District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAPP2103632350
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email kyle.littrell@exxonmobil.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

Latitude 32.27659

	Longitude	-105.94
(NAD 83	in decimal degrees to 5 deci	mal places)

-103.94264

Site Name Remuda 100	Site Type CTB
Date Release Discovered 01/25/2021	API# (if applicable)

Unit Letter	Section	Township	Range	County
Е	25	238	29E	Eddy

Surface Owner: 🗷 State 🗌 Federal 🗌 Tribal 🗌 Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
K Condensate	Volume Released (bbls) 1.0	Volume Recovered (bbls) 0
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release LO reported a release of condensate out of the low pressure flare which ignited and extinguished itself on the ground. The level switch to activate the pump did not engage, leaving trapped fluid in the low pressure flare line. A third-party contractor has been retained for remediation activities.

Recei

•

Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No If YES, was immediate r	State of New Mexico Oil Conservation Division If YES, for what reason(s) does the res A release that results in a fire or is the res	n sponsible party consideresult of a fire.	Incident ID District RP Facility ID Application ID der this a major release	NAPP2103632350
Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No If YES, was immediate r	If YES, for what reason(s) does the res A release that results in a fire or is the r	n sponsible party consideresult of a fire.	District RP Facility ID Application ID der this a major release	e?
Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No If YES, was immediate r	If YES, for what reason(s) does the res A release that results in a fire or is the r	ponsible party consi- result of a fire.	Facility ID Application ID der this a major release	e?
Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No If YES, was immediate r	If YES, for what reason(s) does the res A release that results in a fire or is the r	ponsible party considered a fire.	Application ID	e?
Was this a major release as defined by 19.15.29.7(A) NMAC? X Yes No If YES, was immediate r	If YES, for what reason(s) does the res A release that results in a fire or is the r	ponsible party consi- result of a fire.	der this a major release	e?
release as defined by 19.15.29.7(A) NMAC? Yes No If YES, was immediate r	A release that results in a fire or is the r	esult of a fire.	L.	
Yes No				
If YES, was immediate r				
If YES, was immediate i				
	notice given to the OCD? By whom? To	whom? When and	by what means (phone,	, email, etc)?
Yes, by Adrian Baker to emily.hernandez@state.r	'Bratcher, Mike, EMNRD'; Venegas, Vic m.us; 'Mann, Ryan' on Monday, January	toria, EMNRD; Ham 25, 2021 11:43 AM	ilet, Robert, EMNRD; via email.	
	Initial	Response		
The responsible	party must undertake the following actions immedi	iately unless they could cr	eate a safety hazard that wo	ould result in injury
★ The source of the rel	ease has been stopped.			
The impacted area h	as been secured to protect human health a	and the environment.		
Released materials h	ave been contained via the use of berms	or dikes, absorbent p	ads, or other containm	ent devices.
All free liquids and	ecoverable materials have been removed	and managed approx	nriately	
If all the actions describe	d above have not been undertaken evale	in why:		
	a above have <u>not</u> been undertaken, expla	un wny.		
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme	AC the responsible party may commence a narrative of actions to date. If remediant area (see 19.15.29.11(A)(5)(a) NMAC	te remediation imme ial efforts have been b), please attach all in	diately after discovery successfully complete formation needed for	of a release. If remediation ed or if the release occurred closure evaluation.
I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations.	primation given above is true and complete to the required to report and/or file certain release rement. The acceptance of a C-141 report by the gate and remediate contamination that pose a lof a C-141 report does not relieve the operator	the best of my knowled notifications and perfor ne OCD does not reliev threat to groundwater, s of responsibility for co	lge and understand that p rm corrective actions for re the operator of liability surface water, human hea ompliance with any other	ursuant to OCD rules and releases which may endanger should their operations have alth or the environment. In r federal, state, or local laws
Printed Name: Kyle Litt	rell	Title:	mental Manager	
Signature:	fitter	Date:		
email: kyle littfell@exx	onmobil.com	Telephone:	2-221-7331	

Received by: _____ Data

.

Location:	Remuda 10	00	
Spill Date:	1/25/202	1	
	Area 1		
Approximate A	rea =	1491.00	sq. ft.
Average Satura	tion (or depth) of spill =	1.50	inches
Average Porosi	ty Factor =	0.03	
	VOLUME OF LEAK		
Total Condensa	te=	1.00	bbls
	TOTAL VOLUME O	F LEAK	
Total Condensa	nte =	1.00	bbls
	TOTAL VOLUME REC	OVERED	
Total Condensa	nte =	0.00	bbls

Received by OCD: 4/23/2021 3:15:53 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 4 of 7
Incident ID	NAPP2103632350
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100 (</u> ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🛛 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 4/23/2021 .	3:15:53 PM			Page 5 of 70
Form C-141			Incident ID	NAPP2103632350
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the informal regulations all operators are req public health or the environmen failed to adequately investigate addition, OCD acceptance of a d and/or regulations. Printed Name: Signature: Email: Kyle.Littrell(d	tion given above is true and complete to the uired to report and/or file certain release no t. The acceptance of a C-141 report by the and remediate contamination that pose a the C-141 report does not relieve the operator o Kyle Littrell	e best of my knowledge tifications and perform OCD does not relieve t reat to groundwater, sur f responsibility for com 	and understand that purs corrective actions for rel- he operator of liability sh face water, human health pliance with any other fe <u>onmental Manager</u> 1	suant to OCD rules and eases which may endanger nould their operations have n or the environment. In ederal, state, or local laws
OCD Only				
Received by:				

Page 6

Oil Conservation Division

Incident ID	NAPP2103632350
District RP	
Facility ID	
Application ID	

Page 6 of 78

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.										
A scaled site and sampling diagram as described in 19.15.29.11 NMAC										
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)									
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)										
Description of remediation activities										
I hereby certify that the information given above is true and comple and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rei human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the O	ete to the best of my kn n release notifications F a C-141 report by the mediate contamination a C-141 report does n ations. The responsible onditions that existed p DCD when reclamation	nowledge and understand that pursuant to OCD rules and perform corrective actions for releases which OCD does not relieve the operator of liability a that pose a threat to groundwater, surface water, ot relieve the operator of responsibility for le party acknowledges they must substantially prior to the release or their final land use in n and re-vegetation are complete.								
Printed Name: Kyle Littrell	Title:	Environmental Manager								
Signature:	Date: <u>4-22-2</u>	2021								
email:Kyle.Littrell@exxonmobil.com	Telephone:	432-221-7331								
OCD Only										
Received by:	Date:									
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	of liability should the water, human health, o or regulations.	ir operations have failed to adequately investigate and or the environment nor does not relieve the responsible								
Closure Approved by:	Date:									
Printed Name:	Title:									
_										

Page 6

Oil Conservation Division

	Page 7 of	78
Incident ID	NAPP2103632350	
District RP		
Facility ID		
Application ID		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following items must be included in the closure report.									
A scaled site and sampling diagram as described in 19.15.29.11 NMAC									
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)									
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)									
Description of remediation activities									
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.									
Printed Name: Kyle Littrell Title: Environmental Manager									
Signature: Date: Date:									
email: <u>Kyle.Littrell@exxonmobil.com</u> Telephone: <u>432-221-7331</u>									
OCD Only									
Received by: <u>Robert Hamlet</u> Date: <u>8/12/2021</u>									
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.									
Closure Approved by: <u>Robert Hamlet</u> Date: <u>8/12/2021</u>									
Printed Name: Robert Hamlet Title: Environmental Specialist - Advanced									

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

April 23, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request Remuda 100 Incident Number NAPP2103632350 Eddy County, New Mexico

To Whom it May Concern:

WSP USA Inc. (WSP) on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment, soil sampling, and excavation activities at the Remuda 100 (Site) in Unit E, Section 25, Township 23 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment, soil sampling, and excavation activities was to address impacts to soil following a condensate fire at the Site. Based on the excavation activities and confirmation soil sample laboratory analytical results, XTO is submitting this Closure Request, describing remediation that has occurred and requesting no further action (NFA) for Incident Number NAPP2103632350.

RELEASE BACKGROUND

On January 25, 2021, approximately 1.0 barrel (bbl) of condensate released from the lowpressure flare and ignited. The fire quickly extinguished itself on the ground beneath the flare. XTO reported the release immediately via email to the New Mexico Oil Conservation Division (NMOCD) and subsequently submitted a Release Notification Form C-141 on February 5, 2021. The release was assigned Incident Number NAPP2103632350.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is greater than 100 feet below ground surface (bgs) based on a recent soil boring drilled for determination of regional groundwater depth. During January 2021, WSP installed a soil boring within 0.5 miles of the Site utilizing a truck-mounted hollow-stem auger rig. Soil boring C-04494 was drilled to a depth of 105 feet bgs. A WSP geologist logged and described soils continuously. No moisture or groundwater was encountered during drilling activities. The borehole lithologic/soil sampling log is included in Attachment 1. The location of the borehole is approximately 0.28 miles southeast of the Site and is depicted on

wsp

District II Page 2

Figure 1. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 105 feet bgs. The borehole was properly abandoned with drill cuttings and hydrated bentonite chips. The well records are included in Attachment 1.

The closest significant watercourse to the Site is an unnamed ravine, located approximately 166 feet northeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (medium potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On February 3, 2021, WSP personnel visited the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. WSP personnel collected two preliminary assessment soil samples (SS01 and SS02) within the release extent from a depth of approximately 0.5 feet bgs to assess the lateral extent of impacted soil. The preliminary soil samples were field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

wsp

District II Page 3

Laboratory analytical results for preliminary soil samples SS01 and SS02 indicated that chloride concentrations exceeded the Closure Criteria. Benzene, BTEX, and TPH concentrations were compliant with the Closure Criteria. Based on visible staining in the release area, elevated field screening results, and laboratory analytical results for the preliminary soil samples, excavation activities were warranted.

EXCAVATION AND SOIL SAMPLING ACTIVITIES

On April 14, 2021, WSP personnel returned to the Site to oversee excavation activities as indicated by visible staining, field screening activities, and laboratory analytical results for the preliminary samples. Excavation activities were performed using track-mounted backhoe, transport vehicle, and hydrovac. To direct excavation activities, WSP screened soil for volatile aromatic hydrocarbons and chloride utilizing a PID and Hach[®] chloride QuanTab[®] test strips, respectively. Photographic documentation is included in Attachment 2.

Following removal of impacted soil, WSP collected 5-point composite soil samples every 200 square feet from the floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS06 were collected from the floor of the excavation from a depth from of 1-foot bgs. Due to the shallow depth of the excavation, the floor samples included materials from any sidewalls. The excavation soil samples were collected, handled, and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations are presented on Figure 3.

The excavation measured approximately 1,200 square feet. A total of approximately 45 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Facility in Hobbs, New Mexico. After completion of confirmation sampling, the excavation was backfilled.

SOIL ANALYTICAL RESULTS

Laboratory analytical results for preliminary soil samples SS01 and SS02 indicated that chloride concentrations exceeded the Closure Criteria. Laboratory analytical results for excavation floor samples FS01 through FS06 indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results are summarized in Table 1 and laboratory analytical reports are included as Attachment 3.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the January 25, 2021 condensate fire. Laboratory analytical results for the excavation soil samples indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Based on the excavation soil sample analytical results and confirmed depth to groundwater greater than

wsp

District II Page 4

100 feet bgs, no further remediation was required. WSP and XTO believe these remedial actions are protective of human health, the environment, and groundwater. As such, XTO respectfully requests no further action for Incident Number NAPP2103632350.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Elizabeth Naka

Elizabeth Naka Assistant Consultant, Environmental Scientist

Ashley L. ager

Ashley L. Ager, P.G. Managing Director, Geologist

cc: Kyle Littrell, XTO Ryan Mann, New Mexico State Land Office

Attachments:

- Figure 1 Site Location Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 Photographic Log
- Attachment 3 Laboratory Analytical Reports

FIGUR

Released to Imaging: 8/12/2021 2:39:14 PM

Table 1

Soil Analytical Results Remuda 100 Incident Number NAPP2103632350 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Surface Samples										
SS01	02/03/2021	0.5	< 0.00202	< 0.00202	<50.1	63.5	<50.1	63.5	63.5	2,240
SS02	02/03/2021	0.5	< 0.00198	< 0.00198	<49.8	<49.8	<49.8	<49.8	<49.8	2,300
Excavation Floor Sa	mples									
FS01	4/14/2021	1	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	428
FS02	4/14/2021	1	<0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	417
FS03	4/14/2021	1	< 0.00202	< 0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	228
FS04	4/14/2021	1	< 0.00202	< 0.00403	<50.0	<50.0	<50.0	<50.0	<50.0	241
FS05	4/14/2021	1	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	306
FS06	4/14/2021	1	<0.00199	< 0.00398	<50.1	<50.1	<50.1	<50.1	<50.1	306

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - motor oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard Greyed data represents samples that were excavated

									BH or PH Name:		Date:	
					WS	P USA			BH01 (C-04494)		11/18/2020 12/02/20 01/05/2021	
				F	SOR Most	Stovone 9	Stroot		Site Name:	Pomu	da North 25 Observation Wall	
				Cai	Isbad, Ne	w Mexico	88220		RP or Incident Numbe	Nemu		
									LTE Job Number:		TE012919039	
		LITH	OLOG	SIC / SOII	_ SAMPL	ING LO	G		Logged By BB, LAD, FS		Method: Hollow Stem Auger, sonic	
Lat/Long: Field Screening:								Hole Diameter:		Total Depth:		
0									6.25", 4.25"		105'	
Litholo	ients: ogy remark:	s only. No	field so	creenings: D	ry hole							
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	** Sample Depth (ft bgs) Depth (ft bgs)					Lithology/Remarks			
D			Ν			1	SP-SC					
D			Ν			2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	CCHE	0-1' : SA some ro 1-4' : SA grain, sc 4-9' : CA rounded 9-14' : A 14-19' : 19-24' : moderat	ND, dry, brown, poo ots, no stain, no odd ND, dry, reddish-ligl ome rounded caliche LICHE, dry, light bro caliche pebbles and bundent sub-round o Some sub-angular o Abundant sub-angul ely consolidated	orly grad or ht brow e pebble caliche caliche aliche (lar calic	ded, fine grain, Clay (10% clay), n, poorly graded, very fine - fine es, no stain, no odor n, poorly consolidated, sub- l, very silty, gradational gravel gravel and pebbles he gravel and pebbles,	
D			Ν			21 22 23 24	CL					
						25						

Lat/Lo	ong: hents: bgy remark	LITHO s only. No) DLOG	E Car Car Car Car Car Car Car Car Car Car	WS 508 West 5 1sbad, Ne - SAMPL Field Scree ry hole	SP USA Stevens S w Mexico LING LOO rening:		BH or PH Name: BH01 Site Name: RP or Incident Numbe LTE Job Number: Logged By BB, LAD, FS Hole Diameter: 6.25", 4.25"	Remuc	Date: 11/18/2020, 12/02/20, 01/05/2021 da North 25 Observation Well TE012919039 Method: Hollow Stem Auger, sonic Total Depth: 105'	
Moisture Content	Chloride (ppm)	Chloride (ppm) (ppm) (pp					Lithology/Remarks				
D			Ν			26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 44 45 46 47 48 49 50	DOL	24-39' : consolid no odor, 34-39' : features At 39' : I 39-42' : consolid odor, lig 42-45' : (>1mm) At 48' : S 48-56' : DOLOM stain , no	MUDSTONE, dry, rec ated, cohesive, trace sharp transition Sub-angular calcium (1-3mm), tan-light bi Begin air rotory (4.25' DOLOMETIC LIMES ated, with dissolution ht to moderate reaction Some light gray dolor Stop due to air rotory Advance borehole wi ITE, white, well conse o odor	ddish-bi caliche carbon rown ") TONE, n feature on with mite wit refusal ith new olidated	rown, low plasticity, well e sub-angular pebbles, no tain, ate gravel with dissolution tan-light brown, dry, well es (1-3mm), sharp, no stain, no HCl th trace dissolution features (11/18/20) air rotary bit (12/02/20), d, dark gray-black banding, no

									BH or PH Name:		Date:
					WS	PUSA			BH01		11/18/2020. 12/02/2020, 1/5/2021
				5	08 West S	Stevens S	Street		Site Name: Remuda North 25 Observation Well		
				Car	Isbad, Ne	w Mexico	88220		RP or Incident Numbe	er:	
							_		LTE Job Number: TEC	012919039	
Lot/Lo		LITH	JLOGI	IC / SOIL	Eiold Soro		G		Logged By BB, LAD, F	-S	Method: Hollow Stem Auger, sonic
	лıg.					ening.			6.25", 4.25"		105'
Comn Lithol	nents: ogic log on	ly, no field	d screen	ings							
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol		Lit	thology/R	Remarks
						51 52 53 54 55 56 57 58 59 60 61 62 63 64	DOL	48-56' : DOLOM no odor At 56' : F 56-65' : calcium (2mm) v within di 62' : Bro stringer 63-65' : gray, po 65-69' : high plas pale gre 69-81' :	Advanced borehol ITE, white, well co Restarted borehole DOLOMITE, dry, li crystalline veins (- vith fine calcite cry ssolution features, wn-pale yellow co (2cm) Abundant calcite c orly consolidated MUDSTONE, mois sticity, cohesive, a en-gray mottling, r GYPSUM with Ant	le with ne onsolidate onsolidate onsolidate on 1/5/2 ight gray- <1mm), s stalline, t arse crys crystalline crystalline st, reddis bundant no stain, hydrite, d	ew air rotary bit (12/02/20), ed, dark gray- banding, no stain 2021 with sonic rig gray, well consolidated, some some dissolution features trace orange oxidation staining no odor stalline dolomitic limestone e veins (<1mm), pale green- th brown, poorly consolidated, coarse crystalline gypsum, few no odor ry, greenish gray, some pale
D			Ν		-	65 66 67 68 69	CH-S	yellow, v no odor	vell consolidated, f	finr crysta	alline, 20% anhydrite, no stain,
D			Ν			70 71 72 73 74 75	GYP				

_		, _	_					BH or PH Name: Date:	
					WS	SP USA		BH01 11/18/2020. 12/02/2020, 1/5/2021	
				5	08 West	Stevens S	Street	Site Name: Remuda North 25 Observation Well	
				Car	lsbad, Ne	w Mexico	88220	RP or Incident Number:	
								LTE Job Number: TE012919039	
		LITHO	OLOG	IC / SOIL	SAMPL	ING LO	G	Logged By BB, LAD, FS Method: Hollow Stem Auger, soni	С
Lat/Lo	ong:				Field Scre	ening:		Hole Diameter: Total Depth:	
Comm	nents:							0.25 , 4.25 105'	
Litholo	ogic log on	ly, no field	d screen	iings					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithology/Remarks	
						76	GYP	69-81': GYPSUM with Anhydrite, dry, greenish gray, some pal- vellow, well consolidated, finr crystalline, 20% anhydrite, no sta	e ain.
					-	77		no odor	,
						78		81-98' : MUDSTONE, moist, dark reddish brown, moderately	
						79		consolidated, high plasticity, cohesive, trace coarse crystalline gypsum inclusions, no stain, no odor	
						80		85-86.5' : greenish-gray well consolidated coarse crystalline	
					•	81		gypsum/annydrite stringer	
D			Ν		-	0.0	CH-S	90-98' : Some fine grain brown sand	
					-	02		At 97' : dark gray-gray gyspum stringer (4cm)	
					-	83		98-99.5' · GYPSUM dark grav-grav, some brown, dry, well	
					-	84		consolidated, fine-coarse crystalline, no stain, no odor	
					-	85		99.5-105' : Sandy SILTSTONE, moist, brown, some gray-dark gray, poorly consolidated, 20% very fine grain sand, no stain, r	10
					-	86		odor	
					-	87			
					-	88			
					-	89			
					-	90			
						91			
					-	92			
					_	93			
						94			
						95			
						96			
						97			
						98			
D			Ν		-	99	GYP	1	
D			N			100	ML-S	4	

			_						BH or PH Name:		Date:	
					WS	SP USA			BH01		11/18/2020. 12/02/2020, 1/5/2021	
				5	08 West	Stevens S	Street		Site Name:	Remuda N	lorth 25 Observation Well	
				Car	Isbad, Ne	w Mexico	88220		RP or Incident Nur	nber:		
									LTE Job Number:	TE012919039	1	
-		LITH	OLOG	IC / SOIL	SAMPL	ING LO	G		Logged By BB, LAI	D, FS	Method: Hollow Stem Auger, sonic	
Lat/Long: Field Screening:						Hole Diameter: 6.25", 4.25"		Total Depth: 105'				
Comm Litholo	nents: ogic log on	ly, no field	d screei	nings		1						
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)				Lithology/Remarks			
						101	ML-S	99.5-10	5' : Sandy SILTS	STONE, mo	sist, brown, some gray-dark	
						102		gray, po odor	orly consolidate	a, 20% ver	y fine grain sand, no stain, no	
						103		At 102' :	Thin (<1mm) la	aminated bl	ack/gray well consolidated	
						104		shale st	inger (4cm thic	k)		
					-	105						
D			Ν		-	106		TD @ 10	05' bgs (1/5/202	21)		
					-	107						
					-	107						
					-	108						
					-	109						
					-	110						
					-	111						
					-	112						
					-	113						
					-	114						
					· -	115						
					· -	116						
					· ·	117						
					.	118						
					.	119						
					-	120						
					-	121						
					-	100						
					-	122						
					-	123						
					-	124						
					-	125						

USGS 321717103561001 23S.29E.24.41321

Available data for this site

Well Site

DESCRIPTION:

Latitude 32°17'17", Longitude 103°56'10" NAD27 Eddy County, New Mexico , Hydrologic Unit 13060011 Well depth: not determined. Land surface altitude: 3,034 feet above NAVD88. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Rustler Formation" (312RSLR) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1983-02-02	2003-01-29	4
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

Page 25 of 78

Received by OCD: 4/23/2021 3:15:53 PM

USGS 321717103561001 23S.29E.24.41321

Released to Imaging: 8/12/2021 2:39:14 PM Period of approved data

USGS 321742103552601 23S.30E.19.123421

Available data for this site

Well Site

DESCRIPTION:

Latitude 32°17'42", Longitude 103°55'26" NAD27 Eddy County, New Mexico , Hydrologic Unit 13060011 Well depth: 100 feet Land surface altitude: 3,034 feet above NAVD88. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Rustler Formation" (312RSLR) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1959-02-06	1993-05-06	8
Field/Lab water-quality samples	1972-09-20	1972-09-20	1
<u>Revisions</u>	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

USGS 321742103552601 23S.30E.19.123421

Released to Imaging: 8/12/2021 2:39:14 PM Period of approved data

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters a	are 1=N	W 2=N	E 3=SW	/ 4=SE)	014 D92			
	-		(quarters	are sma	mest to	iargest))	(NAD85	UTM in meters)		
Well Tag	POD	Number	Q64 Q1	l6 Q4	Sec	Tws	Rng	X	X Y		
	C 0	2707		2	28	23S	29E	59553:	5 3571868*	9	
x Driller Lice	ense:	1348	Driller Co	ompar	ıy:	TA	YLOR V	WATER W	ELL SERVIC	CE	
Driner Nan	ne:										
Drill Start	Date:	06/09/2000	Drill Fini	sh Dat	te:	0	6/09/20	00 1	Plug Date:		
Log File Da	ite:	08/28/2000	PCW Rev	v Date	:			S	Source:		Shallow
Ритр Туре:		Pipe Disc	harge	Size:			1	Estimated Yi	eld:	700 GPM	
Casing Size	:	2.38	Depth We	ell:		40	0 feet]	Depth Water:	:	18 feet
water Bearing Stratificat			fications:	To	p I	Bottom	Desc	ription			
				3	86	78	6 Lime	stone/Dolo	omite/Chalk		
x		Casing Per	forations:	To	p I	Bottom	1				
				3	35	40)				
x											

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

POINT OF DIVERSION SUM

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters	are 1=N	W 2=N	NE 3=SW	4=SE)			
			(quarter	s are sma	llest t	o largest)		(NAD83 U	JTM in meters)	
Well Tag	POD	Number	Q64 Q	16 Q4	Sec	Tws	Rng	X	Y	
NA	C 04	4326 POD14	4	2 3	23	23S	29E	598191	3572765	ð
x Driller Lic	ense:	1664	Driller C	ompar	ıy:	CAS	SCADE	DRILLIN	G, LP	
Driller Na	me:	CAIN, SHAWN	N.NJR.L.NER							
Drill Start	Date:	05/11/2019	Drill Fin	ish Dat	e:	05	5/11/201	9 P	lug Date:	
Log File D	ate:	08/28/2019	PCW Rc	v Date	:			S	ource:	Shallow
Pump Type:		Pipe Disc	Pipe Discharge Size:			Ε	Estimated Yield:			
Casing Siz	e:	2.06	Depth W	ell:		58	8 feet	D	epth Water:	54 feet
x	Wate	er Bearing Strati	fications:	To	p 1	Bottom	Descr	iption		
				2	5	54	Shale	Mudstone	/Siltstone	
x		Casing Per	forations:	Та	p 1	Bottom				
				2	8	58				
x										

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

POINT OF DIVERSION SUN

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters	are 1=N	W 2=N	NE 3=SW	4=SE)			
			(quarters	are sma	llest t	o largest)		(NAD83 U	TM in meters)	
Well Tag	POD) Number	Q64 Q1	16 Q4	Sec	Tws	Rng	Х	Y	
NA	C 0	4326 POD16	2 4	4 3	23	23S	29E	598209	3572664 🧲	
x Driller Lic	ense:	1664	Driller C	ompar	ıy:	CAS	SCADE I	DRILLING	G, LP	
Driller Na	me:	CAIN, SHAWN	N.NJR.L.NER							
Drill Start	Date:	05/14/2019	Drill Fini	sh Dat	e:	05	5/14/2019	P	ug Date:	
Log File D	ate:	08/28/2019	PCW Rev	v Date	:			So	urce:	Shallow
Pump Type:		Pipe Disc	Pipe Discharge Size:				Estimated Yield:		:	
Casing Siz	e:	2.07	Depth W	ell:		64	feet	De	epth Water:	54 feet
x	Wate	er Bearing Stratif	ications:	То	p 1	Bottom	Descri	ption		
				5	52	60	Limest	tone/Dolon	nite/Chalk	
x		Casing Per	forations:	То	p]	Bottom				
				5	54	64				
x										

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

POINT OF DIVERSION SUM

wsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Remuda 100	TE012921024
	Eddy County, New Mexico	

vsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Remuda 100	TE012921024
	Eddy County, New Mexico	

vsp

	PHOTOGRAPHIC LOG	
XTO Energy, Inc.	Remuda 100	TE012921024
	Eddy County, New Mexico	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-137-1

Laboratory Sample Delivery Group: CC: 1067621001 Client Project/Site: Remuda 100 Flare Fire Revision: 1

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 2/11/2021 9:58:35 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert

Visit us at: www.eurofinsus.com/Env Released to Imaging: 8/12/2021 2:39:14 PM
Laboratory Job ID: 890-137-1 SDG: CC: 1067621001

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

.

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire Page 38 of 78

Job ID: 890-137-1
SDG: CC: 1067621001

Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Ouglifier	Qualifier Description	
	MS_MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
7		
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML		
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
PU5	Positive / Present	
PRES	Presumpuve Ovelity Control	
	Quality Control	
	Relative Error Ratio (Radiochernistry)	
I.L.	Reporting Limit or Requested Limit (Radiocremistry)	

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Job ID: 890-137-1 SDG: CC: 1067621001

Job ID: 890-137-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-137-1

REVISION

The report being provided is a revision of the original report sent on 2/10/2021. The report (revision 1) is being revised due to Corrected certificate summary page for TPH 8015.

Report revision history

Receipt

The samples were received on 2/3/2021 2:55 PM; the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 39 of 78

Client Sample Results

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire

Client Sample ID: SS01 Date Collected: 02/03/21 12:05 **Date Receiv**

m,p-Xylenes

Date Received: 02/03/2	1 14:55							
Method: 8021B - Volatile Organic Compounds (GC)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		02/03/21 20:01	02/05/21 03:07	1
Ethylbenzene	< 0.00202	U	0.00202	mg/Kg		02/03/21 20:01	02/05/21 03:07	1
Toluene	< 0.00202	U	0.00202	mg/Kg		02/03/21 20:01	02/05/21 03:07	1
Total BTEX	<0.00202	U	0.00202	mg/Kg		02/03/21 20:01	02/05/21 03:07	1
Xylenes, Total	< 0.00202	U	0.00202	mg/Kg		02/03/21 20:01	02/05/21 03:07	1

mg/Kg

mg/Kg

o-Xylene	<0.00202	U	0.00202
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	98		70 - 130
4-Bromofluorobenzene (Surr)	110		70 - 130

<0.00403 U

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<50.1	U	50.1	mg/Kg		02/09/21 08:19	02/09/21 13:34	1
Total TPH	63.5		50.1	mg/Kg		02/09/21 08:19	02/09/21 13:34	1
>C10-C28	63.5		50.1	mg/Kg		02/09/21 08:19	02/09/21 13:34	1
>C28-C35	<50.1	U	50.1	mg/Kg		02/09/21 08:19	02/09/21 13:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 135			02/09/21 08:19	02/09/21 13:34	1
o-Terphenyl	95		70 - 135			02/09/21 08:19	02/09/21 13:34	1

0.00403

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2240	50.4	mg/Kg			02/04/21 19:51	5

Client Sample ID: SS02

Date Collected: 02/03/21 12:10 Date Received: 02/03/21 14:55

Method: 8021B - Volatile O	rganic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
Toluene	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
Total BTEX	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
Xylenes, Total	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
m,p-Xylenes	<0.00397	U	0.00397	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		02/03/21 20:01	02/05/21 03:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	95		70 - 130			02/03/21 20:01	02/05/21 03:52	1
4-Bromofluorobenzene (Surr)	101		70 - 130			02/03/21 20:01	02/05/21 03:52	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte C6-C10 Total TPH

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
 <49.8	U	49.8	mg/Kg		02/09/21 08:19	02/09/21 13:55	1
<49.8	U	49.8	mg/Kg		02/09/21 08:19	02/09/21 13:55	1
<49.8	U	49.8	mg/Kg		02/09/21 08:19	02/09/21 13:55	1
<49.8	U	49.8	mg/Kg		02/09/21 08:19	02/09/21 13:55	1

Eurofins Xenco, Carlsbad

Page 40 of 78

Job ID: 890-137-1 SDG: CC: 1067621001

Lab Sample ID: 890-137-1

02/03/21 20:01 02/05/21 03:07

02/03/21 20:01 02/05/21 03:07

02/03/21 20:01 02/05/21 03:07

02/03/21 20:01 02/05/21 03:07

Analyzed

Prepared

Matrix: Solid

1

1

1

1

1

1

Dil Fac

Matrix: Solid

>C10-C28

>C28-C35

Project/Site: Remuda 100 Flare Fire

5

Matrix: Solid

Client Sample Results

Job ID: 890-137-1 SDG: CC: 1067621001

Lab Sample ID: 890-137-2

Client Sample ID: SS02 Date Collected: 02/03/21 12:10 Date Received: 02/03/21 14:55

Client: WSP USA Inc.

	•					
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	98	70 - 135		02/09/21 08:19	02/09/21 13:55	1
o-Terphenyl	96	70 - 135		02/09/21 08:19	02/09/21 13:55	1
Method: 300.0 - Anions, Ion Analyte Chloride	Chromatography - Solu Result Qualifier 2300	Ible <u>RL</u> <u>49.8</u>	Unit mg/Kg	D Prepared	Analyzed 02/04/21 19:56	Dil Fac

Surrogate Summary

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Perc	nt Surrogate Recovery (Acceptance Limits)
		DFBZ1	BFB1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-135-A-8-B MS	Matrix Spike	93	96	
890-135-A-8-C MSD	Matrix Spike Duplicate	97	101	
890-137-1	SS01	98	110	
890-137-2	SS02	95	101	
LCS 890-135/2-A	Lab Control Sample	94	95	
LCSD 890-135/3-A	Lab Control Sample Dup	96	94	
MB 890-135/1-A	Method Blank	99	100	

Surrogate Legend

DFBZ = 1,4-Difluorobenzene

BFB = 4-Bromofluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

ab Sample ID Client Sample ID (70-135)
ab Sample ID Client Sample ID (70-135)
890-137-1 SS01 98 95
890-137-2 SS02 98 96
890-158-A-1-O MS Matrix Spike 113 102
890-158-A-1-P MSD Matrix Spike Duplicate 114 102
LCS 890-214/2-A Lab Control Sample 108 98
LCSD 890-214/3-A Lab Control Sample Dup 101 91
MB 890-214/1-A Method Blank 91 89

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl Prep Type: Total/NA

Prep Type: Total/NA

Page 42 of 78

5 6 7

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 890-135/1-A Matrix: Solid Analysis Batch: 146

	MB	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
Total BTEX	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/03/21 20:01	02/04/21 19:25	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene	99		70 - 130			02/03/21 20:01	02/04/21 19:25	1
4-Bromofluorobenzene (Surr)	100		70 - 130			02/03/21 20:01	02/04/21 19:25	1

Lab Sample ID: LCS 890-135/2-A Matrix: Solid Analysis Batch: 146

•	Spike	LCS	LCS				«Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09222		mg/Kg		92	70 - 130	
Ethylbenzene	0.100	0.09531		mg/Kg		95	71 - 129	
Toluene	0.100	0.09397		mg/Kg		94	70 - 130	
m,p-Xylenes	0.200	0.1855		mg/Kg		93	70 - 135	
o-Xylene	0.100	0.09259		mg/Kg		93	71 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	94		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 890-135/3-A Matrix: Solid Analysis Batch: 146

Analysis Batch: 146							Prep	Batch	ı: 135
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09560		mg/Kg		96	70 - 130	4	35
Ethylbenzene	0.100	0.09322		mg/Kg		93	71 - 129	2	35
Toluene	0.100	0.09098		mg/Kg		91	70 - 130	3	35
m,p-Xylenes	0.200	0.1897		mg/Kg		95	70 - 135	2	35
o-Xylene	0.100	0.09249		mg/Kg		92	71 - 133	0	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,4-Difluorobenzene	96		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 890-135-A Matrix: Solid Analysis Batch: 146	-8-B MS						CI	lient Sa	mple ID: I Prep Ty Prer	Matrix Spike pe: Total/NA o Batch: 135
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0996	0.09744		mg/Kg		98	70 - 130	

Eurofins Xenco, Carlsbad

Job ID: 890-137-1 SDG: CC: 1067621001

Prep Type: Total/NA

Prep Batch: 135

Client Sample ID: Method Blank

t Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 135

Prep Type: Total/NA

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire Job ID: 890-137-1 SDG: CC: 1067621001

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-135- Matrix: Solid Analysis Batch: 146	A-8-B MS						CI	ient San	ple ID: N Prep Typ	latrix e: Tot Batch	Spike al/N/
Analysis Batch. 140	Sample	Samplo	Spiko	MS	MS				%Pec	Datci	1. 13.
Analyte	Posult	Oualifior		Posult	Qualifier	Unit	п	%Poc	/intec.		
Ethylbenzene					Quaimer	ma/Ka			71 120		
	<0.00202	0	0.0990	0.09003		mg/Kg		91	71 - 129		
	<0.00202		0.0990	0.09104		mg/Kg		91	70 - 130		
	<0.00404	0	0.199	0.1003		mg/Kg		91	70 - 133		
0-Xylene	<0.00202	0	0.0996	0.09027		mg/Kg		91	11-133		
Surrogate	MS %Recoverv	MS Qualifier	l imits								
1 4-Difluorobenzene			70 - 130								
4-Bromofluorobenzene (Surr)	96		70 - 130								
] ah Sample ID: 890-135-						Client	Samn	Io ID· Ma	atrix Snik		licate
Matrix: Solid						onent	Jamp		Dron Tyr	e Dup	al/N/
Analysis Batch: 1/6									Dron	Batch	a // 135
Analysis Daten. 140	Samplo	Samolo	Spiko	MSD	MSD				%Pec	Date	
Analyte	Posult	Oualifior		Posult	Qualifier	Unit	п	%Poc	/intec.	PPN	Limi
Bonzono			0.100	0 1029	Quaimer	ma/Ka		102	70 120	6	26
Ethylbonzono		0	0.100	0.1030		mg/Kg		103	70-100	11	26
	<0.00202	0	0.100	0.1013		mg/Kg		101	71-129	10	30
	<0.00202	U	0.100	0.1027		mg/Kg		102	70 - 130	12	3:
m,p-Xylenes	< 0.00404	U	0.201	0.2042		mg/Kg		102	70 - 135	12	35
o-Xylene	<0.00202	U	0.100	0.1028		mg/Kg		102	71-133	13	35
Surrogate	MSD %Recovery	MSD Qualifier	l imits								
1 4-Difluorobenzene	97	Quanner	70 - 1.30								
4-Bromofluorobenzene (Surr)	101		70 - 130								
Method: 8015B NM - [Diesel Rang	e Organi	cs (DRO) (GC)							
Lab Sample ID: MB 890-2	214/1-A						Clie	nt Samp	ole ID: Me	thod	Blank
Matrix: Solid									Prep Typ	e: Tot	al/NA
Analysis Batch: 215									Prep	Batch	n: 214
-		MB MB									
Analyto	_								Analyz	əd	Dil Fac
7.1101yto	Res	sult Qualifier	RL		Unit	[D P	reparea			
C6-C10	Res <5	Sult Qualifier	RL 50.0		<mark>Unit</mark> mg/K	[$\frac{\mathbf{P}}{\mathbf{O}} = \frac{\mathbf{P}}{\mathbf{O}}$	repared 9/21 08:19	02/09/21 0	9:29	
C6-C10 Total TPH	Res <5 <5	Sult Qualifier	RL 50.0 50.0		<u>Unit</u> mg/K mg/K	g g	D P 02/0 02/0	repared 9/21 08:19 9/21 08:19	02/09/21 0	9:29 9:29	1
C6-C10 Total TPH >C10-C28	Res <5 <5 <5	Sult Qualifier 0.0 U 0.0 U 0.0 U	RL 50.0 50.0 50.0		Unit mg/K mg/K mg/K	g g a	D P 02/0 02/0 02/0 02/0	9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0	9:29 9:29 9:29	-
C6-C10 Total TPH >C10-C28 >C28-C35	Res <5 <5 <5 <5	Gualifier 0.0 U 0.0 U 0.0 U 0.0 U 0.0 U 0.0 U	RL 50.0 50.0 50.0 50.0 50.0		Unit mg/K mg/K mg/K mg/K	g g g	D P 02/0 02/0 02/0 02/0 02/0	9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0	9:29 9:29 9:29 9:29 9:29	1 1 1
C6-C10 Total TPH >C10-C28 >C28-C35	Res <5 <5 <5 <5 <5	Qualifier 0.0 U	RL 50.0 50.0 50.0 50.0		Unit mg/K mg/K mg/K	g g g	D P 02/0 02/0 02/0 02/0	9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 C 02/09/21 C 02/09/21 C 02/09/21 C	9:29 9:29 9:29 9:29 9:29	1
C6-C10 Total TPH >C10-C28 >C28-C35	Res <5 <5 <5 <5 %Recov	Qualifier 0.0 U	RL 50.0 50.0 50.0 50.0 50.0		Unit mg/K mg/K mg/K mg/K	g g g g	D P 02/0 02/0 02/0 02/0 02/0	9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0	9:29 9:29 9:29 9:29 9:29	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane	Res <5 <5 <5 <5 ~5	Qualifier 0.0 U 0.0 U	RL 50.0 50.0 50.0 50.0 50.0 <u>Limits</u> 70 - 135		Unit mg/K mg/K mg/K mg/K	g g g g	P P 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0	Pared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0	9:29 9:29 9:29 9:29 9:29 9:29	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl	Res <5 <5 <5 <5 %Recov	Qualifier 0.0 U 89 Section 1	RL 50.0 </td <td></td> <td>Unit mg/K mg/K mg/K</td> <td>g g g</td> <td>D P1 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0</td> <td>Pepared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 P/21 08:19 9/21 08:19</td> <td>02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0</td> <td>99:29 99:29 99:29 99:29 99:29 ed 99:29</td> <td>Dil Fac</td>		Unit mg/K mg/K mg/K	g g g	D P1 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0	Pepared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 P/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0	99:29 99:29 99:29 99:29 99:29 ed 99:29	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 890	Res <5 <5 <5 %Recov	Qualifier 0.0 U MB MB ery Qualifier 91 89	RL 50.0 </td <td></td> <td>Unit mg/K mg/K mg/K</td> <td>g g g g Clie</td> <td>D Pri 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0</td> <td>repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19</td> <td>02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0</td> <td>9:29 9:29 9:29 9:29 9:29 9:29 9:29 99:29 99:29</td> <td>Dil Fac</td>		Unit mg/K mg/K mg/K	g g g g Clie	D Pri 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0	repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0	9:29 9:29 9:29 9:29 9:29 9:29 9:29 99:29 99:29	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 890 Matrix: Solid	Res <5 <5 <5 <i>%Recov</i>	Qualifier 0.0 U MB MB ery Qualifier 91 89	RL 50.0 </td <td></td> <td>Unit mg/K mg/K mg/K</td> <td>g g g Clier</td> <td>D Pri 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0</td> <td>repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19</td> <td>02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 D2/09/21 0</td> <td>9:29 9:29 9:29 9:29 9:29 9:29 9:29 99:29 99:29 trol Sa</td> <td>Dil Fac</td>		Unit mg/K mg/K mg/K	g g g Clier	D Pri 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0	repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 D2/09/21 0	9:29 9:29 9:29 9:29 9:29 9:29 9:29 99:29 99:29 trol Sa	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 890 Matrix: Solid Analysis Batch: 215	Res <5 <5 <5 <i>%Recov</i>	Qualifier 0.0 U 89 S9	RL 50.0 </td <td></td> <td>Unit mg/K mg/K mg/K</td> <td>g g g Clier</td> <td>P P 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0</td> <td>repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19</td> <td>02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 Dz/09/21 0</td> <td>9:29 9:29 9:29 9:29 9:29 9:29 9:29 09:29 trol Sa e: Tot Batch</td> <td>Dil Fac</td>		Unit mg/K mg/K mg/K	g g g Clier	P P 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/0	repared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 Dz/09/21 0	9:29 9:29 9:29 9:29 9:29 9:29 9:29 09:29 trol Sa e: Tot Batch	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 890 Matrix: Solid Analysis Batch: 215	Res <5 <5 <5 <i>%Recov</i>	Qualifier 0.0 U MB MB ery Qualifier 89 89	RL 50.0 50.0 50.0 50.0 <u>50.0</u> 50.0 <u>50.0</u> 50.0 50.0 50.0 50.0 50.0 50.0 50.0	LCS	LCS	g g g Clier	D Pr 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/	Pared 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 9/21 08:19 nple ID:	02/09/21 0 02/09/21 0	9:29 9:29 9:29 9:29 9:29 9:29 09:29 trol Sa be: Tot Batch	Dil Fac
C6-C10 Total TPH >C10-C28 >C28-C35 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 890 Matrix: Solid Analysis Batch: 215 Analyte	Res <5 <5 <5 <i>%Recov</i>	Qualifier 0.0 U 89 AB	RL 50.0 50.0 50.0 50.0 50.0 <u>50.0</u> 50.0 <u>50.0</u> 50.0 50.0 50.0 50.0 50.0 50.0 50.0	LCS	LCS Qualifier	g g g Clier Unit	D Pr 02/0 02/0 02/0 02/0 02/0 02/0 02/0 02/	with the second state in the second	02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 02/09/21 0 Lab Com Prep Typ Prep %Rec. Limits	9:29 9:29 9:29 9:29 9:29 99:29 09:29 trol Sa be: Tol Batch	Dil Fac imple al/NA 1: 214

Eurofins Xenco, Carlsbad

70 - 135

>C10-C28

1012

mg/Kg

101

1000

Client: WSP USA Inc. Project/Site: Remuda

o-Terphenyl

Method: 8015B N

lient: WSP USA Inc.									JOD I	D: 890-	137-1	
Project/Site: Remuda 100 l	Flare Fire							:	SDG: CC:	106762	21001	
Method: 8015B NM -	Diesel Rang	ge Orgar	nics (DRO)) (GC) (Continu	ied)						
Lab Sample ID: LCS 890)-214/2-A					Clier	nt Sar	nple ID	: Lab Cor	ntrol Sa	ample	
Matrix: Solid									Prep Tv	pe: Tot	al/NA	
Analysis Batch: 215									Pre	Batch	n: 214	
	105	105										5
Surrogate	%Recoverv	Qualifier	Limits									
1-Chlorooctane	108		70 - 135									
o-Terphenyl	98		70 - 135									
												7
Lab Sample ID: LCSD 8	90-214/3-A				C	Client Sa	mple	ID: Lab	Control	Sample	e Dup	
Matrix: Solid									Prep Ty	pe: Tot	al/NA	8
Analysis Batch: 215									Pre	p Batch	n: 214	
			Spike	LCSD	LCSD		_	~-	%Rec.		RPD	9
Analyte			Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limit	
C6-C10			1000	969.0		mg/Kg		97	70 - 135	5	25	
>010-028			1000	977.0		mg/Kg		98	70 - 135	4	25	
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	101		70 - 135									
o-Terphenyl	91		70 - 135									
Lah Sample ID: 890-158	-A-1-0 MS						CI	ient Sa	mnle ID:	Matrix	Snike	13
Matrix: Solid	A-1-0 110								Pren Tv	ne: Tot	al/NΔ	
Analysis Batch: 215									Prei	n Batch	1· 214	
	Sample	Sample	Spike	MS	MS				%Rec.	Dutor		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
C6-C10	<50.0	U	997	1020		mg/Kg		102	70 - 135			
Total TPH	<50.0	U	1990	2033		mg/Kg		0				
>C10-C28	<50.0	U	997	1013		mg/Kg		98	70 - 135			
	MS	MS										
Surrogate	%Recoverv	Qualifier	Limits									
1-Chlorooctane			70 - 135									
o-Terphenyl	102		70 - 135									
Lab Sample ID: 890-158	-A-1-P MSD					Client S	Samp	le ID: N	latrix Spil	ke Dup	licate	
Matrix: Solid									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 215		. .							Pre	p Batch	1: 214	
• • •	Sample	Sample	Spike	MSD	MSD		_	~ -	%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Kec	Limits	RPD	Limit	
	<50.0	U	995	1068		mg/Kg		107	70-135	5	35	
	<50.0	U	1990	2118		mg/Kg		0	70 405	NC	05	
2010-028	<50.0	U	995	1050		mg/Kg		102	70-135	4	35	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	114		70 - 135									

Page 45 of 78

Eurofins Xenco, Carlsbad

102

70 - 135

Project/Site: Remuda 100 Flare Fire

Client: WSP USA Inc.

QC Sample Results

Job ID: 890-137-1 SDG: CC: 1067621001

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 890-142/ Matrix: Solid Analysis Batch: 150	1-A						Clie	ent Sam	iple ID: M Prep Ty	ethod I /pe: Sc	Blank bluble
	М	B MB									
Analyte	Resu	It Qualifier		RL	Unit		D P	repared	Analyz	zed	Dil Fac
Chloride	<10.	0 U		10.0	mg/K	g			02/04/21	18:42	1
Lab Sample ID: LCS 890-142 Matrix: Solid Analysis Batch: 150	2/ 2-A					Clie	ent Sai	mple ID	: Lab Cor Prep Ty	ntrol Sa /pe: Sc	ample bluble
Analysis Baton. Too			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			500	504.8		mg/Kg		101	90 - 110		
Lab Sample ID: LCSD 890-14 Matrix: Solid Analysis Batch: 150	42/3-A				C	Client Sa	ample	ID: Lab	Control Prep Ty	Sample /pe: Sc	e Dup bluble
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			500	532.0		mg/Kg		106	90 - 110	5	20
Lab Sample ID: 890-139-A-3- Matrix: Solid Analysis Batch: 150	-C MS						CI	ient Sa	mple ID: I Prep Ty	Matrix : /pe: Sc	Spike bluble
	Sample Sa	ample	Spike	MS	MS				%Rec.		
Analyte	Result Q	ualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	5330		503	5599	4	mg/Kg		54	90 - 110		
Lab Sample ID: 890-139-A-3- Matrix: Solid	D MSD					Client	Samp	le ID: N	latrix Spil Prep Ty	ke Dup ype: Sc	licate oluble
Analysis Daten. 150	Sample Sa	ample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Q	ualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
			-								

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Method Blank

Matrix Spike

SS01

SS02

SS01

SS02

GC VOA

890-137-1

890-137-2

Prep Batch: 135

MB 890-135/1-A

LCS 890-135/2-A

LCSD 890-135/3-A

890-135-A-8-B MS

Lab Sample ID

MB 890-135/1-A

LCS 890-135/2-A

LCSD 890-135/3-A

890-135-A-8-B MS

890-135-A-8-C MSD

GC Semi VOA Prep Batch: 214

890-137-1

890-137-2

890-135-A-8-C MSD

Analysis Batch: 146

Job ID: 890-137-1

Page 47 of 78

Prep Batch

Prep Batch

135

135

135

135

135

135

135

SDG: CC: 1067621001

Method

5030C

5030C

5030C

5030C

5030C

5030C

5030C

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Matrix	Method
 Solid	9015NM Dr

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-137-1	SS01	Total/NA	Solid	8015NM Prep	
890-137-2	SS02	Total/NA	Solid	8015NM Prep	
MB 890-214/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 890-214/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 890-214/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-158-A-1-O MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-158-A-1-P MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-137-1	SS01	Total/NA	Solid	8015B NM	214
890-137-2	SS02	Total/NA	Solid	8015B NM	214
MB 890-214/1-A	Method Blank	Total/NA	Solid	8015B NM	214
LCS 890-214/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	214
LCSD 890-214/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	214
890-158-A-1-O MS	Matrix Spike	Total/NA	Solid	8015B NM	214
890-158-A-1-P MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	214

HPLC/IC

Leach Batch: 142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-137-1	SS01	Soluble	Solid	DI Leach	
890-137-2	SS02	Soluble	Solid	DI Leach	
MB 890-142/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 890-142/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 890-142/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-139-A-3-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-139-A-3-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

QC Association Summary

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire Job ID: 890-137-1 SDG: CC: 1067621001

HPLC/IC

Analysis Batch: 150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-137-1	SS01	Soluble	Solid	300.0	142
890-137-2	SS02	Soluble	Solid	300.0	142
MB 890-142/1-A	Method Blank	Soluble	Solid	300.0	142
LCS 890-142/2-A	Lab Control Sample	Soluble	Solid	300.0	142
LCSD 890-142/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	142
890-139-A-3-C MS	Matrix Spike	Soluble	Solid	300.0	142
890-139-A-3-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	142

5

Project/Site: Remuda 100 Flare Fire

5

9

Job ID: 890-137-1 SDG: CC: 1067621001

Lab Sample ID: 890-137-1 Matrix: Solid

Client Sample ID: SS01 Date Collected: 02/03/21 12:05 Date Received: 02/03/21 14:55

Client: WSP USA Inc.

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	MC	XC
Total/NA	Analysis	8021B		1	146	02/05/21 03:07	PXS	XC
Total/NA	Prep	8015NM Prep			214	02/09/21 08:19		XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 13:34	BJH	XC
Soluble	Leach	DI Leach			142	02/04/21 09:16	MC	XC
Soluble	Analysis	300.0		5	150	02/04/21 19:51	A1S	XC
- Client Sam	ple ID: SS()2					Lal	b Sample ID: 890-137-2

Client Sample ID: SS02 Date Collected: 02/03/21 12:10 Date Received: 02/03/21 14:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			135	02/03/21 20:01	МС	XC
Total/NA	Analysis	8021B		1	146	02/05/21 03:52	PXS	XC
Total/NA	Prep	8015NM Prep			214	02/09/21 08:19		XC
Total/NA	Analysis	8015B NM		1	215	02/09/21 13:55	BJH	XC
Soluble	Leach	DI Leach			142	02/04/21 09:16	MC	XC
Soluble	Analysis	300.0		5	150	02/04/21 19:56	A1S	XC

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Eurofins Xenco, Carlsbad

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire Job ID: 890-137-1 SDG: CC: 1067621001

Page 50 of 78

Laboratory: Eurofins Xenco, Carlsbad

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Р	rogram	Identification Number	Expiration Date
₋ouisiana	N	ELAP	05092	06-30-21
The following analytes	s are included in this rep	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
the agency does not o	offer certification.			
the agency does not o Analysis Method	offer certification. Prep Method	Matrix	Analyte	
the agency does not o Analysis Method 8015B NM	offer certification. Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XC
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XC
300.0	Anions, Ion Chromatography	MCAWW	XC
5030C	Purge and Trap	SW846	XC
8015NM Prep	Microextraction	SW846	XC
DI Leach	Deionized Water Leaching Procedure	ASTM	XC

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XC = Eurofins Xenco, Carlsbad, 1089 N Canal St., Carlsbad, NM 88220, TEL (575)988-3199

Sample Summary

Client: WSP USA Inc. Project/Site: Remuda 100 Flare Fire Job ID: 890-137-1 SDG: CC: 1067621001

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
890-137-1	SS01	Solid	02/03/21 12:05	02/03/21 14:55		-
890-137-2	SS02	Solid	02/03/21 12:10	02/03/21 14:55		
						1
						1

Received by OCD: 4/23/2021 3:15:53 PM

Released to Imaging: 8/12/2021 2:39:14 PM

2/11/2021 (Rev. 1)

Job Number: 890-137-1

SDG Number: CC: 1067621001

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 137 List Number: 1 Creator: Clifton, Cloe

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

14

Received by OCD: 4/23/2021 3:15:53 PM

uge 55 0J /8

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-522-1

Laboratory Sample Delivery Group: TE012921024 Client Project/Site: Remuda 100

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

RAMER

Authorized for release by: 4/16/2021 7:15:39 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 8/12/2021 2:39:14 PM

Page 56 of 78

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

Definitions/Glossary

Client: WSP USA Inc. Project/Site: Remuda 100 Job ID: 890-522-1

Project/Site: Remuda 100 SDG: TE01292102			
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			ö
Abbreviation	These commonly used abbreviations may or may not be present in this report.		q
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		

TNTC Too Numerous To Count

.

Case Narrative

Client: WSP USA Inc. Project/Site: Remuda 100

Job ID: 890-522-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-522-1

Receipt

The samples were received on 4/14/2021 2:31 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: FS01 (890-522-1), FS02 (890-522-2), FS03 (890-522-3), FS04 (890-522-4), FS05 (890-522-5) and FS06 (890-522-6).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

13

Job ID: 890-522-1

SDG: TE012921024

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

<0.00399 U

100

104

Result Qualifier

%Recovery

Qualifier

Client Sample Results

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

0.00399

Limits

70 - 130

70 - 130

RL

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

D

D

Prepared

04/15/21 10:02

04/15/21 10:02

04/15/21 10:02

04/15/21 10:02

04/15/21 10:02

04/15/21 10:02

04/15/21 10:02

Prepared

04/15/21 10:02

04/15/21 10:02

Prepared

Job ID: 890-522-1 SDG: TE012921024

Client Sample ID: FS01

Date Collected: 04/14/21 12:00 Date Received: 04/14/21 14:31

Sample Depth: -1

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

Total BTEX

Surrogate

Analyte

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: WSP USA Inc.

Project/Site: Remuda 100

Lab	Sample	ID:	890-5	522-1
		N	Aatrix:	Solid

Analyzed

04/15/21 21:53

04/15/21 21:53

04/15/21 21:53

04/15/21 21:53

04/15/21 21:53

04/15/21 21:53

04/15/21 21:53

Analyzed

04/15/21 21:53

04/15/21 21:53

Analyzed

Lab Sample ID: 890-522-2

Matrix: Solid

5

Dil Fac

1

1

1

1

Dil Fac

Dil Fac

1

1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg	04/15/21 08:24	04/15/21 15:03	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	04/15/21 08:24	04/15/21 15:03	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg	04/15/21 08:24	04/15/21 15:03	1
(GRO)-C6-C10							
Gasoline Range Organics	<50.0	U	50.0	mg/Kg	04/15/21 08:24	04/15/21 15:03	1

canoguto	,	quanner			/ / u	2
1-Chlorooctane	101		70 - 130	04/15/21 08:24	04/15/21 15:03	1
o-Terphenyl	95		70 - 130	04/15/21 08:24	04/15/21 15:03	1
-						

Method: 300.0 - Anions, Ion Chromatography - Soluble

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	428	5.05	mg/Kg			04/16/21 13:32	1

Client Sample ID: FS02 Date Collected: 04/14/21 12:10 Date Received: 04/14/21 14:31

Sample Depth: -1

Method: 8021B - Volatile Orga	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 22:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			04/15/21 11:36	04/15/21 22:14	1
1,4-Difluorobenzene (Surr)	107		70 - 130			04/15/21 11:36	04/15/21 22:14	1

Eurofins Xenco, Carlsbad

Released to Imaging: 8/12/2021 2:39:14 PM

Client Sample Results

Job ID: 890-522-1 SDG: TE012921024

Lab Sample ID: 890-522-2

Lab Sample ID: 890-522-3

04/15/21 22:34

04/15/21 11:36

Matrix: Solid

1

Client Sample ID: FS02

Date Collected: 04/14/21 12:10 Date Received: 04/14/21 14:31

Sample Depth: -1

Client: WSP USA Inc.

Project/Site: Remuda 100

- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:24	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:24	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:24	1
Total TPH	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130			04/15/21 08:24	04/15/21 15:24	1
o-Terphenyl	84		70 - 130			04/15/21 08:24	04/15/21 15:24	1
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	417		4.98	mg/Kg			04/16/21 13:47	1

Client Sample ID: FS03

Date Collected: 04/14/21 12:20 Date Received: 04/14/21 14:31 Sample Depth: -1

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Orga	inic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
Toluene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
Total BTEX	<0.00404	U	0.00404	mg/Kg		04/15/21 11:36	04/15/21 22:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			04/15/21 11:36	04/15/21 22:34	1

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

109

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:45	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:45	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:45	1
Total TPH	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 15:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130			04/15/21 08:24	04/15/21 15:45	1
o-Terphenyl	80		70 - 130			04/15/21 08:24	04/15/21 15:45	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			4.97	ma/Ka			04/16/21 13:52	1

Matrix: Solid

5

5

Client Sample Results

Job ID: 890-522-1 SDG: TE012921024

Lab Sample ID: 890-522-4

04/15/21 08:24

04/15/21 08:24

04/15/21 16:06

04/15/21 16:06

Lab Sample ID: 890-522-5

Matrix: Solid

Matrix: Solid

Date Collected: 04/14/21 12:30 Date Received: 04/14/21 14:31

Client Sample ID: FS04

Sample Depth: -1

Client: WSP USA Inc.

Project/Site: Remuda 100

Method: 8021B - Volatile Orga	nic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
Toluene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
Xylenes, Total	< 0.00403	U	0.00403	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
Total BTEX	<0.00403	U	0.00403	mg/Kg		04/15/21 11:36	04/15/21 22:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			04/15/21 11:36	04/15/21 22:55	1
1,4-Difluorobenzene (Surr)	109		70 - 130			04/15/21 11:36	04/15/21 22:55	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:06	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:06	1
C10-C28)								

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	96	70 - 130	04/15/21 08:24	04/15/21 16:06	1
o-Terphenyl	89	70 - 130	04/15/21 08:24	04/15/21 16:06	1

50.0

50.0

mg/Kg

mg/Kg

<50.0 U

<50.0 U

Method: 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	241		4.95	mg/Kg			04/16/21 14:07	1	

Client Sample ID: FS05 Date Collected: 04/14/21 12:40 Date Received: 04/14/21 14:31

Oll Range Organics (Over C28-C36)

Total TPH

Sample Depth: -1

Method: 8021B - Volatile Orga	nic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
Total BTEX	<0.00401	U	0.00401	mg/Kg		04/15/21 11:36	04/15/21 23:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			04/15/21 11:36	04/15/21 23:15	1
1,4-Difluorobenzene (Surr)	106		70 _ 130			04/15/21 11:36	04/15/21 23:15	1

Client Sample Results

Job ID: 890-522-1 SDG: TE012921024

Matrix: Solid

5

Lab Sample ID: 890-522-5

Lab Sample ID: 890-522-6

Matrix: Solid

Client Sample ID: FS05

Date Collected: 04/14/21 12:40 Date Received: 04/14/21 14:31

Sample Depth: - 1

Client: WSP USA Inc.

Project/Site: Remuda 100

- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:27	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:27	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:27	1
Total TPH	<50.0	U	50.0	mg/Kg		04/15/21 08:24	04/15/21 16:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130			04/15/21 08:24	04/15/21 16:27	1
o-Terphenyl	89		70 - 130			04/15/21 08:24	04/15/21 16:27	1
_ Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	306		4.95	mg/Kg			04/16/21 14:12	1

Client Sample ID: FS06

Date Collected: 04/14/21 12:50 Date Received: 04/14/21 14:31 Sample Depth: -1

Method: 8021B - Volatile Orga	inic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		04/15/21 11:36	04/15/21 23:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1 Promofluorobonzono (Surr)	106		70 120			04/15/01 11:26	04/15/01 02:25	1

Casalina Danga Organiaa	~50.1 11	F0 1	malka		04/15/21 09:24	04/15/01 16:40	1
Analyte	Result Qual	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
 Method: 8015B NM - Diesel Range	e Organics (DRO) ((GC)					
1,4-Difluorobenzene (Surr)	108	70 - 130			04/15/21 11:36	04/15/21 23:35	1
	100	70 - 130			04/13/21 11.30	04/13/21 23.33	1

Chloride	306		5.00	mg/Kg			04/16/21 14:18	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble						
o-Terphenyl	98		70 - 130			04/15/21 08:24	04/15/21 16:48	1
1-Chlorooctane	104		70 - 130			04/15/21 08:24	04/15/21 16:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1	mg/Kg		04/15/21 08:24	04/15/21 16:48	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		04/15/21 08:24	04/15/21 16:48	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1	mg/Kg		04/15/21 08:24	04/15/21 16:48	1
(GRO)-C6-C10				5 5				
Gasoline Range Organics	<50.1	U	50.1	mg/Kg		04/15/21 08:24	04/15/21 16:48	1

Surrogate Summary

Client: WSP USA Inc. Project/Site: Remuda 100

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-522-1	FS01	100	104	
890-522-2	FS02	110	107	
890-522-3	FS03	109	109	
390-522-4	FS04	108	109	
390-522-5	FS05	109	106	
390-522-6	FS06	106	108	
_CS 880-1817/1-A	Lab Control Sample	98	106	
_CSD 880-1817/2-A	Lab Control Sample Dup	98	106	
MB 880-1817/5-A	Method Blank	98	101	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-522-1	FS01	101	95	
890-522-2	FS02	92	84	
890-522-3	FS03	88	80	
890-522-4	FS04	96	89	
890-522-5	FS05	95	89	
890-522-6	FS06	104	98	
LCS 880-1813/2-A	Lab Control Sample	98	87	
LCSD 880-1813/3-A	Lab Control Sample Dup	96	85	
MB 880-1813/1-A	Method Blank	97	94	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

5 6 7

Job ID: 890-522-1 SDG: TE012921024

Prep Type: Total/NA

Job ID: 890-522-1 SDG: TE012921024

Client: WSP USA Inc. Project/Site: Remuda 100

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-1817/5-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1833 Prep Batch: 1817 MB MB Dil Fac Analyte Result Qualifier RL Unit D Prepared Analvzed Benzene <0.00200 U 0.00200 mg/Kg 04/15/21 10:02 04/15/21 16:05 1 Toluene <0.00200 U 0.00200 mg/Kg 04/15/21 10:02 04/15/21 16:05 1 Ethylbenzene 0.00200 <0.00200 U mg/Kg 04/15/21 10:02 04/15/21 16:05 1 m-Xylene & p-Xylene < 0.00400 U 0.00400 mg/Kg 04/15/21 10:02 04/15/21 16:05 o-Xylene <0.00200 U 0.00200 04/15/21 10:02 04/15/21 16:05 mg/Kg 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 04/15/21 10:02 04/15/21 16:05 1 Total BTEX <0.00400 U 0.00400 mg/Kg 04/15/21 10:02 04/15/21 16:05 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 98 70 - 130 04/15/21 10:02 04/15/21 16:05 1,4-Difluorobenzene (Surr) 101 70 - 130 04/15/21 10:02 04/15/21 16:05 1 Lab Sample ID: LCS 880-1817/1-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1833 Prep Batch: 1817 Spike LCS LCS %Rec. Added **Result Qualifier** %Rec Analyte Unit D Limits Benzene 0.100 0.09286 mg/Kg 93 70 - 130 Toluene 0.100 0.09730 mg/Kg 97 70 - 130 Ethylbenzene 0.100 0.1019 mg/Kg 102 70 - 130 m-Xylene & p-Xylene 0.200 0.2076 mg/Kg 104 70 - 130 o-Xylene 0 100 0.1020 102 70 - 130 mg/Kg LCS LCS %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 98 1,4-Difluorobenzene (Surr) 106 70 - 130 Lab Sample ID: LCSD 880-1817/2-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 1833 Prep Batch: 1817 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.09169 mg/Kg 92 70 - 130 35 1 Toluene 0.100 0.09769 98 70 - 130 35 mg/Kg 0 Ethylbenzene 0.100 0.1030 mg/Kg 103 70 - 130 35 m-Xylene & p-Xylene 0.200 0.2089 mg/Kg 104 70 - 130 35 1 o-Xylene 0.100 0.1020 mg/Kg 102 70 - 130 0 35 LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 98 70 - 130 1,4-Difluorobenzene (Surr) 106 70 - 130

Page 64 of 78

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-1813/1-A									Client Sa	mple ID: N	/lethoo	d Blank
Matrix: Solid										Prep Ty	ype: T	otal/NA
Analysis Batch: 1820										Prep	Batc	h: 1813
	N	IB MB										
Analyte	Res	ult Qualifier	RL		Uni	t	D	Р	repared	Analyze	∋d	Dil Fac
Gasoline Range Organics	<50	0.0 U	50.0		mg/	Кg		04/1	5/21 08:24	04/15/21 1	1:52	1
Diesel Range Organics (Over	<50	0.0 U	50.0		mg/	Кg		04/1	5/21 08:24	04/15/21 1	1:52	1
Oll Range Organics (Over C28-C36)	<50	0 11	50.0		ma	Ka		04/1	5/21 08.24	04/15/21 1	1.52	1
Total TPH	<50	0 11	50.0		ma	Ka		04/1	5/21 08:24	04/15/21 1	1.52	· · · · · · · · · · · · · · · · · · ·
	л		00.0			i ig		0 1/ 1	0,21 00.21	01/10/211	1.02	
Surrogate	%Recove	rv Qualifier	l imits					P	renared	Δnalvze	ed .	Dil Fac
1-Chlorooctane		97	70 - 130					04/1	5/21 08.24	04/15/21 1	1.52	1
o-Terphenyl		94	70 - 130					04/1	5/21 08:24	04/15/21 1	1:52	1
-								•	0.2.00.2.	0 // 10/21 /		•
Lab Sample ID: LCS 880-1813/2-4 Matrix: Solid Analysis Batch: 1820	A						C	lient	Sample	ID: Lab Co Prep Ty Prep	ntrol S ype: To) Batc	Sample otal/NA h: 1813
			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Qualifier	Unit			%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10			1000	1201		mg/Kg			120	70 - 130		
Diesel Range Organics (Over C10-C28)			1000	968.0		mg/Kg			97	70 - 130		
	LCS L	cs										
Surrogate	%Recovery Q	ualifier	Limits									
1-Chlorooctane	98		70 - 130									
o-Terphenyl	87		70 - 130									
Lab Sample ID: LCSD 880-1813/3	-A					CI	lient	Sam	nple ID: La	ab Control	Samp	ole Dup
Matrix: Solid										Prep Ty	/pe: T	otal/NA
Analysis Batch: 1820										Prep) Batc	h: 1813
			Spike	LCSD	LCSD					%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit			%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	1074		mg/Kg			107	70 - 130	11	20
Diesel Range Organics (Over C10-C28)			1000	942.8		mg/Kg			94	70 - 130	3	20
	LCSD L	CSD										
Surrogate	%Recovery Q	ualifier	Limits									
1-Chlorooctane	96		70 - 130									
o-Terphenyl	85		70 - 130									
/lethod: 300.0 - Anions, Ion (Chromato	graphy										
l ab Sample ID: MB 880-1830/1-4									Client Sa	mple ID· M	letho	Blank
Matrix: Solid										Pron 1	Type: (Soluble
Analysis Batch: 1851										i ieh i	Jbe. (Soluble
Analysis Baton. 1001	N	IB MB										
Analyte	Res	ult Qualifier	RL		Uni	t	D	Р	repared	Analyze	èd	Dil Fac
Chloride	<5.	00 U	5.00		<u></u>	Кg	-	<u> </u>		04/16/21 1	2:05	1

Job ID: 890-522-1 SDG: TE012921024

Eurofins Xenco, Carlsbad

Client: WSP USA Inc.

Project/Site: Remuda 100

QC Sample Results

Job ID: 890-522-1 SDG: TE012921024

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-1830/2-A Matrix: Solid Analysis Batch: 1851						Client	Sample	e ID: Lab C Prep	ontrol Sa Type: So	ample oluble
Analysis Datch. 1001		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride		250	258.4		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-1830/3-A					Clie	ent Sam	ple ID:	Lab Contro	ol Sample	e Dup
Matrix: Solid								Prep	Type: So	oluble
Analysis Batch: 1851										
		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		250	256.4		mg/Kg		103	90 - 110	1	20
Lab Sample ID: 890-522-1 MS								Client Sa	mple ID:	FS01
Matrix: Solid								Prep	Type: So	oluble
Analysis Batch: 1851										
Sample	Sample	Spike	MS	MS				%Rec.		
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride 428		253	664.1		mg/Kg		93	90 - 110		
Lab Sample ID: 890-522-1 MSD								Client Sa	mple ID:	FS01
Matrix: Solid								Prep	Type: So	oluble
Analysis Batch: 1851										
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride 428		253	664.1		mg/Kg		93	90 _ 110	0	20

QC Association Summary

Client: WSP USA Inc. Project/Site: Remuda 100

8 9

Job ID: 890-522-1 SDG: TE012921024

GC VOA

Prep Batch: 1817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-522-1	FS01	Total/NA	Solid	5035	
890-522-2	FS02	Total/NA	Solid	5035	
890-522-3	FS03	Total/NA	Solid	5035	
890-522-4	FS04	Total/NA	Solid	5035	
890-522-5	FS05	Total/NA	Solid	5035	
890-522-6	FS06	Total/NA	Solid	5035	
MB 880-1817/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-1817/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-1817/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 1833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-522-1	FS01	Total/NA	Solid	8021B	1817	
890-522-2	FS02	Total/NA	Solid	8021B	1817	
890-522-3	FS03	Total/NA	Solid	8021B	1817	
890-522-4	FS04	Total/NA	Solid	8021B	1817	
890-522-5	FS05	Total/NA	Solid	8021B	1817	
890-522-6	FS06	Total/NA	Solid	8021B	1817	
MB 880-1817/5-A	Method Blank	Total/NA	Solid	8021B	1817	
LCS 880-1817/1-A	Lab Control Sample	Total/NA	Solid	8021B	1817	
LCSD 880-1817/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	1817	

GC Semi VOA

Prep Batch: 1813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-522-1	FS01	Total/NA	Solid	8015NM Prep	
890-522-2	FS02	Total/NA	Solid	8015NM Prep	
890-522-3	FS03	Total/NA	Solid	8015NM Prep	
890-522-4	FS04	Total/NA	Solid	8015NM Prep	
890-522-5	FS05	Total/NA	Solid	8015NM Prep	
890-522-6	FS06	Total/NA	Solid	8015NM Prep	
MB 880-1813/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-1813/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-1813/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 1820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-522-1	FS01	Total/NA	Solid	8015B NM	1813
890-522-2	FS02	Total/NA	Solid	8015B NM	1813
890-522-3	FS03	Total/NA	Solid	8015B NM	1813
890-522-4	FS04	Total/NA	Solid	8015B NM	1813
890-522-5	FS05	Total/NA	Solid	8015B NM	1813
890-522-6	FS06	Total/NA	Solid	8015B NM	1813
MB 880-1813/1-A	Method Blank	Total/NA	Solid	8015B NM	1813
LCS 880-1813/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	1813
LCSD 880-1813/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	1813

QC Association Summary

Client: WSP USA Inc. Project/Site: Remuda 100 Job ID: 890-522-1

SDG: TE012921024

HPLC/IC

Leach Batch: 1830

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-522-1	FS01	Soluble	Solid	DI Leach	
890-522-2	FS02	Soluble	Solid	DI Leach	
890-522-3	FS03	Soluble	Solid	DI Leach	
890-522-4	FS04	Soluble	Solid	DI Leach	
890-522-5	FS05	Soluble	Solid	DI Leach	
890-522-6	FS06	Soluble	Solid	DI Leach	
MB 880-1830/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-1830/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-1830/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-522-1 MS	FS01	Soluble	Solid	DI Leach	
890-522-1 MSD	FS01	Soluble	Solid	DI Leach	

Analysis Batch: 1851

Lab Sample ID Client Sample ID Prop Type Matrix Method Prop Batch 890-522-1 FS01 Soluble Soluble Solid DI Leach 890-522-2 FS02 Soluble Solid DI Leach 890-522-3 FS03 Soluble Solid DI Leach 890-522-4 FS04 Soluble Solid DI Leach 890-522-5 FS05 Soluble Solid DI Leach 890-522-6 FS06 Soluble Solid DI Leach LCS 80-1830/1-A Method Blank Soluble Solid DI Leach LCS 80-1830/3-A Lab Control Sample Dup Soluble Solid DI Leach 809-522-1 MS FS01 Soluble Solid DI Leach 809-522-1 MSD FS01 Soluble Solid DI Leach 809-522-1 MSD FS01 Soluble	4 5 6 7
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolidDi Leach890-522-2FS02SolubleSolubleSolidDi Leach890-522-3FS03SolubleSolubleSolidDi Leach890-522-4FS04SolubleSolubleSolidDi Leach890-522-5FS05SolubleSolubleSolidDi Leach890-522-6FS06SolubleSolidDi Leach890-522-6FS06SolubleSolidDi Leach890-522-6FS06SolubleSolidDi Leach890-522-6FS06SolubleSolidDi Leach890-522-6FS06SolubleSolidDi Leach890-522-6FS06SolubleSolidDi LeachLCS 880-1830/2-ALab Control SampleSolubleSolidDi Leach890-522-1 MSFS01SolubleSolidDi Leach890-522-1 MSDFS01SolubleSolidDi Leach890-522-1 MSDFS01SolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS03SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830890-522-6FS04<	4 5 6 7
890-522-1FS01SolubleSolubleSolidDI Leach890-522-2FS02SolubleSolubleSolidDI Leach890-522-3FS03SolubleSolubleSolidDI Leach890-522-4FS04SolubleSolubleSolidDI Leach890-522-5FS05SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolubleSolidDI Leach890-522-1 MSFS01SolubleSolubleSolidDI Leach890-522-1 MSFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI Leach890-522-2FS02SolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS03SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830890-522-6FS03SolubleSolubleSolid <th>5 6 7</th>	5 6 7
890-522-2FS02SolubleSolubleSolidDI Leach890-522-3FS03SolubleSolubleSolidDI Leach890-522-4FS04SolubleSolubleSolidDI Leach890-522-5FS05SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolidDI Leach890-522-1 MSFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-2FS02SolubleSolid300.01830890-522-3FS03SolubleSolid300.01830890-522-4FS02SolubleSolid300.01830890-522-5FS03SolubleSolid300.01830890-522-6FS04SolubleSolid300.01830890-522-6FS04SolubleSolid300.01830890-522-7FS03SolubleSolubleSolid300.01830890-522-8FS04SolubleSolid300.01830890-522-6FS04Soluble<	5 6 7
890-522-3FS03SolubleSolidDI Leach890-522-4FS04SolubleSolubleSolidDI Leach890-522-5FS05SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolidDI Leach890-522-1 MSFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-2FS02SolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830890-522-6FS03SolubleSolubleSolid300.01830890-522-7FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolid300.01830890-522-5FS05SolubleSolid300.01830890-522-6FS04SolubleSolid300.01830890-522-6	
890-522-4FS04SolubleSolidDI Leach890-522-5FS05SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolidDI Leach890-522-1 MSFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolid300.01830890-522-2FS02SolubleSolid300.01830890-522-3FS03SolubleSolid300.01830890-522-4FS04SolubleSolid300.01830	
890-522-5FS05SolubleSolubleSolidDI Leach890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolidDI Leach890-522-1 MSFS01SolubleSolidDI Leach890-522-1 MSDFS01SolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830SolubleSolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.0183089	
890-522-6FS06SolubleSolubleSolidDI LeachMB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolubleSolidDI Leach890-522-1 MSFS01SolubleSolubleSolidDI Leach890-522-1 MSDFS01SolubleSolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS04SolubleSolubleSolid300.01830	
MB 880-1830/1-AMethod BlankSolubleSolubleSolidDI LeachLCS 880-1830/2-ALab Control SampleSolubleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolubleSolidDI Leach890-522-1 MSFS01SolubleSolubleSolidDI Leach890-522-1 MSDFS01SolubleSolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-3FS02SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830	
LCS 880-1830/2-ALab Control SampleSolubleSolidDI LeachLCSD 880-1830/3-ALab Control Sample DupSolubleSolidDI Leach890-522-1 MSFS01SolubleSolubleSolidDI Leach890-522-1 MSDFS01SolubleSolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830	
LCSD 880-1830/3-ALab Control Sample DupSolubleSolubleSolidDI Leach890-522-1 MSDFS01SolubleSolubleSolidDI Leach890-522-1 MSDFS01SolubleSolubleSolidDI LeachAnalysis Batch: 1851Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830	8
890-522-1 MS FS01 Soluble Soluble Solid DI Leach 890-522-1 MSD FS01 Soluble Soluble Solid DI Leach Analysis Batch: 1851 Example ID Client Sample ID Prep Type Matrix Method Prep Batch 890-522-1 FS01 Soluble Soluble Solid 300.0 1830 890-522-1 FS01 Soluble Soluble Solid 300.0 1830 890-522-2 FS02 Soluble Soluble Solid 300.0 1830 890-522-3 FS03 Soluble Soluble Solid 300.0 1830 890-522-4 FS04 Soluble Soluble Solid 300.0 1830	
890-522-1 MSD FS01 Soluble Solid DI Leach Analysis Batch: 1851 Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 890-522-1 FS01 Soluble Solid 300.0 1830 890-522-2 FS02 Soluble Soluble Solid 300.0 1830 890-522-3 FS03 Soluble Soluble Solid 300.0 1830 890-522-4 FS04 Soluble Soluble Solid 300.0 1830 890-522-4 FS05 Soluble Soluble Solid 300.0 1830	9
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5SolubleSolubleSolid300.01830890-522-6FS05SolubleSolubleSolid300.01830	
Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch890-522-1FS01SolubleSolubleSolid300.01830890-522-2FS02SolubleSolubleSolid300.01830890-522-3FS03SolubleSolubleSolid300.01830890-522-4FS04SolubleSolubleSolid300.01830890-522-5FS05SolubleSolubleSolid300.01830	
890-522-1 FS01 Soluble Solid 300.0 1830 890-522-2 FS02 Soluble Soluble Solid 300.0 1830 890-522-3 FS03 Soluble Solid 300.0 1830 890-522-4 FS04 Soluble Solid 300.0 1830 890-522-5 FS05 Soluble Solid 300.0 1830	
890-522-2 FS02 Soluble Solid 300.0 1830 890-522-3 FS03 Soluble Solid 300.0 1830 890-522-4 FS04 Soluble Solid 300.0 1830 890-522-5 FS05 Soluble Solid 300.0 1830	
890-522-3 FS03 Soluble Solid 300.0 1830 890-522-4 FS04 Soluble Solid 300.0 1830 890-522-5 FS05 Soluble Solid 300.0 1830	
890-522-4 FS04 Soluble Solid 300.0 1830 800-522-5 FS05 Soluble Solid 200.0 1930	
900 522 5 ES05 Solubla Solid 200 0 1920	
030-322-3 F303 Soluble Solid 300.0 1830	15
890-522-6 FS06 Soluble Solid 300.0 1830	
MB 880-1830/1-A Method Blank Soluble Solid 300.0 1830	
LCS 880-1830/2-A Lab Control Sample Soluble Solid 300.0 1830	
LCSD 880-1830/3-A Lab Control Sample Dup Soluble Solid 300.0 1830	
890-522-1 MS FS01 Soluble Solid 300.0 1830	
890-522-1 MSD FS01 Soluble Solid 300.0 1830	

Released to Imaging: 8/12/2021 2:39:14 PM

Job ID: 890-522-1

Matrix: Solid

Matrix: Solid

SDG: TE012921024

Lab Sample ID: 890-522-1

Lab Sample ID: 890-522-2

Lab Chronicle

Client: WSP USA Inc. Project/Site: Remuda 100

Client Sample ID: FS01 Date Collected: 04/14/21 12:00

Date Received: 04/14/21 14:31

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 10:02	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 21:53	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 15:03	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 13:32	SC	XM

Client Sample ID: FS02 Date Collected: 04/14/21 12:10 Date Received: 04/14/21 14:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 11:36	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 22:14	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 15:24	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 13:47	SC	XM

Client Sample ID: FS03

Date Collected: 04/14/21 12:20 Date Received: 04/14/21 14:31

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 11:36	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 22:34	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 15:45	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 13:52	SC	XM

Client Sample ID: FS04 Date Collected: 04/14/21 12:30 Date Received: 04/14/21 14:31

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 11:36	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 22:55	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 16:06	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 14:07	SC	XM

Eurofins Xenco, Carlsbad

Lab Sample ID: 890-522-3 Matrix: Solid

Lab Sample ID: 890-522-4

Matrix: Solid

Lab Chronicle

Client: WSP USA Inc. Project/Site: Remuda 100

Client Sample ID: FS05 Date Collected: 04/14/21 12:40

Date Received: 04/14/21 14:31

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 11:36	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 23:15	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 16:27	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 14:12	SC	XM

Client Sample ID: FS06 Date Collected: 04/14/21 12:50 Date Received: 04/14/21 14:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			1817	04/15/21 11:36	MR	XM
Total/NA	Analysis	8021B		1	1833	04/15/21 23:35	MR	XM
Total/NA	Prep	8015NM Prep			1813	04/15/21 08:24	DM	XM
Total/NA	Analysis	8015B NM		1	1820	04/15/21 16:48	AJ	XM
Soluble	Leach	DI Leach			1830	04/15/21 12:29	SC	XM
Soluble	Analysis	300.0		1	1851	04/16/21 14:18	SC	XM

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Matrix: Solid

Lab Sample ID: 890-522-5 Matrix: Solid

Job ID: 890-522-1

SDG: TE012921024

Lab Sample ID: 890-522-6

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Remuda 100

Job ID: 890-522-1 SDG: TE012921024

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	rogram	Identification Number	Expiration Date	
exas		IELAP	T104704400-20-21	06-30-21	
The following analytes	are included in this report, b	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for	
the agency does not of	fer certification.	Matrix	Analyte		
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte		
the agency does not of Analysis Method 8015B NM	fer certification . Prep Method 8015NM Prep	Matrix Solid	Analyte Total TPH		

Eurofins Xenco, Carlsbad

Page 71 of 78

10

Method Summary

Client: WSP USA Inc. Project/Site: Remuda 100

Job ID: 890-522-1 SDG: TE012921024

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XM
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XM
300.0	Anions, Ion Chromatography	MCAWW	XM
5035	Closed System Purge and Trap	SW846	XM
8015NM Prep	Microextraction	SW846	XM
DI Leach	Deionized Water Leaching Procedure	ASTM	XM

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

5	
8	
9	
11	
Client: WSP USA Inc. Project/Site: Remuda 100

Eurofins Xenco, Carlsbad

Released to Imaging:	8/12/2021 2:39:14 PM
-----------------------------	----------------------

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-522-1	FS01	Solid	04/14/21 12:00	04/14/21 14:31	- 1	
890-522-2	FS02	Solid	04/14/21 12:10	04/14/21 14:31	- 1	
890-522-3	FS03	Solid	04/14/21 12:20	04/14/21 14:31	- 1	
890-522-4	FS04	Solid	04/14/21 12:30	04/14/21 14:31	- 1	
890-522-5	FS05	Solid	04/14/21 12:40	04/14/21 14:31	- 1	
890-522-6	FS06	Solid	04/14/21 12:50	04/14/21 14:31	- 1	

Job ID: 890-522-1 SDG: TE012921024

σ	ω		Re	of servi	Notice:	5.1	7				1			2					Samp	Coole	Recei	Temp	SA	Samp	P.O.	Proje	Proje	Phon	City, t	Addre	Comp	Proje		uge	/ <i>4 0</i> j
	l		linquished by	ce. Xenco will be o. A minimum ch:	Signature of this	ircle Method	tal 200.7 / 6					FSO	FSO	FSO	FSO	FSO	FSO	Sample Ider	le Custody Sea	r Custody Seal	ved Intact:	erature (°C):	MPLE RECE	ler's Name:	Number:	ot Number:	ct Name:	^(D)	State ZIP:	SS:	any Name:	ct Manager:		X	
	5	s i lo	r: (Signature)	liable only for the arge of \$75.00 will	document and reli	(s) and Metal(010 200.8					Ō	σ	4	ū	2	-	tification	als: Yes (ls: Yes	(Ye	lie	Teles					(303) 887-29	Midland, TX	3300 North A	WSP	Dan Moir			
		Sint	,	cost of samp be applied to	nquishment o	s) to be ar	/ 6020:					S	S	S	S	S	S	Matrix	No) N/A	NO NIA	No		emp Blank	Spencer		TE01292	Remuda	146	79705	Street			2 7 8		
		Man A (\W	Received	les and shall no each project ar	f samples cons	nalyzed	8R					4/14/2021	4/14/2021	4/14/2021	4/14/2021	4/14/2021	4/14/2021	Date Sampled	Tota	Согг	ILNN		Yes No	Б		1024	100						Hobbs		
		MIMPT	by: (Signati	nd a charge of \$	titutes a valid p	TCLP / SP	CRA 13PF					1250	1240	1230	1220	1210	1200	Time Sampled	al Containers:	ection Factor:	1-00-7	Thermometer	Wet Ice:	Due	Rust	Rout	Т	Email					3,NM (575-392-	Houston, Midland	
			ure)	sponsibility for 5 for each samp	urchase order fr	LP 6010: 8	M Texas					<u>-</u>	1	1	4	1	<u>-</u>	Depth		1.2		ī	Yes No	Date:	1: Jolay	tine ,	Jrn Around	Spencer Lo@w	City, State 2	Address:	Company N	Bill to: (if diffe	-7550) Phoenia	,TX (281) 240- d TX (432-704-	
		5		any losse ple submitt	om client	RCRA	11 A .						<u> </u>	-	_	<u> </u>	<u> </u>	Numb	er of	f Co	onta	ine	rs					/sp.com,Ko	ZIP:		lame:	erent)	x,AZ (480	4200 Dali 5440) EL	<u>Ω</u>
		5	Date/Ti	s or exper	company t	Sb As	Sb As		2H	5	<u> </u>	×	×	×	×	×	×	TPH (E	PA 8	015	}							rey Kenne	Carlsba	3104 Ea	XTO En	Kyle Litt	-355-090	las,TX (2 Paso.TX	nain
		1021	me	ses incuri co, but not	o Xenco, i	Ba Be	Ba Be			1		××	××	××	××	××	××	BTEX (EPA ie (E	0=8 PA :	3021) 0)			-			dy@wsp.cc	d, NM 88	ist Gree	ergy	rell	0) Atlanta	14) 902-0	of
σ	4	24	R	red by the t analyzed	ts affiliate	Cd C	в Сd		K		~														1	1		om, Dan Mo	8220	n Street			a,GA (770	300 San 5-3443 Li	Cust
		Ľ	əlinquis	client if s . These te	s and sub	r Co C	Ca Cr												- 1	~							AN	ir@wsp.cc)-449-880	Antonio, ⁻ ubbock.T	ody
			hed by:	arms will b	ocontracto	Su Pb	Co C				-								-	890-522		-					ALYSIS	mc					00) Tami	TX (210) X (806)7:	
			(Signa	s are due e enforce	ors. It assi	Mn Mo	ı Fe P												-	Chain of							S REQU						oa,FL (81:	509-3334 94-1296	
			ture)	to circum d unless p	igns stanc	Ni Se	b Mg I		Î.										!	f Custod							JEST	Delive	Repo	St	Prog		3-620-20		
			_	stances be previously	lard terms	Ag Ti	Mn Mo																					erables:	rting:Lev	ate of P	ram: US		00)		
			Receive	eyond the negotiate	s and con	C	Z. T												-									EDD		roject:	T/PST		M		Ň
			ed by: (S	d.	ditions		Se Ag	H											-										evel III			Work (ww.xen		ork Or
			Signatu			163	SiO2																					ADaPT			Brown	Order C	co.com		der No
			re)			31 / 245	Va Sr											S	lat	TAT st				Spill D	Inciden	Cost C	5		UST [ifields	òmme	Paç		<u>8</u>
Revised						.1 / 747	TI Sn		1									ample	o, if receiv	arts the o				ate: 1/2	t ID: NA	enter:	Vork O	Other	RRP		RC	nts	e		
Date 05141			Date/Ti			0 / 74:												Comme	/ed by 4::	lay recevi				5/2021	vPP2103	106762	rder No		[evel		Duperf		ę,	-	
3 Rev. 2018 1			me			1 : Hg	7											Ints	iOpm	ed by the					632350	1001	tes		>		und		-	-	

Released to Imaging: 8/12/2021 2:39:14 PM

Page 20 of 23

4/16/2021

Rece

f 78

Eurofins Xenco, Carlsbad

1089 N Canal St. Carlsbad, NM 88220

Chain of Custody Record

13

Content of the second s

Phone 575-988-3199 Fax: 575-988-3199 Client Information (Sub Contract Lab)	Sampler Phone:			Lab P Kran	ner, J	essi	ស								er Tra	icking	No	, S				800		б ^{. т} 				mer	ica a			
Eurofins Xenco Address					NEL	AP -		sian	B d (Se		, °	exa	Ĩ.		ļ							89 Jot	0- 5. #	2-1	{							
Address. 1211 W Florida Ave	Due Date Request 4/19/2021	ed								<u>}</u>	syle	ŝ	êq	ues	e l					- 1		- 7	ser	vatio	ŝ	à	es					
City Midland State Zin	TAT Requested (d	ays)			6-9490-093 6-9490-093 7-7-5-64-9	termed to the]	ŀ										a dame it he also	ດ ຫ >		\ceta	te		ozz	AsN AsN	iaO2	-		
State, Zip [*] TX, 79701						ben dang													•••••		and the stand to be	mσ	Nat	ic Ac	Ťä		ουα	Na2	04S			
Phone 432-704-5440(Tel)	PO#				olteraria	rpu	•														nationale	ο¬	Am	alor H			ωπ	·Na2	Ö4	చ		
Email	WO#				No)		orid														Soundar	ŤΞ	Asc	orbic	Ac	a	-	TSP	Doc	fecal	hydr	drate
					or	an Fi	Chi										·	÷			s	<u>ل</u> ے		vater	'		< ç	MC,	Ane			
Project Name: Remuda 100	Project #: 89000004				(Yes	s pr		=													ainer	<u>۳ م</u>	ųΩ	Ā			N≶	야 모	r (sp	ecify	5	
Site:	SSOW#:				imple	SNM															cont	ê	ier.									
					d Sa MSI	//801	280/	2007	_04												r of	Т				1	1	1	1			
		Cample	Sample Type	Matrix (^{W=water} s=solid,	d Filtere			D/5025EE	5/000011												Numbe											
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) B	T=Tissue, A=Air)	Fie	801	200	803			<u> </u>		1		1000		10.0			1	Tot			spe	cial	l Ing	Ĭ	Ictic	suc	No	fe	
FS01 (890-522-1)	LCIVUL	12 00	nakiacati k	Colla	R			1	` /m	-	-	- <u>6</u>	3.5.	1000 C	1.1	1000	-	- tunn	- ince		X	T						1	1			
		Mountain 12 10			+-	+	ť	ť	╞	+-	+					1	1	+	+		هي ا	1								1		
1-275-277-2)	4/14/21	Mountain		Solid	<u> </u>		 _	Ê		ļ	ļ										juli.	en name										
FS03 (890-522-3)	4/14/21	Mountain		Solid			Ê	Ê	Ļ																							
FS04 (890-522-4)	4/14/21	12 30 Mountain		Solid		~	÷	÷													19 - 1											
FS05 (890-522-5)	4/14/21	12:40 Mountain		Solid		~	÷	$\hat{}$																ł								
FS06 (890-522-6)	4/14/21	12 50 Mountain		Solid			Ĵ	Ĵ													خد.										Ì	
											+																					
Note: Since laboratory accreditations are subject to change, Eurofins Xenco LL maintain accreditation in the State of Origin listed above for analysis/lests/matri LLC attention immediately If all requested accreditations are current to date re	C places the ownership < being analyzed the s turn the signed Chain	o of method ana samples must be of Custody atter	lyte & accredit shipped back sting to said co	ation compliar to the Eurofin mplicance to E	ice up s Xenc iurofin	on ou so LL(C labo	ratory	or of	orato her ir	ries. Istruc	This : tions	samp will b	e shi e pro	omen vided	t is fr	nwar cha	ded	to a	r cha	ain-o	ion c	stod	s shc	the	labor be b	ator.	ht to	9s nc	ot cu	irreni Xer	enco
Possible Hazard Identification					S		le D	ispo	sal (Af	ěn	ay I	ē	ises	sed	ifs	jur.	les	are	ret	ain	é	lon	Jer	tha	51	ğ	ž	9			
Deliverable Requested 1 II III IV Other (specify)	Primary Deliver	able Rank 2			S	pecia	aling	truc	ions	ò	Reg	uire	men	is of			ě				19	Ne	g					NIO!	Sunt	ľ		
Empty Kit Relinquished by		Date													Meth	2	Shir	men .									1					
Relinquished by Silve NWA 4.142	Date/Time:			ompany		3	Delve			\mathcal{U}_{L}	2	\mathcal{N}		L			P		- G	7 I	\geq			-		ξl	S	mpai	Ŷ			
Relinquished by	Date/Time:			ompany				d by	ł		M .		ĥ				Da	e/Tir	<u>e</u> k		2		Ē	Þ	<u>C4</u> .	ト	S	mpai	ĥ			
Relinquished by	Date/Time:			ompany		교	ceive	d by									Da	e/Tin	ē								8	mpai	γr			
Custody Seals Intact. Custody Seal No ∆ Yes ∆ No						8	oler T	empe	ratur	° (s)	and	₽ E	r Rei	nark			F										F	1				

Ver 11/01/2020

14

Job Number: 890-522-1 SDG Number: TE012921024

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 522 List Number: 1 Creator: Ordonez, Gabby

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-522-1 SDG Number: TE012921024

List Source: Eurofins Midland

List Creation: 04/15/21 11:21 AM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 522 List Number: 2 Creator: Copeland, Tatiana

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	25414
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
rhamlet	We have received your closure report and final C-141 for Incident #NAPP2103632350 REMUDA 100 CTB, thank you. This closure is approved.	8/12/2021

CONDITIONS

Action 25414