Received by OCD: 1/27/2022 3:03:51 PM

January 25, 2022

New Mexico Energy, Minerals and Natural Resources Department New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

Subject: Fourth Quarter 2021 - Remediation System Update

Hilcorp Energy Company

Federal 18 #1T

San Juan County, New Mexico Incident # NCS2103335776

To Whom it May Concern:

APPROVED

By Nelson Velez at 8:31 am, Feb 09, 2022

Review of 4Q 2021 Remediation System Update Report: **Content satisfactory**

- 1. Continue sampling to monitor the benzene concentrations in the groundwater
- 2. Continued operation of the vacuum and water pumps.
- 3. Incrementally increase the amount of time per day that the vacuum pump is in operation to assess the performance. If the pump is able to sustain increased runtime, continue to increase cycles until the pump is capable of running 24 hours per day.
- 4. Continue quarterly reporting to OCD. 2022 first quarter reporting expected to be submitted no later than 05/31/2022.

WSP USA Inc. (WSP), on behalf of Hilcorp Energy Company (Hilcorp), presents the following fourth quarter 2021 summary report discussing the current activities being conducted at the former Federal 18 #1T coalbed methane gas well (Site). The casing of this well has been modified to vent gas and purge water from the Ojo Alamo Formation. The setup and initial installation of this system is detailed in a report submitted to the New Mexico Oil Conservation Division (NMOCD) in November 2010. Since 2010, quarterly reports have been submitted to the NMOCD to record activities performed at the Site, as well as document well-casing pressures, the volume of gas vented from well Federal 18 #1T, and water-quality analytical results collected from the well.

BACKGROUND

A vacuum system installed at the Site is being operated as part of an ongoing effort between the NMOCD and Hilcorp (project formerly under XTO Energy, Inc.) to vent gas from the Nacimiento formation just above the Ojo Alamo Formation. Gas was found in the Nacimiento formation, which could have come from several contributing sources in the area including existing and abandoned gas wells in close proximity. In agreement with the NMOCD, XTO Energy, Inc. (XTO) modified a nearby gas well that was scheduled to be plugged, Federal 18 #1T, to act as a venting well by setting a plug at a depth of approximately 513 feet. Perforations were made in the casing at 437 feet and 457 feet below ground surface (bgs) in order to assess the groundwater and vent gas from the Nacimiento.

On September 24, 2010, a swab rig was used to determine if the well would produce water using the perforations. The swab rig recovered approximately 2 barrels of water, indicating that the perforations would produce water. A sample collected during the swab returned results above New Mexico Water Quality Control Commission (NMWQCC) standards for benzene, total xylenes, and total chloride (see attached Table 1). Due to the low pH and high chloride, it was inferred that the acid used to dissolve cement during perforation activities may have infiltrated the aquifer, causing the increased concentrations shown in the sampling results. XTO recommended pumping the aquifer until sampling results were below the NMWQCC standards for BTEX and chloride.

A pump was installed in the Federal 18 #1T on November 9, 2010 at a depth of approximately 485 feet bgs. During the pump installation, the water level was measured using a Keck ET Long water level indicator. The static water level was measured as 402.20 feet. The pump was initially set to operate four times a day for 15 minutes, purging approximately 260 gallons per day. During swab and pump installation activities, no gas was observed flowing from the well. On November 11, 2010, a small vacuum pump was installed at the Federal 18 #1T to determine if gas could be vented. The discharge from the vacuum was monitored using a MSA 4-Gas Monitor, which confirmed that methane was being vented from the vacuum pump discharge. The vacuum pump operated at a discharge rate of 3 standard cubic feet per minute (scfm), which is equivalent to approximately 6 actual cubic feet per minute (acfm) The vacuum pump initially held a vacuum of approximately negative (-) 12 inches of mercury on the casing of the Federal 18 #1T during operation. A portable generator placed on-site powered both the vacuum pump and the water pump. The water pump was plumbed into the existing water lines at the Site, so that all water would pump into the

WSP USA 848 EAST 2ND AVENUE DURANGO CO 81301

Tel.: 970-385-1096

210-barrel water tank left on-Site from production activities. Water piping above ground was wrapped with heat trace and insulation to prevent freezing.

The system was electrified on February 3, 2011 to prevent down time due to generator maintenance issues. Current operation and maintenance inspections include visual checks of the system, generally on a weekly to biweekly basis depending on weather-related delays. The inspections also include verifying pump operation, vacuum operation, recording volume changes based on the prior visit, and verifying that no other site conditions dictated system adjustment. The nearby SJ 1737 production well is used to monitor potential pressure variations in the subsurface resulting from the vacuum pump. The SJ 1737 is generally evaluated on a weekly basis to open the valve for a week and then close the valve the following week. Before the valve is opened the subsequent week, pressure is measured at the wellhead. Casing pressure readings for the SJ 1737 are summarized on Table 2.

As discussed in the 2021 1st Quarter Report (Hilcorp report dated May 2021), Hilcorp replaced a malfunctioned vacuum pump and restarted the vacuum system on March 23, 2021. The replacement pump is a Becker VT 4.8 rotary vane vacuum pump capable of a discharge rate of 7 acfm. In order to maintain operations and sustain the life of the pump, the pump is set on a timer and runs for 5 minutes every two hours (12 cycles per day). Additionally, Hilcorp replaced a malfunctioned water pump on September 30, 2021. The new water pump is set at approximately 485 feet bgs and removes approximately 135 gallons (3.2 barrels) per day in order to draw down groundwater levels to below the casing perforations.

FOURTH QUARTER 2021 ACTIVITIES

During the fourth quarter of 2021, approximately 9,072 gallons (216 barrels) of water was removed from the Federal 18 #1T well. A water sample was collected on December 6, 2021 and submitted to Hall Environmental Analysis Laboratory (Hall) for the following constituents: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260, chloride by EPA Method 300.0, conductivity by Method SM2510B, pH by Method SM4500-H+B, and total dissolved solids (TDS) by Method SM2540C. Analytical results are summarized in Table 1, with complete laboratory reports attached as Enclosure A.

To date, a total of 1,143,239 gallons (27,220 barrels) of water have been removed from the Federal 18 #1T well (Table 1). Additionally, 29,320 thousand cubic feet (MCF) of gas and air has been vented from the well as of this date (Table 3). (**Note**: total gas vented was miscalculated in the previous quarterly report dated October 25, 2021). Groundwater sampling will continue in the first quarter of 2022 to monitor the benzene concentrations in the groundwater. The vacuum pump and water pump will also continue to be operated at the Federal 18 #1T well. Additionally, Hilcorp will incrementally increase the amount of time per day that the vacuum pump is in operation to assess the performance of the pump. If the pump is able to sustain increased runtime, cycles will continue to increase until the pump is running 24 hours per day. Once benzene concentrations decrease to below NMWQCC standards, an alternative sampling schedule may be recommended for operation, maintenance, and groundwater sampling.

WSP appreciates the opportunity to provide this report to the NMOCD. If you have any questions or comments regarding this work plan, do not hesitate to contact Stuart Hyde at (970) 903-1607 or at stuart.hyde@wsp.com, or Mitch Killough at (713) 757-5247 or at mkillough@hilcorp.com.

Kind regards,

Stuart Hyde, L.G. Senior Geologist

Rob Rebel, P.E.

Technical Principal, Senior Lead Engineer

obert I Rebel

Enclosures:

Table 1 – Water Analytical Results

Table 2 – Well SJ-01737 Casing Pressure Readings

Table 3 – Gas and Air Vented

Enclosure A – Analytical Laboratory Reports

TABLES

Received by OCD: 1/27/2022 3:03:51 PM

TABLE 1 WATER ANALYTICAL RESULTS

FEDERAL 18 #1T SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample Date	Lab	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Xylene (μg/L)	Chlorides (mg/L)	TDS (mg/L)	EC (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standard		5	1,000	700	620	250	1,000	NA	6 thru 9	
11/5/2010	ESC	ND	5.2	ND	ND	15	1,400	2,600	7.2	NM
9/24/2010	ESC	150	ND	76	670	NS	NS	NS	NS	NM
9/24/2010	ESC	190	170	24	210	6,800	13,000	18,000	6.1	NM
9/24/2010	Etech	143	221	63.6	950	NS	NS	NS	NS	NM
9/24/2010	Etech	320	377	31.8	568	7,150	11,100	16,000	5.84	NM
12/10/2011	Hall	NS	NS	NS	NS	2,800	7,610	8,900	6.36	3,033
1/5/2011	Hall	67	93	7.9	25	NS	NS	NS	NS	7,798
1/5/2011	ESC	73	99	10	39	1,600	4,800	6,000	6.6	7,798
1/29/2011	ESC	60	93	10	33	930	NS	4,900	6.4	10,791
2/28/2011	ESC	42	60	6.1	20	550	3,400	4,000	6.7	14,795
4/1/2011	ESC	23	27	1.8	6.8	260	2,700	3,100	6.8	31,238
4/29/2011	ESC	29	28	2.4	7.3	140	2,600	2,900	6.9	50,217
5/31/2011	ESC	14	19	1.4	4.9	89	2,500	2,800	6.7	76,513
6/14/2011	ESC	55	81	2.8	15	73	2,500	2,700	6.7	88,120
6/30/2011	ESC	52	67	2.6	12	61	2,500	2,700	6.9	101,209
8/15/2011	ESC	21	25	1.2	5.8	44	2,500	2,600	6.8	140,267
9/2/2011	ESC	10	12	0.64	3.2	41	2,500	2,600	7.2	155,801
9/16/2011	ESC	9.6	11	0.64	3	38	2,400	2,500	7.2	168,040
9/30/2011	ESC	7.2	8.7	0.64	2.5	35	2,500	2,600	7	180,393
10/28/2011	ESC	5.1	ND	1.8	2.7	31	2,300	2,600	6.9	205,220
11/30/2011	ESC	4	ND	3.9	2	27	2,500	2,600	7.1	233,488
12/30/2011	ESC	3.4	ND	ND	2.9	27	2,500	2,500	7.5	261,391
4/3/2012	ESC	6	ND	ND	1.6	NS	NS	NS	NS	351,300
4/9/2012	ESC	NS	NS	NS	NS	19	2,400	2,400	7.4	NM
7/3/2012	ESC	5.3	ND	ND	ND	16	2,300	2,400	7.4	NM
7/6/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	441,053
9/19/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	521,271
9/27/2012	ESC	6.2	ND	ND	ND	15	2,300	2,500	7.1	NM
12/14/2012	NA	NS	NS	NS	NS	NS	NS	NS	NS	598,540
12/31/2012	Etech	13.9	1.1	ND	3.3	15.5	2,690	2,440	7.05	604,689

Received by OCD: 1/27/2022 3:03:51 PM

TABLE 1 WATER ANALYTICAL RESULTS

FEDERAL 18 #1T SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample Date	Lab	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylene (μg/L)	Chlorides (mg/L)	TDS (mg/L)	EC (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standard		5	1,000	700	620	250	1,000	NA	6 thru 9	
1/23/2013	ESC	160	190	ND	26	15	2,400	2,500	8	NM
2/22/2013	ESC	7.1	77	ND	1.8	15	2,100	2,500	7.1	605,860
5/2/2013	ESC	9	6.9	ND	ND	15	2,400	2,600	7.5	612,601
8/19/2013	ESC	20	11	ND	2.3	16	2,200	2,600	7.2	NM
9/23/2013	ESC	13	11	ND	2.2	16	2,300	2,500	7.1	621,744
11/25/2013	ESC	4.6	5.2	ND	ND	15	2,200	2,700	7.7	631,430
2/4/2014	ESC	15	17	0.72	3.1	16	2,200	2,500	7.3	636,120
10/1/2015	ESC	54.2	57	1.37	9.77	21.3	2,260	2,640	6.98	639,410
10/20/2015	ESC	42.3	39.9	0.964	7.06	18.1	2,330	1,460	7.09	642,650
3/28/2016	ESC	38	34.1	0.835	4.82	21.6	2,230	2,570	6.86	650,850
6/14/2016	ESC	78.3	58.4	1.16	7.22	13.7	2,890	2,600	6.89	704,371
8/29/2016	ESC	19	ND	ND	2.18	14.8	2,410	2,590	7.02	763,261
11/18/2016	ESC	13.2	5.61	ND	2.33	13.9	2,470	2,580	7.03	842,610
3/31/2017	ESC	9.61	7.87	ND	ND	14.4	2,300	2,570	7.28	858,190
6/16/2017	ESC	64.6	29.2	0.781	5.4	14.2	2,360	2,570	7.05	927,854
9/7/2017	ESC	4.61	1.73	ND	ND	13.7	2,030	2,450	7.14	997,330
12/5/2017	ESC	138	51.5	1.65	9.378	14.4	2,230	2,590	7.2	1,080,550
3/6/2018	ESC	19.9	14.8	0.543	2.71	14.4	2,290	2,620	7.13	1,080,840
8/7/2018	Pace	7.9	8.06	< 0.5	<1.5	13.7	2,200	2,300	7.19	1,082,751
1/3/2019	Pace	7.07	3.29	0.177	1.08	15.8	2,080	6,750	6.35	1,120,220
2/22/2019	Pace	19.8	11.1	< 0.5	3.97	14.1	2,270	2,710	7.46	1,120,366
5/24/2019	Pace	11.9	10.8	ND	ND	13.4	2,380	2,760	7.15	1,123,853
9/10/2019	Pace	23.2	18.8	ND	ND	14.3	2,260	2,600	7.37	1,125,478
10/29/2019	Pace	5.41	5.68	ND	ND	14	2,300	2,530	7.09	1,127,076
2/27/2020	Pace	20.7	19.3	ND	ND	14.4	2,280	2,580	7.06	1,128,506
5/15/2020	Pace	10.3	8.91	ND	ND	13.6	2,460	2,570	7.27	1,131,033
8/25/2020	Pace	3.9	3.5	ND	ND	13.9	2,190	2,640	7.62	1,131,100
10/27/2020	Pace	31.1	24.4	ND	ND	13.9	2,240	2,530	7.43	1,131,119

Received by OCD: 1/27/2022 3:03:51 PM

Page 7 of 23

TABLE 1 WATER ANALYTICAL RESULTS

FEDERAL 18 #1T SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample Date	Lab	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylene (μg/L)	Chlorides (mg/L)	TDS (mg/L)	EC (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standard		5	1,000	700	620	250	1,000	NA	6 thru 9	
2/17/2021	Hall	73	<1	<1	<1.5	18	2,200	2,400	7.42	1,131,123
6/29/2021 (1)		NS	NS	NS	NS	NS	NS	NS	NS	1,134,031
9/30/2021	Hall	130	87	<5.0	8.1	19	2,300	2,500	7.20	1,134,167
12/6/2021	Hall	33	20	<1.0	6.0	15	2,430	2,500	7.15	1,143,239

Notes:

(1) - Water pump not functioning

ND - Not Detected above laboratory reporting limits

NM - Not Measured

NMWQCC - New Mexico Water Quality Control Commission

NS - Not Sampled

Values in **BOLD** exceed WQCC Standards

Baseline Sample (Well SJ 1737)

TABLE 2 WELL SJ-01737 CASING PRESSURE READINGS

FEDERAL 18 #1T SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Date	Casing Pressure (ounces)	Average
9/17/2019	1	0.143
10/7/2019	0	0.000
10/21/2019	1.75	0.125
10/28/2019	0	0.000
12/5/2019	0	0.000
12/19/2019	3	0.214
1/7/2020	0	0.000
1/17/2020	1.25	0.125
1/30/2020	0	0.000
2/12/2020	2.25	0.173
2/25/2020	0	0.000
4/3/2020	1.75	0.046
4/9/2020	0	0.000
4/15/2020	3	0.500
4/23/2020	0	0.000
4/30/2020	0.5	0.071
5/15/2020	0	0.000
5/21/2020	1.25	0.208
5/29/2020	0	0.000
6/5/2020	0.5	0.071
6/29/2020	0	0.000
7/8/2020	0.75	0.083
7/22/2020	0	0.000
8/11/2020	0	0.000
8/25/2020	0	0.000
9/16/2020	0	0.000
9/22/2020	0	0.000
10/26/2020	2.75	0.081
11/9/2020	0	0.000
12/8/2020	0	0.000
12/18/2020	0	0.000
1/5/2021	1.75	0.097
1/20/2021	0	0.000
2/11/2021	1.75	0.080
2/17/2021	0	0.000
3/25/2021	3.5	0.097
10/4/2021	0	0.000
10/11/2021	2.5	0.357
10/18/2021	0	0.000
10/26/2021	3.25	0.406
11/1/2021	0	0.000
11/9/2021	0.5	0.063
11/23/2021	3.0	0.214
11/29/2021	0	0.000
12/6/2021	3.0	0.429
12/14/2021	0	0.000
12/20/2021	0	0.000
12/30/2021	0	0.000

WSP 1 of 1

TABLE 3 GAS AND AIR VENTED

FEDERAL 18 #1T SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

			Total Vented Gas and
Date	SCFM	ACFM	Air
			(MCF)
9/17/2019	3	6	26,677
10/7/2019	3	6	26,849
10/21/2019	3	6	26,969
10/28/2019	3	6	27,030
12/5/2019	3	6	27,356
12/19/2019	3	6	27,477
1/7/2020	3	6	27,954
1/17/2020	3	6	28,040
1/30/2020	3	6	28,153
2/12/2020	3	6	28,265
2/25/2020	3	6	28,377
4/3/2020	3	6	28,705
4/9/2020	3	6	28,756
4/15/2020	3	6	28,808
4/23/2020	3	6	28,877
4/30/2020	3	6	28,937
5/15/2020	3	6	29,067
5/21/2020	3	6	29,118
5/29/2020	3	6	29,179
6/5/2020	3	6	29,239
6/29/2020	0	0	Hot, not running
7/8/2020	0	0	Unit Down
8/11/2020	0	0	Unit Down
8/25/2020	0	0	Unit Down
9/16/2020	0	0	Unit Down
9/22/2020	0	0	Unit Down
10/26/2020	0	0	Unit Down
11/9/2020	0	0	Unit Down
12/8/2020	0	0	Unit Down
1/5/2021	0	0	Unit Down
1/20/2021	0	0	Unit Down
2/11/2021	0	0	Unit Down
2/17/2021	0	0	Unit Down
3/22/2021	0	0	Unit Down
*3/31/2021	5.6	7	29,241
6/29/2021	5.6	7	29,262
9/30/2021	5.6	7	29,281
12/31/2021	5.6	7	29,320

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

WSP 1 of 1

ENCLOSURE A – ANALYTICAL LABORATORY REPORT

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: clients.hallenvironmental.com

January 03, 2022

Mitch Killough
Hilcorp Energy
PO Box 61529

Houston, TX 77208-1529 TEL: (337) 276-7676

FAX:

RE: Federal 18 IT OrderNo.: 2112724

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 1 sample(s) on 12/8/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **2112724**

Date Reported: 1/3/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: Tubing

 Project:
 Federal 18 IT
 Collection Date: 12/6/2021 8:40:00 AM

 Lab ID:
 2112724-001
 Matrix: GROUNDWA
 Received Date: 12/8/2021 7:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed Batch
EPA METHOD 300.0: ANIONS						Analyst: LRN
Chloride	15	5.0		mg/L	10	12/14/2021 3:07:15 PM R84545
SM2510B: SPECIFIC CONDUCTANCE						Analyst: LRN
Conductivity	2500	10		µmhos/c	1	12/13/2021 11:20:06 AM R84513
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst: CJS
Total Dissolved Solids	2420	40.0	*D	~~ ~ /l	1	•
	2430	40.0	D	mg/L	1	12/14/2021 2:50:00 PM 64451
SM4500-H+B / 9040C: PH						Analyst: LRN
pH	7.15		Н	pH units	1	12/13/2021 11:20:06 AM R84513
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Benzene	33	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Toluene	20	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Ethylbenzene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Naphthalene	ND	2.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1-Methylnaphthalene	ND	4.0		μg/L	1	12/15/2021 1:34:00 PM R84549
2-Methylnaphthalene	ND	4.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Acetone	13	10		μg/L	1	12/15/2021 1:34:00 PM R84549
Bromobenzene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Bromodichloromethane	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Bromoform	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Bromomethane	ND	3.0		μg/L	1	12/15/2021 1:34:00 PM R84549
2-Butanone	ND	10		μg/L	1	12/15/2021 1:34:00 PM R84549
Carbon disulfide	ND	10		μg/L	1	12/15/2021 1:34:00 PM R84549
Carbon Tetrachloride	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Chlorobenzene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Chloroethane	ND	2.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Chloroform	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Chloromethane	ND	3.0		μg/L	1	12/15/2021 1:34:00 PM R84549
2-Chlorotoluene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
4-Chlorotoluene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
cis-1,2-DCE	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	12/15/2021 1:34:00 PM R84549
Dibromochloromethane	ND	1.0		μg/L	1	12/15/2021 1:34:00 PM R84549

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 9

Analytical Report

Lab Order **2112724**

Date Reported: 1/3/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: Tubing

 Project:
 Federal 18 IT
 Collection Date: 12/6/2021 8:40:00 AM

 Lab ID:
 2112724-001
 Matrix: GROUNDWA
 Received Date: 12/8/2021 7:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst:	ССМ
Dibromomethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,2-Dichlorobenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,3-Dichlorobenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,4-Dichlorobenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Dichlorodifluoromethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1-Dichloroethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1-Dichloroethene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,2-Dichloropropane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,3-Dichloropropane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
2,2-Dichloropropane	ND	2.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1-Dichloropropene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Hexachlorobutadiene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
2-Hexanone	ND	10	μg/L	1	12/15/2021 1:34:00 PM	R84549
Isopropylbenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
4-Isopropyltoluene	1.4	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
4-Methyl-2-pentanone	ND	10	μg/L	1	12/15/2021 1:34:00 PM	R84549
Methylene Chloride	ND	3.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
n-Butylbenzene	ND	3.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
n-Propylbenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
sec-Butylbenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Styrene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
tert-Butylbenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Tetrachloroethene (PCE)	1.1	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
trans-1,2-DCE	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1,1-Trichloroethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,1,2-Trichloroethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Trichloroethene (TCE)	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Trichlorofluoromethane	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
1,2,3-Trichloropropane	ND	2.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Vinyl chloride	ND	1.0	μg/L	1	12/15/2021 1:34:00 PM	R84549
Xylenes, Total	6.0	1.5	μg/L	1	12/15/2021 1:34:00 PM	R84549
Surr: 1,2-Dichloroethane-d4	95.8	70-130	%Rec	1	12/15/2021 1:34:00 PM	R84549
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	12/15/2021 1:34:00 PM	R84549
Surr: Dibromofluoromethane	98.7	70-130	%Rec	1	12/15/2021 1:34:00 PM	R84549

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 9

Analytical Report

Lab Order **2112724**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 1/3/2022

CLIENT: Hilcorp Energy Client Sample ID: Tubing

 Project:
 Federal 18 IT
 Collection Date: 12/6/2021 8:40:00 AM

 Lab ID:
 2112724-001
 Matrix: GROUNDWA
 Received Date: 12/8/2021 7:30:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: CCM
Surr: Toluene-d8	97.3	70-130	%Rec	1	12/15/2021 1:34:00 P	M R84549

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- L Reporting Limit

Page 3 of 9

Hall Environmental Analysis Laboratory, Inc.

2112724 03-Jan-22

WO#:

Client: Hilcorp Energy
Project: Federal 18 IT

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R84545 RunNo: 84545

Prep Date: Analysis Date: 12/14/2021 SeqNo: 2971330 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R84545 RunNo: 84545

Prep Date: Analysis Date: 12/14/2021 SeqNo: 2971331 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.8 0.50 5.000 0 96.0 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **2112724 03-Jan-22**

Client: Hilcorp Energy
Project: Federal 18 IT

Sample ID: 100ng lcs	SampT	Type: LC	s	Test						
Client ID: LCSW	Batch	Batch ID: R84514			RunNo: 84	4514				
Prep Date:	Analysis D	Analysis Date: 12/14/2021			SeqNo: 2970477			;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.3	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	9.8		10.00		97.5	70	130			
Surr: Toluene-d8	9.9		10.00		98.6	70	130			

Sample ID: MB	Sample ID: MB SampType: MBLK				TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	Batch ID: R84514			RunNo: 84	4514					
Prep Date:	ate: Analysis Date: 12/14/2021		SeqNo: 2970480			Units: %Red					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	9.5		10.00	_	94.9	70	130				
Surr: 4-Bromofluorobenzene	9.9		10.00		99.5	70	130				
Surr: Dibromofluoromethane	9.8		10.00		98.2	70	130				
Surr: Toluene-d8	9.9		10.00		98.6	70	130				

SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES							
Batch	n ID: R8	4549	F	RunNo: 8	4549					
Analysis Date: 12/15/2021			S	SeqNo: 2971577			Units: µg/L			
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
19	1.0	20.00	0	97.3	70	130				
20	1.0	20.00	0	98.6	70	130				
20	1.0	20.00	0	101	70	130				
18	1.0	20.00	0	89.1	70	130				
19	1.0	20.00	0	93.9	70	130				
9.6		10.00		96.4	70	130				
9.7		10.00		97.4	70	130				
9.9		10.00		99.0	70	130				
9.8		10.00		97.7	70	130				
	Batch Analysis D Result 19 20 20 18 19 9.6 9.7 9.9	Batch ID: R8 Analysis Date: 12 Result PQL 19 1.0 20 1.0 20 1.0 18 1.0 19 1.0 9.6 9.7 9.9	Result PQL SPK value 19 1.0 20.00 20 1.0 20.00 20 1.0 20.00 18 1.0 20.00 19 1.0 20.00 9.6 10.00 9.7 10.00 9.9 10.00	Batch ID: R84549 FR Analysis Date: 12/15/2021 SPK Ref Val Result PQL SPK value SPK Ref Val 19 1.0 20.00 0 20 1.0 20.00 0 20 1.0 20.00 0 18 1.0 20.00 0 19 1.0 20.00 0 9.6 10.00 0 9.7 10.00 9.9 10.00	Batch ID: R84549 RunNo: 8 Analysis Date: 12/15/2021 SeqNo: 29 Result PQL SPK value SPK Ref Val %REC 19 1.0 20.00 0 97.3 20 1.0 20.00 0 98.6 20 1.0 20.00 0 101 18 1.0 20.00 0 89.1 19 1.0 20.00 0 93.9 9.6 10.00 96.4 9.7 10.00 97.4 9.9 10.00 99.0	Batch ID: R84549 RunNo: 84549 Analysis Date: 12/15/2021 SeqNo: 2971577 Result PQL SPK value SPK Ref Val %REC LowLimit 19 1.0 20.00 0 97.3 70 20 1.0 20.00 0 98.6 70 20 1.0 20.00 0 101 70 18 1.0 20.00 0 89.1 70 19 1.0 20.00 0 93.9 70 9.6 10.00 96.4 70 9.7 10.00 97.4 70 9.9 10.00 99.0 70	Batch ID: R8±549 RunNo: 8±549 Analysis Date: 12/15/2021 SeqNo: 2971577 Units: µg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 19 1.0 20.00 0 97.3 70 130 20 1.0 20.00 0 101 70 130 20 1.0 20.00 0 89.1 70 130 18 1.0 20.00 0 89.1 70 130 19 1.0 20.00 0 93.9 70 130 9.6 10.00 96.4 70 130 9.7 10.00 97.4 70 130 9.7 10.00 99.0 70 130	Batch ID: R8±49 RunNo: 8±49 Analysis Date: 12/15/2021 SeqNo: 2971577 Units: μg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 19 1.0 20.00 0 97.3 70 130 20 1.0 20.00 0 98.6 70 130 20 1.0 20.00 0 101 70 130 18 1.0 20.00 0 89.1 70 130 19 1.0 20.00 0 93.9 70 130 9.6 10.00 96.4 70 130 9.7 10.00 97.4 70 130 9.7 10.00 97.4 70 130 9.7 10.00 97.4 70 130 9.7 10.00 97.4 70 130 9.8 10.00 97.4 70 130 9.7 10.00 97.4 70 130	Batch ID: R84549 RunNo: 84549 Analysis Date: 12/15/2021 SeqNo: 2971577 Units: µg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 19 1.0 20.00 0 98.6 70 130 20 1.0 20.00 0 101 70 130 20 1.0 20.00 0 89.1 70 130 18 1.0 20.00 0 89.1 70 130 19 1.0 20.00 0 93.9 70 130 9.6 10.00 96.4 70 130 9.7 10.00 97.4 70 130 9.7 10.00 97.4 70 130 9.9 70 130 10 9.9 70 130 10 9.7 10.00 97.4 70 130 9.7 10.00 97.4 70	

Sample ID: mb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	1D: R8	4549	F	RunNo: 8	4549				
Prep Date:	Analysis Date: 12/15/2021			8	SeqNo: 2	971578				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 9

Hall Environmental Analysis Laboratory, Inc.

2112724 03-Jan-22

WO#:

Client: Hilcorp Energy **Project:** Federal 18 IT

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Cample ID. IIID	Campi	ypc. IIIL		103		Ametriou	0200D. VOL			
Client ID: PBW	Batch	n ID: R8 4	4549	R						
Prep Date:	Analysis D	ate: 12	2/15/2021	S	SeqNo: 29	971578	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 6 of 9

Hall Environmental Analysis Laboratory, Inc.

2112724 03-Jan-22

WO#:

Client: Hilcorp Energy
Project: Federal 18 IT

Sample ID: mb	SampT	ype: ME	BLK	Tes						
Client ID: PBW	Batch	n ID: R8	4549	F	RunNo: 8					
Prep Date:	Analysis D	ate: 12	2/15/2021	Ş	SeqNo: 2	971578	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.0	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.0	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 9

Hall Environmental Analysis Laboratory, Inc.

Qual

WO#:

2112724 03-Jan-22

Client: Hilcorp Energy **Project:** Federal 18 IT

Sample ID: Ics-1 99.3uS eC

SampType: Ics

TestCode: SM2510B: Specific Conductance

Client ID: LCSW

Batch ID: R84513

RunNo: 84513

Prep Date:

Analysis Date: 12/13/2021

SeqNo: 2969951

Units: µmhos/cm

PQL SPK value SPK Ref Val %REC HighLimit %RPD Analyte Result LowLimit Conductivity 99 10 99.30 0 99.9 85 115

Sample ID: Ics-2 99.3uS eC

SampType: Ics

TestCode: SM2510B: Specific Conductance

Client ID: LCSW

Batch ID: R84513

RunNo: 84513

Prep Date:

Analysis Date: 12/13/2021

SeqNo: 2970003

Units: µmhos/cm

Analyte

99.30

HighLimit

%RPD

SPK value SPK Ref Val %REC LowLimit

100

104

115

Conductivity

RPDLimit

RPDLimit

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix interference Analyte detected in the associated Method Blank

Estimated value Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 8 of 9

Hall Environmental Analysis Laboratory, Inc.

2112724 03-Jan-22

WO#:

Client: Hilcorp Energy
Project: Federal 18 IT

Sample ID: MB-64451 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **PBW** Batch ID: **64451** RunNo: **84529**

Prep Date: 12/13/2021 Analysis Date: 12/14/2021 SeqNo: 2970538 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-64451 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 64451 RunNo: 84529

Prep Date: 12/13/2021 Analysis Date: 12/14/2021 SeqNo: 2970539 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1000 20.0 1000 0 100 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

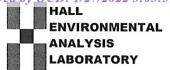
H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank


E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: clients.hallenvironmental.com Client Name: Hilcorp Energy Work Order Number: 2112724 RcptNo: 1 Received By: **Tracy Casarrubias** 12/8/2021 7:30:00 AM Chal Completed By: Cheyenne Cason 12/9/2021 5:13:57 PM Reviewed By: Jn12/10/21 Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No \square Not Present 2. How was the sample delivered? Client Log In 3. Was an attempt made to cool the samples? No 🗌 NA 🗌 Yes 🗸 No 🗌 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗌 5. Sample(s) in proper container(s)? Yes 🗸 No Yes 🗸 No \square Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? No 🗸 NA 🗌 Yes 8. Was preservative added to bottles? NA 🗌 Yes 🗸 No 🗌 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes \square No 🗸 10. Were any sample containers received broken? # of preserved bottles checked Yes 🗸 No 🗌 for pH: 11. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 🗌 Yes 🗸 No 🗌 13. Is it clear what analyses were requested? Checked by: Sec 17/10/4 14. Were all holding times able to be met? Yes 🗸 No (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗸 Yes 15. Was client notified of all discrepancies with this order? No 🔲 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks:

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	-0.4	Good	Yes			
2	1.0	Good	Yes			

Received by OCD: 1/27/2	022 :	8:03:51 PM	-						\top	\neg	_			_	_	Page	22 o f 23
_ ≿				R	V	C:Ho						+		+		1	
₹ K		(13)	4 5	3/1	MA	S ON								1		1	
ΣĔ						/			$\dagger \dagger$		1					25	report
1 2 6 7		5	T	. 6	10	348	×					T				frozn.	alytical
M 87 T 107		Ho	} '	7	1.50	CHLE	\times				+				\vdash	٠ .	he ans
AB al.co	iest	(tnəsdA\tr	Jəsə.	ıд) и	ıtorı	Total Col								\dagger		not - THE	ed on t
ENVIRONMENTA YSIS LABORATOR environmental.com Albuquerque, NM 87109 Fax 505-345-4107	Redi		(AO\	/-im	9S) 0728								\dagger		3	notate
Ironn uque	sis				(Ac	SS60 (VC	×			7.5	T			+		Samples	clearly
<u> </u>	Analysis Request	PO4, SO4	10 ⁵	'εC	N '	Cl' E' BL										8	vill be
LL AL hall	A			sls	јэМ	8 ARDA					\top					<u>ئ</u>	data v
HALL ANAL www.hal kins NE -		SMISC	9270	10 О	168	yd sHA9		3								1.0 -	racted
HALL ANAL www.ha Hawkins NE 505-345-3975			(1.t	09 F	оц	EDB (We									-	10 10	p-conti
#ALL ANA www.h 4901 Hawkins NE Tel. 505-345-3978		PCB's	2808	3/səp	ioite	8081 Pes										1 4	Any sul
49 T		O / MRO)	AO \	ояє) a 9	108:H9T										Remarks: 1.) - 0.4 2.) 1.0	oility. /
		(1208) e'	ВМТ	/∃8	ΒTΝ	I \X∃T8										Remarks: 1.) – 0.4 2.) 1.0	2/6/21 This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Ę :		- 5		(၁့			-									of this
						6.5										Time //SSC //Sime //SSC	notice
14.77					MIMON	HEAL NO. 2724									i (L 1,	Se as
		J		٥	W	# ² 2	~			4.						Date Date	12/6/ This serv
# **		3		2		N	8								2	3 3	5 T
Rush		7			500											38	ited laboratories.
le:		\rightarrow	15	se	ng CF)	serve	C.									2	ed labo
[:⊆ /()]		nager:	wei	7 Yes		Prese Type	H									Via Via	credit
Turn-Around Tin X Standard Project Name:		Project Manager	1 1	On Ice:	emp	#		Б					27.0			× -3×	The second
Turn-Arou		ect N	Sampler:	S	ler T	Container Type and #	10									Received by	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Turr Proj		Proj	San	On Ice:	800	L Sol										Received by:	ntracte
		(n															osqns
힏		receptory													1	11	пау be
8 1		Vali				ō	7								6	13 :	ental m
dy Reco	- 1	Cev Prof Full				Sample Name	Tabine								9	10	vironim
>	43	Inc.	ė			<u>e</u>	13								,	73	all Env
to to	-504	rstrecth	☐ Az Compliance			amp	1								\		d to H
Sn	a.	공항 미	dwo	_		ΐ	_						_			Relinquished by	bmitte
Of-C	484		Az C	□ Other		Matrix	(Le									nquisi nquisi	oles su
S:	505	Khoel				Ma	\rightarrow									Refi	If necessary, samples submitted to Hall Environmental may be subconfiracted to other accred
dres dres	N	ax#: :kage	on:	vne)		Time	8,40							5 (SSO me:	
Chaing Address:	#:	email or Fax#: Khookshvec Chileorp. cow QA/QC Package: mkilloughe hileorp? cown Standard	Accreditation:	☐ NELAC	-	įΞ	_			_		3				Time:	If nec
Client:	Phone #:	A/QC	ccre			Date	12-6							- 5		Date:	200
Pologod to Imagina, 2/0	<u> </u>	o O ∐	V	٦١٦			4100										3

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 76102

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	76102
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of 4Q 2021 Remediation System Update Report: Content satisfactory 1. Continue sampling to monitor the benzene concentrations in the groundwater 2. Continued operation of the vacuum and water pumps 3. Incrementally increase the amount of time per day that the vacuum pump is in operation to assess the performance. If the pump is able to sustain increased runtime, continue to increase cycles until the pump is capable of running 24 hours per day 4. Continue quarterly reporting to OCD. 2022 first quarter reporting expected to be submitted no later than 05/31/2022.	2/9/2022