Received by OCD: 3	SITE INFORMATION Page 1 of 7 SITE INFORMATION									
	F	Report Typ	oe: Closure	Report	1RP-429	6				
General Site Info	ormation:									
Site:			5 Federal #4H							
Company:		Cimarex Er								
Section, Towns	hip and Range	Unit C	Sec. 25	T 24S	R 32E					
Lease Number:			API No. 30-025-40690							
County:		Lea County								
GPS:			32.195124º N			103.63	0256º W			
Surface Owner: Mineral Owner:		Federal								
Directions:		miles, turn So					3 for approximately 3.0 d for 0.60 mi to location			
Release Data:										
Date Released:		5/28/2016	5/28/2016							
Type Release:			Produced Water							
Source of Contar	mination:	Well								
Fluid Released:		10 bbls								
Fluids Recovered		5 bbls								
Official Commu	nication:									
Name:	Gloria Garza				Clair Gonza	ales				
Company:	Cimarex Energy				Tetra Tech					
Address:	600 N. Marienfield	l St.			901 W. Wa	III St.				
	Ste 400				Ste 100	_				
City:	Midland Texas, 79	701		Midland, Texas, 79701						
Phone number:	(432) 234-3204				(432) 687-8	3123				
Fax:					,					
Email:	ggarza@cimare	x.com			Clair.Gonz	zales@Tetra	atech.com			

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	100'
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0
Total Ranking Score:	0	

Total BTEX

50

TPH

5,000

Benzene

10

November 9, 2018

Gloria Garza ESH Specialist – Permian Basin Cimarex Energy 600 N. Marienfeld St. Midland, Texas 79701

Re: Revised Closure Report for the Cimarex Energy, Double X 25 Federal #4H, Unit C, Section 25, Township 24 South, Range 32 East, Lea County, New Mexico.

1RP-4296.

Ms. Garza:

Tetra Tech, Inc. (Tetra Tech) was contacted by Cimarex Energy (Cimarex) to prepare a closure report for a spill at the Double X 25 Federal #4H, Unit C, Section 25, Township 24 South, Range 32 East, Lea County, New Mexico (site). The spill site coordinates are N 32.195124 °, W 103.630256 °. The site location is shown on Maps 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on May 28, 2016, and released approximately ten (10) barrels of produced water due to a failed float switch causing a release at the stuffing box. Approximately five (5) barrels of produced water was recovered. The release occurred and remained on the pad area measuring approximately 70'x75'. The initial C-141 Form is included in Appendix A.

Groundwater

No water wells were listed within Section 25 on the New Mexico Office of the State Engineer's website, the USGS National Water Information System, or the Geology and Ground-Water Conditions in Southern Lea County, New Mexico (Report 6). The nearest well is listed on the USGS National Water Information System in Township 24 South, Range 33 East, Section 33, approximately 3.6 miles southeast of the site, and has a reported depth to groundwater of 93.2 feet below ground surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in this area is approximately 100' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

Auger Holes

On June 19, 2017, Tetra Tech personnel were onsite to evaluate and sample the release area. Two (2) auger holes (AH-1 and AH-2) were installed in the spill foot print to total depths of 2.0'-2.5' and 0'-1.0' below surface, respectively. Deeper samples were not collected due to a dense caliche formation in the area. A stainless steel hand auger was used to manually collect discrete soil samples from selected depth intervals. Selected samples were analyzed for TPH analysis by EPA Method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included. The results of the sampling are summarized in Table 1. The sample locations are shown in Plat 3.

Referring to Table 1, the samples collected at 0-1' below surface in the areas of auger holes (AH-1 and AH-2) showed benzene and total BTEX concentrations below the laboratory reporting limits and total TPH concentrations of <15.0 mg/kg and 196 mg/kg, respectively. Minimal chloride concentrations were detected in the shallow soils, with chloride highs of 24.1 mg/kg at 2.0'-2.5' (AH-1) and 18.2 mg/kg at 0'-1' (AH-2).

<u>Trenches</u>

On August 31, 2017 Tetra Tech personnel returned to the site to collect deeper samples in order to vertically define the release to the NMOCD directives. Two (2) sample trenches, T-1 (AH-1) and T-2 (AH-2), were installed in the release area to total depths of 5.0' and 4.0' below surface, respectively. Deeper samples were not collected due to a dense caliche formation in the area. Selected samples were analyzed for TPH analysis by EPA Method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included. The results of the sampling are summarized in Table 1. The sample locations are shown in Plat 3.

Referring to Table 1, the bottom trench samples in the areas of trenches (T-1 and T-2) showed TPH, benzene, and total BTEX concentrations below the laboratory reporting

limits. Additionally, the area of trench (T-1) did not show any significant chloride concentrations, with a chloride high of 331 mg/kg at 5.0' below surface. The area of trench (T-2) showed a chloride high of 717 mg/kg at 2.0', which declined with depth and showed a bottom trench concentration of 506 mg/kg.

Horizontal Sampling

A Closure Report was previously submitted on December 7, 2017. This request for closure was denied, per NMOCD's request for additional soil sampling to complete horizontal delineation.

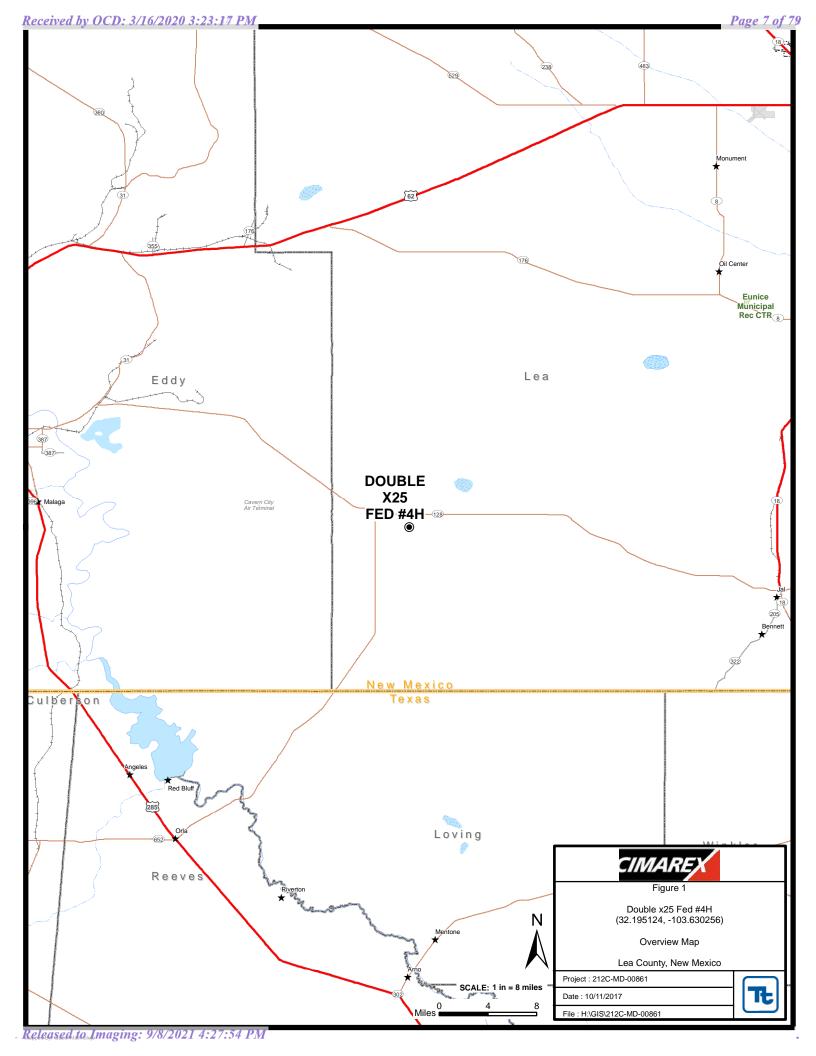
On September 27, 2018, Tetra Tech Personnel returned to the site to collect four (4) auger hole samples (AH-1 (West), AH-2 (North), AH-3 (East), and AH-4 (South)) around the perimeter of the release area to total depth of 0-6", in order to complete horizontal delineation, as requested by NMOCD. All samples were analyzed for TPH analysis by EPA Method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown in Plat 3.

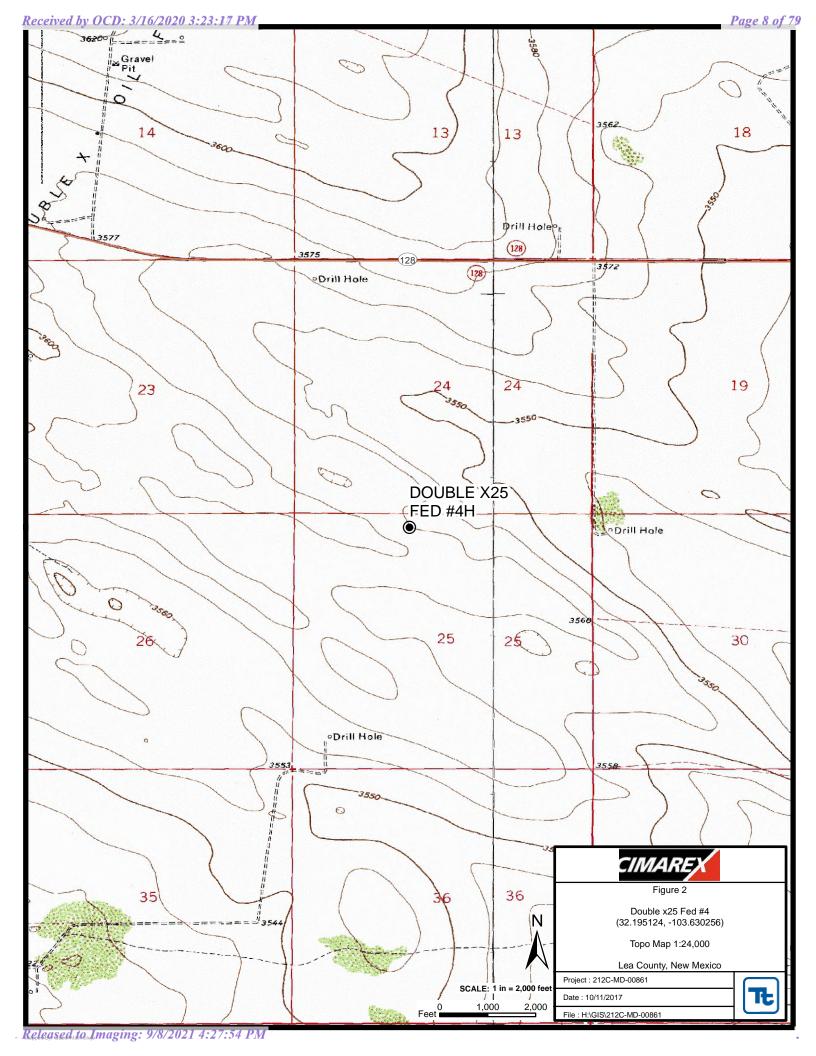
Referring to Table 1, all horizontal confirmation samples (AH-1 (West), AH-2 (North), AH-3 (East), and AH-4 (South)) showed benzene and total BTEX concentrations below the laboratory reporting limits. The areas of AH-2 (North) and AH-3 (East) showed total TPH concentrations below the reporting limits. Additionally, no significant chloride concentrations were detected, with a chloride high of 205 mg/kg in the area of AH-4 (South).

Conclusion and Recommendations

Based on the laboratory results, Cimarex requests closure of this spill issue. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment activities for this site, please call us at (432) 682-4559.

Respectfully submitted,


TETRA TECH


Clair Gonzales Project Manager Johnathon Kell, Geologist II

cc: Shelly Tucker – BLM Christina Hernandez - NMOCD

Maps/Plats

Lab Analysis

Table 1
Cimarex
Double X25 Federal #4H
Lea County, New Mexico

0 1 15	Sample	Sample	BEB	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	6/19/2017	0-1	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	8.51
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	7.12
	"	2-2.5	-	Х		-	-	-	-	-	-	-	-	-	24.1
T-1	8/31/2017	0-1	-	Х		-	-	-	-	-	-	-	-	-	<4.99
	"	1	-	Х		-	-	-	-	-	-	-	-	-	<4.93
	"	2	-	Х		-	-	-	-	-	-	-	-	-	81.7
	"	3	-	Х		-	-	-	-	-	-	-	-	-	102
	"	4	-	Х		-	-	-	-	-	-	-	-	-	292
	"	5	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00344	<0.00344	<0.00344	<0.00344	<0.00344	331
AH-2	6/19/2017	0-1	-	Х		<15.0	168	27.5	196	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	18.2
T-2	8/31/2017	0-1	-	Х		-	-	-	-	-	-	-	-	-	24.5
	"	1	-	Х		-	-	-	-	-	-	-	-	-	<4.96
	"	2	-	Х		-	-	-	-	-	-	-	-	-	717
	"	3	-	Х		-	-	-	-	-	-	-	-	-	305
	"	4	-	Χ		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	506
AH-1 (West)	9/27/2018	05	-	Х		<15.0	51.3	<15.0	51.3	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<5.01
AH-2 (North)	9/27/2018	05	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	25.7
AH-3 (East)	9/27/2018	05	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	37.6
AH-4 (South)	9/27/2018	05	-	Х		<15.0	22.0	<15.0	22.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	205

212C-MD-00861 Xenco Labs

Analytical Report 555866

for Tetra Tech- Midland

Project Manager: Ike Tavarez
Cimarex- Double X25 Fed #4H
212C-MD-00861
29-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

29-JUN-17

Project Manager: **Ike Tavarez Tetra Tech- Midland**4000 N. Big Spring Suite 401
Midland, TX 79705

Reference: XENCO Report No(s): 555866

Cimarex- Double X25 Fed #4H Project Address: Lea Co, NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 555866. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 555866 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Roah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 555866

Tetra Tech- Midland, Midland, TX

Cimarex- Double X25 Fed #4H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH #1 (0-1')	S	06-19-17 00:00	0 - 1 ft	555866-001
AH #1 (1-1.5')	S	06-19-17 00:00	1 - 1.5 ft	555866-002
AH #1 (2-2.5')	S	06-19-17 00:00	2 - 2.5 ft	555866-003
AH #2 (0-1')	S	06-19-17 00:00	0 - 1 ft	555866-004

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Cimarex- Double X25 Fed #4H

 Project ID:
 212C-MD-00861
 Report Date:
 29-JUN-17

 Work Order Number(s):
 555866
 Date Received:
 06/21/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3020665 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3021020 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

212C-MD-00861

Ike Tavarez

Lea Co, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 555866

Tetra Tech- Midland, Midland, TX

Project Name: Cimarex- Double X25 Fed #4H

Report Date: 29-JUN-17
Project Manager: Kelsey Brooks

Date Received in Lab: Wed Jun-21-17 12:00 pm

	Lab Id:	555866-0	001	555866-0	02	555866-0	003	555866-	004		
Analysis Requested	Field Id:	AH #1 (0)-1')	AH #1 (1-1	.5')	AH #1 (2-	2.5')	AH #2 (0)-1')		
Analysis Requesieu	Depth:	0-1 ft		1-1.5 ft		2-2.5 f	t	0-1 ft			
	Matrix:	SOIL	,	SOIL		SOIL	,	SOIL	,		
	Sampled:	Jun-19-17 (00:00	Jun-19-17 0	0:00	Jun-19-17	00:00	Jun-19-17	00:00		
BTEX by EPA 8021B	Extracted:	Jun-24-17	11:30					Jun-27-17	17:45		
	Analyzed:	Jun-25-17	07:25					Jun-28-17	12:39		
	Units/RL:	mg/kg	RL					mg/kg	RL		
Benzene		< 0.00201	0.00201					< 0.00199	0.00199		
Toluene		< 0.00201	0.00201					< 0.00199	0.00199		
Ethylbenzene		< 0.00201	0.00201					< 0.00199	0.00199		
m,p-Xylenes		< 0.00402	0.00402					< 0.00398	0.00398		
o-Xylene		< 0.00201	0.00201					< 0.00199	0.00199		
Total Xylenes		< 0.00201	0.00201					< 0.00199	0.00199		
Total BTEX		< 0.00201	0.00201					< 0.00199	0.00199		
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-28-17	15:30	Jun-28-17 1	5:30	Jun-28-17	15:30	Jun-28-17	15:30		
	Analyzed:	Jun-28-17	17:38	Jun-28-17 1	8:01	Jun-28-17	18:09	Jun-28-17	18:16		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		8.51	4.92	7.12	4.98	24.1	4.96	18.2	4.97		
TPH By SW8015 Mod	Extracted:	Jun-24-17	16:00				İ	Jun-24-17	16:00		
	Analyzed:	Jun-25-17 (07:58					Jun-25-17	08:18		
	Units/RL:	mg/kg	RL					mg/kg	RL		
Gasoline Range Hydrocarbons		<15.0	15.0					<15.0	15.0		
Diesel Range Organics		<15.0	15.0					168	15.0		
Oil Range Hydrocarbons		<15.0	15.0					27.5	15.0		
Total TPH		<15.0	15.0					196	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Lab Batch #: 3020665

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X25 Fed #4H

Work Orders: 555866, 555866

Sample: 555866-001 / SMP

Project ID: 212C-MD-00861

Batch: 1 Matrix: Soil

Units: Date Analyzed: 06/25/17 07:25 mg/kg SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B Recovery **Found** Amount Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0293 0.0300 98 80-120 4-Bromofluorobenzene 0.0288 0.0300 96 80-120

Units: mg/kg Date Analyzed: 06/25/17 07:58 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 101 99.7 101 70-135 o-Terphenyl 49.9 51.5 103 70-135

Units: mg/kg Date Analyzed: 06/25/17 08:18 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	101	100	101	70-135	
o-Terphenyl	51.5	50.0	103	70-135	

Units:	mg/kg	Date Analyzed: 06/28/17 12:39	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	robenzene	•	0.0298	0.0300	99	80-120					
4-Bromoflu	uorobenzene		0.0328	0.0300	109	80-120					

Lab Batch #: 3020771 Sample: 726685-1-BLK/BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 06/25/17 00:34	SURROGATE RECOVERY STUDY									
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooc	tane		113	100	113	70-135						
o-Terpheny	1		60.9	50.0	122	70-135						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X25 Fed #4H

Work Orders: 555866, 555866

Sample: 726706-1-BLK / BLK

Project ID: 212C-MD-00861

Lab Batch #: 3020665

Matrix: Solid Batch: 1

Units: mg/k	Date Analyzed: 06/25/17 05:32	SURROGATE RECOVERY STUDY								
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
	Analytes			[D]						
1,4-Difluorobenzene		0.0296	0.0300	99	80-120					
4-Bromofluorobenze	ne	0.0293	0.0300	98	80-120					

Lab Batch #: 3021020 **Sample:** 726890-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 06/28/17 07:31	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	robenzene		0.0293	0.0300	98	80-120					
4-Bromoflu	uorobenzene		0.0322	0.0300	107	80-120					

Lab Batch #: 3020771 **Sample:** 726685-1-BKS / BKS Batch: Matrix: Solid

Units: mg/kg Date Analyzed: 06/25/17 00:55 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	100	108	70-135	
o-Terphenyl	50.1	50.0	100	70-135	

Lab Batch #: 3020665 **Sample:** 726706-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 06/25/17 03:55	SU	RROGATE R	ECOVERY S	STUDY	
	вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0270	0.0300	90	80-120	
4-Bromoflu	uorobenzene		0.0280	0.0300	93	80-120	

Lab Batch #: 3021020 Sample: 726890-1-BKS / BKS Batch: Matrix: Solid

Units: m	ng/kg	Date Analyzed: 06/28/17 04:19	SU	RROGATE RE	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenze	ene		0.0311	0.0300	104	80-120	
4-Bromofluorober	nzene		0.0329	0.0300	110	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X25 Fed #4H

Work Orders: 555866, 555866

Project ID: 212C-MD-00861

Lab Batch #: 3020771 Sample: 726685-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 06/25/17 01:16	SURROGATE RECOVERY STUDY									
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	tane		114	100	114	70-135						
o-Terpheny	1		53.7	50.0	107	70-135						

Lab Batch #: 3020665Sample: 726706-1-BSD / BSDBatch: 1Matrix: Solid

Units:	mg/kg	Date Analyzed: 06/25/17 04:11	SU	RROGATE RI	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0280	0.0300	93	80-120	
4-Bromoflu	orobenzene		0.0277	0.0300	92	80-120	

Lab Batch #: 3021020 Sample: 726890-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 06/28/17 04:35 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	
4-Bromofluorobenzene	0.0344	0.0300	115	80-120	

Units:	mg/kg	Date Analyzed: 06/25/17 01:58	nalyzed: 06/25/17 01:58 SURROGATE RECOVERY STUDY										
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooc	ctane		107	99.7	107	70-135							
o-Terpheny	yl		50.3	49.9	101	70-135							

Units:	mg/kg	Date Analyzed: 06/25/17 04:27	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorober	nzene	11mily ves	0.0336	0.0300	112	80-120	
4-Bromofluoro	benzene		0.0349	0.0300	116	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X25 Fed #4H

Work Orders: 555866, 555866

Project ID: 212C-MD-00861

Units: Date Analyzed: 06/28/17 11:01 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0346 0.0300 115 80-120 4-Bromofluorobenzene 0.0344 0.0300 115 80-120

Units: mg/kg Date Analyzed: 06/25/17 02:19 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 99.4 99.8 100 70-135 o-Terphenyl 49.9 98 49.0 70-135

 Lab Batch #: 3020665
 Sample: 556138-002 SD / MSD
 Batch: 1
 Matrix: Soil

Date Analyzed: 06/25/17 04:44 **Units:** mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery %R %R [A] [B] [D] **Analytes** 1,4-Difluorobenzene 0.0335 0.0300 112 80-120 4-Bromofluorobenzene 0.0335 0.0300 112 80-120

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Page 22 of 79

Project Name: Cimarex- Double X25 Fed #4H

Work Order #: 555866, 555866

Project ID: 212C-MD-00861

Analyst:

Units:

ALJ

mg/kg

Date Prepared: 06/24/2017

Batch #: 1

Date Analyzed: 06/25/2017

Lab Batch ID: 3020665

Sample: 726706-1-BKS

Matrix: Solid

BLANK /	BLANK SI	PIKE / BLANK	SPIKE DUPLICATE	RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00200	0.100	0.107	107	0.0994	0.0950	96	12	70-130	35	
Toluene	< 0.00200	0.100	0.101	101	0.0994	0.0876	88	14	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.111	111	0.0994	0.0966	97	14	71-129	35	
m,p-Xylenes	< 0.00401	0.200	0.200	100	0.199	0.173	87	14	70-135	35	
o-Xylene	< 0.00200	0.100	0.106	106	0.0994	0.0914	92	15	71-133	35	

Date Prepared: 06/27/2017 **Date Analyzed:** 06/28/2017 **Analyst:** ALJ

Lab Batch ID: 3021020 **Batch #:** 1 Matrix: Solid **Sample:** 726890-1-BKS

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00201	0.101	0.0952	94	0.101	0.104	103	9	70-130	35	
Toluene	< 0.00201	0.101	0.0831	82	0.101	0.0935	93	12	70-130	35	
Ethylbenzene	< 0.00201	0.101	0.0885	88	0.101	0.100	99	12	71-129	35	
m,p-Xylenes	< 0.00402	0.201	0.151	75	0.201	0.174	87	14	70-135	35	
o-Xylene	< 0.00201	0.101	0.0854	85	0.101	0.100	99	16	71-133	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Page 23 of 79

Project Name: Cimarex- Double X25 Fed #4H

Work Order #: 555866, 555866

Project ID: 212C-MD-00861

Analyst: MGO

Date Prepared: 06/28/2017

Date Analyzed: 06/28/2017

Lab Batch ID: 3021044

Sample: 726898-1-BKS

Batch #: 1 Matrix: Solid

Units: mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											
Chloride	< 5.00	250	245	98	250	243	97	1	90-110	20	

ARM **Date Prepared:** 06/24/2017 **Date Analyzed:** 06/25/2017 **Analyst:**

Lab Batch ID: 3020771 **Batch #:** 1 Matrix: Solid **Sample:** 726685-1-BKS


Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons	<15.0	1000	992	99	1000	1020	102	3	70-135	35	
Diesel Range Organics	<15.0	1000	1010	101	1000	979	98	3	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Work Order #: 555866 Lab Batch #: 3021020

Project ID: 212C-MD-00861

Date Analyzed: 06/28/2017 **QC- Sample ID:** 556211-002 S **Date Prepared:** 06/27/2017 Analyst: ALJ Batch #: Matrix: Soil

Reporting Units: mg/kg	MATRIX / MATRIX SPIKE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag					
Analytes	[A]	[B]									
Benzene	< 0.00201	0.100	0.0827	83	70-130						
Toluene	< 0.00201	0.100	0.0753	75	70-130						
Ethylbenzene	< 0.00201	0.100	0.0795	80	71-129						
m,p-Xylenes	< 0.00402	0.201	0.143	71	70-135						
o-Xylene	< 0.00201	0.100	0.0774	77	71-133						

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Page 25 of 79

Project Name: Cimarex- Double X25 Fed #4H

Work Order #:

555866 3020665

QC- Sample ID: 556138-002 S

Batch #:

Matrix: Soil

Project ID: 212C-MD-00861

Lab Batch ID: Date Analyzed:

06/25/2017

Date Prepared: 06/24/2017

Analyst: ALJ

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	•	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00200	0.100	0.0785	79	0.100	0.0898	90	13	70-130	35	
Toluene	< 0.00200	0.100	0.0785	79	0.100	0.0795	80	1	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.0770	77	0.100	0.0764	76	1	71-129	35	
m,p-Xylenes	0.00688	0.200	0.144	69	0.200	0.135	64	6	70-135	35	X
o-Xylene	< 0.00200	0.100	0.0771	77	0.100	0.0762	76	1	71-133	35	

Lab Batch ID:

3021044

QC- Sample ID: 555866-001 S

Batch #:

Matrix: Soil

Date Analyzed:

06/28/2017

Date Prepared: 06/28/2017

Analyst: MGO

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	8.51	246	251	99	246	255	100	2	90-110	20	

Lab Batch ID:

3020771

QC- Sample ID: 555795-001 S

Batch #:

Matrix: Soil

Date Analyzed:

06/25/2017

Date Prepared: 06/24/2017

Analyst: ARM

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	997	1060	106	998	974	98	8	70-135	35	
Diesel Range Organics	<15.0	997	998	100	998	987	99	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 14 of 16

Final 1.001

ANALYSIS RECORD ANALYSIS RECORD (Circle or Specify Method No.) PRESERVATIVE PRESERV	The series of the series removed to be the series of the s	Kin deeper Dan	CONTACT: PHONE: ZIP: DATE:	CALLION .	RELINQUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Time: RECEIVED BY: (Signature)	Time:	Time: 6-31-17					J 6 VAH#2 (0-1))	(C AH#) (1-1.5')	6/A/17 S X AH# 1 (0-1)	MATRIX COMP. GRAB	2) JO TWO - OURU Cimparex Duble x 25 Feel 4 H	imarex		1910 N. Big Spring St. Midland Texas 79705	1	Analysis Request of Chain of Custody Record	
ANALYSIS REQUEST ANALYSIS REQUEST Circle or Specify Method No.) PED BY: (Circle)	7 70000	Hat	TIME:		Date:	Date: Time:	1					2		7		HCL HNO3			5558U4			Record	
	March	6	1 showe t	+			Date:	Corrected Temp: 2, 7	5: -0.2°C)	2 _ 2 _ _ _		×	×	×	×	PAH 8270 RCRA Me TCLP Me TCLP Ser RCI GC.MS Ve GC.MS S PCB's 80 Pest. 808 Chloride Gamma S Alpha Be PLM (Ast	otals Agetals	As Ba C As Ba C les 8260/624 8270/625	ed Cr Pb	Hg Se	(Circle or Specify Method No.)		

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 06/21/2017 12:00:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 555866

Temperature Measuring device used: r8

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		2.7	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seal present on shipping conta	ainer/ cooler?	N/A	
#5 *Custody Seals intact on shipping contain	ner/ cooler?	N/A	
#6 Custody Seals intact on sample bottles?		N/A	
#7 *Custody Seals Signed and dated?		N/A	
#8 *Chain of Custody present?		Yes	
#9 Sample instructions complete on Chain	of Custody?	Yes	
#10 Any missing/extra samples?	•	No	
#11 Chain of Custody signed when relinquis	shed/ received?	Yes	
#12 Chain of Custody agrees with sample la	abel(s)?	Yes	
#13 Container label(s) legible and intact?		Yes	
#14 Sample matrix/ properties agree with C	hain of Custody?	Yes	
#15 Samples in proper container/ bottle?		Yes	
#16 Samples properly preserved?		Yes	
#17 Sample container(s) intact?		Yes	
#18 Sufficient sample amount for indicated	test(s)?	Yes	
#19 All samples received within hold time?	. ,	Yes	
#20 Subcontract of sample(s)?		N/A	
#21 VOC samples have zero headspace?		N/A	

* Must be c	ompleted for after-hours de	livery of samples prior to placing in	n the refrigerator
Analyst:		PH Device/Lot#:	
	Checklist completed by:	Marithza Anaya	Date: <u>06/21/2017</u>
	Checklist reviewed by:	Kelsey Brooks	Date: <u>06/22/2017</u>

Analytical Report 561984

for Tetra Tech- Midland

Project Manager: Clair Gonzales
Cimarex- Double X 25 Fed #4H
212C-MD-00861
14-SEP-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)

Xenco-San Antonio: Texas (T104704534)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

14-SEP-17

Project Manager: Clair Gonzales Tetra Tech- Midland 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): 561984

Cimarex- Double X 25 Fed #4H Project Address: Lea Co,NM

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 561984. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 561984 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Roah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 561984

Tetra Tech- Midland, Midland, TX

Cimarex- Double X 25 Fed #4H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
T1 (0-1)	S	08-31-17 00:00		561984-001
T1 (1')	S	08-31-17 00:00		561984-002
T1 (2')	S	08-31-17 00:00		561984-003
T1 (3')	S	08-31-17 00:00		561984-004
T1 (4')	S	08-31-17 00:00		561984-005
T1 (5')	S	08-31-17 00:00		561984-006
T2 (0-1)	S	08-31-17 00:00		561984-007
T2 (1')	S	08-31-17 00:00		561984-008
T2 (2')	S	08-31-17 00:00		561984-009
T2 (3')	S	08-31-17 00:00		561984-010
T2 (4')	S	08-31-17 00:00		561984-011

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Cimarex- Double X 25 Fed #4H

 Project ID:
 212C-MD-00861
 Report Date:
 14-SEP-17

 Work Order Number(s):
 561984
 Date Received:
 09/05/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3027028 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3027189 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

212C-MD-00861

Clair Gonzales

Lea Co,NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 561984

Tetra Tech- Midland, Midland, TX

Project Name: Cimarex- Double X 25 Fed #4H

Date Received in Lab: Tue Sep-05-17 04:30 pm

Report Date: 14-SEP-17 **Project Manager:** Kelsey Brooks

Analysis Requested Field Id. Depth: Depth: Depth: SOIL		1 1												
## Analysis Requested ### Soll		Lab Id:	561984-0	001	561984-0	02	561984-0	03	561984-0	04	561984-0	005	561984-0	006
Depth: Maric SOIL	Analysis Roquested	Field Id:	T1 (0-1)	T1 (1')		T1 (2')		T1 (3')		T1 (4')		T1 (5')
BTEX by EPA 8021B	Anulysis Requesieu	Depth:												
BTEX by EPA 8021B Extracted: Analyzed:		Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Analyzed:		Sampled:	Aug-31-17	00:00	Aug-31-17 (00:00	Aug-31-17 (00:00	Aug-31-17	00:00	Aug-31-17	00:00	Aug-31-17	00:00
Nuis/RL:	BTEX by EPA 8021B	Extracted:											Sep-08-17	08:30
Separage		Analyzed:											Sep-08-17	11:24
Toluene Charles Charle		Units/RL:											mg/kg	RL
Ethylbenzene Et	Benzene												< 0.00344	0.00344
Major Majo	Toluene												< 0.00344	0.00344
Only lene Total Xylenes Total Xylenes Inorganic Anions by EPA 300/300.1 Extracted: Sep-11-17 15:15 Sep-11-17 15:15	Ethylbenzene												< 0.00344	0.00344
Total Xylenes Total Xylenes Total Sylenes To	m,p-Xylenes												< 0.00687	0.00687
Total BTEX Inorganic Anions by EPA 300/300.1 Extracted: Sep-11-17 15:15 Sep-1	o-Xylene												< 0.00344	0.00344
Inorganic Anions by EPA 300/300.1	Total Xylenes												< 0.00344	0.00344
Analyzed: Sep-11-17 18:37 Sep-11-17 19:01 Sep-11-17 19:09 Sep-11-17 19:34 Sep-11-17 19:42 Sep-11-17 19:50 Units/RL: mg/kg RL mg/k	Total BTEX												< 0.00344	0.00344
Units/RL: mg/kg RL mg/k	Inorganic Anions by EPA 300/300.1	Extracted:	Sep-11-17	15:15	Sep-11-17 1	5:15	Sep-11-17 1	5:15	Sep-11-17	5:15	Sep-11-17	15:15	Sep-11-17	15:15
Chloride		Analyzed:	Sep-11-17	18:37	Sep-11-17 1	9:01	Sep-11-17 1	9:09	Sep-11-17	9:34	Sep-11-17	19:42	Sep-11-17	19:50
TPH By SW8015 Mod Extracted: Sep-09-17 18:00 Analyzed: Sep-10-17 14:26 Units/RL: mg/kg RL Gasoline Range Hydrocarbons (GRO) <14.9 14.9 Diesel Range Organics (DRO) <14.9 14.9 Oil Range Hydrocarbons (ORO) <14.9 14.9		Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Analyzed: Sep-10-17 14:26 Units/RL: mg/kg RL Gasoline Range Hydrocarbons (GRO) <14.9	Chloride		<4.99	4.99	<4.93	4.93	81.7	4.90	102	4.95	292	4.96	331	4.95
Units/RL: mg/kg RL Gasoline Range Hydrocarbons (GRO) <14.9	TPH By SW8015 Mod	Extracted:											Sep-09-17	18:00
Gasoline Range Hydrocarbons (GRO) <14.9		Analyzed:											Sep-10-17	14:26
Diesel Range Organics (DRO) Cil Range Hydrocarbons (ORO) Classel Hydrocarbons (ORO)		Units/RL:											mg/kg	RL
Oil Range Hydrocarbons (ORO)	Gasoline Range Hydrocarbons (GRO)												<14.9	14.9
	Diesel Range Organics (DRO)												<14.9	14.9
Total TPH < 14.9 14.9	Oil Range Hydrocarbons (ORO)												<14.9	14.9
	Total TPH												<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks
Project Manager

212C-MD-00861

Project Id:

Certificate of Analysis Summary 561984

Tetra Tech- Midland, Midland, TX

Project Name: Cimarex- Double X 25 Fed #4H

Date Received in Lab: Tue Sep-05-17 04:30 pm

Report Date: 14-SEP-17 **Project Manager:** Kelsey Brooks

Contact: Clair Gonzales

Project Location: Lea Co,NM

Lab Id:	561984-0	07	561984-00	80	561984-0	09	561984-0	10	561984-0	011	
Field Id:	T2 (0-1)	T2 (1')		T2 (2')		T2 (3')		T2 (4"))	
Depth:											
Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		
Sampled:	Aug-31-17 (00:00	Aug-31-17 0	00:00	Aug-31-17 (00:00	Aug-31-17	00:00	Aug-31-17	00:00	
Extracted:									Sep-07-17	08:00	
Analyzed:									Sep-07-17	19:14	
Units/RL:									mg/kg	RL	
									< 0.00201	0.00201	
									< 0.00201	0.00201	
									< 0.00201	0.00201	
									< 0.00402	0.00402	
									< 0.00201	0.00201	
									< 0.00201	0.00201	
									< 0.00201	0.00201	
Extracted:	Sep-11-17 1	5:15	Sep-11-17 1	5:15	Sep-11-17 1	5:15	Sep-11-17 1	5:15	Sep-12-17	15:30	
Analyzed:	Sep-11-17 1	9:58	Sep-11-17 2	0:07	Sep-11-17 2	0:15	Sep-11-17 2	20:23	Sep-12-17	21:13	
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
	24.5	4.94	<4.96	4.96	717	4.92	305	4.91	506	4.97	
Extracted:									Sep-09-17	18:00	
Analyzed:									Sep-10-17	14:46	
Units/RL:									mg/kg	RL	
·									<15.0	15.0	
									<15.0	15.0	
									<15.0	15.0	
									<15.0	15.0	
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL:	Field Id: Depth: Matrix: SOIL Sampled: Aug-31-17 (Extracted: Analyzed: Units/RL: Extracted: Sep-11-17 1 Analyzed: Units/RL: mg/kg 24.5 Extracted: Analyzed: Analyzed:	Field Id: Depth: Matrix: SOIL Sampled: Aug-31-17 00:00 Extracted: Analyzed: Units/RL: Extracted: Sep-11-17 15:15 Analyzed: Sep-11-17 19:58 Units/RL: mg/kg RL 24.5 4.94 Extracted: Analyzed: Analyzed:	Field Id: T2 (0-1) T2 (1') Depth: Matrix: SOIL SOIL Sampled: Aug-31-17 00:00 Aug-31-17 0 Extracted: Analyzed: Units/RL: Extracted: Sep-11-17 15:15 Sep-11-17 1 Analyzed: Sep-11-17 19:58 Sep-11-17 2 Units/RL: mg/kg RL mg/kg Extracted: Analyzed: 4.94 <4.96	Field Id: T2 (0-1) T2 (1') Depth: Matrix: SOIL SOIL Sampled: Aug-31-17 00:00 Aug-31-17 00:00 Extracted: Analyzed: Units/RL: Extracted: Sep-11-17 15:15 Sep-11-17 15:15 Analyzed: Sep-11-17 19:58 Sep-11-17 20:07 Units/RL: mg/kg RL Extracted: Analyzed: 4.96 Extracted: Analyzed:	Field Id: T2 (0-1) T2 (1') T2 (2') Depth: Matrix: SOIL SOIL SOIL SOIL SOIL Aug-31-17 00:00 Aug-31-17 00:00	Field Id: T2 (0-1) T2 (1') T2 (2') Depth: Matrix: SOIL SOIL SOIL Sampled: Aug-31-17 00:00 Aug-31-17 00:00 Aug-31-17 00:00 Extracted: Analyzed: Units/RL: Extracted: Sep-11-17 15:15 Sep-11-17 15:15 Sep-11-17 15:15 Sep-11-17 20:07 Sep-11-17 20:15 Units/RL: mg/kg RL mg/kg RL mg/kg RL Extracted: Analyzed: 4.94 4.96 4.96 717 4.92	Field Id: T2 (0-1) T2 (1') T2 (2') T2 (3') Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL SOIL Aug-31-17 00:00 Aug-31-17 00:00	Field Id: T2 (0-1) T2 (1') T2 (2') T2 (3') Depth: Matrix: SOIL SOIL SOIL SOIL SOIL Aug-31-17 00:00 Extracted: Analyzed: Units/RL: Units/RL: Sep-11-17 15:15 Sep-11-17 15:15 Sep-11-17 15:15 Sep-11-17 15:15 Sep-11-17 20:07 Sep-11-17 20:15 Sep-11-17 20:23 mg/kg RL mg/kg RL mg/kg RL Extracted: Analyzed: 24.5 4.94 <4.96 4.96 717 4.92 305 4.91 Extracted: Analyzed:	T2 (0-1)	T2 (0-1)

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks
Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(432) 563-1800	(432) 563-1713
(602) 437-0330	
	(281) 240-4200 (214) 902 0300 (210) 509-3334 (432) 563-1800

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X 25 Fed #4H

Work Orders: 561984,

Sample: 561984-011 / SMP

Project ID: 212C-MD-00861

Lab Batch #: 3027028

Date Analyzed: 09/07/17 19:14

Matrix: Soil Batch:

Units:	mg/kg	Date Analyzed: 09/07/17 19:14	SURROGATE RECOVERY STUDY					
	BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobe	enzene		0.0288	0.0300	96	80-120		
4-Bromofluorobenzene			0.0259	0.0300	86	80-120		

Lab Batch #: 3027189 Sample: 561984-006 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 09/08/17 11:24 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0285 0.0300 95 80-120 4-Bromofluorobenzene 0.0247 0.0300 82 80-120

Lab Batch #: 3027224 Matrix: Soil Sample: 561984-006 / SMP Batch:

Units: mg/kg **Date Analyzed:** 09/10/17 14:26 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	99.6	108	70-135	
o-Terphenyl	54.2	49.8	109	70-135	

Lab Batch #: 3027224 Sample: 561984-011 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 09/10/17 14:46	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	ctane		105	99.9	105	70-135			
o-Terpheny	yl		52.9	50.0	106	70-135			

Lab Batch #: 3027028 Sample: 730538-1-BLK / BLK Batch: Matrix: Solid

Units:	mg/kg	Date Analyzed: 09/07/17 10:21	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenz	zene	Timury ees	0.0269	0.0300	90	80-120			
4-Bromofluorobenzene			0.0282	0.0300	94	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X 25 Fed #4H

Work Orders: 561984,

... _ /1. _

TT...*4...

Project ID: 212C-MD-00861

Lab Batch #: 3027189 Matrix: Solid **Sample:** 730642-1-BLK / BLK Batch: 1

Units:	mg/kg	Date Analyzed: 09/08/17 09:26	SURROGATE RECOVERY STUDY					
	BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobenzene		0.0281	0.0300	94	80-120			
4-Bromofluorobenzene			0.0241	0.0300	80	80-120		

Lab Batch #: 3027224 **Sample:** 730691-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 09/10/17 12:27	SURROGATE RECOVERY STUDY						
	TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooc	ctane		103	100	103	70-135			
o-Terpheny	yl		53.5	50.0	107	70-135			

Sample: 730538-1-BKS / BKS Batch: 1 **Lab Batch #:** 3027028 Matrix: Solid

Date Analyzed: 09/07/17 07:48 **Units:** mg/kg SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0283	0.0300	94	80-120	
4-Bromofluorobenzene	0.0286	0.0300	95	80-120	

Lab Batch #: 3027189 **Sample:** 730642-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 09/08/17 07:50	SURROGATE RECOVERY STUDY						
	вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	robenzene		0.0281	0.0300	94	80-120			
4-Bromofluorobenzene			0.0249	0.0300	83	80-120			

Lab Batch #: 3027224 Sample: 730691-1-BKS / BKS Batch: Matrix: Solid

Units:	mg/kg	Date Analyzed: 09/10/17 12:47	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chloroocta	nne		113	100	113	70-135			
o-Terphenyl			55.6	50.0	111	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X 25 Fed #4H

Work Orders: 561984,

... _ /1. _

Sample: 730538-1-BSD / BSD

Project ID: 212C-MD-00861

Lab Batch #: 3027028

TT...*4...

Matrix: Solid Batch: 1

Units: mg/kg Date Analyzed: 09/07/17 08:08	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0293	0.0300	98	80-120	
4-Bromofluorobenzene	0.0295	0.0300	98	80-120	

Lab Batch #: 3027189 **Sample:** 730642-1-BSD / BSD Batch: 1 Matrix: Solid

-1---1-00/09/17 09:00

Units:	mg/kg Date Analyzed: 09/08/17 08:09	SU	RROGATE RI	ECOVERY S	STUDY	
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluoro	benzene	0.0295	0.0300	98	80-120	
4-Bromofluo	probenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 3027224 Sample: 730691-1-BSD / BSD Batch: Matrix: Solid

Units: mg/kg Date Analyzed: 09/10/17 13:07 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	102	100	102	70-135	
o-Terphenyl	48.9	50.0	98	70-135	

Lab Batch #: 3027028 **Sample:** 561863-002 S / MS Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 09/07/17 08:27	SU	RROGATE RI	ECOVERY S	STUDY	
	вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes			נטן		
1,4-Difluor	robenzene		0.0316	0.0300	105	80-120	
4-Bromoflu	uorobenzene		0.0271	0.0300	90	80-120	

Lab Batch #: 3027189 **Sample:** 562130-006 S / MS Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 09/08/17 08:28	SU	RROGATE R	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0292	0.0300	97	80-120	
4-Bromofluorobenzene		0.0265	0.0300	88	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Cimarex- Double X 25 Fed #4H

Work Orders: 561984,

Sample: 562162-001 S / MS

Project ID: 212C-MD-00861

Lab Batch #: 3027224

Data Analyzad: 00/10/17 13:47

Matrix: Soil Batch: 1

Units:	mg/kg	Date Analyzed: 09/10/17 13:47	SU	RROGATE RE	ECOVERY S	STUDY	
	TPH:	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		97.9	99.7	98	70-135	
o-Terpheny	1		44.4	49.9	89	70-135	

Lab Batch #: 3027028 **Sample:** 561863-002 SD / MSD Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 09/07/17 08:46	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	benzene		0.0292	0.0300	97	80-120	
4-Bromoflu	orobenzene		0.0315	0.0300	105	80-120	

Lab Batch #: 3027189 **Sample:** 562130-006 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 09/08/17 08:47 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene	0.0265	0.0300	88	80-120	

Lab Batch #: 3027224 **Sample:** 562162-001 SD / MSD Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 09/10/17 14:07	SU	RROGATE RI	ECOVERY S	STUDY	
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	etane		109	99.9	109	70-135	
o-Terpheny	/1		43.3	50.0	87	70-135	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

mg/kg

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Page 39 of 79

Project Name: Cimarex- Double X 25 Fed #4H

Work Order #: 561984 Project ID: 212C-MD-00861

Analyst: ALJ Date Prepared: 09/07/2017 Date Analyzed: 09/07/2017

 Lab Batch ID: 3027028
 Sample: 730538-1-BKS
 Batch #: 1
 Matrix: Solid

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00202	0.101	0.106	105	0.0998	0.106	106	0	70-130	35	
Toluene	< 0.00202	0.101	0.102	101	0.0998	0.101	101	1	70-130	35	
Ethylbenzene	< 0.00202	0.101	0.0994	98	0.0998	0.0992	99	0	71-129	35	
m,p-Xylenes	< 0.00403	0.202	0.194	96	0.200	0.193	97	1	70-135	35	
o-Xylene	<0.00202	0.101	0.0929	92	0.0998	0.0931	93	0	71-133	35	

Analyst: ALJ **Date Prepared:** 09/08/2017 **Date Analyzed:** 09/08/2017

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.119	119	0.101	0.108	107	10	70-130	35	
Toluene	< 0.00200	0.100	0.110	110	0.101	0.101	100	9	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.107	107	0.101	0.0984	97	8	71-129	35	
m,p-Xylenes	< 0.00401	0.200	0.208	104	0.202	0.191	95	9	70-135	35	
o-Xylene	< 0.00200	0.100	0.0995	100	0.101	0.0920	91	8	71-133	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes mg/kg

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Page 40 of 79

Project Name: Cimarex- Double X 25 Fed #4H

Project ID: 212C-MD-00861 Work Order #: 561984

Date Prepared: 09/11/2017 **Analyst:** MNV **Date Analyzed:** 09/11/2017

Lab Batch ID: 3027427 **Sample:** 730722-1-BKS **Batch #:** 1 Matrix: Solid

Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 5.00	250	253	101	250	252	101	0	90-110	20	

MNV **Date Prepared:** 09/12/2017 **Date Analyzed:** 09/12/2017 **Analyst:**

Lab Batch ID: 3027515 **Batch #:** 1 Matrix: Solid **Sample:** 730869-1-BKS

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	249	100	250	251	100	1	90-110	20	

Analyst: ARM Date Prepared: 09/09/2017 **Date Analyzed:** 09/10/2017

Lab Batch ID: 3027224 **Sample:** 730691-1-BKS **Batch #:** 1 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	1110	111	1000	1110	111	0	70-135	35	
Diesel Range Organics (DRO)	<15.0	1000	1190	119	1000	1180	118	1	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Page 41 of 79

Project Name: Cimarex- Double X 25 Fed #4H

Work Order #: 561984 **Project ID:** 212C-MD-00861

Lab Batch ID:

3027028

QC- Sample ID: 561863-002 S

Batch #:

Matrix: Soil

Date Analyzed:

09/07/2017

Date Prepared: 09/07/2017

Analyst: ALJ

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00351	0.175	0.211	121	0.173	0.148	86	35	70-130	35	
Toluene	< 0.00351	0.175	0.166	95	0.173	0.136	79	20	70-130	35	
Ethylbenzene	< 0.00351	0.175	0.127	73	0.173	0.129	75	2	71-129	35	
m,p-Xylenes	< 0.00702	0.351	0.239	68	0.346	0.251	73	5	70-135	35	X
o-Xylene	< 0.00351	0.175	0.134	77	0.173	0.126	73	6	71-133	35	

Lab Batch ID:

3027189

QC- Sample ID: 562130-006 S

Batch #:

Matrix: Soil

Date Analyzed:

09/08/2017

Date Prepared: 09/08/2017

Analyst: ALJ

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00200	0.0998	0.0668	67	0.0994	0.0830	84	22	70-130	35	X
Toluene	< 0.00200	0.0998	0.0614	62	0.0994	0.0756	76	21	70-130	35	X
Ethylbenzene	< 0.00200	0.0998	0.0581	58	0.0994	0.0702	71	19	71-129	35	X
m,p-Xylenes	< 0.00399	0.200	0.114	57	0.199	0.137	69	18	70-135	35	X
o-Xylene	< 0.00200	0.0998	0.0559	56	0.0994	0.0669	67	18	71-133	35	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Form 3 - MS / MSD Recoveries

Page 42 of 79

Project Name: Cimarex- Double X 25 Fed #4H

Work Order #: 561984

Project ID: 212C-MD-00861

Lab Batch ID:

3027427

QC- Sample ID: 561862-001 S

Batch #:

Matrix: Soil

Date Analyzed:

09/11/2017

Date Prepared: 09/11/2017

Analyst: MNV

Reporting Units:

mg/kg

·

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	76.6	249	341	106	249	342	107	0	90-110	20	

Lab Batch ID:

3027427

QC- Sample ID: 561984-001 S

Batch #:

1 Matrix: Soil

Date Analyzed:

09/11/2017

Date Prepared: 09/11/2017

Analyst: MNV

Reporting Units:

mg/kg

epared: 09/11/2017

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	<4.99	250	267	107	250	268	107	0	90-110	20	

Lab Batch ID:

3027515

QC- Sample ID: 562132-001 S

Batch #:

Matrix: Soil

Date Analyzed:

09/12/2017

Date Prepared: 09/12/2017

Analyst: MNV

Reporting Units:

mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

1

Inorganic Anions by EPA 300/300.1	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	19.8	249	286	107	249	285	107	0	90-110	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Form 3 - MS / MSD Recoveries

Page 43 of 79

Project Name: Cimarex- Double X 25 Fed #4H

Work Order #: 561984

Project ID: 212C-MD-00861

Lab Batch ID:

3027224

QC- Sample ID: 562162-001 S

Batch #:

Matrix: Soil

Date Analyzed:

09/10/2017

Date Prepared: 09/09/2017

Analyst: ARM

RM

Reporting Units:

mg/kg

Analyst. Aniv

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	997	1080	108	999	972	97	11	70-135	35	
Diesel Range Organics (DRO)	<15.0	997	1050	105	999	1050	105	0	70-135	35	

 $ND = Not \ Detected, \ J = Present \ Below \ Reporting \ Limit, \ B = Present \ in \ Blank, \ NR = Not \ Requested, \ I = Interference, \ NA = Not \ Applicable \ N = See \ Narrative, \ EQL = Estimated \ Quantitation \ Limit, \ NC = Non \ Calculable \ - Sample \ amount \ is > 4 \ times \ the \ amount \ spiked.$

Received by OCD: 3/16/2020 3:23:17 PM inquished by: Page 44 of 79

Analysis Request of Chain of Custody Record nvoice to: Project Name eceiving Laboratory: roject Location: LAB USE LAB# 4 T2 (2') T2 (1') T2 (0-1) T1 (5') T2 (3') T1 (4') T1 (3') T1 (2') T1 (1') T1 (0-1) (county, XENCO Bill to Cimarex Lea Co, NM Double X25 Fed # 4H Cimarex SAMPLE IDENTIFICATION Tetra Tech, Inc. Date: Date: Time: ORIGINAL COPY Received by: Received by: eceived by: Sampler Signature: Site Manager 8/31/17 8/31/17 8/31/17 8/31/17 8/31/17 8/31/17 Project #: 8/31/17 8/31/17 8/31/2017 8/31/17 DATE SAMPLING TIME WATER MATRIX Clair Gonzales \times × SOIL Mathew McDaniel 212c-MD-0086 4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 Date: HCL PRESERVATIVE METHOD HNO₃ Time: lime: ICE # CONTAINERS n כ \supset 7 ח 7 ח J ח ם FILTERED (Y/N) (Circle) H/ Sample Temperature LAB USE ONLY BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) Temp: () (V) CF:(0-6: -0.2°C) PAH 8270C Corrected Temp: (Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg (6-23: +0.2°C) TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles ANALYSIS REQUEST RUSH: Same Day 24 hr 48 hr 72 hr Special Rans Rush Charges Authorized TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 terdara PCB's 8082 / 608 IR ID:R-8 NORM PLM (Asbestos) Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance of. Released to Imaging: 9/8/2021 Page 17 of

Received by OCD: 3/16/2020 3:23:17 PM inquished by: Page 45 of 79

Analysis Request of Chain of Custody Record eceiving Laboratory: state) roject Location: Project Name LAB USE LAB# 市 T2 (4') (county, XENCO Cimarex Bill to Cimarex Lea Co, NM Double X25 Fed # 4H Tetra Tech, Inc. SAMPLE IDENTIFICATION Date: Date: Time: ORIGINAL COPY Received by: Received by: Sampler Signature: Project #: Site Manager: 8/31/2017 DATE SAMPLING TIME WATER MATRIX Clair Gonzales SOIL Mathew McDaniel 4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 212c-MD-00861 Date: HCL HNO₂ PRESERVATIVE METHOD Time: Time: ICE # CONTAINERS FILTERED (Y/N) Temp: 5, 6 CF:(0-6: -0.2°C) Sample Temperature LAB USE ONLY Corrected Temp: S. U BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) (6-23: +0.2°C) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles RUSH: Same Day 24 hr 48 hr 72 hr ANALYSIS REQUEST Special Report Limits or TRRP Report Rush Charges Authorized TCLP Semi Volatiles RCI IR ID:R-8 GC/MS Vol. 8260B / 624 Phredard GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Page Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance 으 Released to Imaging: 9/8/2021

Page 18 of 19

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 09/05/2017 04:30:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 561984

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		5.4
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping co	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	es?	N/A
#6*Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Any missing/extra samples?		No
#9 Chain of Custody signed when relinque	uished/ received?	Yes
#10 Chain of Custody agrees with samp	le labels/matrix?	Yes
#11 Container label(s) legible and intact	?	Yes
#12 Samples in proper container/ bottle?)	Yes
#13 Samples properly preserved?		Yes
#14 Sample container(s) intact?		Yes
#15 Sufficient sample amount for indicat	ed test(s)?	Yes
#16 All samples received within hold tim	e?	Yes
#17 Subcontract of sample(s)?		No
#18 Water VOC samples have zero head	dspace?	N/A
* Must be completed for after-hours de Analyst:	elivery of samples prior to placing in	the refrigerator
Checklist completed by:		Date: 09/06/2017
Checklist reviewed by:	Knur Koah	Date: 09/06/2017

Kelsey Brooks

Project Id:

Certificate of Analysis Summary 600594

Tetra Tech- Midland, Midland, TX

Project Name: Cimarex- Double X Federal #4H

Date Received in Lab: Thu Sep-27-18 03:47 pm

Report Date: 09-OCT-18
Project Manager: Kelsey Brooks

Contact: Clair Gonzales
Project Location: Lea CO. NM

212C-MD-00861

	1								1		
	Lab Id:	600594-0	001	600594-0	02	600594-0	03	600594-	004		
Analysis Requested	Field Id:	AH#1 (0-	6")	AH#2 (0-	6")	AH#3 (0-	6")	AH#4 (0	-6")		
Anaiysis Kequesieu	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL	,		
	Sampled:	Sep-27-18 (00:00	Sep-27-18 (00:00	Sep-27-18 (00:00	Sep-27-18	00:00		
BTEX by EPA 8021B	Extracted:	Oct-05-18 1	14:00	Oct-05-18 1	4:00	Oct-05-18 1	4:00	Oct-05-18	14:00		
	Analyzed:	Oct-05-18 1	19:16	Oct-05-18 1	9:38	Oct-05-18 1	9:59	Oct-05-18	20:21		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200		
Toluene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200		
Ethylbenzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200		
m,p-Xylenes		< 0.00402	0.00402	< 0.00399	0.00399	< 0.00398	0.00398	< 0.00400	0.00400		
o-Xylene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200		
Total Xylenes			0.00201	< 0.00200	0.00200		0.00199	< 0.00200	0.00200		
Total BTEX		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	Oct-01-18 (09:15	Oct-01-18 0	9:15	Oct-01-18 0	9:15	Oct-01-18	09:15		
	Analyzed:	Oct-01-18 1	12:35	Oct-01-18 1	2:40	Oct-01-18 1	2:46	Oct-01-18	12:52		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		< 5.01	5.01	25.7	4.95	37.6	4.98	205	4.95		
TPH By SW8015 Mod	Extracted:	Sep-29-18 1	10:00	Sep-29-18 1	0:00	Sep-29-18 1	0:00	Sep-29-18	10:00		
	Analyzed:	Sep-30-18 2	21:15	Sep-30-18 2	2:11	Sep-30-18 2	22:29	Sep-30-18	22:48		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9	<14.9	14.9	<15.0	15.0		
Diesel Range Organics (DRO)		51.3	15.0	<14.9	14.9	<14.9	14.9	22.0	15.0		
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<14.9	14.9	<14.9	14.9	<15.0	15.0		
Total TPH		51.3	15.0	<14.9	14.9	<14.9	14.9	22.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Analytical Report 600594

for Tetra Tech- Midland

Project Manager: Clair Gonzales
Cimarex- Double X Federal #4H
212C-MD-00861
09-OCT-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-27), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-13)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-17)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

09-OCT-18

Project Manager: Clair Gonzales Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 600594

Cimarex- Double X Federal #4H Project Address: Lea CO. NM

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 600594. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 600594 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Koah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 600594

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH#1 (0-6")	S	09-27-18 00:00		600594-001
AH#2 (0-6")	S	09-27-18 00:00		600594-002
AH#3 (0-6")	S	09-27-18 00:00		600594-003
AH#4 (0-6")	S	09-27-18 00:00		600594-004

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Cimarex- Double X Federal #4H

 Project ID:
 212C-MD-00861
 Report Date:
 09-OCT-18

 Work Order Number(s):
 600594
 Date Received:
 09/27/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3065657 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 600594-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Benzene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 600594-001, -002, -003, -004. The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id: AH#1 (0-6") Matrix: Soil Date Received:09.27.18 15.47

Lab Sample Id: 600594-001

Date Collected: 09.27.18 00.00

Prep Method: E300P

Analyst:

SCM

Analytical Method: Chloride by EPA 300

% Moisture:

Tech:

CHE

10.01.18 09.15 Date Prep:

Basis:

Wet Weight

Seq Number: 3064901

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	< 5.01	5.01	mg/kg	10.01.18 12.35	U	1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

09.29.18 10.00 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	09.30.18 21.15	U	1
Diesel Range Organics (DRO)	C10C28DRO	51.3	15.0		mg/kg	09.30.18 21.15		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	09.30.18 21.15	U	1
Total TPH	PHC635	51.3	15.0		mg/kg	09.30.18 21.15		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	93	%	70-135	09.30.18 21.15		
o-Terphenyl		84-15-1	99	%	70-135	09.30.18 21.15		

Date Received:09.27.18 15.47

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id: AH#1 (0-6") Matrix: Soil

Lab Sample Id: 600594-001 Date Collected: 09.27.18 00.00

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 10.05.18 14.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	10.05.18 19.16	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	10.05.18 19.16	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	116	%	70-130	10.05.18 19.16		
4-Bromofluorobenzene		460-00-4	99	%	70-130	10.05.18 19.16		

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id: AH#2 (0-6") Matrix: Soil Date Received:09.27.18 15.47

Lab Sample Id: 600594-002

Date Collected: 09.27.18 00.00

Prep Method: E300P

Tech: Analyst: SCM

Analytical Method: Chloride by EPA 300

% Moisture:

CHE

Date Prep:

10.01.18 09.15

Basis:

Wet Weight

Seq Number: 3064901

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	25.7	4.95	mg/kg	10.01.18 12.40		1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

09.29.18 10.00 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	09.30.18 22.11	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	09.30.18 22.11	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<14.9	14.9		mg/kg	09.30.18 22.11	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	09.30.18 22.11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	93	%	70-135	09.30.18 22.11		
o-Terphenyl		84-15-1	96	%	70-135	09.30.18 22.11		

AH#2 (0-6")

Certificate of Analytical Results 600594

Date Received:09.27.18 15.47

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Soil

Lab Sample Id: 600594-002 Date Collected: 09.27.18 00.00

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Matrix:

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 10.05.18 14.00 Basis: Wet Weight

Seq Number: 3065657

Sample Id:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	10.05.18 19.38	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	10.05.18 19.38	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	117	%	70-130	10.05.18 19.38		
4-Bromofluorobenzene		460-00-4	94	%	70-130	10.05.18 19.38		

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

10.01.18 09.15

Sample Id: AH#3 (0-6")

CHE

Matrix: Soil Date Received:09.27.18 15.47

Lab Sample Id: 600594-003

Date Collected: 09.27.18 00.00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: SCM

Analyst:

Date Prep:

Basis:

Wet Weight

Seq Number: 3064901

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	37.6	4.98	mg/kg	10.01.18 12.46		1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech: Analyst: ARMARM

09.29.18 10.00 Date Prep:

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	09.30.18 22.29	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	09.30.18 22.29	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<14.9	14.9		mg/kg	09.30.18 22.29	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	09.30.18 22.29	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	93	%	70-135	09.30.18 22.29		
o-Terphenyl		84-15-1	98	%	70-135	09.30.18 22.29		

Date Received:09.27.18 15.47

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id: AH#3 (0-6") Matrix: Soil

Lab Sample Id: 600594-003 Date Collected: 09.27.18 00.00

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 10.05.18 14.00 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	10.05.18 19.59	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	10.05.18 19.59	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	117	%	70-130	10.05.18 19.59		
4-Bromofluorobenzene		460-00-4	93	%	70-130	10.05.18 19.59		

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Sample Id: **AH#4** (0-6")

Matrix: Soil

Date Received:09.27.18 15.47

Lab Sample Id: 600594-004

Date Collected: 09.27.18 00.00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

1

% Moisture:

Tech: SO

SCM CHE

Date Prep: 10.01.18 09.15

Basis:

Wet Weight

Analyst:

Seq Number: 3064901

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	205	4.95	mg/kg	10.01.18 12.52		1

Analytical Method: TPH By SW8015 Mod

Prep Method: TX1005P

% Moisture:

Tech:
Analyst:

ARM ARM

Date Prep: 09.29.18 10.00

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	09.30.18 22.48	U	1
Diesel Range Organics (DRO)	C10C28DRO	22.0	15.0		mg/kg	09.30.18 22.48		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	09.30.18 22.48	U	1
Total TPH	PHC635	22.0	15.0		mg/kg	09.30.18 22.48		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	92	%	70-135	09.30.18 22.48		
o-Terphenyl		84-15-1	96	%	70-135	09.30.18 22.48		

AH#4 (0-6")

Certificate of Analytical Results 600594

Date Received:09.27.18 15.47

Tetra Tech- Midland, Midland, TX

Cimarex- Double X Federal #4H

Soil

Lab Sample Id: 600594-004 Date Collected: 09.27.18 00.00

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Matrix:

Tech: ALJ % Moisture:

Analyst: ALJ Date Prep: 10.05.18 14.00 Basis: Wet Weight

Seq Number: 3065657

Sample Id:

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	10.05.18 20.21	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	10.05.18 20.21	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	120	%	70-130	10.05.18 20.21		
4-Bromofluorobenzene		460-00-4	102	%	70-130	10.05.18 20.21		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Flag

600594 **QC Summary**

Tetra Tech- Midland

Cimarex- Double X Federal #4H

Analytical Method: Chloride by EPA 300

Seq Number: 3064901 Matrix: Solid

MR

LCS Sample Id: 7663267-1-BKS MB Sample Id: 7663267-1-BLK

E300P Prep Method:

Date Prep: 10.01.18

LCSD Sample Id: 7663267-1-BSD

Spike LCS LCS Limits %RPD RPD Limit Units LCSD LCSD Analysis Flag **Parameter** Result Amount Result %Rec Date %Rec Result

10.01.18 10:13 Chloride <4.99 250 258 103 259 104 90-110 0 20 mg/kg

Analytical Method: Chloride by EPA 300

Seq Number: 3064901

Matrix: Soil

MS Sample Id: 600488-005 S

E300P Prep Method:

E300P

Date Prep: 10.01.18

Parent Sample Id: 600488-005 MSD Sample Id: 600488-005 SD

Spike MS MS %RPD RPD Limit Units Parent **MSD MSD** Limits Analysis Flag **Parameter** Result Date Result Amount %Rec Result %Rec X

Chloride 1200 253 1400 79 1400 79 90-110 0 20 mg/kg 10.01.18 11:49

Analytical Method: Chloride by EPA 300

Prep Method: 3064901 Matrix: Soil 10.01.18 Seq Number: Date Prep:

MS Sample Id: MSD Sample Id: 600661-012 SD Parent Sample Id: 600661-012 600661-012 S

MS %RPD RPD Limit Units Parent Spike MS **MSD MSD** Limits Analysis Flag **Parameter** Result Date Result %Rec Amount Result %Rec 10.01.18 10:30 Chloride < 0.858 250 247 99 248 99 90-110 0 20 mg/kg

Analytical Method: TPH By SW8015 Mod

TX1005P Prep Method: Seq Number: 3064935 Matrix: Solid 09.29.18 Date Prep:

MB Sample Id: 7663258-1-BKS LCSD Sample Id: 7663258-1-BSD LCS Sample Id: 7663258-1-BLK

LCS %RPD RPD Limit Units MB Spike LCS LCSD LCSD Limits Analysis **Parameter** Result %Rec Date Result Amount Result %Rec Gasoline Range Hydrocarbons (GRO) 966 97 70-135 0 20 09.30.18 20:38 < 8.00 1000 967 97 mg/kg 09.30.18 20:38 996 100 1000 70-135 0 20 Diesel Range Organics (DRO) 1000 100 < 8.13 mg/kg

LCS LCSD MB MB LCS LCSD Limits Units Analysis **Surrogate** %Rec Flag %Rec Flag %Rec Flag Date 1-Chlorooctane 102 116 112 70-135 % 09.30.18 20:38 09.30.18 20:38 o-Terphenyl 107 103 106 70-135 %

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

= MS/LCS Result

= MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Flag

Flag

QC Summary 600594

Tetra Tech- Midland

Cimarex- Double X Federal #4H

Analytical Method:TPH By SW8015 ModPrep Method:TX1005PSeq Number:3064935Matrix: SoilDate Prep:09.29.18

Parent Sample Id: 600594-001 MS Sample Id: 600594-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Analysis Date
Gasoline Range Hydrocarbons (GRO)	< 8.00	1000	911	91	70-135	mg/kg	09.30.18 21:34
Gasoline Range Hydrocarbons (GRO)	< 8.00	1000	921	92	70-135	mg/kg	09.30.18 21:52
Diesel Range Organics (DRO)	51.3	1000	971	92	70-135	mg/kg	09.30.18 21:34
Diesel Range Organics (DRO)	51.3	1000	989	94	70-135	mg/kg	09.30.18 21:52

Surrogate	MS MS %Rec Flag	Limits	Units	Analysis Date
1-Chlorooctane	127	70-135	%	09.30.18 21:34
1-Chlorooctane	128	70-135	%	09.30.18 21:52
o-Terphenyl	107	70-135	%	09.30.18 21:34
o-Terphenyl	103	70-135	%	09.30.18 21:52

Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B

Seq Number:3065657Matrix:SolidDate Prep:10.05.18MB Sample Id:7663732-1-BLKLCS Sample Id:7663732-1-BKSLCSD Sample Id:7663732-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.0998	0.0874	88	0.0926	93	70-130	6	35	mg/kg	10.05.18 17:10
Toluene	< 0.00200	0.0998	0.0781	78	0.0838	84	70-130	7	35	mg/kg	10.05.18 17:10
Ethylbenzene	< 0.00200	0.0998	0.0922	92	0.0991	99	70-130	7	35	mg/kg	10.05.18 17:10
m,p-Xylenes	< 0.00399	0.200	0.184	92	0.199	100	70-130	8	35	mg/kg	10.05.18 17:10
o-Xylene	< 0.00200	0.0998	0.0928	93	0.100	100	70-130	7	35	mg/kg	10.05.18 17:10

Surrogate	%Rec	Flag	%Rec	Flag	%Rec	Flag	Limits	Units	Date
1,4-Difluorobenzene	123		122		124		70-130	%	10.05.18 17:10
4-Bromofluorobenzene	94		108		114		70-130	%	10.05.18 17:10

Analytical Method:BTEX by EPA 8021BPrep Method:SW5030BSeq Number:3065657Matrix: SoilDate Prep:10.05.18

Parent Sample Id: 600594-001 MS Sample Id: 600594-001 S MSD Sample Id: 600594-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.0761	75	0.0677	67	70-130	12	35	mg/kg	10.05.18 17:52	X
Toluene	< 0.00202	0.101	0.0544	54	0.0460	46	70-130	17	35	mg/kg	10.05.18 17:52	X
Ethylbenzene	< 0.00202	0.101	0.0500	50	0.0408	40	70-130	20	35	mg/kg	10.05.18 17:52	X
m,p-Xylenes	< 0.00403	0.202	0.0904	45	0.0729	36	70-130	21	35	mg/kg	10.05.18 17:52	X
o-Xylene	< 0.00202	0.101	0.0514	51	0.0434	43	70-130	17	35	mg/kg	10.05.18 17:52	X

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	117		114		70-130	%	10.05.18 17:52
4-Bromofluorobenzene	111		113		70-130	%	10.05.18 17:52

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100*(C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result

C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Work Order #: 600594

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Date/ Time Received: 09/27/2018 03:47:00 PM

Temperature Measuring device used: R8

:	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	4.9	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping contain	er/ cooler? N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished	ed/ received? Yes	
#10 Chain of Custody agrees with sample lal	pels/matrix? Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated to	est(s)? Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspa	ce? N/A	

Must be co	ompleted for after-hours de	livery of samples prior to plac	ing in the refrigerator
Analyst:		PH Device/Lot#:	
	Checklist completed by:	Bawa Tul Brianna Teel	Date: <u>09/27/2018</u>
	Checklist reviewed by:	Mus Hoah Kelsey Brooks	Date: 09/28/2018

Photos

Cimarex Energy Double X 25 Federal #4H Lea County, New Mexico

View Southeast – Area of release.

View Northeast – Area of release.

Appendix A: Agency Forms

Received by OCD: 3/16/2020 3:23:14 PM

Reporting \$1600

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

						OPERATOR Initial Report Fin					Final Report	
	Name of Company: Cimarex Energy Address: 600 N Marienfeld Ste 600 Midland TX						Contact: Gloria Garza					
						Telephone No. 432-234-3204						
Facility Nat	ne: Doubl	e X 25 Feder	al No. 41	1	I	Facility Type: Well						
Surface Owner: Federal Mineral Owner									API No	.: 30-025-4	0690	
				LOCA	TION	OF RE	LEASE					
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/V	Vest Line	County		
С	25	24S	32E	330	FNL		2055	FWL		Lea		
Latitude: 32.11' 42" NLongitude: -103. 37' 48" W												
Theo of Dalo	anai Deedua	ad Watas		NAT	URE	OF REL		c 1	31.1		BBLO	
Type of Rele Source of Re				· · · · ·			Release: 10 BBL Iour of Occurrence			Recovered: 5 Hour of Disc		
						•	8:30 AM			8:30 AM		
Was Immedia	ite Notice (Yes [No Not Re	quired	If YES, To Shelly Tuc	Whom? ker/Jamie Keyes					
By Whom? C						Date and I-	lour: 5/29/2016 4	:00 PM				
Was a Water	course Read		Yes 🗵	1 Ma		If YES, Vo	olume Impacting t	the Wate	rcourse.			
10 11						<u> </u>						
If a Watercou	irse was Im	pacted, Descri	ibe Fully,	•								
	ving issue		the float	n Taken.* switch did kill t	he well	but the uni	t kept flowing c	ausing	the stuffin	ig box to bi	ırn up	releasing
Describe Are We will reme			Action Tak	en.*								
regulations al public health should their o or the enviror	I operators or the envi perations h ament. In a	are required to ronment. The save failed to a	o report an acceptance idequately ICD accep	is true and complete of a C-141 reportance o	lease no rt by the mediate	tifications a NMOCD m contaminati	nd perform correct arked as "Final R on that pose a thr	tive acti eport" de eat to gr	ons for rele oes not reli ound water	eases which eve the oper , surface wa	may en ator of ter, hu	danger liability nan health
	~ ^ 1			_			OIL CON	SERV	ATION	DIVISIO	N	.54
Signature: (Mir	UU (A	lim	Ll)								2
Printed Name	: Gloria G	arza) 1)		Approved by	Environmental S	pecialist	*			0021
Title: ESH S	pecialist				. A	Approval Dat	te:	1	Expiration 1	Date:		8/6
E-mail Addre	ss: ggarza	@.cimarex.com	n			Conditions of	Approval:		Attached		oniona	
Date: 5/29/16			Phone: 43	2-234-3204							_	Om
Attach Addit	ional Shee	ets If Necess かる100		a eur dauf	!							leased to
LY	J											7

CIMAREX Cimarex Energy Co. Form: Cimarex Incident Report

v3.0

Completed by: Osborne, John Completed on: 2016-05-28 14:08 Number: XEC02313

Hobbs East 2020 W. Bender Blvd Hobbs NM 88240

Phone: +1 (575) 393-1020

Fax: Client No.: Hobbs E

ICIDENT TIMING	
Today's Date	2016-05-28
Date of Incident	2016-05-28
Time of Incident	08:30
EPARTMENT	
Select Department	Production
EPORTING	
REPORTED BY	
First Name	John
Last Name	Davis
Phone Number	575-200-4880
REPORTED TO	
First Name	John
Last Name	Osborne
Phone Number	575-390-8978
Was ES&H notified immediately?	No
CIDENT DETAILS	
Operation At Time Of Incident?	Producing Well.
LOCATION OF INCIDENT	
Where Did Incident Occur?	Lease
Lease Name	Double X 25 Federal 4H
State	NM - New Mexico
City	
County	Lea
Section-Block-Lat-Long	
Section	25
Township (NM, OK, KS, LA, KY, MI)	24 S
Range	32 E
Block (TX Only)	
GPS Location	
Apple Device	No
Latitude	32*11'42" N
Longitude	-103°37'48" W
TYPE OF INCIDENT	
Type of Incident?	Spill / Release
Date Spill/Release Discovered	2016-05-28
Time Spill/Release Discovered	08:30
TYPE OF MATERIAL SPILLED/RELEASED (1)	00,00
Type of Material Spilled / Released?	Produced Water
Quantity Spilled	10
Quantity Recovered	5
Unit of Measure	Barrels (bbls)
CAUSE OF SPILL/RELEASE	Danielo (IOIO)

Released to Imaging: 9/8/2021 4:27:54 PM

PM
54
.27:
214
8/20
6
Imaging:
to
Released
- 1

Cause of Spill/Release (State the facts only)	Stuffing box packing burned up, Containment did shut well down but well kept flowing.
Was Spill/Release Contained?	Yes
AFFECTED AREA INFORMATION (1)	
What Type of Area Was Affected?	Location Pad
In Feet, Specify Area Affected (length, width, & depth)	50'x20'x2"
NOTIFICATIONS	
Has Landowner been Informed?	No
Has the State Oil & Gas Commission Been Notified?	No
Has the BLM/BIA been notified, if applicable?	Na
Witnesses to the Incident	
Were there Witnesses to the Incident?	No
WEATHER CONDITIONS - If Known	
Outside Air Temperature (deg F)	70
Weather Conditions	Clear
Wind - If Known	
Speed (MPH)	5
Direction	Out of the Southwest
INCIDENT DESCRIPTION	
Describe the Incident (State the Facts Only)	Stuffing box packing burned up. Float switch did kill the unit but the well kept flowing. Have video of the well flowing.
CONTRACTORS INVOLVED	
What Contractors were Involved?	
COMMENTS	
Enter any additional comments (facts only)	
PICTURE (1)	
Attach Pictures	
Picture Comment	

Received by OCD: 3/16/2020 3:23:17 PM From C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 71 of 79
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/16/2020 3:23:17 PM State of New Mexico
Page 4 Oil Conservation Division

Page	<i>72</i>	of	79
			ì

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name:	_ Title:							
Printed Name: Signature: Alvia garza	Date:							
email:	Telephone:							
OCD Only								
Received by:	Date:							
Received by.	Dutc							

Received by OCD: 3/16/2020 3:23:17 PM State of New Mexico
Page 6 Oil Conservation Division

Incident ID
District RP
Facility ID
Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC							
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)								
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)								
☐ Description of remediation activities								
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially neditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.							
Signature: glivia garza								
·								
email:	Telephone:							
OCD Only								
Received by:	Date:							
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.							
Closure Approved by: Bradford Billings	Date: 09/08/2021							
Printed Name: Bradford Billings	Title:Envi.Spec.A							

Appendix B: Groundwater Data

Water Well Data Average Depth to Groundwater (ft) Cimarex - Double X 25 Federal \$4H Lea County, New Mexico

	5	4	_		
85		7	3	2	1
	354	168			
7 140	8	9	10	11	12
	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36
	24 So	uth	31	East	
6	5	4	3	2	1
7	0	9	10	192 11	12
′	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36
	25 So	uth	31	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21 390 290	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	23 9	South		32 Eas	t
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	400 28	27	26	25
31	32	33	34	35	36
	24	South	<u> </u>	32 Eas	t
6	5 38		3	2	1
7	8	9	10	11	12
18	17 16		15	14	13
19	20	20 21		23	24
30	29	28	27	26	25
31	32	33 290	34	35	36
	25 \$	South		32 Eas	t
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

		90	East	
5	4	3	2	1
3	9	10	11	12
17	16	15	14	13
20	21	22	23	24
29	28	27	26	25
32	33	34	35	36
1	7 20 29	9 9 16 20 21 28 28	9 10 7 16 15 20 21 22 29 28 27	9 10 11 7 16 15 14 20 21 22 23 29 28 27 26

	24 9	South	3	3 East	
6	5	4	3	2	1
7	8	9	10 24.6	11	12
18	17	16	15	14	13
19	20	21	22	23 208	24 16.9
30	29	28	27	26	25
31	32	33 93.2	34	35	36

	25 S	outh	33	33 East					
6	5	4	3 172	2	1				
7	8	9	10	11 140	12 200				
18	17	16	15	14	13				
19	20 200	21 120	22	23	24				
30	29	28	27 125	26	25				
31 257	32	33	34	35	36				

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (N

(NAD83 UTM in meters)

(In feet)

		POD Sub-		Q	Q	Q							Water
POD Number	Code l		County	64					0		Y	DepthWellDepthWater	Column
<u>C 01932</u>		С	ED		3	1	12	24S	32E	628633	3567188*	492	
<u>C 02350</u>			ED		4	3	10	24S	32E	625826	3566333*	60	
C 03527 POD1		C	LE	1	2	3	03	24S	32E	625770	3568487	500	
C 03528 POD1		C	LE	1	1	2	15	24S	32E	626040	3566129	541	
C 03530 POD1		C	LE	3	4	3	07	24S	32E	620886	3566156	550	
C 03555 POD1		C	LE	2	2	1	05	24S	32E	622709	3569231	600 380	220

Average Depth to Water:

380 feet

Minimum Depth:

380 feet

Maximum Depth:

380 feet

Record Count: 6

PLSS Search:

Township: 24S Range: 32E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/5/17 12:22 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:		
Groundwater ~	New Mexico	~	GO

Click to hideNews Bulletins

- Please see news on new formats
- Full News

Groundwater levels for New Mexico

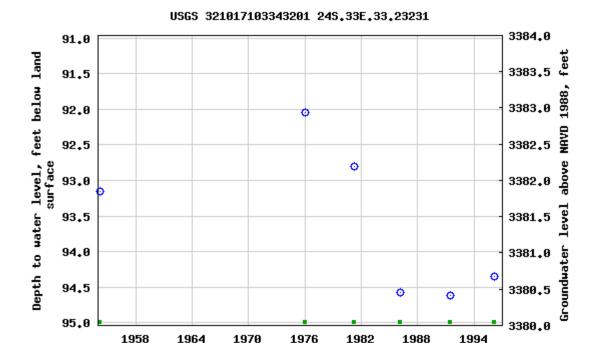
Click to hide state-specific text

Search Results -- 1 sites found

site_no list =

• 321017103343201

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 321017103343201 24S.33E.33.23231

Available data for this site	
Lea County, New Mexico	
Hydrologic Unit Code 13070007	
Latitude 32°10'17", Longitude 103°34'32" NAD27	
Land-surface elevation 3,475 feet above NAVD88	
This well is completed in the Ogallala Formation (1210GLL) local aqu	ifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Breaks in the plot represent a gap of at least one year between field measurements.

Period of approved data

Download a presentation-quality graph

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: New Mexico Water Data Maintainer

Page Last Modified: 2018-04-25 12:25:25 EDT

1.15 1.02 nadww01

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 4542

CONDITIONS

Operator:	OGRID:	
CIMAREX ENERGY CO. OF COLORADO	162683	
600 N. Marienfeld Street	Action Number:	
Midland, TX 79701	4542	
	Action Type:	
	[C-141] Release Corrective Action (C-141)	

CONDITIONS

Created By	Condition	Condition Date
bbillings	None	9/8/2021