bayler	(height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols

Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
1413		25	7.85	547	5.29	clear, no oderish
1415		.50	7.95	58.3	5.36	11 11
1414		.75	8.02	58 11	5.55	0. 10
1418		ojal	8.04	58.5	4.07	() H
1421		7961	852	54.5	8 82	(N
1424		2.75 300 cm	8.24	554	452	UN
	-	4 tegal com				
		,				
	-					
	+					
-	+				-	
_	-					
	-					
-	-					
_						
	-					
	-					

Comments:	Sampled	@ a.`	75 gallons	, well	Started	bailing	dry.
Describe I	Deviations from S	SOP:	Sampud	bebou	re bails	ng 4.4	gallons
Signature:	Caiti 4	neas			Date:	12 15 6	20

111)
-----	---

and the contract of the contra	lection Fori	m	- "	848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096
	Monitoring	P		Sullivan GC D #1E Caitlin McGinn
Date: tory: Hall Environmental		- Sh	Sample Time:	Groundwater 1358 Hand Delivery
ater: 20.87		Total Do	Depth of Well:	<u>27.87</u>
ing: PVC Bailer		(height of	water column * 0.1631	for 2" well or 0.6524 for 4" well) * 3 well vols
	d pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
. 32	7.52	56.8	5.85	Brown, asudy, no odor
-50		-		(())
1001		28.1		(1 //
				"(N
				/L N
ons from SOP:				
e Cut y	nber: TE0178120002 e ID: MW-11 Date: ttory: Hall Environmental yses: BTEX 8021 fater: JO.87 Time: PVC FALLER	Total Vol. Removed (gallons) Total Vol. Removed (gallons) Total Vol. Removed (std. units) Total Vol. Removed (std. units) Total Vol. Removed (std. units) Total Vol. Removed (std. units)	TE0178120002	TE0178120002 TE0178120002 TE0178120002 TE0178120002 Matrix: Sample Time: Shipping Method: Shipping Metho

1	1	5		
			ш	

Pro	viect Name	Quarterly Groundwater Me	onitoring	D ₁	roject Location: S	ullivan GC D #1E
Project Number: TE0178120002				Caitlin McGinn		
1	Sample ID: MW-12			Matrix: C	Froundwater	
Sa	mple Date:	12.15.30			Sample Time:	<u> </u>
1		Hall Environmental BTEX 8021		Sh	ipping Method: H	land Delivery
Dept	h to Water:	24.15		Total	Depth of Well:	24.86
	Time:	-		De	Depth of Well:epth to Product:	23.65
Wate	er to Purge:	_		(height of	water column * 0.1621 for	2" well or 0.6524 for 4" well) * 2
thod	of Purging:	PUL MAJER		(neight of	water column + 0.1031 for	2" well or 0.6524 for 4" well) * 3
od of	Sampling:	PVC briller				
че	Vol.	Total Vol. Removed	^	Temp.	Conductivit	Comments
/	Removed	(gallons)	(std. units)	(F)	y (us or ms)	- Commonto
				1		
_						
-						
_						1
			-		-	
-						
						_
4	Dead	. 1	0 1-1	1200	241 97	
ents:	Produ	ut in well	, NOT	Sam	puel	
ihe D	eviations f	rom SOP				
-~ ·	WI CLEURIST C	I CILL D'OL I				

11	1	

	Ground	water Sample Colle	ection Forn	1		848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096
Proje	oject Name: ct Number:	Quarterly Groundwater Mo	onitoring	Pı		: Sullivan GC D #1E : Caitlin McGinn
Sample ID: PR - 1 Sample Date: 12 15 20			(Matrix: Sample Time:	Groundwater	
I	Laboratory:	Hall Environmental BTEX 8021		Sh		Hand Delivery
Deptl	Depth to Water: 24.53 Time:			Depth of Well: epth to Product:		
Aethod o	er to Purge: of Purging:	PVC bailer		(height of	water column * 0.1631	for 2" well or 0.6524 for 4" well) * 3 well
Fime	Vol. Removed	Total Vol. Removed (gallons)		Temp.	Conductivit y (us or ms)	Comments
	No.	(Sanono)	(Stu. times)	(I·)	y (us of his)	
	-					
						я
				_		
					11 11	
ments:	Prod	nut in i	vell, r	ID+ SU	impled.	
scribe D	Deviations f	from SOP:				
nature:	Pait	i mes	-		Date:	12.15.20

	-	
00		

	Ground	water Sample Colle	ection Form	• •	.1,	848 E. 2nd Ave. Durango, Colorado 81301 T 970.385.1096
		Quarterly Groundwater Mo TE0178120002	onitoring	Pr		ullivan GC D #1E aitlin McGinn
Sa	mple Date: Laboratory:	PR - 2 12 · 15 · 20 Hall Environmental BTEX 8021		Sh	Matrix: G Sample Time: ipping Method: H	roundwater and Delivery
Depti		22.76		Total De	Depth of Well:	29.76
Method	er to Purge: of Purging: Sampling:	PUC bailer PUL bailer	-	(height of v	water column * 0.1631 for	2" well or 0.6524 for 4" well) * 3 well v
Time	Vol. Removed	Total Vol. Removed (gallons)	pH (std. units)	Temp. (F)	Conductivit y (us or ms)	Comments
				-		
nments:	Produ	uet in we	U, not	Sam	pred.	
escribe D	Deviations 1	from SOP:				
gnature:	Cait	lin modi	-		Date:	12-15-20

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 21578

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	21578
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

- 1	Created	Condition	Condition
- [1	Ву		Date
Г	csmith	OCD Accepted the 2020 annual report, with the following conditions - Operator to fully delineate ground water plum before submitting next annual report continue active removal of psh and	6/25/2021
		LNAPI on ground water surface continue 90% run time on SVE system all other approved conditions remain.	