Received by QCD: 9/26/2019 10:39:40 AM tate of New Mexico

Oil Conservation Division

T 2	-	0 -	- A - A
Paga	10	+ 1	11/
I uge	10	1 1	07

Incident ID	nRM2004849570
District RP	1RP-1780
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection).

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Amy Barnhill	Title: Waste and Water Specialist
Signature:	Date: 9-26-19
email: <u>ABarnhill@chevron.com</u>	Telephone: <u>432-687-7108</u>
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: Bradford Billings	Date:06/29/2021

Enviro. Spec. A

Title:

2

Printed Name:

Bradford Billings

CLOSURE REPORT

BRUNSON ARGO TANK BATTERY #5 NMOCD REF. #1RP1780 EPI REF: 200130

UL-D (NW¼ OF THE NW¼) OF SECTION 10, T22S, R37E ~6 MILES SOUTHEAST OF LOVINGTON LEA COUNTY, NEW MEXICO LATITUDE: N 32° 24' 33.64" LONGITUDE: W 103° 09' 18.70"

FEBRUARY 2008

PREPARED BY:

ENVIRONMENTAL PLUS, INC. P. O. BOX 1558 2100 AVENUE O EUNICE, NEW MEXICO 88231

PREPARED FOR:

Chevron

ENVIRONMENTAL PLUS, INC.

CONSULTING AND ENVIRONMENTAL REMEDIATION

17 May, 2008

Mr. Larry Johnson Environmental Engineer New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

RE: Closure Report

Chevron USA Brunson Argo Tank Battery #5 UL-D (NW¹/4 of the NW¹/4) of Section 10, T22S, R37E Latitude: N32° 24' 33.64"; Longitude: W103° 09' 18.70" Lea County, New Mexico NMOCD Ref. #1RP 1780; EPI Ref. #200130

Dear Mr. Johnson:

On behalf of Chevron USA, Environmental Plus, Inc. (EPI) submits the following *Closure Report Letter* to addresses remediation of an abandoned, decommissioned tank battery facility. Soil impacts are historical in nature with no data indicating release date(s), volume and nature of release fluid(s) or efforts to remediate the release area(s). For clarity and cross reference elimination purposes, the *Closure Report Letter* offers Site Background history, Site Delineation, Remedial Activities, Analytical Data and Conclusion.

Site Background

The Site is located in UL-D (NW ¼ of the NW ¼) of Section 10, T22S, R37E at an elevation of approximately 3,405 feet above mean sea level (amsl). The property is owned by the Priscilla Brunson Moody Estate (c/o Mr. Charles James Moody). A search for water wells was completed utilizing the <u>New Mexico Office of the State Engineers</u> website and a database maintained by the United States Geological Survey (USGS). One (1) well (USGS #1) exist within a 1,000 feet radius of the release site. No surface water exists within a 1,000-foot radius of the release area (reference *Figure 2*). Groundwater data taken from domestic and USGS water wells within a one (1) mile radius indicates an average water depth of approximately sixty-six (66) feet below ground surface (bgs). Utilizing this information, New Mexico Oil Conservation Division (NMOCD) Remedial Goals for this Site were determined as follows:

Parameter	Remedial Goal
Benzene	10 parts per million
BTEX	50 parts per million
TPH	100 parts per million

 \ast Chloride residuals may not be capable of impacting local groundwater above NMWQCC Ground Water Standards of 250 mg/L

- A. Site Delineation On April 26 and 27, 2007 EPI mobilized at the tank battery to direct the location and depth of five (5) soil borings. Four (4) soil borings were advanced within confines of the former tank battery area and a fifth (5th) approximately two hundred fifty-seven (257) feet southeast for background reference data (reference *Figure 5*). During advancement of soil borings, soil samples were collected at two (2) foot and five (5) foot intervals initially, then at five (5) foot increments thereafter to total depth (TD) of the soil boring. Information regarding lithology of soil borings is provided in Attachment III, *Soil Boring Logs* (reference *Table 2* for laboratory analytical results).
- B. Remedial Activities From February 7, 2008 through March 5, 2008, approximately 5,190 yds³ of impacted material were excavated from a combined surface area of $\pm 10,400$ -ft² at depths ranging from 1- to 17-feet bgs. Impacted soil was transported to Sundance Services, Inc. for disposal. Caliche from the production pad was excavated to ± 14 -ft bgs in the northern sector, ± 17 -ft bgs in the southern sector and ± 8 -ft bgs in the center sector of excavation. Vertical excavation of impacted material finalized upon reported analytical results within NMOCD acceptable parameters. Lateral excavation activities continued until physical constraints impeded further delineation in the south, west and north sidewalls. The entire excavation bottom was backfilled with approximately 1,366 yds³ of clean caliche to within 5-ft of original ground surface. A 40-mil polyethylene liner was installed on bottom and vertically up the north, south and west sidewalls of the excavation as to deter lateral and vertical migration of contaminants. The polyethylene liner was sandwiched between one (1) foot layers of cushion material. Entire excavation was backfilled with approximately $3,564 \text{ yds}^3$ of clean topsoil from top of cushion material to original ground elevation. The disturbed area was contoured to allow natural drainage and seeded with an approved Blue Grama grass blend.
- C. Analytical Data On February 12, 2008 nine (9) soil samples were collected from the south sidewall and bottom of excavation. Based on field analyses, four (4) sidewall soil samples were transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH concentrations ranged from 1,996 mg/Kg to 2,980 mg/Kg. Chloride concentrations were reported below remedial threshold goal of 250 mg/Kg (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

On February 18, 2008 fifteen (15) soil samples were collected from the west and east sidewalls and bottom from the southern sector of excavation. Based on field analyses, twelve (12) soil samples were transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH concentrations ranged from 106.4 mg/Kg to 256.9 mg/Kg in the west sidewall and <51.6 mg/Kg to 815.8 mg/Kg on excavation bottom. TPH concentrations in the east sidewall were reported below the NMOCD remedial threshold of 100 mg/Kg. Chloride concentrations were reported below the remedial threshold goal of 250 mg/Kg for all soil samples (reference *Figure 6* for locations and *Table 3 for laboratory analytical results*).

On February 19, 2008 four (4) soil samples were collected from the east sidewall of excavation and transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH constituent and chloride concentrations were reported below the NMOCD remedial threshold and remedial goal of 100 mg/Kg and 250 mg/Kg, respectively (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

On February 21, 2008 fifteen (15) soil samples were collected from the north sidewall and bottom of excavation. Based on field analyses, ten (10) soil samples were transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH concentrations ranged from <50.7 mg/Kg to 14,920 mg/Kg in the north sidewall and reported below the NMOCD remedial threshold of 100 mg/Kg on bottom. Chloride concentrations ranged from 130 mg/Kg to 611 mg/Kg in the north sidewall and <5.72 mg/Kg to 522 mg/Kg on bottom (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

On February 22, 2008 ten (10) soil samples were collected from the sidewalls and bottom from the northern sector of excavation and transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH concentrations were reported below the NMOCD remedial threshold of 100 mg/Kg for all soil samples. Chloride concentrations ranged from 32 mg/Kg to 752 mg/Kg in the sidewalls and 48 mg/Kg to 352 mg/Kg on bottom (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

On March 3, 2008 four (4) verification soil samples were collected from sidewalls and bottom of the northern sector of excavation and transported to an independent laboratory for analysis of TPH constituent and chloride concentrations. TPH concentrations were reported below the NMOCD remedial threshold of 100 mg/Kg for all soil samples. Chloride concentrations ranged from 224 mg/Kg to 912 mg/Kg (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

On March 5, 2008 one (1) verification soil sample was collected on bottom from the northern sector of excavation and transported to an independent laboratory for analysis of chloride concentrations. Chloride concentration was reported at 736 mg/Kg (reference *Figure 6* for locations and *Table 3* for laboratory analytical results).

D. **Conclusion**- According to field analyses and laboratory analytical results, soils within the bottom, north, south and west sidewalls are moderately hydrocarbon and chloride impacted. However, a review of *Table 2 Soil Boring Field Analyses and Laboratory Analytical Results* indicates residual hydrocarbon and chloride concentrations

diminish with vertical depth limiting potential for contamination of groundwater above NMOCD remedial threshold of 100 mg/Kg and New Mexico Water Quality Control Commission Ground Water Standards (NMWQCC) of 250 mg/L, respectively. This theory is further enhanced by noting distance between groundwater (~ 66-feet bgs) and lowest point of chloride impacted soil (~ 17-feet bgs) is approximately 49 vertical feet. With hydrocarbon and chloride impacts confined to a small area, natural attenuation should deplete the concentrations significantly during migration. In order to further avert migration of contaminants through the strata, a 40mil impervious barrier was installed on bottom and extending vertically up the north, south and west sidewalls of excavation.

In view of extensive efforts exerted to remediate the release area, EPI requests the NMOCD require no additional remedial activity of the site and issue Chevron USA a *Site Closure Letter*.

Please address questions, concerns and/or needs for additional technical information to David P. Duncan at (575) 394-3481 (office), (575) 441-7802 (cellular) or via e-mail at <u>dduncan@envplus.net</u>. Official communications should be directed to Mr. Billy A. Anderson at (575) 394-1237, Ext. 6224 (office), (575) 441-0341 (mobile) or via e-mail at <u>BillyAnderson@chevron.com</u> with correspondence addressed to:

Mr. Billy A. Anderson HES Champion MidContinent SBU Chevron North America Exploration and Production Company 2401 Avenue O P.O. Box 1949 Eunice, New Mexico 88231

Sincerely,

Brandon Farrar Environmental Consultant

Cc: Billy A. Anderson, HES Champion, Chevron USA – Eunice, NM Priscilla Brunson Moody Estate (c/o Mr. Charles James Moody) File

- Figure 2 Site Location Map
- Figure 3 Site Map
- Figure 4 Groundwater Gradient Map
- Figure 5 Soil Boring Location Map
- Figure 6 Excavation and Sample Location Map
- Table 1 Well Data
- Table 2 Summary of Soil Boring Field Analyses and Laboratory Analytical Results
- Table 2 Summary of Excavation Soil Sample Field Analyses and Laboratory Analytical Results
- Attachment I Site Photographs
- Attachment II Laboratory Analytical Results and Chain-of-Custody Forms
- Attachment III Soil Boring Logs
- Attachment IV Information and Metrics
 - Initial NMOCD Form C-141
 - Final NMOCD Form C-141

•

FIGURES

Released to Imaging: 6/29/2021 1:49:56 PM

Received by OCD: 9/26/2019 10:39:40 AM

-	
Ę	
BL	
Z	

Chevron USA - Brunson Argo Tank Battery #5 (Ref #200130) WELL INFORMATION REPORT*

Released to Imaging: 6/29/2021 1:49:56 PM

-Apr-79 -Jul-83 -Mar-85 -Aug-85 -Jun-86 -Jun-86 -Oct-90 -Sep-97	-Apr-79 -Jul-83 -Jul-83 -Mar-85 -Mar-85 -Jun-86 -Oct-90 -Sep-97 -Mar-81 -Jan-76 -Jan-76 -Jan-76 -Jan-76	-Apr-79 3.3 -Jul-83 3.3,4 -Jul-83 3.3,4 -Mar-85 3.3 -Aug-85 3.3 -Jun-86 3.4 -Jun-86 3.4 -Mar-81 3.4 -Jan-76 3.4 -Jan-76 3.4 -Jan-76 3.4 -Jan-76 3.4 -Jan-76 3.4 -Mar-81 3.3 -Feb-96 3.4	$\begin{array}{rrrrr}$
4.48" 18-Apr-79 2.15" 20-Jul-83 2.15" 20-Jul-83 2.15" 27-Mar-85 2.15" 01-Aug-85 2.15" 02-Jun-86 7.15" 30-Oct-90 3.67" 29-Sep-97 17-Mar-81 17-Mar-81	4.48" 18-Apr-79 4.48" 18-Apr-79 2.15" 20-Jul-83 2.15" 20-Jul-83 2.15" 20-Jul-85 2.15" 01-Aug-85 2.15" 01-Aug-85 3.0-Oct-90 3.0-0ct-90 1.3.67" 29-Sep-97 2.1-Jan-76 27-Jan-76 2.7-Jan-76 27-Jan-76 2.7-Jan-76 27-Jan-76 2.7-Jan-76 27-Jan-76	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
 W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 09' 47.53" W103° 10' 33.67" 	 W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 10' 33.67" 	 W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 09' 32.15" W103° 10' 33.67" 	 W 103° 09' 32.15" W 103° 09' 32.15" W 103° 09' 32.15" W 103° 09' 32.15" W 103° 10' 33.67" W 103° 10' 33.67" W 103° 09' 32.14"
N32° 23' 43.31" W10 N32° 23' 43.31" W10 N32° 23' 30.26" W10 N32° 23' 56.30" W10 N32° 23' 56.30" W10	N32° 23' 43.31" W10 N32° 23' 43.31" W10 N32° 23' 30.26" W1C N32° 23' 56.30" W1C	N32° 23' 43.31" W10 N32° 23' 43.31" W10 N32° 23' 30.26" W1C N32° 23' 56.34" W1C N32° 23' 56.30" W1C	N32° 23' 43.31" W10 N32° 23' 43.31" W10 N32° 23' 30.26" W10 N32° 23' 56.30" W10 N32° 23' 56.30" W10 N32° 23' 4.17" W10
15 1 1/32 15 1 1/32 09 4 2 N/32 09 3 N/32 09 2 1 2	I5 I I/32 I5 1 N/32 09 442 N/32 09 3 N/32 09 212 0 09 212 0 10 223 1 10 232 1 10 321 1 10 132 1 10 214 1	15 1 1/32' 15 1 N/32' 09 442 N/32' 09 3 N/32' 09 212 0 09 212 0 09 212 0 09 212 0 10 223 1 10 321 1 10 132 1 10 321 1 10 321 1 10 321 1 10 321 1 10 321 1 10 341 1	I5 I I/32' I5 1 N/32' 09 442 N/32' 09 3 N/32' 09 212 N/32' 09 212 N/32' 10 22/3 1 10 23/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1 10 3/2 1
37E 1 37E 0 37E 0 37E 0 37E 0	37E 37E 37E 0 37E 0 37E 0 37E 0 37E 0 37E 0 37E 1	37E 37E 37E 0 37E 0 37E 0 37E 0 37E 1	37E 37E 37E 0 37E 0 37E 0 37E 0 37E 0 37E 0 37E 1
22S 22S 22S 22S	22S 22S 22S 22S 22S 22S 22S 22S 22S 22S	22S 22S 22S 22S 22S 22S 22S 22S 22S 22S	22S 22S 22S 22S 22S 22S 22S 22S 22S 22S
WOQ	DOM	DOM	DOM
CHARLIE BETTIS BILL OR BARBARA TRULL	CHARLIE BETTIS BILL OR BARBARA TRULL	CHARLIE BETTIS BILL OR BARBARA TRULL	CHARLIE BETTIS BILL OR BARBARA TRULL FRED FERBRACHE
3 BILL OR B	3 BILL OR B	3 BILL OR B	3 BILL OR B
+			
	22S 37E 09 223 22S 37E 10 232 22S 37E 10 321 22S 37E 10 321 22S 37E 10 132 22S 37E 10 132 22S 37E 10 132		

* = Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nm.us:7001/iWATERS/wr_RegisServlet1) and USGS Database.

 $^{\rm A}$ = in acre feet per annum

 $^{\rm B} =$ Interpolated from USGS Topographical Map

DOM = Domestic one household

MUL = Multiple Domestic Households

(quarters are 1=NW, 2=NE, 3=SW, 4=SE)

(quarters are biggest to smallest - X Y are in Feet - UTM are in Meters) Shaded area indicates wells not shown on Figure 2

Received by OCD: 9/26/2019 10:39:40 AM

TABLE 2

Summary of Soil Boring Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Releas																		
sed									T	ABLE 2								
to I							Summa	ry of Soil Bo	oring Field Ana	lyses and Lat	ooratory An	alytical Resu	lts					
maz									Chevro	on U.S.A. Inc.								
ging	Brunson Argo #5 (NMOCD Ref.#; EPI Ref.# 200130)																	
. 6/29/2021	Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Carbon Ranges (C6-C12) (mg/Kg)	Carbon Ranges (C12-C28) (mg/Kg)	Carbon Ranges (C28 C35) (mg/Kg)	Total Hydrocarbons (C6-C35) (mg/Kg)	Sulfate (mg/Kg)	Chloride (mg/Kg)
1:49	SB5-1	2	In-situ	26-Apr-07	0.3	200	< 0.0250	<0.00250	<0.0250	<0.0250	<0.0250	<0.125	10.0	156	72.9	239	12.3	5.31
30 P	SB5-1	5	In-situ	26-Apr-07	160.0	200	< 0.0250	0.101	0.289	1.12	0.408	1.92	769	2,880	326	3,975	20.2	J [4.75]
M	SB5-1	10	In-situ	26-Apr-07	65.0	200	< 0.0250	J [0.0103]	0.0408	0.0601	0.0305	0.131	48.9	194	25.3	268.0	54.5	J [4.58]
	SB5-1	15	In-situ	26-Apr-07	34.0	260	< 0.0250	<0.00250	<0.0250	<0.0250	< 0.0250	<0.125	13.4	32.0	10.3	55.7	44.9	J [4.00]
	SB5-1	20	In-situ	25-Apr-07	20.0	200	<0.0250	<0.00250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	41.4	5.06
	SB5-2	2	In-situ	26-Apr-07	560.0	240	<0.0250	<0.00250	<0.0250	<0.0250	< 0.0250	<0.125	12.2	513	154	679	55.4	8.79
	SB5-2	5	In-situ	26-Apr-07	14.0	200	< 0.0250	0.0526	0.309	0.377	0.0561	0.795	40.9	196	33.7	271	86.7	17.1
	SB5-2	10	In-situ	26-Apr-07	34.0	200	< 0.0250	0.0282	0.141	0.176	0.0267	0.372	35.3	136	24.9	196	50.5	8.25
	SB5-2	15	In-situ	26-Apr-07	20.0	200	<0.0250	< 0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	62.0	6.87
	SB5-2	20	In-situ	26-Apr-07	17.0	160	<0.0250	< 0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	53.7	7.01
	SB5-3	2	In-situ	27-Apr-07	504.0	240	<0.0250	<0.0250	<0.0250	<0.0250	< 0.0250	<0.125	10.8	202	64.5	277	502	67.6
	SB5-3	5	In-situ	27-Apr-07	397.0	240	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	178	380
	SB5-3	10	In-situ	27-Apr-07	13.0	160	< 0.0250	<0.0250	< 0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	<5.00	9.56
	SB5-3	15	In-situ	27-Apr-07	10.0	160	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	148	47.9

Summary of Soil Boring Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Brunson Argo #5 (NMOCD Ref.#; EPI Ref.# 200130)

Releas																		
ed 1									T	ABLE 2								
o II							Summa	ry of Soil Bo	oring Field Ana	lyses and Lat	ooratory An	alytical Resu	lts					
nag		Chevron U.S.A. Inc. Brunson Argo #5 (NMOCD Rof #: EPI Rof # 200130)																
Sun	Brunson Argo #5 (NMOCD Ref.#; EPI Ref.# 200130)																	
. 6/29/2021	Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Carbon Ranges (C6-C12) (mg/Kg)	Carbon Ranges (C12-C28) (mg/Kg)	Carbon Ranges (C28- C35) (mg/Kg)	Total Hydrocarbons (C6-C35) (mg/Kg)	Sulfate (mg/Kg)	Chloride (mg/Kg)
1:49	SB5-4	2	In-situ	27-Apr-07	0.9	200	<0.0250	J [0.00101]	< 0.0250	<0.0250	< 0.0250	<0.125	12.5	108	49.7	170	803	J [9.79]
<u>30 P</u>	SB5-4	5	In-situ	27-Apr-07	0.8	200	< 0.0250	<0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	709	J [7.54]
	SB5-4	10	In-situ	27-Apr-07	0.9	200	<0.0250	< 0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	192	28.1
	SB5-5 (BG)	2	In-situ	30-Apr-07	0.0	160	< 0.0250	< 0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	64.2	J [4.56]
	SB5-5 (BG)	5	In-situ	30-Apr-07	0.0	160	<0.0250	< 0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	37.6	J [4.10]
	SB5-5 (BG)	10	In-situ	30-Apr-07	0.0	160	<0.0250	< 0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	<10.0	<10.0	<30.0	53.7	13.7
	Ν	MOCD Rer	nedial Thresh	olds	100		10					50				100	600	250

Bolded values are in excess of NMOCD Remediation Threshold Goals

J = Not AnalyzedJ = Detected, but below the Reporting Limit. Therefore, result is an estimated concentration (CPL J-Flag), BG = Background Soil Boring

Summary of Excavation Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Gas Range Organics (GRO) (C6-C12) (mg/Kg)	Diesel Range Organics (GRO) (C12-C28) (mg/Kg)	Oil Range Organics (ORO) (C28- C35) (mg/Kg)	Total Petroleum Hydrocarbons (C6-C35) (mg/Kg)	Chloride (mg/Kg)
SSW-1	2	In situ	12-Feb-08	573								426	1,570		1,996	224
SSW-2	3	In situ	12-Feb-08	201								198	442		640	<16.0
SSW-3	3	In situ	12-Feb-08	950								1,230	1,750		2,980	<16.0
SSW-4	2	In situ	12-Feb-08	20.5	240							<10.0	<10.0		<20.0	<16.0
BH-1	6	In situ	12-Feb-08	483	160											
BH-2	5	In situ	12-Feb-08	850	160											
BH-3	5	In situ	12-Feb-08	240	160											
ESW-1	3	In situ	12-Feb-08	25.2	2,000											
ESW-2	3	In situ	12-Feb-08	4.1	240											
BH-1	14	In situ	18-Feb-08													
BH-2	12	In situ	18-Feb-08									<16.3	35.8	24.4	60.2	<5.00
BH-3	16	In situ	18-Feb-08									85.1	652	78.7	815.8	<5.00
BH-4	10	In situ	18-Feb-08									<17.2	<17.2	<17.2	<51.6	
BH-5	17	In situ	18-Feb-08									138	537	72.4	747.4	<5.00
BH-6	10	In situ	18-Feb-08									<18.6	<18.6	<18.6	<55.8	<5.00

Summary of Excavation Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Gas Range Organics (GRO) (C6-C12) (mg/Kg)	Diesel Range Organics (GRO) (C12-C28) (mg/Kg)	Oil Range Organics (ORO) (C28- C35) (mg/Kg)	Total Petroleum Hydrocarbons (C6-C35) (mg/Kg)	Chloride (mg/Kg)
ESW-1	1	In situ	18-Feb-08													
ESW-2	4	In situ	18-Feb-08									<16.2	26.4	19.9	46.3	
ESW-3	9	In situ	18-Feb-08									<16.8	<16.8	<16.8	50.4	20.0
ESW-4	8	In situ	18-Feb-08									<16.4	<16.4	<16.4	<49.2	<5.00
ESW-5	1	In situ	18-Feb-08													
WSW-1	3	In situ	18-Feb-08									<15.3	96.9	160	256.9	
WSW-2	8	In situ	18-Feb-08									<15.8	142	44.7	186.7	<5.00
WSW-3	2	In situ	18-Feb-08									<15.6	177	130	307	<5.00
WSW-4	3	In situ	18-Feb-08									<16.4	45.4	61	106.4	<5.45
ESW-6	1	In situ	19-Feb-08	0.0	80							<10.0	<10.0		<20.0	<16
ESW-7	2	In situ	19-Feb-08	0.0	80							<10.0	71.3		71.3	<16
ESW-8	1	In situ	19-Feb-08	0.0	160							<10.0	<10.0		<20.0	<16
ESW-9	2	In situ	19-Jan-08	0.0	80							<10.0	<10.0		<20.0	<16
BH-7	5	In situ	21-Feb-08	2.6	80							<17.2	<17.2	<17.2	<51.6	<5.72
BH-8	5	In situ	21-Feb-08	31.5	80							<16.9	22.5	<16.9	22.5	<5.64

Summary of Excavation Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Gas Range Organics (GRO) (C6-C12) (mg/Kg)	Diesel Range Organics (GRO) (C12-C28) (mg/Kg)	Oil Range Organics (ORO) (C28- C35) (mg/Kg)	Total Petroleum Hydrocarbons (C6-C35) (mg/Kg)	Chloride (mg/Kg)
BH-9	5	In situ	21-Feb-08	0.0	80							<16.8	<16.8	<16.8	<50.4	<5.59
BH-10	5	In situ	21-Feb-08	0.2	160							<17.2	<17.2	<17.2	<51.6	50.2
BH-11	5	In situ	21-Feb-08	12.6	80											
BH-12	5	In situ	21-Feb-08	26.4	160							<16.9	<16.9	<16.9	<50.7	<5.63
BH-13	6	Excavated	21-Feb-08	125	160											
BH-14	5	Excavated	21-Feb-08	31.5	320											
BH-15	6	In situ	21-Feb-08	3.9	160											
BH-16	5	Excavated	21-Feb-08	195	400							<16.2	38.2	<16.2	38.2	522
BH-17	8	In situ	21-Feb-08	7.1	880											
BH-18	8	In situ	21-Feb-08	12.5	400											
BH-16A	14	In situ	21-Feb-08	33.6	320											
NSW-1	8	In situ	21-Feb-08									<16.5	31.9	<16.5	31.9	611
NSW-2	6	In situ	21-Feb-08									<16.9	<16.9	<16.9	<50.7	130
NSW-3	3	Excavated	21-Feb-08									1,430	12,000	1,490	14,920	163
NSW-4	2	In situ	21-Feb-08									<15.5	51.4	<15.5	51.4	16.2

Summary of Excavation Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Gas Range Organics (GRO) (C6-C12) (mg/Kg)	Diesel Range Organics (GRO) (C12-C28) (mg/Kg)	Oil Range Organics (ORO) (C28- C35) (mg/Kg)	Total Petroleum Hydrocarbons (C6-C35) (mg/Kg)	Chloride (mg/Kg)
BH-13A	10	In situ	22-Feb-08	0.6	160							<10	<10		<20.0	48
BH-14A	11	In situ	22-Feb-08	0.4	400							<10.0	<10.0		<20.0	352
BSW-1	7	In situ	22-Feb-08	0.0	240							<10.0	<10.0		<20.0	208
BSW-2	8	In situ	22-Feb-08	0.4	160							<10.0	<10.0		<20.0	32
BSW-3	6	In situ	22-Feb-08	0.9	160							<10.0	<10.0		<20.0	32
BSW-4	7	In situ	22-Feb-08	0.3	200							<10.0	<10.0		<20.0	64
WSW-5	8	In situ	22-Feb-08									<10.0	<10.0		<20.0	80
WSW-6	7	In situ	22-Feb-08									<10.0	<10.0		<20.0	752
WSW-7	3	In situ	22-Feb-08									<10.0	<10.0		<20.0	96
WSW-8	2	In situ	22-Feb-08									<10.0	<10.0		<20.0	224
EP-1	3	In situ	03-Mar-08	31.0	240							<10.0	<10.0		<20.0	256
NSW-3B	3	In situ	03-Mar-08	0.0	240							<10.0	<10.0		<20.0	224
WP-1	3	In situ	03-Mar-08	0.0	240							<10.0	<10.0		<20.0	256
BP-1B	5	Excavated	03-Mar-08	0.0	720							<10.0	<10.0		<20.0	912
BP-1C	12	In situ	05-Mar-08		560											736

Summary of Excavation Field Analyses and Laboratory Analytical Results

Chevron U.S.A. Inc.

Brunson Argo #5 (NMOCD Ref.#; EPI Ref.# 200130)

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (p/m) (mg/Kg)	Xylenes (o) (mg/Kg)	Total BTEX (mg/Kg)	Gas Range Organics (GRO) (C6-C12) (mg/Kg)	Diesel Range Organics (GRO) (C12-C28) (mg/Kg)	Oil Range Organics (ORO) (C28- C35) (mg/Kg)	Total Petroleum Hydrocarbons (C6-C35) (mg/Kg)	Chloride (mg/Kg)
NN	IOCD Rem	edial Threshold (Goals	100		10					50				100	250

Bolded values are in excess of NMOCD Remediation Threshold Goals

-- = Not Analyzed J = Detected, but below the Reporting Limit. Therefore, result is an estimated concentration (CPL J-Flag) Nomenclature: BG = Background Soil Boring; BH=Bottom Hole; SW=Sidewall (E=east,W=west, S=south and N=north)

.

ATTACHMENTS

Released to Imaging: 6/29/2021 1:49:56 PM

.

ATTACHMENT I SITE PHOTOGRAPHS

Photograph No. 1 – Looking northerly across interior of bermed area.

Photograph No. 2 – Looking northwesterly across interior of bermed area.

Photograph No. 3 – Looking across excavation area.

Photograph No. 4 – Looking northeasterly across excavation area.

Photograph No. 5 – Looking southerly across excavation area.

Photograph No. 6 – Looking southerly across installation of liner.

Photograph No. 7 – Looking across excavation area.

Photograph No. 8 – Looking across installation of liner.

Photograph No. 9 – Remediated site.

Photograph No. 10 – Remediated site.

ATTACHMENT II LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FORMS

A Xenco Laboratories Company

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chevron/Brunson Argo TB # 5 Project Number: 200130 Location: UL-D, Sec. 10,T 22 S, R 37 E

Lab Order Number: 7D30017

Report Date: 05/08/07

Environmental Plus, Incorporated	Project: Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 200130	
Eunice NM, 88231	Project Manager: Iain Olness	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 (2')	7D30017-01	Soil	04/26/07 12:35	04-30-2007 15:42
SB-1 (5')	7D30017-02	Soil	04/26/07 12:41	04-30-2007 15:42
SB-1 (10')	7D30017-03	Soil	04/26/07 13:01	04-30-2007 15:42
SB-1 (15')	7D30017-04	Soil	04/26/07 14:15	04-30-2007 15:42
SB-1 (20')	7D30017-05	Soil	04/26/07 15:44	04-30-2007 15:42
SB-2 (2')	7D30017-06	Soil	04/26/07 15:50	04-30-2007 15:42
SB-2 (5')	7D30017-07	Soil	04/26/07 16:00	04-30-2007 15:42
SB-2 (10')	7D30017-08	Soil	04/26/07 16:15	04-30-2007 15:42
SB-2 (15')	7D30017-09	Soil	04/26/07 17:05	04-30-2007 15:42
SB-2 (20')	7D30017-10	Soil	04/26/07 17:15	04-30-2007 15:42
SB-3 (2')	7D30017-11	Soil	04/27/07 07:15	04-30-2007 15:42
SB-3 (5')	7D30017-12	Soil	04/27/07 07:30	04-30-2007 15:42
SB-3 (10')	7D30017-13	Soil	04/27/07 08:00	04-30-2007 15:42
SB-3 (15')	7D30017-14	Soil	04/27/07 10:10	04-30-2007 15:42
SB-4 (2')	7D30017-15	Soil	04/27/07 10:35	04-30-2007 15:42
SB-4 (5')	7D30017-16	Soil	04/27/07 10:41	04-30-2007 15:42
SB-4 (10')	7D30017-17	Soil	04/27/07 11:30	04-30-2007 15:42

Г

	Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
I	P.O. Box 1558	Project Number:	200130	
	Eunice NM, 88231	Project Manager:	Iain Olness	

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 (2') (7D30017-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"		
Ethylbenzene	ND	0.0250	"	"	"	"	"		
Xylene (p/m)	ND	0.0250	"	"	"	"	"	"	
Xylene (o)	ND	0.0250	"	"	"	"		"	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.6 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	10.0	10.0	mg/kg dry	1	EE70104	05/01/07	05/03/07	EPA 8015M	
Carbon Ranges C12-C28	156	10.0	"	"		"	"		
Carbon Ranges C28-C35	72.9	10.0	"	"		"	"		
Total Hydrocarbons	239	10.0	"	"	"	"	"		
Surrogate: 1-Chlorooctane		83.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	
SB-1 (5') (7D30017-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	0.101	0.0250	"	"		"	"		
Ethylbenzene	0.289	0.0250	"			"	"		
Xylene (p/m)	1.12	0.0250	"	"		"	"		
Xylene (o)	0.408	0.0250	"	"		"	"		
Surrogate: a,a,a-Trifluorotoluene		108 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		141 %	75-1	25	"	"	"	"	S-04
Carbon Ranges C6-C12	769	50.0	mg/kg dry	5	EE70104	05/01/07	05/03/07	EPA 8015M	
Carbon Ranges C12-C28	2880	50.0	"	"	"	"	"		
Carbon Ranges C28-C35	326	50.0	"	"		"	"		
Total Hydrocarbons	3980	50.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		18.8 %	70-1	30	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		27.4 %	70-1	30	"	"	"	"	S-06
SB-1 (10') (7D30017-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	J [0.0103]	0.0250	"	"		"	"	"	J
Ethylbenzene	0.0408	0.0250	"	"		"	"	"	
Xylene (p/m)	0.0601	0.0250	"	"	"	"	"	"	
Xylene (o)	0.0305	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.4 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.2 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	48.9	10.0	mg/kg dry	1	EE70104	05/01/07	05/03/07	EPA 8015M	
Environmental Lab of Texas			The res	ults in this r	eport apply to	the samples an	alyzed in accord	ance with the samples	1
A Vanas Laboratarias Company			receive	d in the labo	oratory. This d	inalytical report	t must be reprodi	iced in its entirety,	

A Xenco Laboratories Company

with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231	Project N Project M	Fax: 505-394-2601							
		0	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 (10') (7D30017-03) Soil									
Carbon Ranges C12-C28	194	10.0	mg/kg dry	1	EE70104	05/01/07	05/03/07	EPA 8015M	
Carbon Ranges C28-C35	25.3	10.0	"		"	"	"	"	
Total Hydrocarbons	268	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		92.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	"	
SB-1 (15') (7D30017-04) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200	"	"	"	"	"	"	
Ethylbenzene	ND	0.00200	"	"	"	"	"		
Xylene (p/m)	ND	0.00200	"	"	"	"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		78.2 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	13.4	10.0	mg/kg dry	1	EE70104	05/01/07	05/03/07	EPA 8015M	
Carbon Ranges C12-C28	32.0	10.0	"			"	"	"	
Carbon Ranges C28-C35	10.3	10.0	"		"	"	"	"	
Total Hydrocarbons	55.6	10.0	"		"	"	"	"	
Surrogate: 1-Chlorooctane		87.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
SB-1 (20') (7D30017-05) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200	"	"	"	"	"	"	
Ethylbenzene	ND	0.00200	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00200	"	"		"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		75.6 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		76.2 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		75.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.2 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated	Project: Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 200130	
Eunice NM, 88231	Project Manager: Iain Olness	

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 (2') (7D30017-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"	"	
Ethylbenzene	ND	0.0250	"	"	"	"	"	"	
Xylene (p/m)	ND	0.0250	"	"	"	"	"	"	
Xylene (o)	ND	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		101 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	12.2	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	513	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	154	10.0	"	"	"	"	"	"	
Total Hydrocarbons	679	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		86.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	"	
SB-2 (5') (7D30017-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	0.0526	0.0250	"	"	"	"	"	"	
Ethylbenzene	0.309	0.0250	"	"	"	"	"	"	
Xylene (p/m)	0.377	0.0250	"	"	"	"	"		
Xylene (0)	0.0561	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		104 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	40.9	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	196	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	33.7	10.0	"	"	"	"	"	"	
Total Hydrocarbons	271	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		91.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	
SB-2 (10') (7D30017-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE70207	05/02/07	05/03/07	EPA 8021B	
Toluene	0.0282	0.0250	"	"	"	"	"	"	
Ethylbenzene	0.141	0.0250	"	"	"	"	"		
Xylene (p/m)	0.176	0.0250	"	"	"	"	"	"	
Xylene (0)	0.0267	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	35.3	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

A Xenco Laboratories Company

received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas.

Page 4 of 20
Environmental Plus, Incorporated Project: Chevron/Brunson Argo TB # 5								Fax: 505-394-2601			
P.O. Box 1558		Project N	umber: 200								
Eunice NM, 88231		Project M	anager: Iair	n Olness							
		O	rganics b	y GC							
	Environmental Lab of Texas										
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SB-2 (10') (7D30017-08) Soil											
Carbon Ranges C12-C28	136	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M			
Carbon Ranges C28-C35	24.9	10.0	"	"	"	"	"	"			
Total Hydrocarbons	196	10.0	"	"	"	"	"	"			
Surrogate: 1-Chlorooctane		93.4 %	70-1	130	"	"	"	"			
Surrogate: 1-Chlorooctadecane		102 %	70-1	130	"	"	"	"			
SB-2 (15') (7D30017-09) Soil											
Benzene	ND	0.00200	mg/kg dry	2	EE70207	05/02/07	05/03/07	EPA 8021B			
Toluene	ND	0.00200	"	"		"					
Ethylbenzene	ND	0.00200	"	"		"	"	"			
Xylene (p/m)	ND	0.00200	"	"		"					
Xylene (o)	ND	0.00200	"	"		"	"	"			
Surrogate: a,a,a-Trifluorotoluene		81.4 %	75-1	125	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		85.0 %	75-1	125	"	"	"	"			
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M			
Carbon Ranges C12-C28	ND	10.0	"	"		"	"	"			
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"				
Total Hydrocarbons	ND	10.0	"	"		"	"	"			
Surrogate: 1-Chlorooctane		79.4 %	70-1	130	"	"	"	"			
Surrogate: 1-Chlorooctadecane		94.6 %	70-1	130	"	"	"	"			
SB-2 (20') (7D30017-10) Soil											
Benzene	ND	0.00200	mg/kg dry	2	EE70207	05/02/07	05/03/07	EPA 8021B			
Toluene	ND	0.00200	"	"		"	"	"			
Ethylbenzene	ND	0.00200	"	"		"	"	"			
Xylene (p/m)	ND	0.00200	"	"		"		"			
Xylene (o)	ND	0.00200	"	"		"		"			
Surrogate: a,a,a-Trifluorotoluene		83.8 %	75-1	125	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		83.2 %	75-1	125	"	"	"	"			
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M			
Carbon Ranges C12-C28	ND	10.0	"	"		"	"	"			
Carbon Ranges C28-C35	ND	10.0	"	"		"	"	"			
Total Hydrocarbons	ND	10.0	"	"		"	"	"			
Surrogate: 1-Chlorooctane		83.0 %	70-1	130	"	"	"	"			
Surrogate: 1-Chlorooctadecane		99.2 %	70-1	130	"	"	"	"			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 (2') (7D30017-11) Soil						• • • • •			
Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200		"	"	"	"	"	
Ethylbenzene	ND	0.00200		"	"	"		"	
Xylene (p/m)	ND	0.00200		"	"	"		"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		75.4 %	75-1.	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		78.4 %	75-1.	25	"	"	"	"	
Carbon Ranges C6-C12	10.8	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	202	10.0	"		"	"	"	"	
Carbon Ranges C28-C35	64.5	10.0	"		"	"	"	"	
Total Hydrocarbons	280	10.0	"		"	"	"	"	
Surrogate: 1-Chlorooctane		84.0 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1.	30	"	"	"	"	
SB-3 (5') (7D30017-12) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200	"	"	"	"	"	"	
Ethylbenzene	ND	0.00200	"		"	"	"		
Xylene (p/m)	ND	0.00200	"		"	"	"		
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	75-1.	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.8 %	75-1.	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"		"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		84.4 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.0 %	70-1.	30	"	"	"	"	
SB-3 (10') (7D30017-13) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200		"	"	"	"	"	
Ethylbenzene	ND	0.00200	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00200	"	"	"	"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	75-1.	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6 %	75-1.	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Environmental Lab of Texas			The rest	ults in this r	report apply to	o the samples an	alyzed in accord	ance with the sample	es
A Yanaa Labaratariaa Company			received	d in the labo	oratory. This a	analytical report	t must be reprodi	iced in its entirety,	

A Xenco Laboratories Company

with written approval of Environmental Lab of Texas.

Page 6 of 20

.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231		Proj Project Num Project Mana	ect: Ch per: 200 ger: Iain	evron/Bruns 0130 n Olness	on Argo T	B # 5		Fax: 505-3	394-2601
		Orga Environme	nics b ntal L	oy GC Lab of Te	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		83.2 %	70-130		"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.2 %	70-130		"	"	"	"	

SB-3 (15') (7D30017-14) Soil

ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B
ND	0.00200	"	"	"	"	"	"
ND	0.00200	"	"	"	"	"	"
ND	0.00200	"	"	"	"	"	"
ND	0.00200	"	"		"	"	"
	83.8 %	75-125		"	"	"	"
	85.0 %	75-125		"	"	"	"
ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M
ND	10.0	"	"	"	"	"	"
ND	10.0	"	"	"	"	"	"
ND	10.0	"	"	"	"	"	"
	81.8 %	70-130		"	"	"	"
	95.0 %	70-130		"	"	"	"
	ND ND ND ND ND ND ND	ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 0.00200 ND 10.0 ND 10.0	ND 0.00200 mg/kg dry ND 0.00200 " ND 10.0 mg/kg dry ND 10.0 " ND 10.0 " ND 10.0 " ND 10.0 " ND 10.0 "	ND 0.00200 mg/kg dry 2 ND 0.00200 " " ND 10.00 mg/kg dry 1 ND 10.0 " " 81.8 % 70-130 "	ND 0.00200 mg/kg dry 2 EE70306 ND 0.00200 " " " ND 10.0 mg/kg dry 1 EE70105 ND 10.0 " " " 95.0 % 70-130 " "	ND 0.00200 mg/kg dry 2 EE70306 05/03/07 ND 0.00200 " " " " ND 10.0 mg/kg dry 1 EE70105 05/01/07 ND 10.0 " " " " ND 10.0 " " " " ND 10.0 " " " " S1.8 % 70-130 <td>ND 0.00200 mg/kg dry 2 EE70306 05/03/07 05/03/07 ND 0.00200 " " " " " " ND 10.0 mg/kg dry 1 EE70105 0501/07 0504/07 ND 10.0 " " " " " ND 10.0 " " "</td>	ND 0.00200 mg/kg dry 2 EE70306 05/03/07 05/03/07 ND 0.00200 " " " " " " ND 10.0 mg/kg dry 1 EE70105 0501/07 0504/07 ND 10.0 " " " " " ND 10.0 " " "

SB-4 (2') (7D30017-15) Soil

Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	J [0.00101]	0.00200	"	"		"	"	"	J
Ethylbenzene	ND	0.00200	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00200	"	"	"	"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		75.6 %	75-125		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		79.0 %	75-125		"	"	"	"	
Carbon Ranges C6-C12	12.5	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	108	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	49.7	10.0	"	"	"	"	"	"	
Total Hydrocarbons	170	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		85.6 %	70-130		"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.4 %	70-130		"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

A Xenco Laboratories Company

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713 Released to Imaging: 6/29/2021 1:49:56 PM

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 (5') (7D30017-16) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200	"	"	"	"	"	"	
Ethylbenzene	ND	0.00200	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00200	"	"	"	"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	75-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.0 %	75-12	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		84.2 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.0 %	70-13	30	"	"	"	"	
SB-4 (10') (7D30017-17) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EE70306	05/03/07	05/03/07	EPA 8021B	
Toluene	ND	0.00200	"	"	"	"	"	"	
Ethylbenzene	ND	0.00200	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00200	"	"	"	"	"	"	
Xylene (o)	ND	0.00200	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.2 %	75-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	75-12	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE70105	05/01/07	05/04/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"	"	
Total Hydrocarbons	ND	10.0	"	"		"	"	"	
Surrogate: 1-Chlorooctane		81.4 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		96.6 %	70-13	30	"	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 (2') (7D30017-01) Soil									
Chloride	5.31	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	14.8	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	12.3	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-1 (5') (7D30017-02) Soil									
Chloride	J [4.75]	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	J
% Moisture	18.7	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	20.2	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-1 (10') (7D30017-03) Soil									
Chloride	J [4.58]	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	J
% Moisture	10.1	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	54.5	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-1 (15') (7D30017-04) Soil									
Chloride	J [4.00]	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	J
% Moisture	9.2	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	44.9	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-1 (20') (7D30017-05) Soil									
Chloride	5.06	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	15.0	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	41.4	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-2 (2') (7D30017-06) Soil									
Chloride	8.79	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	6.7	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	55.4	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-2 (5') (7D30017-07) Soil									
Chloride	17.1	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	11.7	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	86.7	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.
Page 9 of 20

A Xenco Laboratories Company

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 (10') (7D30017-08) Soil									
Chloride	8.25	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	8.7	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	50.5	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-2 (15') (7D30017-09) Soil									
Chloride	6.87	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	7.5	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	62.0	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-2 (20') (7D30017-10) Soil									
Chloride	7.01	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	6.3	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	53.7	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-3 (2') (7D30017-11) Soil									
Chloride	67.6	10.0	mg/kg	20	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	8.6	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	502	10.0	mg/kg	20	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-3 (5') (7D30017-12) Soil									
Chloride	380	10.0	mg/kg	20	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	14.1	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	178	10.0	mg/kg	20	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-3 (10') (7D30017-13) Soil									
Chloride	9.56	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
% Moisture	8.7	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	ND	5.00	mg/kg	10	EE70708	05/07/07	05/07/07	EPA 300.0	
SB-3 (15') (7D30017-14) Soil									
Chloride	47.9	5.00	mg/kg	10	EE70713	05/07/07	05/08/07	EPA 300.0	
% Moisture	13.6	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	148	5.00	mg/kg	10	EE70713	05/07/07	05/08/07	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 (2') (7D30017-15) Soil						-	-		
Chloride	J [9.79]	10.0	mg/kg	20	EE70713	05/07/07	05/08/07	EPA 300.0	J
% Moisture	12.0	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	803	10.0	mg/kg	20	EE70713	05/07/07	05/08/07	EPA 300.0	
SB-4 (5') (7D30017-16) Soil									
Chloride	J [7.54]	10.0	mg/kg	20	EE70713	05/07/07	05/08/07	EPA 300.0	J
% Moisture	15.0	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	709	10.0	mg/kg	20	EE70713	05/07/07	05/08/07	EPA 300.0	
SB-4 (10') (7D30017-17) Soil									
Chloride	28.1	5.00	mg/kg	10	EE70713	05/07/07	05/08/07	EPA 300.0	
% Moisture	8.6	0.1	%	1	EE70208	05/01/07	05/01/07	% calculation	
Sulfate	192	5.00	mg/kg	10	EE70713	05/07/07	05/08/07	EPA 300.0	

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project: Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 200130	
Eunice NM, 88231	Project Manager: Iain Olness	

	D k	Reporting	TT	Spike	Source	WREC	%REC	DDD	RPD	
Anaiyte	Kesult	Limit	Units	Level	Kesult	%REC	Limits	KPD	Limit	Notes
Batch EE70104 - Solvent Extraction (GC)										
Blank (EE70104-BLK1)				Prepared: (05/01/07 A	nalyzed: 05	03/07			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	47.5		mg/kg	50.0		95.0	70-130			
Surrogate: 1-Chlorooctadecane	54.9		"	50.0		110	70-130			
LCS (EE70104-BS1)		Prepared: 05/01/07 Analyzed: 05/03/07								
Carbon Ranges C6-C12	625	10.0	mg/kg wet	500		125	75-125			
Carbon Ranges C12-C28	527	10.0	"	500		105	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	1150	10.0	"	1000		115	75-125			
Surrogate: 1-Chlorooctane	61.5		mg/kg	50.0		123	70-130			
Surrogate: 1-Chlorooctadecane	56.8		"	50.0		114	70-130			
Calibration Check (EE70104-CCV1)				Prepared: (05/01/07 A	nalyzed: 05	5/03/07			
Carbon Ranges C6-C12	219		mg/kg	250		87.6	80-120			
Carbon Ranges C12-C28	210		"	250		84.0	80-120			
Total Hydrocarbons	429		"	500		85.8	80-120			
Surrogate: 1-Chlorooctane	56.1		"	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	59.0		"	50.0		118	70-130			
Matrix Spike (EE70104-MS1)	Sou	irce: 7D30017	D30017-04 Prepared: 05/01/07 Analyzed: 05/04/07							
Carbon Ranges C6-C12	645	10.0	mg/kg dry	551	13.4	115	75-125			
Carbon Ranges C12-C28	518	10.0	"	551	32.0	88.2	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	10.3		75-125			
Total Hydrocarbons	1160	10.0	"	1100	55.6	100	75-125			
Surrogate: 1-Chlorooctane	48.9		mg/kg	50.0		97.8	70-130			
Surrogate: 1-Chlorooctadecane	43.7		"	50.0		87.4	70-130			

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE70104 - Solvent Extraction (GC)										
Matrix Spike Dup (EE70104-MSD1)	Sour	rce: 7D30017	7-04	Prepared:	05/01/07 A	nalyzed: 05	6/04/07			
Carbon Ranges C6-C12	659	10.0	mg/kg dry	551	13.4	117	75-125	1.72	20	
Carbon Ranges C12-C28	528	10.0	"	551	32.0	90.0	75-125	2.02	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	10.3		75-125		20	
Total Hydrocarbons	1190	10.0	"	1100	55.6	103	75-125	2.96	20	
Surrogate: 1-Chlorooctane	50.8		mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	45.1		"	50.0		90.2	70-130			
Batch EE70105 - Solvent Extraction (GC)										
Blank (EE70105-BLK1)				Prepared:	05/01/07 A	nalyzed: 05	6/04/07			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	42.6		mg/kg	50.0		85.2	70-130			
Surrogate: 1-Chlorooctadecane	49.6		"	50.0		99.2	70-130			
LCS (EE70105-BS1)				Prepared:	05/01/07 A	nalyzed: 05	6/04/07			
Carbon Ranges C6-C12	560	10.0	mg/kg wet	500		112	75-125			
Carbon Ranges C12-C28	441	10.0	"	500		88.2	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	1000	10.0	"	1000		100	75-125			
Surrogate: 1-Chlorooctane	55.7		mg/kg	50.0		111	70-130			
Surrogate: 1-Chlorooctadecane	51.1		"	50.0		102	70-130			
Calibration Check (EE70105-CCV1)				Prepared:	05/01/07 A	nalyzed: 05	5/04/07			
Carbon Ranges C6-C12	213		mg/kg	250		85.2	80-120			
Carbon Ranges C12-C28	204		"	250		81.6	80-120			
Total Hydrocarbons	417		"	500		83.4	80-120			
Surrogate: 1-Chlorooctane	55.9		"	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	57.2		"	50.0		114	70-130			

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE70105 - Solvent Extraction (GC)

Matrix Spike (EE70105-MS1)	Source	Source: 7D30017-05			Prepared: 05/01/07 Analyzed: 05/07/07					
Carbon Ranges C6-C12	673	10.0	mg/kg dry	588	ND	114	75-125			
Carbon Ranges C12-C28	535	10.0	"	588	ND	91.0	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1210	10.0	"	1180	ND	103	75-125			
Surrogate: 1-Chlorooctane	49.1		mg/kg	50.0		98.2	70-130			
Surrogate: 1-Chlorooctadecane	44.5		"	50.0		89.0	70-130			
Matrix Spike Dup (EE70105-MSD1)	Source	e: 7D30017-	05	Prepared: 05/01/07 Analyzed: 05/07/07			5/07/07			
Carbon Ranges C6-C12	700	10.0	mg/kg dry	588	ND	119	75-125	4.29	20	
Carbon Ranges C12-C28	561	10.0	"	588	ND	95.4	75-125	4.72	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1260	10.0	"	1180	ND	107	75-125	3.81	20	
Surrogate: 1-Chlorooctane	52.6		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	45.9		"	50.0		91.8	70-130			

Batch EE70207 - EPA 5030C (GC)

Blank (EE70207-BLK1)		Prepared & Analyzed: 05/02/07								
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	48.9		ug/kg	50.0	97.8	75-125				
Surrogate: 4-Bromofluorobenzene	50.0		"	50.0	100	75-125				
LCS (EE70207-BS1)		Prepared & Analyzed: 05/02/07								
Benzene	0.0515	0.00100	mg/kg wet	0.0500	103	80-120				
Toluene	0.0524	0.00100	"	0.0500	105	80-120				
Ethylbenzene	0.0514	0.00100	"	0.0500	103	80-120				
Xylene (p/m)	0.0998	0.00100	"	0.100	99.8	80-120				
Xylene (o)	0.0544	0.00100	"	0.0500	109	80-120				
Surrogate: a,a,a-Trifluorotoluene	47.9		ug/kg	50.0	95.8	75-125				
Surrogate: 4-Bromofluorobenzene	52.0		"	50.0	104	75-125				

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 14 of 20

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE70207 - EPA 5030C (GC)										
Calibration Check (EE70207-CCV1)				Prepared: (05/02/07 A	Analyzed: 05	/03/07			
Benzene	51.1		ug/kg	50.0		102	80-120			
Toluene	51.6		"	50.0		103	80-120			
Ethylbenzene	52.9		"	50.0		106	80-120			
Xylene (p/m)	96.2		"	100		96.2	80-120			
Xylene (o)	53.3		"	50.0		107	80-120			
Surrogate: a,a,a-Trifluorotoluene	48.6		"	50.0		97.2	75-125			
Surrogate: 4-Bromofluorobenzene	50.8		"	50.0		102	75-125			
Matrix Spike (EE70207-MS1)	Sou	rce: 7D30017	7-04	Prepared: (05/02/07 A	Analyzed: 05	/03/07			
Benzene	0.101	0.00200	mg/kg dry	0.110	ND	91.8	80-120			
Toluene	0.102	0.00200	"	0.110	ND	92.7	80-120			
Ethylbenzene	0.108	0.00200	"	0.110	ND	98.2	80-120			
Xylene (p/m)	0.196	0.00200	"	0.220	ND	89.1	80-120			
Xylene (o)	0.105	0.00200	"	0.110	ND	95.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.4		ug/kg	50.0		88.8	75-125			
Surrogate: 4-Bromofluorobenzene	46.5		"	50.0		93.0	75-125			
Matrix Spike Dup (EE70207-MSD1)	Sou	rce: 7D30017	7-04	Prepared: (05/02/07 A	Analyzed: 05	/03/07			
Benzene	0.0980	0.00200	mg/kg dry	0.110	ND	89.1	80-120	2.99	20	
Toluene	0.0992	0.00200	"	0.110	ND	90.2	80-120	2.73	20	
Ethylbenzene	0.105	0.00200	"	0.110	ND	95.5	80-120	2.79	20	
Xylene (p/m)	0.191	0.00200	"	0.220	ND	86.8	80-120	2.62	20	
Xylene (o)	0.102	0.00200	"	0.110	ND	92.7	80-120	2.98	20	
Surrogate: a,a,a-Trifluorotoluene	43.9		ug/kg	50.0		87.8	75-125			
Surrogate: 4-Bromofluorobenzene	46.6		"	50.0		93.2	75-125			
Batch EE70306 - EPA 5030C (GC)										
Blank (EE70306-BLK1)				Prepared &	a Analyzed	1: 05/03/07				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	52.4		ug/kg	50.0		105	75-125			
Surrogate: 4-Bromofluorobenzene	49.6		"	50.0		<i>99.2</i>	75-125			

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE70306 - EPA 5030C (GC)						-				
LCS (EE70306-BS1)				Prepared &	Analyzed:	05/03/07				
Benzene	0.0503	0.00100	mg/kg wet	0.0500		101	80-120			
Toluene	0.0516	0.00100	"	0.0500		103	80-120			
Ethylbenzene	0.0541	0.00100	"	0.0500		108	80-120			
Xylene (p/m)	0.0991	0.00100	"	0.100		99.1	80-120			
Xylene (o)	0.0537	0.00100	"	0.0500		107	80-120			
Surrogate: a,a,a-Trifluorotoluene	52.4		ug/kg	50.0		105	75-125			
Surrogate: 4-Bromofluorobenzene	54.2		"	50.0		108	75-125			
Calibration Check (EE70306-CCV1)				Prepared &	Analyzed:	05/03/07				
Benzene	50.7		ug/kg	50.0		101	80-120			
Toluene	50.9		"	50.0		102	80-120			
Ethylbenzene	52.7		"	50.0		105	80-120			
Xylene (p/m)	96.0		"	100		96.0	80-120			
Xylene (o)	52.9		"	50.0		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	50.2		"	50.0		100	75-125			
Surrogate: 4-Bromofluorobenzene	50.0		"	50.0		100	75-125			
Matrix Spike (EE70306-MS1)	Sou	arce: 7D30017	-12	Prepared: 0	05/03/07 A	nalyzed: 05	5/04/07			
Benzene	0.101	0.00200	mg/kg dry	0.116	ND	87.1	80-120			
Toluene	0.102	0.00200	"	0.116	ND	87.9	80-120			
Ethylbenzene	0.107	0.00200	"	0.116	ND	92.2	80-120			
Xylene (p/m)	0.197	0.00200	"	0.233	ND	84.5	80-120			
Xylene (o)	0.103	0.00200	"	0.116	ND	88.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.2		ug/kg	50.0		86.4	75-125			
Surrogate: 4-Bromofluorobenzene	44.6		"	50.0		89.2	75-125			
Matrix Spike Dup (EE70306-MSD1)	Sou	urce: 7D30017	-12	Prepared: 0	05/03/07 A	nalyzed: 05	5/04/07			
Benzene	0.104	0.00200	mg/kg dry	0.116	ND	89.7	80-120	2.94	20	
Toluene	0.105	0.00200	"	0.116	ND	90.5	80-120	2.91	20	
Ethylbenzene	0.110	0.00200	"	0.116	ND	94.8	80-120	2.78	20	
Xylene (p/m)	0.201	0.00200	"	0.233	ND	86.3	80-120	2.11	20	
Xylene (o)	0.106	0.00200	"	0.116	ND	91.4	80-120	2.89	20	
Surrogate: a,a,a-Trifluorotoluene	44.0		ug/kg	50.0		88.0	75-125			
Surrogate: 4-Bromofluorobenzene	46.3		"	50.0		92.6	75-125			

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project: Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 200130	
Eunice NM, 88231	Project Manager: Iain Olness	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Papartin~		Spile	Source		%PEC		רוס פ	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE70208 - General Preparation (Prep)										
Blank (EE70208-BLK1)				Prepared &	Analyzed:	05/01/07				
% Solids	99.8		%	.1						
Duplicate (EE70208-DUP1)	Sou	rce: 7D30006-	01	Prepared &	Analyzed:	05/01/07				
% Solids	88.0		%		88.6			0.680	20	
Duplicate (EE70208-DUP2)	Sou	rce: 7D30012-	01	Prepared &	Analyzed:	05/01/07				
% Solids	88.5		%		87.4			1.25	20	
Duplicate (EE70208-DUP3)	Sou	rce: 7D30017-	11	Prepared & Analyzed: 05/01/07						
% Solids	91.2		%		91.4			0.219	20	
Batch EE70708 - General Preparation (WetCh	iem)									
Blank (EE70708-BLK1)				Prepared &	Analyzed:	05/07/07				
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500	"							
LCS (EE70708-BS1)				Prepared &	Analyzed:	05/07/07				
Sulfate	10.1	0.500	mg/kg	10.0		101	80-120			
Chloride	10.1	0.500	"	10.0		101	80-120			
Calibration Check (EE70708-CCV1)				Prepared &	Analyzed:	05/07/07				
Chloride	9.20		mg/kg	10.0		92.0	80-120			
Sulfate	11.0		"	10.0		110	80-120			
Duplicate (EE70708-DUP1)	Sou	rce: 7D27002-	21	Prepared &	Prepared & Analyzed: 05/07/07					
Sulfate	864	10.0	mg/kg		879			1.72	20	
Chloride	13.6	10.0	"		12.7			6.84	20	

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project: 0	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 2	200130	
Eunice NM, 88231	Project Manager: 1	Iain Olness	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	D 1	Reporting		Spike	Source	A/D 2 2	%REC	DEE	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE70708 - General Preparation (Wet	Chem)									
Duplicate (EE70708-DUP2)	Sou	rce: 7D30017-	-05	Prepared &	k Analyzed	: 05/07/07				
Sulfate	41.2	5.00	mg/kg		41.4			0.484	20	
Chloride	5.03	5.00	"		5.06			0.595	20	
Matrix Spike (EE70708-MS1)	Sou	rce: 7D27002-	-21	Prepared &	k Analyzed	: 05/07/07				
Chloride	222	10.0	mg/kg	200	12.7	105	80-120			
Sulfate	1260	10.0	"	200	879	190	80-120			QM-10
Matrix Spike (EE70708-MS2)	Sou	rce: 7D30017-	-05	Prepared &	Prepared & Analyzed: 05/07/07					
Sulfate	138	5.00	mg/kg	100	41.4	96.6	80-120			
Chloride	101	5.00	"	100	5.06	95.9	80-120			
Batch EE70713 - General Preparation (Wet	Chem)									
Blank (EE70713-BLK1)				Prepared: (05/07/07 A	nalyzed: 05	5/08/07			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	"							
LCS (EE70713-BS1)				Prepared: (05/07/07 A	nalyzed: 05	5/08/07			
Sulfate	9.97	0.500	mg/kg	10.0		99.7	80-120			
Chloride	10.7	0.500	"	10.0		107	80-120			
Calibration Check (EE70713-CCV1)				Prepared: (05/07/07 A	nalyzed: 05	5/08/07			
Sulfate	11.3		mg/kg	10.0		113	80-120			
Chloride	8.86		"	10.0		88.6	80-120			
Duplicate (EE70713-DUP1)	Sou	rce: 7E04014-	-01	Prepared: (Prepared: 05/07/07 Analyzed: 05/08/07					
Sulfate	30.5	5.00	mg/kg		30.0			1.65	20	
Chloride	6.96	5.00	"		7.35			5.45	20	

Environmental Lab of Texas

A Xenco Laboratories Company

Environmental Plus, Incorporated	Project: Chevron	/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number: 200130		
Eunice NM, 88231	Project Manager: Iain Olne	ess	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE70713 - General Preparation	n (WetChem)									
Duplicate (EE70713-DUP2)	Sour	e: 7D30017	-14	Prepared: (05/07/07 A	nalyzed: 05	/08/07			
Sulfate	135	5.00	mg/kg		148			9.19	20	
Chloride	39.5	5.00	"		47.9			19.2	20	
Matrix Spike (EE70713-MS1)	Sour	ce: 7E04014	-01	Prepared: (05/07/07 A	nalyzed: 05	/08/07			
Chloride	102	5.00	mg/kg	100	7.35	94.6	80-120			
Sulfate	114	5.00	"	100	30.0	84.0	80-120			
Matrix Spike (EE70713-MS2)	Sour	ce: 7D30017	-14	Prepared: ()5/07/07 A	nalyzed: 05	/08/07			
Chloride	161	5.00	mg/kg	100	47.9	113	80-120			
Sulfate	253	5.00	"	100	148	105	80-120			

Environmental Plus, Incorporated	Project:	Chevron/Brunson Argo TB # 5	Fax: 505-394-2601
P.O. Box 1558	Project Number:	200130	
Eunice NM, 88231	Project Manager:	Iain Olness	

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-10	LCS/LCSD were analyzed in place of MS/MSD.
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Junor

Date:

5/8/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 20 of 20

Inc.
Plus,
ental
vironm

 \mathbf{T}

Chain of Custody Form

Page 1 of 2

P.O. Box 1558, Eunice, NM 88231

LAB: ELT ANALYSIS REQUEST НАЧ <<< Relation тсгр Hq (¹⁰CS) SETARUS × × × × × × CHLORIDES (CI') × × × × × × × × × × × × MB108 Hq1 × × E-mail results to: dduncan@envplus.net BTEX 8021B × × × × × × × × 14:15 15:44 15:50 17:05 17:15 12:35 12:41 16:00 16:15 TIME 13:01 SAMPLING 402019504 w/labels 26-Apr-07 Attn: David P. Duncan REMARKS: 1. 5 *C DATE Eunice, NM 88231 PO Box 1558 Bill To PRESERV. ЯЗНТО ICE/COOF × × × × × × × × × ACID/BASE . 20-0 9:42 :R3HTO Checked By: зглосе MATRIX CRUDE OIL SOIL × × × × × × × × × (lab staff indula RATAWATSAW **ЯЭТАW ОИООЯ**Э Stra UL-D, Sec. 10, T 22 S, R 37 E Received By: Sample Cool & Intact Received By ő 505-394-3481 / 505-394-2601 **# CONTAINERS** -Eunice New Mexico 88231 Environmental Plus, Inc. G)RAB OR (C)OMP. × × × × × × × × × × Brunson Argo TB #5 Yes) raloc/p 4/30/2007 2:12 George Blackburn 52:11em P.O. BOX 1558 Chevron USA lain Olness SAMPLE I.D. (505) 394-3481 FAX: (505) 394-2601 2100 Avenue O, Eunice, NM 88231 200130 SB-1 (15') SB-2 (15') SB-1 (10¹) SB-1 (20') SB-2 (2') SB-2 (10') 0 SB-2 (20' SB-2 (5') SB-1 (5') SB-1 (2') EPI Project Manager **EPI Sampler Name Project Reference** then EPI Phone#/Fax# Mailing Address Company Name Client Company City, State, Zip TIDBOOEDT Facility Name LAB I.D. Relinquiși Induished by SWN _ocation JUL C ivered by

Inc.
Plus,
lental
vironm
-

 Θ

Chain of Custody Form

Page 2 of 2

LAB: ELT ANALYSIS REQUEST НАЧ <<< ABHTO тсгр Hq (¹⁵OS) S∃TA∃JUS × × × × × CHLORIDES (CIT) × × × × × MB108 Hq1 × × × × E-mail results to: dduncan@envplus.net × BTEX 8021B × × × × × 10:35 11:30 7:15 10:10 10:41 TIME 7:30 8:00 W/ 1alzels SAMPLING 402 91955 27-Apr-07 27-Apr-07 27-Apr-07 27-Apr-07 27-Apr-07 27-Apr-07 27-Apr-07 Attn: David P. Duncan DATE REMARKS: [.S *C Eunice, NM 88231 PO Box 1558 Bill To PRESERV. язнто u^e × × ICE/COOF × × × × × P.O. Box 1558, Eunice, NM 88231 ACID/BASE 30-0 3:42 :R3HTO Checked By - 1 зглоее MATRIX CRUDE OIL Lerra × JIOS × × × × × × ved By: (lab staff RATAWATSAW LICA S ЯЭТАЖ ОИЛОЯЭ ш Sample Cool & Intact Yes No Received By: 505-394-3481 / 505-394-2601 2 V UL-D, Sec. 10, T 22 S, R 37 **# CONTAINERS** -Eunice New Mexico 88231 Environmental Plus, Inc. (G)RAB OR (C)OMP. × × × × × × × Brunson Argo TB #5 Coloc/han 4/30/2007 George Blackburn me 11'25 7 P.O. BOX 1558 Chevron USA lain Olness SAMPLE I.D. (505) 394-3481 FAX: (505) 394-2601 2100 Avenue O, Eunice, NM 88231 200130 SB-3 (10') SB-3 (15') SB-4 (10') SB-4 (2') SB-3 (2') SB-3 (5') 6 SB-4 (5') **EPI Project Manager EPI Sampler Name Project Reference** EPI Phone#/Fax# Mailing Address Company Name Client Company City, State, Zip Facility Name LAB I.D. linquished by: Location Sun livered by v

Client Initials

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Environme	ntal Plus
Date/ Time:	4-30-07	3:42
Lab ID # :	7030017	~
Initials:	GL	

Sample Receipt Checklist

°C Yes No Temperature of container/ cooler? #1 No Yes Shipping container in good condition? #2 Not Present No Yes Custody Seals intact on shipping container/ cooler? #3 No Not Present Yes Custody Seals intact on sample bottles/ container? #4 No Yes Chain of Custody present? #5 Yes No Sample instructions complete of Chain of Custody? #6 Yes No Chain of Custody signed when relinquished/ received? #7 ID written on Cont./ Lid No Chain of Custody agrees with sample label(s)? Yes. #8 Not Applicable No Yes Container label(s) legible and intact? #9 Sample matrix/ properties agree with Chain of Custody? No (es) #10 Yes No Containers supplied by ELOT? #11 See Below Yes No Samples in proper container/ bottle? #12 No See Below Yes Samples properly preserved? #13 Yes No Sample bottles intact? #14 No (res) #15 Preservations documented on Chain of Custody? No Yes #16 Containers documented on Chain of Custody? See Below No Yes #17 Sufficient sample amount for indicated test(s)? No See Below Yes #18 All samples received within sufficient hold time? Not Applicable No Yes #19 Subcontract of sample(s)? Not Applicable Yes No #20 VOC samples have zero headspace?

Variance Documentation

Contact:		Contacted by: Da	ate/ Time:	
Regarding:				
Corrective Action Taken	:			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with analys Cooling process had begun shortly after sampling event	sis	

Analytical Report 297914

for

Environmental Plus, Incorporated

Project Manager: David P. Duncan

Chevron/ Brunson Argo TB #5 200130

26-FEB-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

26-FEB-08

Project Manager: **David P. Duncan Environmental Plus, Incorporated** P.O. Box 1558 Eunice, NM 88231

Reference: XENCO Report No: 297914 Chevron/ Brunson Argo TB #5 Project Address: UL-D, Sec. 10, T 22 S, R 37 E

David P. Duncan:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 297914. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 297914 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 297914

Environmental Plus, Incorporated, Eunice, NM

Chevron/ Brunson Argo TB #5

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
WSW-1 3'	S	Feb-18-08 13:41		297914-001
BH-2 12'	S	Feb-18-08 13:31		297914-002
BH-3 16'	S	Feb-18-08 13:32		297914-003
BH-4 10'	S	Feb-18-08 13:33		297914-004
BH-5 17'	S	Feb-18-08 13:34		297914-005
BH-6 10'	S	Feb-18-08 13:35		297914-006
ESW-2 4'	S	Feb-18-08 13:37		297914-007
ESW-3 9'	S	Feb-18-08 13:38		297914-008
ESW-4 8'	S	Feb-18-08 13:39		297914-009
WSW-2 8'	S	Feb-18-08 13:42		297914-010
WSW-3 2'	S	Feb-18-08 13:43		297914-011
WSW-4 3'	S	Feb-18-08 13:44		297914-012

Certificate of Analysis Summary 297914

Environmental Plus, Incorporated, Eunice, NM Project Name: Chevron/ Brunson Argo TB #5

Project Id: 200130 Contact: David P. Duncan Project Location: UL-D. Sec. 10, T 22 S, R 37 E

Date Received in Lab: Tue Feb-19-08 10:00 am

Report Date: 26-FEB-08

								Project Ma	nager:	Brent Barron,	II		
	Lab Id:	297914-0	001	297914-0	002	297914-(003	297914-(004	297914-0	005	297914-0	006
An aluaia Dona anto d	Field Id:	WSW-1	3'	BH-2 1	2'	BH-3 1	6'	BH-4 1	0'	BH-5 1	7'	BH-6 1	0'
Analysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	Feb-18-08	13:41	Feb-18-08	13:31	Feb-18-08	13:32	Feb-18-08	13:33	Feb-18-08	13:34	Feb-18-08 1	13:35
Determination of Inorganic Anions	Extracted:												
per Ion Chromatography by	Analyzed:			Feb-19-08	11:06	Feb-19-08	11:06			Feb-19-08	11:06	Feb-19-08 1	11:06
F	Units/RL:			mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL
Chloride				ND	5.00	ND	5.00			ND	5.00	ND	5.00
Percent Moisture	Extracted:												
	Analyzed:	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08 1	10:10
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.28	1.00	8.04	1.00	18.1	1.00	12.8	1.00	9.43	1.00	19.1	1.00
TPH by SW8015 Mod	Extracted:	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08 1	15:47
	Analyzed:	Feb-19-08	16:44	Feb-19-08	17:34	Feb-19-08	17:58	Feb-19-08	18:25	Feb-19-08	18:51	Feb-19-08 1	19:18
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.3	ND	16.3	85.1	18.3	ND	17.2	138	16.6	ND	18.6
C12-C28 Diesel Range Hydrocarbons		96.9	15.3	35.8	16.3	652	18.3	ND	17.2	537	16.6	ND	18.6
C28-C35 Oil Range Hydrocarbons		160	15.3	24.4	16.3	78.7	18.3	ND	17.2	72.4	16.6	ND	18.6
Total TPH		256.9		60.2		815.8		ND		747.4		ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

Certificate of Analysis Summary 297914

Environmental Plus, Incorporated, Eunice, NM Project Name: Chevron/ Brunson Argo TB #5

Project Id: 200130 Contact: David P. Duncan Project Location: UL-D. Sec. 10, T 22 S, R 37 E

Date Received in Lab: Tue Feb-19-08 10:00 am

Report Date: 26-FEB-08

								Project Ma	nager:	Brent Barron,	Π		
	Lab Id:	297914-0	007	297914-0	008	297914-()09	297914-0	010	297914-0	11	297914-0	012
A stalling Do not onted	Field Id:	ESW-2	4'	ESW-3	9'	ESW-4	8'	WSW-2	8'	WSW-3	2'	WSW-4	3'
Analysis Kequesiea	Depth:												
	Matrix:	SOIL	,	SOIL		SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Feb-18-08	13:37	Feb-18-08	13:38	Feb-18-08	13:39	Feb-18-08	13:42	Feb-18-08	13:43	Feb-18-08	13:44
Determination of Inorganic Anions	Extracted:												
per Ion Chromatography by	Analyzed:			Feb-19-08	11:06	Feb-19-08	11:06	Feb-19-08	11:06	Feb-19-08	11:06	Feb-19-08	11:06
F	Units/RL:			mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride				20.0	5.00	ND	5.00	ND	5.00	ND	5.00	ND	5.45
Percent Moisture	Extracted:												
	Analyzed:	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10	Feb-19-08	10:10
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		7.63	1.00	10.6	1.00	8.56	1.00	5.34	1.00	3.83	1.00	8.32	1.00
TPH by SW8015 Mod	Extracted:	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47	Feb-19-08	15:47
	Analyzed:	Feb-19-08	19:45	Feb-19-08 2	20:12	Feb-19-08	20:39	Feb-19-08	21:34	Feb-19-08 2	22:28	Feb-19-08	22:55
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	16.2	ND	16.8	ND	16.4	ND	15.8	ND	15.6	ND	16.4
C12-C28 Diesel Range Hydrocarbons		26.4	16.2	ND	16.8	ND	16.4	142	15.8	177	15.6	45.4	16.4
C28-C35 Oil Range Hydrocarbons		19.9	16.2	ND	16.8	ND	16.4	44.7	15.8	130	15.6	61.0	16.4
Total TPH		46.3		ND		ND		186.7		307		106.4	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Eav

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	THONE	Гал
1381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
5017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Received by OCD:	2/26/2019
XENCO	
Laboratories	

10,59:40 AM Form 2 - Surrogate Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914		Project II	D: 200130					
Lab Batch #: 715128 Sample: 297914-001 / SM	IP Ba	tch: 1 Matri	x: Soil					
Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	95.2	100	95	70-135				
o-Terphenyl	48.6	50.0	97	70-135				
Lab Batch #: 715128 Sample: 297914-002 / SM	IP Ba	tch: ¹ Matri	x: Soil					
Units: mg/kg		RROGATE RI	ECOVERY	STUDY				
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	89.6	100	90	70-135				
o-Terphenyl	48.8	50.0	98	70-135				
Lab Batch #: 715128 Sample: 297914-002 S / 1	MS Ba	tch: ¹ Matri	x: Soil					
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY				
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Analytes	100	100	106	70.125				
o-Ternhenvl	58.2	50.0	100	70-135				
	/ MCD D			10 155				
Lab Batch #: 715128 Sample: 297914-002 SD	MSD Ba	tch: 1 Matri	x: Soil					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	101	100	101	70-135				
o-Terphenyl	56.2	50.0	112	70-135				
Lab Batch #: 715128 Sample: 297914-003 / SM	IP Ba	tch: 1 Matri	x: Soil					
Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount	True		Control				
Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flags			
Analytes	Found [A] 93.0	Amount [B] 100	Recovery % R [D] 93	Limits %R	Flags			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Received by OCD:	2/26/2019
XENCO	
Laboratories	

10,59:40 AM Form 2 - Surrogate Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914		Project II	D: 200130						
Lab Batch #: 715128 Sample: 297914-004 /	SMP Ba	tch: 1 Matri	ix: Soil						
Units: mg/kg	SU	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	92.3	100	92	70-135					
o-Terphenyl	49.3	50.0	99	70-135					
Lab Batch #: 715128 Sample: 297914-005 /	SMP Ba	tch: 1 Matri	ix: Soil	1					
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	101	100	101	70-135					
o-Terphenyl	53.7	50.0	107	70-135					
Lab Batch #: 715128 Sample: 297914-006 /	SMP Ba	tch: 1 Matri	ix: Soil	1					
Units: mg/kg	SU	RROGATE RI	ECOVERYS	STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	07.3	100	97	70-135					
o-Terphenyl	51.8	50.0	104	70-135					
Lah Batch #• 715128 Sample• 297914-007 /	SMP Ba	tch· 1 Matri	ix: Soil						
Units: mg/kg		RROGATE RI	ECOVERY	STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	91.8	100	92	70-135					
o-Terphenyl	49.2	50.0	98	70-135					
Lab Batch #: 715128 Sample: 297914-008 /	SMP Ba	tch: 1 Matri	ix: Soil						
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	92.0	100	92	70-135					

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Received by OCD:	2/26/2019
XENCO	
Laboratories	

10,59:40 AM Form 2 - Surrogate Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914	Project ID: 200130												
Lab Batch #: 715128 Sample: 297914-009 / SM	IP Bat	tch: 1 Matri	x: Soil										
Units: mg/kg	SU	RROGATE RE	COVERY S	STUDY									
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1-Chlorooctane	94.9	100	95	70-135									
o-Terphenyl	50.3	50.0	101	70-135									
Lab Batch # 715128 Sample 297914-010 / SM	/ /P Ba	tch· 1 Matri	v Soil	<u> </u>									
Units: mg/kg	SU	RROGATE RE	ECOVERY S	STUDY									
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1-Chlorooctane	86.0	100	86	70-135									
o-Terphenyl	46.5	50.0	93	70-135									
Lab Batch #: 715128 Sample: 297914-011 / SN	IP Ba'	tch: ¹ Matri	x: Soil	<u>, </u>									
Units: mg/kg	SURROGATE RECOVERY STUDY												
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1-Chlorooctane	92.2	100	92	70-135									
o-Terphenyl	48.6	50.0	97	70-135									
Lab Batch #: 715128 Sample: 297914-012 / SM	IP Ba'	tch: 1 Matri	x: Soil	<u> </u>									
Units: mg/kg													
	SU	RROGATE RE	COVERY	STUDY									
TPH by SW8015 Mod Analytes	Amount Found [A]	RROGATE RI True Amount [B]	Recovery %R [D]	STUDY Control Limits %R	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane	SU Amount Found [A] 93.2	RROGATE RI True Amount [B] 100	Recovery %R [D] 93	STUDY Control Limits %R 70-135	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl	SU Amount Found [A] 93.2 49.4	RROGATE RI Amount [B] 100 50.0	Recovery %R [D] 93 99	STUDY Control Limits %R 70-135 70-135	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715128 Sample: 504880-1-BKS /	SU Amount Found [A] 93.2 49.4 BKS Bat	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri	Recovery %R [D] 93 99 x: Solid	STUDY Control Limits %R 70-135 70-135	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715128 Sample: 504880-1-BKS / Units: mg/kg	SU Amount Found [A] 93.2 49.4 BKS Bat SU	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI	Recovery %R [D] 93 99 x: Solid COVERY S	STUDY Control Limits %R 70-135 70-135 STUDY	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715128 Sample: 504880-1-BKS / Units: mg/kg TPH by SW8015 Mod Analytes	SU Amount Found [A] 93.2 49.4 BKS Bat SU Amount Found [A]	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI True Amount [B]	Recovery %R [D] 93 99 x: Solid COVERY S Recovery %R [D]	STUDY Control Limits %R 70-135 70-135 STUDY STUDY Control Limits %R	Flags								
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715128 Sample: 504880-1-BKS / Units: mg/kg TPH by SW8015 Mod Analytes 1-Chlorooctane	SU Amount Found [A] 93.2 49.4 BKS Bai SU Amount Found [A] 97.3	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI True Amount [B] 100	Recovery %R [D] 93 99 x: Solid COVERY S Recovery %R [D] 97	STUDY Control Limits %R 70-135 70-135 STUDY Control Limits %R 70-135	Flags								

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Rece	ved by OCD: 9/26/2019
	XENCO
	Laboratories

9 10739:40 AM Form 2 - Surrogate Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914		Project II): 200130		
Lab Batch #: 715128 Sample: 504880-1-BLK /	BLK Bat	ch: 1 Matri	x: Solid		
Units: mg/kg	SU	RROGATE RE	ECOVERY S	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			נען		
1-Chlorooctane	89.1	100	89	70-135	
o-Terphenyl	47.6	50.0	95	70-135	
	47.0	50.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70-135	
Lab Batch #: 715128 Sample: 504880-1-BSD /	BSD Bat	ch: 1 Matri	x: Solid	70-133	
Lab Batch #: 715128 Sample: 504880-1-BSD / Units: mg/kg	BSD Bat	tch: ¹ Matri	ix: Solid	STUDY	
Lab Batch #: 715128 Sample: 504880-1-BSD / Units: mg/kg TPH by SW8015 Mod Analytes	BSD Bat SU Amount Found [A]	tch: 1 Matri RROGATE RE True Amount [B]	ix: Solid ECOVERY S Recovery %R [D]	STUDY Control Limits %R	Flags
Lab Batch #: 715128 Sample: 504880-1-BSD / Units: mg/kg TPH by SW8015 Mod Analytes 1-Chlorooctane	BSD Bat SU Amount Found [A] 99.0	tch: 1 Matri RROGATE RE True Amount [B] 100	ix: Solid COVERY S Recovery %R [D] 99	STUDY Control Limits %R 70-135	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Blank Spike Recovery

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914			Pro	oject ID:			200130
Lab Batch #: 715095 Date Analyzed: 02/19/2008	Sa Date Prep	mple: 715095- pared: 02/19/20	1-BKS)08	Matri Analys	x: Solid st: LATCO	OR	
Reporting Units: mg/kg	Ba	tch #: 1	BLANK /B	BLANK SPI	KE REC	OVERY S	STUDY
Determination of Inorganic Anions per Io	on Chro	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes		[A]	[B]	Result [C]	%R [D]	%R	0
Chloride		ND	10.0	8.88	89	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914								Pro	ject ID: 2	200130		
Analyst: BRB		Da	ate Prepar	ed: 02/19/200	8			Date A	nalyzed: (2/19/2008		
Lab Batch ID: 715128	Sample: 504880-1-B	KS	Batcl	h#: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPL	ICATE	RECOVE	ERY STUD	Y	
TPH by SW801	5 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocar	bons	ND	1000	863	86	1000	869	87	1	70-135	35	
C12-C28 Diesel Range Hydrocarb	ons	ND	1000	893	89	1000	906	91	1	70-135	35	

Relative Percent Difference RPD = $200^{*}|(D-F)/(D+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Received by OCD: 9/26/2019 10:39 40 AM Form	3 - MS I	Recover	ries			Page 68 of 1				
Laboratories Project Name:	Chevron/ E	Brunson A	rgo TB #5			inela	C			
Work Order #: 297914										
Lab Batch #: 715095			Pr	oject ID:	200130					
Date Analyzed: 02/19/2008 Da	te Prepared:	02/19/2008		Analyst:	LATCOR					
QC- Sample ID: 297897-001 S	Batch #:	1		Matrix:	Soil					
Reporting Units: mg/kg	MAT	RIX / MA	FRIX SPIKE	RECOV	VERY STU	DY				
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Analytes		[]				ļ				
Chloride	207	200	440	117	75-125					

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Chevron/ Brunson Argo TB #5

Work Order #: 297914						Project I	D: 200130)			
Lab Batch ID: 715128	QC- Sample ID:	297914	-002 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 02/19/2008	Date Prepared:	02/19/2	008	An	alyst:	BRB					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	0
C6-C12 Gasoline Range Hydrocarbons	ND	1090	1050	96	1090	1000	92	4	70-135	35	
C12-C28 Diesel Range Hydrocarbons	35.8	1090	1070	95	1090	1070	95	0	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

ived by OCD: 9/26/2019 10:39:40 AM Sample I	Duplicate	e Recov	ery		
Work Order #: 297914	ron/ Bruns	son Argo T	B #5		
Lab Batch #: 715095 Date Analyzed: 02/19/2008 Date Pr	epared: 02/1	9/2008	Project I Analy	D: 200130 rst: LATCOF	ł
QC- Sample ID: 297897-001 D	Batch #: 1		Matr	ix: Soil	
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Determination of Inorganic Anions per Ion Chromatography by	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	207	217	5	20	
Lab Batch #: 715129 Date Analyzed: 02/19/2008 Date Pr OC- Sample ID: 297897-001 D	epared: 02/1 Batch #: 1	9/2008	Analy Matr	st: RBA ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	2.45	2.60	6	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. Page 70 of 104

•		,														i				Page	ן ¹ ס	2	
nviron	mental Plus,	, Inc.														Chê	ain e	of C	Sus	tody	ЦЦ		
00 Avenue O, 75) 394-3481	, Eunice, NM 88231 FAX: (575) 394-2601		Р.О). Bc	X 15	58, E	iuni	ce, A	IM 8	8231								\mathbf{LA}	B: X	ENC	O (E	LT)	
mpany Name	Environme	ental Plus	<u>ц</u>	Ι.		Salar Salar					Bill	To		No. 10 State		ANA	LYSI	IS R	EQL	EST			
I Project Man	lager lain Olnes	ş								3					-					┝	L		
iling Address	> P.O. BOX	1558				1				5	2	5											
y, State, Zip	Eunice Ne	w Mexico	882	31		—																	
I Phone#/Fax	:# 575-394-3	481 / 575-3	94-2	2601																			
ent Company	/ Chevron U	SA				_																	
cility Name	Brunson /	Argo TB #6																					
cation	UL-D, Sec.	. 10, T 22 (ы Ш	37 E		r-			LA	ž	Bill	Anderson											
oject Referen	ce 200130					–				P.0	Bo Bo	x 1949											
Sampler Nai	me David Rob	oinson							Eun	ice,	ŇN	88231-1949											
			Ŀ	F		Σ	TRIX		F	PRES	ERV.	SAMPL	NG										
			GMP	s	83	┣_;				-					U.	(_*(
LAB I.D.	SAMPLE I.C	Ġ	(ว) ยด	NINEB			אר			I BE				518)/ 530				<<				
guand			aaa(a)	# CONT	INUORD		CRUDE (зралля	:ЯЭНТО		REHTO BEHTO	DATE	TIME	08 X3T8			Ho	тсгр	< ABHTO	НАЧ			
1	1 WSW-1 (3')		×	-		×						18-Feb-08	13:41								-		
5	2 BH-2 (12')		Х	-		×				×		18-Feb-08	13:31		Ê				┢				
<i>α</i>)	3 BH-3 (16')		×	+		X				×		18-Feb-08	13:32		$\hat{\mathbf{\nabla}}$								
4	t BH-4 (10')		×	-	_	×				×		18-Feb-08	13:33		V								
Ω.	5 BH-5 (17')		×	-	_	×				×		18-Feb-08	13:34		$\tilde{\mathbf{v}}$					_			
9	5 BH-6 (10')		×	-		×			-	<u>×</u>		18-Feb-08	13:35		Ĵ								
	ESW-2 (4')		×	_	╉	×			┥	×		18-Feb-08	13:37		┦	_				+	╡		
æ	8 ESW-3 (9')		×	-	+	×				Ň		18-Feb-08	13:38		Ĵ								
6	ESW-4 (8')		×	-	┥	×				×		18-Feb-08	13:39		Ĵ						_		
10	(WSW-2 (8')		×	-		×				×		18-Feb-08	13:42		Ň								
たいまでは																÷	. 1917) 1 (42)	sente Manza				2.4 2.4	
pler Relinquished:		2/19/2008	Receiv	ved By		ρ				щă	mail I	results to: dduno c	can@envplu	au.sr									
いこう) 		۲ ا	2.1		3 2			<u>7</u>													
Leren	Room	2/19/2008 "෦෦්රා, රට	Несен	Ved By	(lab	tam) (C	0				N.	ûPC(c											
eled by:		Sample	Cool 8	k Intac No			Che Che	cked E	3y:		_	Ų											
							د ر	ł		_												-	

	13	Ē	jit ^{er} Stati									_												Т	Т					
of 2	<u>-or</u>	(ELJ		-						_						_								1	+	-				
ge 2	V F	Ö		_							_								Η				1		1					
Pa	too	Ž	JES													н∧ч	_		Π					1	1					
	Sus	B: X	EQI												<<< 83	нто														
	of (L∧	IS A												c	тсгі														
	Ľ.		SX													Hq														
	Cha		NA		_									(__ ¹0	S) SETA	I⊐∩S														
	O													CI.)) SEGIES (СНГ	X	×				_	_	$ \rightarrow$	_					
				L								-	_		WS108	HeT	×	×							-			s.net		
				-								_			81208)	(3T8	~		\vdash		_		_	-	-		1	snlqv		
													NG			TIME	13:43	13:44										can@en		
				4	51					nderson	1949	3231-1949	SAMPLI			DATE	18-Feb-08	18-Feb-08										sults to: ddune	april 3	
					5					A II	30X	M 86	<u>۳۲.</u>		83	нто												ail re		
		31	B			1				: Bi	ö	e, NI	ESEF		7000	ICE/C	×	×										E-må REM≜	Ż	
		882:		ļŪ	J /					Ę	ב	inice	PRI		JSA8/	ACID														
		NN								-		Щ			:83	IHTO							_							BY:
		ice,											×		BOGE	SLUI								_	_			्र	$\left \right\rangle$	Level 1
		Eun											ATRI			CBU								_	_			27	E	ō
		58, 1			т-							-	Ŵ	<u> </u>		lios	Ê	Ļ		_				-	_			Ň	staff)	
		x 15														องพ กมจ	\vdash	┝			_		-		-			5	(lab	
		Bo				-	<u></u>			17 E				<u> </u>		013	F	F			_				-			od By: رکير با	A BY	Intact No
			сі Ц			823	4-2(В 3			•		2) AO BA	ัษ(ย)	×	×					-			-		leceive	eceive	cool &
			us,			803	5-39		#2	2 S,								\vdash						-		_		≝ 8) ≎	.	nple (es)
	, Inc.		ental Pl	ss	1558	ew Mexid	481 / 57	ISA	Argo TB	5. 10, T 2		binson			Ġ													2/19/200	2/19/200	San
	Plus	8231 14-2601	vironm	n Olne	O. BOX	inice N	5-394-3	evron L	nosun	D, Sec	0130	Ivid Ro			APLE I.															
	tal]	e, NM 8 575) 35	Ē	lai	ď	цП	57	ວົ	B	IN	20	Da			SAN		3 (2')	1 (3')										ł	4	
	men	Eunic FAX: /		lager	5		#3				e	me					1 WSW-	2 WSW-4	3	4	5	9	7	8	6	0				5
	Environ	7100 Avenue 0, 575) 394-3481	ompany Name	PI Project Man	lailing Address	ity, State, Zip	Pl Phone#/Fax	lient Company	acility Name	ocation	roject Referen	PI Sampler Na			LAB I.D.					1	- /					11		ampler Relinquished:	eiinquished by:	elivered by:

Released to Imaging: 6/29/2021 1:49:56 PM
Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Cherron (Eti
Date/ Time:	2/19/108
Lab ID # :	2219014
Initials:	<u>l</u> L

Sample Receipt Checklist

				Client	nitials
#1	Temperature of container/ cooler?	Yes	No	1.5 ° c]
#2	Shipping container in good condition?	(ABS)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	Jes-	No		
#7	Chain of Custody signed when relinquished/ received?	Xes	No		
#8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Ves	No		
#11	Containers supplied by ELOT?	Yes	No		-
#12	Samples in proper container/ bottle?	Ses	No	See Below	
#13	Samples properly preserved?	Xes	No	See Below	
#14	Sample bottles intact?	Xes	No		
#15	Preservations documented on Chain of Custody?	Fes	No		
#16	Containers documented on Chain of Custody?	Xes	No		
#17	Sufficient sample amount for indicated test(s)?	Xes	No	See Below	
#18	All samples received within sufficient hold time?	Xes	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes>	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
Regarding:				
Corrective Action Taken	:			
Check all that Apply:		See attached e-mail/ fax		

 Client understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event

Analytical Report 298159

for

Environmental Plus, Incorporated

Project Manager: David P. Duncan

Brunson Argo TB # 5 200130

27-FEB-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

27-FEB-08

Project Manager: **David P. Duncan Environmental Plus, Incorporated** P.O. Box 1558 Eunice, NM 88231

Reference: XENCO Report No: 298159 Brunson Argo TB # 5 Project Address: UL-D, Sec. 10, T 22 S, R 37 E

David P. Duncan:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 298159. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 298159 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 298159

Environmental Plus, Incorporated, Eunice, NM

Brunson Argo TB # 5

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-7 (5')	S	Feb-21-08 08:01		298159-001
BH-8 (5')	S	Feb-21-08 08:02		298159-002
BH-9 (5')	S	Feb-21-08 08:03		298159-003
BH-10 (5')	S	Feb-21-08 08:04		298159-004
BH-12 (5')	S	Feb-21-08 08:06		298159-005
BH-16 (5')	S	Feb-21-08 09:31		298159-006
NSW-1 (8')	S	Feb-21-08 14:10		298159-007
NSW-2 (6')	S	Feb-21-08 14:11		298159-008
NSW-3 (2')	S	Feb-21-08 14:12		298159-009
NSW-4 (4')	S	Feb-21-08 14:13		298159-010

Certificate of Analysis Summary 298159

Environmental Plus, Incorporated, Eunice, NM

Project Name: Brunson Argo TB # 5

Page 77 of 104

Project Id: 200130 Contact: David P. Duncan Project Location: UL-D, Sec. 10, T 22 S, R 37 E

Date Received in Lab: Fri Feb-22-08 11:06 am Report Date: 27-FEB-08

Toject Location: OL-D, Sec. 10, 1 22 S, K 37 E								Project Ma	nager:	Brent Barron,	II		
	Lab Id:	298159-0	001	298159-0	002	298159-0	003	298159-0	004	298159-0	05	298159-0	06
Analysis Requested Determination of Inorganic Anions per Ion Chromatography by Chloride Percent Moisture Percent Moisture C6-C12 Gasoline Range Hydrocarbons	Field Id:	BH-7 (5	i')	BH-8 (5	5')	BH-9 (5	·')	BH-10 (:	5')	BH-12 (5	5')	BH-16 (5	5')
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-21-08	08:01	Feb-21-08	08:02	Feb-21-08 (08:03	Feb-21-08 (08:04	Feb-21-08 (08:06	Feb-21-08 (9:31
Determination of Inorganic Anions	Extracted:												
per Ion Chromatography by	Analyzed:	Feb-26-08	08:28	Feb-26-08	08:28	Feb-26-08 (08:28	Feb-26-08 (08:28	Feb-26-08 (08:28	Feb-26-08 (08:28
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.72	ND	5.64	ND	5.59	50.2	11.5	ND	5.63	522	10.8
Percent Moisture	Extracted:												
	Analyzed:	Feb-22-08	17:00	Feb-22-08	17:00	Feb-22-08	17:00	Feb-22-08	17:00	Feb-22-08 1	7:00	Feb-22-08 1	7:00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		12.6		11.3		10.5		13		11.2		7.21	
TPH by SW8015 Mod	Lab Id: 298159-001 298159-002 298159-003 298159-004 298159-005 298159 'Inorganic Anions matography by Feb-21-08 08:02 Feb-21-08 08:028 Feb-21-08 08:08 Feb-21-08 08:	Feb-22-08 1	5:41										
	Analyzed:	Feb-22-08	20:15	Feb-22-08	20:41	Feb-22-08 2	21:08	Feb-22-08 2	22:00	Feb-22-08 2	22:27	Feb-22-08 2	22:53
Chronice IND 3.72 IND 3.04 IND 3.39 50.2 11.3 IND 5.05 Percent Moisture Extracted: Analyzed: Feb-22-08 17:00 Feb	mg/kg	RL											
C6-C12 Gasoline Range Hydrocarbons		ND	17.2	ND	16.9	ND	16.8	ND	17.2	ND	16.9	ND	16.2
C12-C28 Diesel Range Hydrocarbons		110	17.2	22.5	16.9	ND	16.8	ND	17.2	ND	16.9	38.2	16.2
C28-C35 Oil Range Hydrocarbons		ND	17.2	ND	16.9	ND	16.8	ND	17.2	ND	16.9	ND	16.2
Total TPH		110		22.5		ND		ND		ND		38.2	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

Project Id: 200130

Certificate of Analysis Summary 298159

Environmental Plus, Incorporated, Eunice, NM

Project Name: Brunson Argo TB # 5

Date Received in Lab: Fri Feb-22-08 11:06 am

Contact: David P. Duncan Project Location: UL-D, Sec. 10, T 22 S, R 37 E

	Report Date:	27-FEB-08	
-			

								Project Ma	nager:	Brent Barron, II	
	Lab Id:	298159-0	007	298159-0	08	298159-0	09	298159-0	010		
Analysis Dogwooded	Field Id:	NSW-1 (8')	NSW-2 (6')	NSW-3 (2')	NSW-4 ((4')		
Analysis Requested Determination of Inorganic Anions per Ion Chromatography by Chloride Percent Moisture Percent Moisture Percent Moisture Percent Moisture C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Feb-21-08	14:10	Feb-21-08	14:11	Feb-21-08 1	14:12	Feb-21-08	14:13		
Determination of Inorganic Anions	Extracted:										
per Ion Chromatography by	Analyzed:	Feb-26-08	08:28	Feb-26-08 (08:28	Feb-26-08 (08:28	Feb-26-08 (08:28		
For comparison of the second s	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		611	11.0	130	11.2	163	11.3	16.2	5.15		
Percent Moisture	Extracted:										
Chloride Percent Moisture Percent Moisture	Analyzed:	Feb-22-08 17:00		Feb-22-08	17:00	Feb-22-08 1	17:00	Feb-22-08	17:00		
	Units/RL:	%	RL	%	RL	%	RL	%	RL		
Percent Moisture		8.95		11.1		11.7		2.96			
TPH by SW8015 Mod	Extracted:	Feb-22-08	15:41	Feb-22-08	15:41	Feb-22-08 1	15:41	Feb-22-08	15:41		
	Analyzed:	Feb-22-08	23:19	Feb-22-08 2	23:45	Feb-23-08 (00:12	Feb-23-08 (00:38		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C12 Gasoline Range Hydrocarbons		ND	16.5	ND	16.9	1430	84.9	ND	15.5		
C12-C28 Diesel Range Hydrocarbons		31.9	16.5	ND	16.9	12000	84.9	51.4	15.5		
C28-C35 Oil Range Hydrocarbons		ND	16.5	ND	16.9	1490	84.9	ND	15.5		
Total TPH		31.9		ND		14920		51.4			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

.

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dl.

F----

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	FIIOIIE	Гах
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Rece	ived by	OCD:	9/26/2019	1
	XE	NCO		

Laboratories

Form 2 - Surrogate Recoveries

Project Name: Brunson Argo TB # 5

Vork Order #: 298159		Project II): 200130		
Lab Batch #: 715557 Sample: 298159-001 / Sl	MP Bat	.ch: 1 Matri	x: Soil		
Units: mg/kg	SU	RROGATE RF	COVERY S	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			נען		
1-Chlorooctane	95.6	100	96	70-135	<u> </u>
o-Terphenyl	52.3	50.0	105	70-135	I
Lab Batch #: 715557 Sample: 298159-001 S /	MS Bat	ch: 1 Matri	x: Soil		
Units: mg/kg	SU	RROGATE RF	COVERY S	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	107	100	107	70-135	
o-Terphenyl	49.3	50.0	99	70-135	
Lab Batch #: 715557 Sample: 298159-001 SD	/ MSD Bat	ch: 1 Matri	x: Soil		
Units: mg/kg	SU	RROGATE RF	ECOVERY S	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1_Chlorooctane	112	100	112	70_135	<u>.</u>
o-Terphenyl	51.0	50.0	102	70-135	
Lab Datab # 715557 Sampler 208150-002 / Sl			Soil	<u> </u>	
Lab Baten #: /1555/ Sample: 270157-002751		Cn: 1 Iviaui	X: 5011	TIDV	
	I SU	DDOCATE RE	COVERV		
	SU.	RROGATE RI	ECOVERY S	Control	
TPH by SW8015 Mod Analytes	Amount Found [A]	RROGATE RI True Amount [B]	Recovery %R [D]	Limits %R	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane	SU Amount Found [A] 91.0	RROGATE RI True Amount [B] 100	Recovery %R [D] 91	Limits %R	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl	SU Amount Found [A] 91.0 49.1	RROGATE RI True Amount [B] 100 50.0	Recovery %R [D] 91 98	Limits %R 70-135 70-135	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 298159-003 / Sl	Amount Found [A] 91.0 49.1 MP Bat	RROGATE RI True Amount [B] 100 50.0 ch: 1 Matri	Recovery %R [D] 91 98 x: Soil	Limits %R 70-135 70-135	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 298159-003 / SI Units: mg/kg	Amount Found [A] 91.0 49.1 MP Bat	RROGATE RI True Amount [B] 100 50.0 ch: 1 Matri RROGATE RE	Recovery %R [D] 91 98 x: Soil COVERY S	Limits %R 70-135 70-135 STUDY	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 298159-003 / SI Units: mg/kg TPH by SW8015 Mod Analytes	Amount Found [A] 91.0 49.1 MP Bat SU Amount Found [A]	RROGATE RI True Amount [B] 100 50.0 ch: 1 Matri RROGATE RE True Amount [B]	Recovery %R [D] 91 98 x: Soil COVERY S Recovery %R [D]	Limits %R 70-135 70-135 STUDY Control Limits %R	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 298159-003 / SI Units: mg/kg TPH by SW8015 Mod Analytes 1-Chlorooctane	SU Amount Found [A] 91.0 49.1 MP Bat SU Amount Found [A] 92.4	RROGATE RI True Amount [B] 100 50.0 ch: 1 Matri RROGATE RE True Amount [B] 100 100	Recovery %R [D] 91 98 x: Soil COVERY S Recovery %R [D] 92	Limits %R 70-135 70-135 STUDY Control Limits %R 70-135	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Rece	ived by	OCD: 9	2/26/2019	1
	XE	100		

Laboratories

Form 2 - Surrogate Recoveries

Project Name: Brunson Argo TB # 5

Vork Order #: 298159		Project II	D: 200130						
Lab Batch #: 715557 Sample: 29815	9-004 / SMP Ba	tch: 1 Matr	ix: Soil						
Units: mg/kg	SU	RROGATE R	ECOVERY S	STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	93.7	100	94	70-135					
o-Terphenyl	50.5	50.0	101	70-135					
Lab Batch #: 715557 Sample: 29815	9-005 / SMP Ba	tch: 1 Matr	ix: Soil						
Units: mg/kg	SU	RROGATE R	ECOVERYS	STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	98.4	100	98	70-135					
o-Terphenyl	53.1	50.0	106	70-135					
Lab Batch #: 715557 Sample: 29815	9-006 / SMP Ba	tch: 1 Matr	ix: Soil	1 1					
Units: mg/kg	SU	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
L-Chlorooctane	02.5	100	03	70.135					
o-Terphenyl	49.9	50.0	100	70-135					
Lab Batch #. 715557 Sample: 29815	9-007 / SMP Ba	tch• 1 Matr	iv: Soil						
Units: mg/kg	SU SU	SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	96.3	100	96	70-135					
o-Terphenyl	51.7	50.0	103	70-135					
Lab Batch #: 715557 Sample: 29815	9-008 / SMP Ba	tch: 1 Matr	ix: Soil						
Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	96.4	100	96	70-135					

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Rece	ived by	OCD:	9/26/2019	1
	XE	NCO		

Laboratories

Form 2 - Surrogate Recoveries

Project Name: Brunson Argo TB # 5

Vork Order #: 298159		Project II	D: 200130		
Lab Batch #: 715557 Sample: 298159-009 / S	SMP Bat	tch: 1 Matri	x: Soil		
Units: mg/kg	SU!	RROGATE RI	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.9	100	99	70-135	
o-Terphenyl	58.6	50.0	117	70-135	
Lab Batch #: 715557 Sample: 298159-010 / S	SMP Bat	tch: 1 Matri	x: Soil		
Units: mg/kg	SU:	RROGATE RI	ECOVERY S	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	90.9	100	91	70-135	
o-Terphenyl	47.8	50.0	96	70-135	
Lab Batch #: 715557 Sample: 505061-1-BKS	/ BKS Bat	tch: ¹ Matri	x: Solid	· ·	
Units: mg/kg	SU:	RROGATE RI	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	107	100	107	70-135	
o-Terphenyl	49.3	50.0	99	70-135	
Lab Batch #: 715557 Sample: 505061-1-BLK	A BLK Bat	tch: 1 Matri	x: Solid	<u>, </u>	
Units: mg/kg					
	SU	RROGATE RI	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	RROGATE RI True Amount [B]	Recovery %R [D]	STUDY Control Limits %R	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane	Amount Found [A] 96.1	RROGATE RI True Amount [B] 100	Recovery %R [D] 96	Control Limits %R 70-135	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl	Amount Found [A] 96.1 52.0	RROGATE RI True Amount [B] 100 50.0	Recovery %R [D] 96 104	Control Limits %R 70-135 70-135	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 505061-1-BSD	Amount Found [A] 96.1 52.0 98D Bat	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri	Recovery %R [D] 96 104 x: Solid	Control Limits %R 70-135 70-135	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 505061-1-BSD Units: mg/kg	Amount Found [A] 96.1 52.0 0/ BSD Bat SU	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI	Recovery %R [D] 96 104 x: Solid ECOVERY S	STUDY Control Limits %R 70-135 70-135 STUDY	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 505061-1-BSD Units: mg/kg TPH by SW8015 Mod Analytes	Amount Found [A] 96.1 52.0 0/ BSD Bat SU Amount Found [A]	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI True Amount [B]	Recovery %R [D] 96 104 x: Solid ECOVERY S Recovery %R [D]	STUDY Control Limits %R 70-135 70-135 70-135 STUDY Control Limits %R	Flags
TPH by SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 715557 Sample: 505061-1-BSD Units: mg/kg TPH by SW8015 Mod Analytes 1-Chlorooctane	Amount Found [A] 96.1 52.0 0/ BSD Bat SU Amount Found [A] 107	RROGATE RI True Amount [B] 100 50.0 tch: 1 Matri RROGATE RI True Amount [B] 100	Recovery %R [D] 96 104 x: Solid COVERY S Recovery %R [D] 107	STUDY Control Limits %R 70-135 70-135 STUDY Control Limits %R 70-135	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Blank Spike Recovery

.

Project Name: Brunson Argo TB # 5

Work Order #: 298159			Pro	oject ID:			200130
Lab Batch #: 715635	Sa	mple: 715635-	1-BKS	Matri	x: Solid		
Date Analyzed: 02/26/2008	Date Prep	ared: 02/26/20	108 DIANK /II	Analys	st: IRO	OVEDV 6	TUDY
Reporting Units. http://kg	Ба	ucn #: 1	DLANK /D	DLAINK SPIL	NE KEU	OVERIS	
Determination of Inorganic Anions per	Ion Chro	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes		[A]	[B]	Result [C]	%R [D]	%R	
Chloride		ND	10.0	9.64	96	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Brunson Argo TB # 5

Work Order #: 298159								Pro	ject ID: 2	200130		
Analyst: SHE		Da	ate Prepar	red: 02/22/200	8			Date A	nalyzed: (2/22/2008		
Lab Batch ID: 715557	Sample: 505061-1-B	KS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPL	ICATE	RECOVE	ERY STUD	Y	
TPH by SW801	5 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarl	oons	ND	1000	887	89	1000	892	89	1	70-135	35	
C12-C28 Diesel Range Hydrocarbo	ons	ND	1000	824	82	1000	829	83	1	70-135	35	

Relative Percent Difference RPD = $200^{*}|(D-F)/(D+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Received by OCD: 9/26/2019 10:39 40 AM Form	3 - MS I	Recover	ies			Pag	e 85 of 104
Laboratorics Project Name:	Brunson A	rgo TB #	5			^s nea	C *I
Work Order #: 298159							
Lab Batch #: 715635			Pr	oject ID:	200130		
Date Analyzed: 02/26/2008 Da	ate Prepared:	02/26/2008		Analyst:	IRO		
QC- Sample ID: 298154-009 S	Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg	MAT	RIX / MA	FRIX SPIKE	RECOV	VERY STU	UDY	
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride	5330	2000	7690	118	75-125		

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Brunson Argo TB # 5

Work Order #: 298159						Project I	D: 200130				
Lab Batch ID: 715557 Q Date Analyzed: 02/23/2008 I	C- Sample ID: Date Prepared:	298159- 02/22/20	-001 S 008	Ba An	tch #: alvst:	1 Matri SHE	x: Soil				
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1140	1020	89	1140	1040	91	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	110	1140	983	77	1140	1000	78	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

eived by OCD: 9/26/2019 10:39:40 AM Sample I	Duplicate	e Recov	ery		
Work Order #: 298159	ison Argo 'l	ľB # 5			
Lab Batch #: 715635 Date Analyzed: 02/26/2008 Date Pa QC- Sample ID: 298154-009 D Reporting Units: mg/kg	repared: 02/2 Batch #: 1 SAMPLE	26/2008 1 / SAMPLE	Project I Analy Matr DUPLIC	D: 200130 st: IRO ix: Soil ATE REC	OVERY
Determination of Inorganic Anions per Ion Chromatography by Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	5330	5060	5	20	
Lab Batch #: 715413 Date Analyzed: 02/22/2008 Date Program QC- Sample ID: 298159-001 D Description Reporting Units: % Material	repared: 02/2 Batch #: 1 SAMPLE	22/2008 I	Analy Matr DUPLIC	rst: WRU ix: Soil	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	12.6	12.8	2	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. Page 87 of 104

Environ	mental Plus,]	Inc.														<u>Cha</u>	in o	of C	usi	Apo	Fo	E
2100 Avenue O, (575) 394-3481	, Eunice, NM 88231 FAX: (575) 394-2601		Р.О.	BO	x 15	58, E	unic	ě, N	M 86	8231								LA	B: X	INCO	O (EI	LT)
Company Name	Environmen	ital Plus,	Inc.						E	emit	Nul	oice To:			1.12	INAL	<u>YSI</u>	S R	EQU	EST		
EPI Project Man	ager David P. Du	ncan								ניי		40,										
Mailing Address	P.O. BOX 15	58										5										
City, State, Zip	Eunice New	Mexico	8823	<u>_</u>		r				a sur a s												
EPI Phone#/Fax	# 575-394-348	1 / 575-3	94-2	601						/												
Client Company	<pre>Chevron USA</pre>																					
Facility Name	Brunson Ar	30 TB #5				r—						l										
Location	UL-D, Sec. 1	0, T 22 S	, В	37 E					AT	TN: I	Bill	Anderson										
Project Referen	ce 200130									Р.О.	Bo	k 1949										
EPI Sampler Na	me David Robin	son							Euni	ice, 1	M	38231-1949										
			•			MA	TRIX		⊢	RESI	ERV.	SAMPLI	NG									
			dWC		ਮ										(_	t_)						
	SAMPI FID		ງ(ວ) ຄ	SHEI	ATAV ATT		-		-					8		'OS)			<			
			30 E	VIAT			110 I	35	13V8 		٤			1208		SET			<<< }			
2981591			IAA(ව)	# COM	1126W	SOIL	IGURO	эаптя			JHH	DATE	TIME	S X 3 T 8		SULFA	Hq	тсгр	OTHEF			
	1 BH-7 (5')		Х	-		X				×		21-Feb-08	8:01		×							
	2 BH-8 (5')		×	-		×				X		21-Feb-08	8:02	$\hat{}$	X							
	3 BH-9 (5')		×	-		×		_		×		21-Feb-08	8:03	$\hat{}$	X							
4	1 BH-10 (5')		×	+		×				×		21-Feb-08	8:04	$\hat{}$	X							
L J	5 BH-12 (5')		×	-	_	×			_	×		21-Feb-08	8:06	$\hat{}$	×							
)	6 BH-16 (5')		×	-	-	×				×		21-Feb-08	9:31	$\hat{}$	×							
	7 NSW-1 (8')		×	-	\neg	×		┫	-	×		21-Feb-08	14:10	7	×							
~	8 NSW-2 (6')		×	╤┨	-	×			-	×		21-Feb-08	14:11	$\widehat{}$	×							
5	NSW-3 (2')		×	-		×				×		21-Feb-08	14:12	$\hat{}$	x X				_			
1(NSW-4 (4')		×	-		×		_		×		21-Feb-08	14:13	\square	X							
																				1903 1903 1903 1903 1903	evenien ogenek) No (199	
Sampler Relinquished:	Participant 10	2/22/08	Receiv	ed By:	ŗ.	8	ġ	ł			AARKS	esults to: ddunc	an@envplu	s.nel								
Relinder	Time Internet)2/22/08	Receiv	ed By:	lab s	¶⊕€ fig		.		1												
Delivered by:		Sample		Intact No			Che	cked B	×	7	20	gless I.	5°C \	2	9.1	els						

Page 1 of 1

Environmental Lab of Texas

Variance/ Corrective	Action	Report-	Sample	Log-In
----------------------	--------	---------	--------	--------

Client:	Env. Plus.	****
Date/ Time:	2-22-08	11.06
Lab ID # :	29815	7
Initials:	9L	

Sample Receipt Checklist

				Client Initia
#1	Temperature of container/ cooler?	Yes	No	1.5 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present?
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	YGS	No	
#6	Sample instructions complete of Chain of Custody?	Yes)	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Ves	No	See Below
#14	Sample bottles intact?	Ves	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Ves	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Ves	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contact:	 Contacted by:	Date/ Time:	
Regarding:			
Corrective Action Taken:			
Check all that Apply:	See attached e-mail/ fax Client understands and would like to proceed with an	alysis	

Cooling process had begun shortly after sampling event

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: DAVID P. DUNCAN P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (575) 394-2601

Receiving Date: 02/22/08 Reporting Date: 02/26/08 Project Owner:CHEVRON USA (#200130) Project Name: BRUNSON ARGO TB #5 Project Location: UL-D, SEC. 10, T 22 S, R 37 E Sampling Date: 02/22/08 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: HM Analyzed By: CK/HM

	GRO	DRO		
	(C ₆ -C ₁₂)	(>C12-C28)	CI*	
LAB NUMBER SAMPLE ID	(mg/kg)	(mg/kg)	(mg/kg)	
ANALYSIS DATE	02/25/08	02/25/08	02/25/08	-
H14312-1 BH-13A (10')	<10.0	<10.0	48	
H14312-2 BH-14A (11')	<10.0	<10.0	352	
H14312-3 BSW-1 (7')	<10.0	<10.0	208	
H14312-4 BSW-2 (8')	<10.0	<10.0	32	
H14312-5 BSW-3 (6')	<10.0	<10.0	32	
H14312-6 BSW-4 (7')	<10.0	<10.0	64	
H14312-7 WSW-5 (8')	<10.0	<10.0	80	
H14312-8 WSW-6 (7')	<10.0	<10.0	752	
H14312-9 WSW-7 (3')	<10.0	31.6	96	
H14312-10 WSW-8 (2')	<10.0	<10.0	224	
Quality Control	541	520	500	
True Value QC	500	500	500	
% Recovery	108	104	100	
Relative Percent Difference	7.9	5.2	<0.1	

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; Std. Methods 4500-CI'B *Analyses performed on 1:4 w:v aqueous extracts.

Chemist

12/271

H14312TCL EPI

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall **Cardinal** be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of profits incurred by client, its subsidiaries, and the provide the produced by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results related only to the samples described doore. Instruction of the approval of Cardinal Laboratories.

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231

(575) 394-3481 FAX: (575) 394-2601

P.O. Box 1558, Eunice, NM 88231

Page 1 of 1 Page 91 of 104

Chain of Custody Form

LAB: Cardinal

Company Name	pany Name Environmental Plus, Inc.									Rer	nit	Invo	oice To:		and a second	情報	A	NAL	YS	IS R	EQ	UES	Т	
EPI Project Mana	ager David P. Duncan									Chevron														
Mailing Address	P.O. BOX 1558											WI												- 1
City, State, Zip	Eunice New Mexico	882	31									The state			1									
EPI Phone#/Fax#	575-394-3481 / 575-3	94-	260	1								-											- 1	- 1
Client Company	Chevron USA																							
Facility Name	Brunson Argo TB #5	5																						1
Location	UL-D, Sec. 10, T 22 \$	5, R	37	E			ATTN: Bill Anderson																	
Project Reference	e 200130					P.O. Box 1949																		
EPI Sampler Nan	ne David Robinson								Eu	nice	e, N	M 8	8231-1949											
						MA	RIX			PR	ESE	RV.	SAMPLI	NG										
LAB I.D.	SAMPLE I.D. 1 BH-13A (10') 2 BH-14A (11') 3 BSW-1 (7') 4 BSW-2 (8') 5 BSW-3 (6')		# CONTAINERS	GROUND WATER	WASTEWATER	SOIL	CRUDE OIL	SLUDGE	OTHER:	ACID/BASE	ICE/COOL	OTHER	DATE	TIME	BTEX 8021B	TPH 8015M	CHLORIDES (CI')	SULFATES (SO4 ⁼)	Н	TCLP	OTHER >>>	РАН		
H14312 - 1	BH-13A (10')	Х	1			Х					Х		22-Feb-08	13:15		Х	Х							
- 2	BH-14A (11')	Х	1			Х					Х		22-Feb-08	13:16		Х	Х							
- 3	BSW-1 (7')	Х	1			Х					Х		22-Feb-08	13:17		Х	Х							
- 4	BSW-2 (8')	Х	1			Х					Х		22-Feb-08	13:18		Х	Х							
- 5	BSW-3 (6')	Х	1			Х					Х		22-Feb-08	13:19		Х	Х							
- 6	BSW-4 (7')	Х	1			Х					Х		22-Feb-08	13:20		Х	Х							
_ 7	WSW-5 (8')	Х	1			Х					Х		22-Feb-08	13:45		Х	Х							
_8	WSW-6 (7')	Х	1			Х					Х		22-Feb-08	13:46		Х	Х							
_ 9	WSW-7 (3')	Х	1			Х					Х		22-Feb-08	13:47		Х	Х							
_10	WSW-8 (2')	Х	1			Х					Х		22-Feb-08	13:48		Х	Х							
	有意义的 来了想,有不可以的		, Per								1012					Austra								
Sampler Relinquished: <u>Daw of Relinguished by:</u> <u>Harron</u> <u>Arr</u> Delivered by:	emole for 02/22/08 Time 15:68 02/22/08 Time 15:68 Sample Sample	Rece Rece	ived I Tai Ived I & Inta	By: By: (la S	ab stat	1th	che	- 3 ecked	By:		E-m REM	ARKS	esults to: dduno	can@envp	lus.r	net								
	Jes		IN IN	0		43	m																	

Released to Imaging: 6/29/2021 1:49:56 PM

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: DAVID P. DUNCAN P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (575) 394-2601

Receiving Date: 03/03/08 Reporting Date: 03/04/08 Project Owner: CHEVRON USA (200130) Project Name: BRUNSON ARGO TB #5 Project Location: UL-D, SEC. 10, T 22 S, R 37 E Sampling Date: 03/03/08 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: CK/KS

CI*

(mg/kg)

 GRO
 DRO

 (C₆-C₁₀)
 (>C₁₀-C₂₈)

 LAB NUMBER SAMPLE ID
 (mg/kg)
 (mg/kg)

ANALYSIS DATE 03/04/08 03/04/08 03/04/08 H14363-1 EP-1 (3') <10.0 <10.0 256 H14363-2 NSW-3B (3') <10.0 <10.0 224 WP-1 (3') 256 H14363-3 <10.0 <10.0 H14363-4 BP-1 (5') <10.0 <10.0 912 **Quality Control** 615 537 490 True Value QC 500 500 500 % Recovery 123 107 98.0 **Relative Percent Difference** 7.6 14.0 2.0

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; Std. Methods 4500-CI'B *Analyses performed on 1:4 w:v aqueous extracts.

Chemist

03/05/08

H14363TCL EPI

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results Released of Philosoftem 2012/01/11/49:56/PM be reproduced except in full with written approval of Cardinal Laboratories.

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231 (575) 394-3481 FAX: (575) 394-2601 P.O. Box 1558, Eunice, NM 88231

Page 1 of 1
Page 93 of 104
Chain of Custody Form
LAB: Cardinal

Company Name Environmental Plus, Inc.										Rer	nit	Invo	pice To:				A	NAL	_YS	IS R	EQ	UE	ST .		
EPI Project Mana	ager David P. Duncan									C	he	WP	on										\square		
Mailing Address	P.O. BOX 1558											WI	On												
City, State, Zip	Eunice New Mexico	882	231							4															
EPI Phone#/Fax#	# 575-394-3481 / 575-3	394-	260	1																					
Client Company	Chevron USA									1															
Facility Name	Brunson Argo TB #	5																							
Location	UL-D, Sec. 10, T 22	S, R	37	E			ATTN: Bill Anderson																		
Project Reference	ce 200130						P.O. Box 1949																		
EPI Sampler Nan	ne David Robinson								Eu	nice	e, N	M 8	8231-1949												
		l.	Γ			MA	TRIX			PR	ESE	RV.	SAMPLI	NG											
LAB I.D.	SAMPLE I.D.	(G)RAB OR (C)OM	# CONTAINERS	GROUND WATER	WASTEWATER	SOIL	CRUDE OIL	SLUDGE	OTHER:	ACID/BASE	ICE/COOL	OTHER	DATE	TIME	BTEX 8021B	TPH 8015M	CHLORIDES (CI')	SULFATES (SO4 [®])	Hd	TCLP	OTHER >>>	PAH			
H14363-1 1	EP-1 (3')	Х	1			Х					Х		03-Mar-08	9:18		X	Х								
-2 2	NSW-3B (3')	Х	1			Х					Х		03-Mar-08	9:19	-	Х	Х								
-33	WP-1 (3')	Х	1			Х					Х		03-Mar-08	9:19		Х	Х								
-4 4	BP-1 (5')	Х	1			Х					Х		03-Mar-08	9:20		Х	Х								
5																									
6		1																							
7																									
8																									
9																									
10											_														
Sample Rèlinquished: Relinquished by: <u>Wake Modhia</u> Delivered by:	03/03/08 Time 10:00 03/03/08 Time 2:55 Sample Yes	Rece	eived eived 8 Int	By: By: (I: Act No	ab sta	the second	S Che M	A	By:		E-m REM	ARKS	esults to: ddun S	can@env	olus.	net									
Keleased to Imagin	g: 0/29/2021 1:49:56 PM		-	-		~	14	11	-	-	-	-			-	-	-	Concession of the local division of the loca	-	-	-	And in case of the local division of		-	anna 🚽

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: DAVID P. DUNCAN P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (575) 394-2601

Receiving Date: 03/05/08 Reporting Date: 03/05/08 Project Owner: CHEVRON USA (200130) Project Name: BRUNSON ARGO TB #5 Project Location: UL-D, SEC. 10, T 22 S, R 37 E Analysis Date: 03/05/08 Sampling Date: 03/05/08 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: AB Analyzed By: HM

	CI
LAB NUMBER SAMPLE ID	(mg/kg)
H14379-1 BP-1C (12')	736
Quality Control	490
True Value QC	500
% Recovery	98.0
Relative Percent Difference	< 0.1

METHOD: Standard Methods 4500-CI'B Note: Analysis performed on a 1:4 w:v aqueous extract.

Bisto Suproto

03/05/08 Date

H14379 EPI

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, including the service of the service of the service bereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples demined above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231

(575) 394-3481 FAX: (575) 394-2601

Company Name Environmental Plus, Inc. Remit Invoice To: ANALYSIS REQUEST **EPI Project Manager** David P. Duncan Chevron Mailing Address P.O. BOX 1558 City, State, Zip Eunice New Mexico 88231 575-394-3481 / 575-394-2601 EPI Phone#/Fax# **Client Company** Chevron USA **Facility Name** Brunson Argo TB #5 Location UL-D, Sec. 10, T 22 S, R 37 E ATTN: Bill Anderson Project Reference 200130 28 P.O. Box 1949 **EPI Sampler Name** David Robinson Eunice, NM 88231-1949 3 MATRIX PRESERV. SAMPLING G)RAB OR (C)OMP. SC GROUND WATER SULFATES (SO4⁼) CHLORIDES (CI') # CONTAINERS WASTEWATER TPH 8016M-**BTEX 8021B** SOIL CRUDE OIL LAB I.D. SAMPLE I.D. ACID/BASE OTHER >>> ICE/COOL SLUDGE OTHER: OTHER TCLP PAH (=) DATE TIME #14379 1 BP-1C (12') х X х X X 1 05-Mar-08 8:07 3 6 8 9 10 Sampler Relinguished: 03/05/08 Received By: E-mail results to: dduncan@envplus.net VKS REMARKS: 3/5/00 - C1 only Ren Dave 3/05/08 Kubanon FUR 3:30 enc Relinguished by: Received By: (lab staff) 03/05/08 RUSH! 2:22 Delivered by: Sample Cool & Intact Yes No

P.O. Box 1558, Eunice, NM 88231

Released to Imaging: 6/29/2021 1:49:56 PM

Chain of Custody Form

LAB: Cardinal

Page 1 of 1 Page 95 of 104

.

ATTACHMENT III SOIL BORING LOGS

					L	.og	Of Tes	Test Borings (NOTE - Page 1 of 1)								
							Projec	t Number	: 200130							
	5-	Еичі		ITAL F	LUS, I	۷C.	Projec	t Name:	Chevron -	Brunsc	n Argo Tank I	Battery #5				
-	F	REM		CONSTRU		-	Locatio	on: UL-I	, Section 10,	Townsh	hip 22 South, F	lange 37 East				
			505-39	94-3481			Boring	Number:	SB5-1	Surfac	e Elevation: 3	405-feet amsl				
	a a	ery s)	tre	, Sgr	de Sis Q)	50	<u>ن</u> ک		Start Date:	4-26-0)7Time:_	1230 hrs				
Time	Type		olstu	PID PDm (ppm	nlori naly: ng/K	J.S.C.	Dept (fee		Completion I	Date: <u>4</u>	-26-07 T	me: <u>1605 hrs</u>				
	~	₩.⇒	Σ	Re	54 2 2				Descr	ription						
												_				
1235	DC		little	.3	200				2	′ TOPSO	IL, Red					
							5	\vdash			Τ					
1241	SP	6	no	160	320		<u> </u>			D. PUN	, lan	/				
												—				
												_				
							10									
1301	SP	6	no	65	200				10'	SANDST	DNE, Red	/				
							-			Verv	and	—				
1415	SP	3	no	34	200				15′	SANDST	DNE, Red					
							-					_				
												—				
1544	SP	3	no	20	200		20		20′	SANDST	JNE, Gray					
									End of	Soil Bo	ring at 21' bgs	_				
							-	_ _								
							_					—				
							25									
												_				
							<u> </u>					_				
							—зо									
												—				
Dote	Wate	r Leve	el Meas	urement Casino	s (feet	;) n V	ater D	' rilling Met	hod: Auger	`						
-		De	epth	Depth -	Depth -		evel E	ackfill Me	thod: Bento	onite						
-			-	-	-	Field Representative: GB										

					L	.og	Of Te	Test Borings (NOTE - Page 1 of 1)								
							Proj	ect	Number	~: 200130	Į					
-	5-	Еплі		NTAL F	LUS, IN	۱C.	Proj	ect	Name:	Chevron - B	runso	n Argo Tank Battery	#5			
-	F	REM	EDIAL			ľ	Loca	tion	UL-	D, Section 10, T	ownsh	ip 22 South, Range 37	East			
			505-3	94-3481	100	Ī	Boring	g Nu	mberi	SB2-5 S	Surfac	e Elevation: 3,405-fee	t amsl			
	<u>a</u> 0	ery s)	e l	gs (a sis Q	50	£ع	}		Start Date: <u>4</u>	1-26-0	7				
Time	Type		ois tu	PID sadir (ppm	iolr Sylor K	J.S.C.	Dept			Completion Da	te: <u>4</u>	-26-07 Time: <u>1940</u>	hrs			
	~	₩÷	Σ	Å.	ΰŧ Υ	20				Descrip	otion					
							-						—			
1550	DC		little	560	240		-			2'	TOPSI	JIL, Red				
													_			
								-5 -	_	- /						
1600	SP	6	little	14	200		<u> </u>			5′	TUPSI	JIL, Red	/_			
							-						—			
								-10 -	_							
1615	SP	6	dry	34	200					1	O' SOIL	_, Gray	/_			
							-						—			
1705	SP	3	dry	20	200			-12 –		15' SANDSTE	INE, W	hite - very hard				
							-						—			
							-						—			
1915	SP	3	dry	17	160			20 -		20′S	SANDST	ONE, White				
										End of S	Soil Bor	ring at 21' bgs				
													_			
							-	- .								
								25								
							-						—			
													_			
							<u> </u>	30								
							\vdash						—			
D. ±	Wate	r Leve	l el Meas	urement	s (feet	;)		 Dril	lina Met	thod: Auner						
	I I I I I I I I I I I I I I I I I		epth	Depth	Depth		evel	Boo	kfill Me	thod: Benton	hite					
-	-		-	-	-	Field Representative: GB										
1					1	riela kepresentative: UB										

					L	l go.]f Tes	t Boring	S	(NDTE - Page 1 of 1)
							Proje	ct Number	200130	I
	5-	Еплі			LUS, IN	1C.	Proje	ct Name:	Chevron - Br	runson Argo Tank Battery #5
-	F	REM				ľ	Locati	on: UL-I), Section 10, To	ownship 22 South, Range 37 East
			505-39	94-3481		Ī	Boring	Number:	SB2-3 S	urface Elevation: 3,405-feet amsl
	<u>a</u> "	ery s)	lre	, ds	a sis Q	50	<u>ټ</u> ع		Start Date: 4	-27-07
Time	Type	5 Che Che	listu	PID	iolr S/G/K	J.S.C.	Jept fee		Completion Dat	te: <u>4-27-07 </u>
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₩.5	Σ	Å.	÷ \$ن	20		_	Descrip	tion
							-			_
0715	DC		little	504	240			$\square$	2'	TOPSOIL, Red
							5		<b>-</b> /	
0730	SP		little	397	240		<u> </u>		5'	TUPSUIL, Gray
							-			_
										_
							1			_
0800	SP		dry	13	160					10' CALICHE
							-			very hard —
							-			-
								_		_
1010	SP		dry	10	160		1	, 	15′ S	ANDSTONE, White
									End of So	oil Boring at 16' bgs —
							-			_
							-			_
							2			
										_
										_
							<b>—</b>			—
							2!	5		
							$\vdash$			—
										_
										_
							—з	ומ		_
							-			—
Doto	Vate	er Leve	l Meas	urement	s (feet	)		 )rilling Met	hod Auger	
			epth	Depth	Depth		evel	Backfill Me	thod: Bentoni	ite
		-	_	-	-	Field Representative: GB				
1	1				1	1	· ·	·		

					L	.og	Of Tes	t Boring	gs	(N□TE - Page 1 of 1)
							Projec	t Numbe	r: 200130	
	5-	Еичі			LUS, IN	NC.	Projec	t Name:	Chevron - Brunso	on Argo Tank Battery #5
-	F	REM				Ī	Locatio	n: UL-	-D, Section 10, Townsł	nip 22 South, Range 37 East
			505-39	94-3481		Ī	Boring I	lumber:	SB5-4 Surfa	ce Elevation: 3,405-feet amsl
	a, a,	ery s)	re L	gs	de g)	50	يت ک		Start Date: 4-27-	071025 hrs
Time	ampl Type		İstu	PID adin ppm	ilori aly≤ g/K	Vmbo	feet		Completion Date: _	4-27-07 Time: <u>1145 hrs</u>
	S.	ar∂ Par∂	υ Ψ	Re	ς¥γ	_⊃∿			Description	
							_			—
1035	DC		little	.9	200			$\left  \begin{array}{c} \\ \end{array} \right $	2' TOPS	GIL, Red
							5	L		
1041	SP	6	dry	.8	200				5' C4	ALICHE
							_			_
										_
										_
1130	SP	6	dry	.9	200		10	$\square$	10' C	ALICHE
							_		End of Soil Bo	pring at 11' bgs
							_			—
							-			—
										_
										_
							<u> </u>			—
							20			
										—
										_
							25			
							-			—
							$\vdash$			—
							$\vdash$			—
	Wo ta	pr leve	 Nene	Urement	5 (foot	;)				
Date	Tim		imple	Casing	Cave-i	n V	ater D	rilling Me	thod: Auger	
-			-	-	-		– B	ackfill M	ethod: Bentonite	
-			-	-	-	_		eld Repr	esentative: GB	

# ATTACHMENT III INFORMATION AND METRICS FORM INITIAL NMOCD FORM C-141 FINAL NMOCD FORM C-141

.

		Incident Da	te:	NMOCD N	otified:
		Historical		Historical	
Informat	tion and Metrics				
Site: Brunson A	Argo Tank Battery #5	1	Assigned Site I	Reference : EP	I Reference #200130
Company: Che	vron North America – Ex	ploration and Pro	oduction Comp	any	
Street Address	: 2401 Avenue O	_			
Mailing Addre	ss: P.O. Box 1949				
City, State, Zip	: Eunice, New Mexico 8	8231			
Representative	Bill A. Anderson				
Representative	<b>Telephone:</b> (505) 394	-1237 (office)			
Telephone: (50	5) 441-5438 (cellular)				
Fluid volume r	eleased (bbls): Historica	ıl	Recove	red (bbls): His	storical
	>25 bbls: Notify NMC (Also ap	OCD verbally wit plies to unauthor	hin 24 hrs and s •ized releases >5	ubmit form C-14 00 mcf Natural (	41 within 15 days. Gas)
5-25 b	bls: Submit form C-141 wi	thin 15 days (Als	o applies to una	uthorized release	es of 50-500 mcf Natural Gas)
Leak, Spill, or	Pit (LSP) Name: Brunso	n Argo Tank Ba	tterv #5		,
Source of conta	amination: Historical spi	lls from decomm	nissioned Tank	Battery	
Land Owner, i	.e., BLM, ST, Fee, Other	Priscilla Bruns	on Moody (c/o	Charles James 1	Moody)
LSP Dimension	<b>ns:</b> $\sim$ 170 feet by 50 feet				
LSP Area: ~8,9	$\overline{900 \text{ ft}^2}$				
Location of Re	ference Point (RP):				
Location dista	nce and direction from R	2 <b>P:</b>			
Latitude: N 32	2° 24' 33.64"				
Longitude: W	103° 09' 18.70"				
Elevation abov	e mean sea level: 3,405	feet			
Feet from Sout	h Section Line:				
Feet from East	Section Line:				
Location- Unit	or $\frac{1}{4}$ NW ¹ / ₄ of the N	W ¹ / ₄	Unit Lette	r: D	
Location- Secti	ion: 10				
Location- Tow	nship: 22 South				
Location- Rang	ge: 37 East				
Surface water	body within 1000 ' radiu	s of site: none			
Domestic water	r wells within 1000' radi	us of site: one (	1) (USGS #5)		
Agricultural w	ater wells within 1000' r	adius of site: no	one		
Public water su	upply wells within 1000'	radius of site: n	none		
Depth from lar	nd surface to groundwate	er (DG): ~ 66 fe	eet		
Depth of conta	mination (DC): unknow	n			
Depth to groun	ndwater (DG – DC = DtC	<b>GW):</b> unknown			
1. G	Froundwater	2. Well	head Protectio	on Area	3. Distance to Surface Water Body
If Depth to GW	<50 feet: 20 points	If <1000' from	water source, o	or;<200' from	<200 horizontal feet: 20 points
If Depth to GW	50 to 99 feet: 10 points	private domesti	ic water source:	: 20 points	200-1000 horizontal feet: 10 points
If Depth to GW	>100 feet: 0 points	If >1000' from private domesti	water source, o	or; >200' from : 0 <i>points</i>	>1000 horizontal feet: 0 points
Site Ranking (1	(+2+3) = 10+20+0=30				
	Total Si	te Ranking Scor	re and Accepta	ble Concentra	tions
Parameter	>19		10-19		0-9
Benzene ¹	10 ppm		10 ppm		10 ppm
BTEX ¹	50 ppm		50 ppm		50 ppm
ТРН	100 ppm		1,000 ppm	l	5,000 ppm
¹ 100 ppm field	VOC headspace measuren	nent may be subs	stituted for lab a	analysis	

<u>District I</u> 1625 N. French D District II	Dr., Hobbs, N	M 88240		State of Energy Minera	of New Mexico	esources	Re	Form C-141			
1301 W. Grand A District III 1000 Rio Brazos District IV 1220 S. St. Franc	venue, Artes Road, Aztec is Dr., Santa	sia, NM 88210 , NM 87410 Fe, NM 87505		Oil Cons 1220 Sou Santa	servation Division uth St. Francis Dr. Fe, NM 87505 Submit 2 Copies to appropriat District Office in accordanc with Rule 116 on bac side of forr						
		F	Release	e Notification	and Correc	tive Action	ĺ				
				<b>OPERATO</b>	R	🖂 Initi	al Report	Final Report			
Name of C	Company	y: Chevror	n North	America	Contact: Bil	Il A. Anderson	n				
Address: 1	P.O. Box	: 1949, Eur	nice, NI	M 88231	Telephone N	No.: (505) 394	-1237				
Facility Na	ame: Br	unson Arg	o Tank	Battery #5	Facility Typ	e: Decommis	sioned Tank I	Battery			
Surface O Brunson M Moody)	wner: M loody (c.	1s. Priscilla /o Charles	a James	Mineral Ov	vner:		API No.:	ngali shika ana nga kupa nga nga nga n			
				LOCATION	OF RELEAS	E					
Unit Letter D	Section 10	Township 22S	Range 37E	Feet from the	North/South Line	Feet from the	East/West Line	County Lea			
Type of Relea Source of Rel Battery Was Immedia	ease: Histori ease: Histo ate Notice (	ical rical releases : Given?	from deco	MATURE mmissioned Tank No 🛛 Not Require	OF RELEASE Volume of Re Date and Hou N/A If YES, To W N/A	lease: N/A Ir of Occurrence: hom?	Volume Reco Date and Ho N/A	overed: N/A ur of Discovery:			
By Whom?					Date and Hou	ır: N/A					
Was a Water	course Rea	ched?	Yes 🛛 1	No	If YES, Volur Not Applicable	ne Impacting the e	Watercourse:				
If a Watercou Depth to Gro	irse was In undwater:	■ pacted, Desc ~ 66 feet	ribe Fully	v.* Not Applicable				111-1			
Describe Cau Describe Area the TB perime	se of Probl a Affected ter. Upon re	em and Remo and Cleanup eccipt of Labo	edial Acti Action Ta ratory An	on Taken.* Historica aken.* The decommis alytical results, a Rem	l releases from deco sioned Tank Batter ediation Proposal v	ommissioned Tank y will be delineate vill be drafted and	Battery ed via soil borings sent to the NMOC	within and outside D for approval.			
I hereby certify and regulation endanger public operator of lial surface water, for compliance	y that the in s all operate ic health or bility shoul human hea e with any o	formation giv ors are require the environme d their operati- lth or the envi- other federal, s	en above ed to repor ent. The a ons have f ronment. state, or lo	is true and complete to t and/or file certain re acceptance of a C-141 failed to adequately in In addition, NMOCD cal laws and/or regula	the best of my kno lease notifications a report by the NMO vestigate and remect acceptance of a C- tions.	wledge and under and perform correc CD marked as "Fi liate contamination 141 report does no	stand that pursuan trive actions for rel nal Report" does n n that pose a threat t relieve the operat	t to NMOCD rules eases which may ot relieve the to ground water, for of responsibility			
Signature:	Buz	Al	2an	and the second secon	OI	L CONSERV	ATION DIVI	SION			
Printed Name	e: Bill A. A	nderson			Approved by Di	strict Supervisor	:				
	ampion				Approval Date:		Expiration Da	te:			
Title: HES Ch					1						
Title: HES Ch E-mail Addre	ss: BillyA	nderson@che	evron.com	l	Conditions of A	pproval:	A	attached			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS
------------

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	1545
	Action Type:
	[C-141] Release Corrective Action (C-141)

#### CONDITIONS

Created By	Condition	Condition Date
bbillings	None	6/29/2021

Page 104 of 104 CONDITIONS

Action 1545