

October 22, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips (Heritage Concho) Sopapilla State 2D CTB Flex Line Release Unit Letter M, Section 15, Township 23 South, Range 33 East Lea County, New Mexico Incident ID: NAPP2115525504

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips Company (COP) to evaluate a release that occurred along a flex line associated with the Sopapilla State 2D Central Tank Battery (CTB), Unit Letter M, Section 15, Township 23 South, Range 33 East, in Lea County, New Mexico (Site). The approximate release Site coordinates are 32.29802°, -103.56710°. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report, the release was discovered on May 25, 2021, and approximately 10 barrels (bbls) of crude oil was reported to have been released due to damage caused by internal corrosion within a flex line. This release reportedly occurred in the pasture along the flex line connected to the Sopapilla CTB, and eventually flowed south onto the adjacent lease road. Based upon the reported spill calculator form, the release impacted approximately 552 square feet (sq ft) of surface area. Vacuum trucks were dispatched to remove the freestanding fluids; however, no fluids were reported recovered. The C-141 Form is included in Appendix A.

New Mexico Oil Conservation Division (NMOCD) was notified of the release on June 4, 2021. NMOCD received the initial C-141 on June 6, 2021, and subsequently assigned the release the Incident ID NAPP2115525504. An extension request was filed with the NMOCD on August 24, 2021 for an additional 30 days following the initial 90 days. The extension request was approved by the NMOCD on August 26, 2021. The email correspondence from the NMOCD regarding the extension is found in Appendix B.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there were no water wells within 800 meters (approximately ½ mile) radius of the Site. The radius search was expanded to 1600 meters and 2400 meters of the Site with similar results. Expanding the search radius to 3200 meters, four (4) water wells were present with the average depth to ground water at 400 feet (ft) below ground surface (bgs). The site characterization data is included in Appendix C.

Tetra Tech

ConocoPhillips

The remediation action levels proposed for the Site are largely dependent upon depth to groundwater. As such, the OCD focuses upon depth to water estimation. Thus, 19.15.11(A)(2) NMAC allows for various means of determining depth to groundwater.

For this release, as the available water level information was from a well further than ½ mile away from the Site and the data was more than 25 years old, COP elected to drill a boring to depth for groundwater verification. On August 31, 2021, a licensed well drilling subcontractor was onsite to a drill a groundwater determination borehole to 55 feet bgs. The borehole was located within a ½-mile radius of the release footprint. The borehole was dry upon completion, and soils were dry from surface to total depth. The depth to groundwater in the area was thus verified as greater than 55 feet bgs. The borehole was plugged with 3/8-inch bentonite chips on August 31, 2021. The borehole coordinates are 32.298042°, -103.567104° and the boring location is indicated on Figure 3. The boring log (BH-2) is included in Appendix D.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg

SITE ASSESSMENT AND DELINEATION

The approximate release extent is shown in Figure 3. In order to properly characterize the release footprint and achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on June 25, 2021. A total of ten (10) auger holes were installed within and outside the area in the vicinity of the reported release footprint. Four (4) auger holes (AH-1 through AH-4) were installed inside the release area to achieve vertical delineation. Six (6) auger holes (H-1 through H-6) were installed along the perimeter of the estimated release extent to achieve horizontal delineation. Soil samples collected were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter. Hand auger hole locations are shown on Figure 3.

A total of twenty-two (22) samples were collected from the ten (10) augur holes and submitted to Cardinal Laboratories (Cardinal) in Hobbs, New Mexico to be analyzed for chlorides via EPA Method 4500.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix E. Photographic documentation of the release area is included in Appendix F.

ConocoPhillips

SUMMARY OF SAMPLING RESULTS

Results from the June 2021 soil sampling event are summarized in Table 1. Analytical results associated with the sample locations AH-3 and AH-4 exceeded reclamation RRALs for chlorides (600 mg/kg) in the upper 4 feet. Analytical results associated with AH-3 exceeded the reclamation RRALs for TPH (100 mg/kg) in the 0-1 foot bgs interval. Analytical results from soil sample below four feet in AH-3 and AH-4 did not exceed the proposed remediation RRALs for chloride of 10,000 mg/kg.

There were no other analytical results from samples collected in June 2021 which exceeded the Site RRALs for TPH, chlorides, or BTEX in the perimeter or the interior boring locations. The analytical results associated with the remainder of the samples analyzed were below the Site remediation and reclamation RRALs for all constituents. However, after review of the analytical results from the sampling events, additional delineation was required following the June 2021 soil assessment activities.

ADDITIONAL DELINEATION

After review of the collected analytical data, Tetra Tech performed additional sampling using an air rotary drilling rig to achieve delineation of impacted soils within the release extent, in the vicinity of previously sampled locations AH-3, AH-4, and H-3. This delineation was intended to assist in the overall release characterization in accordance with 19.15.29.12 NMAC.

On August 31, 2021 Tetra Tech personnel returned to the Site to complete three (3) soil borings (BH-1 through BH-3) using an air rotary drilling rig, to delineate and clarify the release extent both horizontally and vertically. A total of sixteen (16) samples were collected from the three (3) borings and submitted to Eurofins-Xenco to be analyzed for TPH, BTEX, and chloride. Results from the September 2021 soil sampling event are summarized in Table 2. Additional boring locations are indicated in Figure 3. Boring logs, included as Appendix D, present soil descriptions, sample depths and field screening data from the additional Site assessment. Copies of the analytical laboratory reports and chain-of-custody documentation are included in Appendix E.

SUMMARY OF ADDITIONAL DELINEATION

The analytical results associated with BH-1 boring location exceeded the Site reclamation RRAL for chlorides (600 mg/kg) in the 0-1 foot bgs interval. Analytical results associated with BH-2 exceeded the reclamation RRAL for TPH (100 mg/kg) in the 0-1 foot bgs interval.

There were no other analytical results from samples collected in August 2021 which exceeded the Site RRALs for TPH, chlorides, or BTEX in the perimeter or the interior boring locations. The analytical results associated with the remainder of the samples analyzed were below the Site remediation and reclamation RRALs for all constituents. After review of the analytical results from the sampling events, both horizontal and vertical delineation was achieved following the August 2021 soil assessment activities.

INITIAL DEFERRAL REQUEST

A Release Characterization and Deferral Request was prepared by Tetra Tech on behalf of COP and submitted to the NMOCD on September 23, 2021. The report described the assessment activities and results. The deferral request was rejected by Chad Hensley of the NMOCD via email on October 14, 2021. Reasons for rejection included in the email were:

- "• Deferral is not eligible for off-pad release.
- Remediation plan due 11/25/2021."

ConocoPhillips

REMEDIATION WORK PLAN

Thus, based on the analytical results from the additional assessment, COP proposes to remove the impacted material within the release extent as shown in Figure 4. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 4 feet below the surrounding surface or until a representative sample from the walls and bottom of the excavation is below the Site RRALs. Heavy equipment will come no more than 3 feet from any pressurized lines. Impacted soils within the vicinity of the surface and subsurface lines which intersect the release footprint will be dug by hand to the maximum extent practicable.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once analytical results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 230 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, COP proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 5. Four (4) confirmation floor samples and ten (10) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 1,560 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to an accredited laboratory for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (USEPA Method 300.0). Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

Post-remediation, any off-lease pasture areas will be backfilled and seeded (in the next first favorable growing season) to aid in revegetation. Based on the soils at the Site, the New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the Site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the Site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix G. Final reclamation will create a landform that approximates and blends in with the surrounding landform, while controlling erosion.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 120 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD.

ConocoPhillips

If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. Program Manager

CC:

Ms. Kelsy Waggaman, GPBU – ConocoPhillips Mr. Luke Alejandro, GPBU – ConocoPhillips

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent and Assessment

Figure 4 – Proposed Remediation Extent

Figure 5 – Alternative Confirmation Sampling Plan

Tables:

Table 1 – Summary of Analytical Results – Initial Soil Assessment

Table 2 – Summary of Analytical Results – Additional Soil Assessment

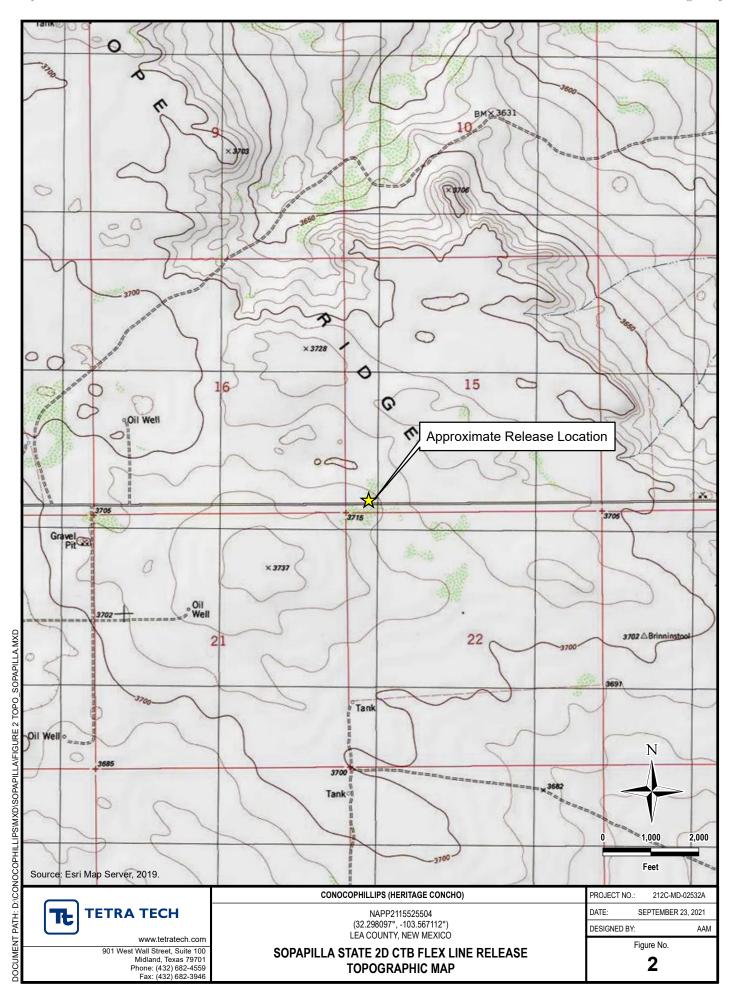
Appendices:

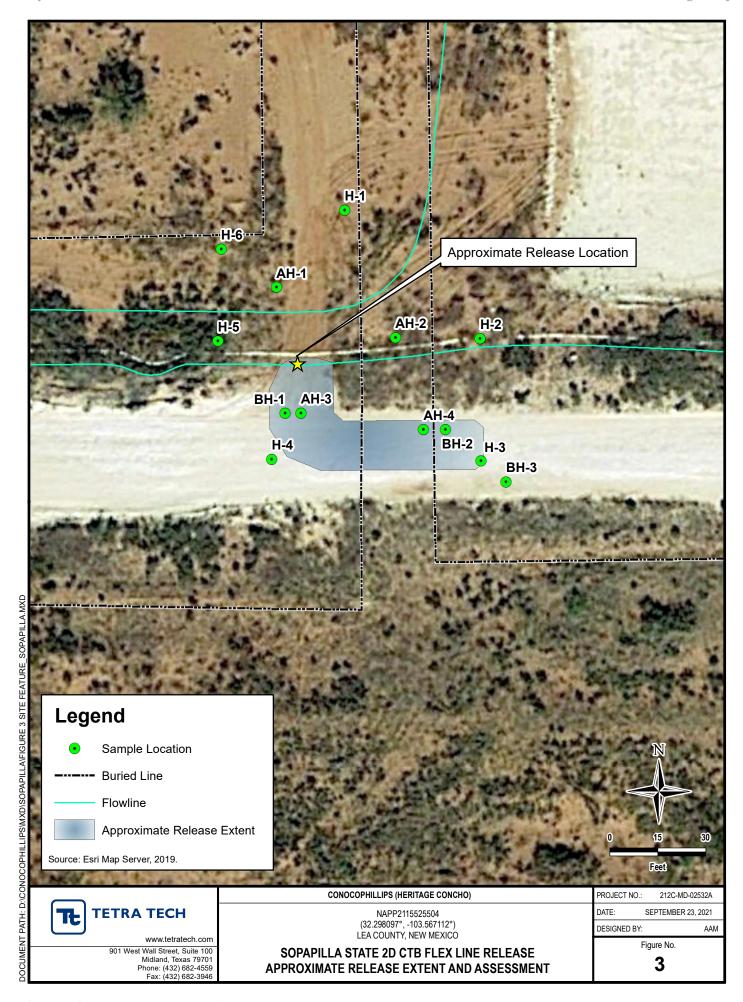
Appendix A – C-141 Forms

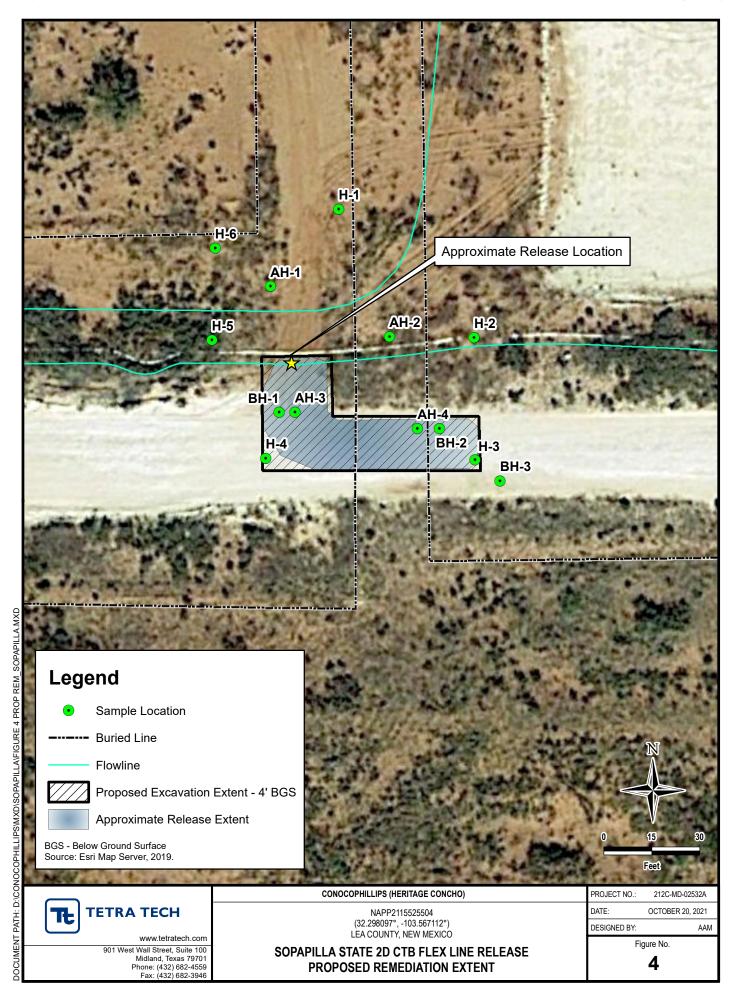
Appendix B – NMOCD Correspondence

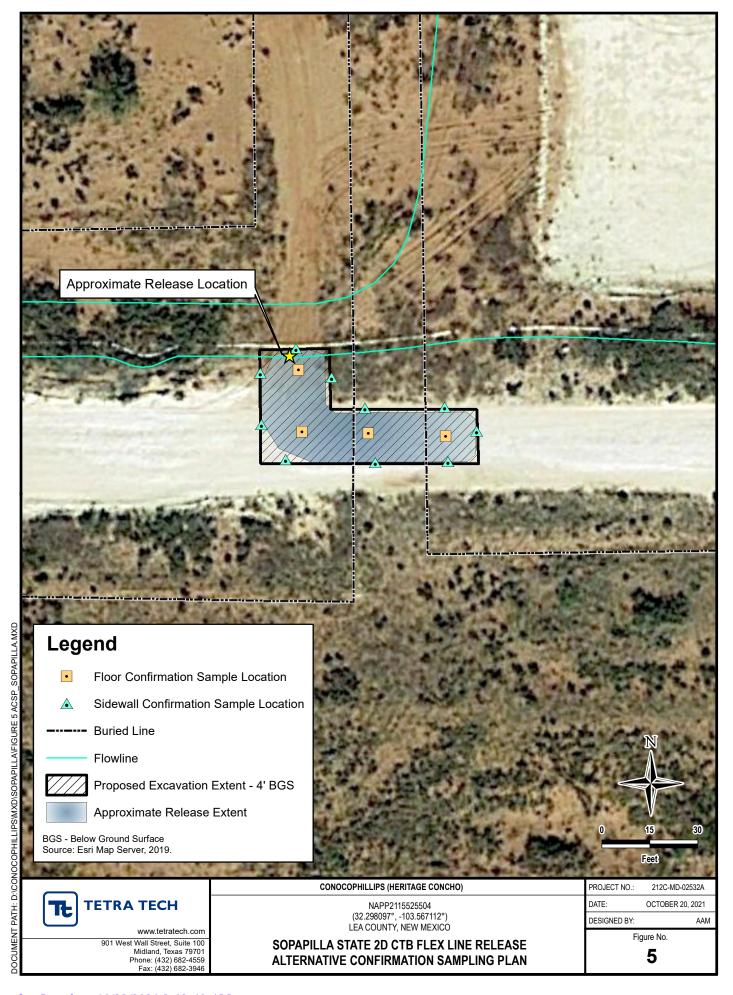
Appendix C - Site Characterization Data


Appendix D – Boring Logs


Appendix E - Laboratory Analytical Data


Appendix F – Photographic Documentation


Appendix G – NMSLO Seed Mix Details


FIGURES

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT- NAPP2115525504 HERITAGE CONCHO SOPAPILLA STATE 2D CTB FLEX LINE RELEASE

LEA COUNTY, NEW MEXICO

			Field Sc	reening							BTEX ²									TP	H ³		
Sample ID Sample Date		Sample Depth Interval	Res	ults	Chloride	1	D		T-1		Fabrulls and an	_	T-4-1 V. 1		T-4-1 DTF)	,	GRO		DRO		ORO		T-4-LTDU
Sample ID	Sample Date	er va.	Chloride	PID			Benzene		Toluene		Ethylbenzen	e	Total Xylen	es	Total BTE	`	C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		Total TPH
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg (
		0 - 1	-	-	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
AH-1	6/25/2021	1 - 1.5	-	-	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
,	0,-1,-11	2 - 2.5	-	-	64		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
		3 - 3.5	-	-	64		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
	6 /25 /2024	0 - 1	-	-	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
AH-2	6/25/2021	1 - 1.5	-	-	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
		0 - 1	-	-	2600		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
		1 - 1.5	-	-	4960		<0.050		<0.050		<0.050		<0.150		<0.300	H	<10.0		<10.0	H	<10.0	H	<10.0
AH-3	6/25/2021	2 - 2.5	-	-	3280		<0.050		<0.050		<0.050		<0.150	Ħ	<0.300	Ħ	<10.0		<10.0		<10.0		<10.0
		3 - 3.5	-	-	4960		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
		4 - 4.5	-	-	7600		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
		0 - 1	-	-	3600		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		25.9		<10.0		25.9
		1 - 1.5	-	-	3280		<0.050		<0.050		<0.050		<0.150	Ħ	<0.300	Ħ	<10.0		<10.0		<10.0		<10.0
AH-4	6/25/2021	2 - 2.5	-	-	1540		<0.050		<0.050		<0.050		<0.150	Ħ	<0.300	Ħ	<10.0		<10.0		<10.0		<10.0
		3 - 3.5	-	-	2680		<0.050		<0.050		<0.050		<0.150	Ħ	<0.300	Ħ	<10.0		<10.0		<10.0		<10.0
		4 - 4.5	-	-	6880		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
H-1	6/25/2021	0 - 1	-	-	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
H-2	6/25/2021	0 - 1	-	-	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
H-3	6/25/2021	0 - 1	-	-	208		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		69.7		40.3		110
H-4	6/25/2021	0 - 1	-		80		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
H-5	6/25/2021	0 - 1	-	-	336		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
H-6	6/25/2021	0 - 1	-	-	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<10.0
OTES:	1	1			1	-							<u> </u>		1	1 1		-					ı

ft.

Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

bgs Below ground surface

Parts per million

Milligrams per kilogram mg/kg

Total Petroleum Hydrocarbons TPH

Gasoline range organics GRO DRO

Diesel range organics Oil range organics ORO

EPA Method 300.0

EPA Method 8021B

EPA Method 8015B NM

QUALIFIERS:

*1 LCS/LCSD RPD exceeds control limits.

Shaded rows indicate intervals proposed for excavation.

TABLE 2

SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT- NAPP2115525504

HERITAGE CONCHO

SOPAPILLA STATE 2D CTB FLEX LINE RELEASE

LEA COUNTY, NEW MEXICO

			Field Sci	reening					BTEX ²								H ³							
Sample ID	Sample Date	Sample Depth Interval	Resi	ults	Chloride	1	Benzene		Taluana	Toluene			Total Xylene		Total BTEX		GRO C ₆ - C ₁₀		DRO > C ₁₀ - C ₂₈		ORO		Total TPH	
Sample ID	Sample Date		Chloride	PID			benzene		Toluene		Ethylbenzen	е	rotal Aylene	25	TOTAL BIEX						> C ₂₈ - C ₃₆		TOTAL TEN	
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q
		0 - 1	-	-	615		< 0.00199		< 0.00199		< 0.00199		< 0.00398		0.00398		< 49.9		< 49.9	*1	< 49.9		< 49.9	
		2 - 3	620	-	280		< 0.00200		< 0.00200		< 0.00200		< 0.00399		0.00399		< 49.8		< 49.8	*1	< 49.8		< 49.8	
		4 - 5	948	-	884		< 0.00198		< 0.00198		< 0.00198		< 0.00397		0.00397		< 49.9		< 49.9	*1	< 49.9		< 49.9	
BH-1	8/31/2021	6 - 7	510	-	341		< 0.00199		< 0.00199		< 0.00199		< 0.00398		0.00398		< 49.8		< 49.8	*1	< 49.8		< 49.8	
		9 - 10	806	-	1,010		< 0.00200		< 0.00200		< 0.00200		< 0.00401		0.00401		< 49.9		< 49.9	*1	< 49.9		< 49.9	
		14 - 15	605	-	492		< 0.00200		< 0.00200		< 0.00200		< 0.00399		0.00399		< 49.9		< 49.9	*1	< 49.9		< 49.9	
		19 - 20	381	-	314		< 0.00201		< 0.00201		< 0.00201		< 0.00402		0.00402		< 49.8		< 49.8	*1	< 49.8		< 49.8	
		0 - 1	-	-	67.4		< 0.00202		< 0.00202		< 0.00202		< 0.00403		0.00403		< 50.0		1830	*1	334		2,160	
		2 - 3	184	-	40.1		< 0.00202		< 0.00202		< 0.00202		< 0.00403		0.00403		< 50.0		< 50.0	*1	< 50.0		< 50.0	
BH-2	8/31/2021	4 - 5	629	-	294		< 0.00201		< 0.00201		< 0.00201		< 0.00402		0.00402		< 49.9		105	*1	< 49.9		105	М
		6 - 7	487	-	392		< 0.00200		< 0.00200		< 0.00200		< 0.00399		0.00399		< 49.9		< 49.9	*1	< 49.9		< 49.9	
		9 - 10	391	-	295		< 0.00199		< 0.00199		< 0.00199		< 0.00398		0.00398		< 49.8		67.9	*1	< 49.8		67.9	
		0 - 1	73.8	-	23.4		< 0.00199		< 0.00199		< 0.00199		< 0.00398		0.00398		< 49.9		< 49.9	*1	< 49.9		< 49.9	
BH-3	8/31/2021	2 - 3	64.5	-	24.7		< 0.00200		< 0.00200		< 0.00200		< 0.00399		0.00399		< 50.0		< 50.0	*1	< 50.0		< 50.0	<u> </u>
		4 - 5	201	-	89.5		< 0.00200		< 0.00200		< 0.00200		< 0.00401		0.00401		< 49.8		< 49.8	*1	< 49.8		< 49.8	t

NOTES:

bgs

ft. Fee

Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

EPA Method 8015B NM

GRO Gasoline range organics
DRO Diesel range organics

ORO Oil range organics

1 EPA Method 300.0

2 EPA Method 8021B

Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

*1 LCS/LCSD RPD exceeds control limits.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Responsible Party

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2115525504
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

OGRID

Contact Nam	ne				Contact Te	elephone			
Contact emai	il				Incident #	(assigned by OCD)			
Contact mail	ing address								
			Location	ı of R	elease So	ource			
Latitude			(NAD 83 in d	ecimal de	Longitude _ grees to 5 decin	nal places)			
Site Name					Site Type				
Date Release	Discovered				API# (if app	licable)			
Unit Letter	Section	Township	Range		Coun	ty			
Crude Oil	Nature and Volume of Release Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) Crude Oil Volume Released (bbls) Volume Recovered (bbls)								
1 Toduced	w atei	Volume Release Is the concentrat	` '	chloride	e in the	Volume Recovered (bbls) 		
		produced water	>10,000 mg/l?	Cinoriac					
Condensa		Volume Release				Volume Recovered (bbls	,		
Natural G		Volume Release		1		Volume Recovered (Mct	,		
Other (de	scribe)	Volume/Weight	Released (provid	de units)	1	Volume/Weight Recover	red (provide units)		
Cause of Rele	ease								

Received by OCD: 10/22/2021/7:53:07/AM State of New Mexico Page 2 Oil Conservation Division

		~	- 46			-	-46	-	
$-\nu$	ae	12		e Seco	0	r.	4	×	7
1	uz		LÆ:	D.	U	,	F.	o.	7/1
	_ 0								

Incident ID	NAPP2115525504
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the	responsible party consider this a major release?								
☐ Yes ☐ No										
If YES, was immediate no	If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?									
Initial Response										
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury										
☐ The source of the rele	ease has been stopped.									
☐ The impacted area ha	s been secured to protect human healt	h and the environment.								
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.										
All free liquids and recoverable materials have been removed and managed appropriately.										
If all the actions described	d above have <u>not</u> been undertaken, ex	plain why:								
has begun, please attach	a narrative of actions to date. If rem	ence remediation immediately after discovery of a release. If remediation edial efforts have been successfully completed or if the release occurred AC), please attach all information needed for closure evaluation.								
regulations all operators are public health or the environr failed to adequately investig	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws									
Printed Name		Title:								
Signature:	tanesparge	Date:								
email:		Telephone:								
OCD Only										
Received by: Ramona	Marcus	Date:								

NAPP2115525504

		Facility Name & Number:	Sopapilla SWD Fle	x Leak		
		Asset Area:	hConcho, Lea Cour	nty		
	R	Release Discovery Date & Time:	5/25/2021			
		Release Type:	Produced Water			
	Provide any	known details about the event:	Lat 32.29802, Lon -	103.56710,SWD flex line damaged by	unknown party, OFF LOCATION	
				Spill Calculation - Subst	urface Spill - Rectangle	
111	Was	s the release on pad or off-pad?			See reference table	e below
Has	it rained at least	a half inch in the last 24 hours?			See reference table	e below
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)
Rectangle A	24.0	23.0	8.00	15.12%	65.504	9.904
Rectangle B					0.000	0.000
Rectangle C					0.000	0.000
Rectangle D					0.000	0.000
Rectangle E					0.000	0.000
Rectangle F					0.000	0.000
Rectangle G					0.000	0.000
Rectangle H					0.000	0.000
Rectangle I					0.000	0.000
Rectangle J					0.000	0.000
					Total Volume Release:	9.904

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 30576

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	30576
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date				
rmarcus	None	6/6/2021				

Received by OCD: 10/22/2021 7:53:07 AM Form C-141 State of New Mexico
Page 3 Oil Conservation Division

	Page 21 of 137
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)								
Did this release impact groundwater or surface water?									
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No								
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No								
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No								
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No								
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No								
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No								
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No								
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No								
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No								
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No								
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No								
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil								
Characterization Report Checklist: Each of the following items must be included in the report.									
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs □ Photographs including date and GIS information □ Topographic/Aerial maps □ Laboratory data including chain of custody	ls.								

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/22/2021 7:53:07 AM
Form C-141 State of New Mexico
Page 4 Oil Conservation Division

	Page 22 of 137
Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.											
and of regulations.											
Printed Name:	_ Title:										
Printed Name: Signature: Kuyl nyum											
email:	Telephone:										
OCD Only											
Received by:	Date:										

Received by OCD: 10/22/2021 7:53:07 AM
Form C-141 State of New Mexico
Page 5 Oil Conservation Division

State of New Mexico
Oil Conservation Division

Incident ID
District RP

	Page 23 of 137
Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.								
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC □ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 									
Deferral Requests Only: Each of the following items must be co	nfirmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility								
Extents of contamination must be fully delineated.									
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.								
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.									
Printed Name:	Title:								
Signature: Kuyl Jayyum	Date:								
email:	Telephone:								
OCD Only									
Received by:	Date:								
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved								
Signature: Chap There Day	Date:								

APPENDIX B NMOCD Correspondence

From: Hamlet, Robert, EMNRD

To: Esparza, Brittany

Cc: Gonzalez, Jessika L; Waggaman, Kelsy; Bratcher, Mike, EMNRD; Hensley, Chad, EMNRD

Subject: (Extension Approval) Sopapilla State 2D CTB (NAPP2115525504) 05-25-2021

Date: Thursday, August 26, 2021 8:43:00 AM

RE: Incident #NAPP2115525504

Brittany,

Your request for an extension to **September 25th, 2021** is approved.

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau
EMNRD - Oil Conservation Division
811 S. First Street | Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Esparza, Brittany < Brittany. Esparza@conocophillips.com>

Sent: Tuesday, August 24, 2021 9:17 AM

To: EMNRD-OCD-District1spills <EMNRD-OCD-District1spills@state.nm.us>; spills@slo.state.nm.us

Cc: Gonzalez, Jessika L < Jessika.L.Gonzalez@conocophillips.com>; Waggaman, Kelsy

<Kelsy.Waggaman@conocophillips.com>; Esparza, Brittany <Brittany.Esparza@conocophillips.com>

Subject: (Extension Request #1) Sopapilla State 2D CTB (NAPP2115525504) 05-25-2021

To Whom it May Concern,

Under the new spill rule a Work Plan or Closure Report is due for the above release on August 25, 2021. COG is requesting a one-month extension until September 25, 2021 in order to schedule drillers for site.

Please let me know if you have any questions or concerns.

Thank you,

Brittany N. Esparza

Brittany N. Esparza | Environmental Technician, Permian | ConocoPhillips

O: 432-221-0398 | **C**: 432-349-1911 | 3CC-2064 Midland, Texas

APPENDIX C Site Characterization Data

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 634912.403 **Northing (Y):** 3574370.67 **Radius:** 800

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 634912.403 **Northing (Y):** 3574370.67 **Radius:** 1600

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

636583

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters) (In feet)

POD

Sub- Q Q Q
Code basin County 64 16 4 Sec Tws Rng

4 1 1 14 23S 33E

X Y

3575666

Depth Depth Water
Distance Well Water Column
2114 590

Average Depth to Water:

Minimum Depth: -

Maximum Depth: --

Record Count: 1

POD Number

C 03582 POD1

UTMNAD83 Radius Search (in meters):

Easting (X): 634912.403 Northing (Y): 3574370.67 Radius: 2400

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

(In feet)

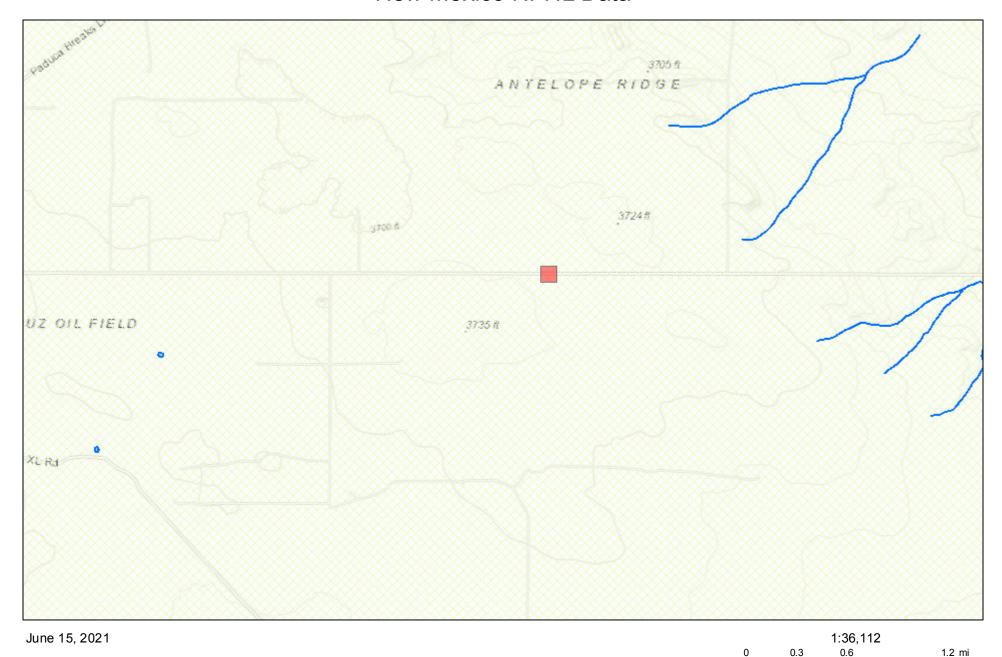
	POD Sub-		O	Q Q							Denth	Denth	Water
POD Number	Code basin	Count				Tws	Rng	Х	Υ	Distance	•	-	Column
C 03582 POD1	С	LE	4	1 1	14	23S	33E	636583	3575666 🌍	2114	590		
C 02278	CUB	LE	3	4 2	28	23S	33E	634484	3571989* 🌍	2419	650	400	250
C 02277	CUB	LE	2	3 4	20	23S	33E	632663	3572970*	2649	550	400	150
C 02280	CUB	LE	3	2 4	- 28	23S	33E	634489	3571586*	2816	650	400	250

Average Depth to Water: 400 feet

> Minimum Depth: 400 feet

400 feet Maximum Depth:

Record Count: 4

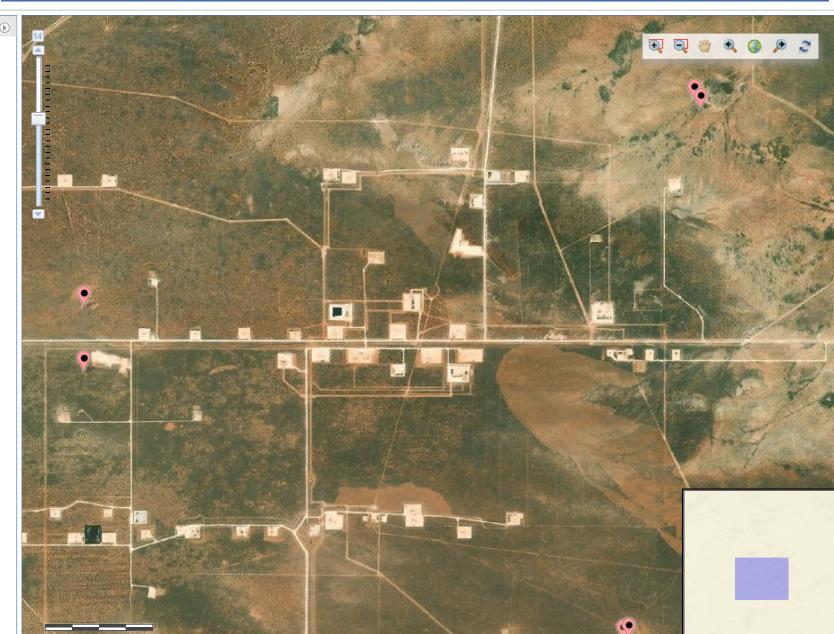

UTMNAD83 Radius Search (in meters):

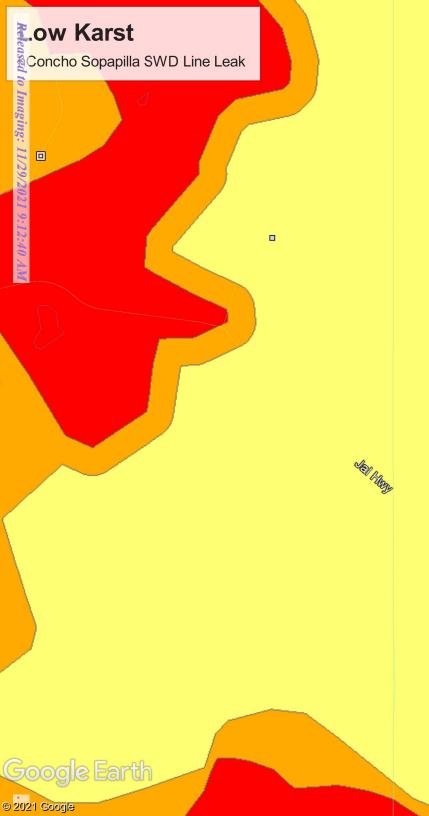
Easting (X): 634912.403 Northing (Y): 3574370.67 Radius: 3200

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico NFHL Data




FEMA Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,

2 km

0.5

Sopapilla SWD Line Leak

APPENDIX D Boring Logs

						_													
212C-MD-02532A TETRA TECH														L	OG OF BOI	RING AH-1			Page 1 of 1
Boreho												essm	ent						
													Surface Eleva	tion:	3716 ft				
												oreho iame	ole ter (in.):		Date Started:	6/25/2021	Date Fi	nished:	6/25/2021
		m) m) NT (%) NT (%)							While Drilling	WATER LEVEL OBSERVATIONS While Drilling $\overline{\underline{V}}$ DRY ft Upon Completion of Drilling $\overline{\underline{\Psi}}$ D									
	DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MA	ATE	RIAL DESCF	RIPTION		DЕРТН (ft)	REMARKS
				70 68.4									-SM- SILT medium de			brown, loose to		_ /	AH-1 (0-1') AH-1 (1-1.5')
		ł	m	74.4															AH-1 (2-2.5')
ŀ		}	m	67.2										Bott	om of borehol	e at 3.5 feet.		3.5	AH-1 (3-3.5')
	Samı Type	oler s:	7.7	Split Spoon Shelby Bulk Sample Grab Sample	v X	cetate dane S Discrete dample est Pi	te e	T	pera ypes	: Mud Rota Cont	ary tinuous at Auge sh		Air Rotary	Note: Ana elev	ytical samples	s are shown in th imated value ba	e Remar sed on G	rks coli ioogle	umn. Surface Earth data.

<u>ceive</u>	<u>d b</u> y	, O	CD: 10	0/22/202	1 7:	53:0	07 A.	<u> </u>								Page 36 of		
212	C-MI	D-02	532A	T	ΕŢ	ETRA	ATEC	СН				LOG OF BORING AH-2 Page 1 of 1						
Proj	ect N	lam	e: So	papilla S	SWD	Flov	vline	Rele	ease	Asse	essm	ent						
Bore	hole	Loc	ation:	GPS: 32	2.298	3107°	, -103	3.567	140°			Surface Elevation:	3715 ft					
Borehole Number: AH-2 Bore										B	oreho iame	ole ter (in.):	Date Started: 6/25/2021	Date F	inishe	d: 6/25/2021		
			DD)	(md	RY (%)	ENT (%)	(ЭЕХ	(ATER LEVEL OBSERVATIO DRY ft Upon Completion of D		Ā C	DRY_ft		
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATER	RIAL DESCRIPTION		DEPTH (ft)	REMARKS		
_	1	en,	83 47.3									-SM- SILTY SA medium dense,	ND: Reddish brown, loose to damp.		1.5	AH-2 (0-1') AH-2 (1-1.5')		
		I (ZI	47.5									Botto	om of borehole at 1.5 feet.		1.5	AH-2 (1-1.5 <i>)</i>		

ceived by	OCD: 1	0/22/202	1 7:	<i>53:0</i>	07 A	M_{\perp}					Page 37 o
212C-MD	C-MD-02532A TETRA TECH									LOG OF BORING AH-3	Page 1 of 1
Project Na	ame: So	papilla S	SWD	Flov	vline	Rel	ease	Asse	essm	nent	
Borehole	Location:	GPS: 32	2.298	056°	, -103	3.567	221°			Surface Elevation: 3715 ft	
Borehole	Number:	AH-3						E	Boreh	ole eter (in.): 4 Date Started: 6/25/2021 Date Finished	6/25/2021
	G. (mo	(ma	۲۲ (%)	ENT (%)			DEX			WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DRY Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (a) HE dead	REMARKS
	3510 4620 1790 4760									medium dense, damp.	AH-3 (0-1') AH-3 (1-1.5') AH-3 (2-2.5') AH-3 (3-3.5')
	5910									Bottom of borehole at 4.5 feet.	AH-3 (4-4.5')
							ation.				
Sampler Types:	Split Spoo Shelb Bulk Samp Grab Samp	oy V	Acetate /ane S Discret Sample	ie e	r T	pera ypes	Muc Rota	tinuou: ht Auge sh	ss er	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the Remarks colelevation is an estimated value based on Google	umn. Surface Earth data.

2120			CD: 10										Page 38 o
I	C-MI	D-02	2532A	T	ŧ	ETRA	A TEC	Н				LOG OF BORING AH-4	Page 1 of 1
Proje	ect N	lam	e: Sop	papilla S	SWD	Flov	vline	Rele	ease	Asse	essm	ent	
Bore	hole	Lo	cation:	GPS: 32	2.298	035°	, -103	3.567	118°			Surface Elevation: 3715 ft	
Bore	hole	Nu	mber:	AH-4						В	oreho	ole ter (in.): 4 Date Started: 6/25/2021 Date Finishe	d: 6/25/2021
			. . .	(-	(%)	(%) IT (%)			×			WATER LEVEL OBSERVATIONS While Drilling	DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (£) H G D D D D D D D D D D D D	REMARKS
_			1820 3200 850									-SM- SILTY SAND: Reddish brown, loose to medium dense, damp.	AH-4 (0-1') AH-4 (1-1.5') AH-4 (2-2.5')
_	ł	M	2450									_	AH-4 (3-3.5')
_	1	m	7140									Bottom of borehole at 4.5 feet.	AH-4 (4-4.5')

ceived by OCD: 1	10/22/2021 7:53:07 AM		Page 39 of
212C-MD-02532A	TE TETRA TECH	LOG OF BORING H-1	Page 1 of 1
Project Name: S	opapilla SWD Flowline Release Assessi	ment	
Borehole Location:	GPS: 32.298227°, -103.567188°	Surface Elevation: 3715 ft	
Borehole Number:	H-1 Borel	hole Date Started: 6/25/2021 Date Finish	ed: 6/25/2021
(ma	m) NT (%) NT (%)	WATER LEVEL OBSERVATIONS	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (DDM)		MATERIAL DESCRIPTION (#) HEAD	REMARKS
□ □ □ Ø ExSti		-SM- SILTY SAND: Reddish brown, loose to	11.4 (0.41)
4 00.3		medium dense, damp. Bottom of borehole at 1.0 feet.	H-1 (0-1')

Hand Auger

Acetate Liner

137

<u>ceive</u>	<u>d b</u> у	v 0	CD: 10	/22/202	<i>1 7</i> :	<u>53:0</u>	07 A	<u> </u>									Page 40 of
212	C-MI	D-02	2532A	T	ΕŢ	ETRA	ATEC	СН					L	OG OF BORING H-2			Page 1 of 1
Proj	ect N	lam	e: Sop	apilla S	WD	Flov	vline	Rel	ease	Ass	essm	nent					
Bore	hole	Lo	cation:	GPS: 32	2.298	116°	, -103	3.567	052°			Surface Elevat	tion:	3714 ft			
Bore	hole	Nu	mber:	H-2						E	Boreh	ole eter (in.):		Date Started: 6/25/2021	Date Fi	nished	: 6/25/2021
			O	(ma	۲۲ (%)	:NT (%))EX			While Drilling		ATER LEVEL OBSERVATION OF THE LEVEL OBSERVATION OBSERVATION OF THE LEVEL OBSERVATION		Ā DI	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	Паир шмт	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		ATEI	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
	1	m	57									-SM- SILT	Y S	AND: Reddish brown, loose to		_	H-2 (0-1')
	1 1	احا								<u> </u>	<u>1:1:4:</u>	medium de		, damp. om of borehole at 1.0 feet.		1	= (> 1)
Şam	pler	N	Split		unetata ta	a l ine		<u>⊅</u> per≈	ation			Hand Auger	Notes	e:			
Sam Type	es:		Split Spoon Shelby Bulk Sample Ty Grab Sample		cetate /ane S Discret Gample est Pi	e e	r Ť	ypes	Muc Rota	tinuou ht Auge sh	s er	Air Rotary	Note: Ana elev	s: lytical samples are shown in th ation is an estimated value ba	e Remar sed on G	ks col oogle	lumn. Surface Earth data.

137

e <u>ceive</u>	d by (OCD: 10	/22/202	<u> 1 7:</u>	53:0	07 A	<u> </u>									Page 41 of
2120	C-MD-	02532A	T	ŧΙ	ETRA	A TEC	Н					L	OG OF BORING H-3			Page 1 of 1
Proje	ect Na	me: Sop	apilla S	SWD	Flov	wline	Rel	ease	Ass	essn	nent					1
Bore	hole L	ocation:	GPS: 32	2.298	8016°	, -103	3.567	'064°			Surface Elevation	on:	3714 ft			
Bore	hole N	lumber:	H-3						E	Boreh Diame	ole eter (in.):		Date Started: 6/25/2021	Date F	inishe	d: 6/25/2021
		(md	(md	RY (%)	ENT (%)	(DEX			While Drilling Remarks:		ATER LEVEL OBSERVATION DRY ft Upon Completion of		Ā C	PRY_ft
DEPTH (ft)	OPERATION TYPE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MA	TEF	RIAL DESCRIPTION		DEPTH (ft)	REMARKS
	1 6	233									-SM- SILTY medium den		AND: Reddish brown, loose to		1	H-3 (0-1')
		1	1	1	ı	ı		1		1.1.1.			om of borehole at 1.0 feet.			1
Sam	pler	Split					р̀рега	ation			Hand August N					
Sam Type	pier es:	Split Spoon Shelby Bulk Sample Grab Sample		Acetato Vane S Discre Samplo Test P	te e	r T	ypes	Ation S: Muc Rot Cor Flig Waa	ntinuou ht Auge sh	s er	Air Rotary A	lotes Anal eleva	s: lytical samples are shown in th ation is an estimated value bas	e Remai sed on G	rks co Google	olumn. Surface e Earth data.

<u>ceive</u>	d by	, O	CD: 10	<u>/22/202</u>	<u>17:</u>	53:0	07 A	<u>M</u>			_				Page 42 of
212	C-M	D-02	532A	T	₽J⊺	ETRA	A TEC	СН				l	OG OF BORING H-4		Page 1 of 1
Proj	ect N	lame	e: Sop	apilla S	SWD	Flov	wline	Rele	ease	Asse	ssm	nent			
Bore	hole	Loc	ation:	GPS: 32	2.298	014°	, -103	3.567	264°			Surface Elevation:	3716 ft		
Bore	hole	Nur	mber:	H-4			1			B D	oreho iame	ole eter (in.):	Date Started: 6/25/2021	inished	1: 6/25/2021
			O Œ	(E	(%) A:	(%) TN			ă				VATER LEVEL OBSERVATION IN THE COMPUTE COMP	Ā D	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SKREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	RIAL DESCRIPTION	DEPTH (ft)	REMARKS
	ł	m	1580									-SM- SILTY S medium dense	AND: Reddish brown, loose to	1	H-4 (0-1')

İ		<i>OCD: 1</i> -02532A		$\overline{}$	ETRA							LOG OF BORING H-5 Page	
Proje	ect Na	ame: So	papilla	SWD	Flov	vline	Rele	ease	Asse	 ssm	nent		
Bore	hole	Location:	GPS: 3	2.298	3116°	, -103	3.567	317°			Surface Elevati	ion: 3717 ft	
Bore	hole	Number:	H-5						Bo	oreho	ole 4 eter (in.):	Date Started: 6/25/2021 Date Finished: 6/25/202	21
		(md	(md	RY (%)	ENT (%)			DEX		anic	While Drilling Remarks:	WATER LEVEL OBSERVATIONS <u>▼ DRY</u> ft Upon Completion of Drilling <u>Ψ DRY</u> ft	
DEPTH (ft)	OPERATION TYPE	SAMPLE CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	МА	TERIAL DESCRIPTION (定) REMAR	KS
	1	m 350									-SM- SILT\ medium de	Y SAND: Reddish brown, loose to	
									1	.1.1.		Bottom of borehole at 1.0 feet.	
Sam Type	pler es:	Split Spool Shel Bulk Sam Grab Sam	ple X	Acetat Vane S Discre Sampl Test P	te e	r T	Opera ypes	Mud Rota	itinuous ht Augei		Air Rotary A	Notes: Analytical samples are shown in the Remarks column. Surfa elevation is an estimated value based on Google Earth data	ice

<u>ceive</u>	<u>d b</u> y	0	CD: 10	/22/202	1 7:	53:0	07 A	<u> </u>									Page 44 of
212	C-MI	D-02	:532A	T	ĘŢ	ETRA	ATEC	СН					L	OG OF BORING H-6			Page 1 of 1
Proje	ect N	lam	e: Sop	apilla S	SWD	Flov	vline	Rel	ease	Ass	essm	nent					
Bore	hole	Loc	ation:	GPS: 32	2.298	195°	, -103	3.567	'314°			Surface Eleva	tion:	3716 ft			
Bore	hole	Nu	mber:	H-6							Boreh Diame	ole eter (in.):		Date Started: 6/25/2021	Date Finish	ied:	6/25/2021
			رة (ق	m)	(%) {\%}	NT (%)			ĒX			While Drilling		/ATER LEVEL OBSERVATION DRY ft Upon Completion of		DRY	<u>′_</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		ATE	RIAL DESCRIPTION	DEPTH (ft)		REMARKS
	1	m	108									-SM- SILT medium de		AND: Reddish brown, loose to	1	H-6	6 (0-1')
						<u> </u>		<u> </u>	1	I	1.1.T.			com of borehole at 1.0 feet.			· ,
Sam	pler		Split		o contract of the contract of	e Line		<u>⊅pera</u>	ation			Hand Auger	Note	S:			
гуре	:S:	4//4	Spoon Shelby Bulk Sample Grab Sample		/ane S Discret Sample Test P	Shear te e		ypes	Muc Rota	ary Itinuou ht Aug ish	s er	Air Rotary	Ana	s. lytical samples are shown in th ation is an estimated value ba	e Remarks o sed on Goog	colun gle Ea	nn. Surface arth data.

212C-MD-02532A	TE TETRA T	ТЕСН		LOG OF BORING BH-1	Page 1 of 1
Project Name: S	ı opapilla SWD Flowli	ine Release Asse	essment		
Borehole Location:	GPS: 32.298057°, -	·103.567236°	Surface Elev	vation: 3716 ft	
Borehole Number:	BH-1	B	Borehole Diameter (in.):	Date Started: 8/31/2021 Date Finishe	d: 8/31/2021
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) TENT (%)	M M	While Drillin	WATER LEVEL OBSERVATIONS ng □ DRY ft Upon Completion of Drilling □ □ I	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	─ ──	DRY DENSITY (pdf) Liquid Limit Destrict index Dest	GRAPHIC	MATERIAL DESCRIPTION	REMARKS
5 620 5 948 510 10 806 15 605 20 381		Operation Types:	-SM- SIL medium	TY SAND: Reddish brown, loose to dense, damp. B-TY SAND: Reddish brown, loose to dense, dry to damp, clayey in part. E- CALICHE: White, hard, moderately d with calcium carbonate, with abundant cc. boulders. Bottom of borehole at 20.0 feet.	BH-1 (0-1') BH-1 (2-3') BH-1 (4-5') BH-1 (6-7') BH-1 (9-10') BH-1 (14-15') BH-1 (19-20')
Sampler Types: Spo She Bulk San Wing Gral San	by Vane Shear Discrete Sample	Operation Types: Mud Rotary Continuous Flight Auge Wash Rotary	Air Rotary	Analytical samples are shown in the Remarks c elevation is an estimated value based on Googl	olumn. Surface e Earth data.
Logger: Joe Tyler		Drilling Equipme	nt: Air Rotarv	Driller: Scarborough Drilling	

212C-MD-02532A	TE TETRA	TECH		LOG OF BORING BH-2	Page 1 of 1
Project Name: S	opapilla SWD Flow	rline Release A	Assessm	nent	
Borehole Location:	GPS: 32.298042°,	-103.567104°		Surface Elevation: 3715 ft	
Borehole Number:	BH-2		Boreho Diame	ole ster (in.): 8 Date Started: 8/31/2021 Date Finished	l: 8/31/2021
Q1:	ppm) ERY (%) ENT (%)	f) IDEX		WATER LEVEL OBSERVATIONS	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (DOT)	─ ──	DRY DENSITY (pcf) F LIQUID LIMIT T PLASTICITY INDEX	MINUS NO. 200 (%) GRAPHIC LOG	MATERIAL DESCRIPTION (i)	REMARKS
Color Colo	K FID	LL PI	MIN OF THE PROPERTY OF THE PRO	-SM- SILTY SAND: Reddish brown, loose to medium dense, damp.	BH-2 (0-1') BH-2 (2-3') BH-2 (4-5') BH-2 (6-7') BH-2 (9-10')
Sampler Types: Splings Spc	Vane Shear Discrete Sample Tak Dis	Operation Types: Mud Rotary Continu Flight A Rotary Drilling Equip	auous Auger	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Driller: Scarborough Drilling	lumn. Surface Earth data.

ceived by OCD: 1	0/22/2021 7:53:07	AM		Page 47 of
212C-MD-02532A	TETRA T	TECH	LOG OF BORING BH-3	Page 1 of 1
Project Name: So	papilla SWD Flowl	ine Release Assessn	nent	
Borehole Location:	GPS: 32.298003°, -		Surface Elevation: 3714 ft	
Borehole Number:	BH-3	Boreh Diame	nole eter (in.): 8 Date Started: 8/31/2021 Date Finished:	8/31/2021
(md	pm) RY (%) ENT (%)	ă l	WATER LEVEL OBSERVATIONS While Drilling ▼ DRY ft Upon Completion of Drilling Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	SCREENING (ppm) SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG		REMARKS
73.8			— — — — — — — — — — — — — — — — — — —	BH-3 (0-1') BH-3 (2-3')
5 201			5 1	BH-3 (4-5')
			Bottom of borehole at 5.0 feet.	
Sampler Split	Apotata Lipor	Operation	Hand August News	
Sampler Types: Split Spool Shell Sampler Shell Sampler Shell Sampler S	Vane Shear Discrete Sample	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the Remarks collevation is an estimated value based on Google	umn. Surface Earth data.

APPENDIX E Laboratory Analytical Data

July 07, 2021

BRITTANY LONG
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: SOPAPILLA SWD LINE LEAK

Enclosed are the results of analyses for samples received by the laboratory on 06/30/21 13:47.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STRE

 $901~\mbox{WEST}$ WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

A ... - L ... - - - I D. .. MC

Project Location: COG - LEA CO NM

Sample ID: H - 1 (0-1') (H211700-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	0.299	
Toluene*	<0.050	0.050	07/01/2021	ND	2.12	106	2.00	2.58	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	2.09	104	2.00	3.46	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	6.22	104	6.00	3.07	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	110 5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	117 9	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: H - 2 (0-1') (H211700-02)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	0.299	
Toluene*	<0.050	0.050	07/01/2021	ND	2.12	106	2.00	2.58	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	2.09	104	2.00	3.46	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	6.22	104	6.00	3.07	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	109	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	112	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: H - 3 (0-1') (H211700-03)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	0.299	
Toluene*	<0.050	0.050	07/01/2021	ND	2.12	106	2.00	2.58	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	2.09	104	2.00	3.46	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	6.22	104	6.00	3.07	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	69.7	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	40.3	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	96.6	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	103	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH
BRITTANY LONG
901 WEST WALL STREET , STE 100

MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: H - 4 (0-1') (H211700-04)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	114	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	116	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker Project Number: 212C - MD - 02532

Project Location: COG - LEA CO NM

Sample ID: H - 5 (0-1') (H211700-05)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	114 %	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	117 9	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil Project Name: SOPAPILLA SWD LINE LEAK

Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C - MD - 02532 Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: H - 6 (0-1') (H211700-06)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	112 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	115 9	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100

MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 1 (0-1') (H211700-07)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	111	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	117	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

06/25/2021

Analytical Results For:

TETRA TECH
BRITTANY LONG
901 WEST WALL STREET , STE 100

MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date:

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 1 (1'-1.5') (H211700-08)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	111	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	115	% 38.9-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 1 (2'-2.5') (H211700-09)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2021	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	106	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	111	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 1 (3'-3.5') (H211700-10)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	105	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	111	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100

MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 2 (0-1') (H211700-11)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2021	ND	236	118	200	3.96	
DRO >C10-C28*	<10.0	10.0	07/02/2021	ND	249	125	200	1.46	
EXT DRO >C28-C36	<10.0	10.0	07/02/2021	ND					
Surrogate: 1-Chlorooctane	116	% 44.3-13.	3						
Surrogate: 1-Chlorooctadecane	120	% 38.9-14.	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 2 (1'-1.5') (H211700-12)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	< 0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	79.0	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	77.3	% 38.9-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 3 (0-1') (H211700-13)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2600	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	77.8	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	75.6	% 38.9-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kune

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact 212C - MD - 02532 Sample Received By: Tamara Oldaker Project Number:

Project Location: COG - LEA CO NM

Sample ID: AH - 3 (1'-1.5') (H211700-14)

BTEX 8021B	mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4960	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	79.4	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	76.3	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 3 (2'-2.5') (H211700-15)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3280	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	80.2	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	77.4	% 38.9-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 3 (3'-3.5') (H211700-16)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4960	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	71.5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	69.5	% 38.9-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 3 (4'-4.5') (H211700-17)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7600	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	77.5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	75.5	% 38.9-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COG - LEA CO NM

Sample ID: AH - 4 (0-1') (H211700-18)

RTFY 8021R

B1EX 8021B	mg	/ kg	Analyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	25.9	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	77.0	% 44.3-13.	3						
Surrogate: 1-Chlorooctadecane	75.5	% 38.9-14.	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 4 (1'-1.5') (H211700-19)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	< 0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3280	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	76.2	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	74.8	% 38.9-14	2						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 4 (2'-2.5') (H211700-20)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1540	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	80.1	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	78.1	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kune

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 4 (3'-3.5') (H211700-21)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2680	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	73.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	72.1	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100

MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 06/30/2021 Sampling Date: 06/25/2021

Reported: 07/07/2021 Sampling Type: Soil

Project Name: SOPAPILLA SWD LINE LEAK Sampling Condition: Cool & Intact
Project Number: 212C - MD - 02532 Sample Received By: Tamara Oldaker

Project Location: COG - LEA CO NM

Sample ID: AH - 4 (4'-4.5') (H211700-22)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/01/2021	ND	2.02	101	2.00	2.26	
Toluene*	<0.050	0.050	07/01/2021	ND	1.96	98.0	2.00	2.67	
Ethylbenzene*	<0.050	0.050	07/01/2021	ND	1.89	94.4	2.00	2.56	
Total Xylenes*	<0.150	0.150	07/01/2021	ND	5.74	95.7	6.00	1.90	
Total BTEX	<0.300	0.300	07/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6880	16.0	07/01/2021	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/06/2021	ND	222	111	200	4.25	
DRO >C10-C28*	<10.0	10.0	07/06/2021	ND	227	113	200	0.930	
EXT DRO >C28-C36	<10.0	10.0	07/06/2021	ND					
Surrogate: 1-Chlorooctane	76.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	74.8	% 38.9-14	12						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

ecovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

ived by C	2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	2 2 Inquished by:	AM 7 AH-10 AH-1	× 41-1	16 +1-6	5.4.7	5 H-3	24-2	Hallico LABUSE ONLY	Invoice to: Receiving Laboratory: Comments:	1	Client Name:	Analysis Reques
	Date: Time:	SERF 6/76/21	(3'-2,5') (3'-2,5') Date: Time:	(1x-1x)	1 1	(A-1')	10-1	20-1)	SAMPLE IDENTIFICATION	EnoloPhiMips, Attention: Kelsy	epapille SWD Line Look	Tetra Tech. Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Received by:	1 6 1 6 1	6/25/21	6/25/21	6/25/21	6/25/21	6/25/21	MPLING	Project #: 2/2 Last 10 as Access Sampler Signature:		Site Manager	
~		Date: 1	× × ×	××	××	×	X	*>	WATER MATRIX HCL	CMD-02532	Stations la	901 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
		Time: 1347 1-30-21		××:	××	× ×	X .	×× - `- > `>	HNO ₃ ICE METHOD WETHOD # CONTAINERS FILTERED (Y/N)	16 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	803	Ireet, Ste 44559 -3946	
(Circle) HAND DELIVERED	Sample Temperature S.S.S. #1/3 70.		××>		XXX	X	× >	* *	BTEX 8021B BTE: TPH TX1005 (Ext to TPH 8015M (GRO - PAH 8270C Total Metals Ag As Ba TCLP Metals Ag As Ba	DRO - ORO) Cd Cr Pb Se Hg	(Circle		
FEDEX UPS Tracking	Rush Charges Authorized Special Report Limits or TRRP Report	REMARKS:							TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 6 GC/MS Semi. Vol. 82' PCB's 8082 / 608 NORM PLM (Asbestos)	324	ANALYSIS REQUEST		
#	24 nr 48 hr 72 rized or TRRP Report				S	×>		< <u></u>	Chloride Sulfate	TDS stry (see attached list)	ST hod No.)	Page	

	CD: 10	nquished by:	nquished by:		20 44-4 (2-25)	19 41 4 (1) 11 (1)	54-478-4V	3/3	15 AH-3 (21-25')	(,S1-,172-44 51	24H-36	17-1-16	AII			421170	Receiving Laboratory: Comments: Comments:	(county, state) Les Leveth	Sopapilla	Project Name:		Analysis Request of Chain of Custody Record
	cate. Hille:		Date: Time:	Date: Time:											SAMPLE IDENTIFICATION		Labratories	5. NM	SWD Lines LANK		Fetra Tech, Inc.	Custody Record
ORIGINAL COPY	Received by:	noorgan by.	Received by	Received by:	12/2/19	6/25/21	6/25/2)	6/25/21	6/25/21	64243	6/28/21	6/26/21	6/26/21	DATE	YEAR:	SAMPLING	Sampler Signature:	Project #: 2/2C-	V		Site Manager:	×
	Date: T	Date:	1	Pate: T		X	X	X	X	×	×	×	X	WATER SOIL HCL HNO ₃		MATRIX PRES	Brick	MD-02532	(Stitheny Lane	901 West Wall Street Ste 100 Midland,Texas 79701 Tel (432) 682-459 Fax (432) 682-3946	
	Time:	lime:	16-26-91	Time: /247	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					X	X	\exists	# CONTA	INEF	-	The second	12		Ø	rreet, Ste as 79701 4559 3946	
(Circle) HAND DELIVERED	#11370.	Sample Temperature	ONLY	X	XX		X	× >		\$\frac{1}{2}	X	X	X	BTEX 802 TPH TX10 TPH 8015 PAH 8270 Total Meta	21B 005 (E 6M (G 0C	BTEX Ext to 0 BRO - I	DRO - ORO) Cd Cr Pb Se Hg		(CITCLE			
FEDEX UPS	Special Report Limits or T	Rush Chargos Author	TOWN TOWN										F	CLP Vola CLP Sem CCI GC/MS Vol GC/MS Ser CB's 808	tiles i Vola I. 826 mi. Vo	itiles 60B / 6			or Specify	ANALYSIS RE		
racking #:	Special Report Limits or TRRP Report	Day 24 hr 48 hr 72 hr		×	×	*	×>	< >	×	3 >	0>	\$	P C C G		Sulfa	Chemis	TDS stry (see attached list	t)	Method No.)			Page 2

by OCD: 1	inquished by	7:5. binquished by:	elinquished by:						20	HOLITOC LAB #	Comments:	Receiving Laboratory:	(county, state) Invoice to:	Project Location:	Project Name:	Client Name:	Page
		STEKESTAP UND	/: Date: Time:						14.4	SAMPLE IDENTIFICATION	Corplinal Laboratories	inolo Phillips, Attention:	lea	on Suparpilla Swin ine Leak	000	Tetra Tech.	record chain of custody Record
ORIGIN	Received by		Received by:					6/25/2	6/25/24	DATE YEAR	Call	Kelly was	Project #:		one manager:	Inc.	
ORIGINAL COPY	by:	mara Ma	bv							TIME WATER M	Samper Signature:	hoppon	2/26-		Brittone		
Date: Time:		by b-	П					×		MATRIX PRESER HCL HNO ₃ ICE	2 Bilber		MD-0253		and long	901 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
ne:	Time:	6-30-21	П						_	HNO ₃ ICE METHOD # CONTAINERS	enter		12			et, Ste 79701 559 946	
#/(Circle) H	Sample 1	o ₽						NX	NX X	FILTERED (Y/N) BTEX 8021B BTEX TPH TX1005 (Ext to	X 8260B						
#1/3 70.	Sample Temperature	LAB USE ONLY						×		TPH 8015M (GRO - PAH 8270C Total Metals Ag As Ba TCLP Metals Ag As Ba	Cd Cr Pb Se			(CIIC	0:0		
	Rush C	REMARKS:								TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 6				— or o	ANAL		
Special Report Limits or EDEX UPS Tracking #:	Same Day harges Author									GC/MS Semi. Vol. 82: PCB's 8082 / 608 NORM PLM (Asbestos)				pecify Method	ᇛ		
s or TRRP Report	24 hr 48 hr rized						7	×	×	Chloride Chloride Sulfate General Water Chemi	TDS stry (see atta	ched lis	st)	nod No.)			Page
1900		- 1		\rightarrow	_	\vdash			/	Anion/Cation Balance					- 1		M

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-5791-1

Laboratory Sample Delivery Group: Lea County, NM

Client Project/Site: Sopapilla SWD

For:

Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701

Attn: Clair Gonzales

J. KRAMER

Authorized for release by: 9/9/2021 1:53:36 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 11/29/2021 9:12:40 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

1 N

. .

13

Client: Tetra Tech, Inc.

Project/Site: Sopapilla SWD

Laboratory Job ID: 880-5791-1 SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	15
QC Sample Results	17
QC Association Summary	23
Lab Chronicle	26
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receint Checklists	35

2

3

4

6

8

10

40

13

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 880-5791-1 Project/Site: Sopapilla SWD SDG: Lea County, NM

Qualifiers

GC	VOA
Qual	lifier

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1+	Surrogate recovery exceeds control limits, high biased.
11	Indicates the analyte was analyzed for but not detected

GC Semi VOA

Qualifier **Qualifier Description** LCS/LCSD RPD exceeds control limits.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

MDA MDC

DLC

EDL

LOD

LOQ

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Job ID: 880-5791-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-5791-1

Receipt

The samples were received on 9/3/2021 1:54 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.6°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-7618 and analytical batch 880-7614 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: BH-1 (2-3) (880-5791-2), BH-2 (2-3) (880-5791-9) and BH-2 (9-10) (880-5791-12). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

__

3

6

7

10

10

13

Job ID: 880-5791-1

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD

SDG: Lea County, NM

Client Sample ID: BH-1 (0-1)

Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-1 Date Collected: 08/31/21 10:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 22:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				09/07/21 15:46	09/07/21 22:12	1
1.4-Difluorobenzene (Surr)	97		70 - 130				09/07/21 15:46	09/07/21 22:12	1

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 14:22	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U *1	49.9		mg/Kg		09/03/21 15:57	09/04/21 14:22	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 14:22	
Total TPH	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 14:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	96		70 - 130				09/03/21 15:57	09/04/21 14:22	

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	615	5.04	mg/Kg			09/04/21 14:54	1

70 - 130

98

Client Sample ID: BH-1 (2-3) Lab Sample ID: 880-5791-2 Date Collected: 08/31/21 10:10 **Matrix: Solid**

Date Received: 09/03/21 13:54

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/07/21 15:46	09/07/21 22:32	1
1,4-Difluorobenzene (Surr)	144	S1+	70 - 130				09/07/21 15:46	09/07/21 22:32	1
Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 14:43	1

1

09/03/21 15:57 09/04/21 14:22

Job ID: 880-5791-1

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD

SDG: Lea County, NM

Client Sample ID: BH-1 (2-3)

Date Collected: 08/31/21 10:10 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-2

Matrix: Solid

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.8	U *1	49.8		mg/Kg		09/03/21 15:57	09/04/21 14:43	1
<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 14:43	1
<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 14:43	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
107		70 - 130				09/03/21 15:57	09/04/21 14:43	1
117		70 - 130				09/03/21 15:57	09/04/21 14:43	1
	0 - 1 - 1 - 1 -							
	<49.8 <49.8 <49.8 %Recovery 107 117		<49.8	<49.8	<49.8	<49.8	<49.8	<49.8

Client Sample ID: BH-1 (4-5) Lab Sample ID: 880-5791-3 Date Collected: 08/31/21 10:20

RL

5.05

mg/Kg

MDL Unit

280

Result Qualifier

Date Received: 09/03/21 13:54

Method: 8021B - Volatile Organic Compounds (GC)

Chloride

Matrix: Solid

Analyzed

Prepared

09/04/21 15:11

Dil Fac

Chloride	884		5.01		mg/Kg			09/04/21 15:17	1
Analyte	0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
o-Terphenyl	129		70 - 130				09/03/21 15:57	09/04/21 15:04	1
1-Chlorooctane	122		70 - 130				09/03/21 15:57	09/04/21 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:04	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:04	1
Diesel Range Organics (Over C10-C28)	<49.9	U *1	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:04	•
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		09/03/21 15.57	09/04/21 15.04	
Analyte	Result <49.9	Qualifier	RL 49.9	MDL		D	Prepared 09/03/21 15:57	Analyzed 09/04/21 15:04	Dil Fa
Method: 8015B NM - Diesel Rang	, ,	, , ,				_			
1,4-Difluorobenzene (Surr)	96		70 - 130				09/07/21 15:46	09/07/21 22:52	
4-Bromofluorobenzene (Surr)	118		70 - 130				09/07/21 15:46	09/07/21 22:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	U	0.00397		mg/Kg		09/07/21 15:46	09/07/21 22:52	•
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		09/07/21 15:46	09/07/21 22:52	
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/07/21 15:46	09/07/21 22:52	
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		09/07/21 15:46	09/07/21 22:52	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/07/21 15:46	09/07/21 22:52	
Toluene	<0.00198	U	0.00198		mg/Kg		09/07/21 15:46	09/07/21 22:52	
Benzene	<0.00198	U	0.00198		mg/Kg		09/07/21 15:46	09/07/21 22:52	

Client Sample ID: BH-1 (6-7)

Date Collected: 08/31/21 10:30 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-4

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/07/21 23:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74	-	70 - 130				09/07/21 15:46	09/07/21 23:13	1
1,4-Difluorobenzene (Surr)	99		70 - 130				09/07/21 15:46	09/07/21 23:13	1

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 15:25	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U *1	49.8		mg/Kg		09/03/21 15:57	09/04/21 15:25	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 15:25	•
Total TPH	<49.8	U	49.8		mg/Kg		09/03/21 15:57	09/04/21 15:25	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	341		5.02		mg/Kg			09/04/21 15:22	1

70 - 130

70 - 130

113

116

Client Sample ID: BH-1 (9-10) Lab Sample ID: 880-5791-5 Date Collected: 08/31/21 10:40

Date Received: 09/03/21 13:54

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
Total BTEX	<0.00401	U	0.00401		mg/Kg		09/07/21 15:46	09/07/21 23:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/07/21 15:46	09/07/21 23:33	1
1,4-Difluorobenzene (Surr)	109		70 - 130				09/07/21 15:46	09/07/21 23:33	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:46	1

Eurofins Xenco, Midland

1

Matrix: Solid

09/03/21 15:57

09/03/21 15:57

09/04/21 15:25

09/04/21 15:25

Job ID: 880-5791-1

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD SDG: Lea County, NM

Client Sample ID: BH-1 (9-10)

Date Collected: 08/31/21 10:40 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<49.9	U *1	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:46	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:46	1
Total TPH	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				09/03/21 15:57	09/04/21 15:46	1
o-Terphenyl	124		70 - 130				09/03/21 15:57	09/04/21 15:46	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-1 (14-15) Lab Sample ID: 880-5791-6 Date Collected: 08/31/21 10:50

5.01

mg/Kg

1010

Date Received: 09/03/21 13:54

Chloride

Matrix: Solid

09/04/21 15:28

Method: 8021B - Volatile Orga	•	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/07/21 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				09/07/21 15:46	09/07/21 23:54	1
1,4-Difluorobenzene (Surr)	94		70 - 130				09/07/21 15:46	09/07/21 23:54	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 16:07	1
(GRO)-C6-C10									

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 16:07	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U *1	49.9		mg/Kg		09/03/21 15:57	09/04/21 16:07	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 16:07	1
Total TPH	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				09/03/21 15:57	09/04/21 16:07	1
o-Terphenyl	127		70 - 130				09/03/21 15:57	09/04/21 16:07	1

Method: 300.0 - Anions, Ion Chrom	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	492	4.99	mg/Kg			09/04/21 15:33	1

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Client Sample ID: BH-1 (19-20)

Date Collected: 08/31/21 11:00 Date Received: 09/03/21 13:54 Lab Sample ID: 880-5791-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
Total BTEX	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 01:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				09/07/21 15:46	09/08/21 01:43	1
1,4-Difluorobenzene (Surr)	103		70 - 130				09/07/21 15:46	09/08/21 01:43	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <49.8 U Gasoline Range Organics 49.8 09/03/21 15:57 09/04/21 16:28 mg/Kg (GRO)-C6-C10 mg/Kg 09/04/21 16:28 Diesel Range Organics (Over <49.8 U*1 49.8 09/03/21 15:57 C10-C28) Oll Range Organics (Over C28-C36) <49.8 U 49.8 mg/Kg 09/03/21 15:57 09/04/21 16:28 Total TPH 09/03/21 15:57 09/04/21 16:28 <49.8 U 49.8 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

Method: 300.0 - Anions, Ion Chrom	natography - Soluble	9			
o-Terphenyl	125	70 - 130	09/03/21 15:57	09/04/21 16:28	1
1-Chlorooctane	122	70 - 130	09/03/21 15:57	09/04/21 16:28	1

 Analyte
 Result Chloride
 Qualifier
 RL 4.97
 MDL mg/Kg
 Unit mg/Kg
 D mg/Kg
 Prepared prepared prepared poly(0.9704/21 15:39 mg/Kg)
 D mg/Kg
 Prepared prepared poly(0.9704/21 15:39 mg/Kg)
 D mg/Kg
 <t

Date Collected: 08/31/21 11:30

Date Received: 09/03/21 13:54

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
Toluene	<0.00202	U	0.00202		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
Total BTEX	<0.00403	U	0.00403		mg/Kg		09/08/21 09:25	09/08/21 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				09/08/21 09:25	09/08/21 15:34	1
1,4-Difluorobenzene (Surr)	111		70 - 130				09/08/21 09:25	09/08/21 15:34	1
Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<50.0		50.0		mg/Kg		09/03/21 15:57	09/04/21 17:10	

Eurofins Xenco, Midland

2

5

7

1.0

11

12

14

Matrix: Solid

(GRO)-C6-C10

Job ID: 880-5791-1 SDG: Lea County, NM

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD

Lab Sample ID: 880-5791-8

Matrix: Solid

Client Sample ID: BH-2 (0-1)

Date Collected: 08/31/21 11:30 Date Received: 09/03/21 13:54

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	1830	*1	50.0		mg/Kg		09/03/21 15:57	09/04/21 17:10	1
C10-C28)									
Oll Range Organics (Over	334		50.0		mg/Kg		09/03/21 15:57	09/04/21 17:10	1
C28-C36)									
Total TPH	2160		50.0		mg/Kg		09/03/21 15:57	09/04/21 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				09/03/21 15:57	09/04/21 17:10	1
o-Terphenyl	108		70 - 130				09/03/21 15:57	09/04/21 17:10	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	0 . ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

4.95

mg/Kg

67.4

Client Sample ID: BH-2 (2-3)

Method: 8021B - Volatile Organic Compounds (GC)

Date Collected: 08/31/21 11:40 Date Received: 09/03/21 13:54

Chloride

Lab Sample ID: 880-5791-9

09/04/21 15:56

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
Toluene	<0.00202	U	0.00202		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
Xylenes, Total	< 0.00403	U	0.00403		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
Total BTEX	<0.00403	U	0.00403		mg/Kg		09/07/21 15:46	09/08/21 02:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	138	S1+	70 - 130				09/07/21 15:46	09/08/21 02:24	1
1,4-Difluorobenzene (Surr)	87		70 - 130				09/07/21 15:46	09/08/21 02:24	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang	• • •		RI	MDI	Unit	D	Prenared	Analyzod	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 17:31	1
Diesel Range Organics (Over C10-C28)	<50.0	U *1	50.0		mg/Kg		09/03/21 15:57	09/04/21 17:31	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 17:31	1
Total TPH	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	124		70 - 130				09/03/21 15:57	09/04/21 17:31	1
o-Terphenyl	128		70 - 130				09/03/21 15:57	09/04/21 17:31	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40.1		4.97		mg/Kg			09/04/21 16:02	1

Client Sample ID: BH-2 4-5)

Date Collected: 08/31/21 11:50 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-10

09/03/21 15:57 09/04/21 17:53

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
Total BTEX	<0.00402	U	0.00402		mg/Kg		09/07/21 15:46	09/08/21 02:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/07/21 15:46	09/08/21 02:44	1
1,4-Difluorobenzene (Surr)	94		70 - 130				09/07/21 15:46	09/08/21 02:44	1

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 17:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	105	*1	49.9		mg/Kg		09/03/21 15:57	09/04/21 17:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 17:53	1
Total TPH	105		49.9		mg/Kg		09/03/21 15:57	09/04/21 17:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130				09/03/21 15:57	09/04/21 17:53	1

Method: 300.0 - Anions, Ion Chron	natography - Soluble							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	294	4 95	ma/Ka			09/04/21 16:19	1	

70 - 130

121

Client Sample ID: BH-2 (6-7) Lab Sample ID: 880-5791-11 Date Collected: 08/31/21 12:00 **Matrix: Solid**

Date Received: 09/03/21 13:54

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				09/07/21 15:46	09/08/21 03:05	1
1,4-Difluorobenzene (Surr)	78		70 - 130				09/07/21 15:46	09/08/21 03:05	1
Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 18:14	1
					5 5				

Eurofins Xenco, Midland

(GRO)-C6-C10

Client Sample ID: BH-2 (6-7)

Date Collected: 08/31/21 12:00 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-11

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<49.9	U *1	49.9		mg/Kg		09/03/21 15:57	09/04/21 18:14	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 18:14	1
Total TPH	<49.9	U	49.9		mg/Kg		09/03/21 15:57	09/04/21 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	114		70 - 130				09/03/21 15:57	09/04/21 18:14	1
o-Terphenyl	114		70 - 130				09/03/21 15:57	09/04/21 18:14	1

Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac 5.00 09/04/21 16:24 Chloride 392 mg/Kg

Client Sample ID: BH-2 (9-10)

Date Collected: 08/31/21 12:10 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-12

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
Toluene	< 0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	148	S1+	70 - 130				09/07/21 15:46	09/08/21 03:25	1
1,4-Difluorobenzene (Surr)	103		70 - 130				09/07/21 15:46	09/08/21 03:25	1
Method: 8015B NM - Diesel Ranç Analyte	Result	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	Prepared 09/03/21 15:57	Analyzed	Dil Fac
Analyte Gasoline Range Organics	, ,	Qualifier	RL 49.8	MDL	Unit mg/Kg	<u>D</u>	Prepared 09/03/21 15:57	Analyzed 09/04/21 18:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U		MDL		<u>D</u>	<u> </u>		Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8	Qualifier U *1	49.8	MDL	mg/Kg	<u> </u>	09/03/21 15:57 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U *1	49.8	MDL	mg/Kg	<u>D</u>	09/03/21 15:57	09/04/21 18:35	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.8	Qualifier U *1	49.8	MDL	mg/Kg	<u>D</u>	09/03/21 15:57 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result <49.8 67.9 <49.8	Qualifier U *1	49.8 49.8 49.8	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/03/21 15:57 09/03/21 15:57 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35 09/04/21 18:35	
Analyte	Result <49.8 67.9 <49.8 67.9	Qualifier U *1	49.8 49.8 49.8 49.8	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 09/04/21 18:35	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate	Result <49.8 67.9 <49.8 67.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87.9 <87	Qualifier U *1	49.8 49.8 49.8 49.8 Limits	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 Prepared	09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	Result <49.8 67.9 <49.8 67.9	Qualifier U *1 U Qualifier Soluble	49.8 49.8 49.8 49.8 Limits 70 - 130 70 - 130		mg/Kg mg/Kg mg/Kg mg/Kg	=	09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 Prepared 09/03/21 15:57 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 Analyzed 09/04/21 18:35 09/04/21 18:35	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result <49.8 67.9 <49.8 67.9	Qualifier U *1 U Qualifier	49.8 49.8 49.8 49.8 Limits 70 - 130		mg/Kg mg/Kg mg/Kg	<u>D</u>	09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 09/03/21 15:57 Prepared 09/03/21 15:57	09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 09/04/21 18:35 Analyzed 09/04/21 18:35	Dil Fa

Client Sample ID: BH-3 (0-1)

Date Collected: 08/31/21 14:00 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-13

09/04/21 18:56

09/04/21 18:56

09/03/21 15:57

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
Total BTEX	<0.00398	U	0.00398		mg/Kg		09/07/21 15:46	09/08/21 03:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				09/07/21 15:46	09/08/21 03:46	1
1,4-Difluorobenzene (Surr)	87		70 - 130				09/07/21 15:46	09/08/21 03:46	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <49.9 U Gasoline Range Organics 49.9 09/03/21 15:57 09/04/21 18:56 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U*1 49.9 mg/Kg 09/03/21 15:57 09/04/21 18:56 C10-C28) Oll Range Organics (Over C28-C36) <49.9 U 49.9 mg/Kg 09/03/21 15:57 09/04/21 18:56 Total TPH 09/03/21 15:57 <49.9 U 49.9 09/04/21 18:56 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 09/03/21 15:57

Method: 300.0 - Anions, Ion Chro	matography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.4	4 99	ma/Ka			09/04/21 16:35	1

70 - 130

119

123

Client Sample ID: BH-3 (2-3) Lab Sample ID: 880-5791-14 Date Collected: 08/31/21 14:10 Matrix: Solid

Date Received: 09/03/21 13:54

1-Chlorooctane

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
Total BTEX	<0.00399	U	0.00399		mg/Kg		09/07/21 15:46	09/08/21 04:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				09/07/21 15:46	09/08/21 04:06	1
1,4-Difluorobenzene (Surr)	98		70 - 130				09/07/21 15:46	09/08/21 04:06	1
Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 19:17	1

Job ID: 880-5791-1

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD SDG: Lea County, NM

Client Sample ID: BH-3 (2-3) Lab Sample ID: 880-5791-14

Date Collected: 08/31/21 14:10 **Matrix: Solid** Date Received: 09/03/21 13:54

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U *1	50.0		mg/Kg		09/03/21 15:57	09/04/21 19:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 19:17	1
Total TPH	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 19:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				09/03/21 15:57	09/04/21 19:17	1
o-Terphenyl	98		70 - 130				09/03/21 15:57	09/04/21 19:17	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
				MDI	1114		Duamanad	A so a la sesa al	Dil Faa
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH-3 (4-5) Lab Sample ID: 880-5791-15

Date Collected: 08/31/21 14:20 **Matrix: Solid** Date Received: 09/03/21 13:54

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac RL Benzene <0.00200 Ū 0.00200 09/07/21 15:46 09/08/21 04:26 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 09/07/21 15:46 09/08/21 04:26 mg/Kg Ethylbenzene <0.00200 U 0.00200 09/07/21 15:46 09/08/21 04:26 m-Xylene & p-Xylene <0.00401 U 0.00401 mg/Kg 09/07/21 15:46 09/08/21 04:26 o-Xylene <0.00200 U 0.00200 mg/Kg 09/07/21 15:46 09/08/21 04:26 Xylenes, Total <0.00401 U 0.00401 mg/Kg 09/07/21 15:46 09/08/21 04:26 Total BTEX <0.00401 U 0.00401 09/07/21 15:46 09/08/21 04:26 mg/Kg

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130	09/07/21 15:46	09/08/21 04:26	1
1,4-Difluorobenzene (Surr)	77		70 - 130	09/07/21 15:46	09/08/21 04:26	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Dil Fac Unit Prepared Analyzed Gasoline Range Organics <49.8 U 49.8 09/03/21 15:57 09/04/21 19:38 mg/Kg (GRO)-C6-C10 <49.8 U *1 49.8 09/03/21 15:57 09/04/21 19:38 Diesel Range Organics (Over mg/Kg C10-C28) <49.8 U 49.8 09/03/21 15:57 09/04/21 19:38 Oll Range Organics (Over C28-C36) mg/Kg

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130	09/03/21 15:57	09/04/21 19:38	1
o-Terphenyl	110		70 - 130	09/03/21 15:57	09/04/21 19:38	1

49.8

mg/Kg

<49.8 U

Method: 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	89.5	4.99	mg/Kg			09/04/21 16:47	1	

Eurofins Xenco, Midland

09/04/21 19:38

09/03/21 15:57

Total TPH

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		DED4	DED74	Percent Surrogate Recovery (Acceptance Limits)
	011 / 0 / 1 / 15	BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-5786-A-26-D MS	Matrix Spike	126	105	
80-5786-A-26-E MSD	Matrix Spike Duplicate	112	103	
80-5790-A-1-H MS	Matrix Spike	109	98	
80-5790-A-1-I MSD	Matrix Spike Duplicate	114	95	
80-5791-1	BH-1 (0-1)	122	97	
80-5791-2	BH-1 (2-3)	110	144 S1+	
80-5791-3	BH-1 (4-5)	118	96	
80-5791-4	BH-1 (6-7)	74	99	
80-5791-5	BH-1 (9-10)	113	109	
80-5791-6	BH-1 (14-15)	105	94	
80-5791-7	BH-1 (19-20)	109	103	
80-5791-8	BH-2 (0-1)	104	111	
80-5791-9	BH-2 (2-3)	138 S1+	87	
80-5791-10	BH-2 4-5)	113	94	
80-5791-11	BH-2 (6-7)	125	78	
80-5791-12	BH-2 (9-10)	148 S1+	103	
80-5791-13	BH-3 (0-1)	116	87	
80-5791-14	BH-3 (2-3)	108	98	
80-5791-15	BH-3 (4-5)	120	77	
.CS 880-7618/1-A	Lab Control Sample	107	89	
.CS 880-7636/1-A	Lab Control Sample	112	104	
.CSD 880-7618/2-A	Lab Control Sample Dup	102	93	
.CSD 880-7636/2-A	Lab Control Sample Dup	107	104	
/IB 880-7618/5-A	Method Blank	124	105	
/IB 880-7636/5-A	Method Blank	105	98	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5785-A-1-F MS	Matrix Spike	96	88	
880-5785-A-1-G MSD	Matrix Spike Duplicate	96	95	
880-5791-1	BH-1 (0-1)	96	98	
880-5791-2	BH-1 (2-3)	107	117	
880-5791-3	BH-1 (4-5)	122	129	
880-5791-4	BH-1 (6-7)	113	116	
880-5791-5	BH-1 (9-10)	122	124	
880-5791-6	BH-1 (14-15)	117	127	
880-5791-7	BH-1 (19-20)	122	125	
880-5791-8	BH-2 (0-1)	104	108	
880-5791-9	BH-2 (2-3)	124	128	
880-5791-10	BH-2 4-5)	116	121	
880-5791-11	BH-2 (6-7)	114	114	
880-5791-12	BH-2 (9-10)	106	115	

Surrogate Summary

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-5791-13	BH-3 (0-1)	119	123	
880-5791-14	BH-3 (2-3)	99	98	
880-5791-15	BH-3 (4-5)	108	110	
LCS 880-7524/2-A	Lab Control Sample	98	96	
LCSD 880-7524/3-A	Lab Control Sample Dup	122	122	
MB 880-7524/1-A	Method Blank	101	109	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Job ID: 880-5791-1 Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7618/5-A

Matrix: Solid

Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene

o-Xylene

Xylenes, Total

Total BTEX

Analysis Batch: 7614

Client Sample ID: Method Blank

09/07/21 20:21

09/07/21 20:21

Prep Type: Total/NA

Prep Batch: 7618

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 20:21	1
<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 20:21	1
<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 20:21	1
<0.00400	U	0.00400		mg/Kg		09/07/21 15:46	09/07/21 20:21	1
<0.00200	U	0.00200		mg/Kg		09/07/21 15:46	09/07/21 20:21	1

mg/Kg

mg/Kg

MB MB

<0.00400 U

<0.00400 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124	70 - 130	09/07/21 15:46	09/07/21 20:21	1
1,4-Difluorobenzene (Surr)	105	70 - 130	09/07/21 15:46	09/07/21 20:21	1

0.00400

0.00400

Lab Sample ID: LCS 880-7618/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 7614

Prep Type: Total/NA

09/07/21 15:46

09/07/21 15:46

Prep Batch: 7618

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.08925 mg/Kg 89 70 - 130 0.100 0.09109 Toluene mg/Kg 91 70 - 130 0.100 0.1069 mg/Kg 107 70 - 130 Ethylbenzene 0.200 0.1881 70 - 130 m-Xylene & p-Xylene mg/Kg 94 o-Xylene 0.100 0.09501 mg/Kg 95 70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
1.4-Difluorobenzene (Surr)	89	70 - 130

Lab Sample ID: LCSD 880-7618/2-A

Matrix: Solid

Analysis Batch: 7614

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 7618

-	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1044		mg/Kg		104	70 - 130	16	35	
Toluene	0.100	0.1111		mg/Kg		111	70 - 130	20	35	
Ethylbenzene	0.100	0.1142		mg/Kg		114	70 - 130	7	35	
m-Xylene & p-Xylene	0.200	0.2094		mg/Kg		105	70 - 130	11	35	
o-Xylene	0.100	0.1036		mg/Kg		104	70 - 130	9	35	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	102	70 - 130
1.4-Difluorobenzene (Surr)	93	70 - 130

Lab Sample ID: 880-5790-A-1-H MS

Matrix: Solid

Analysis Batch: 7614

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 7618

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0998	0.07846		mg/Kg		79	70 - 130	

Eurofins Xenco, Midland

Page 17 of 35

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 880-5791-1 Project/Site: Sopapilla SWD SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-5790-A-1-H MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 7614** Prep Batch: 7618

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	<0.00201	U F1	0.0998	0.06778	F1	mg/Kg		68	70 - 130	
Ethylbenzene	<0.00201	U F2 F1	0.0998	0.05320	F1	mg/Kg		53	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F2 F1	0.200	0.09757	F1	mg/Kg		49	70 - 130	
o-Xylene	<0.00201	U F2 F1	0.0998	0.05294	F1	mg/Kg		52	70 - 130	

	INIS	MS			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	109		70 - 130		
1,4-Difluorobenzene (Surr)	98		70 - 130		

Lab Sample ID: 880-5790-A-1-I MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid Analysis Batch: 7614

o-Xylene

Prep Batch: 7618 MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Limit Analyte Added Result Qualifier Unit %Rec Limits **RPD** Benzene <0.00201 U 0.100 0.09236 92 35 mg/Kg 70 - 130 16 Toluene <0.00201 UF1 0.100 0.09357 mg/Kg 93 70 - 130 35 32 Ethylbenzene <0.00201 U F2 F1 0.100 0.1068 F2 107 70 - 130 mg/Kg 67 35 0.200 m-Xylene & p-Xylene <0.00402 U F2 F1 0.1991 F2 70 - 130 68 35 mg/Kg 99

0.09598 F2

mg/Kg

0.100

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

<0.00201 U F2 F1

Lab Sample ID: MB 880-7636/5-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7637 Prep Batch: 7636

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1
Total BTEX	<0.00400	U	0.00400		mg/Kg		09/08/21 09:25	09/08/21 12:29	1

	MB I	MB				
Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	09/08/21 09:25	09/08/21 12:29	1
1,4-Difluorobenzene (Surr)	98		70 - 130	09/08/21 09:25	09/08/21 12:29	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-7636/1-A **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7637

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Benzene	0.100	0.09588		mg/Kg	96	70 - 130	
Toluene	0.100	0.09057		mg/Kg	91	70 - 130	

Eurofins Xenco, Midland

Prep Batch: 7636

70 - 130

9/9/2021

Job ID: 880-5791-1 Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-7636/1-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 7637** Prep Batch: 7636

Бріке	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.100	0.08996		mg/Kg		90	70 - 130
0.200	0.1841		mg/Kg		92	70 - 130
0.100	0.09159		mg/Kg		92	70 - 130
	0.100 0.200	Added Result 0.100 0.08996 0.200 0.1841	Added Result Qualifier 0.100 0.08996 0.200 0.1841	Added Result 0.100 Qualifier 0.08996 Unit mg/Kg 0.200 0.1841 mg/Kg	Added Result Qualifier Unit D 0.100 0.08996 mg/Kg 0.200 0.1841 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.08996 mg/Kg 90 0.200 0.1841 mg/Kg 92

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-7636/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Prep Batch: 7636

Analysis Batch: 7637

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 0.100 Benzene 0.08896 mg/Kg 89 70 - 130 7 35 Toluene 0.100 0.08402 mg/Kg 84 70 - 130 8 35 Ethylbenzene 0.100 0.08218 mg/Kg 82 70 - 130 9 35 0.200 70 - 130 35 m-Xylene & p-Xylene 0.1715 mg/Kg 86 0.100 0.08531 85 70 - 130 o-Xylene mg/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-5786-A-26-D MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7637

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier %Rec Limits Unit Benzene <0.00200 U 0.0998 0.08768 mg/Kg 87 70 - 130 Toluene <0.00200 U 0.0998 0.08534 mg/Kg 85 70 - 130 Ethylbenzene <0.00200 U 0.0998 0.08509 mg/Kg 85 70 - 130 m-Xylene & p-Xylene <0.00401 U 0.200 0.1803 mg/Kg 90 70 - 130 0.0998 <0.00200 U 0.09185 92 70 - 130 o-Xylene mg/Kg

	IVIS	IVIS			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	126		70 - 130		
1,4-Difluorobenzene (Surr)	105		70 - 130		

Lab Sample ID: 880-5786-A-26-E MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 7637

Analysis Batch: 7637									Pre	p Batch:	7636
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0994	0.08536		mg/Kg		85	70 - 130	3	35
Toluene	<0.00200	U	0.0994	0.07886		mg/Kg		79	70 - 130	8	35
Ethylbenzene	<0.00200	U	0.0994	0.07565		mg/Kg		76	70 - 130	12	35
m-Xylene & p-Xylene	<0.00401	U	0.199	0.1524		mg/Kg		77	70 - 130	17	35
o-Xylene	<0.00200	U	0.0994	0.07722		mg/Kg		77	70 - 130	17	35

Eurofins Xenco, Midland

Prep Batch: 7636

Page 19 of 35

QC Sample Results

Client: Tetra Tech, Inc. Job ID: 880-5791-1 Project/Site: Sopapilla SWD SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-7524/1-A Matrix: Solid							Client Sa	mple ID: Metho Prep Type: 1	
Analysis Batch: 7537								Prep Bate	h: 7524
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 11:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 11:31	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 11:31	1
Total TPH	<50.0	U	50.0		mg/Kg		09/03/21 15:57	09/04/21 11:31	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				09/03/21 15:57	09/04/21 11:31	1

Lab Sample ID: LCS 880-7524/2-A	Client Sample ID: Lab Control Sample
Matrix: Solid	Prep Type: Total/NA

70 - 130

o-Terphenyl

Analysis Batch: 7537							Pro	ep Batcl	h: <mark>7524</mark>
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	732.8		mg/Kg		73	70 - 130		
(GRO)-C6-C10									

834.6

mg/Kg

Diesel Range Organics (Over C10-C28)

	LCS LCS	
Surrogate	%Recovery Quali	ifier Limits
1-Chlorooctane	98	70 - 130
o-Terphenyl	96	70 - 130

109

Lab Sample ID: LCSD 880-7524/3-A **Client Sample ID: Lab Control Sample Dup**

1000

Matrix: Solid

Analysis Batch: 7537					Prep Bato			p Batch	:h: 7524	
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	893.4		mg/Kg		89	70 - 130	20	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1081	*1	mg/Kg		108	70 _ 130	26	20	

C10-C28)

	LCSD	LUJD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	122		70 - 130
o-Terphenyl	122		70 - 130

Eurofins Xenco, Midland

Released to Imaging: 11/29/2021 9:12:40 AM

09/03/21 15:57

09/04/21 11:31

70 - 130

Prep Type: Total/NA

Job ID: 880-5791-1

Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD

SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-5785-A-1-F MS

Matrix: Solid

Analysis Batch: 7537

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 7524

Sample Sample Spike MS MS Result Qualifier Analyte Added Result Qualifier %Rec Limits Unit Gasoline Range Organics <50.0 U 995 893.7 mg/Kg 90 70 - 130 (GRO)-C6-C10 <50.0 U *1 995 969 9 97 70 - 130Diesel Range Organics (Over mg/Kg

Limits

70 - 130

70 - 130

70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate 1-Chlorooctane 96

88

95

MB MB

o-Terphenyl

Lab Sample ID: 880-5785-A-1-G MSD

Matrix: Solid

Analysis Batch: 7537

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 7524

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 998 Gasoline Range Organics <50.0 U 853.6 mg/Kg 86 70 - 130 5 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U *1 998 1040 mg/Kg 104 70 - 130 7 20

C10-C28)

MSD MSD %Recovery Qualifier Limits 1-Chlorooctane 96 70 - 130

Surrogate

o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-7526/1-A

Matrix: Solid

Analysis Batch: 7556

Client Sample ID: Method Blank **Prep Type: Soluble**

Prep Type: Soluble

Result Qualifier Analyte

MDL Unit RL Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 09/04/21 14:04 mg/Kg

Lab Sample ID: LCS 880-7526/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 7556

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 252.3 101 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-7526/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 7556

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D Chloride 250 252.1 mg/Kg 101 90 _ 110 20

Eurofins Xenco, Midland

Released to Imaging: 11/29/2021 9:12:40 AM

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-5791-7 MS

Matrix: Solid

Client Sample ID: BH-1 (19-20)
Prep Type: Soluble

Analysis Batch: 7556

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	314		249	563.2		mg/Kg		100	90 - 110	

Lab Sample ID: 880-5791-7 MSD

Client Sample ID: BH-1 (19-20)

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 7556

Sample Sample Spike MSD MSD %Rec. RPD RPD Analyte Result Qualifier Added Result Qualifier Limits Limit Unit %Rec Chloride 314 249 564.7 mg/Kg 101 90 - 110 0

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Sopapilla SWD

Job ID: 880-5791-1

SDG: Lea County, NM

GC VOA

Analysis Batch: 7614

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Total/NA	Solid	8021B	7618
880-5791-2	BH-1 (2-3)	Total/NA	Solid	8021B	7618
880-5791-3	BH-1 (4-5)	Total/NA	Solid	8021B	7618
880-5791-4	BH-1 (6-7)	Total/NA	Solid	8021B	7618
880-5791-5	BH-1 (9-10)	Total/NA	Solid	8021B	7618
880-5791-6	BH-1 (14-15)	Total/NA	Solid	8021B	7618
880-5791-7	BH-1 (19-20)	Total/NA	Solid	8021B	7618
880-5791-9	BH-2 (2-3)	Total/NA	Solid	8021B	7618
880-5791-10	BH-2 4-5)	Total/NA	Solid	8021B	7618
880-5791-11	BH-2 (6-7)	Total/NA	Solid	8021B	7618
880-5791-12	BH-2 (9-10)	Total/NA	Solid	8021B	7618
880-5791-13	BH-3 (0-1)	Total/NA	Solid	8021B	7618
880-5791-14	BH-3 (2-3)	Total/NA	Solid	8021B	7618
880-5791-15	BH-3 (4-5)	Total/NA	Solid	8021B	7618
MB 880-7618/5-A	Method Blank	Total/NA	Solid	8021B	7618
LCS 880-7618/1-A	Lab Control Sample	Total/NA	Solid	8021B	7618
LCSD 880-7618/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7618
880-5790-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	7618
880-5790-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7618

Prep Batch: 7618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Total/NA	Solid	5035	
880-5791-2	BH-1 (2-3)	Total/NA	Solid	5035	
880-5791-3	BH-1 (4-5)	Total/NA	Solid	5035	
880-5791-4	BH-1 (6-7)	Total/NA	Solid	5035	
880-5791-5	BH-1 (9-10)	Total/NA	Solid	5035	
880-5791-6	BH-1 (14-15)	Total/NA	Solid	5035	
880-5791-7	BH-1 (19-20)	Total/NA	Solid	5035	
880-5791-9	BH-2 (2-3)	Total/NA	Solid	5035	
880-5791-10	BH-2 4-5)	Total/NA	Solid	5035	
880-5791-11	BH-2 (6-7)	Total/NA	Solid	5035	
880-5791-12	BH-2 (9-10)	Total/NA	Solid	5035	
880-5791-13	BH-3 (0-1)	Total/NA	Solid	5035	
880-5791-14	BH-3 (2-3)	Total/NA	Solid	5035	
880-5791-15	BH-3 (4-5)	Total/NA	Solid	5035	
MB 880-7618/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7618/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7618/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5790-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
880-5790-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 7636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-8	BH-2 (0-1)	Total/NA	Solid	5035	
MB 880-7636/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-7636/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-7636/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-5786-A-26-D MS	Matrix Spike	Total/NA	Solid	5035	
880-5786-A-26-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Eurofins Xenco, Midland

Page 23 of 35

1

2

6

Q

9

4 4

12

13

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

GC VOA

Analysis Batch: 7637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-8	BH-2 (0-1)	Total/NA	Solid	8021B	7636
MB 880-7636/5-A	Method Blank	Total/NA	Solid	8021B	7636
LCS 880-7636/1-A	Lab Control Sample	Total/NA	Solid	8021B	7636
LCSD 880-7636/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7636
880-5786-A-26-D MS	Matrix Spike	Total/NA	Solid	8021B	7636
880-5786-A-26-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7636

GC Semi VOA

Prep Batch: 7524

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Total/NA	Solid	8015NM Prep	
880-5791-2	BH-1 (2-3)	Total/NA	Solid	8015NM Prep	
880-5791-3	BH-1 (4-5)	Total/NA	Solid	8015NM Prep	
880-5791-4	BH-1 (6-7)	Total/NA	Solid	8015NM Prep	
880-5791-5	BH-1 (9-10)	Total/NA	Solid	8015NM Prep	
880-5791-6	BH-1 (14-15)	Total/NA	Solid	8015NM Prep	
880-5791-7	BH-1 (19-20)	Total/NA	Solid	8015NM Prep	
880-5791-8	BH-2 (0-1)	Total/NA	Solid	8015NM Prep	
880-5791-9	BH-2 (2-3)	Total/NA	Solid	8015NM Prep	
880-5791-10	BH-2 4-5)	Total/NA	Solid	8015NM Prep	
880-5791-11	BH-2 (6-7)	Total/NA	Solid	8015NM Prep	
880-5791-12	BH-2 (9-10)	Total/NA	Solid	8015NM Prep	
880-5791-13	BH-3 (0-1)	Total/NA	Solid	8015NM Prep	
880-5791-14	BH-3 (2-3)	Total/NA	Solid	8015NM Prep	
880-5791-15	BH-3 (4-5)	Total/NA	Solid	8015NM Prep	
MB 880-7524/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-7524/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-7524/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-5785-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-5785-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 7537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Total/NA	Solid	8015B NM	7524
880-5791-2	BH-1 (2-3)	Total/NA	Solid	8015B NM	7524
880-5791-3	BH-1 (4-5)	Total/NA	Solid	8015B NM	7524
880-5791-4	BH-1 (6-7)	Total/NA	Solid	8015B NM	7524
880-5791-5	BH-1 (9-10)	Total/NA	Solid	8015B NM	7524
880-5791-6	BH-1 (14-15)	Total/NA	Solid	8015B NM	7524
880-5791-7	BH-1 (19-20)	Total/NA	Solid	8015B NM	7524
880-5791-8	BH-2 (0-1)	Total/NA	Solid	8015B NM	7524
880-5791-9	BH-2 (2-3)	Total/NA	Solid	8015B NM	7524
880-5791-10	BH-2 4-5)	Total/NA	Solid	8015B NM	7524
880-5791-11	BH-2 (6-7)	Total/NA	Solid	8015B NM	7524
880-5791-12	BH-2 (9-10)	Total/NA	Solid	8015B NM	7524
880-5791-13	BH-3 (0-1)	Total/NA	Solid	8015B NM	7524
880-5791-14	BH-3 (2-3)	Total/NA	Solid	8015B NM	7524
880-5791-15	BH-3 (4-5)	Total/NA	Solid	8015B NM	7524
MB 880-7524/1-A	Method Blank	Total/NA	Solid	8015B NM	7524
LCS 880-7524/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	7524

Eurofins Xenco, Midland

6

8

9

11

13

QC Association Summary

Client: Tetra Tech, Inc.

Project/Site: Sopapilla SWD

SDG: Lea County, NM

GC Semi VOA (Continued)

Analysis Batch: 7537 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-7524/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	7524
880-5785-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	7524
880-5785-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	7524

HPLC/IC

Leach Batch: 7526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Soluble	Solid	DI Leach	
880-5791-2	BH-1 (2-3)	Soluble	Solid	DI Leach	
880-5791-3	BH-1 (4-5)	Soluble	Solid	DI Leach	
880-5791-4	BH-1 (6-7)	Soluble	Solid	DI Leach	
880-5791-5	BH-1 (9-10)	Soluble	Solid	DI Leach	
880-5791-6	BH-1 (14-15)	Soluble	Solid	DI Leach	
880-5791-7	BH-1 (19-20)	Soluble	Solid	DI Leach	
880-5791-8	BH-2 (0-1)	Soluble	Solid	DI Leach	
880-5791-9	BH-2 (2-3)	Soluble	Solid	DI Leach	
880-5791-10	BH-2 4-5)	Soluble	Solid	DI Leach	
880-5791-11	BH-2 (6-7)	Soluble	Solid	DI Leach	
880-5791-12	BH-2 (9-10)	Soluble	Solid	DI Leach	
880-5791-13	BH-3 (0-1)	Soluble	Solid	DI Leach	
880-5791-14	BH-3 (2-3)	Soluble	Solid	DI Leach	
880-5791-15	BH-3 (4-5)	Soluble	Solid	DI Leach	
MB 880-7526/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-7526/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-7526/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-5791-7 MS	BH-1 (19-20)	Soluble	Solid	DI Leach	
880-5791-7 MSD	BH-1 (19-20)	Soluble	Solid	DI Leach	

Analysis Batch: 7556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-5791-1	BH-1 (0-1)	Soluble	Solid	300.0	7526
880-5791-2	BH-1 (2-3)	Soluble	Solid	300.0	7526
880-5791-3	BH-1 (4-5)	Soluble	Solid	300.0	7526
880-5791-4	BH-1 (6-7)	Soluble	Solid	300.0	7526
880-5791-5	BH-1 (9-10)	Soluble	Solid	300.0	7526
880-5791-6	BH-1 (14-15)	Soluble	Solid	300.0	7526
880-5791-7	BH-1 (19-20)	Soluble	Solid	300.0	7526
880-5791-8	BH-2 (0-1)	Soluble	Solid	300.0	7526
880-5791-9	BH-2 (2-3)	Soluble	Solid	300.0	7526
880-5791-10	BH-2 4-5)	Soluble	Solid	300.0	7526
880-5791-11	BH-2 (6-7)	Soluble	Solid	300.0	7526
880-5791-12	BH-2 (9-10)	Soluble	Solid	300.0	7526
880-5791-13	BH-3 (0-1)	Soluble	Solid	300.0	7526
880-5791-14	BH-3 (2-3)	Soluble	Solid	300.0	7526
880-5791-15	BH-3 (4-5)	Soluble	Solid	300.0	7526
MB 880-7526/1-A	Method Blank	Soluble	Solid	300.0	7526
LCS 880-7526/2-A	Lab Control Sample	Soluble	Solid	300.0	7526
LCSD 880-7526/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	7526
880-5791-7 MS	BH-1 (19-20)	Soluble	Solid	300.0	7526
880-5791-7 MSD	BH-1 (19-20)	Soluble	Solid	300.0	7526

Eurofins Xenco, Midland

1

3

4

6

8

9

13

1 4

Released to Imaging: 11/29/2021 9:12:40 AM

Job ID: 880-5791-1 SDG: Lea County, NM

Project/Site: Sopapilla SWD Client Sample ID: BH-1 (0-1)

Client: Tetra Tech, Inc.

Lab Sample ID: 880-5791-1

Matrix: Solid

Date Collected: 08/31/21 10:00 Date Received: 09/03/21 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/07/21 22:12	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 14:22	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 14:54	CH	XEN MID

Client Sample ID: BH-1 (2-3)

Batch

Batch

Date Collected: 08/31/21 10:10 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-2 Matrix: Solid

Prepared Analyst Lab MR XEN MID XEN MID MR XEN MID DM XEN MID ΑJ

Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Total/NA Prep 5035 5.01 g 5 mL 7618 09/07/21 15:46 Total/NA 8021B 5 mL 5 mL 7614 09/07/21 22:32 Analysis 1 Total/NA Prep 8015NM Prep 10.05 q 10 mL 7524 09/03/21 15:57 Total/NA 8015B NM Analysis 7537 09/04/21 14:43 XEN MID Soluble Leach DI Leach 4.95 g 50 mL 7526 09/03/21 16:34 CA 300.0 Soluble Analysis 1 7556 09/04/21 15:11 CH XEN MID

Initial

Final

Batch

Dil

Client Sample ID: BH-1 (4-5)

Date Collected: 08/31/21 10:20

Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/07/21 22:52	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 15:04	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 15:17	CH	XEN MID

Client Sample ID: BH-1 (6-7)

Date Collected: 08/31/21 10:30

Date Received: 09/03/21 13:54

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/07/21 23:13	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 15:25	AJ	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 15:22	CH	XEN MID

Eurofins Xenco, Midland

Lab Sample ID: 880-5791-4

Matrix: Solid

Job ID: 880-5791-1 Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD SDG: Lea County, NM

Client Sample ID: BH-1 (9-10)

Date Collected: 08/31/21 10:40 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-5

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 5 mL 7618 09/07/21 15:46 MR XEN MID Total/NA Analysis 8021B 1 5 mL 5 mL 7614 09/07/21 23:33 MR XEN MID Total/NA Prep 8015NM Prep 10.02 g 10 mL 7524 09/03/21 15:57 DM XEN MID Total/NA Analysis 8015B NM 7537 09/04/21 15:46 ΑJ XEN MID Soluble Leach DI Leach 4.99 g 50 mL 7526 09/03/21 16:34 CA XEN MID Soluble Analysis 300.0 1 7556 09/04/21 15:28 СН XEN MID

Client Sample ID: BH-1 (14-15)

Date Collected: 08/31/21 10:50 Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-6

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.01 g 5 mL 7618 09/07/21 15:46 MR XEN MID 8021B Total/NA 5 mL 5 mL 7614 09/07/21 23:54 MR XEN MID Analysis 1 Total/NA Prep 8015NM Prep 10.03 q 10 mL 7524 09/03/21 15:57 DM XEN MID Total/NA 8015B NM Analysis 1 7537 09/04/21 16:07 ΑJ XEN MID Soluble Leach DI Leach 5.01 g 50 mL 7526 09/03/21 16:34 CA XEN MID Soluble Analysis 300.0 1 7556 09/04/21 15:33 CH XEN MID

Client Sample ID: BH-1 (19-20)

Date Collected: 08/31/21 11:00

Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 01:43	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 16:28	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 15:39	CH	XEN MID

Client Sample ID: BH-2 (0-1)

Date Collected: 08/31/21 11:30

Date Received: 09/03/21 13:54

	Lab Sample ID: 880-5791-8
	Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	7636	09/08/21 09:25	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7637	09/08/21 15:34	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 17:10	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 15:56	CH	XEN MID

SDG: Lea County, NM

Project/Site: Sopapilla SWD

Client: Tetra Tech, Inc.

Lab Sample ID: 880-5791-9 Client Sample ID: BH-2 (2-3)

Matrix: Solid

Date Collected: 08/31/21 11:40 Date Received: 09/03/21 13:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 02:24	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 17:31	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:02	CH	XEN MID

Client Sample ID: BH-2 4-5) Date Collected: 08/31/21 11:50

Lab Sample ID: 880-5791-10

Date Received: 09/03/21 13:54

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 02:44	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 17:53	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:19	CH	XEN MID

Client Sample ID: BH-2 (6-7)

Lab Sample ID: 880-5791-11

Date Collected: 08/31/21 12:00

Matrix: Solid

Date Received: 09/03/21 13:54

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 03:05	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 18:14	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:24	CH	XEN MID

Client Sample ID: BH-2 (9-10)

Lab Sample ID: 880-5791-12

Date Collected: 08/31/21 12:10 Date Received: 09/03/21 13:54 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 03:25	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 18:35	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:30	CH	XEN MID

Client Sample ID: BH-3 (0-1)

Date Collected: 08/31/21 14:00
Date Received: 09/03/21 13:54

Lab Sample ID: 880-5791-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 03:46	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 18:56	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:35	CH	XEN MID

Client Sample ID: BH-3 (2-3)

Date Collected: 08/31/21 14:10 Date Received: 09/03/21 13:54 Lab Sample ID: 880-5791-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 04:06	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 19:17	AJ	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1	0 mL	1.0 mL	7556	09/04/21 16:41	CH	XEN MID

Client Sample ID: BH-3 (4-5)

Date Collected: 08/31/21 14:20

Date Received: 09/03/21 13:54

Lab Sample	ID:	880-5791-15
		Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	7618	09/07/21 15:46	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	7614	09/08/21 04:26	MR	XEN MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	7524	09/03/21 15:57	DM	XEN MID
Total/NA	Analysis	8015B NM		1			7537	09/04/21 19:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	7526	09/03/21 16:34	CA	XEN MID
Soluble	Analysis	300.0		1			7556	09/04/21 16:47	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pi	ogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-20-21	06-30-22
The following analytes	are included in this report by	it the laboratory is not certifi	ed by the governing authority. This list ma	y include analytes for y
the agency does not of	• •	2	od by the governing additionty. This not the	ry molade analytes for v
0 ,	• •	Matrix	Analyte	y molude analytes for v
the agency does not of	fer certification.	•	, , ,	y monde unarytes for v

2

4

5

7

10

Method Summary

Client: Tetra Tech, Inc.

Job ID: 880-5791-1

Project/Site: Sopapilla SWD

SDG: Lea County, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

3

4

g

12

Sample Summary

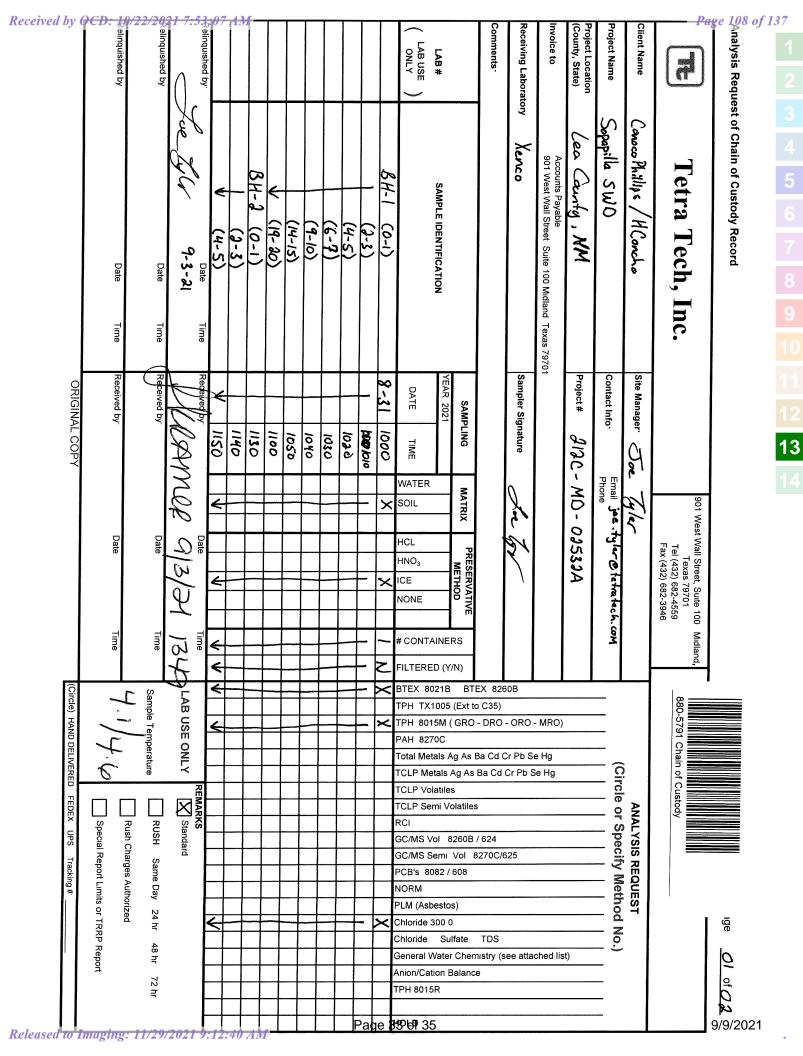
Client: Tetra Tech, Inc. Project/Site: Sopapilla SWD Job ID: 880-5791-1 SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-5791-1	BH-1 (0-1)	Solid	08/31/21 10:00	09/03/21 13:54
880-5791-2	BH-1 (2-3)	Solid	08/31/21 10:10	09/03/21 13:54
880-5791-3	BH-1 (4-5)	Solid	08/31/21 10:20	09/03/21 13:54
880-5791-4	BH-1 (6-7)	Solid	08/31/21 10:30	09/03/21 13:54
880-5791-5	BH-1 (9-10)	Solid	08/31/21 10:40	09/03/21 13:54
880-5791-6	BH-1 (14-15)	Solid	08/31/21 10:50	09/03/21 13:54
880-5791-7	BH-1 (19-20)	Solid	08/31/21 11:00	09/03/21 13:54
880-5791-8	BH-2 (0-1)	Solid	08/31/21 11:30	09/03/21 13:54
880-5791-9	BH-2 (2-3)	Solid	08/31/21 11:40	09/03/21 13:54
880-5791-10	BH-2 4-5)	Solid	08/31/21 11:50	09/03/21 13:54
880-5791-11	BH-2 (6-7)	Solid	08/31/21 12:00	09/03/21 13:54
880-5791-12	BH-2 (9-10)	Solid	08/31/21 12:10	09/03/21 13:54
880-5791-13	BH-3 (0-1)	Solid	08/31/21 14:00	09/03/21 13:54
880-5791-14	BH-3 (2-3)	Solid	08/31/21 14:10	09/03/21 13:54
880-5791-15	BH-3 (4-5)	Solid	08/31/21 14:20	09/03/21 13:54

4

O

7


8

9

10

16

13

Page 109 of 137

Analysis Request of Chain of Custody Record Received by QCD: 10/22/2021 7:53:07
Relinquished by by Project Location (County, State) Client Name Receiving Laboratory nvoice to. Project Name Comments LAB USE LAB# ā Sapapilla anoco Phillips Accounts Payable 901 West Wall Street, Suite 100 Midland Texas 79701 BH-3 ВН-2 Xenco [etra Tech, Inc. SAMPLE IDENTIFICATION SWO Moncho (9-10 6-7 9-3-21 (0-1) 4-5 (2-3) Date Date Time Time Time 8-31 Site Manager Received by Sampler Signature Project # Contact Info ORIGINAL COP 'EAR 2021 DATE SAMPLING 06 FI 1400 1210 1410 1200 TIME Email Phone WATER MATRIX 901 West Wall Street Suite 100 N Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 SOIL Date HCL PRESERVATIVE METHOD HNO₃ ICE NONE Time Time Time Midland, # CONTAINERS FILTERED (Y/N) (Circle) HAND DELIVERED BTEX 8021B BTEX 8260B Sample Temperature LAB USE ONLY TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg Loc 880 **5791** (Circle or Specify Method No. TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS

Standard TCLP Volatiles FEDEX TCLP Semi Volatiles RUSH Same Day 24 hr **ANALYSIS REQUEST** Rush Charges Authorizec Special Report Limits or TRRP Report RCI GC/MS Vol 8260B / 624 GC/MS Semi Vol 8270C/625 PCBs 8082/608 NORM PLM (Asbestos) Page Chloride 300 0 Sulfate TDS 48 hr General Water Chemistry (see attached list) 02 of 02 Anion/Cation Balance 72 hr TPH 8015R Page 39 0f 35 9/9/2021

Released to Imaging: 11/29/2021 9:12:40 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 880-5791-1 SDG Number: Lea County, NM

List Source: Eurofins Xenco, Midland

Login Number: 5791 List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Xenco, Midland

Released to Imaging: 11/29/2021 9:12:40 AM

<6mm (1/4").

APPENDIX F Photographic Documentation

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	1
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	2
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	3
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	4
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	5
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	6
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

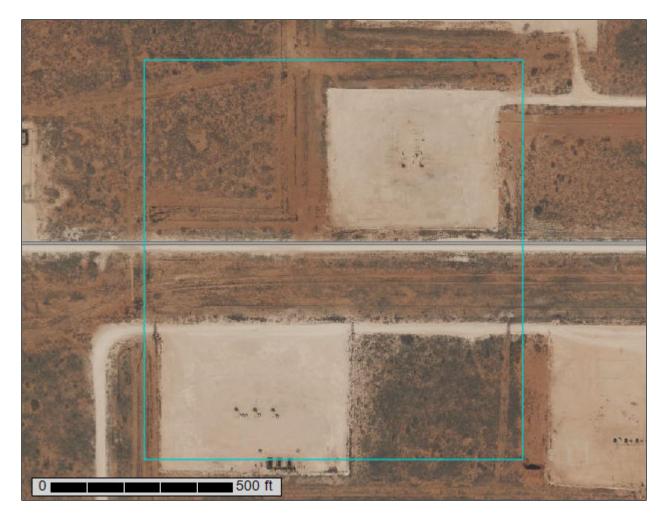
TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	7
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	8
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	9
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02532A	DESCRIPTION	View of the release area near the flowline running to the Sopapilla SWD	10
	SITE NAME	ConocoPhillips Sopapilla SWD Release	8/31/2021

APPENDIX G NMSLO Seed Mix Details



NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Sopapilla State 2D CTB Flex Line Release

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	11
Map Unit Descriptions	
Lea County, New Mexico	13
KM—Kermit soils and Dune land, 0 to 12 percent slopes	13
PU—Pyote and Maljamar fine sands	14
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

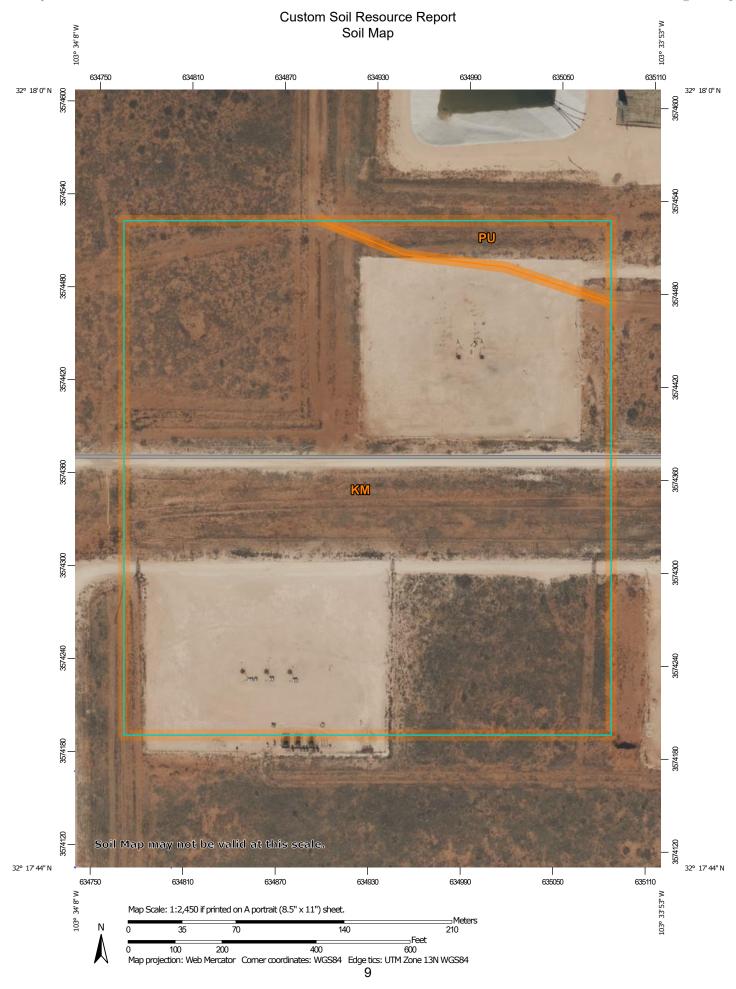
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

å

Ŷ

Δ

Water Features

Transportation

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КМ	Kermit soils and Dune land, 0 to 12 percent slopes	24.8	95.1%
PU	Pyote and Maljamar fine sands	1.3	4.9%
Totals for Area of Interest		26.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KM—Kermit soils and Dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches
Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 46 percent

Dune land: 44 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kermit

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Concave, convex, linear

Across-slope shape: Convex

Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 3 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R042XC022NM - Sandhills

Hydric soil rating: No

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Concave, convex, linear

Across-slope shape: Convex

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Pyote

Percent of map unit: 3 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Palomas

Percent of map unit: 3 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Wink

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Maljamar

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

PU—Pyote and Maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet

Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Pyote and similar soils: 46 percent Maljamar and similar soils: 44 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pyote

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand

Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: A

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Description of Maljamar

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand

Bt - 24 to 50 inches: sandy clay loam
Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 40 to 60 inches to petrocalcic

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent

Ecological site: R042XC022NM - Sandhills

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION DATE (DI S/Agra)	DRILL POY		
		RATE (PLS/Acre)	BOX		
Grasses:					
Sand bluestem	Elida, VNS, So.	2.0	${f F}$		
Little bluestem	Cimarron, Pastura	3.0	${f F}$		
Black grama	VNS, Southern	77771.0	D		
Sand dropseed	VNS, Southern	4.0	\mathbf{S}		
Plains bristlegrass	VNS, Southern	2.0	D		
A	W. CK Y	1 M/3			
Forbs:	200000		3		
Firewheel (Gaillardia)	VNS, Southern	1.0	D		
Annual Sunflower	VNS, Southern	1.0	D		
		97	B		
Shrubs:	8 0		B		
Fourwing Saltbush	VNS, Southern	1.0	F		
West Bill a Bill					
Total PLS/acre 16.0					
N			ST B		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 57436

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave Midland, TX 79701	Action Number: 57436
	Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	Closure report due 03/28/2022	11/29/2021