Third Quarter 2021 Groundwater Monitoring and Activities Summary Report

Burton Flats Booster Station Eddy County, New Mexico #2R799

APPROVED

By Nelson Velez at 10:41 am, Dec 30, 2021

Review of Second Quarter 2021 Groundwater Monitoring and Activities Summary Report: Content satisfactory

- 1. Follow recommendations stated within the aforementioned report;
- a. Continue quarterly groundwater monitoring and sampling at the monitoring locations
- b. Continue monitoring and evaluation of the passive LNAPL skimmer and recovery system
- c. Continue quarterly EFR event(s) at monitoring wells MW-1 and MW-4 during the third quarter 2021
- d. Submit annual report no later than March 31, 2022

Prepared for:

370 17th St., Suite 2500 Denver, CO 802

Prepared by:

6855 W. 119th Ave. Broomfield, Colorado 80020

December 8, 2021

Table of Contents

1.	Intro	oduction1					
2.	Site	Location and Background					
3.	Gro	undwater Monitoring1					
	3.1	Groundwater and LNAPL Elevation Monitoring					
	3.2 Groundwater Quality Monitoring						
	3.3	Data Quality Assurance / Quality Control					
4.	Rem	nediation Activities4					
5.	Con	clusions4					
6.	Reco	ommendations5					
Ta	ables						
	1 2	, a decree =					
Fi	gures						
	1 2 3 4	Site Map with Monitoring Well Locations Groundwater Elevation Map – September 24, 2021					
A	ppendi	ces					
	E						

TASMAN

Burton Flats Booster Station Third Quarter 2021 GW Monitoring Summary Report

1. Introduction

This report summarizes groundwater monitoring and remediation activities conducted during the Third quarter 2021 at the Burton Flats Booster Station (Site) in Eddy County, New Mexico (Figure 1). Tasman Geosciences (Tasman) performed these activities on behalf of DCP Midstream, LP (DCP). Field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and laboratory analytical results collected on September 24, 2021.

2. Site Location and Background

The Site is located in the Fourth and Fifth Lots of Section 1, Township 21 South, Range 27 East (approximate coordinates 32.5195 degrees north and 104.1507 degrees west). It is approximately 3.4 miles northwest of the intersection of US Highway 62 and County Road 243. The area is sparsely populated, and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a release of approximately 10 barrels (bbl) of oil and produced water occurred on October 5, 2009, of which approximately 8 bbls were recovered from within the tank secondary containment area. The C-141 report was submitted on October 12, 2009, and Site investigation and soil sampling within the release area occurred during the third quarter of 2009 and early fourth quarter of 2010 (BH-1 through BH-5). Elevated levels of petroleum hydrocarbons within the soil were encountered at depths of 20-feet below ground surface (bgs). Groundwater was encountered between 16-feet and 20-feet bgs during Site characterization activities. Subsequent to soil investigation efforts, four groundwater monitoring wells were installed around and down-gradient from the release area during the fourth quarter of 2011 (MW-1 through MW-4). Elevated petroleum hydrocarbon concentrations in soil were observed during well installation. Consequently, two additional soil borings were completed to a depth of 20 feet bgs in the suspected source area (SB 11-1 and SB 11-2). Monitoring well locations are shown in Figure 2.

Boring logs for the Site monitoring wells indicate that the subsurface geology contains unconsolidated fine-grained sand, silt, and clay sediments. This general characteristic has been utilized in evaluating the historical and current LNAPL behavior. Ongoing monitoring and sampling of the four (4) Site monitoring wells listed above has been conducted on a quarterly basis following installation.

3. Groundwater Monitoring

This section describes the field and laboratory activities performed during the third quarter 2021 groundwater monitoring event. Quarterly monitoring activities were conducted on September 24, 2021, which included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network (MW-1 through MW-4) utilized to perform these activities at the Site.

Burton Flats Booster Station Third Quarter 2021 GW Monitoring Summary Report

3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels are measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations of groundwater and LNAPL elevations at the Site. During the third quarter 2021, groundwater levels were measured at four (4) Site monitoring well locations (MW-1 through MW-4).

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data was subsequently converted to elevation (feet above mean sea level [AMSL]). Measured groundwater levels, LNAPL measurements, and calculated groundwater elevations are presented in Table 1.

A third quarter 2021 groundwater elevation contour map, included as Figure 3, indicates that the groundwater gradient at the Site trends to the northwest which is consistent with the previous four quarterly monitoring events, and with historical trends prior to second quarter 2016 at the Site. Although this is inconsistent with the trends between second quarter 2016 to first quarter 2019. It is suspected that an unchecked QA/QC error was made during the data entry in the second quarter 2016 and was not fixed during subsequent reports, leading to an irregular hydraulic gradient direction at the Site. The corrected groundwater elevation ranges, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

Summary of Measured Hydraulic Parameters

	Third Quarter 2021 (9/24/2021)
Maximum Elevation (Well ID)	3,177.27 ft (MW-3)
Minimum Elevation (Well ID)	3,176.01 ft (MW-4*)
Average Change from Previous Monitoring Event	0.10 ft
Hydraulic Gradient / (Well IDs)	0.011 ft/ft (MW-3 to MW-4)
	0.003 ft/ft (MW-3 to MW-1)

^{*} Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

LNAPL was observed at MW-4 (0.6 ft) during the third quarter 2021, which is an increase since the last measurable groundwater event in the second quarter 2021 (0.25 ft). Historically, the presence of LNAPL at this location has fluctuated since 2015.

3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each monitoring well, groundwater samples were collected from three (3) of the four (4) locations (MW-1 through MW-3). A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collection of groundwater samples. Due to the presence of LNAPL observed at MW-4, no groundwater sample was collected at this location.

Burton Flats Booster Station Third Quarter 2021 GW Monitoring Summary Report

Groundwater samples were collected using disposable polyethylene bailers, placed in clean laboratory supplied containers, packed in an ice-filled cooler and maintained at approximately four (4) degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Pace Analytical laboratory in Mount Juliet, Tennessee (Pace).

Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B and chloride by USEPA Method 9056A.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the reporting period. Historical laboratory analytical results up to and including the September 2021 event are provided in Appendix A and the laboratory analytical report for the third quarter 2021 event is included in Appendix B. The laboratory analytical results are also displayed on Figure 4.

Third quarter 2021 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected in exceedance of the updated NMWQCC groundwater standard of 0.005 mg/L (effective 7/1/2020) in MW-1 (0.0403 mg/L, and 0.0448 mg/L [Duplicate]). MW-4 was not sampled due to the presence of LNAPL (0.60 ft). Benzene was not detected above the NMWQCC groundwater standard or reported detection limit at the remaining wells.
- Toluene was not detected above the NMWQCC groundwater standard of 1.00 mg/L or lab detection levels in any of the sampled Site monitoring wells.
- Ethylbenzene was not detected above the NMWQCC groundwater standard of 0.70 mg/L in any
 of the sampled Site monitoring wells.
- Total xylenes were not detected above the NMWQCC groundwater standard of 0.62 mg/L in any
 of the sampled Site monitoring wells.
- Chloride was detected in exceedance of the NMWQCC secondary maximum contaminant level (SMCL) guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 443 mg/L at MW-3 to 2,120 mg/L at MW-2.

3.3 Data Quality Assurance / Quality Control

A field duplicate sample (MW-1) was collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed indicating that samples were received with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for the third quarter 2021 include the following:

 Benzene was present below the laboratory reporting limit and above the method detections limit in the associated trip blank. TASMAN

Burton Flats Booster Station Third Quarter 2021 GW Monitoring Summary Report

- The parent sample collected from MW-1 and the associated duplicate sample exhibited Benzene concentrations of 0.0403 mg/L and 0.0448 mg/L, respectively, yielding a relative percent difference (RPD) of 10.58 percent (%) which is within the target range of 20%.
- Subsequent to collection of the third quarter 2021 groundwater samples, the sample transport
 coolers were properly packaged with ice and shipped to Pace laboratory in Mount Juliet,
 Tennessee with priority overnight shipping. All coolers were received within laboratory
 temperature specifications as well as Chain of Custody (COC) forms properly executed.

Based on the data review, the QA/QC assessment indicates that overall data precision and accuracy are within acceptable limits.

4. Remediation Activities

Remediation activities conducted during the third quarter 2021 reporting period include vacuum enhanced fluid recovery (EFR) activities. EFR events were initiated in December 2014 and began on a routine frequency at monitoring wells MW-1 and MW-4. EFR events are scheduled to continue, pending observation of the effectiveness of the effort in addressing persistent free phase and dissolved phase petroleum hydrocarbons on-Site.

One third quarter 2021 EFR event was conducted at the site on September 24, 2021, which included application of high vacuum (utilizing a vacuum truck) at MW-1 and MW-4 through flexible hosing inserted into each well. The stingers were placed slightly below the current groundwater level to facilitate removal of groundwater, LNAPL, and vapors from the subsurface. Approximately 9 bbls (378 gallons) of fluid was recovered during the third quarter 2021 EFR event.

A passive LNAPL skimmer was installed in MW-4 in an effort to collect and dispose of free-phase liquids in between groundwater sampling and EFR events. Between the second and third quarter 2021 sampling and EFR events, the skimmer collected approximately 0.50 gallons of product. The passive LNAPL skimmer was reinstalled after the third quarter 2021 EFR event.

5. Conclusions

Evaluation of the third quarter 2021 monitoring data and historical information provides the following general observations:

- Groundwater elevations at the Site indicated an overall increase compared to the levels that were observed during the second quarter 2021 with an average increase of 0.10 ft per monitoring well.
- LNAPL was observed at monitoring well MW-4 during the third quarter 2021. The presence of LNAPL at this location has historically fluctuated since 2015.
- BTEX concentrations were detected in exceedance of NMWQCC maximum allowable concentration standards in MW-1 (0.0403 mg/L, and 0.0448 mg/L [Duplicate]).
- Chloride concentrations were above the NMWQCC SMCL guideline at all sampled Site monitoring wells.

Burton Flats Booster Station Third Quarter 2021 GW Monitoring Summary Report

6. Recommendations

Based on evaluation of third quarter 2021 and historical Site monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue monitoring and evaluation of the passive LNAPL skimmer and recovery system.
- Continue quarterly EFR event(s) at monitoring wells MW-1 and MW-4 during the fourth quarter 2021.

Tables

TABLE 1 THIRD QUARTER 2021 SUMMARY OF GROUNDWATER ELEVATION DATA BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (feet)	Depth to Product (feet)	Free Phase Hydrocarbon Thickness (LNAPL) (feet)	Total Depth (feet)	TOC Elevation (feet amsl) (2)	Groundwater Elevation (*) (feet amsl)	Change in Groundwater Elevation Since Previous Event ¹ (feet)
MW-1	12/11/2020	20.55			31.82	3197.65	3177.10	-0.04
MW-1	3/24/2021	20.52			31.82	3197.65	3177.13	0.03
MW-1	6/18/2021	20.89			31.82	3197.65	3176.76	-0.37
MW-1	9/24/2021	20.84			31.82	3197.65	3176.81	0.05
) (TY) (2	10/11/2000	22.00			22.05	2200.00	2155.20	0.04
MW-2	12/11/2020	22.80			32.87	3200.00	3177.20	0.04
MW-2	3/24/2021	22.75			32.87	3200.00	3177.25	0.05
MW-2	6/18/2021	23.01			32.87	3200.00	3176.99	-0.26
MW-2	9/24/2021	22.98			32.87	3200.00	3177.02	0.03
MW-3	12/11/2020	23.45			34.25	3200.84	3177.39	-0.07
MW-3	3/24/2021	23.42			34.25	3200.84	3177.42	0.03
MW-3	6/18/2021	23.57			34.25	3200.84	3177.27	-0.15
MW-3	9/24/2021	23.57			34.25	3200.84	3177.27	0.00
MW-4	12/11/2020	24.85	24.60	0.25	31.93	3200.98	3176.33	NC
MW-4	3/24/2021	24.73	24.50	0.23	31.93	3200.98	3176.43	0.10
MW-4	6/18/2021	25.49	25.24	0.25	31.93	3200.98	3175.69	-0.74
MW-4	9/24/2021	25.45	24.85	0.60	31.93	3200.98	3176.01	0.32
				Average	change in grou	ndwater elevation (6	/18/21 to 9/24/21)	0.10

Notes:

2- The TOC elevation for MW-1 through MW-4 have been calculated based on a relative elevation re-survey conducted on 8/7/2019.

amsl = feet above mean sea level

TOC = top of casing

LNAPL - Light non-aqueous phase liquid

Groundwater elevation = (TOC Elevation - Measured Depth to Water)

*Groundwater elevation was corrected for product thickness using the following calculation, when applicable:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density) LNAPL relative density was calculated to be approximately 0.792 grams per cubic centimeter (g/cm³)

NM = Not measured.

NC= Not calculated.

¹⁻ Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

TABLE 2 THIRD QUARTER 2021 SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

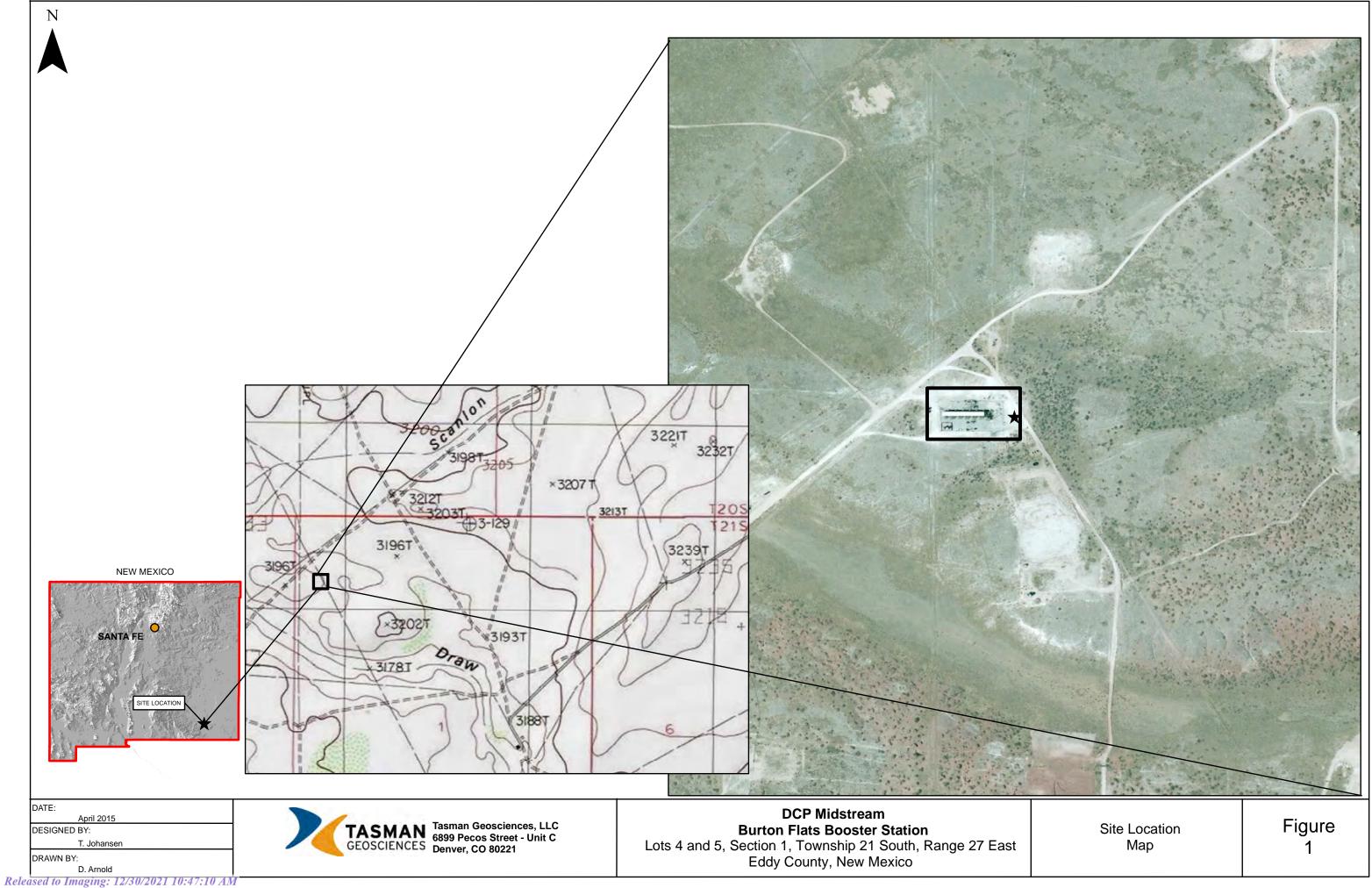
Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-1	9/24/2021	0.0403	< 0.00100	0.0138	0.00203 J	814	Duplicate Sample Collected
MW-1 (Duplicate)	9/24/2021	0.0448	< 0.00100	0.0170	0.00289 J	868	
MW-2	9/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-3	9/24/2021	0.000125 J	< 0.00100	< 0.00100	< 0.00300	443	
MW-4	9/24/2021			LNAPL			LNAPL
Trip Blank	9/24/2021	0.000372 J	< 0.00100	< 0.00100	< 0.00100	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMC which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid


NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Figures

Received by OCD: 12/8/2021 12:20:07 PM

Received by OCD: 12/8/2021 12:20:07 PM

DATE:

December 2019

DESIGNED BY:
B. Humphrey

DRAWN BY:
L. Martin

Released to Imaging: 12/30/2021 10:47:10 AM

TASMAN GEOSCIENCES

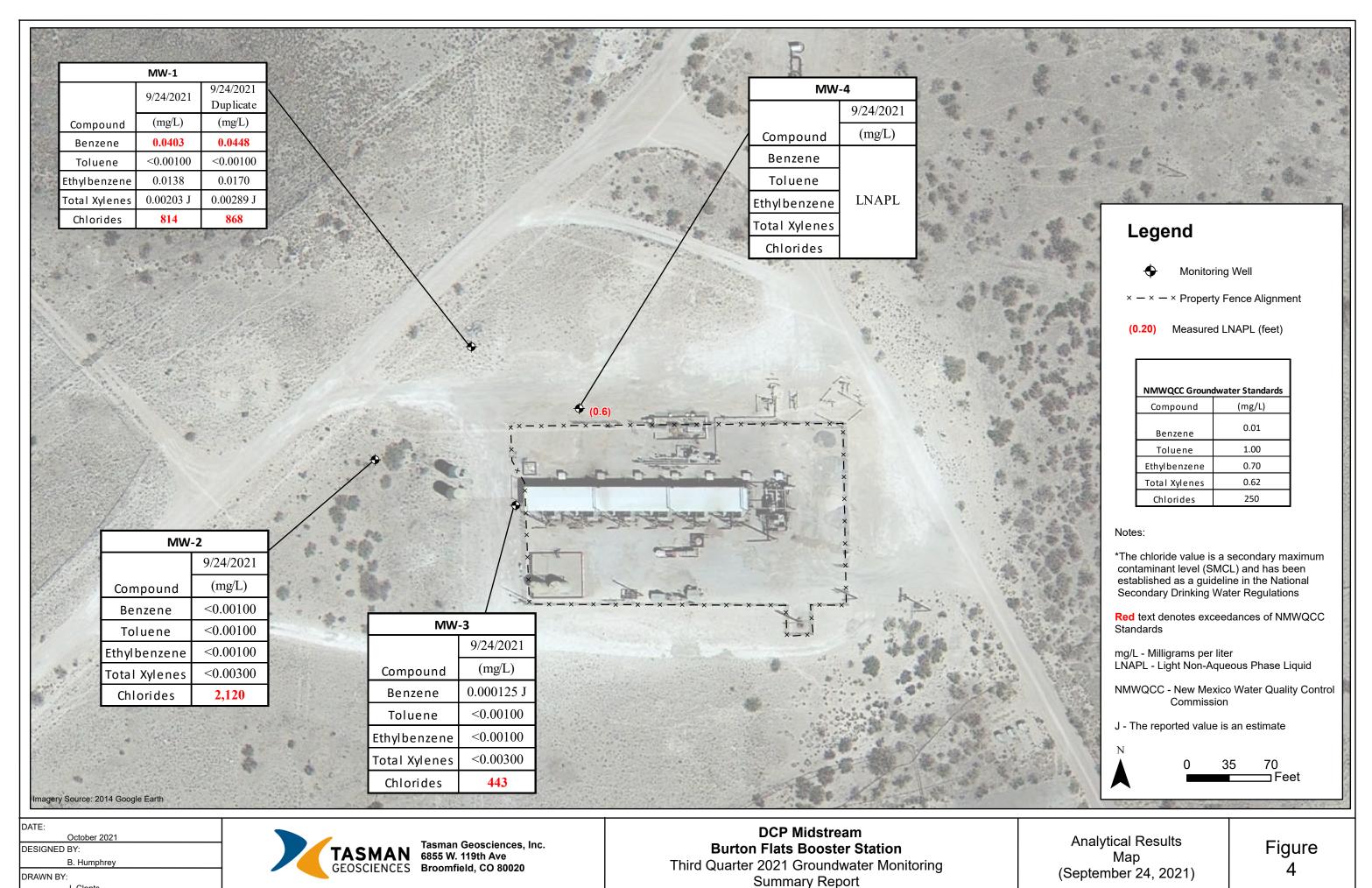
TASMAN
GEOSCIENCES
Tasman Geosciences, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

DCP Midstream
Burton Flats Booster Station
Third Quarter 2021 Groundwater
Monitoring Summary Report

Site Map with Monitoring Well Locations

Figure

Received by OCD: 12/8/2021 12:20:07 PM


TASMAN
GEOSCIENCES
Tasman Geosciences, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

DCP Midstream Burton Flats Booster Station

Third Quarter 2021 Groundwater Monitoring Summary Report

Groundwater Elevation Contour Map (September 24, 2021) Figure 3

J. Clonts

Appendix A

Historical Analytical Results

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250	
Standards (mg/L)							
MW-1	12/14/2011	0.140	0.0034	0.200	0.111	665	Duplicate sample collected
MW-1	4/26/2012	0.153	< 0.001	0.229	0.0073	584	
MW-1	6/20/2012	0.0967	< 0.001	0.284	0.0474	651	Duplicate sample collected
MW-1	9/26/2012	0.0615	< 0.001	0.0803	0.0015	590	
MW-1	12/5/2012	0.020	< 0.001	0.17	0.037	599	
MW-1	2/21/2013	0.0021	< 0.001	0.0058	< 0.003	668	Duplicate sample collected
MW-1	6/3/2013	0.0049	< 0.001	0.0048	< 0.001	703	Duplicate sample collected
MW-1	9/11/2013			LNAPL			
MW-1	12/3/2013			LNAPL			
MW-1	2/26/2014			LNAPL			
MW-1	6/2/2014			LNAPL			
MW-1	9/24/2014	Third	l Quarter 2014 S	ampling Suspende	ed - Regional Floo	oding	
MW-1	12/3/2014			LNAPL			
MW-1	2/27/2015			LNAPL			
MW-1	6/2/2015			LNAPL			
MW-1	8/31/2015			LNAPL			
MW-1	12/15/2015			LNAPL			
MW-1	3/21/2016	0.0450	< 0.0010	0.080	0.010	685	
MW-1	6/20/2016	0.082	< 0.0010	0.10	0.0072	700	
MW-1	9/26/2016	0.035	< 0.0050	0.033	< 0.015	705	
MW-1	12/19/2016	0.051	< 0.0010	0.040	0.0035	769	
MW-1	3/6/2017	0.044	< 0.0010	0.025	0.0012	733	Duplicate sample collected
MW-1 (Duplicate)	3/6/2017	0.054	< 0.0010	0.035	0.0014	740	-
MW-1	6/19/2017	0.043	< 0.0010	0.020	< 0.0010	671	
MW-1	9/27/2017	0.00867	< 0.0010	0.00359	< 0.0030	649	Duplicate Sample Collected
MW-1 (Duplicate)	9/27/2017	0.00958	< 0.0010	0.00389	< 0.0030	608	•
MW-1	12/18/2017	0.0204	< 0.0010	0.00522	< 0.0030	679	Duplicate Sample Collected
MW-1 (Duplicate)	12/18/2017	0.0179	< 0.0010	0.00502	< 0.0030	778	•
MW-1	3/12/2018	0.0299	< 0.0010	0.0199	0.00114 J	764	Duplicate Sample Collected
MW-1 (Duplicate)	3/12/2018	0.0399	< 0.0010	0.0230	< 0.0030	770	*
MW-1	6/25/2018	0.0255	< 0.0010	0.0255	< 0.0030	623	Duplicate Sample Collected
MW-1 (Duplicate)	6/25/2018	0.0281	< 0.0010	0.0277	< 0.0030	632	1
MW-1	9/17/2018	0.0115	< 0.0010	0.0063	< 0.0030	668	Duplicate Sample Collected
MW-1 (Duplicate)	9/17/2018	0.0105	< 0.0010	0.0060	< 0.0030	641	•
MW-1	12/10/2018	0.000641 J	< 0.0010	0.00115	< 0.0030	1,180	Duplicate Sample Collected
MW-1 (Duplicate)	12/10/2018	0.000712 J	< 0.0010	0.00126	< 0.0030	1,230	
MW-1	3/21/2019	0.0018	< 0.0010	0.00159	< 0.0030	667	Duplicate Sample Collected
MW-1 (Duplicate)	3/21/2019	0.0026	< 0.0010	0.00144	< 0.0030	680	<u>r</u>
MW-1	6/13/2019	0.0316	< 0.0010	0.0232	< 0.0030	774	Duplicate Sample Collected
MW-1 (Duplicate)	6/13/2019	0.0294	< 0.0010	0.0216	< 0.0030	768	<u>r</u>
MW-1	9/17/2019	0.00456	< 0.0010	0.00219	< 0.0030	654	Duplicate Sample Collected
MW-1 (Duplicate)	9/17/2019	0.0059	< 0.0010	0.00272	< 0.0030	768	Sumpto Concetted
MW-1	12/9/2019	0.00713	< 0.0010	0.00789	0.00161 J	681	Duplicate Sample Collected
MW-1 (Duplicate)	12/9/2019	0.00772	< 0.0010	0.00827	0.00161 J	684	= apricate Sample Conceids
MW-1	6/19/2020	0.02780	< 0.0010	0.01900	0.00160 J	908	Duplicate Sample Collected
MW-1 (Duplicate)	6/19/2020	0.02770	<0.0010	0.01870	0.00139 J	927	2 apricate Sample Conceiled
MW-1	9/15/2020	0.03230	<0.0010	0.01110	0.000948 J	771	Duplicate Sample Collected
MW-1 (Duplicate)	9/15/2020	0.03230	<0.00100	0.01260	0.000948 J	751	2 apricate bumple Conceted
MW-1	12/11/2020	0.03370	<0.00100	0.0247	0.00770	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/11/2020	0.0435	<0.00100	0.0247	0.00770	734	Duplicate Sample Concettu

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-1	3/24/2021	0.0386	< 0.00100	0.0224	0.00599	786	Duplicate Sample Collected
MW-1 (Duplicate)	3/24/2021	0.0323	< 0.00100	0.0188	0.00456	781	1
MW-1	6/18/2021	0.0356	< 0.00100	0.0127	0.00263 J	848	Duplicate Sample Collected
MW-1 (Duplicate)	6/18/2021	0.0375	< 0.00100	0.0136	0.00279 J	844	
MW-1	9/24/2021	0.0403	< 0.00100	0.0138	0.00203 J	814	Duplicate Sample Collected
MW-1 (Duplicate)	9/24/2021	0.0448	< 0.00100	0.0170	0.00289 J	868	5 uprioute Sumple Conceiled
MW-2	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	1,170	
MW-2	4/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,040	
MW-2	6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,150	
MW-2	9/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,130	
MW-2	12/5/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,120	Duplicate sample collected
MW-2	2/21/2013	< 0.001	< 0.001	< 0.001	< 0.003	1,250	
MW-2	6/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,150	
MW-2	9/11/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,410	Duplicate sample collected
MW-2	12/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,120	Duplicate sample collected
MW-2	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,220	Duplicate sample collected
MW-2 (Duplicate)	2/26/2014	< 0.001	< 0.001	< 0.001	<0.001	1,270	Bupileate sample conceted
MW-2	6/2/2014	< 0.001	<0.001	<0.001	<0.001	1,270	Duplicate sample collected
MW-2 (Duplicate)	6/2/2014	< 0.001	<0.001	<0.001	<0.001	1,270	Duplicate sample conceted
MW-2	9/24/2014			ampling Suspende			
MW-2	12/3/2014	< 0.001	<0.001	<0.001	<0.001	1,300	Duplicate sample collected
MW-2 (Duplicate)	12/3/2014	< 0.001	<0.001	<0.001	<0.001	1,410	Duplicate sample confected
MW-2 (Duplicate)	2/27/2015	< 0.001	<0.001	<0.001	< 0.001	1,440	Duplicate sample collected
MW-2 (Duplicate)	2/27/2015	< 0.001	<0.001	<0.001	<0.003	1,440	Duplicate sample confected
MW-2 (Duplicate)	6/2/2015	<0.001	<0.001	<0.001	<0.003	1,650	Duplicate sample collected
MW-2 (Duplicate)	6/2/2015	< 0.001	<0.001	<0.001	<0.003	1,810	Duplicate sample confected
MW-2 (Duplicate)	8/31/2015	<0.001	<0.001	<0.001	<0.003	1,420	Duplicate sample collected
MW-2 (Duplicate)	8/31/2015	< 0.001	<0.001	<0.001	<0.003	1,440	Duplicate sample confected
MW-2 (Duplicate)	12/15/2015	<0.001	<0.001	<0.001	<0.003	1,350	Duplicate sample collected
					<0.003	1,350	Duplicate sample confected
MW-2 (Duplicate) MW-2	12/15/2015 3/21/2016	<0.001 <0.0010	<0.001 <0.0010	<0.001 <0.0010	<0.003	1,300	
						·	
MW-2	6/20/2016	<0.0010	<0.0010	<0.0010	<0.0030 <0.0030	1,280	
MW-2 MW-2	9/26/2016 12/19/2016	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0030	1,310 1,560	Dunicata comunia callactad
							Duplicate sample collected
MW-2 (Duplicate)	12/19/2016	<0.0010	<0.0010 <0.0010	<0.0010	<0.0030	1,350	
MW-2	3/6/2017	<0.0010		<0.0010	<0.0010	1,210	
MW-2	6/19/2017	<0.0010	<0.0010	<0.0010	<0.0010	1,480	
MW-2	9/27/2017	<0.0010	<0.0010	<0.0010	<0.0030	1,530	
MW-2	12/18/2017	<0.0010	<0.0010	<0.0010	<0.0030	1,300	
MW-2	3/12/2018	<0.0010	<0.0010	<0.0010	<0.0030	1,290	
MW-2	6/25/2018	<0.0010	<0.0010	<0.0010	<0.0030	1,490	
MW-2	9/17/2018	<0.0010	<0.0010	<0.0010	<0.0030	2,130	
MW-2	12/10/2018	<0.0010	<0.0010	<0.0010	<0.0030	3,780	
MW-2	3/21/2019	<0.0010	<0.0010	<0.0010	<0.0030	1,380	
MW-2	6/13/2019	<0.0010	<0.0010	<0.0010	<0.0030	1,860	
MW-2	9/17/2019	<0.0010	<0.0010	<0.0010	<0.0030	2,380	
MW-2	12/9/2019	<0.0010	<0.0010	<0.0010	<0.0030	1,870	
MW-2	6/19/2020	<0.0010	<0.0010	<0.0010	<0.0030	2,220	
MW-2	9/15/2020	<0.0010	<0.0010	<0.0010	<0.0030	2,650	
MW-2	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,160	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater				, g ,	, 0,	, , ,	
Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-2	3/24/2021	0.000195 J	< 0.00100	< 0.00100	< 0.00300	1,860	
MW-2	6/18/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-2	9/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-3	12/14/2011	< 0.001	<0.001	< 0.001	<0.003	426	
MW-3	4/26/2012	< 0.001	<0.001	< 0.001	<0.003	406	Duplicate sample collected
MW-3	6/20/2012	<0.001	<0.001	< 0.001	<0.003	435	
MW-3	9/26/2012	< 0.001	< 0.001	0.00057	< 0.003	447	Duplicate sample collected
MW-3	12/5/2012	< 0.001	< 0.001	< 0.001	< 0.003	444	
MW-3	2/21/2013	< 0.001	< 0.001	< 0.001	< 0.003	503	
MW-3	6/12/2013	< 0.001	< 0.001	< 0.001	< 0.001	474	
MW-3	9/11/2013	< 0.001	< 0.001	< 0.001	< 0.001	589	
MW-3	12/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	432	
MW-3	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	484	
MW-3	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	519	
MW-3	9/24/2014	Third	d Quarter 2014 S	ampling Suspende	ed - Regional Flo	oding	
MW-3	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	294	
MW-3	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	301	
MW-3	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	384	
MW-3	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	386	
MW-3	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	568	
MW-3	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	484	Duplicate sample collected
MW-3(Duplicate)	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	526	-
MW-3	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	414	Duplicate sample collected
MW-3 (Duplicate)	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	383	•
MW-3	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	320	Duplicate sample collected
MW-3 (Duplicate)	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	324	•
MW-3	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	285	
MW-3	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	466	
MW-3	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	247	
MW-3 (Duplicate)	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	251	
MW-3	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	269	
MW-3	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	310	
MW-3	3/12/2018	< 0.0010	< 0.0010	<0.0010	< 0.0030	253	
MW-3	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	258	
MW-3	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	277	
MW-3	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	429	
MW-3	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	309	
MW-3	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	369	
MW-3	9/17/2019	0.00426	< 0.0010	< 0.0010	< 0.0030	333	
MW-3	12/9/2019	0.00426	< 0.0010	< 0.0010	< 0.0030	339	
MW-3	6/19/2020	0.00240 J	< 0.0010	< 0.0010	< 0.0030	372	
MW-3	9/15/2020	0.000240 J	<0.0010	< 0.0010	< 0.0030	403	
MW-3	12/11/2020	< 0.00102 3	<0.0010	<0.0010	<0.00300	420	
MW-3	3/24/2021	0.000352 J	0.00100 0.000345 J	<0.00100	<0.00300	410	
MW-3	6/18/2021	<0.00100	< 0.00100	<0.00100	<0.00300	436	
						443	
MW-3	9/24/2021	0.000125 J	< 0.00100	< 0.00100	< 0.00300	443	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments					
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250						
Standards (mg/L)		0.002	1.00	0.70	0.02	200						
MW-4	4/26/2012											
MW-4	6/20/2012			LNAPL								
MW-4	9/26/2012			LNAPL								
MW-4	12/5/2012			LNAPL								
MW-4	2/21/2013			LNAPL								
MW-4	6/3/2013			LNAPL								
MW-4	9/11/2013			LNAPL								
MW-4	12/3/2013			LNAPL								
MW-4	2/26/2014			LNAPL								
MW-4	6/2/2014			LNAPL								
MW-4	9/24/2014	Third	Quarter 2014	Sampling Suspende	d - Regional Flo	ooding						
MW-4	12/3/2014			LNAPL								
MW-4	2/27/2015			LNAPL								
MW-4	6/2/2015											
MW-4	8/31/2015											
MW-4	12/15/2015			LNAPL								
MW-4	3/21/2016	0.58	0.17	0.48	0.90	10,700						
MW-4	6/20/2016	0.46	0.16	0.64	1.2	9,700						
MW-4	9/26/2016	0.51	0.14	0.54	1.0	7,780						
MW-4	12/19/2016	0.37	0.12	0.56	0.99	7,530						
MW-4	3/6/2017	0.37	0.086	0.49	0.8	6,370						
MW-4	6/19/2017	0.14	0.035	0.46	0.50	6,420	LNAPL (0.30 feet)					
MW-4	9/27/2017	0.104	0.0718	0.706	1.12	7,520	LNAPL (0.24 feet)					
MW-4	12/18/2017	0.433	0.0979	0.570	1.12	6,450	LNAPL (0.10 feet)					
MW-4	3/12/2018	0.293	0.0641	0.319	0.627	6,160						
MW-4	6/25/2018			LNAPL			LNAPL (0.18 feet)					
MW-4	9/17/2018			LNAPL			LNAPL (0.5 feet)					
MW-4	12/10/2018			LNAPL			LNAPL (0.59 feet)					
MW-4	3/21/2019			LNAPL			LNAPL (0.65 feet)					
MW-4	6/13/2019			LNAPL			LNAPL (0.55 feet)					
MW-4	9/17/2019			LNAPL			LNAPL (0.23 feet)					
MW-4	12/9/2019			LNAPL			LNAPL (0.39 feet)					
MW-4	6/19/2020			LNAPL			LNAPL (0.45 feet)					
MW-4	9/15/2020			LNAPL			LNAPL (0.20 feet)					
MW-4	12/11/2020			LNAPL			LNAPL (0.25 feet)					
MW-4	3/24/2021			LNAPL			LNAPL					
MW-4	6/18/2021			LNAPL			LNAPL (0.25 feet)					
MW-4	9/24/2021			LNAPL			LNAPL (0.60 feet)					

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
Trip Blank	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/9/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/19/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/15/2020	0.000104 J	< 0.0010	< 0.0010	0.000235 J	NA	
Trip Blank	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/18/2021	NA	NA	NA	NA	NA	
Trip Blank	9/24/2021	0.000372 J	< 0.00100	< 0.00100	< 0.00100	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard or, for chlorides, the secondary maximum contaminant level (SMCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Appendix B

Laboratory Analytical Report

- Pace Analytical Report #: L1409520

Pace Analytical® ANALYTICAL REPORT

October 08, 2021

DCP Midstream - Tasman

L1409520 Sample Delivery Group: Samples Received: 09/25/2021

Project Number:

Description: **Burton Flats Booster Station**

Report To: Brian Humphrey

2620 W. Marland Blvd

Hobbs, NM 88240

Chris Word Entire Report Reviewed By:

Chris Ward

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	, t
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1409520-01	5
MW-2 L1409520-02	6
MW-3 L1409520-03	7
DUPLICATE L1409520-04	8
TRIP BLANK L1409520-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SDG:

SAMPLE SUMMARY

MW-1 L1409520-01 GW			Collected by Becky G.	Collected date/time 09/24/21 08:40	Received da 09/25/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1750732	20	10/04/21 05:01	10/04/21 05:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1750399	1	10/02/21 12:17	10/02/21 12:17	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1409520-02 GW			Becky G.	09/24/21 08:50	09/25/21 09	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1750732	100	10/04/21 05:12	10/04/21 05:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1750399	1	10/02/21 12:37	10/02/21 12:37	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1409520-03 GW			Becky G.	09/24/21 08:20	09/25/21 09	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1750732	10	10/04/21 05:24	10/04/21 05:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1750399	1	10/02/21 12:57	10/02/21 12:57	ACG	Mt. Juliet, TN
DUPLICATE L1409520-04 GW			Collected by Becky G.	Collected date/time 09/24/21 00:00	Received da 09/25/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1751047	20	10/04/21 22:36	10/04/21 22:36	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1750399	1	10/02/21 13:18	10/02/21 13:18	ACG	Mt. Juliet, TN
			Collected by		Received da	
TRIP BLANK L1409520-05 GW			Becky G.	09/24/21 12:00	09/25/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG1750399

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

1

10/02/21 09:13

date/time

10/02/21 09:13

ACG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris Ward Project Manager

his Word

SDG:

L1409520

SAMPLE RESULTS - 01

Wet Chemistry by Method 9056A

Collected date/time: 09/24/21 08:40

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	814		7.58	20.0	20	10/04/2021 05:01	WG1750732

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0403		0.0000941	0.00100	1	10/02/2021 12:17	WG1750399
Toluene	U		0.000278	0.00100	1	10/02/2021 12:17	WG1750399
Ethylbenzene	0.0138		0.000137	0.00100	1	10/02/2021 12:17	WG1750399
Total Xylenes	0.00203	<u>J</u>	0.000174	0.00300	1	10/02/2021 12:17	WG1750399
(S) Toluene-d8	94.1			80.0-120		10/02/2021 12:17	WG1750399
(S) 4-Bromofluorobenzene	98.7			77.0-126		10/02/2021 12:17	WG1750399
(S) 1,2-Dichloroethane-d4	108			70.0-130		10/02/2021 12:17	WG1750399

Page 28 of 38

SAMPLE RESULTS - 02

Collected date/time: 09/24/21 08:50 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	2120		37.9	100	100	10/04/2021 05:12	WG1750732	

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	10/02/2021 12:37	WG1750399
Toluene	U		0.000278	0.00100	1	10/02/2021 12:37	WG1750399
Ethylbenzene	U		0.000137	0.00100	1	10/02/2021 12:37	WG1750399
Total Xylenes	U		0.000174	0.00300	1	10/02/2021 12:37	WG1750399
(S) Toluene-d8	96.9			80.0-120		10/02/2021 12:37	WG1750399
(S) 4-Bromofluorobenzene	92.3			77.0-126		10/02/2021 12:37	WG1750399
(S) 1,2-Dichloroethane-d4	109			70.0-130		10/02/2021 12:37	WG1750399

Page 29 of 38

SAMPLE RESULTS - 03

Wet Chemistry by Method 9056A

Collected date/time: 09/24/21 08:20

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	443		3.79	10.0	10	10/04/2021 05:24	WG1750732

⁴ Cn	

⁴ Cn	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.000125	<u>J</u>	0.0000941	0.00100	1	10/02/2021 12:57	WG1750399
Toluene	U		0.000278	0.00100	1	10/02/2021 12:57	WG1750399
Ethylbenzene	U		0.000137	0.00100	1	10/02/2021 12:57	WG1750399
Total Xylenes	U		0.000174	0.00300	1	10/02/2021 12:57	WG1750399
(S) Toluene-d8	98.2			80.0-120		10/02/2021 12:57	WG1750399
(S) 4-Bromofluorobenzene	93.7			77.0-126		10/02/2021 12:57	WG1750399
(S) 1,2-Dichloroethane-d4	110			70.0-130		10/02/2021 12:57	WG1750399

SAMPLE RESULTS - 04

Wet Chemistry by Method 9056A

Collected date/time: 09/24/21 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	868		7.58	20.0	20	10/04/2021 22:36	WG1751047

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0448		0.0000941	0.00100	1	10/02/2021 13:18	WG1750399
Toluene	U		0.000278	0.00100	1	10/02/2021 13:18	WG1750399
Ethylbenzene	0.0170		0.000137	0.00100	1	10/02/2021 13:18	WG1750399
Total Xylenes	0.00289	<u>J</u>	0.000174	0.00300	1	10/02/2021 13:18	WG1750399
(S) Toluene-d8	94.3			80.0-120		10/02/2021 13:18	WG1750399
(S) 4-Bromofluorobenzene	90.6			77.0-126		10/02/2021 13:18	WG1750399
(S) 1.2-Dichloroethane-d4	106			70.0-130		10/02/2021 13:18	WG1750399

Cn

Collected date/time: 09/24/21 12:00

SAMPLE RESULTS - 05

L1409520

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume Organic O	Volume Original Compounds (Como) by Method 6200B									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l	mg/l		date / time				
Benzene	0.000372	<u>J</u>	0.0000941	0.00100	1	10/02/2021 09:13	WG1750399			
Toluene	U		0.000278	0.00100	1	10/02/2021 09:13	WG1750399			
Ethylbenzene	U		0.000137	0.00100	1	10/02/2021 09:13	WG1750399			
Total Xylenes	U		0.000174	0.00300	1	10/02/2021 09:13	WG1750399			
(S) Toluene-d8	100			80.0-120		10/02/2021 09:13	WG1750399			
(S) 4-Bromofluorobenzene	92.8			77.0-126		10/02/2021 09:13	WG1750399			
(S) 1,2-Dichloroethane-d4	119			70.0-130		10/02/2021 09:13	WG1750399			

QUALITY CONTROL SUMMARY

Page 32 of 38

Wet Chemistry by Method 9056A <u>L1409520-01,02,03</u>

net enemistry by method become

Method Blank (MB)

(MB) R3712254-1 10/03/2118:27

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

1 Cp

²Tc

³Ss

L1408884-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1408884-01 10/04/21 06:09 • (DUP) R3712254-3 10/04/21 00:48

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	30.7	30.1	1	1.96		15

⁶Qc

L1409520-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1409520-03 10/04/21 05:24 • (DUP) R3712254-7 10/04/21 05:35

(00,200020 00 .0,0	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	443	443	10	0.140		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3712254-2 10/03/21 18:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.2	101	80.0-120	

L1408884-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408884-01 10/0-	4/21 06:09 • (MS)	R3712254-4 10	0/04/21 01:00	• (MSD) R37122	54-5 10/04/2	1 01:11							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	30.7	79 1	79.4	96.9	97 4	1	80 0-120			0.263	15	

Original Sample (OS) • Matrix Spike (MS)

(OS) • (MS) R3712254-6	10/04/21 04:38						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l		mg/l	%		%	
Chloride	50.0		51.2	98.7	1	80.0-120	

QUALITY CONTROL SUMMARY

Page 33 of 38

Wet Chemistry by Method 9056A

L1409520-04

Method Blank (MB)

(MB) R3712369-1 10/04/2	21 18:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	11		0.379	1.00

Ss

L1409498-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1409498-11 10/04/21 19:19 • (DUP) R3712369-3 10/04/21 19:36

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	19.6	19.5	1	0.443		15

L1409847-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1409847-02 10/05/21 01:53 • (DLIP) R3712369-6 10/05/21 02:10

(03) [1409047-02 10/03/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	97.5	97.4	1	0.143		15

Sc

Laboratory Control Sample (LCS)

(LCS) R3712369-2 10/04/21 18:24

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.5	98.8	80.0-120	

L1409498-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1409498-11 10/04/21 19:19 • (MS) R3712369-4 10/04/21 19:52 • (MSD) R3712369-5 10/04/21 20:08

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	19.6	70.4	70.6	102	102	1	80.0-120			0.298	15

L1409847-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1409847-02 10/05/21 01:53 • (MS) R3712369-7 10/05/21 02:26

,	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	97.5	145	95.6	1	80.0-120	<u>E</u>

QUALITY CONTROL SUMMARY

Page 34 of 38

Volatile Organic Compounds (GC/MS) by Method 8260B

L1409520-01,02,03,04,05

Method Blank (MB)

(MB) R3713781-2 10/02/21	04:29				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Toluene	U		0.000278	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	99.7			80.0-120	
(S) 4-Bromofluorobenzene	92.7			77.0-126	
(S) 1,2-Dichloroethane-d4	116			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3713781-1 10/02/2°	1 03:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00534	107	70.0-123	
Ethylbenzene	0.00500	0.00507	101	79.0-123	
Toluene	0.00500	0.00497	99.4	79.0-120	
Xylenes, Total	0.0150	0.0144	96.0	79.0-123	
(S) Toluene-d8			96.0	80.0-120	
(S) 4-Bromofluorobenzene			92.4	77.0-126	
(S) 1,2-Dichloroethane-d4			116	70.0-130	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial

Ε calibration (ICAL). The identification of the analyte is acceptable; the reported value is an estimate.

D A	Athen Nieutenan	100CF alaman	- Dal Marria		TNI 07100
Pace Analy	/ticai ivationai	12065 Lebanor	1 Ka Mount	. Juliet,	11N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

ived by OCD: 12/8/2021 12:.	20:07 PM	Billing Inform	mation:		I			Analy	vsis / Contai	ner / Pres	ervative		Chain of Custody	Page 37
DCP Midstream - Tasman Steve W 370 17t		Steve We			Pres Chk								Pace	Analytical®
eport to:		Email To: kr	norman@tasman- humphrey@tasma	n-									Submitting a sample via the constitutes acknowledgme Pace Terms and Condition https://info.pacelabs.com.	is chain of custody ent and acceptance of the s found at:
rian Humphrey	City/State			Please Ci									https://info.pacelabs.com/ terms.pdf	nabis/pas standard
oject Description: urton Flats Booster Station	Collected:		1	PT MT C	T ET								SDG# L14	09520
none: 720-218-4003	Client Project #		Lab Project # DCPTASMAN	-BURTONI	LAT	oPres	PH						F236	
ollected by (print):	Site/Facility ID #		P.O. # 0000524217			125mlHDPE-NoPres	40mlAmb-HCl						Acctnum: DCP1 Template:T127	
bllected by (signature)	Rush? (Lab MUST I		Quote#			SmIHI	40ml						Prelogin: P872 PM: 824- Chris	130 Ward
nmediately N	Next Day 51	e Day Day (Rad Only) Day (Rad Only)	Date Result	s Needed	No. of	ride 125	V8260BTEX						PB. 9 13 Shipped Via: Fe	211
Sample ID	Comp/Grab Matrix	Depth	Date	Time	Cntrs	Chloride	V826						Remarks	Sample # (lab on
W-1	GW		9-24-2	084	04	X	X							-02
IW-2	GW		1	085	5 4	X	X						Liver	-03
IW-3	GW		(082	04	X	X						The second secon	- 0/
1W-4	GW			B8	+									1-04
DUPLICATE	GW		9-24-7	2	14	X	X				- 40.			
	GW		7 30 300		1									-
TRIP BLANK	GW GW		9-24-2	1170	0 1									-05
			9210				-							
									-11	Ter	mo	Sa COC Seal	mple Receipt C Present/Intact	necklist : NP /
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:								pH Flow		her	Bottles a	ed/Accurate: arrive intact: bottles used: at volume sent:	CKK
WW - WasteWater DW - Drinking Water OT - Other	Samples returned via:UPSFedExCou	ırier		SECTION OF THE	-	318	(994	73 Trip Blank R	153	(res) No	VOA Zero	If Applicate Headspace: tion Correct/Ch	ole Y
Relinquished by : (Signature)	Date:		me: Rec	eived by: (Sig	(nature)				A A	1	HCL MeoH TBR		en <0.5 mR/hr:	ogin: Date/Time
Relinquished by : (Sky) ature)	7-2 Date:		ime: Rec	eived by: (Sig	gnature)				Temp 00	°C 8	ottles Received:	If preserva	tion required by Lo	
Relinquished by : (Signature)	Date:	Ti	ime: Rec	ceived for lab	b√: Sig	nature)			Date:	1-1	ime: 0945	Hold:	A A	NCF 7 0

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 65642

CONDITIONS

Operator:	OGRID:
DCP OPERATING COMPANY, LP	36785
370 17th Street, Suite 2500	Action Number:
Denver, CO 80202	65642
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of Second Quarter 2021 Groundwater Monitoring and Activities Summary Report: Content satisfactory 1. Follow recommendations stated within the aforementioned report; a. Continue quarterly groundwater monitoring and sampling at the monitoring locations b. Continue monitoring and evaluation of the passive LNAPL skimmer and recovery system c. Continue quarterly EFR event(s) at monitoring wells MW-1 and MW-4 during the third quarter 2021 d. Submit annual report no later than March 31, 2022	12/30/2021