State of New Mexico

Incident ID	NAB1924840999
District RP	2RP-5609
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be inc	luded in the plan.
 ✓ Detailed description of proposed remediation technique ✓ Scaled sitemap with GPS coordinates showing delineation points ✓ Estimated volume of material to be remediated ✓ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C ✓ Proposed schedule for remediation (note if remediation plan timelin 	
Deferral Requests Only: Each of the following items must be confirm	ned as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around produ deconstruction.	ction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, the	e environment, or groundwater.
I hereby certify that the information given above is true and complete to rules and regulations all operators are required to report and/or file certa which may endanger public health or the environment. The acceptance liability should their operations have failed to adequately investigate and surface water, human health or the environment. In addition, OCD acceresponsibility for compliance with any other federal, state, or local laws	in release notifications and perform corrective actions for releases of a C-141 report by the OCD does not relieve the operator of d remediate contamination that pose a threat to groundwater, eptance of a C-141 report does not relieve the operator of
Printed Name: Ike Tavarez	Title: Program Manager, Remediation
Signature: 7478	Date: 1/24/2022
email: lke.Tavarez@conocophillips.com	Telephone: 432-685-2573
OCD Only	
Received by: Chad Hensley D	ate: 02/09/2022
Approved	roval Denied Deferral Approved
Signature: Date Description De	e: 02/09/2022

January 24, 2022

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan
ConocoPhillips
Heritage Concho
Patron 23 Federal 4H Release
Unit Letter K, Section 14, Township 25 South, Range 29 East
Eddy County, New Mexico
2RP-5609
Incident ID# NAB1924840999

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a Heritage Concho release and subsequent remedial actions taken at the Patron 23 Federal 4H. The release footprint is located in Public Land Survey System (PLSS) Unit Letter K, Section 14, Township 25 South, Range 29 East, in Eddy County, New Mexico (Site). The approximate release point occurred at coordinates 32.12651°, -103.95606°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico Oil Conservation District (NMOCD) C-141 Initial Report, the release was discovered on August 8, 2019. The C-141 reports that the release was caused by high pressure within a flowline resulting in a rupture of the flowline. Approximately 250 barrels (bbls) of produced water were released, of which approximately 10 bbls of produced water were recovered. The release was within pastureland. The New Mexico Oil Conservation District (NMOCD) approved the initial C-141 on August 13, 2019 and subsequently assigned the release the remediation permit (RP) number 2RP-5609. Incident ID NAB1924840999. The initial C-141 form is included in Appendix A.

SITE CHARACTERIZATION

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). There are stream bodies located less than ½-mile from the release location. The Site is in an area of low karst potential.

There are no water wells listed in the New Mexico Office of the State Engineer (NMOSE database located within approximately ½ mile (800 meters) of the site. According to data from one (1) water well listed in the NMOSE database within approximately 1.24 miles (2,000 meters) of the site, the depth to groundwater is 85 feet below ground surface (bgs).

The remediation action levels proposed for the site are largely dependent upon depth to groundwater. As such, the NMOCD focuses upon depth to water estimation. Thus, 19.15.11(A)(2) NMAC allows for various

Tetra Tech

901 West Wall St., Suite 100, Midland, TX 79701
Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

ConocoPhillips

means of determining depth to groundwater. For this release, as the available water level information was from wells further than ½ mile away from the site, Heritage Concho drilled a boring as a means for determining depth to groundwater in the vicinity of the NAB1924840999 release area.

One boring (BH-1) drilled as a portion of the release characterization drilled within roughly a ½-mile radius of the release footprint. A review of the associated boring log indicates that boring BH-1 does not define depth to groundwater but was dry to a depth of 105 feet bgs. The borehole was plugged with 3/8-inch bentonite chips on February 24, 2021. The borehole coordinates are 32.122593°, -103.949262°. Thus, based on this data, ConocoPhillips proposes to use the least stringent remediation limits (>100 feet) listed in Table I of 19.15.29.12 NMAC. The boring log from investigation is included in Appendix B. The remainder of the site characterization data is also included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, established depth to groundwater, and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	20,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH	100 mg/kg
BTEX	50 mg/kg

INITIAL ASSESSMENT AND ANALYTICAL RESULTS

On August 20, 2020, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of nine auger holes (AH-1 through AH-9) were installed in the release footprint to total depths ranging from 0-1 foot to 4.5 feet below surface. Deeper samples could not be collected, utilizing the hand auger, due to a dense formation in the area. Also, ten (10) horizontal delineation samples were collected (H-1 through H-10). Soil samples were collected and submitted to Eurofins Xenco Laboratory in Midland, Texas (Xenco) to be analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sample locations are shown on Figure 3.

On September 3, 2020, Tetra Tech personnel were onsite to further evaluate and sample the release area. A total of seven trenches (T-1 through T-7) were excavated and samples collected between 0 to 12 feet maximum depth below the ground surface. Soil samples were collected and submitted to Xenco for chloride analysis by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Release Characterization and Remediation Work Plan January 24, 2022

ConocoPhillips

Analytical results from the August and September 2020 assessment activities are presented in Table 1. Analytical results indicate samples from locations AH-1 through AH-7 and AH-9, as well as trenched locations T-1 through T-7, did not exceed site RRAL for chlorides (600 mg/kg) but did exceed site reclamation limits for chloride (20,000 mg/kg) in the top 4 feet. Laboratory analytical results from horizontal delineation samples did not exceed site RRALs or reclamation limits for chlorides.

REMEDIATION WORK PLAN AND NMOCD REJECTION

A Work Plan summarizing the assessment results and proposed remedial actions was prepared by Tetra Tech on behalf of ConocoPhillips and application [11098] was submitted to NMOCD for review on November 5, 2020. The report described the assessment activities and results. The (02/18/2021, C-141) application [11098] was rejected by NMOCD. The operator was emailed with details of this event. The submittal was rejected via email by Chad Hensley on February 18, 2021.

Reasons for denial included in the email include:

"If you feel the depth to groundwater is >100', a shallow borehole can be drilled to 105' allowing for verification of the depth. If water is not visible after reaching bottom-hole and waiting 72 hours, sample points would be allowed for remediation. We would just need a copy of the driller's log.

Additional horizontal delineation samples will need to be established on the boundaries at AH-1, AH-2, AH-3, and AH-4. Preferably along the lease road."

The November 5, 2020 Work Plan and subsequent NMOCD email rejection are included in this report as Appendix C.

ADDITIONAL SITE DELINEATION AND SAMPLING RESULTS

As noted in the previous Site Characterization section, a single borehole was drilled to establish depth to water, per NMOCD direction. The boring was drilled within roughly a ½-mile radius of the release footprint. A review of the associated boring log indicates that boring BH-1 does not establish depth to groundwater but was dry to a depth of 105 feet bgs. The borehole was plugged with 3/8-inch bentonite chips on February 24, 2021. The borehole coordinates are 32.122593°, -103.949262°.

On December 27, 2021, Tetra Tech personnel were onsite to further evaluate and install additional auger holes to delineate the release west of the dirt road. A total of three additional hand auger sampling locations were installed (H-11 through H-13) to a bottom depth of 4 feet below the ground surface. Soil samples were collected and submitted to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by method SM4500Cl-B. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The sample locations are shown on Figure 3.

Results for laboratory analytical tests performed on samples collected in December 2021 are presented in Table 2. Analytical results on samples collected from H-11 through H-13 did not exceed site established RRALs or site reclamation limits. Photographic documentation from the December 2021 site assessment is presented in Appendix E.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the remaining impacted material as shown in Figure 4. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum total depth of 4 feet below the surrounding surface or until a representative sample from the walls and bottom of the excavation is below the RRALs. Any area containing pressurized lines will be hand-dug to a depth of 3 feet or the maximum extent practicable and heavy equipment will come no more than 3 feet from any pressurized lines.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chloride. Once the sample results are received, the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 1,575 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 5. Twenty-one (21) confirmation floor samples and thirty-three (33) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 10,540 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to an accredited laboratory for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chlorides (USEPA Method 300.0).

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2022 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 120 days of the date of NMOCD approval of this submittal. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the site characterization or the additional soil assessment activities for the Site, please call me at (512) 739-7874.

Sincerely,

Tetra Tech, Inc.

Samantha K. Abbott, P.G.

Project Manager

cc:

Mr. Ike Tavarez, RMR - ConocoPhillips

Release Characterization and Remediation Work Plan January 24, 2022

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent and Assessment Map

Figure 4 – Proposed Remediation Extents

Figure 5 – Alternative Confirmation Sampling Plan

Tables:

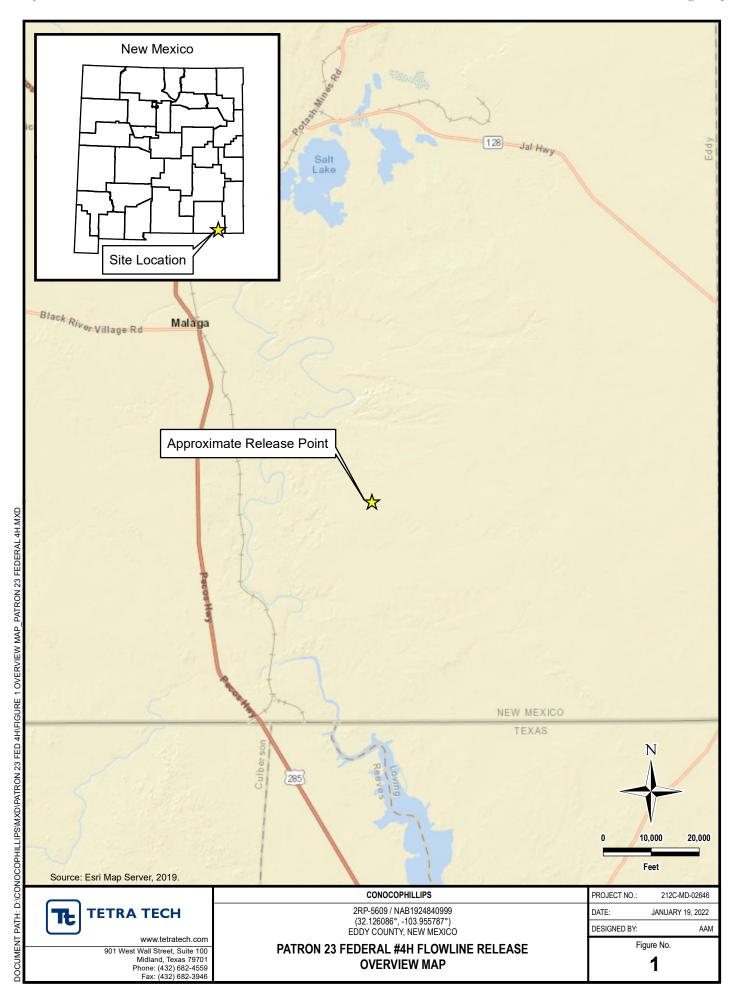
Table 1 – Summary of Analytical Results – Initial Soil Assessment

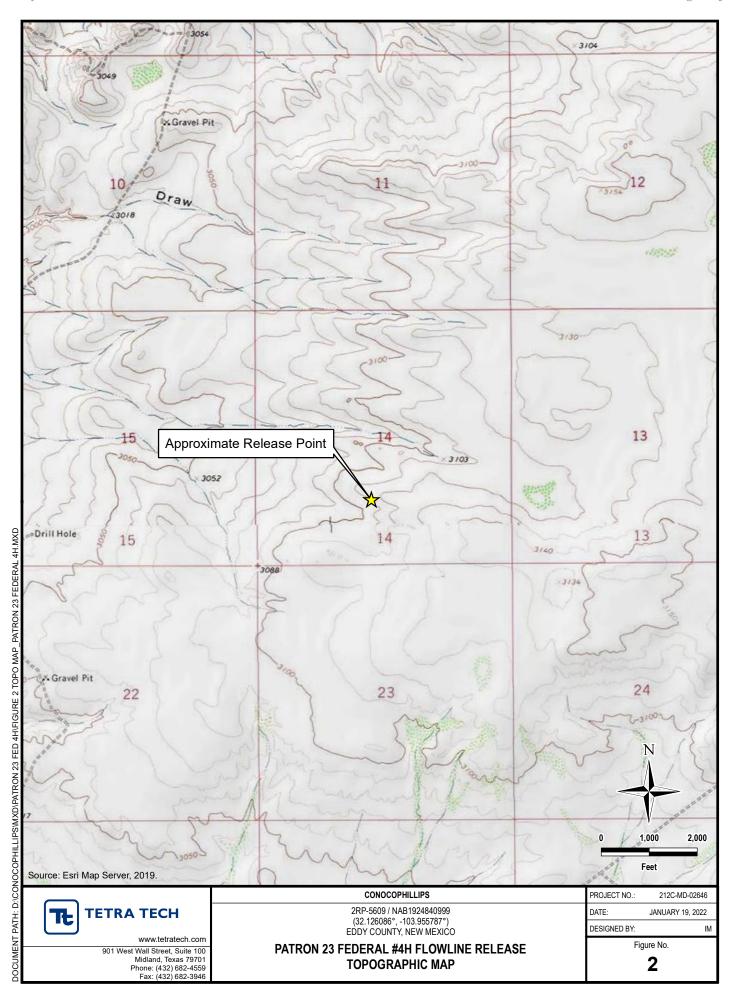
Table 2 - Summary of Analytical Results – Additional Soil Assessment

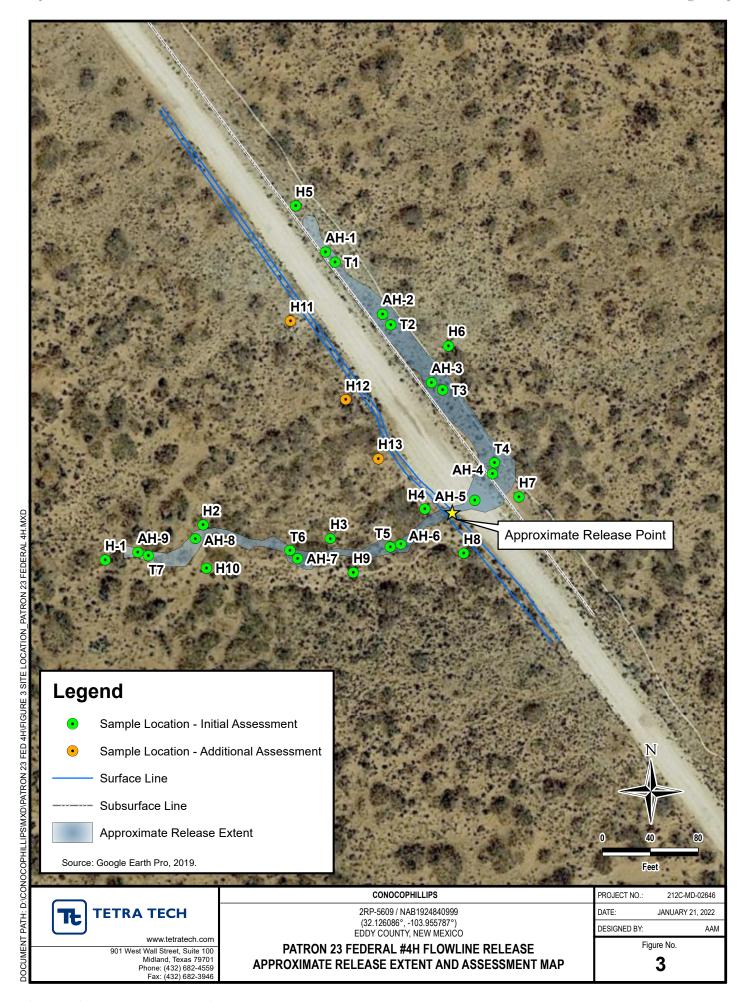
Appendices:

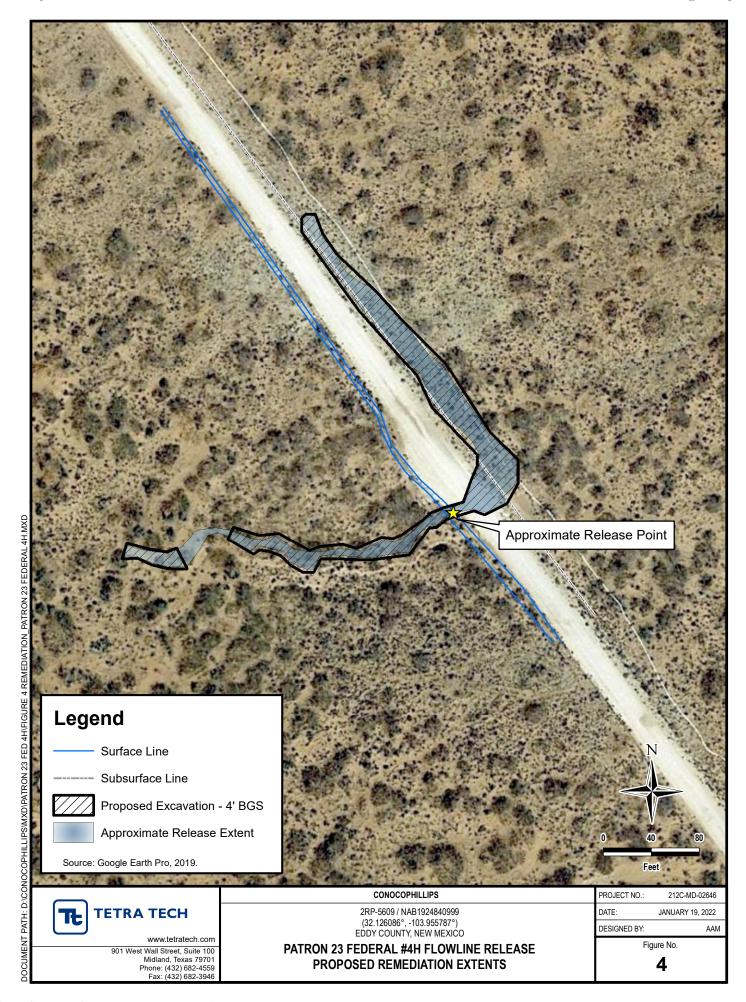
Appendix A – C-141 Forms

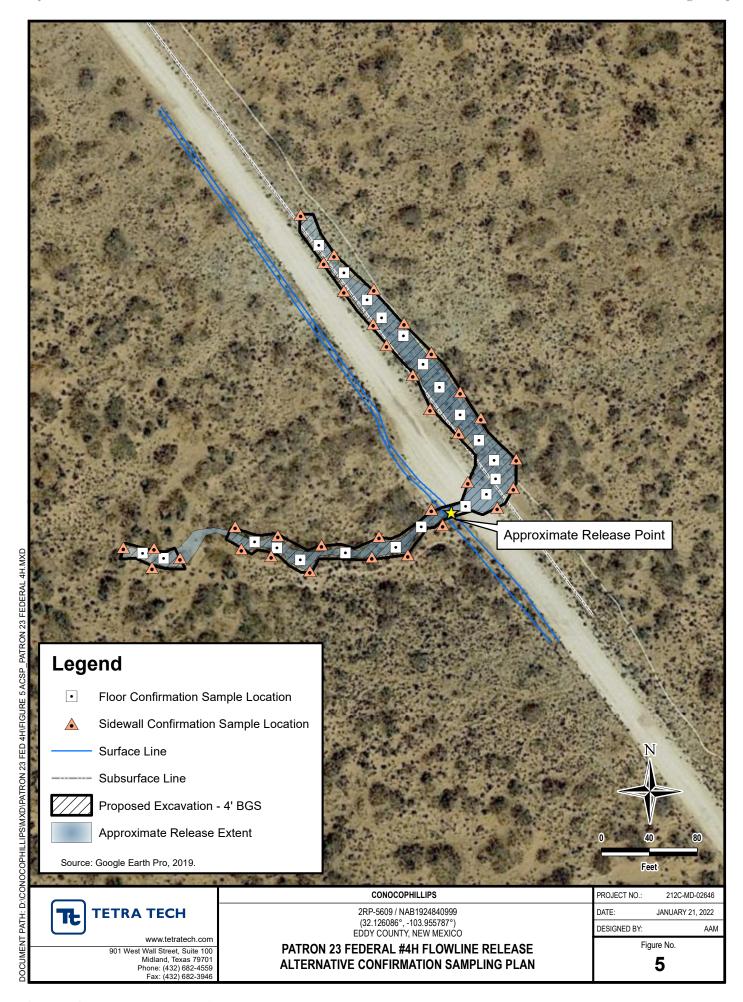
Appendix B - Site Characterization Data


Appendix C – Release Characterization Work Plan (November 5, 2020)


Appendix D – Laboratory Analytical Data


Appendix E – Photographic Documentation


Appendix F – NMSLO Seed Mix Details


FIGURES

TABLE

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - 2RP-5609 HERITAGE CONCHO PATRON 23 FEDERAL #4H FLOWLINE RELEASE EDDY COUNTY, NM

			1	BTEX ²											TPI	H ³					
Sample ID	Sample Date	Sample Depth	Chloride ¹	Benzene	Toluene	Ethylbenzen	е	m,p-Xylenes	o-Xylene		Total Xylenes		Total BTEX		GRO		DRO		MRO		Total TPH
		ft. bgs	mg/kg Q	mg/kg	Q mg/kg	Q mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	8/20/2020	0-1	363	< 0.00200	< 0.00200	< 0.00200		< 0.00399	< 0.00200		< 0.00200		< 0.00200		< 49.9		< 49.9		< 49.9		< 49.9
An-1	8/20/2020	1-1.5	2,280	-	-	-		-	-		-		-		-		-		-		-
Trench-1	9/3/2020	0-1	1,260	-	-	-		-	-		-		-		-		-		-		-
TTETICIT-1	3/3/2020	1-1.5	1,900	-	-	-		-	-		-		-		-		-		-		-
	0 /00 /000	0-1	3,320	< 0.00200	< 0.00200	< 0.00200		< 0.00399	< 0.00200		< 0.00200		< 0.00200		< 50.0		< 50.0		< 50.0		< 50.0
AH-2	8/20/2020	1-1.5	5,220	-	-	-		-	-		-		-		-		-		-		-
Trench-2	9/3/2020	0-1	1,220	-	-	-		-	-		-		-		-		-		-		-
rrench-2	9/3/2020	1-1.5	1,430	-	-	-		-	-		-		-		-		-		-		-
		0-1	22.8	< 0.00200	< 0.00200	< 0.00200		< 0.00399	< 0.00200		< 0.00200		< 0.00200		< 50.0		< 50.0		< 50.0		< 50.0
	- 4 4	1-1.5	28.2	-	-	-		-	-		-		-		-		-		-		-
AH-3	8/20/2020	2-2.5	170	-	-	-		-	-		-		-		-		-		-		-
		2.5-3	1,770	-	-	-		-	-		-		-		-		-		-		-
		0-1	21.5	-	-	-		-	-		-		-		-		-		-		-
Trough 2	0/2/2020	1	20.3	-	-	-		-	-		-		-		-		-		-		-
Trench-3	9/3/2020	2	4,220	-	-	-		-	-		-		-		-		-		-		-
		3	4,350	-	-	-		-	-		-		-		-		-		-		-
		0-1	49.5	< 0.00199	< 0.00199	< 0.00199		< 0.00398	< 0.00199		< 0.00199		< 0.00199		< 49.9		< 49.9		< 49.9		< 49.9
		1-1.5	53.8	-	-	-		-	-		-		-		-		-		-		-
AH-4	8/20/2020	2-2.5	1,190 X	-	-	-		-	-		-		-		-		-		-		-
		3-3.5	9,080	-	-	-		-	-		-		-		-		-		-		-
		4-4.5	12,500	-	-	-		-	-		-		-		-		-		-		-
		0-1	43.8	-	-	-		-	-		-		-		-		-		-		-
		1	19.7	-	-	-		-	-		-		-		-		-		-		-
		2	22.2	-	-	-		-	-		-		-		-		-		-		-
Trench-4	9/3/2020	3	114	-	-	-		-	-		-		-		-		-		-		-
		4	7,400	-	-	-		-	-		-		-		-		-		-		-
		5	10,100	-	-	-		-	-		-		-		-		-		-		-
		6	9,130	-	-	-		-	-		-		-		-		-		-		-
		0-1	6,680	< 0.00201	< 0.00201	< 0.00201		< 0.00402	< 0.00201		< 0.00201		< 0.00201		< 49.8		< 49.8		< 49.8		< 49.8
		1-1.5	3,610	-	-	-		-	-		-				-		-		-		-
AH-5	8/20/2020	2-2.5	4,420	-	-	-		-	-		-		-		-		-		-		-
		3-3.5	2,090	-	-	-		-	-		-		-		-		-		-		-
		4-4.5	139	-	-	-		-	-		-	\perp	-		-		-		-		-
		0-1	51.4	< 0.00199	< 0.00199	< 0.00199		< 0.00398	< 0.00199		< 0.00199		< 0.00199		< 50.0		< 50.0		< 50.0		< 50.0
AH-6	8/20/2020	1-1.5	85.9	-	-	-		-	-		-		-		-		-		-		-
An-o	0/20/2020	2-2.5	2,100	-	-	-		-	-		-		-		-		-		-		-
		3-3.5	3,700	-	-	-		-	-		-		-		-		-		-		-
		0-1	1,010	-	-	-		-	-		-		-		-		-		-		-
Trench-5	9/3/2020	1	1,130	-	-	-		-	-		-		-		-		-		-		-
Trenen-3	5/5/2020	2	1,290	-	-	-		-	-		-		-		-		-		-		-
		3.5	4,380	-	-	-		-	-		-		-		-		-		-		-

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - 2RP-5609 HERITAGE CONCHO PATRON 23 FEDERAL #4H FLOWLINE RELEASE EDDY COUNTY, NM

Sample Date	MRO Total TPI Q mg/kg Q mg/kg < 49.9 < 49.9 - - - - - - - - - - - - - - - - - - - - - - - - -
AH-7 8/20/2020 0-1 18.0 <pre></pre>	< 49.9 < 49.9
AH-7 8/20/2020 1-1.5 21.7	
AH-7 AH-7	
2-2.5 441	
0-1 24.2 - <td></td>	
1 30.3 -	
2 237 -	
3 9,590	
4 9,580	
5 16,700	
Trench-6 9/3/2020 6 12,700	
7 7,280	
8 4,330	
9 5,190	
10 1,750	
11 130	
12 124	
0-1 17.2 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.001	< 50.0 < 50.0
AH-8 8/20/2020 1-1.5 16.1	
2-2.5 21.9	
3-3.5 34.2	
0-1 17.9 < 0.00200	< 49.8
1-1.5 23.9	-
AH-9 8/20/2020 2-2.5 42.3	
3-3.5 1,030	
4-4.5 4,530	
1 58.4	
2 73.3	
3 344	
4 2,690	
Trench-7 9/3/2020 5 8,340	
6 1,830	
7 6,400	
8 2,740	
9 206	
10 36.0	- -
Horizontal-1 8/20/2020 0-1 15.9 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.00200 < 0.	< 50.0 < 50.0
Horizontal-2 8/20/2020 0-1 9.01 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199	< 50.0 < 50.0
Horizontal-3 8/20/2020 0-1 14.8 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199 < 0.00199	< 49.9 < 49.9
Horizontal-4 8/20/2020 0-1 10.4 < 0.00200 < 0.00200 < 0.00200 < 0.00399 < 0.00200 < 0.00200 < 0.00200 < 49.8 < 49.8	< 49.8 < 49.8

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - 2RP-5609 HERITAGE CONCHO PATRON 23 FEDERAL #4H FLOWLINE RELEASE

EDDY COUNTY, NM

		Sample Depth	Chlada 1					BTEX ²									TPH ³							
Sample ID	Sample Date	Sample Depth	Chloride ¹		Benzene		Toluene		Ethylbenzen	е	m,p-Xylenes		o-Xylene		Total Xylenes	Total BTEX	(GRO		DRO		MRO		Total TPH
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Horizontal-5	8/20/2020	0-1	9.20		< 0.00198		< 0.00198		< 0.00198		< 0.00397		< 0.00198		< 0.00198	< 0.00198		< 50.0		< 50.0		< 50.0		< 50.0
Horizontal-6	8/20/2020	0-1	8.71		< 0.00198		< 0.00198		< 0.00198		< 0.00397		< 0.00198		< 0.00198	< 0.00198		< 49.9		< 49.9		< 49.9		< 49.9
Horizontal-7	8/20/2020	0-1	6.16		< 0.00199		< 0.00199		< 0.00199		< 0.00398		< 0.00199		< 0.00199	< 0.00199		< 50.0		< 50.0		< 50.0		< 50.0
Horizontal-8	8/20/2020	0-1	8.71		< 0.00200		< 0.00200		< 0.00200		< 0.00399		< 0.00200		< 0.00200	< 0.00200		< 50.0		< 50.0		< 50.0		< 50.0
Horizontal-9	8/20/2020	0-1	67.1		< 0.00200		< 0.00200		< 0.00200		< 0.00400		< 0.00200		< 0.00200	< 0.00200		< 49.9		< 49.9		< 49.9		< 49.9
Horizontal-10	8/20/2020	0-1	10.3		< 0.00198		< 0.00198		< 0.00198	I	< 0.00397		< 0.00198		< 0.00198	< 0.00198		< 49.8		< 49.8		< 49.8		< 49.8

NOTES:

ft. Feet

bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

MRO Motor Oil range organics

(-) Sample not analyzed for constituent

1 EPA Method 300.0

2 EPA Method 8021B

3 Method SW8015 Mod

Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

X In our quality control review of data, a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix/chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.

TABLE 2

SUMMARY OF ANALYTICAL RESULTS

ADDITIONAL SOIL ASSESSMENT - NAB1924840999

CONOCOPHILLIPS

PATRON 23 FEDERAL 4H RELEASE

EDDY COUNTY, NM

							BTEX ²									TPH ³							
Sample ID	Sample Date	Sample Depth Interval	Chloride ¹	ı	Benzene		Toluene		Ethylbenze	no	Total Xylene		Total BTEX	GRO		DRO		EXT ORO		Total TPH			
Sample 15	Sample Date				Delizelle		Totalene		Lillyibelize	iie	Total Aylene	•	TOTALDIEX	C6 - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₃₆		(GRO+DRO+ORO)			
		ft. bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg			
		0-1	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
H-11	12/27/2021	2-3	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
		3-4	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
		0-1	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
H-12	12/27/2021	2-3	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
		3-4	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
		0-1	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
H-13	12/27/2021	2-3	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			
		3-4	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		< 10.0		-			

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

1 Method SM4500Cl-B

2 EPA Method 8021B

3 EPA Method 8015M

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

HEAJG-190821-C-1410

Responsible Party

Responsible	Party			OGRID									
Contact Nam	ne			Contact	Геlерhonе								
Contact emai	il			Incident	Incident # (assigned by OCD)								
Contact mail	ing address			1									
			Location	of Release S	Source								
Latitude				Longitude									
			(NAD 83 in de	ecimal degrees to 5 dec									
Site Name				Site Type	;								
Date Release	Discovered			API# (if a	pplicable)								
Unit Letter	Section	Township	Range	Cou	ınty	_							
Crude Oil	Materia	Federal Tr	Nature and	d Volume of	ic justification for th	the volumes provided below)							
Produced		Volume Release	` '			covered (bbls)							
	vv ater		tion of dissolved o	chloride in the	Yolume Ree	` ´ ´							
		produced water	>10,000 mg/l?	monde in the									
Condensa	ite	Volume Release	ed (bbls)		Volume Rec	covered (bbls)							
☐ Natural G	as	Volume Release	ed (Mcf)		Volume Rec	covered (Mcf)							
Other (des	scribe)	Volume/Weight	Released (provid	e units)	Volume/Wei	ight Recovered (provide units)							
Cause of Rele	ease												

Received by OCD: 1/24/2022 1:11:19 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Page	<i>20</i>	of i	<u> 2</u> 60
			-

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respo	nsible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ☐ No		
If VES, was immediate no	otice given to the OCD? By whom? To w	nom? When and by what means (phone, email, etc)?
Ti TES, was ininectate in	once given to the OCD. By whom. To wi	when and by what means (phone, eman, etc).
	Initial R	esponse
The responsible p	party must undertake the following actions immediate	y unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
	s been secured to protect human health and	the environment.
Released materials ha	ive been contained via the use of berms or o	likes, absorbent pads, or other containment devices.
	ecoverable materials have been removed an	
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
has begun, please attach a	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environm failed to adequately investigations.	required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a three	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name:		Title:
Signature:	Opeant	Date:
email:		Telephone:
OCD Only		
Received by:		Date:

Received by OCD: 1/24/2022 1:11:19 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 21 of 260
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

 $This information \ must be provided \ to \ the \ appropriate \ district \ of fice \ no \ later \ than \ 90 \ days \ after \ the \ release \ discovery \ date.$

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.
1	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/24/2022 1:11:19 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 22 of 2	60
Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In
Printed Name:	
Signature: // //>	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 1/24/2022 1:11:19 PM Form C-141 State of New Mexico Page 5 Oil Conservation Division

	Page 23 of 2	60
Incident ID		
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must b	e included in the plan.
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation poin □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29. □ Proposed schedule for remediation (note if remediation plan times) 	ts 12(C)(4) NMAC
Deferral Requests Only: Each of the following items must be con	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around predeconstruction.	roduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	n, the environment, or groundwater.
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature: 1478	Date:
email:	Telephone:
OCD Only	
OCD OHLY	
Received by:	Date:
Approved	Approval
Signature:	Date:

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

POD

		Sub-		QQ	Q)							W	ater
POD Number	Code	basin	County	64 10	6 4	Sec	Tws	Rng	X	Y	DistanceDep	thWellDep	thWater Co	lumn
<u>C 02371</u>		C	ED	2	3	15	25S	29E	596741	3555106*	1739	200	60	140
<u>C 02680</u>		CUB	ED	2	3	15	25S	29E	596741	3555106*	1739	200		
C 04558 POD1		CUB	ED	3 4	3	23	25S	29E	598354	3553039	1900			

Average Depth to Water:

60 feet

Minimum Depth:

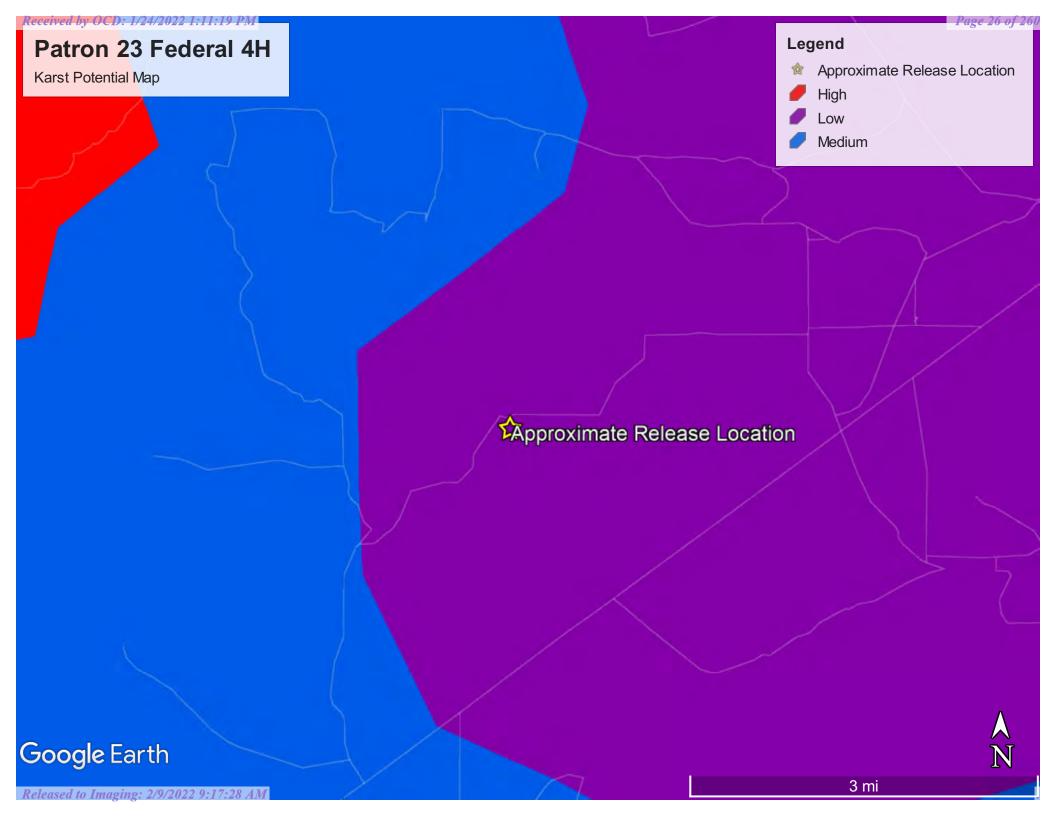
60 feet

Maximum Depth:

60 feet

Record Count: 3

UTMNAD83 Radius Search (in meters):


Easting (X): 598472 **Northing (Y):** 3554936 **Radius:** 2000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/23/21 2:32 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

OCD Water Bodies

12/23/2021, 3:38:57 PM

OCD District Offices

OSE Water-bodies

PLJV Probable Playas

OSE Streams

1:9,028 0.05 0.2 mi 0.1 0.2 0.4 km

OCD, Esri, HERE, Garmin, iPC, Maxar

212C-MD-02646	TETRA T	TECH	LOG OF BORING BH-1	Page 1 of 1
Project Name: P	ı atron 23 Federal 4H			
Borehole Location:	GPS: 32.122593, -10	03.949262	Surface Elevation: 3141 ft	
Borehole Number:	BH-1	Bore Diar	ehole meter (in.): 4 Date Started: 2/24/2021 Date Finished:	2/24/2021
Q (pm) RY (%) ENT (%)	X	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DRY Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)		DRY DENSITY (pcf) LIQUID LIMIT DRY PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (#)	REMARKS
I ш С ₹	ton Acetate Liner	Operation Types: Mud Rotary	CALICHE: Tan, dry, weakly cemented, fine to medium grained SC- CLAYEY SAND: Brown, dry, fine to medium grained, medium dense CALICHE: Tan, dry, weakly to moderately cemented, fine to coarse grained, with occasional gravel SM- SILTY SAND: Brown, dry, medium dense, fine to coarse grained. SC- CLAYEY SAND: Tan, dry, fine to medium grained, with occasional Sandy Shale seams. SM- SILTY SAND: Tan, dry, fine to medium grained, with occasional Sandy Shale seams. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained. SM- SILTY SAND: Tan, dry, medium dense, fine to medium grained.	Google Earth
San San San San	nple Sample	Continuous Flight Auger Wash Rotary	Direct Push Core Barrel	
Lloggor: Laws Casala		Drilling Equipment:	Air Determined Drillor: Searcharactach Drillian	

APPENDIX C Work Plan (November 5, 2020)

	1/24/2022 1:11:191		TE INFOR	MATION		Tuge 50 of		
		Rep	ort Type:	Work Pl	an			
General Site I	nformation:							
Site:		Patron 23 F	ederal #4H					
Company:		COG Opera						
	ship and Range	Unit K/N	Sec. 14	T 25S	R 29E			
Lease Numbe	r:	API No. 30-0	The second second					
County:		Eddy Count				400.0000		
GPS:	140	Federal	32.12651		- 4:	-103.95606		
Surface Owne Mineral Owne	6.0	Federal						
Directions:		follow for 8.95 miles, turn righ	miles, turn right	onto lease road. Follow for 0	ad (Twin Wells .90 miles and	avel Southwest on Buck Johnson Rd, Rd). Take first left, Follow for 4.62 Turn left. Follow for 3.08 miles, turn left road.		
Release Data:								
Date Released		8/8/2019						
Type Release:		Produced Water						
Source of Cont	231271271717	Flowline						
Fluid Released Fluids Recover		250 bbl water 10 bbls water						
Official Comm		TO DDIS Wate	'I					
Name:	Ike Tavarez				Mike Carm	nona		
Company:	COG Operating, L	LC			Tetra Tech			
Address:	One Concho Cent	er				901 West Wall Street		
	600 W. Illinois Ave	9.			Suite 100			
City:	Midland Texas, 79	701			Midland, Texas			
Phone number					(432) 687-			
Fax:	(432) 684-7137							
Email:	itavarez@conch	oresources.cor	n		Mike.Carr	mona@tetratech.com		

Site Characterization		
Depth to Groundwater:	140.90' Below Surface	
Karst Potential:	Low	

Recommended F	Remedial Action Lev	els (RRALs)	A CONTRACTOR OF THE PARTY OF TH	
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	20,000 mg/kg

November 5, 2020

Mr. Mike Bratcher **District Supervisor** Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Work Plan for the COG Operating, LLC, Patron 23 Federal #4H, Unit K/N, Section 14, Re: Township 25 South, Range 29 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG), to assess a release that occurred at the Patron 23 Federal #4H, Unit K/N, Section 14, Township 25 South, Range 29 East, Eddy County, New Mexico (Site), The spill site coordinates are 32.12651°, -103.95606°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on August 8, 2019, and released approximately 250 barrels of produced water due to a ruptured flowline. A vacuum truck was dispatched to remove all freestanding fluids, recovering approximately 10 barrels of produced water. The release occurred along a lease road, impacting areas measuring 282' x 12' and 322' x 5'. The initial C-141 form is included in Appendix A.

Site Characterization

A site characterization was performed for the site, and no lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances.

The site is located in a low karst potential area. No water wells were listed within Section 14 on the New Mexico Office of the State Engineer's (NMOSE) database, or the USGS National Water Information Database. The nearest well is listed in Section 15 on the USGS Water Information Database, approximately 1.0 mile east of the site and drilled in 1998, and has a reported depth to groundwater of 140.90' below surface. The report shows water level at 140.81' below surface in 1992, and 140.90' below surface in 1998. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine

901 West Wall St, Suite 100, Midland, TX 79701

Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. Additionally, the site is located in a low karst potential area. The most stringent RRALs will be held for the top 4' of soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization and the proposed bore, the proposed RRAL for TPH is 2,500 mg/kg (GRO + DRO + MRO). Additionally, the proposed RRAL for chlorides is 20,000 mg/kg.

Soil Assessment and Analytical Results

Initial Assessment

On August 20, 2020, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of nine auger holes (AH-1 through AH-9) were installed in the release footprint to total depths ranging from 0-1' to 4.5' below surface. Deeper samples could not be collected due to a dense formation in the area. Also, ten (10) horizontal delineation samples were collected (Horizontal-1 through Horizontal-10). Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples collected showed benzene, total BTEX, or TPH concentrations above the laboratory reporting limits. Additionally, all of the horizontal delineation samples showed chloride concentrations below the RRAL, with concentrations ranging from 6.16 mg/kg to 67.1 mg/kg. However, the areas of aguer hole (AH-1 through AH-7, and AH-9) showed high chloride concentrations, showing general increases in concentration with depth. The concentration highs were 2,280 mg/kg, 5,220 mg/kg, 1,770 mg/kg, 12,500 mg/kg, 6,680 mg/kg, 3,700 mg/kg, 4,190 mg/kg, and 4,530 mg/kg, respectively.

Trenches

On September 3, 2020, Tetra Tech personnel were onsite to further evaluate and trench the release area. A total of seven trenches (Trench-1 through Trench-7) were installed in the release footprint to total depths ranging from 0-1' to 12.0' below surface. Soil samples were collected and submitted to the laboratory for chloride analysis by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, samples collected from Trench-1 through Trench-7 showed chloride concentrations over proposed RRALs. The elevated concentrations ranged from depths of 0-1' through 6.0' below surface, showing concentrations highs of 1,900 mg/kg, 1,430 mg/kg, 4,350 mg/kg, 10,100 mg/kg, 4,380 mg/kg, 16,700 mg/kg, and 2,690 mg/kg, respectively.

Remediation Plan

All samples were below the Table 1 closure criteria, and thus no remediation will occur.

Site Reclamation and Restoration

Concho will perform the reclamation and revegetation in the pasture area per NMOCD 19.15.29.13. The reclamation will be achieved by removing the soil to a depth of 4.0' below surface and in the areas of Trench-1 through Trench-7. Approximately 1,500 cubic yards of material will be removed and hauled to proper disposal. Once excavated, soil samples will be collected from the sidewalls to confirm the removal of impact soil greater than 600 mg/kg chlorides or background (whichever is greater). Sidewall confirmation samples (five-point composite) will be collected every 200 square feet to ensure proper removal of the impacted material.

The backfilled material will be non-contaminated with concentrations below 600 mg/kg chlorides and reseeded per BLM guidelines when appropriate. COG will be excavated and will be implemented within ninety (90) days of the work plan being approved.

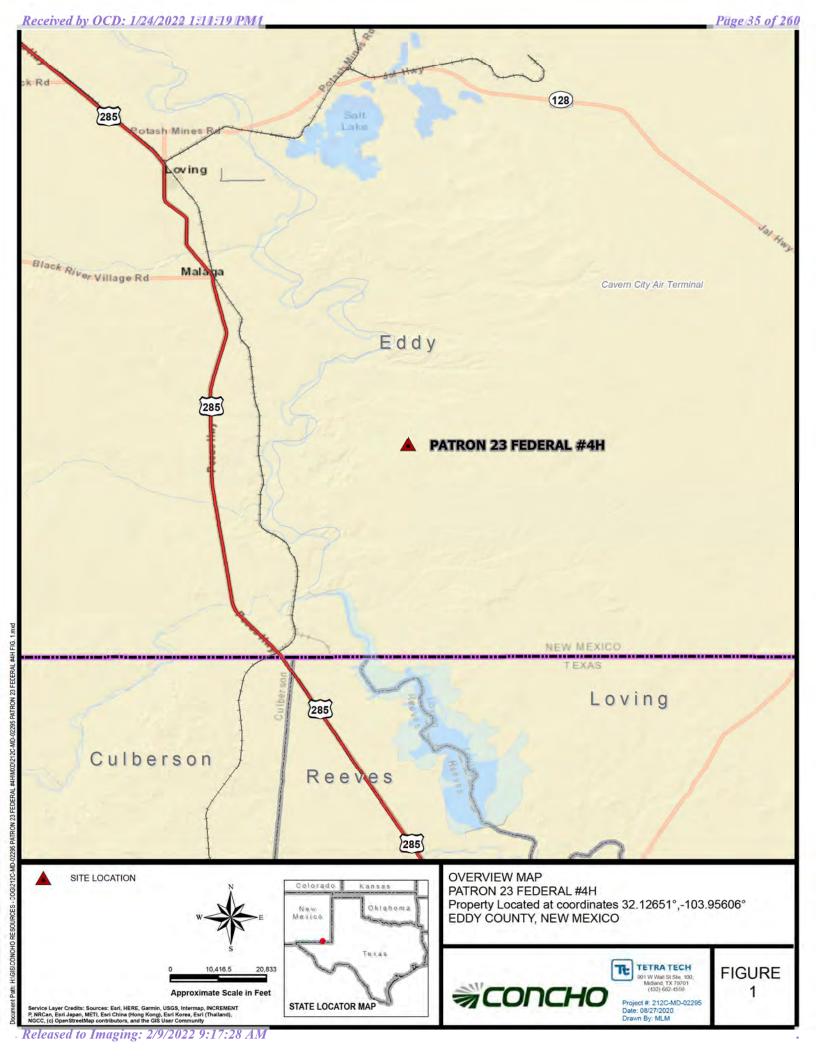
Safety Concerns - Surface Lines and Pipelines

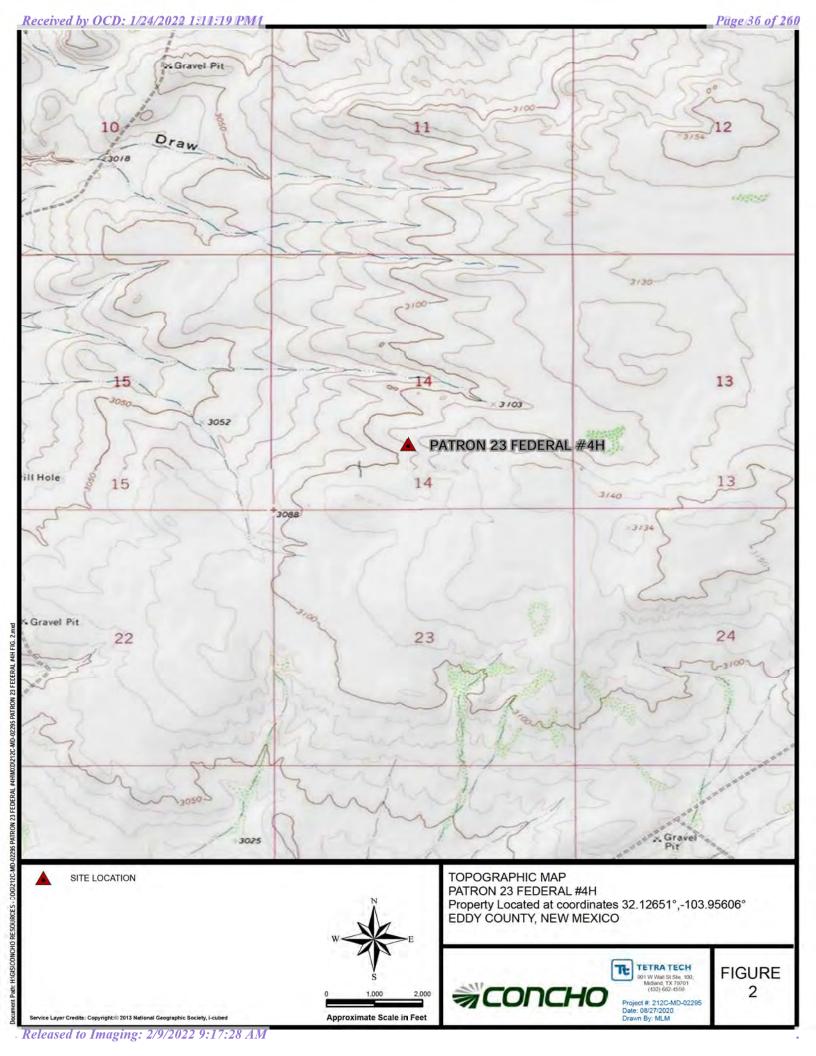
The proposed excavation depths may not be reached due to wall cave-ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safety concerns for onsite personnel. As such, COG will excavate the impacted soils to the maximum extent possible.

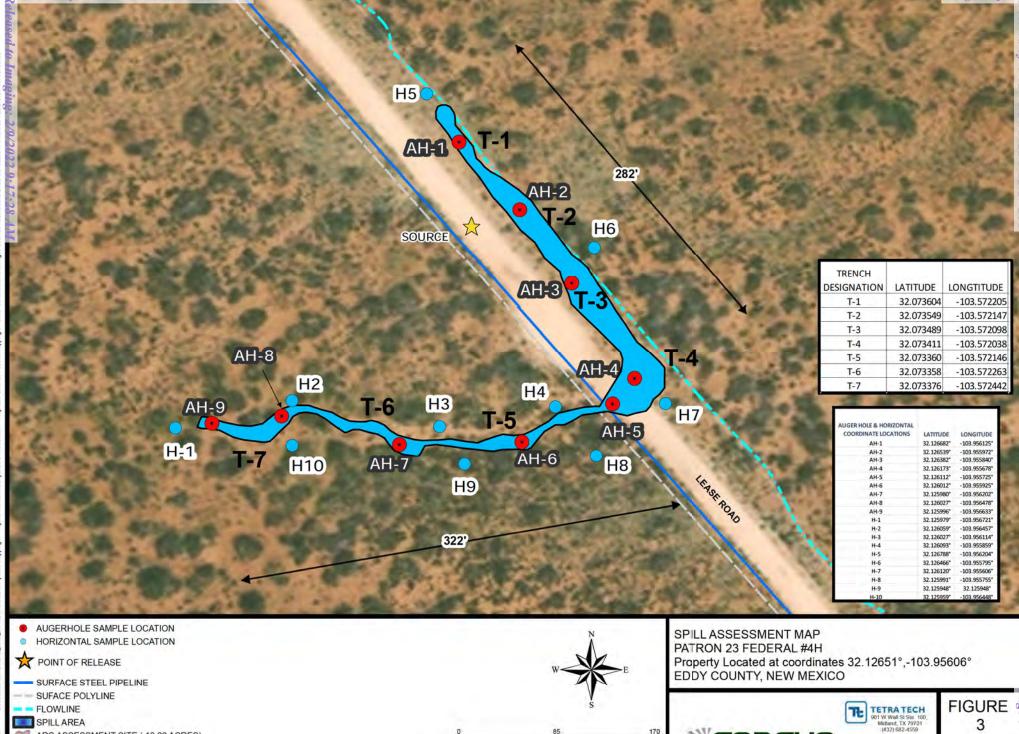
Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted.


TETRA TECH


Mike Carmona,


Geologist

Brittany Long, Project Manager

Figures

Approximate Scale in Feet

CONCHO

Project #: 212C-MD-02295

Date: 08/31/2020 Drawn By: MLM

Date: 9/18/2020

ARC ASSESSMENT SITE (16.02 ACRES)

Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community 03/24/2020

Tables

Table 1 COG Patron 23 Fed (8.8.19) Eddy County, New Mexico

Sample ID	Sample	Sample	Soil	Soil Status		TPH	(mg/kg)	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride	
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/k
AH-1	8/20/2020	0-1	X		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	363
An-ı	п	1-1.5	X		-	-	-	-	-	-	-	-	-	2,28
T.,,,,,,	9/3/2020	0-1	X		-	-	-	-	-	-	-	-	-	1,26
Trench-1	n in	1.5	Х		-	-	-	-	-	-	-	-	-	1900
AU 2	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	3,32
AH-2	0	1.5	Х		-	-	-	-	-	-	-	-	-	5,22
T	9/3/2020	0-1	Х		-	-	-	-	-	-	-	-	-	1,22
Trench-2	, ii,	1.5	Х		-	-	-	-	-	-	-	-	-	1,43
	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	22.8
AU 0	п	1-1.5	Х		-	-	-	-	-	-	-	-	-	28.2
AH-3	ii .	2-2.5	X		-	-	-	-	-	-	-	-	-	170
6 57 7	п)	2.5-3	Х		-	-	-	-	-	-	-	-	-	1,77
	9/3/2020	0-1	Х		-	-	-	-	-	-	-	-	-	21.
		1	Х		-	-	-	-	-	-	-	-	-	20.
Trench-3	n-1	2	X		-	-	-	-	-	-	-	-	-	4,22
	10	3	Х		-	-	-	-	-	-	-	-	-	4,35
	8/202020	0-1	Х		<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	49.
		1-1.5	X		-	-	-	-	-	-	-	-	-	53.
AH-4		2-2.5	X		-	-	-	-	-	-	-	-	-	1,19
	.0.	3-3.5	Х		-	-	-	-	-	-	-	-	-	9,08
	i ii-	4-4.5	Х		-	-	-	-	-	-	-	-	-	12,5
	9/3/2020	0-1	X		-	-	-	-	-	-	-	-	-	43.6
		1	Х		-	-	-	-	-	-	-	-	-	19.
	и	2	X		-	-	-	-	-	-	-	-	-	22.:
Trench-4		3	X		-	-	-	-	-	-	-	-	-	114
		4	Х		-	-	-	-	-	-	-	-	-	7,40
	JI.	5	X		-	-	-	-	-	0.5		h. ;	1 35-11	10,1
	u u	6	Х		-	-	-	-	-	0.00	4.4		(4.21)	9,13
	8/20/2020	0-1	Х		<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	6,68
	n.	1-1.5	X		-	-	-	-	-	-	-	-	-	3,61
AH-5	iii iii	2-2.5	X		-	-	-	-	-	-	-	-	-	4,42
	"	3-3.5	Х		-	-	-	-	-	-	-	-	-	2,09
	"	4-4.5	Х		-	_	_	_	-	-	_	-	_	139

Table 1 COG Patron 23 Fed (8.8.19) Eddy County, New Mexico

Sample ID Sample Date	Sample	Sample	Soil Status TPH (mg/			(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene T	Total BTEX	Chloride	
	The second of th	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	51.4
		1-1.5	Х		-	-	-	-	-	-	-	-	-	85.9
AH-6		2-2.5	Х		-	-	-	-	-	-	-	-	-	2,100
	- ·	3-3.5	Х		-	-	-	-	-	-	-	-	-	3,700
	9/3/2020	0-1	X		-	-	-	-	-	-	-	-	-	1,010
	ii ii	1	X		-	-	-	-	-	-	-	-	-	1,130
Trench-5		2	Х		-	-	-	-	-	-	-	-	-	1,290
		3.5	Х		-	-	-	-	-	-	-	-	-	4,380
	8/20/2020	0-1	X		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	18.0
	ii .	1-1.5	Х		-	-	-	-	-	-	-	-	-	21.7
AH-7		2-2.5	X		-	-	-	-	-	-	-	-	-	441
		3-3.5	Х		-	-	-	-	-	-	-	-	-	4,190
	9/3/2020	0-1	Х		-	-	-	-	-	-	-	-	-	24.2
	iii	1	X		-	-	-	-	-	-	-	-	-	30.3
	· ·	2	X		-	-	-	-	-	-	-	-	-	237
		3	X		-	-	-	-	-	-	-	-	-	9,590
	n.	4	X		-	-	-	-	-	-	-	-	-	9,580
	"	5	Х		-	-	-	-	-	-	-	-	-	16,700
Trench-6	, ii.	6	X		-	-	-	-	-			2	-	12,700
	i i i i i i i i i i i i i i i i i i i	7	X		-	-	-	-	-				200	7,280
	- in	8	X		-	-	-	-	-					4,330
	, iii	9	Х		-	-	-	-	-	-	-	-	-	5,190
	*	10	Х		-	-	-	-	-	-	-	-	-	1,750
		11	Х		-	-	-	-	-	-	-	-	-	130
		12	Х		-	-	-	-	-	-	-	-	-	124
	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	17.2
ALI O	и,	1-1.5	×		-	-	-	-	-	-	-	-	-	16.1
AH-8	ii ii	2-2.5	X		-	-	-	-	-	-	-	-	-	21.9
	"	3-3.5	Х		-	-	-	-	-	-	_	-	-	34.2

Table 1 COG Patron 23 Fed (8.8.19) **Eddy County, New Mexico**

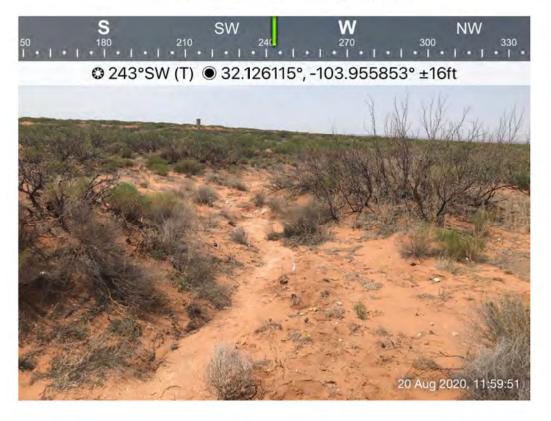
Sample ID	Sample	Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	8/20/2020	0-1	X		<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	17.9
		1-1.5	X		-	•	-	-	-	-	-	-	-	23.9
AH-9	•	2-2.5	Х		-	•	-	-	-	•	-	-	-	42.3
		3-3.5	X		•	•	-	-	-	-	-	-	-	1,030
	2	4-4.5	Х		-	-	-	-	-	-	-	-	-	4,530
	9/3/2020	0-1	Х		-	-	-	-	-	-	-	-	-	61.6
		1	Х		-	-	-	-	-	-	-	-	-	58.4
		2	X		-	-	-	-	-	-	-	-	-	73.3
	T.	3	X		-	-	-	-	-	+	*	+	-	344
		4	X		-		-	-	-			+	*	2,690
Trench-7		5	X		-	ı	-	-	-	,	+ = +		7	8,340
		6	X		-	ı	-	-	-	4	 	3.	- ·	1,830
		7	X		1	ı	-	-	-	•			_8_1	6,400
		8	Х		-	-	-	-	-	-	-	-	-	2,740
		9	X		-	•	-	-	-	-	-	-	-	206
	.0	10	Х		-	-	-	-	-	-	-	-	-	36.0
Horizontal-1	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	15.9
Horizontal-2	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	9.01
Horizontal-3	8/20/2020	0-1	Х		<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	14.8
Horizontal-4	8/20/2020	0-1	Х		<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	10.4
Horizontal-5	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	9.20
Horizontal-6	8/20/2020	0-1	Х		<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	8.71
Horizontal-7	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	6.16
Horizontal-8	8/20/2020	0-1	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	8.71
Horizontal-9	8/20/2020	0-1	Х		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	67.1
Horizontal-10	8/20/2020	0-1	Х		<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	10.3
(-)	Not An	alvzed												

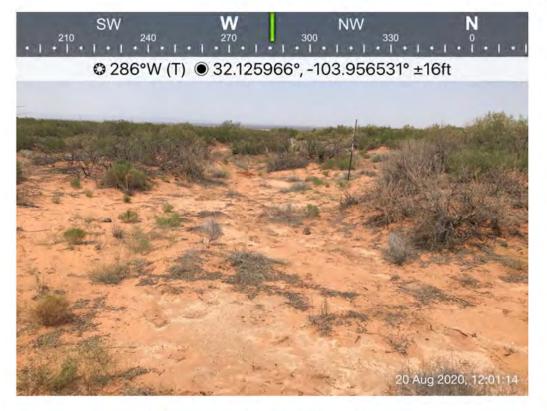
(-)

Not Analyzed

Proposed Excavation

Photos


COG Patron 23 Federal #4H Eddy County, New Mexico


View of Release - View East

View of Release - View Southwest

COG Patron 23 Federal #4H Eddy County, New Mexico

View of Release - View West

View of Release - View Northwest

TETRA TECH

COG Patron 23 Federal #4H Eddy County, New Mexico

View of Trenching Activities – View West

View of Trenching Activities – View West

႕

COG Patron 23 Federal #4H Eddy County, New Mexico

View of Release After Trenching Activities – View Northwest

View of Release After Trenching Activities – View Southeast

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	-

Release Notification

Responsible Party

Responsible Party	COG Production, LLC	OGRID	217955		
Contact Name	Jennifer Knowlton	Contact Telephone	(575) 748-1570		
Contact email	JKnowlton@concho.com	Incident # (assigned by OC	CD)		
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

atitude	32.1265	1	(NAD 83 in decir	Longitude	03.95606
Site Name		Patron 23 Fed	eral #004H	Site Type	Flowline
Date Release	Discovered	August 8, 201	9	API# (if applicable)	30-015-42451
Unit Letter	Section	Township	Range	County	
K/N	14	25S	29E	Eddy	

Nature and Volume of Release

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 250	Volume Recovered (bbls) 10
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	■ Yes □ No
☐ Condensate	Volume Released (bbls)	Volume Recovered (bbls)
☐ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a ruptured flowline due to high pressure. The flowline is being repaired The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Received by OCD: 1/24/2022 1:11:19 PM1
State of New Mexico
Page 2
Oil Conservation Division

Page 50 of 260	P	age	50	0	f2	6	(
----------------	---	-----	----	---	----	---	---

Incident ID	
District RP	= 1.34
Facility ID	- 1
Application ID	

Was this a major	If YES, for what reason(s) do	oes the responsible party consider this a major release?
release as defined by		was greater than 25 barrels.
19.15.29.7(A) NMAC?		
Yes No		
If YES, was immediate r	notice given to the OCD? By w	whom? To whom? When and by what means (phone, email, etc)?
		an via e-mail August 8, 2019 at 2:40 pm to Mike Bratcher and
		Initial Response
The responsible	party must undertake the following ac	tions immediately unless they could create a safety hazard that would result in injury
■ The source of the rel	lease has been stopped.	
	as been secured to protect huma	an health and the environment.
HEER HOLD IN 18 10 10 10 10 10 10 10 10 10 10 10 10 10		of berms or dikes, absorbent pads, or other containment devices.
■ All free liquids and i	ecoverable materials have beer	n removed and managed appropriately.
has begun, please attach	a narrative of actions to date.	commence remediation immediately after discovery of a release. If remediation If remedial efforts have been successfully completed or if the release occurred (a) NMAC), please attach all information needed for closure evaluation.
I hereby certify that the inforegulations all operators are public health or the environ failed to adequately investiguaddition, OCD acceptance and/or regulations.	ormation given above is true and co e required to report and/or file certa ament. The acceptance of a C-141 gate and remediate contamination to of a C-141 report does not relieve t	omplete to the best of my knowledge and understand that pursuant to OCD rules and ain release notifications and perform corrective actions for releases which may endanger report by the OCD does not relieve the operator of liability should their operations have that pose a threat to groundwater, surface water, human health or the environment. In the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: DeAn	n Grant	Title: HSE Administrative Assistant
Signature:	n Opeant	Date: 8/13/2019
email: agrant@co	oncho.com	Date: 8/13/2019 Telephone: (432) 253-4513
OCD Only		
Received by		Date:
		- 5279

Received by OCD: 1/24/2022 1:11:19 PM1
State of New Mexico
Page 3
Oil Conservation Division

	Page 51 of 260
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

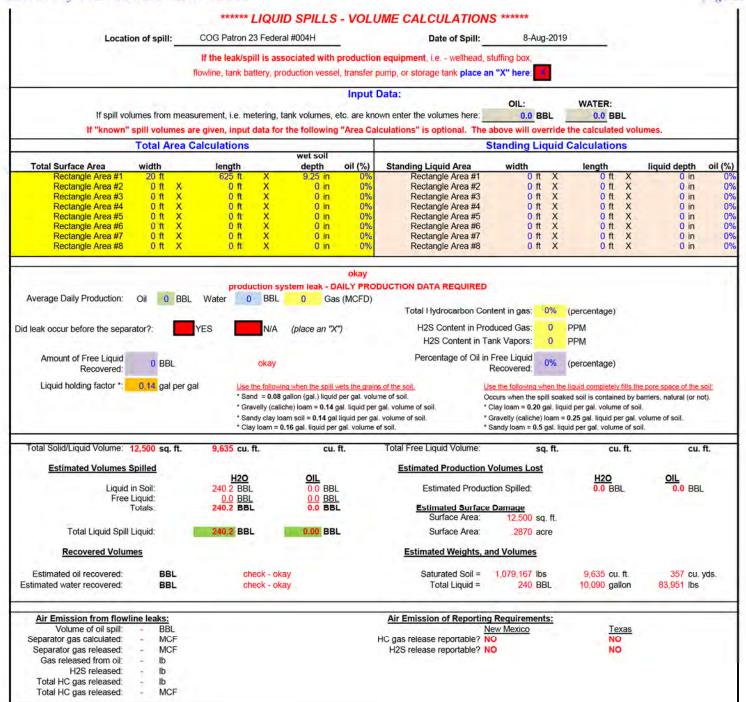
This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

140.00
140.90 (ft bgs)
☐ Yes 🗸 No
☐ Yes 🗸 No
☐ Yes 🗸 No
☐ Yes ☑ No
☐ Yes ✓ No
☐ Yes ✓ No
☐ Yes ✓ No
☐ Yes 🗸 No
☐ Yes ✓ No
☐ Yes 🗸 No
☐ Yes ✓ No
✓ Yes ☐ No
ical extents of soil
ic

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/24/2022 1:11:19 PMI
State of New Mexico
Page 4 Oil Conservation Division

Incident ID
District RP
Facility ID
Application ID


regulations all operators are required to report and/or file of public health or the environment. The acceptance of a C-1-failed to adequately investigate and remediate contamination	d complete to the best of my knowledge and understand that pursuant to OCD rules and ertain release notifications and perform corrective actions for releases which may endanger 41 report by the OCD does not relieve the operator of liability should their operations have on that pose a threat to groundwater, surface water, human health or the environment. In we the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Ike Tavarez	Title: Senior Environmental Specialist
Signature:	Date: 11/05/2020
email: itavarez@conchoresources.com	Telephone: (432) 686-3023
OCD Only	
Received by:	Date:

Received by OCD: 1/24/2022 1:11:19 PM1
State of New Mexico
Page 5
Oil Conservation Division

	Page 53 of 260
Incident ID	
District RP	
Facility ID	
Application ID	- 101

Remediation Plan

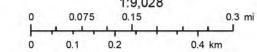
Remediation Plan Checklist: Each of the following items mu	ust be included in the plan.
✓ Detailed description of proposed remediation technique	
Scaled sitemap with GPS coordinates showing delineation	noints
Estimated volume of material to be remediated	points
Closure criteria is to Table 1 specifications subject to 19.15	5 29 12(C)(4) NMAC
Proposed schedule for remediation (note if remediation pla	
	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
Deferral Requests Only: Each of the following items must be	e confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or aroundeconstruction.	nd production equipment where remediation could cause a major facility
☐ Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human h	nealth, the environment, or groundwater.
liability should their operations have failed to adequately investigation	ceptance of a C-141 report by the OCD does not relieve the operator of tigate and remediate contamination that pose a threat to groundwater, OCD acceptance of a C-141 report does not relieve the operator of ocal laws and/or regulations.
Printed Name: Ike Tayarez	Title: Senior Environmental Specialist
Signature: 14 TS	Date: 11/05/2020
email: itavarez@conchoresources.com	Telephone: (432) 686-3023
OCD Only	
Received by: Chad Hensley	Date: 02/18/2021
Approved Approved with Attached Condition	ns of Approval Denied Deferral Approved
Signature: DENIED	Date: 02/18/2021

Appendix B

Water Well Data Average Depth to Groundwater (ft) Patron 23 Federal Eddy County, New Mexico

	24	So	uth	2	8 East				24 S	outh	2	9 East		- / <u></u>	24 S	outh	30	East	
6 7	5	30	4	30 3	2 58	1 60		6	5	4	3	2	1	6	5	4	3	2	1
7	8	50	9	10	11	12		7	8	9	10	11	12	7	8	9	10	11	12
				17	20	73		160						4 6 1 1	186		6		
8	17	1	16	15	14	13	1	18	17 4	16	15	14	13	18	17	16	15	14	13
	42		29	18	52	34			1	18			0 0	1 1 2 2	100		100		
9	20		21	22	23	24		19	20	21	22	23	24	19 231	20	21	22	23	24
	48													150				400	
0	29		28	27	26	25		30	29	28	27	26	25	30	29	28	27	26	25
1	32		33	34	35	36		31	32	33	34	35	36	31	32	33	34	35	36
	25	So	uth	2	8 East				25 S	outh	2	9 East			25 S	outh	30	East	
jit	5		4	35 3 32	2	1	1	6	1 5	4	3	2	1	6	5	4	3	2 295	1
	59 8	-	9	10	11	Site 12		40	8	9	10	11	12	7 264	0	9 295	10	11	12
	°	М	9	10	1.,	12		7	°	3	10	11	12	/ 204	0	9 295	10	"	390
8	17		16	15 48	14	1/3	1	18	17	16	15	14	13	18	17	16	15	14	13
7	J. Co.			49					972.1		140				1			1	
9	20		21	22	23	24	1	19	20	21	22	23	24	19	20	21 265	22	23	24
	96					17			(Company	10				1		268			
0	29		28	27	26 40	25		30	29	28	27	26	25	30	29	28	27	26	25
	15		90		7	1	-	30						7			4		-
1	32		33	34	35	36		31	32 115	33	34	35	36	31	32	33	34	35	36
	1	207				40	1		28.5		1	1200			(2:52	2.444	0/	2.33	_
	_		uth		8 East				26 S	_		9 East		- 6/ <u>2</u>	26 S			East	
	5		4	3	2 120	1	_	6	5 78	4	3	2	1	6	5 179 180	4	3	2	1
	8		9	10	11	12	1	7	8	9	10	11	12	7	8	9	10	11	12
						100									172				
8	17		16	15	14	13		18	17	16	15	14	13	18	17	16	15	14	13
9	20	-	21	22	120 23	56 24		19	20	125	22 57	23	24	19	20	21	22	23	24
9	20		21	120	23	24	(19	20	21		23	24	19	20	21	117	23	7.7
0	29		28	27	26	25	1	30	29	28	69 27	26	25	30	29	28	27	26	180 25
					-			3.5		1	-	-					π,	77	
1	32		33	34	35	36		31	32	33	34	35	36	31	32	33	34	35	36
							100			1	1	N.			1		174	7	12.

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location


National Water Information System: Mapper

New Mexico NFHL Data

August 26, 2020

FEMA Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

♥ GO Groundwater New Mexico

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Search Results -- 1 sites found

Agency code = usgs site_no list =

320739103584201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320739103584201 25S.29E.15.31134

Eddy County, New Mexico Latitude 32°07'39", Longitude 103°58'42" NAD27 Land-surface elevation 3,017 feet above NAVD88 The depth of the well is 192 feet below land surface. The depth of the well is 192 reet below latin satisfies.

This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

	Output formats
le of data	

Tab-separated data Graph of data

Tabl

Reselect period

Date	Time	? Water- level date- time accuracy	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Water- level accuracy	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
983-02-01		D	140.40				2		U	U	A
987-10-20			140.33			100	2	1,1	U	ù	A
992-11-06		C	140.81				2	113	S	U	A
1998-01-29			140.90				2		S	U	P

Explanation

Section	Code	Description	
Water-level date-time accuracy	D	Date is accurate to the Day	
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot	
Status		The reported water-level measurement represents a static level	
Method of measurement	S	Steel-tape measurement.	
Method of measurement	U	Unknown method	
Measuring agency		Not determined	
Source of measurement	U	Source is unknown.	
Water-level approval status	A	Approved for publication Processing and review completed.	

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms
Subscribe for system changes News

Accessibility Privacy Policies and Notices

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

		1.1						0	,			1	,
POD Number	POD Sub- Code basin	County	1357	Q 16	030		Tws	Rng	x	Y		200	Water Column
C 01337	С	ED		2	1	30	25S	29E	591926	3552642*	180	30	150
C 01880	С	ED	3	3	2	06	258	29E	592161	3558605*	85	40	45
C 02371	С	ED		2	3	15	258	29E	596741	3555106*	200	60	140
C 02459	С	ED	4	4	1	02	258	29E	598422	3558663*	150		
C 02518	С	ED		3	4	80	258	29E	593895	3556300*	462		
C 02680	CUB	ED		2	3	15	258	29E	596741	3555106*	200		
C 04324 POD10	CUB	ED	1	1	1	09	258	29E	594563	3557603 🌍	65	60	5
C 04324 POD11	CUB	ED	1	1	1	09	258	29E	594576	3557619 🌑	61	61	0
C 04324 POD12	CUB	ED	2	2	2	08	258	29E	594476	3557627	65	60	5
C 04324 POD6	CUB	ED	1	1	1	09	258	29E	594538	3557657	62	61	1
C 04324 POD8	CUB	ED	4	4	4	05	258	29E	594442	3557807 🌑	69	65	4
C 04324 POD9	CUB	ED	1	1	1	09	258	29E	594590	3557676	72	62	10

Average Depth to Water:

55 feet

Minimum Depth:

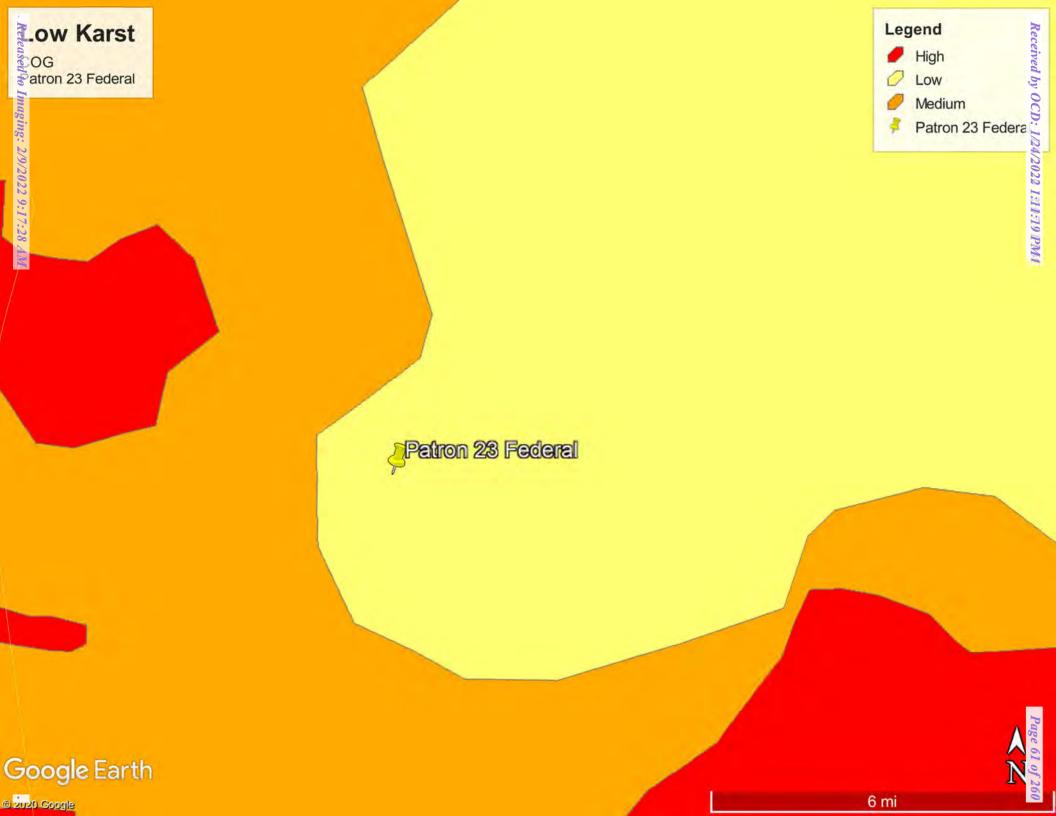
30 feet

Maximum Depth:

65 feet

Record Count: 12

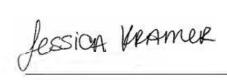
Basin/County Search:


County: Eddy

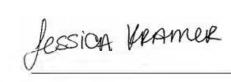
PLSS Search:

Township: 25S

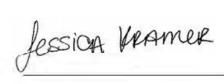
Range: 29E


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

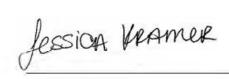
Appendix C


eurofins Environment Testing Xenco		CCI				sis Sum land, Mid		•	/3				
			Pı	roject Nan	ae: Pat	tron 23 #4H	I (8.08.	19)					
Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas									Repor	in Lab: Mor et Date: 08.2 anager: Jess	25.2020 1	020 12:55 6:28 ner	Page 34
eurofins Environment Testing Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	670795-001 AH-1 0-1' SOIL 08.20.2020 00	,	670795-06 AH-1 1'-1. SOIL 08.20.2020 0	1.5'	670795-00 AH-2 0-1' SOIL 08.20.2020 0	,	670795-0 AH-2 1'-1.5 SOIL 08.20.2020 (5'	670795-00 AH-3 0-1' SOIL 08.20.2020 0		670795-00 AH-3 1'-1.5' SOIL 08.20.2020 0	,
	Extracted: Analyzed: Units/RL:	08.24.2020 13 08.25.2020 00 mg/kg	00:52 RL			08.24.2020 1 08.25.2020 0 mg/kg	00:40 RL			08.24,2020 08.25,2020 mg/kg	01:01 RL		
Benzene	make a production of		0.00200				0.00200			<0.00200	0.00200		
Toluene			0.00200			Land Problem	0.00200			<0.00200	0.00200		
Ethylbenzene		100-14-3-0	0.00200			- E-19/C-2/3/	0.00200			<0.00200	0.00200		
m,p-Xylenes			0.00399			E	0.00399			<0.00399	0.00399		
o-Xylene			0.00200				0.00200			<0.00200	0.00200		
Total Xylenes			0.00200				0.00200 0.00200			<0.00200 <0.00200	0.00200		
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 16 08.24.2020 17 mg/kg	16:05	08.24.2020 1 08.24.2020 1 mg/kg	24.4	08.24.2020 1 08.24.2020 1 mg/kg	16:05	08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg	16:05	08.24.2020 1 08.24.2020 1 mg/kg	
Chloride		363	4.97	2280	25.0	3320	25.0	5220	49.9	22.8	5.01	28.2	5.05
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:	08.24,2020 13 08.24,2020 22 mg/kg				08.24.2020 1 08.24.2020 2 mg/kg				08.24.2020 1 08.24.2020 2 mg/kg			-
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9			<50.0	50.0			<50.0	50.0		
Diesel Range Organics (DRO)		<49.9	49.9			<50.0	50.0			<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9			<50.0	50.0			<50.0	50.0		

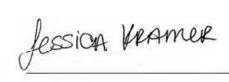
BRL - Below Reporting Limit


eurofins Environment Testing Xenco				eate of A Tetra Tech-				•	/5				Page 35
			P	roject Nam	e: Pat	ron 23 #4H	1 (8.08.	19)					
Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas									Repor	in Lab: Mon rt Date: 08.2: anager: Jessi	5.2020 1	16:28	
eurofins Environment Testing Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	670795-00 AH-3 2'-2.5 SOIL 08.20.2020 0	5'	670795-00 AH-3 3' SOIL 08.20.2020 0	,	670795-00 AH-4 0-1' SOIL 08.20.2020 0		670795-0. AH-4 1'-1.5 SOIL 08.20.2020 0	5'	670795-01 AH-4 2'-2.5' SOIL 08.20.2020 0		670795-01 AH-4 3'-3.5' SOIL 08.20.2020 0	,
BTEX by EPA 8021B	Extracted: Analyzed: Units/RL:					08.24.2020 1 08.25.2020 0 mg/kg <0.00199	200						
Toluene			\rightarrow		$\overline{}$		0.00199				-		
Ethylbenzene			\rightarrow	4		1 - P - 2 - 2	0.00199						
m,p-Xylenes			\rightarrow		-	< 0.00398	0.00398						
o-Xylene						< 0.00199	0.00199						
Total Xylenes						< 0.00199	0.00199						
Total BTEX						< 0.00199	0.00199						
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 19 08.24.2020 19 mg/kg	2.4	08.24.2020 1 08.24.2020 1 mg/kg	22540111	08.24.2020 1 08.24.2020 1 mg/kg	2	08.24.2020 1 08.24.2020 1 mg/kg		08.24.2020 1 08.24.2020 1 mg/kg		08.24.2020 1 08.24.2020 1 mg/kg	
Chloride		170	4.96	1770	24.8	49.5	5.00	53.8	4.98	1190 X	5.04	9080	50.2
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:					08.24.2020 1 08.24.2020 2 mg/kg	200						
Gasoline Range Hydrocarbons (GRO)						<49.9	49.9						
Diesel Range Organics (DRO)						<49.9	49.9						
Motor Oil Range Hydrocarbons (MRO)						<49.9	49.9						

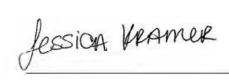
BRL - Below Reporting Limit


eurofins Environment Testing Xenco			cate of A Tetra Tech				•	15				
		1	Project Nam	ie: Pat	ron 23 #4H	I (8.08.	19)					
Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas								Repor	in Lab: Mor t Date: 08.2 anager: Jess	25.2020 1	.020 12:55 16:28 ner	
eurofins Environment Testing Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	670795-013 AH-4 4'-4.5' SOIL 08.20.2020 00:00	670795-0 AH-5 0-1 SOIL 08.20.2020	1'	670795-01 AH-5 1'-1.5 SOIL 08.20.2020 0	5'	670795-01 AH-5 2'-2.5' SOIL 08.20.2020 0	;	670795-0 AH-5 3'-3.5 SOIL 08.20.2020 0	,,	670795-0 AH-5 4'-4.5 SOIL 08.20.2020 (,
BTEX by EPA 8021B	Extracted: Analyzed: Units/RL:		08.24.2020 08.25.2020 mg/kg <0.00201									
Toluene			< 0.00201	0.00201								
Ethylbenzene			< 0.00201	0.00201								
m,p-Xylenes			< 0.00402	0.00402								
o-Xylene			< 0.00201	0.00201								
Total Xylenes			< 0.00201	0.00201								
Total BTEX			< 0.00201	0.00201								
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 16:05 08.24.2020 19:44 mg/kg RL	08.24.2020 08.24.2020 mg/kg		08.24.2020 1 08.24.2020 2 mg/kg	4	08.24.2020 1 08.24.2020 2 mg/kg	2.00	08.24.2020 1 08.24.2020 2 mg/kg		08.24.2020 1 08.24.2020 2 mg/kg	
Chloride	Childring.	12500 99.6		49.6	3610	25.0	4420	25.0	2090	25.3	139	5.03
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:		08.24.2020 08.24.2020 mg/kg						3997			1000
Gasoline Range Hydrocarbons (GRO)			<49.8	49.8								
Diesel Range Organics (DRO)			<49.8	49.8								
Motor Oil Range Hydrocarbons (MRO)			<49.8	49.8								

BRL - Below Reporting Limit


Pr	670795-020 AH-6 1'-1.5' SOIL 08.20.2020 00:00	670795-021 AH-6 2'-2.5' SOIL 08.20.2020 00:00	Date Received Repor	in Lab: Mon 08.24.20 rt Date: 08.25.2020 1 anager: Jessica Kram 670795-023 AH-7 0-1' SOIL 08.20.2020 00:00 08.24.2020 13:00	6:28
Lab Id: 670795-019 Field Id: AH-6 0-1' Depth: Matrix: SOIL Sampled: 08.20.2020 00:00 Extracted: 08.24,2020 13:00 Analyzed: 08.25.2020 02:02	670795-020 AH-6 1'-1.5' SOIL	670795-021 AH-6 2'-2.5' SOIL	Date Received Repor Project M 670795-022 AH-6 3'-3.5' SOIL	rt Date: 08.25.2020 1 anager: Jessica Kram 670795-023 AH-7 0-1' SOIL 08.20.2020 00:00 08.24.2020 13:00	6:28 ner 670795-024 AH-7 1'-1.5' SOIL
Field Id: AH-6 0-1' Depth: Matrix: SOIL Sampled: 08.20.2020 00:00 Extracted: 08.24,2020 13:00 Analyzed: 08.25.2020 02:02	AH-6 1'-1.5' SOIL	AH-6 2'-2.5' SOIL	AH-6 3'-3.5' SOIL	AH-7 0-1' SOIL 08.20.2020 00:00 08.24.2020 13:00	AH-7 1'-1.5' SOIL
Analyzed: 08.25.2020 02:02					
				08.25,2020 02:22 mg/kg RL	
<0.00199 0.00199				<0.00200 0.00200	
<0.00199 0.00199				<0.00200 0.00200	
		1			
				0.000000 60.0000	
20110000 00000					
Extracted: 08.24.2020 16:05 Analyzed: 08.24.2020 20:34 Units/RL: mg/kg RL	08.24.2020 16:05 08.24.2020 20:41 mg/kg RL	08.24.2020 16:55 08.24.2020 20:26 mg/kg RL	08.24.2020 16:55 08.24.2020 20:41 mg/kg RL	08.24.2020 16:55 08.24.2020 20:47 mg/kg RL	08.24.2020 16:55 08.24.2020 20:52 mg/kg RL
51.4 4.97	85.9 4.96	2100 24.8	3700 24.9	18.0 5.00	21.7 4.90
Extracted: 08.24.2020 13:00 Analyzed: 08.24.2020 23:59 Units/RL: mg/kg RL				08.24.2020 13:00 08.25.2020 00:22 mg/kg RL	
<50.0 50.0				<49.9 49.9	
<50.0 50.0				<49.9 49.9	
<50.0 50.0				<49.9 49.9	
A	<0.00199 0.00199 <0.00398 0.00398 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.0019 <0.0019 0.0019 <0.0019 0.0019 <0.0019 0.0019 <0.0019 0.0019 <0.0019 0.0019 <0.0019	<0.00199 0.00199 <0.00398 0.00398 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199	<pre><0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <pre> xtracted: 08.24.2020 16:05</pre></pre>	<pre></pre>	Country Coun

BRL - Below Reporting Limit


eurofins Environment Testing Xenco		Certificate of Analysis Summary 670795 Tetra Tech- Midland, Midland, TX											
		Project Name: Patron 23 #4H (8.08.19)											
Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas	t _{er}	Date Received in Lab: Mon 08.24.2020 12:55 Report Date: 08.25.2020 16:28 Project Manager: Jessica Kramer											
eurofins Environment Testing Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	Field Id: AH-7 2'-2.5' Depth: Matrix: SOIL		670795-02 AH-7 3'-3. SOIL 08.20.2020 0	5'	670795-027 AH-8 0-1' SOIL 08.20.2020 00:00		670795-0 AH-8 1'-1.5 SOIL 08.20.2020	,	670795-029 AH-8 2'-2.5' SOIL 08.20.2020 00:00		670795-03 AH-8 3'-3.5 SOIL 08.20.2020 0	
Units/RL:					08.24.2020 0 08.25.2020 0 mg/kg	02:43 RL							
Benzene							0.00199						
Toluene						1 - P P P	0.00199						
Ethylbenzene						C-19701-00	0.00199						
m,p-Xylenes o-Xylene							0.00398						
Total Xylenes							0.00199						
Total BTEX						< 0.00199							
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 08.24.2020 mg/kg		08.24,2020 1 08.24,2020 2 mg/kg	2020 16:55 08.24.2020 16 2020 21:13 08.24.2020 21		08.24.2020 16:55 08.24.2020 21:18 08.24.2020 21:24 mg/kg RL mg/kg RL		08.24.2020 16:55 08.24.2020 21:29 mg/kg RL		08.24.2020 16:55 08.24.2020 21:34 mg/kg RL		
Chloride		441	4.96	4190	25.2	17.2	4.99	16.1	5.03	21.9	5.05	34.2	4.98
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:					08.24.2020 1 08.25.2020 0 mg/kg							
Gasoline Range Hydrocarbons (GRO)					<50.0	50.0							
Diesel Range Organics (DRO)					<50.0	50.0							
Motor Oil Range Hydrocarbons (MRO)					< 50.0	50.0							

BRL - Below Reporting Limit

eurofins Environment Testing Xenco	Certificate of Analysis Summary 670795 Tetra Tech- Midland, Midland, TX											
			P	roject Nan	ne: Pat	ron 23 #4E	I (8.08.	19)				
Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas	Date Received in Lab: Mon 08.24.2020 12:55 Report Date: 08.25.2020 16:28 Project Manager: Jessica Kramer									16:28		
eurofins Environment Testing Project Id: 212C-MD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	670795-03 AH-9 0-1 SOIL 08.20.2020 0	,	670795-(AH-9 1'-1 SOIL 08.20.2020	1.5'	670795-0 AH-9 2'-2.5 SOIL 08.20.2020	,	670795-0 AH-9 3'-3.5 SOIL 08.20.2020	5'	670795-0 AH-9 4'-4.5 SOIL 08.20.2020	,	
BTEX by EPA 8021B	Extracted: Analyzed: Units/RL:	08.24.2020 1 08.25.2020 0 mg/kg	700.70									
Benzene			0.00200									
Toluene		affined a little	0.00200									
Ethylbenzene <0.00200 0.00200												
m,p-Xylenes <0.00399 0.00399												
o-Xylene			0.00200									
Total Xylenes <0.00200 0.00200												
Total BTEX		< 0.00200	0.00200									
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 1 08.24.2020 2 mg/kg		08.24.2020 08.24.2020 mg/kg	1	08.24.2020 08.24.2020 mg/kg	The second	08.24.2020 08.24.2020 mg/kg	100	08.24.2020 08.24.2020 mg/kg		
Chloride		17.9	4.95	23.9	4.96	42.3	5.03	1030	4.97	4530	24.9	
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:	08.24.2020 1 08.25.2020 0 mg/kg										
Gasoline Range Hydrocarbons (GRO)		<49.8	49.8									
Diesel Range Organics (DRO) <49.8 49.8												
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8									

BRL - Below Reporting Limit

Analytical Report 670795

for

Tetra Tech- Midland

Project Manager: Mike Carmona

Patron 23 #4H (8.08.19) 212C-MD-02295 08.25.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-37), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8)
Xenco-Tampa: Florida (E87429), North Carolina (483)

08.25.2020

Project Manager: Mike Carmona Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): 670795

Patron 23 #4H (8.08.19)

Project Address: Eddy County, Texas

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 670795. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 670795 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Manager

A Small Business and Minority Company

Sample Cross Reference 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH-1 0-1'	S	08.20.2020 00:00		670795-001
AH-1 1'-1.5'	S	08.20.2020 00:00		670795-002
AH-2 0-1'	S	08.20,2020 00:00		670795-003
AH-2 1'-1.5'	S	08.20.2020 00:00		670795-004
AH-3 0-1'	S	08.20,2020 00:00		670795-005
AH-3 1'-1.5'	S	08.20.2020 00:00		670795-006
AH-3 2'-2.5'	S	08.20.2020 00:00		670795-007
AH-3 3'	S	08.20.2020 00:00		670795-008
AH-4 0-1'	S	08.20.2020 00:00		670795-009
AH-4 1'-1.5'	S	08.20.2020 00:00		670795-010
AH-4 2'-2.5'	S	08.20,2020 00:00		670795-011
AH-4 3'-3.5'	S	08.20.2020 00:00		670795-012
AH-4 4'-4.5'	S	08.20.2020 00:00		670795-013
AH-5 0-1'	S	08.20.2020 00:00		670795-014
AH-5 1'-1.5'	S	08.20,2020 00:00		670795-015
AH-5 2'-2.5'	S	08.20.2020 00:00		670795-016
AH-5 3'-3.5'	S	08.20.2020 00:00		670795-017
AH-5 4'-4.5'	S	08.20.2020 00:00		670795-018
AH-6 0-1'	S	08.20.2020 00:00		670795-019
AH-6 1'-1.5'	S	08.20.2020 00:00		670795-020
AH-6 2'-2.5'	S	08.20.2020 00:00		670795-021
AH-6 3'-3.5'	S	08.20.2020 00:00		670795-022
AH-7 0-1'	S	08.20.2020 00:00		670795-023
AH-7 1'-1.5'	S	08.20.2020 00:00		670795-024
AH-7 2'-2.5'	S	08.20.2020 00:00		670795-025
AH-7 3'-3.5'	S	08.20.2020 00:00		670795-026
AH-8 0-1'	S	08.20.2020 00:00		670795-027
AH-8 1'-1.5'	S	08.20.2020 00:00		670795-028
AH-8 2'-2.5'	S	08.20.2020 00:00		670795-029
AH-8 3'-3.5'	S	08.20.2020 00:00		670795-030
AH-9 0-1'	S	08.20.2020 00:00		670795-031
AH-9 1'-1.5'	S	08.20.2020 00:00		670795-032
AH-9 2'-2.5'	S	08.20.2020 00:00		670795-033
AH-9 3'-3.5'	S	08.20.2020 00:00		670795-034
AH-9 4'-4.5'	S	08.20.2020 00:00		670795-035

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Patron 23 #4H (8.08.19)

Project ID: 212C-MD-02295

Work Order Number(s): 670795

Environment Testing

Report Date: 08.25.2020 Date Received: 08.24.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3135420 Chloride by EPA 300

Lab Sample ID 670795-011 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 670795-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020. The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was

accepted.

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-1 0-1' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-001

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Cas Number

Analytical Method: Chloride by EPA 300

% Moisture:

Tech:

CHE

Basis:

Wet Weight

Analyst: Seq Number: 3135420

CHE

Date Prep: 08.24.2020 16:05

Parameter

Chloride 16887-00-6 Result RL 363 4.97

Units **Analysis Date** mg/kg 08.24.2020 17:49 Flag Dil 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech: Analyst: DVM ARM

Date Prep: 08.24.2020 13:00 % Moisture:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9	mg/kg	08.24.2020 22:04	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9	mg/kg	08.24.2020 22:04	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9	mg/kg	08.24.2020 22:04	U	1
Total TPH	PHC635	<49.9	49.9	mg/kg	08.24.2020 22:04	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	128	%	70-130	08.24.2020 22:04	
o-Terphenyl	84-15-1	116	%	70-130	08.24.2020 22:04	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-1 0-1'

Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-001

Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

% Moisture:

Tech: Analyst: KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

08.24.2020 13:30

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.25.2020 00:52	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 00:52	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	127	%	70-130	08.25.2020 00:52		
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.25.2020 00:52		

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-1 1'-1.5' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-002

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	2280	25.0	mg/kg	08.24.2020 18:08		5

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-2 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-003

Soil Date Collected: 08.20.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

CHE

% Moisture:

CHE Analyst:

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	3320	25.0	mg/kg	08.24.2020 18:15		5

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.24.2020 22:27	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.24.2020 22:27	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.24.2020 22:27	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.24.2020 22:27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	122	%	70-130	08.24.2020 22:27		
o-Terphenyl		84-15-1	116	%	70-130	08.24.2020 22:27		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-2 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-003

Soil Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech:

KTL

% Moisture:

KTL Analyst:

Date Prep:

08.24.2020 13:00

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.25.2020 00:40	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 00:40	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	106	%	70-130	08.25.2020 00:40		
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.25.2020 00:40		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-2 1'-1.5' Matrix:

Date Prep:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-004

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

CHE

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	5220	49.9	mg/kg	08.24.2020 18:21		10

eurofins 💸 **Environment Testing** Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-3 0-1' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-005

Date Collected: 08.20.2020 00:00

Prep Method: E300P

CHE

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

Tech:

Analyst:

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Page 79 of 260

Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	22.8	5.01	mg/kg	08.24.2020 18:27		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Seq Number: 3135481 Date Prep: 08.24.2020 13:00 Basis: Wet Weight

Parameter Cas Number Result RL Units **Analysis Date** Flag Dil Gasoline Range Hydrocarbons (GRO) PHC610 50.0 08.24.2020 22:50 U <50.0 mg/kg 1 Diesel Range Organics (DRO) 50.0 U C10C28DRO <50.0 08.24.2020 22:50 1 mg/kg Motor Oil Range Hydrocarbons (MRO) 50.0 U PHCG2835 <50.0 mg/kg 08.24.2020 22:50 Total TPH PHC635 <50.0 50.0 mg/kg 08.24.2020 22:50 U

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	122	%	70-130	08.24.2020 22:50	
o-Terphenyl	84-15-1	117	%	70-130	08.24.2020 22:50	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-3 0-1' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-005

Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

Tech:

Analyst:

KTL

Analytical Method: BTEX by EPA 8021B

% Moisture:

KTL Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.25.2020 01:01	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 01:01	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	F
1,4-Difluorobenzene	540-36-3	99	%	70-130	08.25.2020 01:01	
4-Bromofluorobenzene	460-00-4	103	%	70-130	08.25.2020 01:01	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-3 1'-1.5'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-006

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE

Date Prep: 08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	28.2	5.05	mg/kg	08.24.2020 18:47		1

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-3 2'-2.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-007

Analytical Method: Chloride by EPA 300

CHE

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

Seq Number: 3135420

08.24.2020 16:05 Date Prep:

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	170	4.96	mg/kg	08.24.2020 18:53		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-3 3' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-008

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

Tech:

CHE

% Moisture:

CHE Analyst:

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1770	24.8	mg/kg	08.24.2020 18:59		5

Xenco

Environment Testing

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 0-1' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-009

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

Analytical Method: Chloride by EPA 300

% Moisture:

CHE CHE

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Analyst:

Seq Number: 3135420

Parameter Result Cas Number RL Units **Analysis Date** Flag Dil Chloride 16887-00-6 49.5 5.00 mg/kg 08.24.2020 19:06 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00 Basis:

Wet Weight

Seq Number: 3135481

		1.2		44147	11121111223		2.0
Cas Number	r Result	RL		Units	Analysis Date	Flag	Di
PHC610	<49.9	49.9		mg/kg	08.24.2020 23:13	U	1
C10C28DRO	<49.9	49.9		mg/kg	08.24.2020 23:13	U	1
PHCG2835	<49.9	49.9		mg/kg	08.24.2020 23:13	U	1
PHC635	<49.9	49.9		mg/kg	08.24.2020 23:13	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	116	%	70-130	08.24.2020 23:13		
	84-15-1	115	%	70-130	08.24.2020 23:13		
	PHC610 C10C28DRO PHCG2835	C10C28DRO <49.9 PHCG2835 <49.9 PHC635 <49.9 Cas Number 111-85-3	PHC610	PHC610	PHC610	PHC610 <49.9 49.9 mg/kg 08.24.2020 23:13 C10C28DRO <49.9	PHC610 <49.9 49.9 mg/kg 08.24.2020 23:13 U C10C28DRO <49.9

Final 1.000

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-009

Soil Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech:

KTL

% Moisture:

KTL Analyst:

Date Prep:

08.24.2020 13:00

70-130

Basis: Wet Weight

08.25.2020 01:21

Seq Number: 3135430

1,4-Difluorobenzene

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.25.2020 01:21	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.25.2020 01:21	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	106	%	70-130	08.25.2020 01:21		

101

540-36-3

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 1'-1.5'

Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-010

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	53.8	4.98	mg/kg	08.24.2020 19:12		1	

Final 1.000

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 2'-2.5'

Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-011

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1190	5.04	mg/kg	08.24.2020 19:18	X	1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 3'-3.5'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-012

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech:

Analyst:

CHE

Date Prep: 08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9080	50.2	mg/kg	08.24.2020 19:37		10

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-4 4'-4.5'

Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-013

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	12500	99.6	mg/kg	08.24.2020 19:44		20	-

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 0-1' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-014

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	6680	49.6	mg/kg	08.24.2020 20:03		10

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech: Analyst: DVM ARM

08.24.2020 13:00 Date Prep:

% Moisture:

Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	08.24.2020 23:36	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	08.24.2020 23:36	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	08.24.2020 23:36	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	08.24.2020 23:36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	121	%	70-130	08.24.2020 23:36		
o-Terphenyl		84-15-1	118	%	70-130	08.24.2020 23:36		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 0-1' Matrix:

Date Prep:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-014

Soil Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

% Moisture:

Tech: KTL

Analyst:

KTL

Analytical Method: BTEX by EPA 8021B

08.24.2020 13:00

Basis: Wet Weight

08.25.2020 01:42

Seq Number: 3135430

1,4-Difluorobenzene

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	08.25.2020 01:42	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	08.25.2020 01:42	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	107	%	70-130	08.25.2020 01:42		

100

%

70-130

540-36-3

Final 1.000

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 1'-1.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-015

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

Tech:

CHE

% Moisture:

CHE Analyst:

08.24.2020 16:05 Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	3610	25.0	mg/kg	08.24.2020 20:09		5	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 2'-2.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-016

Analytical Method: Chloride by EPA 300

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech: CHE % Moisture:

Date Prep: 08.24.2020 16:05 Basis:

Wet Weight

CHE Analyst: Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	4420	25.0	mg/kg	08.24.2020 20:15		5

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 3'-3.5' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-017

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	2090	25.3	mg/kg	08.24.2020 20:22		5

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-5 4'-4.5' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-018

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	139	5.03	mg/kg	08.24.2020 20:28		1	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-6 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-019

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

CHE

Analytical Method: Chloride by EPA 300

Wet Weight

Analyst:

CHE

Date Prep:

08.24.2020 16:05

Basis:

Seq Number: 3135420

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	51.4	4.97	mg/kg	08.24.2020 20:34		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

08.24.2020 13:00

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.24.2020 23:59	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	08.24.2020 23:59	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.24.2020 23:59	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.24.2020 23:59	U	1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	118	%	70-130	08.24.2020 23:59
o-Terphenyl	84-15-1	112	%	70-130	08.24.2020 23:59

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-6 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-019

Soil Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

% Moisture:

Tech:

KTL

Analytical Method: BTEX by EPA 8021B

Date Prep: 08.24.2020 13:00

Basis:

Wet Weight

KTL Analyst: Seq Number: 3135430

Parameter	Can Nameh	r Result	75.7				F11	75.11
rarameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.25.2020 02:02	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.25.2020 02:02	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	107	%	70-130	08.25.2020 02:02		
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.25.2020 02:02		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-6 1'-1.5' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670795-020

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst:

Date Prep:

08.24.2020 16:05

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	85.9	4.96	mg/kg	08.24.2020 20:41		1	

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-6 2'-2.5' Matrix:

Date Prep:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-021

Date Collected: 08.20.2020 00:00

Prep Method: E300P

SPC

% Moisture:

Tech:

SPC

Analytical Method: Chloride by EPA 300

08.24.2020 16:55

Basis:

Wet Weight

Analyst: Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	2100	24.8	mg/kg	08.24.2020 20:26		5

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-6 3'-3.5' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-022

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

Analyst:

SPC

Analytical Method: Chloride by EPA 300

% Moisture:

SPC

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	3700	24.9	mg/kg	08.24.2020 20:41		5

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-7 0-1' Matrix:

Date Prep:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-023

Soil Date Collected: 08.20.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

SPC

% Moisture:

Analyst:

SPC

08.24.2020 16:55

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	18.0	5.00	mg/kg	08.24.2020 20:47		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	08.25.2020 00:22	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	08.25.2020 00:22	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	08.25.2020 00:22	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	08.25.2020 00:22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	118	%	70-130	08.25.2020 00:22		
o-Terphenyl		84-15-1	115	%	70-130	08.25.2020 00:22		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-7 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-023

Soil Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

08.25.2020 02:22

Tech: KTL % Moisture:

KTL

Analyst:

Date Prep: 08.24.2020 13:00 Basis:

Wet Weight

Seq Number: 3135430

1,4-Difluorobenzene

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	08.25.2020 02:22	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 02:22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	106	%	70-130	08.25.2020 02:22		

101

%

70-130

540-36-3

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-7 1'-1.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-024

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

SPC Tech:

Analyst:

SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	21.7	4.96	mg/kg	08.24.2020 20:52		1	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-7 2'-2.5' Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-025

Date Collected: 08.20.2020 00:00

Prep Method: E300P

SPC Tech:

% Moisture:

SPC

Analyst:

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	441	4.96	mg/kg	08.24.2020 20:57		1	

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-7 3'-3.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-026

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

SPC

% Moisture:

Analyst:

SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	4190	25.2	mg/kg	08.24.2020 21:13		5

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-8 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-027

Soil Date Collected: 08.20.2020 00:00

08.24.2020 16:55

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

SPC

% Moisture:

SPC Analyst:

Date Prep:

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	17.2	4.99	mg/kg	08.24.2020 21:18		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.25.2020 00:44	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.25.2020 00:44	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.25.2020 00:44	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.25.2020 00:44	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	116	%	70-130	08.25.2020 00:44		
o-Terphenyl		84-15-1	113	%	70-130	08.25.2020 00:44		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-8 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-027

Soil Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

KTL

Analytical Method: BTEX by EPA 8021B

% Moisture:

Tech:

Analyst:

KTL

Date Prep: 08.24.2020 13:00

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.25.2020 02:43	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.25.2020 02:43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	08.25.2020 02:43		
4-Bromofluorobenzene		460-00-4	106	%	70-130	08.25.2020 02:43		

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-8 1'-1.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-028

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

SPC Tech:

Analytical Method: Chloride by EPA 300

% Moisture:

Analyst: Seq Number: 3135422

SPC

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	16.1	5.03	mg/kg	08.24.2020 21:24		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-8 2'-2.5'

Matrix:

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-029

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: SPC

Analyst:

SPC SPC

Analytical Method: Chloride by EPA 300

Date Prep:

08.24.2020 16:55

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	21.9	5.05	mg/kg	08.24.2020 21:29		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-8 3'-3.5'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-030

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: SPC

Analyst:

SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	34.2	4.98	mg/kg	08.24.2020 21:34		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 0-1' Matrix:

Result

17.9

Cas Number

16887-00-6

Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-031

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analysis Date

08.24.2020 21:39

% Moisture:

Tech:

Parameter

Chloride

SPC

RL

4.95

Basis:

Wet Weight

Analyst: Seq Number: 3135422

SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55

Units

mg/kg

Dil

1

Flag

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst:

ARM

08.24.2020 13:00 Date Prep:

Basis: Wet Weight

08.25.2020 01:07

08.25.2020 01:07

Seq Number: 3135481

1-Chlorooctane

o-Terphenyl

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	08.25.2020 01:07	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	08.25.2020 01:07	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	08.25.2020 01:07	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	08.25.2020 01:07	U	1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

119

110

%

%

70-130

70-130

111-85-3

84-15-1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 0-1' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-031

Soil Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

Analytical Method: BTEX by EPA 8021B

Tech: Analyst: KTL

% Moisture:

KTL

Date Prep:

08.24.2020 13:00

Basis:

Wet Weight

Seq Number: 3135430

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.25.2020 03:03	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 03:03	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	106	%	70-130	08.25.2020 03:03		
1,4-Difluorobenzene		540-36-3	100	%	70-130	08.25.2020 03:03		

Final 1.000

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 1'-1.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-032

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

SPC

Analytical Method: Chloride by EPA 300

Tech:

% Moisture:

Analyst:

SPC

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	23.9	4.96	mg/kg	08.24.2020 21:55		1	

Xenco

Certificate of Analytical Results 670795

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 2'-2.5'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-033

Date Collected: 08.20.2020 00:00

Prep Method: E300P

4.1

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: SPC SPC

Date Prep: 08.24.2020 16:55

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	42.3	5.03	mg/kg	08.24.2020 22:00		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 3'-3.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-034

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

SPC Tech:

% Moisture:

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

SPC Analyst: Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1030	4.97	mg/kg	08.24.2020 22:16		1

Tetra Tech- Midland, Midland, TX

Patron 23 #4H (8.08.19)

Sample Id: AH-9 4'-4.5' Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670795-035

Soil Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

SPC Tech:

Analyst:

SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	4530	24.9	mg/kg	08.24.2020 22:22		5	-

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit. ND Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 670795

Tetra Tech- Midland

Patron 23 #4H (8.08.19)

E300P Analytical Method: Chloride by EPA 300 Prep Method: Seq Number: 3135420 Matrix: Solid Date Prep: 08.24.2020 7710055-1-BLK LCS Sample Id: 7710055-1-BKS LCSD Sample Id: 7710055-1-BSD MB Sample Id: MB Spike LCS LCS %RPD RPD Units LCSD Limits Analysis LCSD Flag Parameter Result Amount Result %Rec Limit Date Result %Rec Chloride < 5.00 258 103 258 90-110 20 08.24.2020 17:07 250 103 0 mg/kg E300P Analytical Method: Chloride by EPA 300 Prep Method: Matrix: Solid 3135422 08.24.2020 Seq Number: Date Prep: LCS Sample Id: 7710063-1-BKS LCSD Sample Id: 7710063-1-BSD MB Sample Id: 7710063-1-BLK MB Spike LCS LCS Limits %RPD RPD Units Analysis LCSD LCSD Parameter Flag Result Amount Result %Rec Limit Date Result %Rec 08.24.2020 20:15 Chloride < 5.00 250 267 107 267 107 90-110 0 20 mg/kg E300P Analytical Method: Chloride by EPA 300 Prep Method: 3135420 08.24.2020 Seg Number: Matrix: Soil Date Prep: MS Sample Id: 670795-001 S MSD Sample Id: 670795-001 SD Parent Sample Id: 670795-001 RPD Parent Spike MS MS %RPD Units MSD MSD Limits Analysis Flag **Parameter** Result Result Limit Date %Rec Amount Result %Rec 08.24.2020 17:56 Chloride 363 249 611 100 606 98 90-110 20 mg/kg E300P Prep Method: Analytical Method: Chloride by EPA 300 Seq Number: 3135420 Matrix: Date Prep: 08.24.2020 Parent Sample Id: 670795-011 MS Sample Id: 670795-011 S MSD Sample Id: 670795-011 SD RPD Parent Spike MS MS MSD MSD Limits %RPD Units Analysis Flag Parameter Limit Result Amount Result %Rec %Rec Date Result 08.24.2020 19:25 Chloride 79 79 20 1190 252 1390 1390 90-110 0 mg/kg X E300P **Analytical Method:** Chloride by EPA 300 Prep Method: Seq Number: 3135422 Matrix: Soil 08.24.2020 Date Prep: Parent Sample Id: 670795-021 MS Sample Id: 670795-021 S MSD Sample Id: 670795-021 SD Parent Spike MS MS Limits %RPD RPD MSD Units Analysis MSD Flag **Parameter** Limit Result Amount Result %Rec %Rec Date Result 08.24.2020 20:31 Chloride 2100 1240 3410 106 3430 90-110 20 mg/kg E300P Analytical Method: Chloride by EPA 300 Prep Method: 08.24.2020 Seq Number: 3135422 Matrix: Soil Date Prep: MS Sample Id: 670795-031 S MSD Sample Id: 670795-031 SD 670795-031 Parent Sample Id: %RPD RPD **Parent** Spike MS MS MSD MSD Limits Units Analysis Flag Parameter Limit Date

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Chloride

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]

Amount

248

Result

17.9

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

Result

278

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

08.24.2020 21:45

%Rec

105

Result

280

%Rec

90-110

20

mg/kg

Flag

Flag

Flag

08.24.2020 15:57

o-Terphenyl

QC Summary 670795

Tetra Tech- Midland

Patron 23 #4H (8.08.19)

94

70-130

%

Analytical Method:TPH by SW8015 ModPrep Method:SW8015PSeq Number:3135481Matrix:SolidDate Prep:08.24.2020MB Sample Id:7710084-1-BLKLCS Sample Id:7710084-1-BKSLCSD Sample Id:7710084-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	I
Gasoline Range Hydrocarbons (GRO)	< 50.0	1000	912	91	905	91	70-130	1	20	mg/kg	08.24.2020 15:57	
Diesel Range Organics (DRO)	<50.0	1000	948	95	934	93	70-130	1	20	mg/kg	08.24.2020 15:57	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane	101		9	99		100	0	70)-130	%	08.24.2020 15:57	

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P

Seq Number: 3135481 Matrix: Solid Date Prep: 08.24.2020

95

MB Sample Id: 7710084-1-BLK

99

ParameterMB ResultUnits DateAnalysis DateFlagMotor Oil Range Hydrocarbons (MRO)<50.0</td>mg/kg08.24.2020 15:32

 Analytical Method:
 TPH by SW8015 Mod
 Prep Method:
 SW8015P

 Seq Number:
 3135481
 Matrix:
 Soil
 Date Prep:
 08.24.2020

 Parent Sample Id:
 670796-001
 MS Sample Id:
 670796-001 SD
 MSD Sample Id:
 670796-001 SD

MS MS %RPD RPD Parent Spike Limits Units Analysis MSD MSD Parameter Result Limit Date Result Amount %Rec Result %Rec 08.24.2020 17:23 Gasoline Range Hydrocarbons (GRO) <49.9 997 904 91 925 93 70-130 2 20 mg/kg Diesel Range Organics (DRO) <49.9 997 981 98 1030 103 70-130 5 20 mg/kg 08.24.2020 17:23

MS MSD MS MSD Limits Units Analysis Surrogate Flag Flag Date %Rec %Rec 08.24.2020 17:23 107 1-Chlorooctane 106 70-130 0/0 08.24.2020 17:23 o-Terphenyl 98 101 70-130 %

Analytical Method:BTEX by EPA 8021BPrep Method:SW5035ASeq Number:3135430Matrix:SolidDate Prep:08.24.2020MB Sample Id:7710090-1-BLKLCS Sample Id:7710090-1-BKSLCSD Sample Id:7710090-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	I
Benzene	< 0.00200	0.100	0.0970	97	0.104	104	70-130	7	35	mg/kg	08.24.2020 22:18	
Toluene	< 0.00200	0.100	0.0911	91	0.0961	96	70-130	5	35	mg/kg	08.24.2020 22:18	
Ethylbenzene	< 0.00200	0.100	0.0911	91	0.0971	97	70-130	6	35	mg/kg	08.24.2020 22:18	
m,p-Xylenes	< 0.00400	0.200	0.182	91	0.195	98	70-130	7	35	mg/kg	08.24.2020 22:18	
o-Xylene	< 0.00200	0.100	0.0883	88	0.0952	95	70-130	8	35	mg/kg	08.24.2020 22:18	

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	98		98		97		70-130	%	08.24.2020 22:18
4-Bromofluorobenzene	104		101		100		70-130	%	08.24.2020 22:18

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

[D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Flag

Flag

QC Summary 670795

Tetra Tech- Midland

Patron 23 #4H (8.08.19)

Analytical Method:	BTEX by EPA 8021B			Prep Method:	SW5035A
Seq Number:	3135427	Matrix:	Solid	Date Prep:	08.24.2020
MB Sample Id:	7710087-1-BLK	LCS Sample Id:	7710087-1-BKS	LCSD Sample Id:	7710087-1-BSD

into outilpie iui	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0920	92	0.0967	97	70-130	5	35	mg/kg	08.24.2020 14:38	
Toluene	< 0.00200	0.100	0.0887	89	0.0904	90	70-130	2	35	mg/kg	08.24.2020 14:38	
Ethylbenzene	< 0.00200	0.100	0.0930	93	0.0936	94	70-130	1	35	mg/kg	08.24.2020 14:38	
m,p-Xylenes	< 0.00400	0.200	0.190	95	0.190	95	70-130	0	35	mg/kg	08.24.2020 14:38	
o-Xylene	< 0.00200	0.100	0.0944	94	0.0945	95	70-130	0	35	mg/kg	08.24.2020 14:38	
Surrogate	MB %Rec	MB Flag	L0 %1		LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	e 98		9	7		99		70	-130	0/0	08.24.2020 14:38	
4-Bromofluorobenze	ene 91		1	14		113		70	-130	%	08.24.2020 14:38	

 Analytical Method:
 BTEX by EPA 8021B
 Prep Method:
 SW5035A

 Seq Number:
 3135430
 Matrix:
 Soil
 Date Prep:
 08.24.2020

 Parent Sample Id:
 670795-003
 MS Sample Id:
 670795-003 S
 MSD Sample Id:
 670795-003 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.0998	0.0840	84	0.0903	91	70-130	7	35	mg/kg	08.24.2020 22:59
Toluene	< 0.00200	0.0998	0.0777	78	0.0837	85	70-130	7	35	mg/kg	08.24.2020 22:59
Ethylbenzene	< 0.00200	0.0998	0.0754	76	0.0811	82	70-130	7	35	mg/kg	08.24.2020 22:59
m,p-Xylenes	< 0.00399	0.200	0.151	76	0.161	81	70-130	6	35	mg/kg	08.24.2020 22:59
o-Xylene	< 0.00200	0.0998	0.0729	73	0.0777	78	70-130	6	35	mg/kg	08.24.2020 22:59
			-	120					325		7.000

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	96		98		70-130	%	08.24.2020 22:59
4-Bromofluorobenzene	99		104		70-130	%	08.24.2020 22:59

 Analytical Method:
 BTEX by EPA 8021B
 Prep Method:
 SW5035A

 Seq Number:
 3135427
 Matrix:
 Soil
 Date Prep:
 08.24.2020

 Parent Sample Id:
 670796-001
 MS Sample Id:
 670796-001 SD
 MSD Sample Id:
 670796-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	
Benzene	< 0.00200	0.100	0.0885	89	0.0949	95	70-130	7	35	mg/kg	08.24.2020 15:20	
Toluene	< 0.00200	0.100	0.0777	78	0.0857	86	70-130	10	35	mg/kg	08.24.2020 15:20	
Ethylbenzene	< 0.00200	0.100	0.0767	77	0.0863	86	70-130	12	35	mg/kg	08.24.2020 15:20	
m,p-Xylenes	< 0.00400	0.200	0.150	75	0.172	86	70-130	14	35	mg/kg	08.24.2020 15:20	
o-Xylene	< 0.00200	0.100	0.0747	75	0.0852	85	70-130	13	35	mg/kg	08.24.2020 15:20	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	100		99		70-130	%	08.24.2020 15:20
4-Bromofluorobenzene	94		104		70-130	%	08.24.2020 15:20

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Released to Imaging: 2/9/2022 9:17:28 AM

Relinquished by: Project Name: **Analysis Request of Chain of Custody Record** Relinquished by: Receiving Laboratory: invoice to: Comments: county, state) Client Name oject Location CABUSE LAB # đ Xenco Eddy County, Texas Patron 23 #4H (8.08.19) Concho lke Tavarez Tetra Tech, Inc. SAMPLE IDENTIFICATION AH-6 1'-1.5' AH-5 1'-1.5' AH-4 4'-4.5' AH-4 3'-3.5' AH-5 4'-4.5' AH-5 3'-3.5' AH-5 2'-2.5' AH-4 2'-2.5' AH-5 0-1 AH-6 0-1 Date: I ime: Time: Time: ORIGINAL COPY 8/20/2020 8/20/2020 8/20/2020 Project #: Site Manager: Received by: 8/20/2020 8/20/2020 8/20/2020 8/20/2020 8/20/2020 8/20/2020 8/20/2020 EAR: 2020 DATE SAMPLING TIME WATER Mike Carmona MATRIX 900 West Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 SOIL × × × × × × × × Devin Dominguez 212C-MD-02295 × Date: HCL HNO₃ ICE × \times \times × × \times \times × × None # CONTAINERS z z FILTERED (Y/N) z z z z Z Z z Z BTEX 8021B BTEX 8260B × Circle) HAND DELIVERED ONLY ONLY TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) \times \times PAH 8270C (Circle or Specify Method No. Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles **ANALYSIS REQUEST** X RUSH: Same Day 24 hr 48 hr 22 hr TCLP Semi Volatiles Rush Charges Authorized FEDEX UPS JSpecial Report Limits or TRRP Report RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) × \times \times × × \times × \times Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R 2 약 Release 1 to Imaging: 2/9/2022 9 17:28 AM

Final 1.000

Relinquished by: Relinquished by: invoice to: (county, state) Project Name: Analysis Request of Chain of Custody Record Receiving Laboratory: Client Name: roject Location LAB USE LAB# đ Xenco Concho Eddy County, Texas Patron 23 #4H (8.08.19) ike Tavarez Tetra Tech, Inc. SAMPLE IDENTIFICATION AH-8 3'-3.5' AH-8 2'-2.5' AH-8 1'-1.5' AH-7 3'-3.5' AH-7 2'-2.5' AH-7 1'-1.5' AH-6 3'-3.5' AH-6 2'-2.5' AH-8 0-1' AH-7 0-1 Date: Time Time 8/20/2020 8/20/2020 Site Manager: ORIGINAL COPY 8/20/2020 8/20/2020 Sampler Signature Project #: 8/20/2020 8/20/2020 8/20/2020 8/20/2020 8/20/2020 8/20/2020 DATE SAMPLING TIME WATER Mike Carmona MATRIX 900 West Wall Street, Ste 1 Midland, Texas 79701 T∈I (432) 682-4559 Fax (432) 682-3946 SOIL × × × × × × × 212C-MD-02295 \times Devin Dominguez Date: HCL PRESERVATIVE METHOD HNO₃ ICE \times × \times Time: × \times None 100 # CONTAINERS z z z z FILTERED (Y/N) z z Z z BTEX 8260B BTEX 8021B (Circle) HAND DELIVERED FEDEX UPS Sample Temperature \times ONLY TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) × \times PAH 8270C (Circle or Specify Method No.) Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles ANALYSIS REQUEST X RUSH: Same Day 24 hr 48 hr 72 hr TCLP Semi Volatiles Rush Charges Authorized Special Report Limits or TRRP Report RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 Tracking #: NORM PLM (Asbestos) × × \times × Chloride TDS Chloride Sulfate General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R |ယ ရ Released to Imaging: 2/9/2022

Final 1.000

Relinquished by:

Date:

Time:

Received by:

Date:

Time:

6.6 M.2

Sample Temperature

ONLY ONLY

Date:

Time:

Relinquished by:

Relinquished by

Analysis Request of Chain of Custody Record

Invoice to:

(county, state)

Eddy County, Texas

Project #:

212C-MD-02295

Patron 23 #4H (8.08.19)

roject Location

Comments:

LABUSE LAB#

SAMPLE IDENTIFICATION

AH-9 4'-4.5' AH-9 3'-3.5' AH-9 2'-2.5' AH-9 1'-1.5' AH-9 0-1'

8/20/2020

× × × \times ×

× ×

Z z 8/20/2020

8/20/2020 8/20/2020

> × × ×

z

Z

8/20/2020

DATE

TIME

SOIL

HCL

HNO ICE

None

CONTAINERS

FILTERED (Y/N)

TPH TX1005 (Ext to C35)

BTEX 8021B

TCLP Volatiles

WATER

SAMPLING

MATRIX

PRESERVATIVE METHOD

BTEX 8260B

TPH 8015M (GRO - DRO - ORO - MRO)

Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg

Receiving Laboratory:

Xenco

Sampler Signature:

Devin Dominguez

lke Tavarez

Project Name:

Client Name:

Concho

Site Manager

Mike Carmona

900 West Wall Street, Ste 11 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

8

d

Tetra Tech, Inc.

SHOLM

Page

4 오

(Circle) HAND DELIVERED FEDEX UPS (Circle or Specify Method No.) ANALYSIS REQUEST X RUSH: Same Day 24 hr 48 hr 72 hr TCLP Semi Volatiles Special Report Limits or TRRP Report Rush Charges Authorized RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 Tracking #: NORM PLM (Asbestos) × × × Chloride TDS Chloride Sulfate General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R Hold Released to Imaging: 2/9/2022 Final 1.000

ORIGINAL COPY

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 08.24.2020 12.55.00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 670795

Temperature Measuring device used: IR-8

Sample Receipt Checklist	Comments
Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	No
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	N/A

Analyst:

PH Device/Lot#:

Checklist completed by:

#18 Water VOC samples have zero headspace?

Drianna Taal

Date: 08.24.2020

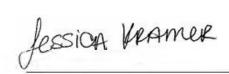
N/A

Checklist reviewed by:

fession Kramer

Jessica Kramer

Date: 08.25.2020

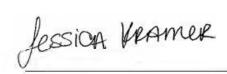

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Certificate of Analysis Summary 670796

eurofins Environi	/2020 12:07:41 PM				ate of A				•	70				Page 97
				P	roject Nar	ne: Pat	ron 23 #41	h (8.08.	19)					
Project Id: Contact: Project Location:	212CMD-02295 Mike Carmona Eddy County, Texas		Date Received in Lab: Mon 08.24.2020 12:55 Report Date: 08.25.2020 16:28 Project Manager: Jessica Kramer											
	Requested	Lab Id: Field Id: Depth: Matrix: Sampled:	670796-0 Horizontal-1 SOIL 08.20.2020	1 0-1'	670796-1 Horizontal-2 SOIL 08.20.2020	2 0-1'	670796-0 Horizontal-3 (SOIL 08.20.2020	0-1'	670796-0 Horizontal-4 SOIL 08.20.2020	0-1'	670796-0 Horizontal-5 SOIL 08.20.2020	0-1'	670796-0 Horizontal-6 (SOIL 08.20.2020	0-1'
BTEX	by EPA 8021B	Extracted: Analyzed: Units/RL:	08.24.2020 08.24.2020 mg/kg	1.55	08.24.2020 08.24.2020 mg/kg	21:48 RL	08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg	
Benzene			< 0.00200	0.00200	< 0.00199		<0.00199	0.00199	<0.00200	0.00200	<0.00198	0.00198	<0.00198	0.00198
Toluene			< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	<0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198
Ethylbenzene			< 0.00200	0.00200	< 0.00199	. 0.344.50	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198
m,p-Xylenes			< 0.00399	0.00399	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00399	0.00399	< 0.00397	0.00397	< 0.00397	0.00397
o-Xylene			< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198
Total Xylenes			< 0.00200	0.00200	< 0.00199		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198
Total BTEX			< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198
Chlorid	de by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 08.24.2020 mg/kg		08.24,2020 08.24,2020 mg/kg		08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg	90,89	08.24.2020 08.24.2020 mg/kg	0.200	08.24.2020 08.24.2020 mg/kg	
Chloride			15.9	4.97	9.01	4.98	14.8	4.99	10.4	4.96	9.20	5.03	8.71	5.02
TPH by	SW8015 Mod	Extracted: Analyzed: Units/RL:	08.24.2020 08.25.2020 mg/kg	7.54	08.24.2020 08.24.2020 mg/kg		08.24.2020 08.24.2020 mg/kg	1.00	08.24.2020 08.24.2020 mg/kg	200	08.24.2020 08.24.2020 mg/kg	1000	08.24.2020 08.24.2020 mg/kg	
Gasoline Range Hydr	rocarbons (GRO)	- Hills 2.00	<50.0	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8	<50.0	50.0	<49.9	49.9
Diesel Range Organic	14-14-14-14-14-14-14-14-14-14-14-14-14-1		<50.0	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8	<50.0	50.0	<49.9	49.9
			< 50.0	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	<49.9	49.9
Total TPH			<50.0	50.0	<50.0	50.0	<49.9	49.9	<49.8	49.8	<50.0	50.0	<49.9	49.9

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico



Certificate of Analysis Summary 670796

eurofins Environment Testing Xenco			ate of Analy etra Tech- Midl			Page 98				
		F	roject Name: Par	tron 23 #4h (8.08.	19)					
Project Id: 212CMD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas		Date Received in Lab: Mon 08.24.2020 12:55 Report Date: 08.25.2020 16:28 Project Manager: Jessica Kramer								
eurofins Environment Testing Project Id: 212CMD-02295 Contact: Mike Carmona Project Location: Eddy County, Texas Analysis Requested BTEX by EPA 8021B	Lab Id: Field Id: Depth: Matrix: Sampled:	670796-007 Horizontal-7 0-1' SOIL 08.20.2020 00:00	670796-008 Horizontal-8 0-1' SOIL 08.20.2020 00:00	670796-009 Horizontal-9 0-1' SOIL 08.20.2020 00:00	670796-010 Horizontal-10 0-1' SOIL 08.20.2020 00:00					
BTEX by EPA 8021B	Extracted: Analyzed: Units/RL:	08.24.2020 13:30 08.24.2020 23:30 mg/kg RL	08.24.2020 13:30 08.24.2020 23:51 mg/kg RL	08.24.2020 13:30 08.25.2020 00:11 mg/kg RL	08.24.2020 13:30 08.25.2020 00:32 mg/kg RL					
Benzene		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
Toluene		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
Ethylbenzene		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
m,p-Xylenes		<0.00398 0.00398	<0.00399 0.00399	<0.00400 0.00400	<0.00397 0.00397					
o-Xylene		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
Total Xylenes		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
Total BTEX		<0.00199 0.00199	<0.00200 0.00200	<0.00200 0.00200	<0.00198 0.00198					
Chloride by EPA 300	Extracted: Analyzed: Units/RL:	08.24.2020 15:50 08.24.2020 17:47 mg/kg RL	08.24.2020 15:50 08.24.2020 17:53 mg/kg RL	08.24.2020 15:50 08.24.2020 17:58 mg/kg RL	08.24.2020 15:50 08.24.2020 18:03 mg/kg RL					
Chloride		6.16 4.99	8.71 4.96	67.1 5.05	10.3 5.03					
TPH by SW8015 Mod	Extracted: Analyzed: Units/RL:	08.24.2020 13:00 08.24.2020 20:09 mg/kg RL	08.24.2020 13:00 08.24.2020 20:32 mg/kg RL	08.24.2020 13:00 08.24.2020 20:55 mg/kg RL	08.24.2020 13:00 08.24.2020 21:18 mg/kg RL					
Gasoline Range Hydrocarbons (GRO)	2.11.11.22	<50.0 50.0	<50.0 50.0	<49.9 49.9	<49.8 49.8					
Diesel Range Organics (DRO)		<50.0 50.0	<50.0 50.0	<49.9 49.9	<49.8 49.8					
Motor Oil Range Hydrocarbons (MRO)		<50.0 50.0	<50.0 50.0	<49.9 49.9	<49.8 49.8					

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Analytical Report 670796

for

Tetra Tech- Midland

Project Manager: Mike Carmona

Patron 23 #4h (8.08.19) 212CMD-02295 08.25.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-37), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8)
Xenco-Tampa: Florida (E87429), North Carolina (483)

08.25.2020

Project Manager: Mike Carmona Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): 670796

Patron 23 #4h (8.08.19)

Project Address: Eddy County, Texas

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 670796. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 670796 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 670796

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Date Collected San	mple Depth Lab Sample Id
08.20.2020 00:00	670796-001
08.20.2020 00:00	670796-002
08.20.2020 00:00	670796-003
08.20.2020 00:00	670796-004
08.20.2020 00:00	670796-005
08.20.2020 00:00	670796-006
08.20.2020 00:00	670796-007
08.20.2020 00:00	670796-008
08.20.2020 00:00	670796-009
08.20.2020 00:00	670796-010
	08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00 08.20.2020 00:00

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Patron 23 #4h (8.08.19)

Project ID: 212CMD-02295

Work Order Number(s): 670796

Environment Testing

Report Date: 08.25.2020 Date Received: 08.24.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-1 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-001

Date Collected: 08.20.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

SPC

% Moisture:

Analyst:

SPC

08.24.2020 16:55

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	15.9	4.97	mg/kg	08.24.2020 22:27		1

Date Prep:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM

o-Terphenyl

Date Prep: 08.24.2020 13:00 Basis: Wet Weight

08.25.2020 01:30

Seq Number: 3135481

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.25.2020 01:30	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.25.2020 01:30	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.25.2020 01:30	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.25.2020 01:30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	111	%	70-130	08.25.2020 01:30		

111

%

70-130

84-15-1

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-1 0-1'

Soil Matrix:

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-001

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

KTL

% Moisture:

Tech: KTL Analyst:

Date Prep: 08.24.2020 13:30 Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.24.2020 17:03	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.24.2020 17:03	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	99	%	70-130	08.24.2020 17:03		
4-Bromofluorobenzene		460-00-4	93	%	70-130	08.24.2020 17:03		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-2 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-002

Date Collected: 08.20.2020 00:00

08.24.2020 16:55

Analytical Method: Chloride by EPA 300

Prep Method: E300P

SPC Tech:

Date Prep:

% Moisture:

Analyst:

SPC

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.01	4.98	mg/kg	08.24.2020 22:32		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00 Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.24.2020 18:11	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.24.2020 18:11	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.24.2020 18:11	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.24.2020 18:11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	112	%	70-130	08.24.2020 18:11		
o-Terphenyl		84-15-1	98	%	70-130	08.24.2020 18:11		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-2 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-002

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

Date Prep: 08.24.2020 13:30 Basis:

Wet Weight

KTL Analyst: Seq Number: 3135427

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.24.2020 21:48	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.24.2020 21:48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.24.2020 21:48		
4-Bromofluorobenzene		460-00-4	110	%	70-130	08.24.2020 21:48		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-3 0-1'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-003

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Sl

Analyst:

SPC SPC

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 16:55

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	14.8	4.99	mg/kg	08.24.2020 22:37		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	08.24.2020 18:35	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	08.24.2020 18:35	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	08.24.2020 18:35	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	08.24.2020 18:35	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	120	%	70-130	08.24.2020 18:35
o-Terphenyl	84-15-1	106	%	70-130	08.24.2020 18:35

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-3 0-1'

KTL

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-003

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

KTL

% Moisture:

Tech: KTI

Analyst:

Date Prep:

08.24.2020 13:30

Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.24.2020 22:09	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.24.2020 22:09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	107	%	70-130	08.24.2020 22:09		
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.24.2020 22:09		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-4 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-004

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech: Analyst: SPC

Analytical Method: Chloride by EPA 300

% Moisture:

SPC

08.24.2020 16:55

Basis:

Wet Weight

Seq Number: 3135422

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.4	4.96	mg/kg	08.24.2020 22:43		1

Date Prep:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	08.24.2020 18:59	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	08.24.2020 18:59	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	08.24.2020 18:59	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	08.24.2020 18:59	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	113	%	70-130	08.24.2020 18:59		
o-Terphenyl		84-15-1	101	%	70-130	08.24.2020 18:59		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-4 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-004

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL

% Moisture:

Analyst:

KTL

Date Prep: 08.24.2020 13:30 Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.24.2020 22:29	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.24.2020 22:29	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.24.2020 22:29		
4-Bromofluorobenzene		460-00-4	123	%	70-130	08.24.2020 22:29		

Xenco

Certificate of Analytical Results 670796

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-5 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-005

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

SPC

Analytical Method: Chloride by EPA 300

Wet Weight

Analyst:

SPC Seq Number: 3135422

Date Prep:

08.24.2020 16:55

Basis:

Parameter

Cas Number Chloride 16887-00-6

Result RL 9.20 5.03

Units **Analysis Date** mg/kg 08.24.2020 22:48 Flag Dil 1

Flag

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0	mg/kg	08.24.2020 19:23	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0	mg/kg	08.24.2020 19:23	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0	mg/kg	08.24.2020 19:23	U	1
Total TPH	PHC635	<50.0	50.0	mg/kg	08.24.2020 19:23	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	109	%	70-130	08.24.2020 19:23
o-Terphenyl	84-15-1	93	%	70-130	08.24.2020 19;23

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-5 0-1'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-005

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL

70

% Moisture:

Analyst: KTL

Date Prep:

08.24.2020 13:30

Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	08.24.2020 22:50	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	08.24.2020 22:50	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	08.24.2020 22:50		
4-Bromofluorobenzene		460-00-4	107	%	70-130	08.24.2020 22:50		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-6 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-006

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Tech:

Analytical Method: Chloride by EPA 300

% Moisture:

CHE CHE

08.24.2020 15:50

Basis:

Wet Weight

Analyst:

Seq Number: 3135418

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	8.71	5.02	mg/kg	08.24.2020 17:32		1

Date Prep:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech: Analyst: DVM ARM

% Moisture:

Date Prep: 08.24.2020 13:00 Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	08.24.2020 19:46	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	08.24.2020 19:46	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	08.24.2020 19:46	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	08.24.2020 19:46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	114	%	70-130	08.24.2020 19:46		
o-Terphenyl		84-15-1	100	%	70-130	08.24.2020 19:46		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-6 0-1'

Analytical Method: BTEX by EPA 8021B

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-006

Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

08.24.2020 13:30

% Moisture:

Tech: KTL

Analyst:

KTL Date Prep:

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	08.24.2020 23:10	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	08.24.2020 23:10	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	117	%	70-130	08.24.2020 23:10		
1,4-Difluorobenzene		540-36-3	106	%	70-130	08.24.2020 23:10		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-7 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-007

Date Collected: 08.20.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

Tech:

CHE

% Moisture:

Analyst:

CHE

Date Prep: 08.24.2020 15:50 Basis:

Wet Weight

Seq Number: 3135418

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	6.16	4.99	mg/kg	08.24.2020 17:47		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM Date Prep: 08.24.2020 13:00 Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.24.2020 20:09	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.24.2020 20:09	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.24.2020 20:09	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.24.2020 20:09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	115	%	70-130	08.24.2020 20:09		
o-Terphenyl		84-15-1	101	%	70-130	08.24.2020 20:09		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-7 0-1'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-007

Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

% Moisture:

Tech: KTI

KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep: 08.24.2020 13:30

Basis:

Wet Weight

Analyst: KTL Seq Number: 3135427

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199			mg/kg	08.24.2020 23:30	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.24.2020 23:30	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.24.2020 23:30	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.24.2020 23:30	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.24.2020 23:30	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.24.2020 23:30	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.24.2020 23:30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	107	%	70-130	08.24.2020 23:30		
4-Bromofluorobenzene		460-00-4	114	%	70-130	08.24.2020 23:30		

Xenco

Certificate of Analytical Results 670796

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-8 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-008

Date Collected: 08.20.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

CHE

Basis:

Wet Weight

Analyst: Seq Number: 3135418

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.24.2020 15:50

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	8.71	4.96	mg/kg	08.24.2020 17:53		1	

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

DVM

% Moisture:

Analyst: ARM

Tech:

Date Prep: 08.24.2020 13:00

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.24.2020 20:32	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.24.2020 20:32	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.24.2020 20:32	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.24.2020 20:32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	110	%	70-130	08.24.2020 20:32		
o-Terphenyl		84-15-1	104	%	70-130	08.24.2020 20:32		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-8 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-008

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech:

KTL

% Moisture:

KTL Analyst:

Date Prep:

08.24.2020 13:30

Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.24.2020 23:51	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.24.2020 23:51	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	111	%	70-130	08.24.2020 23:51		
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.24.2020 23:51		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-9 0-1'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-009

Date Collected: 08.20.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

CHE

% Moisture:

Analyst: CHE

Date Prep: 08.24.2020 15:50

Basis:

Wet Weight

Seq Number: 3135418

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	67.1	5.05	mg/kg	08.24.2020 17:58		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM

Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	08.24.2020 20:55	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	08.24.2020 20:55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	08.24.2020 20:55	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	08.24.2020 20:55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	109	%	70-130	08.24.2020 20:55		
o-Terphenyl		84-15-1	102	%	70-130	08.24.2020 20:55		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-9 0-1' Matrix: Soil Date Received:08.24.2020 12:55

Lab Sample Id: 670796-009

Date Collected: 08.20.2020 00:00

Prep Method: SW5035A

Tech:

KTL

Analytical Method: BTEX by EPA 8021B

% Moisture:

Analyst:

KTL

Date Prep: 08.24.2020 13:30 Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	08.25.2020 00:11	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.25.2020 00:11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	107	%	70-130	08.25.2020 00:11		
4-Bromofluorobenzene		460-00-4	113	%	70-130	08.25.2020 00:11		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-10 0-1'

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-010

Date Collected: 08.20.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

CHE

% Moisture:

Analyst: CHE

Date Prep: 08.24.2020 15:50

Basis:

Wet Weight

Seq Number: 3135418

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.3	5.03	mg/kg	08.24.2020 18:03		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Analyst: ARM

Date Prep: 08.24.2020 13:00

Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	08.24.2020 21:18	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	08.24.2020 21:18	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	08.24.2020 21:18	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	08.24.2020 21:18	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	112	%	70-130	08.24.2020 21:18		
o-Terphenyl		84-15-1	100	%	70-130	08.24.2020 21:18		

Tetra Tech- Midland, Midland, TX

Patron 23 #4h (8.08.19)

Sample Id: Horizontal-10 0-1'

KTL

Matrix: Soil

Date Received:08.24.2020 12:55

Lab Sample Id: 670796-010

Date Collected: 08.20.2020 00:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

08.24.2020 13:30

% Moisture:

Tech: KTL

Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	08.25.2020 00:32	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	08.25.2020 00:32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	112	%	70-130	08.25.2020 00:32		
1,4-Difluorobenzene		540-36-3	105	%	70-130	08.25.2020 00:32		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit. ND Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Flag

670796 **QC Summary**

Tetra Tech- Midland

Patron 23 #4h (8.08.19)

E300P Analytical Method: Chloride by EPA 300 Prep Method: Seq Number: 3135418 Matrix: Solid Date Prep: 08.24.2020 7710057-1-BLK LCS Sample Id: 7710057-1-BKS LCSD Sample Id: 7710057-1-BSD MB Sample Id:

MB Spike LCS LCS %RPD RPD Units LCSD Limits Analysis LCSD Flag Parameter Result Amount Result %Rec Limit Date Result %Rec Chloride < 5.00 267 107 268 90-110 20 08.24.2020 17:21 250 107 0 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Matrix: Solid 3135422 08.24.2020 Seq Number: Date Prep: LCS Sample Id: 7710063-1-BKS LCSD Sample Id: 7710063-1-BSD MB Sample Id: 7710063-1-BLK

MB Spike LCS LCS Limits %RPD RPD Units Analysis LCSD LCSD Parameter Flag Result Amount Result %Rec Limit Date Result %Rec 08.24.2020 20:15 Chloride < 5.00 250 267 107 267 107 90-110 0 20 mg/kg

Analytical Method: Chloride by EPA 300

Prep Method: E300P 3135418 08.24.2020 Seg Number: Matrix: Soil Date Prep: MS Sample Id: 670796-006 S MSD Sample Id: 670796-006 SD Parent Sample Id: 670796-006

RPD **Parent** Spike MS MS %RPD Units MSD MSD Limits Analysis **Parameter** Result Result Limit Date %Rec Amount Result %Rec 08.24.2020 17:37 20 Chloride 8.71 251 275 106 274 106 90-110 0 mg/kg

Analytical Method: Chloride by EPA 300

Prep Method: E300P Seq Number: 3135418 Matrix: Soil Date Prep: 08.24.2020 Parent Sample Id: 670814-007 MS Sample Id: 670814-007 S MSD Sample Id: 670814-007 SD

RPD Parent Spike MS MS MSD MSD Limits %RPD Analysis Flag Parameter Limit Result Amount Result %Rec Result %Rec Date 08.24.2020 18:51 Chloride 957 93 954 92 90-110 20 724 251 0 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3135422 Matrix: Soil 08.24.2020 Date Prep: Parent Sample Id: 670795-021 MS Sample Id: 670795-021 S MSD Sample Id: 670795-021 SD

Parent Spike MS MS Limits %RPD RPD MSD Units Analysis MSD Flag **Parameter** Limit Result Amount Result %Rec %Rec Date Result 08.24.2020 20:31 Chloride 2100 1240 3410 106 3430 90-110 20 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: 08.24.2020 Seq Number: 3135422 Matrix: Soil Date Prep: MS Sample Id: 670795-031 S MSD Sample Id: 670795-031 SD 670795-031 Parent Sample Id:

%RPD RPD **Parent** Spike MS MS MSD MSD Limits Units Analysis Flag Parameter Result Limit Date Amount Result %Rec Result %Rec 08.24.2020 21:45 Chloride 278 105 20 17.9 248 280 90-110 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Flag

Flag

Flag

QC Summary 670796

Tetra Tech- Midland

Patron 23 #4h (8.08.19)

SW8015P Analytical Method: TPH by SW8015 Mod Prep Method: Seq Number: 3135481 Matrix: Solid Date Prep: 08.24.2020 LCS Sample Id: 7710084-1-BKS LCSD Sample Id: 7710084-1-BSD MB Sample Id: 7710084-1-BLK

MB Spike LCS LCS %RPD RPD Units Analysis Limits LCSD LCSD Parameter Result Amount Result %Rec Limit Date Result %Rec Gasoline Range Hydrocarbons (GRO) <50.0 1000 912 91 905 91 20 08.24.2020 15:57 70-130 1 mg/kg 08.24.2020 15:57 95 934 70-130 Diesel Range Organics (DRO) 1000 948 93 20 mg/kg <50.0 Analysis MB MB LCS LCS LCSD Limits Units LCSD Surrogate Flag Date %Rec Flag %Rec %Rec Flag

08.24.2020 15:57 1-Chlorooctane 101 99 100 70-130 % 08.24.2020 15:57 o-Terphenyl 99 95 94 70-130 %

Analytical Method: TPH by SW8015 Mod

SW8015P Prep Method: 3135481 Matrix: Solid Sea Number: Date Prep: 08.24.2020

MB Sample Id: 7710084-1-BLK

MB Units Analysis **Parameter** Flag Result Date 08.24.2020 15:32 Motor Oil Range Hydrocarbons (MRO) <50.0 mg/kg

Analytical Method: TPH by SW8015 Mod SW8015P Prep Method: 3135481 Seq Number: Matrix: Soil Date Prep: 08.24.2020 Parent Sample Id: 670796-001 MS Sample Id: 670796-001 S MSD Sample Id: 670796-001 SD

Spike MS MS %RPD RPD Parent Limits Units Analysis MSD MSD Parameter Limit Result Amount Result %Rec Result %Rec Date 08.24.2020 17:23 Gasoline Range Hydrocarbons (GRO) <49.9 997 904 91 925 93 70-130 2 20 mg/kg Diesel Range Organics (DRO) <49.9 997 981 98 1030 103 70-130 5 20 mg/kg 08.24.2020 17:23

MS MSD MS MSD Limits Units Analysis Surrogate Flag Flag Date %Rec %Rec 08.24.2020 17:23 1-Chlorooctane 106 107 70-130 0/0 08.24.2020 17:23 o-Terphenyl 98 101 70-130 0/0

SW5035A Analytical Method: BTEX by EPA 8021B Prep Method: 3135427 Matrix: Solid Seq Number: Date Prep: 08.24.2020 LCS Sample Id: 7710087-1-BKS LCSD Sample Id: 7710087-1-BSD MB Sample Id: 7710087-1-BLK

RPD LCS LCS Limits %RPD MB Spike Units LCSD LCSD Analysis Parameter Result Amount Result %Rec %Rec Limit Date Result 08.24.2020 14:38 0.0920 92 0.0967 70-130 5 35 Benzene < 0.00200 0.100 97 mg/kg mg/kg 08.24.2020 14:38 Toluene < 0.00200 0.100 0.0887 89 0.0904 90 70-130 2 35 08.24.2020 14:38 93 Ethylbenzene < 0.00200 0.100 0.0930 0.0936 94 70-130 1 35 mg/kg 08.24.2020 14:38 m,p-Xylenes < 0.00400 0.200 0.190 95 0.190 95 70-130 0 35 mg/kg 08.24.2020 14:38 o-Xylene < 0.00200 0.100 0.0944 94 0.0945 95 70-130 0 35 mg/kg

Limits MB LCS LCS LCSD Units MB LCSD Analysis Surrogate %Rec Flag Flag %Rec Flag Date %Rec 08.24.2020 14:38 1.4-Difluorobenzene 98 97 99 70-130 % 08.24.2020 14:38 4-Bromofluorobenzene 91 114 113 70-130 0/0

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

08.24.2020 15:20

4-Bromofluorobenzene

QC Summary 670796

Tetra Tech- Midland

Patron 23 #4h (8.08.19)

104

70-130

%

 Analytical Method:
 BTEX by EPA 8021B
 Prep Method:
 SW5035A

 Seq Number:
 3135427
 Matrix:
 Soil
 Date Prep:
 08.24.2020

 Parent Sample Id:
 670796-001
 MS Sample Id:
 670796-001 S
 MSD Sample Id:
 670796-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0885	89	0.0949	95	70-130	7	35	mg/kg	08.24.2020 15:20	
Toluene	< 0.00200	0.100	0.0777	78	0.0857	86	70-130	10	35	mg/kg	08.24.2020 15:20	
Ethylbenzene	< 0.00200	0.100	0.0767	77	0.0863	86	70-130	12	35	mg/kg	08.24.2020 15:20	
m,p-Xylenes	< 0.00400	0.200	0.150	75	0.172	86	70-130	14	35	mg/kg	08.24.2020 15:20	
o-Xylene	< 0.00200	0.100	0.0747	75	0.0852	85	70-130	13	35	mg/kg	08.24.2020 15:20	
Surrogate					MS Flag	MSI %Re	200		imits	Units	Analysis Date	
1,4-Difluorobenzene			1	00		99		70	-130	0/0	08.24.2020 15:20	

94

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 08.24.2020 12.55.00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 670796

Temperature Measuring device used: IR-8

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	2.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#: IR-

Checklist completed by:

Drianna Taal

Date: 08.24.2020

Checklist reviewed by:

lession Kramer

Jessica Kramer

Date: 08.25.2020

eurofins Environ	5/2020 12:07:41 PM		16.03		etra Tech				у 6720 гх					
				Pr	oject Nam	e: Patr	on 23 Fed	#4 (8.8	.19)					
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM										in Lab: Tue t Date: 09.1 anager: Jess		2:03	
Analysis	Requested	Lab Id: Field Id: Depth:	672000-0 Trench #1 (672000-0 Trench #1	3.5	672000-00 Trench #2 (0-		672000-0 Trench #2 (1.		672000-0 Trench #3 (0-	3.0	672000-00 Trench #3 (
1 22		Matrix: Sampled:	SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020 0	
Chlorid	de by EPA 300	Extracted: Analyzed:	09.08.2020 09.08.2020	2.72.	09.08.2020 09.08.2020		09.08.2020 09.08.2020	2000	09.08.2020 09.08.2020	3.27	09.08.2020 09.08.2020	2 34 4 4 1	09.08.2020 1 09.08.2020 2	
Chloride		Units/RL:	mg/kg 1260	RL 4.99	mg/kg 1900	RL 24.8	mg/kg 1220	RL 5.04	mg/kg 1430	RL 25.0	mg/kg 21.5	RL 5.02	mg/kg 20.3	RL 4.97

BRL - Below Reporting Limit

eurofins Environ	/2020 12:07:41 PM		10.3		ate of A									
				Pr	oject Nam	e: Patr	on 23 Fed	#4 (8.8	.19)					
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM										in Lab: Tue it Date: 09.1 anager: Jess		2:03	
Analysis	Requested	Lab Id: Field Id: Depth:	672000-0 Trench #3		672000-0 Trench #3		672000-00 Trench #4 (0-	2.3	672000-0 Trench #4 (70	672000-0 Trench #4 (23,	672000-0 Trench #4 (3	
		Matrix: Sampled:	SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020 (Sec. 1	SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020 0	
Chlorid	le by EPA 300	Extracted: Analyzed:	09.08.2020 09.08.2020	2752	09.08.2020 09.08.2020		09.08.2020 1 09.08.2020 2		09.08.2020 09.08.2020	2327	09.08.2020 09.08.2020	. 54.67	09.08.2020 1 09.08.2020 2	
		Units/RL:	mg/kg 4220	RL 25.0	mg/kg 4350	RL 25.0	mg/kg 43.8	RL 4.97	mg/kg 19.7	RL 4.96	mg/kg 22.2	RL 5.03	mg/kg	RL 4.97

BRL - Below Reporting Limit

eurofins Environ Xenco	nment Testing				etra Tech				у 6720 гх					
				Pr	oject Nam	e: Patr	on 23 Fed	#4 (8.8	.19)					
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM										in Lab: Tue t Date: 09.1 anager: Jess		2:03	
Analysis	Requested	Lab Id: Field Id: Depth:	672000-0 Trench #4		672000-0 Trench #4	1.0	672000-0 Trench #4 (1.50	672000-0 Trench #5 (0-		672000-0 Trench #5 (324	672000-0 Trench #5 (7.7
		Matrix: Sampled:	SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020	
Chloric	de by EPA 300	Extracted: Analyzed:	09.08.2020 09.08.2020	25-25	09.08.2020 09.08.2020		09.08.2020 09.08.2020		09.08.2020 09.08.2020	3.277	09.08.2020 09.08.2020		09.08.2020 09.08.2020	
		Units/RL:	mg/kg 7400	RL 49.8	mg/kg 10100	RL 50.5	mg/kg 9130	RL 50.5	mg/kg 1010	RL 5.05	mg/kg 1130	RL 4.96	mg/kg 1290	RL 25.0

BRL - Below Reporting Limit

eurofins Environ	7/2020 12:07:41 PM				te of A	-								
				Pro	ject Name	: Patr	on 23 Fed	#4 (8.8	.19)					
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM										t Date: 09.1 anager: Jess		2:03	
Analysis	Requested	Lab Id: Field Id: Depth: Matrix: Sampled:	672000-019 Trench #5 (3.5') SOIL 09.03.2020 00:0		672000-02 Trench #6 (0- SOIL 09.03.2020 0	-1')	672000-03 Trench #6 (SOIL 09.03.2020 0	1')	672000-0 Trench #6 SOIL 09.03.2020	(2')	672000-0 Trench #6 (SOIL 09.03.2020	(3')	672000-0 Trench #6 (SOIL 09.03.2020	4')
Chlorid	de by EPA 300	Extracted: Analyzed: Units/RL:	09.08.2020 16:5 09.08.2020 22:0 mg/kg		09.09.2020 1 09.09.2020 2 mg/kg	58.5	09.09.2020 09.09.2020 mg/kg	3.5	09.09.2020 09.09.2020 mg/kg		09.09.2020 09.09.2020 mg/kg		09.09.2020 09.09.2020 mg/kg	

BRL - Below Reporting Limit

eurofins Environ	7/2020 12:07:41 PM			cate of Analy Tetra Tech- Mid				
			I	Project Name: Pat	ron 23 Fed #4 (8.8	.19)		
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM						t Date: 09.10.2020 1 anager: Jessica Kram	12:03
Analysis	Requested	Lab Id: Field Id: Depth:	672000-025 Trench #6 (5')	672000-026 Trench #6 (6')	672000-027 Trench #6 (7')	672000-028 Trench #6 (8')	672000-029 Trench #6 (9')	672000-030 Trench #6 (10')
		Matrix: Sampled:	SOIL 09.03.2020 00:00	SOIL 09.03.2020 00:00				
Chloric	de by EPA 300	Extracted: Analyzed:	09.09.2020 15:45 09.09.2020 21:23	09.09.2020 15:45 09.09.2020 21:28	09.09.2020 15:45 09.09.2020 21:33	09.09.2020 15:45 09.09.2020 21:39	09.09.2020 15:45 09.09.2020 21:44	09.09.2020 15:45 09.09.2020 21:49
		Units/RL:	mg/kg RL	mg/kg RL				

BRL - Below Reporting Limit

eurofins Environm	2020 12:07:41 PM				ate of A etra Tech									
				Pr	oject Name	e: Patr	on 23 Fed	#4 (8.8.	.19)					
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM										in Lab: Tue t Date: 09.1 anager: Jess		2:03	
Analysis I	Requested	Lab Id: Field Id: Depth:	672000-0 Trench #6		672000-0 Trench #6		672000-03 Trench #7 (0-		672000-0 Trench #7 (672000-0 Trench #7 (672000-0 Trench #7 (
		Matrix: Sampled:	SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020		SOIL 09.03.2020	
Chloride	e by EPA 300	Extracted: Analyzed:	09.09.2020 09.09.2020	22:05	09.09.2020	22:10	09.09.2020	22:26	09.09.2020	22:31	09.09.2020 09.09.2020	22:37	09.09.2020	22:42
Chloride		Units/RL:	mg/kg 130	RL 5.03	mg/kg 124	RL 4.99	mg/kg 61.6	RL 4.97	mg/kg 58.4	RL 5.00	mg/kg 73.3	RL 4.96	mg/kg 344	RL 5.05

BRL - Below Reporting Limit

eurofins Environ Xenco	nment Testing			ate of Analy etra Tech- Midl				
			Pr	oject Name: Patr	on 23 Fed #4 (8.8	.19)		
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM						t Date: 09.10.2020 1 nnager: Jessica Kram	2:03
Analysis	Requested	Lab Id: Field Id: Depth:	672000-037 Trench #7 (4')	672000-038 Trench #7 (5')	672000-039 Trench #7 (6')	672000-040 Trench #7 (7')	672000-041 Trench #7 (8')	672000-042 Trench #7 (9')
1.22		Matrix: Sampled:	SOIL 09.03.2020 00:00	SOIL 09.03.2020 00:00				
Chloric	de by EPA 300	Extracted: Analyzed:	09.09.2020 15:45 09.09.2020 22:47	09.09.2020 15:45 09.09.2020 22:53	09.09.2020 15:45 09.09.2020 22:58	09.09.2020 15:30 09.09.2020 18:58	09.09.2020 15:30 09.09.2020 19:04	09.09.2020 15:30 09.09.2020 19:23
Chloride		Units/RL:	mg/kg RL 2690 25.3	mg/kg RL 8340 49.8	mg/kg RL 1830 25.0	mg/kg RL 6400 49.8	mg/kg RL 2740 24.8	mg/kg RL 206 4.96

BRL - Below Reporting Limit

eurofine	5/2020 12:07:41 PM			nalysis Summary Midland, Midland, TX		
			Project Name	: Patron 23 Fed #4 (8.8.1	9)	
Project Id: Contact: Project Location:	212C-MD-02295 Mike Carmona Eddy Co, NM					Tue 09.08.2020 14:20 09.10.2020 12:03 Jessica Kramer
Analysis	Requested	Lab Id: Field Id: Depth: Matrix: Sampled:	672000-043 Trench #7 (10') SOIL 09.03.2020 00:00			
Chlorie	de by EPA 300	Extracted: Analyzed: Units/RL:	09.09,2020 15:30 09.09.2020 19:30 mg/kg RL			

BRL - Below Reporting Limit

Analytical Report 672000

for

Tetra Tech- Midland

Project Manager: Mike Carmona

Patron 23 Fed #4 (8.8.19) 212C-MD-02295 09.10.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8)
Xenco-Tampa: Florida (E87429), North Carolina (483)

09.10.2020

Project Manager: Mike Carmona Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): 672000

Patron 23 Fed #4 (8.8.19) Project Address: Eddy Co, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672000. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672000 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Vramer

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 672000

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Trench #1 (0-1')	S	09.03.2020 00:00		672000-001
Trench #1 (1.5')	S	09.03.2020 00:00		672000-002
Trench #2 (0-1')	S	09.03.2020 00:00		672000-003
Trench #2 (1.5')	S	09.03.2020 00:00		672000-004
Trench #3 (0-1')	S	09.03.2020 00:00		672000-005
Trench #3 (1')	S	09.03.2020 00:00		672000-006
Trench #3 (2')	S	09.03.2020 00:00		672000-007
Trench #3 (3')	S	09.03.2020 00:00		672000-008
Trench #4 (0-1')	S	09.03.2020 00:00		672000-009
Trench #4 (1')	S	09.03.2020 00:00		672000-010
Trench #4 (2')	S	09.03.2020 00:00		672000-011
Trench #4 (3')	S	09.03.2020 00:00		672000-012
Trench #4 (4')	S	09.03.2020 00:00		672000-013
Trench #4 (5')	S	09.03.2020 00:00		672000-014
Trench #4 (6')	S	09.03.2020 00:00		672000-015
Trench #5 (0-1')	S	09.03.2020 00:00		672000-016
Trench #5 (1')	S	09.03.2020 00:00		672000-017
Trench #5 (2')	S	09.03.2020 00:00		672000-018
Trench #5 (3.5')	S	09.03.2020 00:00		672000-019
Trench #6 (0-1')	S	09.03.2020 00:00		672000-020
Trench #6 (1')	S	09.03.2020 00:00		672000-021
Trench #6 (2')	S	09.03.2020 00:00		672000-022
Trench #6 (3')	S	09.03.2020 00:00		672000-023
Trench #6 (4')	S	09.03.2020 00:00		672000-024
Trench #6 (5')	S	09.03.2020 00:00		672000-025
Trench #6 (6')	S	09.03.2020 00:00		672000-026
Trench #6 (7')	S	09.03.2020 00:00		672000-027
Trench #6 (8')	S	09.03.2020 00:00		672000-028
Trench #6 (9')	S	09.03.2020 00:00		672000-029
Trench #6 (10')	S	09.03.2020 00:00		672000-030
Trench #6(11')	S	09.03.2020 00:00		672000-031
Trench #6 (12')	S	09.03.2020 00:00		672000-032
Trench #7 (0-1')	S	09.03.2020 00:00		672000-033
Trench #7 (1')	S	09.03.2020 00:00		672000-034
Trench #7 (2')	S	09.03.2020 00:00		672000-035
Trench #7 (3')	S	09.03.2020 00:00		672000-036
Trench #7 (4')	S	09,03,2020 00:00		672000-037
Trench #7 (5')	S	09.03.2020 00:00		672000-038
Trench #7 (6')	S	09.03.2020 00:00		672000-039
Trench #7 (7')	S	09.03.2020 00:00		672000-040
Trench #7 (8')	S	09.03.2020 00:00		672000-041
Trench #7 (9')	S	09.03.2020 00:00		672000-042
Trench #7 (10')	S	09.03.2020 00:00		672000-043

Page 169 of 260

09.10.2020

CASE NARRATIVE

eurofins 💸 **Environment Testing**

> Client Name: Tetra Tech- Midland Project Name: Patron 23 Fed #4 (8.8.19)

Project ID: 212C-MD-02295

Report Date: Work Order Number(s): 672000 Date Received: 09.08.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3136753 Chloride by EPA 300

Lab Sample ID 672000-030 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 672000-020, -021, -022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -039.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #1 (0-1')

CHE

Analytical Method: Chloride by EPA 300

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-001

Date Collected: 09.03.2020 00:00

Prep Method: E300P

.

% Moisture:

Tech: CHE

Analyst:

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1260	4.99	mg/kg	09.08.2020 20:03		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #1 (1.5')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-002

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: C

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	1900	24.8	mg/kg	09.08.2020 20:08		5	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #2 (0-1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-003

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	1220	5.04	mg/kg	09.08.2020 20:13		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #2 (1.5')

CHE

CHE

Analytical Method: Chloride by EPA 300

Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-004

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Seq Number: 3136621

Tech:

Analyst:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1430	25.0	mg/kg	09.08.2020 20:29		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #3 (0-1')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-005

Date Collected: 09.03.2020 00:00

17.

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	21.5	5.02	mg/kg	09.08.2020 19:42		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #3 (1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-006

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst: Seq Number: 3136621

Date Prep: 09.08.2020 16:50 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	20.3	4.97	mg/kg	09.08.2020 20:34		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #3 (2')

CHE

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-007

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	4220	25.0	mg/kg	09.08.2020 20:40		5	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #3 (3')

Analytical Method: Chloride by EPA 300

Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-008

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Wet Weight

CHE Tech:

CHE Analyst:

Seq Number: 3136621

Date Prep:

09.08.2020 16:50

Basis:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	4350	25.0	mg/kg	09.08.2020 20:45		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (0-1')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-009

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

ep Weinou. Esooi

Tech:

CHE

% Moisture:

Analyst: CHE

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	43.8	4.97	mg/kg	09.08.2020 20:50		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-010

Date Collected: 09.03.2020 00:00

09.08.2020 16:50

Prep Method: E300P

CHE Tech:

Analyst:

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Date Prep: Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	19.7	4.96	mg/kg	09.08.2020 20:55		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (2')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-011

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 09.08.2020 16:50

Basis:

Wet Weight

Seq Number: 3136621

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	22.2	5.03	mg/kg	09.08.2020 21:11		1	

Page 23 of 64

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (3') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-012

Date Collected: 09.03.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

CHE

% Moisture:

CHE Analyst:

Date Prep: 09.08.2020 16:50 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	114	4.97	mg/kg	09.08.2020 21:16		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (4')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-013

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHI

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	7400	49.8	mg/kg	09.08.2020 21:32		10

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (5')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-014

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	10100	50.5	mg/kg	09.08.2020 21:37		10	-

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #4 (6')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-015

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9130	50.5	mg/kg	09.08.2020 21:43		10

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #5 (0-1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-016

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst:

Seq Number: 3136621

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1010	5.05	mg/kg	09.08.2020 21:48		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #5 (1')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-017

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CI

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1130	4.96	mg/kg	09.08.2020 21:53		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #5 (2') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-018

Date Collected: 09.03.2020 00:00

Prep Method: E300P

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Basis:

% Moisture:

09.08.2020 16:50

Wet Weight

Seq Number: 3136621

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1290	25.0	mg/kg	09.08.2020 21:59		5

Date Prep:

Final 1.000

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #5 (3.5') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-019

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.08.2020 16:50

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	4380	24.9	mg/kg	09.08.2020 22:04		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (0-1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-020

Date Collected: 09.03.2020 00:00

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

CHE Tech: CHE

Analyst:

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	24.2	4.96	mg/kg	09.09.2020 20:36	X	1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (1') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-021

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

Analytical Method: Chloride by EPA 300 CHE

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

CHE Analyst: Seq Number: 3136753

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	30.3	5.04	mg/kg	09.09.2020 20:51		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (2')

Analytical Method: Chloride by EPA 300

CHE

Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-022

Date Collected: 09.03.2020 00:00

09.09.2020 15:45

Prep Method: E300P

CHE Tech:

Date Prep:

% Moisture: Basis:

Wet Weight

Analyst: Seq Number: 3136753

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	237	4.98	mg/kg	09.09.2020 20:57		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (3')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-023

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	9590	100	mg/kg	09.09.2020 21:02		20	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (4') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-024

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

CHE Tech:

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

CHE Analyst: Seq Number: 3136753

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9580	50.2	mg/kg	09.09.2020 21:07		10

Dil

50

Certificate of Analytical Results 672000

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (5')

Analytical Method: Chloride by EPA 300

Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-025

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Tech: CHE

% Moisture:

CHE Analyst:

Seq Number: 3136753

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag
Chloride	16887-00-6	16700	248	mg/kg	09.09.2020 21:23	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (6') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-026

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	12700	100	mg/kg	09.09.2020 21:28		20

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (7')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-027

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	7280	50.0	mg/kg	09.09.2020 21:33		10

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (8')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-028

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	4330	24.9	mg/kg	09.09.2020 21:39		5	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (9') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-029

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	5190	49.5	mg/kg	09.09.2020 21:44		10	F

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (10')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-030

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1750	24.8	mg/kg	09.09.2020 21:49		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6(11') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-031

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Tech: Analyst:

CHE

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	130	5.03	mg/kg	09.09.2020 22:05		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #6 (12') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-032

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	124	4.99	mg/kg	09.09.2020 22:10		1	

Xenco

Certificate of Analytical Results 672000

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (0-1')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-033

Date Collected: 09.03.2020 00:00

Units

Prep Method: E300P

Task. C

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Flag

Seq Number: 3136753

3136753

 Parameter
 Cas Number
 Result
 RL

 Chloride
 16887-00-6
 61.6
 4.97

mg/kg

Analysis Date 09.09.2020 22:26 Dil 1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (1')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-034

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

. . .

Tech: CHE

Analyst:

CHE

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	58.4	5.00	mg/kg	09.09.2020 22:31		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (2')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-035

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	73.3	4.96	mg/kg	09.09.2020 22:37		1	

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (3') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-036

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

CHE Tech:

% Moisture:

CHE Analyst:

Date Prep: 09.09.2020 15:45

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	344	5.05	mg/kg	09.09.2020 22:42		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (4') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-037

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	2690	25.3	mg/kg	09.09.2020 22:47		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (5') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-038

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

Analyst:

CHE

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	8340	49.8	mg/kg	09.09.2020 22:53		10

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (6') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-039

Date Collected: 09.03.2020 00:00

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst:

Seq Number: 3136753

Date Prep:

09.09.2020 15:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1830	25.0	mg/kg	09.09.2020 22:58		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (7') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-040

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:30 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	6400	49.8	mg/kg	09.09.2020 18:58		10

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (8')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-041

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

09.09.2020 15:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	7 100	Dil
Chloride	16887-00-6	2740	24.8	mg/kg	09.09.2020 19:04		5

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (9') Matrix: Soil Date Received:09.08.2020 14:20

Lab Sample Id: 672000-042

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:30 Basis:

Wet Weight

Parameter Chloride	Cas Number	Result	RL	Units Analysis Date	Flag	Dil	
Contract of the Contract of th	16887-00-6	206	4.96	mg/kg	09.09.2020 19:23		1

Tetra Tech- Midland, Midland, TX

Patron 23 Fed #4 (8.8.19)

Sample Id: Trench #7 (10')

Matrix: Soil

Date Received:09.08.2020 14:20

Lab Sample Id: 672000-043

Date Collected: 09.03.2020 00:00

Prep Method: E300P

% Moisture:

Tech: CH

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 09.09.2020 15:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	36.0	5.00	mg/kg	09.09.2020 19:30		1	

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits.
- The target analyte was positively identified below the quantitation limit and above the detection limit.
- Analyte was not detected.
- The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

ND Not Detected.

Reporting Limit RL

MDL Method Detection Limit

SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit

MQL Method Quantitation Limit

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample

BLK

Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample

BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS

Matrix Spike

MSD: Matrix Spike Duplicate

- NELAC certification not offered for this compound.
- (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Flag

E300P

E300P

Prep Method:

Prep Method:

QC Summary 672000

Tetra Tech- Midland

Patron 23 Fed #4 (8.8.19)

E300P Analytical Method: Chloride by EPA 300 Prep Method: Seq Number: 3136621 Matrix: Solid Date Prep: 09.08.2020 7710947-1-BLK LCS Sample Id: 7710947-1-BKS LCSD Sample Id: 7710947-1-BSD MB Sample Id: MB Spike LCS LCS %RPD RPD Units Limits Analysis LCSD LCSD

Parameter Result Amount Result %Rec Limit Date Result %Rec Chloride < 5.00 106 269 90-110 20 09.08.2020 19:31 250 266 108 mg/kg

Analytical Method: Chloride by EPA 300

3136752 Matrix: Solid 09.09.2020 Seq Number: Date Prep: LCS Sample Id: 7711025-1-BKS LCSD Sample Id: 7711025-1-BSD 7711025-1-BLK MB Sample Id:

MB Spike LCS LCS Limits %RPD RPD Units Analysis LCSD LCSD Parameter Flag Result Amount Result %Rec %Rec Limit Date Result 09.09.2020 16:59 Chloride < 5.00 250 266 106 265 106 90-110 0 20 mg/kg

Analytical Method: Chloride by EPA 300

09.09.2020 Seg Number: 3136753 Matrix: Solid Date Prep: LCSD Sample Id: 7711027-1-BSD LCS Sample Id: 7711027-1-BKS MB Sample Id: 7711027-1-BLK

RPD MB Spike LCS LCS %RPD Units LCSD LCSD Limits Analysis Flag Parameter Result %Rec Limit Date Result Amount Result %Rec 09.09.2020 20:25 Chloride <5.00 250 262 105 262 105 90-110 0 20 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3136621 Matrix: Soil Date Prep: 09.08.2020 Parent Sample Id: 672000-005 MS Sample Id: 672000-005 S MSD Sample Id: 672000-005 SD

Parent Spike MS MS MSD MSD Limits %RPD RPD Units Analysis Flag Parameter Limit Result Amount Result %Rec %Rec Date Result 09.08.2020 19:47 Chloride 21.5 289 90-110 20 251 107 290 107 0 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3136621 Matrix: Soil 09.08.2020 Date Prep: Parent Sample Id: 672000-010 MS Sample Id: 672000-010 S MSD Sample Id: 672000-010 SD

Parent Spike MS MS Limits %RPD RPD Analysis MSD Units MSD Flag **Parameter** Limit Date Result Amount Result %Rec %Rec Result 09.08.2020 21:01 Chloride 19.7 248 280 105 282 90-110 20 mg/kg

Analytical Method: Chloride by EPA 300 Prep Method:

09.09.2020 Seq Number: 3136752 Matrix: Soil Date Prep: MS Sample Id: 672068-001 S MSD Sample Id: 672068-001 SD Parent Sample Id: 672068-001

%RPD RPD **Parent** Spike MS MS MSD MSD Limits Units Analysis Flag Parameter Limit Date Result Amount Result %Rec Result %Rec 09.09.2020 17:18 Chloride 102 20 42.5 248 296 298 90-110 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) |[D] = 100 * (C) / [B]Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

E300P

QC Summary 672000

Tetra Tech- Midland

Patron 23 Fed #4 (8.8.19)

Analytical Method: Chloride by EPA 300

3136752 Seq Number:

Matrix: Soil

E300P Prep Method:

09.09.2020 Date Prep: MSD Sample Id: 672071-002 SD

Parent Sample Id: 672071-002 MS Sample Id: 672071-002 S

RPD Parent Spike MS MS Limits %RPD Units Analysis MSD MSD Flag Parameter Result Amount Result %Rec Result %Rec Limit Date Chloride 13.8 253 275 103 275 103 90-110 0 20 09.09.2020 18:46 mg/kg

Analytical Method: Chloride by EPA 300

Parent

E300P Prep Method:

RPD

Seq Number: 3136753 Matrix: Soil Date Prep: 09.09.2020 MS Sample Id: 672000-020 S Parent Sample Id: 672000-020

MS

MSD Sample Id: 672000-020 SD Units

Analysis

Spike MSD Parameter Flag Result Amount Result %Rec %Rec Limit Date Result 09.09.2020 20:41 Chloride 24.2 248 299 111 300 111 90-110 0 20 mg/kg X

Limits

MSD

%RPD

MS

Analytical Method: Chloride by EPA 300

3136753 Seq Number:

E300P Prep Method:

09.09.2020 Date Prep:

Parent Sample Id: 672000-030

Matrix: Soil MS Sample Id: 672000-030 S

MSD Sample Id: 672000-030 SD

RPD Spike MS MS %RPD Units Parent MSD MSD Limits Analysis Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec 09.09.2020 21:55 Chloride 1750 3080 107 3080 0 20 1240 107 90-110 mg/kg

Tetra Tech, Inc.		elinquished by:		elinquished by:	Findustred by:											LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	
Properties		• 1			(Johnson	Trench #4 (1')	Trench #4 (0-1')	Trench #3 (3')	Trench #3 (2')	Trench #3 (1')	Trench #3 (0-1')	Trench #2 (1.5')	Trench #2 (0-1')	Trench #1 (1.5')	Trench #1 (0-1')		SAMPLE ID		1.		COG - Ike		Patron 23 Fed	cog	Tetra
Mike Carmona		1															ENTIFICATION				ez				Tech, Inc.
ANALYSIS REQUEST 100		Received by:		Received by:	¥	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020		YEAR: 2020	SAMPLING		Sampler Signature:		Project#:		Site Manager:	
ANALYSIS REQUEST Circle or Specify Method No.) ANALYSIS REQUEST Circle or Specify Method No. ANALYSIS RE		-	Ţ			×	×	×	×	×	×	×	×	×	×	SOIL	<u> </u>	MATRIX		Conne		212C-N		Mike Carn	901W Wa Midland Tel (4: Fax (4
AMALYSIS REQUEST Circle or Specify Method No.) AMALYSIS REQUEST Circle or Specify Method No. AMALYSIS REQUEST Circle or Specify Method No. AMALYS	-			_[<u>م</u>	×	×	×	×	×	X	×	×	×	×	HNO₃ ICE		PRESERVATIVE METHOD		r Moehring		MD-02295		nona	ill Street, Ste 100 d,Texas 79705 32) 682-4559 132) 682-3946
TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) NORM PLM (Asbestos) NORM PLM (Asbestos) Chloride Chloride General Water Chemistry (see attached list) Anion/Cation Balance				(7	1 N	-1 Z	1 N				1 N		<u>1</u> N	Z	FILTERE	ED (Y	RS /N)			·				
ANALYSIS REQUEST TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) NORM PLM (Asbestos) Anion/Cation Balance Report Limits or TRAP Report Limits Limit	(Circle) HA	シージ	Sample Tem		NO LVB							****				TPH TX	1005 5M ((Ext to	C35)		MRO)				
RUSH: Same Day 24 hr 48 hr FEDEX UPS Tracking #: TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) PLM (Asbestos) Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance	D DELIVER		perature													Total Met	tals A	Ng As E						A	
So of THR PR	- 1	Speci		Rust	REMARKS:									,		TCLP Se RCI	mi Vo	latiles						NALYSIS	100
So of TRAP Report And Transport And Transpor	UPS Trac	al Report Lir	Charges Au	l: Same Da	TANDARI											PCB's 80	082 /	608	270C/62	5				REQUES	C
Anion/Cation Balance	king #:	nits or TRRP	2	24 hr	J	<u>×</u>	メ	×.	×	*	X	<u></u>	^_	<u>~</u>		Chloride Chloride	Sı	ılfate		ee atta	ched li	st)		2	
		Report	-	•	')											Anion/Ca	ation	Baland	ce						

Tetra Tech, Inc.	u by	OCD: 1 □ □		/202			191	PM 	-						Г					Comi	Hece	Invoi	Proje (coun	Ī	Proje	Client	Pag
		quished by		quished by	2	quished by											AB USE)	AB#		nents:	ving Labor	to:	et Location ty, state)		t Name:	Name:	a
		<i>V</i> :		7.	9)	Trench #6 (0-1')	Trench #5 (3.5')	Trench #5 (2')	Trench #5 (1')	Trench #5 (0-1')	Trench #4 (6')	Trench #4 (5')	Trench #4 (4')	Trench #4 (3')	Trench #4 (2')		SAMPL				COG - Ike		Patron 23			Tetı
Stee Manager: Mike Cammona CCircle or S					18/2020	Date:												EIDENTIFICATION				werez		#			1,
Time: WATER MATER Mike Carmona Mike Carmo		Received by:		Rēceived by:		Received by:	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	9/3/2020	DATE	YEAR: 2020	SAMPLIN		Sampler Signature		Project #:			Site Manager:	
Mail Street, Sic 100 Million Millio	ОРҮ						×	×	×	×	×	×	×	×	×	×	WATE	R					212			Mike C	901v MM 1 1
Circle		_		-	2012	<u> </u>	×	×	X	×	X	×	×	×	×	×	HNO ₃		PRESER MET		ner Moehring		C-MD-02295			armona	W Wall Street, Ste 100 Idland, Texas 79705 Tel (432) 682-4559 ax (432) 682-3946
TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP S							1 N	1 N	1 N	1 N	1 N	1 N	1 N	<u>۱</u> 2	1 N	1 N	# CONT		RS								
TCLP Semi Volatiles	(Circle) HANO DELIVI	-	-	Sample Temperature	ONLY	ARISE											TPH TX TPH 80 PAH 82 Total Me	1005 15M (70C tals A	(Ext to GRO -	C35) - DRO - C a Cd Cr F	Pb Se	Нg			(Circle		
Tracking # PCB's 8082 / 608 PCB's 8082 / 608 NORM PLM (Asbestos) PCB's 8082 / 608 NORM PLM (Asbestos) PCB's 8082 / 608 NORM PLM (Asbestos) PCB's 8082 / 608	FEDEX	Special Re	Rush Char	RUSH: S	STAN	REMARKS:											TCLP VOTCLP SO RCI GC/MS	olatile: emi Ve Vol. 8 Semi.	olatiles 3260B / Vol. 8	624					e or Specify	ANALYSIS RE	27600
		port Limits or TRRI	ges Authorized	24 hr		L	ጆ	X	X	メ	×	X	<u> </u>	X	Х	እ	NORM PLM (As Chloride Chloride	besto Si	s) ulfate		o atta	chod lis	+1)		Wethod No.	QUEST	Ğ

	ED FEDEX UPS Tracking#:	(Circle) HAND DELIVERED				ОРҮ	ORIGINAL COPY			
Report	Special Report Limits or TRRP Report).5		Time:	Date:		Received by:	Date: Time:	у:	telinquished by:
48 hr (2 hr)	=	Sample Temperature		lime:	• Date:		neceived by:	Date. IIIIe.	*	district
		ONLY	9	9	5] E	Time	mile hy
	REMARKS:	m	>	Time:	Da		Received by:	_) C	telinquished by:
			<u>1</u>	×	<u>×</u>		9/3/2020		Trench #6 (10')	
	<u></u>		<u>1</u> Z	×	×		9/3/2020		Trench #6 (9')	
:			<u>1</u> N	×	X		9/3/2020		Trench #6 (8')	
	× -		1 N	×	×		9/3/2020		Trench #6 (7')	
	×.		1 N	×	×		9/3/2020		Trench #6 (6')	
	*		1 N	×	X		9/3/2020		Trench #6 (5')	
	*		1 N	×	×		9/3/2020		Trench #6 (4')	
	×.		1 N	×	×		9/3/2020		Trench #6 (3')	
	*		1 N	×	×		9/3/2020		Trench #6 (2')	
	<u> </u>		1 N	×	×		9/3/2020		Trench #6 (1')	
Anion/Ca	TCLP Sei RCI GC/MS V GC/MS S PCB's 80 NORM PLM (Ast Chloride Chloride General N	BTEX 80 TPH TX1 TPH 801 PAH 827 Total Met TCLP Me	# CONT	HNO ₃ ICE None	SOIL HCL	TIME WATER	DATE			CAB USE)
	ol. 8 emi. 082 / 1	1005 5M (0C als A tals A				3	YEAR: 2020	SAMPLE IDENTIFICATION	S.A	LAB#
	260B / 260B / Vol. 82 608 s)	(Ext to GRO - g As Ba Ag As E	/N)	PRESERVATIVE METHOD	MATRIX F		SAMPLING			
	270C/625	DRO - C								Comments:
		Pb Se H		oehring	Conner Moehrin		Sampler Signature:		atory: Xenco	Heceiving Laboratory:
	ched lis	Нg						COG - Ike Taverez		nvoice to
	t)			02295	212C-MD-0229		Project #:	o, NM	:: Eddy Co,	Project Location: (county, state)
	(Circle or specify Method No.)	(CIrcle (23 Fed #4 (8.8.19)	Patron 23	Project Name:
	ANALYSIS REQUEST	A		Ø	Mike Carmona	Mik	Site Manager:		cog	Chem Name.
	113000			et, Ste 100 as 79705 82-4559 82-3946	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946			Tetra Tech, Inc.	T	
of	Page							Custody Record	analysis Request of Chain of Custody Record	idiysis ne

Mike Carmona 212C-MD-0229	Site Manager: Mik 8.8.19) Project #:	Site Manager: Mike Carmona (Cir. 8.8.19) Project #: 212C-MD-02295
Mike Carmona 212C-MD-0 Conner Mo MATRIX PR	Mike Carmona 212C-MD-02295 212C-MD-02295 Conner Moehring Conner Moehring MATRIX PRESERVATIVE S S S S	Mike Carmona 212C-MD-02295 212C-MD-02295 Conner Moehring PRESERVATIVE INERS D (Y/N) PRESERVATIVE INERS D (Y/N)
212C-MD-C Conner Mo	Carmona 2C-MD-02295 PRIX PRESERVATIVE METHOD S S S S S	PRESERVATIVE INERS O (Y/N) PRESERVATIVE ODS (Ext to C35) IM (GRO - DRO - ORO - MRO)
	NERS (Y/N)	INERS D (Y/N) 21B BTEX 8260B 205 (Ext to C35) 3M (GRO - DRO - ORO - MRO)

Sampler Signature: Conner Moehring	## Tetra Tech, Inc. Sample Signature: Alice Carmona
Acconsistence of the contract	TIME WATER WATER WATER X X SOIL WATER X X SOIL WELLOUS BEST 79705 Time: Conner Moehring ANAL WATER X X X ICE HOU HNO3 FILTERED (Y/N) Date: Time: Corole) HAMD TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles
Mike Carmona Solid Size Size 100	Mike Cammona
Z Z Z FILTERED (Y/N)	Circle
	The semi-volatiles of Plant Pl

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 09.08.2020 02.20.00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 672000

Temperature Measuring device used: IR-8

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	1.1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

^{*} Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Ana	yst:
Al la	yot.

PH Device/Lot#:

Checklist completed by:

Drienne Teel

Date: 09.08.2020

Checklist reviewed by:

Jessica Kramer

Jessica Kramer

Date: 09.09.2020

SIGN-IN HELP

Searches Operator Data Hearing Fee Application

OCD Permitting

Home Op

ator Data Actio

Action Search Results

Action Status Item Details

[C-141] Release Corrective Action (C-141) Application

Submission Information

Submission ID:

11098

Districts:

Artesia

Operator:

[229137] COG OPERATING LLC

Counties:

Eddy

Description:

COG OPERATING LLC [229137]

PATRON 23 FEDERAL #4H FLOWLINE

nAB1924840999 {Discovery: 08/08/2019, Active, , Federal}

Status:

REJECTED

Status Date:

02/18/2021

References (2):

fAB1924840625, nAB1924840999

Forms

Attachments:

C-141

Questions

This submission type does not have questions, at this time.

Acknowledgments

This submission type does not have acknowledgments, at this time.

Comments

Summary:

chensley (2/18/2021), If Company chooses not to drill a borehole to confirm the depth to groundwater, the site must be remediated to meet the Closure Criteria in Table 1 for groundwater at a depth of 50 feet or less.

Conditions

No conditions found for this submission.

Reasons

Summary:

chensley (2/18/2021), If you feel the depth to groundwater is >100', a shallow borehole can be drilled to 105' allowing for verification of the depth. If water is not visible after reaching bottom-hole and waiting 72 hours, sample points would be allowed for remediation. We would just need a copy of the driller's log.

chensley (2/18/2021), Additional horizontal delineation samples will need to be established on the boundaries at AH-1, AH-2, AH-3, and AH-4. Preferably along the lease road.

SIGN-IN HELP

Searches Operator Data Hearing Fee Application

New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

EMNRD Home OCD Main Page OCD Rules Help

APPENDIX D Laboratory Analytical Data

December 29, 2021

SAM ABBOTT
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: PATRON 23 FED #4H

Enclosed are the results of analyses for samples received by the laboratory on 12/28/21 13:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH
SAM ABBOTT
901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

 Received:
 12/28/2021
 Sampling Date:
 12/27/2021

 Reported:
 12/29/2021
 Sampling Type:
 Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 11 (0-1') (H213725-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.1	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	113	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	117	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: 12/29/2021 Sampling Type: Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 11 (2'-3') (H213725-02)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	< 0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	118	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	123	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

(432) 682-3946

12/28/2021 Sampling Date: 12/27/2021 Reported: Sampling Type: Soil 12/29/2021

Fax To:

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 11 (3'-4') (H213725-03)

Received:

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	116	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	117 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: 12/29/2021 Sampling Type: Soil
Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact

Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker Project Location: COP - EDDY CO NM

Sample ID: H 12 (0-1') (H213725-04)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.6	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	119	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: 12/29/2021 Sampling Type: Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 12 (2'-3') (H213725-05)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.3	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	105	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	105	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

12/27/2021

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 12/28/2021 Sampling Date:

Fax To:

Reported: 12/29/2021 Sampling Type: Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 12 (3'-4') (H213725-06)

BTEX 8021B	mg,	'kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	206	103	200	2.77	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	212	106	200	6.44	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	120	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: 12/29/2021 Sampling Type: Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 13 (0-1') (H213725-07)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.8	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	200	99.9	200	4.55	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	220	110	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	95.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
SAM ABBOTT
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: 12/29/2021 Sampling Type: Soil

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact
Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 13 (2'-3') (H213725-08)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.9	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	200	99.9	200	4.55	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	220	110	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	94.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH SAM ABBOTT 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 12/28/2021 Sampling Date: 12/27/2021

Reported: Sampling Type: Soil 12/29/2021

Project Name: PATRON 23 FED #4H Sampling Condition: Cool & Intact Project Number: 212C-MD-02646 Sample Received By: Tamara Oldaker

Project Location: COP - EDDY CO NM

Sample ID: H 13 (3'-4') (H213725-09)

BTEX 8021B	mg/	'kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/28/2021	ND	2.00	99.8	2.00	7.90	
Toluene*	<0.050	0.050	12/28/2021	ND	1.88	93.9	2.00	7.98	
Ethylbenzene*	<0.050	0.050	12/28/2021	ND	1.86	92.8	2.00	8.74	
Total Xylenes*	<0.150	0.150	12/28/2021	ND	5.74	95.7	6.00	8.98	
Total BTEX	<0.300	0.300	12/28/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/28/2021	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/28/2021	ND	200	99.9	200	4.55	
DRO >C10-C28*	<10.0	10.0	12/28/2021	ND	220	110	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	12/28/2021	ND					
Surrogate: 1-Chlorooctane	95.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	104 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

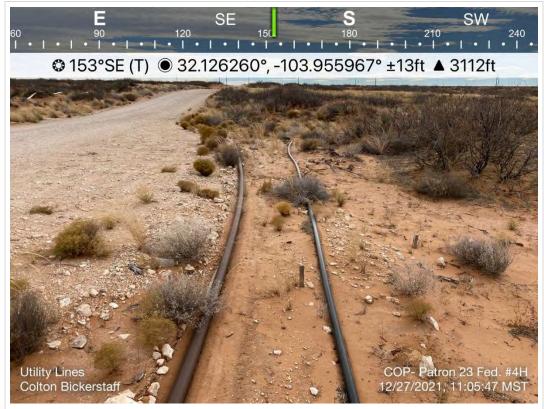
Celeg D. Freene

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

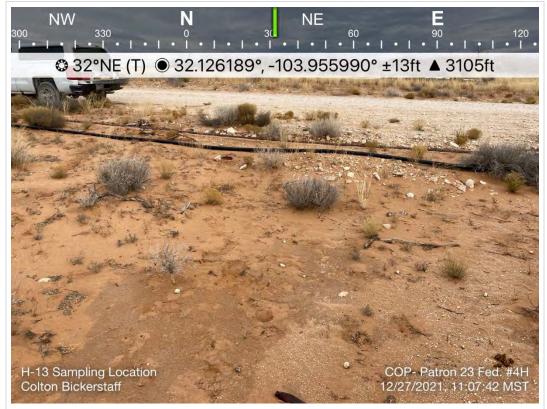

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: To the Took		BILL TO	ANALYSIS REQUEST	
		P.O. #:		
Address:		Company: Tetra 1		
City: State:	Zip:	Attn: Son, Abbot	8	
Phone #: Fax #:		Address:		
Project #: 212L-MD-02646 Project Owner	Project Owner: Lanece Phillips	City:	3tr	
Patron 23 F	T.	State: Zip:		
on: Eddy County	•	Phone #: 512-739-7874		
5	0	Fax #:		
FOR LAB USE ONLY	RS ER	PRESERV. SAMI	8021	
Lab I.D. Sample I.D.	(G)RAB OR ((# CONTAINE GROUNDWA WASTEWATE SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE / COOL OTHER:	BTEX TPH 80 Chlock	
2 411 (0-1')		_	-X	
4 412 (0-1)				
S H12 (2-3)				
9 413 (2:3)	< -	<	\	
6 8 8 B	ny claim arising whether based in contract deemed walved unless made in writing an without limitation, business interruptions,	or tort, shall be limited to the amount pat d received by Cardinal within 30 days afte loss of use, or loss of profits incurred by	d by the client for the or completion of the applicable lient, its substituties,	
Kerstaff	Pate: Received By:	Make	Verbal Result:	
Time:	November 17.		1 horas	6074
Delivered By: (Circle One) Observed Temp. °C Sampler - UPS - Bus - Other: Corrected Temp. °C	Sample Condition Cool Intact Pres Pres	ion CHECKED BY: (Initials)	Turnaround Time: Standard Bacteria (only) Sample Condition Rush Cool Intact Observed Temp. Thermometer ID #113 Correction Factor -0.5°C Corrected Temp.	ample Condition Observed Temp. °C Corrected Temp. °C

APPENDIX E Photographic Documentation

TETRA TECH, INC.	DESCRIPTION	View southeast. Parallel lines on west side of dirt road.	1
PROJECT NO. 212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southeast. Single line on east side of dirt road.	2
212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02646	DESCRIPTION	View east. H-11 sample location.	3
	SITE NAME	Patron 23 Federal 4H	12/27/2021


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east. H-12 sample location.	4
212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC.	DESCRIPTION	View northeast. H-13 sample location.	5
PROJECT NO. 212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View south-southeast. Northeastern section of release extent.	6
212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View south-southeast. Southeastern section of release extent.	7	
212C-MD-02646	SITE NAME	Patron 23 Federal 4H	12/27/2021	

TETRA TECH, INC. PROJECT NO. 212C-MD-02646	DESCRIPTION	View west-southwest. Central section of release extent.	8
	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02646	DESCRIPTION	View west. Central section of release extent.	9
	SITE NAME	Patron 23 Federal 4H	12/27/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02646	DESCRIPTION	View east. Western section of release extent.	10
	SITE NAME	Patron 23 Federal 4H	12/27/2021

APPENDIX F NMSLO Seed Mix Details

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Eddy Area, New Mexico	
TC—Tonuco loamy sand, 0 to 3 percent slopes, eroded	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

Spoil Area Stony Spot

å

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads Local Roads

00

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
тс	Tonuco loamy sand, 0 to 3 percent slopes, eroded	6.5	100.0%
Totals for Area of Interest		6.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

TC—Tonuco loamy sand, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w60 Elevation: 3,000 to 4,100 feet

Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F

Frost-free period: 200 to 217 days

Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 98 percent Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonuco

Setting

Landform: Plains, alluvial fans

Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loamy sand H2 - 5 to 15 inches: loamy fine sand H3 - 15 to 19 inches: indurated

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 6 to 20 inches to petrocalcic

Drainage class: Excessively drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R042XC004NM - Sandy

Hydric soil rating: No

Minor Components

Tonuco

Percent of map unit: 1 percent

Ecological site: R042XC004NM - Sandy

Hydric soil rating: No

Dune land

Percent of map unit: 1 percent

Hydric soil rating: No

SLO Seed Mix

SM Series

1 REVEGETATION PLANS

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

Table 3 - Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico

REVEGTATION PLANS	CODE	SOIL TEXTURES
Clay	C	Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)
Loam	L	Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam
Sandy Loam	SL	Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam
Shallow	SH	Rocky Loam, Cobbly Loam
Course	CS	Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam
Sandy	S	Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand
Blow Sand	BS	Fine Sand, Sand, Coarse Sand
Mountain Meadow	MM	Clay, Loam
Mountain Upland	MU	Clay Loam, Loam

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sand bluestem	Elida, VNS, So.	2.0	\mathbf{F}
Little bluestem	Cimarron, Pastura	3.0	\mathbf{F}
Black grama	VNS, Southern	1.0	D
Sand dropseed	VNS, Southern	4.0	\mathbf{S}
Plains bristlegrass	VNS, Southern	2.0	D
		1 1/3	
Forbs:	20000	00000	2
Firewheel (Gaillardia)	VNS, Southern	1.0	D
Annual Sunflower	VNS, Southern	1.0	D
A.V		~	B
Shrubs:		6	8
Fourwing Saltbush	VNS, Southern	1.0	F
Total PLS/acre 16.0			

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 74691

CONDITIONS

Operator:	OGRID:	
COG PRODUCTION, LLC	217955	
600 W. Illinois Ave	Action Number:	
Midland, TX 79701	74691	
	Action Type:	
	[C-141] Release Corrective Action (C-141)	

CONDITIONS

Created By		Condition Date
chensley	Closure report due 05/09/2022.	2/9/2022
chensley	Variance for sampling approved for 500 sq/ft.	2/9/2022