District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NRM2024854885
District RP	
Facility ID	
Application ID	

Release Notification

			Respo	onsible Party	У
Responsible Party XTO Energy		OGRID 4	5380		
Contact Name Kyle Littrell				Contact Te	elephone 432-221-7331
Contact ema	il Kyle_Lit	trell@xtoenergy.c	om	Incident #	(assigned by OCD)
Contact mail	ing address	522 W. Mermod	, Carlsbad, NM 88	220	
			Location	of Release So	ource
Latitude 32.	47873			Longitude	104.11116
-	-		(NAD 83 in deci	imal degrees to 5 decim	aal places)
Site Name I	Big Eddy Un	uit 150		Site Type	well pad
Date Release				API# (if app	
TI-:AI	Castian	Tauratia	Danas	Comm	
Unit Letter	Section	Township	Range	Coun	·
K	17	21S	28E	Edd	·
Surface Owne			Nature and	Volume of I	
Crude Oil		Volume Release		calculations or specific	ustification for the volumes provided below) Volume Recovered (bbls)
				Volume Recovered (bbls) 1.00	
Is the concentration of total dissolved solids in the produced water >10,000 mg/l?			Yes No		
Condensate Volume Released (bbls)			Volume Recovered (bbls)		
Natural Gas Volume Released (Mcf)			Volume Recovered (Mcf)		
Other (de	vscribe) Volume/Weight Released (provide units)		Volume/Weight Recovered (provide units)		
Cause of Rel	transfer		ruck was dispatche		on line between the produced water tanks and the lstanding fluid. A third-party contractor has been

Form C-141 Page 2

State of New Mexico Oil Conservation Division

Incident ID	NRM2024854885
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the respon	nsible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	N/A	
19.13.29.7(A) NWAC:		
☐ Yes 🗷 No		
If YES, was immediate no	otice given to the OCD? By whom? To wh	nom? When and by what means (phone, email, etc)?
N/A	since given to the CCB. By when I is wi	tom: When and by What mounts (phone, email, etc).
		,
y"	Initial Ro	esponse
The responsible p	party must undertake the following actions immediatel	y unless they could create a safety hazard that would result in injury
➤ The source of the rele	ease has been stopped	
	s been secured to protect human health and	the environment
	•	
l		likes, absorbent pads, or other containment devices.
★ All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain	why:
Day 10 15 20 9 D (4) ND	IAC Al-	
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
		best of my knowledge and understand that pursuant to OCD rules and
		fications and perform corrective actions for releases which may endanger
		OCD does not relieve the operator of liability should their operations have
failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws		
and/or regulations.		
Printed Name: Kyle Littr	ell	Title: SH&E Supervisor
111		
Signature	Jether	Date:
email: Kyle_Littrell@xto	energy.com	Telephone: 432-221-7331
		Telephone.
OCD Only		
OCD OIII <u>y</u>		
Received by:Ramo	na Marcus	Date:9/4/2020

Location:	BEU 150		
Spill Date:	8/19/2020		
	Area 1		
Approximate A	ea =	1762.00	sq. ft.
Average Satura	tion (or depth) of spill =	1.00	inches
Average Porosit	y Factor =	0.20	
	VOLUME OF LEAK		
Total Produced	Water =	6.23	bbls

TOTAL VOLUME OF LEAK		
Total Produced Water =	6.23 bbls	
TOTAL VOLUME RECOVERED		
Total Produced Water =	1.00 bbls	

	Page 4 of 2	66
Incident ID	NRM2024854885	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	51-100 (ft bgs)	
Did this release impact groundwater or surface water?	☐ Yes ☑ No	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☑ No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☑ No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☑ No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	✓ Yes ☐ No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☑ No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☑ No	
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☑ No	
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☑ No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	✓ Yes ☐ No	
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☑ No	
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☑ No	
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.		
Characterization Report Checklist: Each of the following items must be included in the report.		
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well	ls.	
 ✓ Field data ✓ Data table of soil contaminant concentration data 		
Depth to water determination		
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs		
✓ Photographs including date and GIS information		
✓ Topographic/Aerial maps		

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

✓ Laboratory data including chain of custody

Received by OCD: 8/13/2021 12:39:46 PM Form C-141 State of New Mexico Oil Conservation Division Page 4

	Page 5 of 20	0
nt ID	NRM2024854885	
+ DD		

Incident ID	NRM2024854885
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name: Adrian Baker Signature: Odvion Baker	Title: Environmental Coordinator	
Signature: Clobian Baks	Date: 8/12/2021	
email: adrian.baker@exxonmobil.com	Telephone: 432-236-3808	
OCD Only		
Received by:	Date:	

Remediation Plan Checklist: Each of the following items must be included in the plan.

Page 6 of 266

	1 480 0 0 1
Incident ID	NRM2024854885
District RP	
Facility ID	
Application ID	

Remediation Plan

 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC ☑ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 					
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.				
Contamination must be in areas immediately under or around predeconstruction.	oduction equipment where remediation could cause a major facility				
Extents of contamination must be fully delineated.					
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Adrian Baker Title: Environmental Coordinator Date: 8/12/2021 Telephone: 432-236-3808					
OCD Only					
Received by: Approved	Date: Approval				
Signature: Jennifer Nobili	Date: 02/28/2022				

Deferral Request Denied.

wsp

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

August 12, 2021

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Remediation Work Plan and Deferral Request Big Eddy Unit 150 XTO Energy, Inc. Incident Number NRM2024854885 Eddy County, New Mexico

To Whom it May Concern:

WSP USA Inc. (WSP) on behalf of XTO Energy, Inc. (XTO), presents the following Remediation Work Plan detailing remediation activities completed to date and a proposed work plan to address residual impacted soil at the Big Eddy Unit 150 (Site) in Unit K, Section 17, Township 21 South, Range 28 East, in Eddy County, New Mexico (Figure 1). The purpose of the remediation activities completed to date was to address impacts to soil resulting from the release of produced water at the Site, by safely excavating impacted soil to the extent possible based on Site conditions and allowed by safety policy (Attachment 1). The proposed work plan is designed to address remaining impacts to soil by installing a 20-mil impermeable liner in the subsurface and requesting deferral of final remediation around a third-party active gas line until it is decommissioned and removed by the third party operator.

RELEASE BACKGROUND

On August 19, 2020, a hole was discovered on the suction line between the produced water tanks and the transfer pump. Approximately 6.23 barrels (bbls) of produced water were released within the earthen tank battery containment berm. Hydrovac trucks were immediately dispatched to the Site and recovered approximately 1 bbl of produced water. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form (Form C-141) on September 2, 2020. The release was assigned Incident Number NRM2024854885.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 51 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater

well with depth to groundwater data is the New Mexico Office of the State Engineer (NMOSE) well CP-01744, located approximately 275 feet southwest of the Site. The water well has a depth to groundwater of approximately 82 feet bgs. NMOSE well CP-01744 is owned by Ellipse Global and is currently permitted for multiple domestic household use.

NMOSE well CP-00627 appeared to be closest to the Site, however, based on additional review and communication with the NMOSE, well CP-00627 is located 734 feet from the Site and 100 feet northwest of CP-00627-POD2. A latitude and longitude was not provided for CP-00627 in the drilling log so the location was subsequently placed in the center of Unit K, Section 17, Township 21 South, Range 28 East. Under *Additional Statements or Explanations* in the application, it states that well CP-00627 would be moved approximately 100 feet southeast due to a damaged 4-inch PVC casing. The application for CP-00627-POD2 was submitted to replace CP-00627 but that well was never drilled. The transaction number (475176) for the application is found under both Water Right Summaries for well CP-00627 and well CP-00627-POD 2. Figure 1 displays the locations of the water wells researched during the desktop review. Referenced well records are provided in Attachment 2.

The closest continuously flowing water or significant watercourse to the Site is an intermittent stream approximately 5,810 feet northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and less than 300 feet from an occupied residence. The Site is less than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is located within a high-potential karst area. Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

• Benzene: 10 milligrams per kilogram (mg/kg)

Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg

Total petroleum hydrocarbons (TPH): 100 mg/kg

Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On September 1, 2020, WSP personnel conducted site assessment activities to evaluate the release extent. Additionally, WSP reviewed and verified the Form C-141 incident descriptions (release source and release location) with visual soil impacts present onsite; it was confirmed that the subject release was contained to the earthen berm.

WSP personnel collected one representative surface sample from within the release extent. The soil sample was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach® chloride QuanTab® test strips, respectively. Based on elevated field screening results, the soil sample was not submitted for laboratory analysis. Additional remediation efforts were warranted and were scheduled to be completed following the upcoming plugging and abandonment (P&A) activities. The release extent was mapped utilizing a handheld Global Positioning System (GPS) unit and is depicted on Figure 2.

EXCAVATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

Following P&A activities and the removal of inactive subsurface XTO utilities, WSP personnel returned to the Site to oversee excavation activities between July 20, 2021 and July 23, 2021. To direct excavation activities, WSP screened soil for volatile aromatic hydrocarbons and chloride utilizing a calibrated PID and Hach® chloride QuanTab® test strips, respectively. Following removal of impacted soil to the extent possible, WSP collected 5-point composite soil samples at a frequency of at least every 200 square feet from the sidewalls and floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite floor samples FS01 through FS25 were collected from the floor of the excavation from depths ranging from 4 feet to 8 feet bgs. Composite sidewall samples SW01 through SW09 were collected from the sidewalls of the excavation from depths ranging from the ground surface to 4 feet bgs. Additional soil could not be removed in the area around sidewall sample SW05 due to the proximity of an active third-party gas line. The excavation soil sample locations and excavation extent were mapped utilizing a handheld Global GPS unit and are depicted on Figure 2.

The excavation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Midland, Texas, for analysis of BTEX following EPA Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

The final excavation extent measured approximately 4,525 square feet. A total of approximately 1,080 cubic yards of impacted soil were removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Facility under XTO approved manifests. After completion of confirmation sampling, the excavation was secured with fencing.

Laboratory analytical results for the excavation soil samples indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria in all sidewall samples except SW05, which was collected along the sidewall adjacent to the third-party

active gas line. Additional soil could not be removed in the area beneath and around sidewall sample SW05 due to safety policies in place for the third-party active gas line. Laboratory analytical results indicated that benzene, BTEX, and TPH concentrations were compliant with the Closure Criteria in all floor samples collected from the final excavation extent. Laboratory analytical results indicated that chloride concentrations exceeded the Closure Criteria in floor samples FS03 through FS05, FS07 through FS09, FS11 through FS13, FS15 through FS18, and FS25. Photographic documentation was conducted during the Site visits. A photographic log is provided in Attachment 3.

Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are provided in Attachment 4.

DELINEATION SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On July 26, 2021, WSP personnel returned to the Site to complete delineation activities via Core Drill. Boreholes BH01 and BH02 were advanced to a depth of 18 feet bgs within the open excavation to the define the vertical extent of impacted soil left in place. One delineation soil sample was submitted for laboratory analysis from boreholes BH01 and BH02 from a depth of 18 feet bgs, where field screening results indicated a clean vertical depth. Borehole BH03 was advanced to a depth of 18 feet bgs east of the active third-party gas line to define the lateral extent of impacted soil left in place around the gas line. Delineation soil samples were collected from borehole BH03 from depths ranging from 1-foot to 18 feet bgs. Field screening results and observations for the boreholes were logged on lithologic/soil sampling logs, which are included in Attachment 5. The delineation soil samples were collected and analyzed as described above. The borehole locations were mapped utilizing a handheld Global GPS unit and are depicted on Figure 3.

Laboratory analytical results for the delineation soil samples collected from boreholes BH01 through BH03 indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. Based on the laboratory analytical results, the lateral and vertical extent of chloride impacted soil left in place was successfully defined.

The laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are provided in Attachment 4.

PROPOSED REMEDIATION WORK PLAN

To address the remaining impacts, which are characterized by chloride concentrations ranging from 640 mg/kg to 4,410 mg/kg and extending to a depth of up to 18 feet bgs, WSP proposes installation of a liner to mitigate further impacts into the subsurface. WSP does not believe additional excavation is warranted, as impacts in the top 4 feet have been removed and groundwater is documented to be greater than 51 feet bgs at the Site. Delineation and excavation

soil sampling provided full lateral and vertical delineation of the remaining impacted soil beneath the excavation.

XTO proposes to install a 20-mil impermeable liner over the impacted soil within excavation. Once complete, XTO will backfill the area with non-waste containing soil. The proposed liner extent is shown on Figure 4. Following approval of this work plan by NMOCD, XTO will coordinate the liner installation and backfilling activities.

DEFERRAL REQUEST

A total of approximately 1,080 cubic yards of impacted soil were excavated from the Site; however, due to safety policy, residual impacted soil was left in place immediately adjacent to a third-party active gas line. Laboratory analytical results for excavation sidewall sample SW05 indicated that soil with a chloride concentration of 3,420 mg/kg was left in place.

The impacted soil remaining in place is delineated vertically and laterally by excavation soil samples SW04, SW06, FS06, and FS10, collected from the sidewalls and floor of the final excavation extent, and delineation soil samples collected from borehole BH03. An estimated 109 cubic yards of impacted soil remains in place, assuming a maximum 4-foot depth based on the excavation and delineation soil samples listed above, that were compliant with the Closure Criteria and the installation of the proposed liner.

XTO requests to complete final remediation after decommissioning of the third-party active gas line. If additional chloride impacted soil is encountered after decommissioning of the line, remediation activities will include achieving a clean eastern sidewall boundary via excavation of the top four feet and extending the liner. WSP and XTO do not believe deferment will result in imminent risk to human health, the environment, or groundwater. The majority of the released fluids were recovered during initial response activities, the impacted soil remaining in place is limited to the area immediately around the third-party active gas line, and no saturated soil remains in-place. XTO requests deferral of final remediation for the area immediately surrounding the third-party active gas line. The deferral request area is depicted on Figure 4.

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

Sincerely,

WSP USA Inc.

Joseph S. Hernandez

Associate Consultant, Geologist

Ashley L. Ager, M.S., P.G.

Ashley L. Ager

Assistant Vice President, Geologist

cc: Adrian Baker, XTO

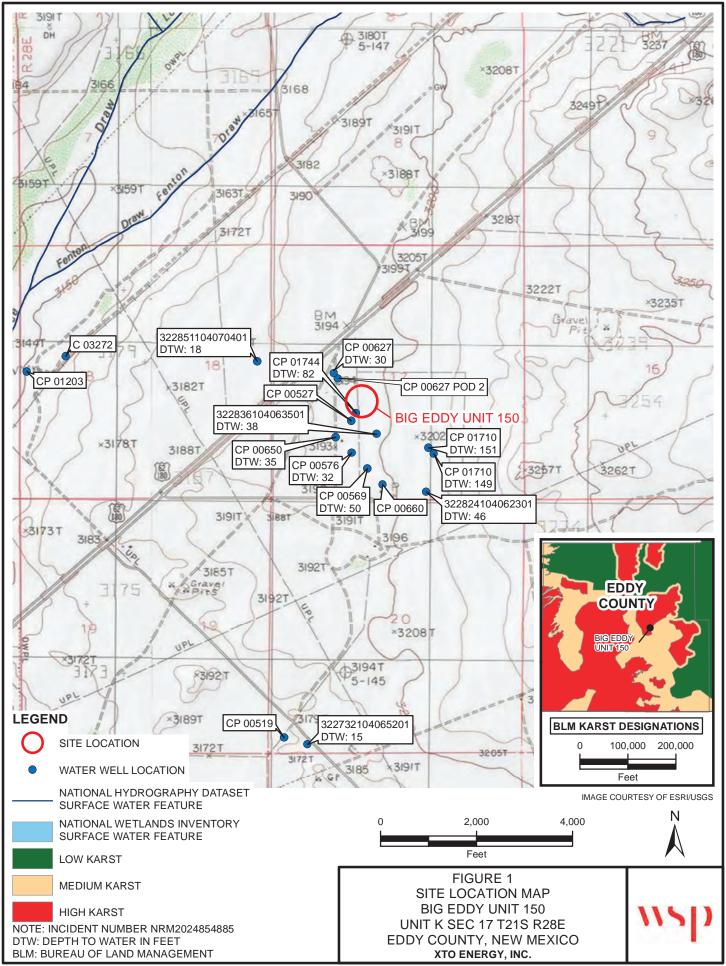
Incident Catering Services LLC DBA Ellipse Global

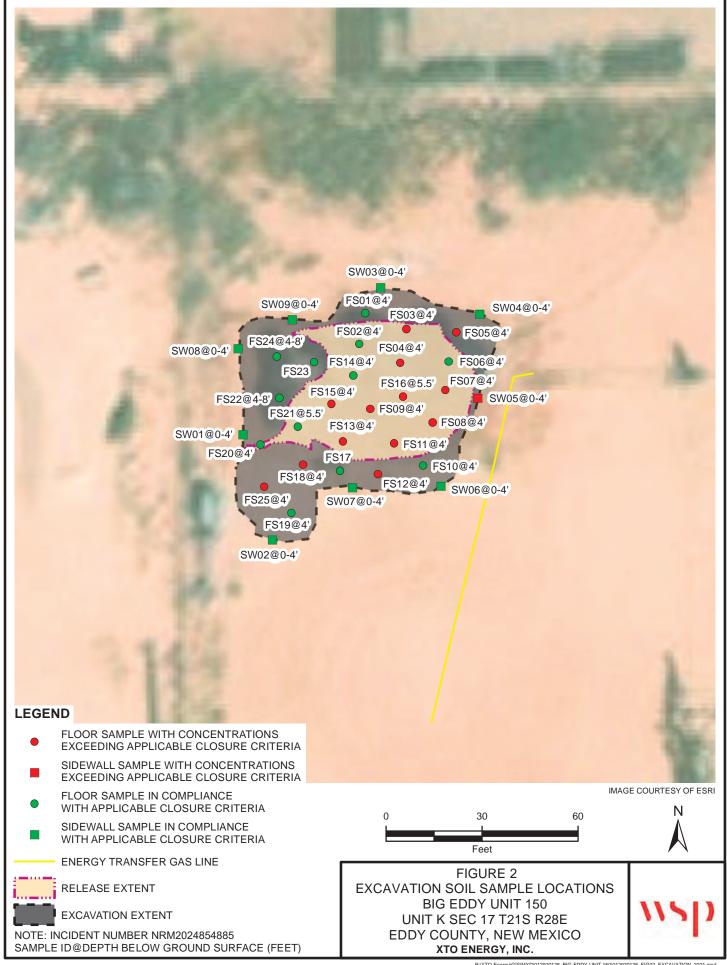
Attachments:

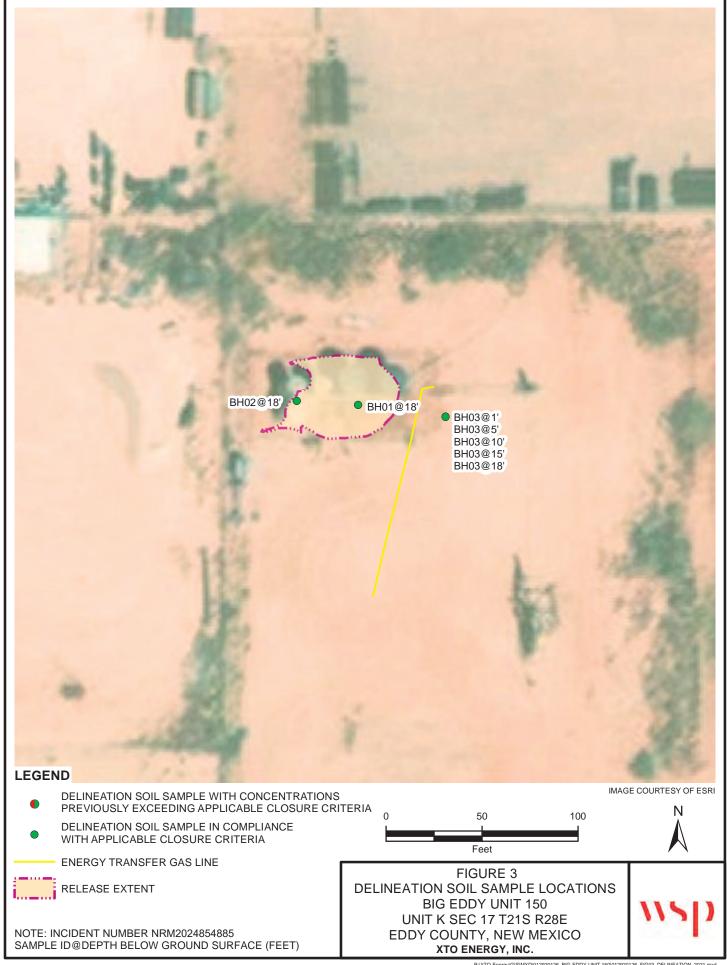
Figure 1 Site Location Map

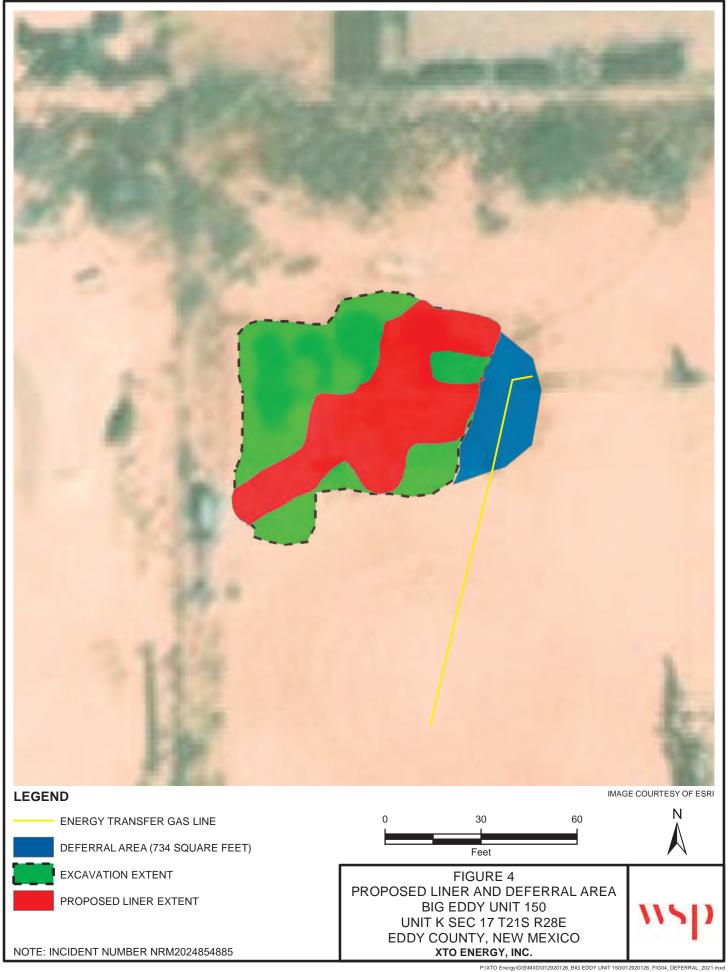
Figure 2 Excavation Soil Sample Locations
Figure 3 Delineation Soil Sample Locations
Figure 4 Proposed Liner and Deferral Area

Table 1 Soil Analytical Results


Attachment 1 Energy Transfer I.28 Right of Way Encroachment


Attachment 2 Referenced Well Records


Attachment 3 Photographic Log


Attachment 4 Laboratory Analytical Reports

Attachment 5 Lithologic / Soil Sampling Log

Received by OCD: 8/13/2021 12:39:46 PM

Table 1

Soil Analytical Results Big Eddy Unit 150 Incident Number NRM2024854885 XTO Energy, Inc. Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 C	losure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Sidewall Samples										
SW01	07/21/2021	0-4	< 0.00200	< 0.00401	<49.9	86.3	<49.9	86.3	86.3	317
SW02	07/22/2021	0-4	< 0.00202	< 0.00403	<49.9	<49.9	<49.9	<49.9	<49.9	449
SW03	07/21/2021	0-4	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	411
SW04	07/21/2021	0-4	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	521
SW05	07/20/2021	0-4	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	3,420
SW06	07/21/2021	0-4	< 0.00202	< 0.00403	<50.0	<50.0	<50.0	<50.0	<50.0	407
SW07	07/21/2021	0-4	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	375
SW08	07/21/2021	0-4	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	37.3
SW09	07/21/2021	0-4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	438
loor Samples	•									
FS01	07/22/2021	4	< 0.00199	< 0.00398	<50.0	< 50.0	<50.0	<50.0	< 50.0	246
FS02	07/22/2021	4	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	149
FS03	07/22/2021	4	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	640
FS04	07/22/2021	4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	709
FS05	07/22/2021	4	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	1,610
FS06	07/20/2021	4	< 0.00202	< 0.00404	<49.9	<49.9	<49.9	<49.9	<49.9	167
FS07	07/20/2021	4	< 0.00200	< 0.00400	<50.0	<50.0	<50.0	<50.0	<50.0	4,410

Received by OCD: 8/13/2021 12:39:46 PM

Table 1

Soil Analytical Results Big Eddy Unit 150 Incident Number NRM2024854885 XTO Energy, Inc. Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Cl	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
FS08	07/20/2021	4	< 0.00202	< 0.00403	<50.0	<50.0	<50.0	<50.0	<50.0	2,040
FS09	07/21/2021	4	< 0.00200	< 0.00400	<50.0	83.9	<50.0	83.9	83.9	2,470
FS10	07/22/2021	4	< 0.00198	< 0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	596
FS11	07/22/2021	4	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	1,470
FS12	07/22/2021	4	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	654
FS13	07/22/2021	4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	1,350
FS14	07/22/2021	4	< 0.00201	< 0.00402	<49.7	<49.7	<49.7	<49.7	<49.7	265
FS15	07/22/2021	4	< 0.00200	< 0.00400	<49.8	<49.8	<49.8	<49.8	<49.8	988
FS16	07/23/2021	5.5	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	1,130
FS17	07/22/2021	4	< 0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	737
FS18	07/22/2021	4	< 0.00198	< 0.00396	<50.0	<50.0	<50.0	<50.0	<50.0	1,180
FS19	07/22/2021	4	< 0.00199	< 0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	248
FS20	07/22/2021	4	< 0.00199	< 0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	286
FS21	07/23/2021	5.5	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	438
FS22	07/23/2021	4-8	< 0.00200	< 0.00401	<49.9	<49.9	<49.9	<49.9	<49.9	24.2
FS23	07/22/2021	4	< 0.00200	< 0.00400	<50.0	75.3	<50.0	75.3	75.3	489
FS24	07/23/2021	4-8	< 0.00200	< 0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	149
FS25	07/22/2021	4	0.00543	0.0302	<50.0	<50.0	<50.0	<50.0	<50.0	3,670

Received by OCD: 8/13/2021 12:39:46 PM

Table 1

Soil Analytical Results Big Eddy Unit 150 Incident Number NRM2024854885 XTO Energy, Inc. Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table 1 Clo	osure Criteria (NM	AC 19.15.29)	10	50	NE	NE	NE	NE	100	600
Delineation Samples										
BH01	07/26/2021	18	< 0.00198	< 0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	342
BH02	07/26/2021	18	< 0.00200	< 0.00399	< 50.0	<50.0	<50.0	<50.0	<50.0	113
BH03	07/26/2021	1	< 0.00200	< 0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	94.8
BH03	07/26/2021	5	< 0.00198	< 0.00396	< 50.0	< 50.0	<50.0	< 50.0	<50.0	112
BH03	07/26/2021	10	< 0.00200	< 0.00400	<49.9	<49.9	<49.9	<49.9	<49.9	200
BH03	07/26/2021	15	< 0.00199	< 0.00398	<50.0	<50.0	< 50.0	<50.0	< 50.0	36.6
BH03	07/26/2021	18	< 0.00202	< 0.00403	<50.0	<50.0	< 50.0	<50.0	< 50.0	26.5

Notes:

ft - feet/foot

mg/kg - milligrams per kilograms

BTEX - benzene, toluene, ethylbenzene, and total xylenes

TPH - total petroleum hydrocarbons

DRO - diesel range organics

GRO - gasoline range organics

ORO - oil range organics

ORO - oil range organics

NMOCD - New Mexico Oil Conservation Division

NMAC - New Mexico Administrative Code

< - indicates result is less than the stated laboratory method practical quantitation limit

NE - Not Established

BOLD - indicates results exceed the higher of the background sample result or applicable regulatory standard

Greyed data represents samples that were excavated

Volume I – PIPELINE

Standard Operating Procedures

Right-of-Way Encroachments/Activities

Applicable to Natural Gas Pipelines and Related Facilities

Code Reference		Procedure No.: 1.28				
49 CFR 192.93!	5 (b) (iv)	Effective Date: 11/01/18	Page 1 of 40			
1.0 Procedure Description	This Standard Operating Procedure (SOP way encroachments/activities including	_	company right-of-			
2.0 Scope	Use the guidelines in this SOP to control, with the potential to damage company processing company.					
3.0 Applicability	This SOP applies to encroachments/activ	rities on regulated company	pipeline facilities.			
4.0 Frequency	As required: for all encroachments/activ	ities on or near company ri	ght-of-way.			
5.0 Governance	The following table describes the respon operations described in this SOP.	sibility, accountability, and	authority of the			

Function	Responsibility	Accountability	Authority
Encroachments of Company Pipeline Facilities	Operations Personnel	Operations Manager	Director of Operations

Standard Operating Procedures Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 2 of 40
	11/01/18	

Function	Responsibility	Accountability	Authority
Undefined Easement Required Offsets	Operations Personnel	Right-of-Way Representative/ Encroachments Group	Right-of-Way Representative/ Encroachments Group
Restrictions on Encroachments	Operations Personnel	Operations Manager/Right-of- Way Representative	Director of Operations/Right- of-Way Representative
Proposed Site Encroachment Investigation	Operations Personnel/ Encroachments Group	Operations Manager/ Encroachments Group	Director of Operations/ Encroachments Group
Foreign Line Crossing Methods	Operations Personnel/ Encroachments Group	Operations Manager/ Encroachments Group	Director of Operations/ Encroachments Group
Investigation of Unknown Encroachments in Progress	Operations Personnel	Right-of-Way Representative/ Encroachments Group	Right-of-Way Representative/ Encroachments Group
Legal Action	Right-of-Way Representative/ Encroachments Group	Right-of-Way Representative/ Encroachments Group	Right-of-Way Representative/ Encroachments Group

6.0 Terms and Definitions Terms associated with this SOP are provided in SOP <u>A.01 Glossary and Acronyms</u>.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 3 of 40
	11/01/18	

Terms	Definitions
Easement	Legal document recorded and/or on file controlling company right-of-way.
Encroachment	Any use and/or activity on or near company right-of-way which could create safety concerns for company pipeline facilities or interferes with company property or easment rights.
Right-of-Way (ROW)	Physical route through real estate belonging to another defined by the easement.
Undefined Easement	Easement which does not limit the right-of-way to a detailed dimensional specification and route through the real estate covered by the easement.

7.0 Right-of-Way Encroachments/ Activities

This SOP contains the following sections:

- Encroachment of company pipeline facilities
- Undefined easement required offsets
- Restrictions on encroachments
- Proposed site encroachment investigation
- Foreign line crossing methods
- Investigation of unknown encroachments in progress
- Legal action

7.1 Encroachments of Company Pipeline

Operations Personnel follow the procedure below when notification of work is encroaching on or near company right-of-way.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 4 of 40
	11/01/18	

Facilities

NOTE: Operations Personnel follow *section 7.3.2* of SOP <u>I.31 One-Call System and Field</u> Response.

Step	Activity
1	ADVISE encroaching party of the nature of the product in the company pipeline facilities and the potential hazards.
2	CONSULT Right-of-Way Representative or Encroachments Group to REVIEW the terms of the easement for the tract of land involved.
3	REVIEW the total scope of the project and maintain contact with the contractors, developers, landowners and others until the work is complete.
4	PROVIDE a company representative to field locate and stake company pipeline facilities per SOP <u>B.04 Pipe Location and Marking</u> .
5	CONFIRM excavation methods will be completed per SOP <u>I.10 Excavation</u> and <u>Backfill</u> if company pipeline facilities will be excavated by a third party excavator and/or landowner.

NOTE: Prevent foreign easements from encroaching into company right-of-way when proposed foreign construction is parallel to and outside of company right-of-way.

Step	Activity
6	REFER to SOP <u>D.35 Buried Pipe Inspections</u> when buried company pipeline
	facilities may be exposed.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 5 of 40
	11/01/18	

NOTE: An encroachment of company right-of-way may require, as determined by Operations, a letter of no objection, crossing agreement or similar type document executed by a Right-of-Way Representative and filed in the applicable tract file.

PROVIDE a copy of Appendix B: Engineering and Construction Guidelines or a modified version of the guidelines as approved by the Right-of-Way Group or Encroachments Group to the contractors, developers, landowners and others.
 VERIFY a company representative will be on-site any time work is performed within the company right-of-way.

WARNING: Stop any work if it could cause damage, affect the safety and/or integrity of company pipeline facilities, is prohibited by the easement or is a violation of company rights. The on-site company representative has authority to contact local law enforcement to protect company pipeline facilities when necessary. **CONSIDER** delivery of cease and desist letter to third party excavator or landowner. Refer to section *7.7 Legal Action* below.

9	COMPLETE the applicable form(s) for <i>Encroachment Foreign Line Crossing Report</i> .
10	DOCUMENT in the applicable electronic database, as required.

7.2 Undefined Easement Required Offsets In the case where the company has an undefined easement, Operations Personnel maintains the following offset distances for proposed foreign encroachments/activities.

Step	Activity
1	CONSULT Right-of-Way Representative or Encroachments Group to

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference: Procedure No.: 1.28		
49 CFR 192.935 (b) (iv)	Effective Date:	Page 6 of 40
	11/01/18	

	EXAMINE the terms of the easements prior to establishing offset distances for contractors, developers, landowners and others.
2	LIMIT any encroachments/activities to a minimum distance of 50 feet from either side of a company pipeline when the company has an undefined easement.
3	VERIFY the offset distance is measured from the outside of the outermost pipeline (whether existing or proposed) when multiple company pipelines exist within the same corridor.

NOTE: Additional widths may be required for new encroachments/activities (e.g., buildings, trees, structures, or obstructions) within undefined easements when multiple line rights exist.

Step	Activity
4	OBTAIN prior written approval from the Director of Operations/Right-of-Way Representative/Encroachments Group for any variance from the footage requirements pertaining to company undefined easement encroachments.
5	The Right-of-Way Representative/Encroachments Group will DOCUMENT authorization in the applicable tract file.

7.3 Restrictions on Encroachments

Operations Personnel follow the procedure below regarding any encroachments/activities within company right-of-way.

CAUTION: Additional precautions pertaining to specific encroachments to avoid possible conflicts and/or hazards are listed in the following subsections. It is not the intent of this SOP to list all possible prohibited encroachments/activities affecting company right-of-way/pipeline facilities which include but are not limited to the

Standard Operating Procedures Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 7 of 40
	11/01/18	

following: air strip, athletic field, berm/terrace, building, campground, cemetary, chattel, dam/dike, drain, earthwork, garage, georthermal system, house/mobile home, lake/pond/reservoir, landfill, logging operation, material storage, mine/quarry, pole/signage, septic system, soil boring, swimming pool, tower, vehicle/equipment parking, wells, wetland or other improvments including any facility causing the permanent or temporary retention of water and any associated appurtenances, anchors/guys, foundations, junction boxes or supports. Consult the company Right-of-Way Representative/Encroachments Group and Operations Manager regarding any encroachments/activities not included in this SOP.

Step	Activity		
1	CONSULT the Right-of-Way Representative/Encroachments Group to		
	EXAMINE the terms of the easements prior to establishing offset distances and restrictions for contractors, developers, landowners and others.		

WARNING: Company pipelines with couplings and acetylene welds may be affected by encroachment activities. Safeguards per SOP <u>I.15 Coupled Pipeline and Acetylene Weld Reinforcement</u> need to be taken in areas where an adverse pipeline or site condition (insufficient cover, soil movement, vertical or side bend, etc.) exists possibly causing a coupling slip during activities or over stressing an acetylene weld.

2	RESTRICT any encroachments/activities within the company right-of-way not permissible under the terms of the easement.
3	CONSULT the Pipeline Specialist/Engineer or Encroachments Group to DETERMINE per SOP <u>I.27 Determination of Abnormal Loading</u> if external loading from construction equipment and/or traffic traveling on finished surfaces crossing company pipeline facilities is within acceptable limits.
4	VERIFY the excavator and/or landowner uses bridging or matting, when required, to cross company pipeline facilities with construction equipment.
5	PROVIDE protection for company pipeline facilities when damage could occur from the proximity of an approved foreign structure and adequate clearance cannot be attained.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 8 of 40
	11/01/18	

6	REFER to SOP <i>I.10 Excavation and Backfill</i> when an encroachment requires any excavation and/or backfill within company right-of-way.
7	REFER to SOP <u>D.35 Buried Pipe Inspections</u> when buried company pipeline facilities may be exposed.
8	OBTAIN prior approval from the Operations Manager/Right-of-Way Representative/Encroachments Group for any variance of the encroachment guidelines in the following subsections.
9	The Right-of-Way Representative/Encroachments Group will DOCUMENT authorization in the applicable tract file.

NOTE: Additional offset distances from company pipeline facilities may be required for activities outside of company right-of-way limits (e.g., blasting, mining, wind turbines, cell/radio towers).

7.3.1 Agricultural Drain Tile

For agricultural drain tile follow the procedure below. See *Section 7.3.7 Foreign Lines* (*Onshore*) for non-agricultural drain tile.

CAUTION: Reference section 7.3.7 Foreign Lines (Onshore) below. Extra precautions are necessary when agricultural drain tiles cross company pipeline facilities due to the nature, frequency and potential impact.

	Step	Task
·	1	REPORT any proposals to place agricultural drain tile across or parallel to company right-of-way to the Right-of-Way Representative and Operations Manager.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 9 of 40
	11/01/18	

2	2 ALLOW agricultural drain tiles to cross company pipeline facilities at or n right angles to company right-of-way with adequate clearance.	
3	OBTAIN prior approval from the Operations Manager if adequate clearance cannot be attained. VERIFY there is enough clearance not to interfere with future company maintenance or construction.	

CAUTION: Where a minimum clearance of 12 inches cannot be attained and if approved by Operations Manager ensure company pipeline facilities are protected from possible damage due to the proximity of an agricultural drain tile.

4 **RESTRICT** parallel agricultural drain headers from within the company right-of-way.

NOTE: Where applicable parallel agricultural drain tile headers may be approved by Operations Management to be installed no closer than 25 feet from company pipeline facilities.

7.3.2 Blasting

Follow the procedure below to monitor blasting outside of company right-of-way and within 300 feet of company pipeline facilities in accordance with SOP <u>I.23 Protection of Pipeline Facilities From Blasting Operations</u> to verify it is not detrimental to company pipeline facilities.

WARNING:

- Immediately stop any blasting endangering company pipeline facilities.
- Do not allow blasting within company right-of-way without the permission of the Director of Operations.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 10 of 40	
	11/01/18		

7.3.3 Communication Cables (e.g. Fiber Optic, Telephone, TV) For communication cables installed by <u>open cut</u> construction methods follow the procedure below. Communication cables include but are not limited to underground fiber optic, telephone and television cables.

CAUTION: Reference section 7.3.7 Foreign Lines (Onshore) below. Extra precautions are necessary when communication cables cross company pipeline facilities due to the nature, frequency and potential impact.

Step	Task	
1	VERIFY communication cables are placed in a rigid non-metallic conduit with bags of concrete-mix placed directly above and below the conduit across company right-of-way or similar company approved method.	
2	VERIFY warning burial tape is placed the width of company right-of-way at least 18 inches directly above communication cables.	
3	RECOMMEND the communication cable owner mark the crossing route clearly and permanently on each side of company right-of-way.	

7.3.4 Ditches and Waterways

For ditches and waterways follow the procedure below.

CAUTION: Discourage ditches/waterways from crossing company right-of-way. Do not allow parallel ditches and waterways within company right-of-way.

1 REPORT any proposals to place a ditch/waterway across or parallel to company right-of-way to the Right-of-Way Representative/Encroachments

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 11 of 40
	11/01/18	

	Group and Operations Manager.	
2	ALLOW a ditch/waterway to cross a company right-of-way at or near right angles with a minimum 48 inches of cover remaining to the top of company pipeline facilities at the lowest point of the ditch/waterway.	
3	OBTAIN prior approval from the Operations Manager/Encroachments Group when minimum of 36 inches of cover cannot be maintained. REQUIRE mechanical protection and/or erosion control (e.g., concrete lined bottom, articulating grout mat, buried culvert, rip rap) with a minimum clearance of 12 inches from company pipeline facilities the entire width of company right-of-way.	
4	CONSULT the Pipeline Specialist/Engineer or Encroachments Group to EVALUATE company pipeline facilities for buoyancy and the need for river weights.	

NOTE: Culvert material shall be constructed of non-metallic material and installed to consider protection to company pipeline facilities when damage could occur from the proximity of an approved culvert.

7.3.5 Dredging

For dredging in existing waterways follow the procedure below.

WARNING: Stop any unapproved dredging operations near company pipeline facilities immediately.

Step	Activity	
1	NOTIFY the Right-Of-Way Representative/Encroachments Group and Operations Manager of dredging operations.	
2	PROFILE waterways crossing company pipeline facilities where dredging is	

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 12 of 40
	11/01/18	

Step	Activity		
	proposed.		
3	RESTRICT any dredging closer than 6 feet above company pipeline facilities the width of the entire company right-of-way.		

7.3.6 Fences

For fences follow the procedure below.

Step	Activity	
1	PERMIT wire type fences for agricultural purposes to cross company right-ofway.	
2	VERIFY all fence crossings are at or near right angles to company right-ofway and access gates or walkovers are installed where required.	

WARNING: Fence posts must be spaced and installed so they are not directly over company pipeline facilities with a company representative on site. Verify there is enough clearance not to interfere with future company maintenance or construction.

CAUTION:

- Prohibit any fencing parallel to and within company right-of-way.
- Do not permit any chain link, hurricane wire, stone, brick, concrete, privacy, decorative,
- Prohibit any fencing obstructing access or line of sight for patrol/inspection or identification markers

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 13 of 40
	11/01/18	

7.3.7 Foreign Lines (Onshore)

For foreign lines (onshore) crossings follow the procedure below.

Step	Activity	
1	DETERMINE the construction method to complete the foreign line crossing:	
	Open Cut	
	Dry Bore	
	Direction Drill	
	Reference section 7.5 Foreign Line Crossing Methods below.	
2	REQUEST any foreign line crossing to cross under company pipeline facilities with clearance as specified in <i>Appendix B ROW Engineering and Construction Guidelines</i> . VERIFY there is enough clearance not to interfere with future company maintenance or construction.	
3	OBTAIN prior approval from the Operations Manager and/or Encroachments Group when company pipeline facilities are unreasonably deep to allow a foreign line crossing to be installed over the top or reduce the amount of clearance between a foreign line and company pipeline facilities.	
4	COMPLETE an investigation dig(s) on company pipeline facilities, if necessary, before construction of a foreign line crossing.	

CAUTION: Do not allow any foreign line(s) to be constructed parallel to and/or allow foreign structures, appurtenances or related fittings within company right-of-way.

Step	Activity
5	PERFORM corrosion related tasks before and during foreign line crossings as

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 14 of 40
	11/01/18	

required.

NOTE: Operations Personnel must consult the Company Corrosion Specialist when a foreign cathodically protected line is installed across company pipeline facilities to determine the need for installation of bond/test lead stations on the foreign and company pipeline facilities.

Step	Activity
6	REFER to SOP <u>D.35 Buried Pipe Inspections</u> when buried company pipeline
	facilities may be exposed.
7	VERIFY construction of the foreign line will limit the length of time company
	pipeline facilities are exposed.
8	REINFORCE couplings and acetylene welds where required prior to
	construction of foreign lines. Reference SOP <u>I.15 Coupled Pipeline and</u>
	Acetylene Weld Reinforcement.
9	PLACE warning tape a minimum of 18 inches above any foreign line crossing
	company right-of-way.
10	RECOMMEND foreign line owners mark the crossing route clearly and
	permanently on each side of company right-of-way.

7.3.8 Parking Areas

Do not allow permanent parking areas within company right-of-way; for <u>temporary</u> parking areas follow the procedure below.

Step	Activity
1	REVIEW the affected company pipeline facilities attributes including but not limited to:
	Diameter, wall thickness, grade

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 15 of 40
	11/01/18	

Step	Activity
	Vintage, seam and weld type
	Established maximum allowable operatring pressure
	Class and/or HCA
	Existing anomalies

NOTE: To determine the possible need for alterations to company pipeline facilities and to comply with Federal and State regulations parking area plans must be reviewed and approved by the Right-of-Way Representative, Encroachments Group, Pipeline Specialist/Engineer and Director of Operations before construction begins.

Step	Activity
2	DETERMINE per SOP <u>I.27 Determination of Abnormal Loading</u> whether external loading from traffic traveling on parking surfaces crossing company pipeline facilities is within acceptable limits.
3	VERIFY the remaining cover under the parking area at the shallowest point will be at least 36 inches.
4	INSTALL gas leak stations at a minimum of every 25 feet directly over the centerline of company pipeline facilities.

7.3.9
Power /
Communication
Lines (Overhead)

For power/communication lines (overhead) follow the procedure below.

Step	Activity

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 16 of 40
	11/01/18	

1	REPORT to Operations Manager, Encroachments Group and Corrosion Specialist if a proposed above ground power line will be constructed parallel to and outside of company right-of-way within 300 feet of company pipeline facilities.
2	ALLOW overhead power/communication lines to cross company pipeline facilities with a minimum vertical overhead clearance to grade of 25 feet.
3	VERIFY all overhead power/communication line crossings are at or near right angles to company right-of-way.

WARNING: Do not allow new power lines over existing blow-offs or relief valves. Do not allow power line towers to straddle the company right-of-way or power line tower footings to encroach within company right-of-way.

7.3.10 Power Lines (Underground)

For power lines (underground) installed by <u>open cut</u> construction methods follow the procedure below.

CAUTION: Reference section 7.3.7 Foreign Lines (Onshore) above. Extra precautions are necessary when power lines (underground) cross company pipeline facilities due to the nature, safety and potential impact.

Step	Activity
1	REFER requests for the installation of buried power cable crossings to the Operations Manager, Right-of-Way Representative/Encroachments Group, and Corrosion Specialist to establish the requirements for each crossing.
2	ESTABLISH the requirements for underground power cables/lines with consideration given to the number of cables/lines, voltage, cable/line loading, grounding system, spacing of cables/lines, phase, proximity of transmission cable/line facilities to company facilities, location of cathodic

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 17 of 40
	11/01/18	

Step	Activity	
	protection facilities, soil type, coating and depth of cover.	
3	VERIFY the following requirements are provided:	
	 Minimum 36 inches of clearance below the bottom of company pipeline facilities the entire width of company right-of-way for power cables over 600 volts. 	
	 Neutrals are externally spirally wound and grounded on each side of company right-of-way. 	
	 Placed in a rigid non-metallic conduit with bags of concrete-mix placed directly above and below the conduit across the entire width of company right-of-way or similar company approved methods. 	
	Red warning burial tape is placed the width of company right-of-way at least 18 inches directly above the cable.	
4	RECOMMEND the power line cable owner mark the crossing route clearly and permanently on each side of company right-of-way.	

7.3.11 New or Modified Roads, Railroads or Driveways

For new or modified roads, railroads or driveways follow the procedure below.

CAUTION: Prohibit any road, railroad or driveway from being constructed parallel to and within company right-of-way; or allow related foreign structures, appurtenances or signage within company right-of-way.

Step	Activity
1	DETERMINE the physical status of and review available data of affected
	company pipeline facilities.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 18 of 40
	11/01/18	

NOTE: When determined necessary reference *BP I.36 Pipeline Road and Rail Crossings* to determine the possible need for company pipeline facility alterations and to comply with Federal and State regulations. Road, railroad or driveway construction/modification plans must be reviewed and approved by the Right-of-Way Representative/Encroachments Group, Pipeline Specialist and Director of Operations before construction begins.

2	ALLOW a new road, railroad or driveway to cross company right-of-way at or near right angles.
3	VERIFY the remaining cover at the shallowest point will be at least 36 inches to the top of company pipeline facilities. Additional cover may be required as prescribed in individual state regulations i.e. Texas requires 48 inches of cover.
4	DETERMINE per SOP <i>I.27 Determination of Abnormal Loading</i> whether external loading from traffic traveling on a road, railroad or driveway crossing company pipeline facilities is within acceptable limits.

NOTE: Depth of cover should not exceed 7 feet from the top of the pipe to final grade. Engineering stress calculations must be performed and approved prior to allowing any cover exceeding 7 feet.

7.3.12 Seismography

For seismography activity follow the procedure below.

CAUTION: Do not allow any seismographic activity within 300 feet of company pipeline facilities without the approval of the Pipeline Specialist/Engineer or Encroachments Group.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 19 of 40
	11/01/18	

Step	Activity
1	RECOMMEND the third party seismic company call the respective state One-Call or 811 center prior to the start of their project.

7.3.13 Sidewalks, Paths and Trails

For sidewalks, paths and trails follow the procedure below.

Step	Activity
1	VERIFY the sidewalks, paths and trails do not exceed 48 inches in width without prior approval of a Right of Way Representative/Encroachments Group and Operations Manager.
2	ALLOW sidewalks, paths and trails to cross at or near right angles to company right-of-way.

7.3.14 Subdivisions

Verify the contractors, developers, landowners and others submit subdivision plats to a company Right-of Way Representative/Encroachments Group and Operations Manager for review and approval.

7.3.15 Vegetation

For vegetation follow the procedure below.

Step	Activity
1	CONSULT the Right-of-Way Representative/Encroachments Group to
	EXAMINE the terms of the easements prior to restricting planting of any vegetation within company right-of-way.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 20 of 40
	11/01/18	

Step	Activity
2	PROHIBIT any planting of trees, bushes, shrubs, vines, and/or any other landscape planting within company right-of-way.
3	VERIFY vegetation does not obstruct company patrol/inspection or identification markers.

7.3.16 Water Impoundments

For water impoundments follow the procedure below.

CAUTION:

- Do not allow water impoundments on company right-of-way. This excludes water impoundments for such things as rice, cranberry bogs and crawfish farming.
- Do not allow any portion of any dike, berm or dam to be constructed on company right-of-way.
- Do not remove cover or overburden from company right-of-way to assist in the construction of a dike, berm or dam.

7.3.17 Wells

For wells follow the procedure below.

Step	Activity
1	REPORT wells drilled within 100 feet of company pipeline facilities to a company Right-of-Way Representative/Encroachments Group and Corrosion Specialist.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 21 of 40
	11/01/18	

CAUTION: Do not allow any foreign wells (water, oil, gas, storage, disposal or other) to be drilled on company right-of-way.

2 **NOTIFY** well owners of company cathodic protection systems and the possibility of interference.

7.3.18
Wind Turbine,
Communication
Towers (e.g. Cell,
Radio,
Microwave)

For foreign towers follow the procedure below.

Step	Activity		
1	NOTIFY a company Right-of-Way Representative/Encroachments Group,		
	Communication Specialist and Corrosion Specialist of any plans to install a		
	foreign tower within one mile of company facilities/towers.		
2	RESTRICT placement of foreign towers from within 1500 feet of company		
	facilities/towers. REFER requests for the installation of a foreign tower within		
	1500 feet of company facilities/towers to the Operations Manager, Right-of-		
	Way Representative/Encroachments Group, Pipeline Specialist,		
	Communication Specialist, Corrosion Specialist and Manager of Patrol Pilots		
	to establish the minimum offset for each foreign tower with consideration		
	given to tower height, aerial patrol, tower/blade failure, ice throw, etc.		

WARNING: Do not allow foreign towers within company right-of-way. **RESTRICT** placement of foreign towers a minimum distance equal to the height of the structure (plus the length of wind turbine blades measured to the tip in the vertical position) from company right-of-way limits; consideration should be given to the distance of ice throw from wind turbine blades to company right-of-way limits and required

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 22 of 40
	11/01/18	

elevations/offsets for aerial patrol.

3 **NOTIFY** the Patrol Pilot of the location of any new foreign tower.

7.4 Proposed Site Encroachment Investigation

Operations Personnel/Encroachments Group follow the procedure below to conduct a proposed site encroachment investigation.

Step	Task
1	REQUEST technical drawings from the contractors, developers, landowners and others of the proposed work to be completed.
2	CONSULT Right-of-Way Representative or Encroachments Group to REVIEW technical drawings prior to proposed work.
3	VERIFY company pipeline facilities are accurately identified in the technical drawings.
4	CONDUCT a site encroachment investigation with the contractors, developers, landowners and others of the proposed site as far in advance as practical.
5	CONFIRM excavation methods will be completed per SOP <u>I.10 Excavation</u> and <u>Backfill</u> if company pipeline facilities will be excavated by a third party excavator and/or landowner.

WARNING: Stop any excavation work if it could cause damage, affect the safety and/or integrity of company pipeline facilities, is prohibited by the easement or is a violation of company rights. The on-site company representative has authority to contact local law enforcement to protect the company pipeline facilities when necessary.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 23 of 40
	11/01/18	

NOTE: Prevent foreign easements from encroaching into company right-of-way when proposed foreign construction will be parallel to and outside of company right-of-way.

Step	Activity
6	PROVIDE a copy of Appendix B: <i>Engineering and Construction Guidelines</i> to the contractors, developers, landowners and others.
7	REQUEST any foreign line crossing to cross under company pipeline facilities with adequate clearance. VERIFY there is enough clearance not to interfere with future company maintenance or construction.
8	VERIFY construction activity does not commence until all information is exchanged between the parties, company pipeline facilities are field located and staked per SOP <u>B.04 Pipe Location and Marking</u> , foreign facilities are accurately marked and the company gives proper authorization.
9	VERIFY a company representative will be on-site any time work is performed within company right-of-way.

WARNING: Notify the contractors, developers, landowners and others a One-Call or 811 notification must be submitted before any work begins.

Steps	Activity		
10	The Right-of-Way Representative/Encroachments Group will DOCUMENT all		
	pertinent drawings and agreements in the applicable tract file.		

7.5 Foreign Line Crossing Operations Personnel/Encroachments Group follow the procedure below regarding the types of foreign line crossing methods possible within company right-of-way.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 24 of 40
	11/01/18	

Methods

CAUTION: Additional precautions pertaining to specific foreign line crossing methods to avoid possible problems and/or hazards are listed in the following subsections. It is not the intent of this SOP to list all possible types of foreign line crossing methods affecting company right-of-way/pipeline facilities. Consult the company Right-of-Way Representative, Pipeline Specialist, Encroachments Group and Operations Manager regarding any construction crossing methods not included in this SOP.

Step	Activity				
1	REVIEW the affected company pipeline facilities attributes including but no limited to:				
	Diameter, wall thickness, grade				
	Vintage, seam and weld type				
	Established maximum allowable operatring pressure				
	Class and/or HCA				
	Existing anomalies				
2	PROVIDE a company representative to field locate and stake company				
	pipeline facilities per SOP <u>B.04 Pipe Location and Marking.</u>				
3	DETERMINE the depth of each company pipeline facility within the work area at appropriate intervals. VERIFY depth by probing.				
4	REINFORCE couplings and acetylene welds where required prior to				
	construction of foreign lines. Reference SOP <u>I.15 Coupled Pipeline and</u> <u>Acetylene Weld Reinforcement.</u>				
5	MEET with the contractors, developers, landowners and others on site and				
	review each party's responsibilities.				
6	COMPLETE the applicable form(s) for <i>B.13.B Foreign Line Crossing</i> .				

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 25 of 40
	11/01/18	

Step	Activity
7	DOCUMENT in the applicable electronic database, as required.

7.5.1 Open Cut

Operations Personnel/Encroachments Group follow the procedure below regarding foreign lines crossings conducted by open cut construction

Step	Activity	
1	REQUIRE a minimum 24 inches of clearance below company pipeline facilities the entire width of company right-of-way. VERIFY there is enough clearance not to interfere with future company maintenance or construction.	
2	REQUEST an excavation plan identifying the width, depth and slope dimensions of the proposed crossing of company pipeline facilities.	

NOTE: The excavation plan should include compaction specifications of how fill will be compacted under and around company pipeline facilities to prevent possible settling.

Step	Activity
3	VERIFY open cut construction is conducted in a good and workmanlike manner, in conformity with all applicable engineering design standards, safety and other specifications.

CAUTION: Without approval, no more than one company pipeline is to be exposed and/or unsupported at one time and no more than 20 feet of company pipeline shall be unsupported at any given time. Engineering stress calculations must be performed and approved prior to allowing more than 20 feet of unsupported pipe.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 26 of 40
	11/01/18	

Step	Activity
4	VERIFY protective measures requested by the company, in order to avoid any damage to company pipeline facilities during foreign open cut construction, are provided.

7.5.2 Auger Bore (Dry)

Operations Personnel/Encroachments Group follow the procedure below regarding foreign line crossings conducted by auger bore (dry) construction.

Step	Activity			
1	REQUIRE a minimum 36 inches of clearance below company pipeline			
	facilities the entire width of company right-of-way. VERIFY there is enough			
	clearance not to interfere with future company maintenance or construction.			
2	OBTAIN an auger bore plan identifying offset distances and bore pit			
	locations including extents (e.g., width, depth and slope dimensions) within			
	company right-of-way.			
3	REINFORCE couplings and acetylene welds where required prior to			
	construction of foreign lines. Reference SOP I.15 Coupled Pipeline and			
	Acetylene Weld Reinforcement.			
4	EXCAVATE company pipeline facilities at the point of the proposed crossing			
	on the approach side to verify the auger head, boring and installation			
	process will not damage company pipeline facilities.			

NOTE: These excavations are called potholes and must be deep enough to monitor the bottom of the company pipeline facilities being crossed.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 27 of 40
	11/01/18	

Step	Activity
5	VERIFY auger boring is conducted in a good and workmanlike manner, in conformity with all applicable engineering design standard, safety and other specifications.

CAUTION: Without approval no more than one company pipeline is to be exposed and/or unsupported at one time and no more than 20 feet of company pipeline shall be unsupported at any given time. Engineering stress calculations must be performed and approved prior to allowing more than 20 feet of unsupported pipe.

Step	Activity
6	VERIFY protective measures requested by the company, in order to avoid any damage to company pipeline facilities during foreign auger boring construction, are provided.

7.5.3 Directionally Drilled

Operations Personnel/Encroachments Group follows the procedure below regarding foreign lines crossings conducted by directionally drilled construction

Step	Activity
1	REQUIRE a minimum 36 inches of clearance below company pipeline facilities the entire width of company right-of-way. For large diameter (12 inches or greater) foreign line crossings, REQUIRE a minimum of 60 inches of clearance below company pipeline facilities the entire width of company right-of-way. VERIFY there is enough clearance not to interfere with future company maintenance or construction.
2	OBTAIN a directional drill plan identifying offset distances, drill profile, equipment staging and bore pit locations including extents (e.g., width,

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 28 of 40
	11/01/18	

Step	Activity
	depth and slope dimensions) within company right-of-way.
3	VERIFY the clearances between the drill and company pipeline facilities account for the size of the back reamer and straightening of drill rods.
4	REQUIRE drill equipment to incorporate a mechanism for real time positioning and controlling bit to ensure the required clearance is maintained throughout the drill process.
5	DETERMINE if the boring contractor maintains returns.

CAUTION: Returns are the bentonite-containing drilling fluids usually brought back to the drilling machine and recycled. If fluids are not returned or recycled it is possible they could be lost into the earth creating a cavity or other unstable foundation underneath company pipeline facilities. This would be evident by a noticeable increase in the amount of drilling fluids being used.

Step	Activity
6	VERIFY drill machine anchorage and deadman locations do not interfere with the safe operation of company pipeline facilities.
7	EXCAVATE company pipeline facilities at the point of the proposed drill on the approach side to verify the drilling and pulling process will not damage company pipeline facilities.

NOTE: These excavations are called potholes and must be deep enough to monitor the bottom of the company pipeline facilities being crossed.

NOTE: If it is not practical to expose company pipeline facilities **CONTACT** the Operations Manager. **DETERMINE** alternatives to ensuring company pipeline facilities are not damaged by the drilling and pulling process. Alternatives include but are not limited to: Requiring a minimum 15-foot separation between company pipeline facilities across the entire width of company right-of-way or altering the point of

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 29 of 40
	11/01/18	

crossing so company pipeline facilities can be exposed.

Step	Activity
8	VERIFY directional drill boring is conducted in a good and workmanlike manner, in conformity with all applicable engineering design standards, safety and other specifications.
9	VERIFY protective measures requested by the company, in order to avoid any damage to company pipeline facilities during foreign directional drilling construction, are provided.
10	MONITOR the boring equipment to verify it is calibrated and gives actual depth and pitch readings.

NOTE:

- On some machines this can be accomplished beforehand by placing the drilling head on the ground and moving the locator a known distance away i.e. 10 feet.
- The measurements should be within a few inches.
- Perform a recalibration whenever batteries are replaced.
- If the locator cannot be calibrated within inches then excavate company pipeline facilities at the point of the crossing to verify no damage has occurred.

7.6 Investigation of Unknown Encroachments in Progress Follow the procedure below when Operations Personnel discover or are notified of an unknown encroachment/activity currently in progress within company right-of-way.

Step	Activity

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 30 of 40
	11/01/18	

Step	Activity
1	IDENTIFY the type of work and its potential to damage company pipeline facilities or violate company rights.
2	ADVISE encroaching party of the nature of the product in the company pipeline facilities and the potential hazards.

WARNING: Stop any work if it could cause damage, affect the safety and/or integrity of company pipeline facilities, is prohibited by the easement or is a violation of company rights. The on-site company representative has authority to contact local law enforcement to protect the company pipeline facilities when necessary.

Step	Activity
3	REFER to SOP <u>I.30 Mechanical Damage</u> for reporting the unknown encroachment activity to the One Call Group for violation reporting.
4	CONTACT the Right-of-Way Representative/Encroachments Group and Director of Operations if the third party excavator or landowner performing the work does not agree to stop immediately and discontinue until a resolution is determined. CONSIDER delivery of a cease and desist letter to third party excavator or landowner. Refer to section 7.7 Legal Action below.

NOTE: If foreign equipment is found unattended on company right-of-way, leave written notice and follow up as soon as possible to identify the excavator and/or landowner.

Step	Activity
5	VERIFY company pipeline facilities are accurately located and marked per SOP <u>B.04 Pipe Location and Marking</u> .
6	REMAIN at the work site while construction is in progress to prevent damage

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 31 of 40
	11/01/18	

	to company pipeline facilities.
7	EXCAVATE company pipeline facilities and complete an inspection if facilities are thought to have been damaged.
Step	Activity
8	KEEP a written record with all pertinent information concerning the sequence of events including but not limited to dates, names, telephone numbers, action taken (locating and staking lines, etc.) and discussions with all parties involved.
9	PROVIDE information to the Damage Prevention Department for reporting to appropriate Regulatory Agency(s) of known damages to company pipeline facilities within 5 days per <i>SOP I.30 Mechanical Damage</i> .

CAUTION: When an excavator and/or landowner has performed work on company right-of-way without making appropriate notifications prior to commencing work:

- SEND a letter to the excavator and/or landowner advising them of company crossing requirements and the dangers of working around buried facilities without notice to the owner.
- **SEND** copies of the letter to the appropriate state One-Call or 811 system operator and Area Operations.
- REFER to <u>1.40 Public Awareness Plan</u> Communication with API RP1162 defined Stakeholders.

7.7 Legal Action

If any foreign encroachments/activities, known or unknown, persist once notified, with the potential to damage company pipeline facilities or violate the rights of the company, follow the procedure below to take legal action, when necessary.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 32 of 40
	11/01/18	

7.7.1 Contacting a Local Attorney

The company Right-of-Way Representative/Encroachments Group follow the procedure below to contact a local attorney.

Step	Activity
1	DISCUSS the situation with company Legal Department to determine if and when it will be necessary to contact a local attorney to represent the company.
2	INSTRUCT the local attorney to make contact with the third party excavator and/or landowner and provide any correspondences to the company Right-of-Way Representative/Encroachments Group and Director of Operations.
3	DOCUMENT correspondence, written records, field notes (on staking, marking, and flagging company facilities) and photographs (identified with dates, etc.) in the applicable tract file.

7.7.2 Verifying Stoppage of Encroachment Activities

The Right of Way Representative/Encroachments performs the following procedure below to verify the stoppage of encroachment activities.

Step	Activity
1	CONTACT the company field representative on-site when company legal representation and/or the Right-of-Way Representative/Encroachments Group has requested stoppage of encroachments/activities to determine the work has stopped.
2	DETERMINE additional actions if needed.

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 33 of 40
	11/01/18	

WARNING: When necessary request the company Legal Department and/or local attorney to file for an injunction to stop encroachment activities in progress.

8.0 Documentation Requirements

Record data in electronic database or utilize the following form(s) as applicable:

- Pipeline Inspection Database
- B.13.A Encroachment
- B.13.B Foreign Line Crossing

9.0 References

A.01 Glossary and Acronyms

A.22 DOT Record Keeping

B.04 Pipe Location and Marking

D.35 Buried Pipe Inspections

I.10 Excavation and Backfill

I.15 Coupled Pipeline and Acetylene Weld Reinforcement

1.23 Protection of Pipeline Facilities from Blasting Operations

I.26 Mining Subsidence and Soil Slippage

1.27 Determination of Abnormal Loading

1.30 Mechanical Damage

I.31 One-Call System and Field Response

<u>I.40 Public Awareness Plan – Communication with API RP1162-defined Stakeholders</u>

BP 1.36 Pipeline Road and Rail Crossings

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 34 of 40
	11/01/18	

Appendix A: OQ Task Requirements The table below identifies Operator Qualification (OQ) task requirements.

Task Description	OQ Task
Visual Inspection of Buried Pipe and Components When Exposed	PLOQ401
Backfilling – Pipe and Coating Protection	PLOQ404
Underground Pipeline – Locate and Temporarily Mark	PLOQ605
Damage Prevention During Excavation/Encroachment Activities	PLOQ607

Appendix B: Engineering / Construction Guidelines The table below identifies Operator Qualification (OQ) task requirements.

NOTE: It is the intent of this appendix to be an editable document to facilitate engineering/construction guidelines regarding specific encroachments/activities within or near company right-of-way. Editing and distribution of this appendix shall be limited to a Pipeline Specialist/Engineer, Right-of-Way Representative and/or Encroachment Project Manager.

1. Contractors, developers, landowners and others, prior to any installation, construction, excavation or demolition activities on or near company right-of-way, shall make notifications to appropriate ONE CALL or 811 centers. A company representative must be on-site during any encroachment/activity within company right-of-way. The company representative on-site will have the authority to stop work by contractors, developers, landowners or others if the encroachment/activity is determined to be unsafe. The company representative will be invited to participate in all construction safety meeting(s).

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 35 of 40
	11/01/18	

- 2. A minimum of 36 inches of cover is to be maintained over below ground company pipeline facilities across the entire company right-of-way.
- 3. No structure, construct or venue of any kind, including but not limited to any air strip, athletic field, berm/terrace, building, campground, cemetary, chattel, dam/dike, drain, earthwork, garage, georthermal system, house/mobile home, lake/pond/reservoir, landfill, logging operation, material storage, mine/quarry, poles/signage, septic system, soil boring, swimming pool, tower, vehicle parking/equipment parking, wells, wetland or other improvments including any facility causing the permanent or temporary retention of water, shall be permitted, placed or erected within, above or below company right-of-way including all associated appurtenances, foundations, guys/anchors, junction boxes or supports.
- 4. Where consent for fencing has been granted, the owner must install and maintain a vehicle access gate (at least 12 feet in width) or walkovers where required.
 - > Shall cross at or near right angles
 - > No fence post excavations shall be directly over company pipeline facilities
 - > Fence posts shall be placed with adequate spacing from company pipeline facilities.
 - Chain link, hurricane wire, stone, brick, concrete, privacy, decorative, or similar style fences or barriers are prohibited within company right-of-way.
 - If a gate is locked, the owner shall provide the company with a key or allow a company lock to be installed in series, to enable access.
- 5. Planting of trees, bushes, shrubs, vines and/or any other landscape planting within company right-of-way is prohibited. Vegetation shall not obstruct company patrol/inspection or identification markers.
- 6. Where consent for sidewalks, paths or trails have been granted, the width shall not exceed 48 inches and shall cross at or near right angles to company right-of-way.
- 7. Open ditches or waterways where consent has been granted must cross company right-of-way at or near right angles with at least 48 inches of cover remaining at the lowest point of the ditch or waterway.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 36 of 40
	11/01/18	

- 8. Contractors, developers, landowners and others shall provide and install temporary construction fencing along company right-of-way to protect company pipeline facilities. The fencing must be maintained for the duration of the encroachment activities. Barriers adequate to prevent vehicular damage to any excavated and exposed company pipeline facilities shall be installed and maintained at all times.
- 9. For temporary vehicle and/or construction equipment crossing company pipeline facilities, each crossing location will be reviewed on a site specific basis, which will include a wheel/track load calculation to be completed and approved on every vehicle and/or construction equipment crossing company pipeline facilities.
 - Crossings shall be at or near right angles.
 - A minimum 36 inches cover is required.
 - Air bridging, matting or other suitable material may be required to be installed to achieve the necessary support for each crossing.
 - Crossing supports shall span a minimum of 10 feet either side of company pipeline facilities.
- 10. Excavation equipment shall be equipped with a barred tooth bucket and side cutters removed when digging or excavating within company right-of-way. All excavation within 18 inches of the top or 36 inches from the side or bottom of any company pipeline facility shall be completed by hand. After the top is exposed excavation up to 24 inches from the side or bottom of the exposed company pipeline facilities may proceed by mechanical means only if approved by a company representative.
- 11. No foreign line, appurtenance, structure or related fittings are to be constructed parallel to and/or allowed within company right-of-way. Foreign easements are prohibited from encroaching into company right-of-way when proposed foreign construction is parallel to and outside of company right-of-way.
- 12. For a new or modified road, railroad, or driveway crossing company pipeline facilities, each crossing location will be reviewed and approved on a site specific basis. The review will include, but not limited to, a wheel load calculation for superimposed loading due to traffic (DOT maximum axle load 20,000 lbs. per axle), imposed conditions caused by soil overburden and

Volume I - PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 37 of 40
	11/01/18	

determination of the need for alterations to company pipeline facilities to comply with Federal and State regulations.

- Crossings shall be at or near right angles.
- A minimum 36 inches of undisturbed or compacted soil shall be maintained from the bottom of the road or drive to the top of company pipeline facilities. Additional cover may be required as prescribed in individual state regulations i.e. Texas requires 48 inches of cover.
- Permanent air bridging requires drawings signed and approved by a Professional Engineer (P.E.) provided to the company.
- ➤ If a concrete pad is to be used as the method to minimize load, the crossing shall be built with load bearing footers spanning a minimum 10 feet either side of company pipeline facilities.
- 13. Open cut foreign line crossings, if approved, require a minimum 24 inches of separation below company pipeline facilities the entire width of company right-of-way. A compaction plan with a description of how fill will be compacted under company pipeline facilities to prevent settling will need to be reviewed and approved prior to the proposed crossing. Contractors, developers, landowners and others will be responsible for repairing any settling due to encroachment activities occurring on company right-of-way.
 - > Open cut crossings shall cross at or near right angles.
 - ➤ Communication Cables (Fiber Optic, Telephone, and TV) shall be placed in non-metallic conduit with bags of concrete mix placed directly above and below the conduit with warning burial tape installed 18 inches directly above the conduit across the entire width of company right-of-way.
 - All metallic foreign line crossings shall have insulation methods installed (e.g., Micarta board) where required between company pipeline facilities and the foreign line to prevent interference with cathodic protection.
 - > Sand and/or clean fill, free of rocks and debris, shall be installed around company pipeline facilities.
 - ➤ Where permissible foreign crossings should be clearly and permanently marked on each side of company right-of-way.
- 14. Auger bore (dry) foreign line crossings, if approved, require a minimum 36 inches of separation below company pipeline facilities the entire width of company right-of-way. Pothole excavations must be dug to observe the boring and pulling process does not damage company pipeline facilities and spacing is maintained.
 - Auger bore (dry) crossings shall cross at or near right angles.
 - An auger bore plan shall be provided for the proposed crossing showing the relationship of the auger hole to the bottom of company pipeline facilities and include bore pit locations.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 38 of 40
	11/01/18	

- Potholes shall be excavated on the approach side of the bore. The depth of the pothole shall be to a minimum 24 inches below the bottom of company pipeline facilities and in the direct path of the approaching auger to visually confirm it does not impact the pipeline.
- 15. Directionally drilled foreign line crossings, if approved, require a minimum 36 inches, 60 inches for large diameter foreign line crossings (12 inches diameter or greater), of separation below company pipeline facilities the entire width of company right-of-way. Pothole excavations must be dug to observe the drilling and pulling process does not damage company pipeline facilities. Boring equipment, if required, shall incorporate a mechanism for real time positioning and controlling bore bit/auger to ensure the required clearance is maintained throughout the boring process.
 - > Directionally drilled crossings shall cross at or near right angles.
 - A directional drill plan shall be provided for the proposed crossing showing the relationship of the bore hole to the bottom of company pipeline facilities.
 - ➤ Potholes shall be excavated on the approach side of the drill. The depth of the pothole shall be to a minimum 24 inches below the bottom of company pipeline facilities and in the direct path of the approaching drill tool to visually confirm it does not impact company pipeline facilities.
- 16. Temporary storage of spoils, material, equipment, or vehicles within company right-of-way, must be approved by Operations Manegement; at no time will storage be allowed directly over company pipeline facilities.
- 17. Equipment used in earthwork (e.g., excavation, contouring, precision leveling) must be approved on a site specific basis. This will include wheel/track load calculation to be completed on every vehicle and/or equipment crossing company pipeline facilities.
 - A minimum 36 inches of cover is required.
 - > Depth of cover should not exceed 7 feet.
- 18. Seismographic activity within 300 feet of company pipeline facilities without company approval is prohibited.
- 19. No roto-mixing or vibrating machinery is allowed within company right-of-way.
- 20. All pile driving operations 20 feet adjacent to company right-of-way will be required to pre-drill or auger all pilings to 36 inches below the bottom elevation of company pipeline facilities.

Volume I – PIPELINE

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: I.28	
49 CFR 192.935 (b) (iv)	Effective Date:	Page 39 of 40
	11/01/18	

- 21. Foreign crossing excavations exposing company pipeline facilities shall be sloped and/or shored to allow a company representative the ability to inspect and make coating repairs where required.
- 22. No more than one company pipeline is to be exposed and/or unsupported at one time and no more than 20 feet of company pipeline shall be unsupported at any given time. Engineering stress calculations must be performed and approved prior to allowing more than 20 feet of unsupported pipe.
- 23. Cathodic protection test stations and line markers shall be protected from damage by encroachment activities.
- 24. Additional requirements for approved power lines energized to 600 volts or more shall include a minimum 36 inches of separation below company pipeline facilities the entire width of company right-of-way.
 - > Shall cross at or near right angles
 - > Be installed in rigid non-metallic conduit
 - For an open cut crossing method include
 - i. Bags of concrete-mix placed directly above and below the conduit the entire width of company right-of-way.
 - ii. Red burial tape placed 18 inches directly above the conduit.
 - ➤ Have external, spiral wound, neutrals grounded on each side of company right-of-way.
 - ➤ Where permissible the cable crossing should be clearly and permanently marked on each side of company right-of-way.
- 25. Power/Communication Lines (overhead) shall be constructed above the easement area with a minimum of twenty five feet (25') clearance to grade.
 - Power lines shall not be constructed over existing blow-offs or relief valves.
 - Power lines shall cross at or near right angles
 - Power line towers shall not straddle the company right-of-way
 - ➤ Power line tower footings shall not encroach within company right-of-way
- 26. Placement of wind turbine and communication towers (e.g., cell, radio, and microwave) must be placed a minimum distance of 1500 feet from company pipeline facilities.
- 27. Should modifications to company pipeline facilities be required, the company will be reimbursed for all costs, including overtime costs, incurred to complete any company pipeline facility

Volume I - PIPELINE

Standard Operating Procedures

Right-of-Way Encroachments/Activities

Code Reference:	Procedure No.: 1.28				
49 CFR 192.935 (b) (iv)	Effective Date:	Page 40 of 40			
	11/01/18				

modification (e.g., coupling/weld reinforcement) including but not limited to: engineering, surveying, contract labor, materials, inspections, gas loss, administrative expenses and any other costs reasonably incurred directly or indirectly with respect to the work to be performed. Company lead times for competitively bidding, permitting and material procurement (estimated at 120 days) will commence only after the company receives a fully executed reimbursable agreement. Seasonal demands for natural gas can preclude the company from having outages of company pipeline facilities during any unscheduled timeframe in any given year.

28. Should any encroachment activity by the contractors, developers, landowners and others result in damage to any company pipeline facilities the total cost of the repairs will be the sole responsibility of the damaging party.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number 2213C CP 01744 POD1 **Q64 Q16 Q4 Sec Tws Rng** 3 2 3 17 21S 28E

X Y

3593764 🌑

Driller License: 1708

Driller Company:

ZIA DRILLING AND GEOTHERMAL, LLC

Driller Name: AINSWORTH, RYAN

Drill Start Date: 09/19/2018

Drill Finish Date:

09/20/2018

Plug Date:

01. a11 a...

Log File Date:

01/23/2019

PCW Rcv Date:

Source:

583476

Shallow

Pump Type:

Pipe Discharge Size:

Estimated Yield:

20 GPM

Casing Size:

5.75

Depth Well:

90 feet

Depth Water:

82 feet

Water Bearing Stratifications:

Top Bottom Description

82

90 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom

0 90

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/10/21 9:03 PM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

z	OSE POD NO. (W CP 01744 PO	ELL NO	.)		OSE FILE NO(S). CP 01744 POD 1						
OCATIO	WELL OWNER N ELLIPSE GL				PHONE (OPTIONAL)						
VELL LO	WELL OWNER N 1429 AVE D #	141LING	ADDRESS		CITY SNOHOMIS	SH	STATE WA 98290	ZIP			
1. GENERAL AND WELL LOCATION		LO	ITTUDE NGITUDE		28 '10 18 6 06 41.85 38 AND COMMON LANDI	ONIDS 178 N 197 W MARKS - PLS	* DATUM REG	Y REQUIRED: ONE TENTH OF A SECOND EQUIRED: WGS 84 OWNSHIP, RANGE) WHERE AVAILABLE			
	LICENSE NO.		NAME OF LICENSED	DRILLER RYA	N AINSOWRTH			NAME OF WELL DR	ILLING COMPANY IA DRILLING		
	DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) BORE HOLE DEPTH (F 9-19-18 9-20-18 90' 92'								ST ENCOUNTERED (FT) 82'		
	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED)							STATIC WATER LEV	VEL IN COMPLETED WE 82'	ELL (FT)	
TIO	DRILLING FLUII);	AJR	√ MUD	ADDITIVES – SPI	ECIFY:					
RMA	DRILLING METH	IOD:	ROTARY	HAMMER	CABLE TOOL	7 OTHE	R - SPECIFY:	MUD ROTARY			
CASING INFORMATION	DEPTH (fee	t bgl) TO	BORE HOLE DIAM (inches)	(include ea	MATERIAL AND/OR GRADE ch casing string, and actions of screen)	CASING CONNECTION TYPE		CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)	
& CA	0	-90-	TI"	1	VC SCH 40	GLUE A	ling diameter) ND SCREW	5.75"	.025	.030	
2. DRILLING									0/29	1. S	
DRI											
2									1.3		
									1.48		
									\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				-					1,41	Parameter State	
	DEPTH (fee	t hall	DODRIVOLE	1.152	CANDER AD COAT AS	ATEDIAL A	NTS	ANGUDIT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ΑL	FROM	TO	BORE HOLE DIAM. (inches)	I .	I ANNULAR SEAL M. EL PACK SIZE-RANG			AMOUNT (cubic feet)	METHO PLACEM		
FERL	13	90	11"		WASHED PEA GRA	VEL 1/4***		1.8 YD	TREM	МІЕ	
3. ANNULAR MATERIAL											
	OSE DESERVA	rior		<u> </u>			*****	NAME A DECORATE	1		
non	OSE INTERNAL	USE					WR-20	WELL RECORD &	& LOG (Version 06/30)/17)	
FOR FILE	NO. / F) - I	744		POD NO.	1	TRNN		209	7	

	DEPTH (I	TO	<i>~</i>	WAT BEAR (YES	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)				
	0	82	82	RED CLAY		Y	N			
	82	90	8	SAND AND SMALL GRAVEL		Υ	N	15	-20	
						Υ	N			
						Y	N			
						Y	N			
با						Y	N			
WEI						Y	N	-		
OF						Y	N		Ų.	
4. HYDROGEOLOGIC LOG OF WELL						Y	N	eta eta		
ICI.						Y	N			
9						Y	N	lud.		
SEO.						Υ	N	rd UJ		
RO						Y	N			
HAD						Y	N		1. 1	
4			<u></u>			Y	N	, , ,		
:						Y	N	turi.	- 1	
						Y	N			
						Y	N			
						Y	N			
						Y	Ŋ			
						Y	N			
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA:	TOTAL					
	₽ PUMI		IR LIFT	BAILER OTHER - SPECIFY:	WELLY	YIELD	(gpm):	15	-20	
		TEGT	DECLIE TO ATT	ACILA CODVOE DATA COLLECTED DUDING WELL TESTING DI	N I IDDIC	Diggi		AFTER LOD		
NO	WELL TEST	STAR	TIME, END TIME	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INC IE, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OV.	ER THE T	ESTIN	G PERIC	METHOD D.	' ,	
PERVISION	MISCELLAN	NEOUS INF	ORMATION: RE	D CLAY ALL THE WAY DOWN, SAND AND GRAVEL DRILL	.ED FAST	Γ.				
PER										
RIG										
TEST; RIG SU	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:									
5. T	S The state of the									
F -1				ES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BEL						
ÜRI	CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING: 9-25-18									
NAT										
SIG										
.9		SIGNATU	URE OF DRILLE	R / PRINT SIGNEE NAME			DATE			
				and the same of th						
	OSE INTERN	VAL USE	21(1)	WR-20 WE			OG (Ver	sion 06/3	0/2017)	
-	ENO. (. 1 . 1	744	POD NO. TRN NO. (7 - 5	2/	<u>ノ </u>	DAGE	2053	
LUC	CATION M	LVIT		215.28E.17.323 WELL TAG ID NO.	المال	2		PAGE	2 OF 2	

New Mexico Office of the State Engineer

Water Right Summary

get image list

WR File Number: CP 00627 Subbasin: CP Cross Reference:

Primary Purpose: DOM 72-12-1 DOMESTIC ONE HOUSEHOLD

Primary Status: PMT PERMIT

Total Acres: Subfile: - Header: -

Total Diversion: 3 Cause/Case: -

Owner: CLINTON C. WEST

Documents on File

				Sta	itus		From/			
	Trn#	Doc	File/Act	1	2	Transaction Desc.	То	Acres	Diversion	Consumptive
ge imag		72121	2005-12-20	EXP	EXP	CP 00627	T		3	
ge imag		72121	1982-01-04	PMT	LOG	CP 00627	T		3	
ge imag		72121	1980-10-16	EXP	EXP	CP 00627	T		3	

Current Points of Diversion

(NAD83 UTM in meters)

POD Number	Well Tag	Source	64 (Q16	Q4	Sec	Tws	Rng	X	Y		Other Location Desc
<u>CP 00627</u>		Shallow		2	3	17	21S	28E	583547	3593816*	8	
<u>CP 00627 POD2</u>			1	2	3	17	21S	28E	583360	3593982	Ø	

An () after northing value indicates UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/10/21 8:57 PM WATER RIGHT SUMMARY

Office of State Engir

00 AU:51 p.m. 12-15-2005 Fil

214

NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT TO USE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES

2-	20840
d	A5

1. APPLICANT			
	PETREE T	Work Phone:	432-683-7063
Contact: SAMSON	RESOURCES &	Home Phone:	432-661 6286
Address: 200 NoR	Th LORIANE		
City: midlan		State: TX 21	p: 79701
A TOCHTON OF THE TALL	C - D THE	Lames a	
2. LOCATION OF WELL (A, I A. <u>NW</u> 1/4 <u>NE</u> 1/4 in	SW1/4 Section: 17	Township 21S Range	County.
B. X = Zone in t	feet, Y =	feet, N.M. Coord	dinate System Grant
U.S.G.S. Quad Mar			
C. Latitude: N32	28 m 42.8 s L	ongitude: <u>W104</u> d <u>06</u>	m 46.2s
D. East	m), North(m), UTM Zone 13, NAD _	_ (27 or 83)
E. Tract No,	Map No of the	Hydrog	raphic Survey
F. Lot No, B1	ock No of Unit Subdivision recor	Tract Quahada H	CRES of the County.
	in a municipality? N		2005
H. Give State Engine	er File Number if exi	sting well: $\mathcal{L}_{\mathcal{L}}$	627
I. On land owned by	(required): Samso	N RESOURCES	£ 20
			0
3. USE OF WATER (check use a X One household, n	on-commercial trees,	lawn and garden not to	exceed a 😤
total of one acr	e.		ထု
Livestock wateri	ng.		w 8
			0
	se under item 5 of the	re marked, give the name e additional statements	
More than one ho exceed a total o		al trees, lawns and gar	dens not to
Drinking and san trees, shrubs an commercial opera	d lawns not to exceed	e irrigation of non-com one acre in conjunction	mercial on with a
Prospecting, min natural resource		tions to discover or de	evelop
Construction of	public works, highways		
Trn Desc:		File Number: _C	P-627
og Due Date:		Trn Number:	48538
Form: wr-01	page 1	of 4	1-3-1
			416

3/4 12-15-2005 2 p.m. Office of State Engin 505 623 8559 File Number: NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT TO USE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES 4. WELL INFORMATION (Change, Repair, Drill, Test, Supplement) Name of well driller and driller license number: Approximate depth 125 feet; Outside diameter of casing Z inches. X Change Location of existing well or replacement well Repair or Deepen: ___ Clean out well to original depth Deepen well from _____ to ____ feet
Other Drill and test a well for _ ___ Supplemental well 5. ADDITIONAL STATEMENTS OR EXPLANATIONS: 4" PUC CASING DAMAGED MOUE WELL APPROX 100'SE ACKNOWLEDGEMENT KRTREE affirm that the (Please Print) are true to the best of (my, our) knowledge and belief. foregoing statements

> File Number: 4/853 Trn Desc: Log Due Date: Trn Number: page 2 of 4 Form: wr-01

Applicant Signature

Applicant Signature

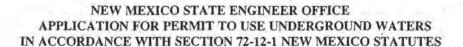
NEW MEXICO STATE ENGINEER OFFICE APPLICATION FOR PERMIT TO USE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES

GENERAL CONDITIONS OF APPROVAL (A thru I)

- A The maximum amount of water that may be appropriated under this permit is 3.000 acre-feet in any year.
- The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated. A licensed driller shall not be required for the construction of a driven well; provided, that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter (Section 72-12-12).
- C Driller's well record must be filed with the State Engineer within 10 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- D The casing shall not exceed 7 inches outside diameter except under specific conditions in which reasons satisfactory to the State Engineer are shown.
- E If the well under this permit is used at any time to serve more than one household or livestock in a commercial feed lot operation, or for drinking and sanitation purposes in conjunction with a commercial operation, the permittee shall notify the State Engineer Office in writing.
- In the event this well is combined with other wells permitted under Section 72-12-1 New Mexico Statutes Annotated, the total outdoor use shall not exceed the irrigation of one acre of non-commercial trees, lawn, and garden, or the equivalent outside consumptive use, and the total appropriation for household and outdoor use from the entire water distribution system shall not exceed 3.000 acre-feet in any year.
- G If artesian water is encountered, all rules and regulations pertaining to the drilling and casing of artesian wells shall be complied with.
- H The amount and uses of water permitted under this Application are subject to such limitations as may be imposed by the courts or by lawful municipal and county ordinances which are more restrictive than applicable State Engineer Regulations and the conditions of this permit.

Trn Desc: CP 00627

Log Due Date: 12/31/2006


Form: wr-01

page: 1

File Number: CP 00627

Trn Number: 348538

475176

GENERAL CONDITIONS OF APPROVAL (Continued)

The permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.

SPECIFIC CONDITIONS OF APPROVAL

- 4 Use shall be limited to household, non-commercial trees, lawn and garden not to exceed one acre and/or stock use.
- This permit is for a single household. The total diversion of water under this permit shall not exceed 3.000 acre-feet per year. Permit will be subject to cancellation if the conditions of approval are not met or if the actions of the permittee are not in accordance with the permit.
- LOG This permit will automatically expire unless the well CP 00627 POD2 is completed and the well record filed on or before 12/31/2006.

ACTION OF STATE ENGINEER

This application is approved for the use indicated, subject to all general conditions and to specific conditions listed above.

Witness my hard and seal this 20 day of Dec A.D., 2005

John R. D Antonio, Jr., P.E., State Engineer

By: Margaret Wolf

The well shall be set back a minimum of fifty (50) feet from an existing well of other ownership, unless a variance has been granted by the State Engineer.

The replaced well shall be plugged and the well driller shall file a complete plugging record with the State Engineer's Office and permit holder no later than 20 days after completion of plugging.

Trn Desc: CP 00627

Log Due Date: 12/31/2006

Form: wr-01

page: 2

File Number: CP 00627

Trn Number: 348538

476176

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

Trn Nbr: 348538 File Nbr: CP 00627

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

December 20, 2005

SAMSON RESOURCES c/o GERRY PETREE 200 NORTH LORIANE SUITE 1010 MIDLAND, TX 79701

Greetings:

Enclosed is your copy of the 72-12-1 Permit which has been approved. Your attention is called to the Specific and the General Conditions of Approval of this permit.

In accordance with General Condition C, a well record shall be filed in this office within ten (10) days after completion of drilling. The well record is proof of completion of the well. IT IS YOUR RESPONSIBILITY TO ASSURE THAT THE WELL LOG BE FILED WITHIN 10 DAYS OF DRILLING THE WELL.

This permit will expire on or before 12/31/2006, unless the well has been drilled and the well log filed in this office.

Sincerely,

Margaret Wolf (505)622-6521

Enclosure

cc: Santa Fe Office

wr 01app

PHOTOGRAPHIC LOG						
XTO ENERGY, INC.	Big Eddy Unit 150	TE012920126				
	Eddy County, New Mexico					

 Photo No.
 Date

 1
 July 19, 2021

South view of the Site during excavation activities.

Photo No. Date

2 July 21, 2021

South view of the Site during excavation activities.

PHOTOGRAPHIC LOG						
XTO ENERGY, INC.	Big Eddy Unit 150	TE012920126				
	Eddy County, New Mexico					

Photo No. Date

3 July 26, 2021

View of the final excavation extent.

Photo No. Date
4 July 26, 2021

View of the final excavation extent.

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-964-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

SURAMER

Authorized for release by: 7/23/2021 1:58:20 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

F

6

8

<u>11</u>

13

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-964-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

E

7

8

10

12

13

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit CFU CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit **PRES**

Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TFF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Case Narrative

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-964-1

SDG: TE012920126

Job ID: 890-964-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-964-1

Receipt

The sample was received on 7/21/2021 12:31 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C

Receipt Exceptions

The following samples analyzed for method BTEX 8021 were received and analyzed from an unpreserved bulk soil jar: SW05 (890-964-1)

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-964-1

Client Sample Results

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: SW05

Date Collected: 07/20/21 07:14 Date Received: 07/21/21 12:31

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
Total BTEX	<0.00401	U	0.00401	mg/Kg		07/22/21 10:00	07/22/21 13:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130			07/22/21 10:00	07/22/21 13:43	1
1,4-Difluorobenzene (Surr)	96		70 - 130			07/22/21 10:00	07/22/21 13:43	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
Analyte Gasoline Range Organics		Qualifier	RL	<mark>Unit</mark> mg/Kg	D	Prepared 07/22/21 08:46	Analyzed 07/22/21 14:12	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>	<u> </u>		1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/22/21 08:46	07/22/21 14:12	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 <50.0	Qualifier U U	50.0	mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46	07/22/21 14:12	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U U U	50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46 07/22/21 08:46	07/22/21 14:12 07/22/21 14:12 07/22/21 14:12	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result	Qualifier U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 07/22/21 08:46	07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 07/22/21 14:12	1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result	Qualifier U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 <i>Prepared</i>	07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 Limits 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 Prepared 07/22/21 08:46	07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 Analyzed 07/22/21 14:12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 Limits 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 07/22/21 08:46 Prepared 07/22/21 08:46	07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 07/22/21 14:12 Analyzed 07/22/21 14:12	Dil Fac 1 Dil Fac 1 Dil Fac 1 Dil Fac

Eurofins Xenco, Carlsbad

Released to Imaging: 2/28/2022 4:36:12 PM

Surrogate Summary

Client: WSP USA Inc.

Job ID: 890-964-1

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-964-1	SW05	116	96	
890-964-1 MS	SW05	107	109	
890-964-1 MSD	SW05	107	108	
LCS 880-5481/1-A	Lab Control Sample	100	102	
LCSD 880-5481/2-A	Lab Control Sample Dup	102	105	
MB 880-5481/5-A	Method Blank	126	95	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			
DFBZ = 1,4-Difluorobena	zene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		1CO1	OTPH1					
Lab Sample ID	Client Sample ID	(70-130)	(70-130)					
890-964-1	SW05	101	111					
LCS 880-5350/2-A	Lab Control Sample	89	88					
LCSD 880-5350/3-A	Lab Control Sample Dup	96	96					
MB 880-5350/1-A	Method Blank	100	115					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Xenco, Carlsbad

9

6

R

13

QC Sample Results

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5481/5-A

Matrix: Solid

Analysis Batch: 5527

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 5481

	MB N	MB						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 U	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:22	1
Toluene	<0.00200 l	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:22	
Ethylbenzene	<0.00200 l	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:22	
m-Xylene & p-Xylene	<0.00400 U	U	0.00400	mg/Kg		07/22/21 10:00	07/22/21 13:22	
o-Xylene	<0.00200 l	U	0.00200	mg/Kg		07/22/21 10:00	07/22/21 13:22	
Xylenes, Total	<0.00400 l	U	0.00400	mg/Kg		07/22/21 10:00	07/22/21 13:22	
Total BTEX	<0.00400 U	U	0.00400	mg/Kg		07/22/21 10:00	07/22/21 13:22	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126	70 - 130	07/22/21 10:00	07/22/21 13:22	1
1,4-Difluorobenzene (Surr)	95	70 - 130	07/22/21 10:00	07/22/21 13:22	1

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 5527

Lab Sample ID: LCS 880-5481/1-A

Lab Sample ID: LCSD 880-5481/2-A

Prep Type: Total/NA

Prep Batch: 5481

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09320		mg/Kg		93	70 - 130	
Toluene	0.100	0.08476		mg/Kg		85	70 - 130	
Ethylbenzene	0.100	0.08492		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	0.200	0.1734		mg/Kg		87	70 - 130	
o-Xylene	0.100	0.08447		mg/Kg		84	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 5481

The state of the s									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1016		mg/Kg		102	70 - 130	9	35
Toluene	0.100	0.09156		mg/Kg		92	70 - 130	8	35
Ethylbenzene	0.100	0.09037		mg/Kg		90	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.1847		mg/Kg		92	70 - 130	6	35
o-Xylene	0.100	0.09124		mg/Kg		91	70 - 130	8	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	102	70 - 130
1.4-Difluorobenzene (Surr)	105	70 - 130

Lab Sample ID: 890-964-1 MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 5527

Analysis Batch: 5527

Client Sample ID: SW05			
Prep Type: Total/NA			
Prep Batch: 5481			
%Rec.	MS MS	Snike	Sample Sample

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0990	0.09053		mg/Kg		91	70 - 130	

EuroRns Xenco, Carlsbad

QC Sample Results

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-964-1 MS **Matrix: Solid**

Analysis Batch: 5527

Client Sample ID: SW05
Prep Type: Total/NA

Prep Batch: 5481

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Toluene <0.00200 U 0.0990 0.08163 82 70 - 130 mg/Kg Ethylbenzene <0.00200 U 0.0990 0.07729 mg/Kg 78 70 - 130 0.198 m-Xylene & p-Xylene <0.00401 U 0.1583 80 70 - 130 mg/Kg o-Xylene <0.00200 U 0.0990 0.07972 mg/Kg 81 70 - 130

MS MS

Sample Sample

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Client Comple ID: CWOE Lab Sample ID: 890-964-1 MSD

Spike

Added

Matrix: Solid

Analyte

Analysis Batch: 5527

Client Sample	ID: 20002
Prep Type	: Total/NA

Prep Batch: 5481

RPD %Rec. Limit %Rec Limits **RPD** 5 35 70 - 130 70 - 130 35 3

Benzene <0.00200 0.101 0.09563 95 mg/Kg Toluene <0.00200 0.101 0.08383 83 U mg/Kg Ethylbenzene <0.00200 U 0.101 0.08119 70 - 130 mg/Kg 81 5 35 m-Xylene & p-Xylene <0.00401 U 0.202 0.1653 82 70 - 130 35 mg/Kg o-Xylene <0.00200 U 0.101 0.08252 mg/Kg 82 70 - 130

MSD MSD

Qualifier

Unit

Result

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
1,4-Difluorobenzene (Surr)	108	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5350/1-A

Matrix: Solid

Analysis Batch: 5510

Client	Samp	le ID:	Method	Blank
Olicit	Ourilp	IC ID.	Mictiloa	Dialik

Prep Type: Total/NA

Prep Batch: 5350

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Oange (rganics	<50.0	U	50.0	mg/Kg		07/19/21 08:46	07/22/21 12:07	1
Diesel Oange (rganics)(Her C10-C28v	<50.0	U	50.0	mg/Kg		07/19/21 08:46	07/22/21 12:07	1
(II Oange (rganics)(Her C28-C36v	<50.0	U	50.0	mg/Kg		07/19/21 08:46	07/22/21 12:07	1
Total TPf	<50.0	U	50.0	mg/Kg		07/19/21 08:46	07/22/21 12:07	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130	07/19/21 08:46	07/22/21 12:07	1
o-Terphenyl	115		70 - 130	07/19/21 08:46	07/22/21 12:07	1

Lab Sample ID: LCS 880-5350/2-A

Matrix: Solid

Analysis Batch: 5510

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 5350

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Oange (rganics	1000	762.1		mg/Kg		76	70 - 130	

)GO(v-C6-C10

EuroRns Xenco, Carlsbad

Client: WSP USA Inc. Job ID: 890-964-1 SDG: TE012920126 Project/Site: Big Eddy Unit 150

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-5350/2-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 5510			Prep Batch: 5350
	Spike	LCS LCS	%Rec.

	Орікс	200	200			/01100.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Diesel Oange (rganics)(Her	1000	881.8	mg/l		88	70 - 130	
C10-C28v							

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	89		70 - 130
o-Terphenyl	88		70 - 130

Lab Sample ID: LCSD 880-5350/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 5510** Prep Batch: 5350

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Oange (rganics	1000	808.2		mg/Kg		81	70 - 130	6	20
)GO(v-C6-C10									
Diesel Oange (rganics)(Her	1000	949.4		mg/Kg		95	70 - 130	7	20
C10-C28v									

LCSD LCSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 96 70 - 130 o-Terphenyl 96 70 - 130

мв мв

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5537/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5560

Analyte Result Qualifier Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 07/23/21 03:45

Lab Sample ID: LCS 880-5537/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5560

	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualifie	r Unit	D	%Rec	Limits	
Chloride	250	249.2	mg/Kg		100	90 - 110	

Lab Sample ID: LCSD 880-5537/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5560

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	249.9	mg/Kg		100	90 - 110	0	20

EuroRns Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

GC VOA

Prep Batch: 5481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Total/NA	Solid	5035	
MB 880-5481/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5481/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5481/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-964-1 MS	SW05	Total/NA	Solid	5035	
890-964-1 MSD	SW05	Total/NA	Solid	5035	

Analysis Batch: 5527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Total/NA	Solid	8021B	5481
MB 880-5481/5-A	Method Blank	Total/NA	Solid	8021B	5481
LCS 880-5481/1-A	Lab Control Sample	Total/NA	Solid	8021B	5481
LCSD 880-5481/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5481
890-964-1 MS	SW05	Total/NA	Solid	8021B	5481
890-964-1 MSD	SW05	Total/NA	Solid	8021B	5481

GC Semi VOA

Prep Batch: 5350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Total/NA	Solid	8015NM Prep	
MB 880-5350/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5350/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5350/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Total/NA	Solid	8015B NM	5350
MB 880-5350/1-A	Method Blank	Total/NA	Solid	8015B NM	5350
LCS 880-5350/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5350
LCSD 880-5350/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5350

HPLC/IC

Leach Batch: 5537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Soluble	Solid	DI Leach	
MB 880-5537/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5537/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5537/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 5560

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-964-1	SW05	Soluble	Solid	300.0	5537
MB 880-5537/1-A	Method Blank	Soluble	Solid	300.0	5537
LCS 880-5537/2-A	Lab Control Sample	Soluble	Solid	300.0	5537
LCSD 880-5537/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5537

Eurofins Xenco, Carlsbad

Lab Chronicle

Client: WSP USA Inc.

Job ID: 890-964-1

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Client Sample ID: SW05

Lab Sample ID: 890-964-1

Matrix: Solid

Date Collected: 07/20/21 07:14 Date Received: 07/21/21 12:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5481	07/22/21 10:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5527	07/22/21 13:43	KL	XEN MID
Total/NA	Prep	8015NM Prep			5350	07/22/21 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1	5510	07/22/21 14:12	AJ	XEN MID
Soluble	Leach	DI Leach			5537	07/22/21 12:08	CH	XEN MID
Soluble	Analysis	300.0		5	5560	07/23/21 06:00	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

1

5

7

4

13

ь

Accreditation/Certification Summary

Client: WSP USA Inc. Job ID: 890-964-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
Texas	N	NELAP	T104704400-20-21	06-30-22
The following analytes the agency does not of		out the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8015B NM	8015NM Prep	Solid	Total TPH	
8021B	5035	Solid	Total BTEX	

Method Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-964-1

SDG: TE012920126

ocol	Laboratory
346	XEN MID
346	XEN MID
WW	XEN MID

Method **Method Description** Proto 8021B Volatile Organic Compounds (GC) SW84 8015B NM Diesel Range Organics (DRO) (GC) SW84 300.0 Anions, Ion Chromatography MCA 5035 Closed System Purge and Trap SW846 XEN MID 8015NM Prep Microextraction SW846 XEN MID XEN MID DI Leach Deionized Water Leaching Procedure ASTM

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Page 13 of 17 Released to Imaging: 2/28/2022 4:36:12 PM

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-964-1

SDG: TE012920126

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-964-1	SW05	Solid	07/20/21 07:14	07/21/21 12:31	0 - 4

Phone:

(432) 236-3849 Midland, TX 79705 3300 North A Street

Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com

Big Eddy Unit 7E013930136

Routine

Turn Around Þ

ANALYSIS REQUEST

Deliverables: EDD

ADaPT

Work Order Notes

□_RP

U level IV

1 perfund

City, State ZIP:

Address: Company Name: Project Manager:

WSP USA Dan Moir

Project Number Project Name:

City, State ZIP: Carlsbad, NM 88220	Address: 522 W. Mermod St.	Company Name: XTO Energy	Bill to: (if different) Kyle Littrell	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1285 NM (575-392-7550) Phoenix, AZ (480-355-0900) Allanta, GA (770-449-8800) Tampa, FL (813-620-2000)	Chain of Custody
Reporting:Level III PT/UST RP	State of Project:	Program: UST/PST _RPPrownfieldsRC	Work Order Comments	nio,TX (210) 509-3334 lck,TX (806)794-1295 -8800) Tampa,FL (813-620-2000) www.xenco.com Page	Work Order No:
¥T □RP		ds [RC	mments	Page_	

Revised Date 051418 Rev. 2018 1			0						5
				11.17.17.1		4m	1,0	1	
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Time	Date/Time	ignature)	Received by: (Signature	,	signature)	Relinquished by: (Signature)
	terms and conditions nces beyond the control lously negotiated.	NOTICE: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, Its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75,00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	y to Xenco, Its affi enses incurred by nco, but not analy	client compan losses or exp ubmitted to Xe	valid purchase order from e any responsibility for any ge of \$5 for each sample s	samples constitutes a s and shall not assum ach project and a cha	quishment of cost of sample be applied to a	ment and reline only for the of \$75.00 will	NOTICE: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontract of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such loss of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will
Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 Hg	Vi K Se Ag SiO2	Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Ba Ba	P 2	TCLP / SPLP 6010: 8RCRA	 ∞	6020:) to be ana	200.8 / 6020: and Metal(s) to be	Total 200,7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed
						2-1			
			-	1					
		/	1	7					
				f	1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					/	/			
									(
Composite			XX	~	14 0-41	7/20/10/07/4	5		Soms
Sample Comments	Se		BTEX (Numb	ne Depth	Date Time Sampled Sampled	Matrix	cation	Sample Identification
lab, if received by 4:30pm	lab				iners:	Total Containers:	NO NIA	Yes	Sample Custody Seals:
TAT starts the day recevied by the	TAT str	890-964 Chain of Custody	100		actor: - O . 2	Correction Factor:	NA NA	1_1	Cooler Custody Seals:
					1007	- MW/	No	(Yes)	Received Intact:
)	ners	Thermometer ID	Thermo	15.0	5-2	Temperature (°C):
Em 9201.01360	TIE.				Wet Ice: (Yes) No	No No	Temp Blank: - Yes		SAMPLE RECEIPT
3	200		_	_	Due Date: 7/3//3	=	Jeremy Hill		Sampler's Name:
1080141001	10%		_		Rush: 34 kr	NRM 2024 884 885	HEDE V	In NRO	P.O. Number:

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-964-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Carlsbad

Login Number: 964 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Xenco, Carlsbad

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-964-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Midland
List Number: 2
List Creation: 07/22/21 10:10 AM

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

-

3

4

5

9

11

13

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-965-1

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

JURAMER

Authorized for release by: 7/23/2021 2:00:35 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

4

5

7

8

10

4.0

13

Client: WSP USA Inc.

Laboratory Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

3

4

6

8

10

10

13

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Qualifiers

GC VOA

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Page 3 of 20

•

3

4

5

6

0

10

12

Ιc

Case Narrative

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Job ID: 890-965-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-965-1

Receipt

The samples were received on 7/21/2021 12:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0° C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

200

4

Eurofins Xenco, Carlsbad 7/23/2021

Matrix: Solid

Lab Sample ID: 890-965-1

62@3@1 14/64

62@3@1 14/77

Matrix: Solid

62@3@1 16/66

62@3@1 6c/4t

Client Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Client Sample ID: FS06

Date Collected: 07/20/21 07:40 Date Received: 07/21/21 12:29

Sample Depth: - 4

1:4-9 5luorobenzene (Surr)

Method: 8021B - Volatile Orga	nic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2 engene	d0.00y0y	U	0.00y0y	5 r 🔁 r		0 <fyyfy1 10:00<="" td=""><td>0<fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1>	1
Kol7ene	d0.00y0y	U	0.00y0y	5 r E r		0<БууБу1 10:00	0 <fyyey1 1m0m<="" td=""><td>1</td></fyyey1>	1
j t3Bbengene	d0.00y0y	U	0.00y0y	5 r E r		0<БууБу1 10:00	0 <fyyey1 1m0m<="" td=""><td>1</td></fyyey1>	1
5 -u Blene h X-u Blene	d0.00m0m	U	0.00m0m	5 r E r		0<БууБу1 10:00	0 <fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1>	1
o-u Blene	d0.00y0y	U	0.00y0y	5 r ⊵ r		0 <fyyfy1 10:00<="" td=""><td>0<fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1>	1
u Blene&pKotsI	d0.00m0m	U	0.00m0m	5 r E r		0<БууБу1 10:00	0 <fyyfy1 1m0m<="" td=""><td>1</td></fyyfy1>	1
Kotsl 2Kj u	d0.00m0m	U	0.00m0m	5 r E r		0<БууБу1 10:00	0 <fyyfy1 1m0m<="" th=""><th>1</th></fyyfy1>	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			26 - 176			62@3@1 16/66	62@3@1 14/64	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
, s‾ a snr e RG snic&	dm9.9	U	m9.9	5 r Ez r		0 <fyyfy1 08:m6<="" th=""><th>0<fyyfy1 1m))<="" th=""><th>1</th></fyyfy1></th></fyyfy1>	0 <fyyfy1 1m))<="" th=""><th>1</th></fyyfy1>	1
Q a R(-C6-C10								
Die & a snr e R & snic & R ve G	dm9.9	U	m9.9	5 r Ez r		0 <fyyfy108:m6< th=""><th>0<fyyfy11m))< th=""><th>1</th></fyyfy11m))<></th></fyyfy108:m6<>	0 <fyyfy11m))< th=""><th>1</th></fyyfy11m))<>	1
C10-Cy8(
RII asnr e RG snic& RveCcy8-C) 6(dm9.9	U	m9.9	5 r E r		0 <eyyey1 08:m6<="" td=""><td>0<fyyfy1 1m))<="" td=""><td>1</td></fyyfy1></td></eyyey1>	0 <fyyfy1 1m))<="" td=""><td>1</td></fyyfy1>	1
Kotsl KPH	dm9.9	U	m 9 .9	5 r E r		0 <fyyfy1 08:m6<="" td=""><td>0<fyyfy1 1m))<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1m))<="" td=""><td>1</td></fyyfy1>	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Di loroo8@ne	, 3		26 - 176			62@3@1 6c/4t	62@3@1 14/77	1

26 - 176

, 2

161

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	167		m9.9	5 r E r			0 <fy) 06:06<="" fy1="" th=""><th>10</th></fy)>	10

26 - 176

Client Sample ID: FS07 Lab Sample ID: 890-965-2

Date Collected: 07/20/21 07:43 Date Received: 07/21/21 12:29

Sample Depth: - 4

o-aerTi enpl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2 engene	d0.00y00	U	0.00y00	5 r 🔁 r		0 <fyyfy1 10:00<="" td=""><td>0<fyyfy1 1mym<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1mym<="" td=""><td>1</td></fyyfy1>	1
Kol7ene	d0.00y00	U	0.00y00	5 r E z r		0 <fyyfy1 10:00<="" td=""><td>0<БууБу1 1mym</td><td>1</td></fyyfy1>	0<БууБу1 1mym	1
j t3Bbengene	d0.00y00	U	0.00y00	5 r E z r		0 <fyyfy1 10:00<="" td=""><td>0<eyyey1 1mym<="" td=""><td>1</td></eyyey1></td></fyyfy1>	0 <eyyey1 1mym<="" td=""><td>1</td></eyyey1>	1
5 -u Blene h X-u Blene	d0.00m00	U	0.00m00	5 r E z r		0<БууБу1 10:00	0 <fyyfy1 1mym<="" td=""><td>1</td></fyyfy1>	1
o-u Blene	d0.00y00	U	0.00y00	5 r E z r		0 <fyyfy1 10:00<="" td=""><td>0<eyyey1 1mym<="" td=""><td>1</td></eyyey1></td></fyyfy1>	0 <eyyey1 1mym<="" td=""><td>1</td></eyyey1>	1
u Blene&pKotsI	d0.00m00	U	0.00m00	5 r E z r		0 <fyyfy1 10:00<="" td=""><td>0<eyyey1 1mym<="" td=""><td>1</td></eyyey1></td></fyyfy1>	0 <eyyey1 1mym<="" td=""><td>1</td></eyyey1>	1
Kotsl 2Kj u	d0.00m00	U	0.00m00	5 r E r		0<БууБу1 10:00	0 <fyyfy1 1mym<="" td=""><td>1</td></fyyfy1>	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	16t		26 - 176			62@3@1 16/66	62@3@1 14/34	1
1:4-9 5luorobenzene (Surr)	. 2		26 - 176			62033031 16/66	6203081 14/34	1

j 7@fin&uencopCs@bs/

9

4

5

4.0

11

13

М

Matrix: Solid

Lab Sample ID: 890-965-2

Client Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Client Sample ID: FS07

Date Collected: 07/20/21 07:43 Date Received: 07/21/21 12:29

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
, s‾ a snr e RG snic&	d40.0	U	40.0	5 r Ez r		0 <fyyfy1 08:m6<="" td=""><td>0<fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1>	1
Q aR(-C6-C10								
Die⪙ a snr e RG snic& RveG	d40.0	U	40.0	5 r E r		0 <fyyfy108:m6< td=""><td>0<fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1></td></fyyfy108:m6<>	0 <fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1>	1
C10-Cy8(
RII a snr e R@snic&@veCy8-C) 6(d40.0	U	40.0	5 r E r		0 <fyyfy108:m6< td=""><td>0<fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1></td></fyyfy108:m6<>	0 <fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1>	1
Kotsl KPH	d40.0	U	40.0	5 r 🔁 r		0 <fyyfy1 08:m6<="" td=""><td>0<fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1m4m<="" td=""><td>1</td></fyyfy1>	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Di loroo8@ne	167		26 - 176			62@3@1 6c/4t	62@3@1 14/y4	1
o-aerTi enpl	11t		26 - 176			62@3@1 6c/4t	62@3@1 14/y4	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4410		100	5rEzr			0<\(\overline{\text{Ly}} \) \(\text{	v0

Client Sample ID: FS08

Lab Sample ID: 890-965-3

Date Collected: 07/20/21 07:46

Matrix: Solid

Date Collected: 07/20/21 07:46 Date Received: 07/21/21 12:29

Sample Depth: - 4

Method: 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2 engene	d0.00y0y	U	0.00y0y	5 r 🔁 r		0<БууБу1 10:00	0 <fyyfy1 1mm4<="" td=""><td>1</td></fyyfy1>	1
Kol7ene	d0.00y0y	U	0.00y0y	5 r E z r		0<БууБу1 10:00	0 <fyyey11mm4< td=""><td>1</td></fyyey11mm4<>	1
j t3Bbengene	d0.00y0y	U	0.00y0y	5 r E z r		0<БууБу1 10:00	0 <fyyey11mm4< td=""><td>1</td></fyyey11mm4<>	1
5 -u Blene h X-u Blene	d0.00m0)	U	0.00m0)	5 r Ez r		0<БууБу1 10:00	0 <fyyfy11mm4< td=""><td>1</td></fyyfy11mm4<>	1
o-u Blene	d0.00y0y	U	0.00y0y	5 r E r		0<БууБу1 10:00	0 <fyyfy11mm4< td=""><td>1</td></fyyfy11mm4<>	1
u Blene&pKotsI	d0.00m0)	U	0.00m0)	5 r E r		0<БууБу1 10:00	0 <fyyfy11mm4< td=""><td>1</td></fyyfy11mm4<>	1
Kotsl 2Kj u	d0.00m0)	U	0.00m0)	5 r Ez r		0 <fyyfy1 10:00<="" td=""><td>0<fyyfy11mm4< td=""><td>1</td></fyyfy11mm4<></td></fyyfy1>	0 <fyyfy11mm4< td=""><td>1</td></fyyfy11mm4<>	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		26 - 176	62@3@1 16/66	62@3@1 14/4y	1
1:4-9 \$luorobenzene (Surr)	, C		26 - 176	62@3@1 16/66	6 6203081 14/4y	1

l	wethou:	00100	- ININI	Diesei	Range	Organics	(DRO) (G	(U)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
, s‾ a snr e RG snic&	d40.0	U	40.0	5 r 🔁 r		0 <fyyfy1 08:m6<="" td=""><td>0<БууБу1 14:14</td><td>1</td></fyyfy1>	0<БууБу1 14:14	1
Q aR(-C6-C10								
Die⪙ a snr e RG snic& RveG	d40.0	U	40.0	5 r E r		0 <eyyey108:m6< td=""><td>0<5yy5y1 14:14</td><td>1</td></eyyey108:m6<>	0<5yy5y1 14:14	1
C10-Cy8(
RII asnr e RG snic& RveCy8-C) 6(d40.0	U	40.0	5 r E z r		0 <fyyfy108:m6< td=""><td>0<fyyfy1 14:14<="" td=""><td>1</td></fyyfy1></td></fyyfy108:m6<>	0 <fyyfy1 14:14<="" td=""><td>1</td></fyyfy1>	1
Kotsl KPH	d40.0	U	40.0	5 r Er		0 <fyyfy1 08:m6<="" td=""><td>0<БууБу1 14:14</td><td>1</td></fyyfy1>	0<БууБу1 14:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1 Di laragema	167		26 176			62/02/01 60/4	62/02/04 11//11/	

Surrogate	%Recovery	Qualifier	Limits	Prep	oared	Analyzed	Dil Fac
1-Di loroo8@ne	167		26 - 176	62 B 3 B	31 6c/4t	62@3@1 1y/1y	1
o-aerTi enpl	11 <i>y</i>		26 - 176	6203303	31 6c/4t	62@3@1 1y/1y	1

Mathadi 200 0 Aniana	1	Chramatannahu	Calubla
Method: 300.0 - Anions,	ION	Chromatography	- Soluble

modifical cools 7 miletio, for cities	iatography colabic						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2040	m9.<	5 r E⁄z r			0 <fy) 06:16<="" fy1="" td=""><td>10</td></fy)>	10

j 7@fin&uencopCs@bs/

4

6

8

1 N

12

Client Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Client Sample ID: FS09 Date Collected: 07/21/21 07:48

2470

Lab Sample ID: 890-965-4

Matrix: Solid

Date Received: 07/21/21 12:29 Sample Depth: - 4

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2 engene	d0.00y00	U	0.00y00	5 r 🔁 r		0 <fyyfy1 10:00<="" td=""><td>0<БууБу1 14:04</td><td>1</td></fyyfy1>	0<БууБу1 14:04	1
Kol7ene	d0.00y00	U	0.00y00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
j t3Bbengene	d0.00y00	U	0.00y00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
5 -u Blene h X-u Blene	d0.00m00	U	0.00m00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
o-u Blene	d0.00y00	U	0.00y00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
u Blene&pKotsI	d0.00m00	U	0.00m00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
Kotsl 2 Kj u	d0.00m00	U	0.00m00	5 r E r		0<БууБу1 10:00	0<БууБу1 14:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133		26 - 176			62@3@1 16/66	62@3@1 1y/6y	1
1:4-9 \$luorobenzene (Surr)	16y		00 470			compand 46/66	62@3@1 1y/6y	1
Method: 8015B NM - Diesel Ran	,	RO) (GC)	26 - 176			62@3@1 16/66	6263661 Ty/6y	,
1.4-9 aluorobenzene (Surr)	TOY		20 - 170			6203087 76/66	02W3W1 1y/0y	,
Method: 8015B NM - Diesel Ran Analyte	ge Organics (DI	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte , s‾ a snr e R@snic&	ge Organics (DI	Qualifier		Unit 5 r 🕏 r	<u>D</u>			
Method: 8015B NM - Diesel Ran Analyte	ge Organics (DI	Qualifier	RL		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& O a R(-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result d40.0	Qualifier U	RL 40.0	5 r	<u>D</u>	Prepared 0<5yy5y1 08:n6 0<5yy5y1 08:n6	Analyzed 0<5yy5y114:)6 0<5yy5y114:)6	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& Q a R(-C6-C10 Diesel Range Organics (Over	ge Organics (DI Result d40.0	Qualifier U	RL 40.0 40.0 40.0	5 r Ēz r 5 r Ēz r 5 r Ēz r	<u>D</u>	Prepared 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6	Analyzed 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& O a R(-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result d40.0	Qualifier U	RL 40.0	5 r	<u>D</u>	Prepared 0<5yy5y1 08:n6 0<5yy5y1 08:n6	Analyzed 0<5yy5y114:)6 0<5yy5y114:)6	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& Q a R(-C6-C10 Diesel Range Organics (Over C10-C28) RII a snr e R@snic& @vecCy8-C) 6(ge Organics (DI Result d40.0 83.9 d40.0	Qualifier U	RL 40.0 40.0 40.0	5 r Ēz r 5 r Ēz r 5 r Ēz r	<u>D</u>	Prepared 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6	Analyzed 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6	
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& Q a R(-C6-C10 Diesel Range Organics (Over C10-C28) RII a snr e R@snic& @vecCy8-C) 6(Total TPH	ge Organics (DI Result d40.0 83.9 d40.0 83.9	Qualifier U	RL 40.0 40.0 40.0 40.0	5 r Ēz r 5 r Ēz r 5 r Ēz r	<u>D</u>	Prepared 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6	Analyzed 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& Q a R(-C6-C10 Diesel Range Organics (Over C10-C28) RII a snr e R@snic& @vecCy8-C) 6(Total TPH Surrogate	ge Organics (DI Result d40.0 83.9 d40.0 83.9 %Recovery	Qualifier U	RL 40.0 40.0 40.0 40.0 Limits	5 r Ēz r 5 r Ēz r 5 r Ēz r	<u> </u>	Prepared 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6 0<5yy5y1 08:m6 Prepared	Analyzed 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte , s‾ a snr e R@snic& Q a R(-C6-C10 Diesel Range Organics (Over C10-C28) RII a snr e R@snic&@vecCy8-C) 6(Total TPH Surrogate 1-Di Ioroo8@ne	ge Organics (DI Result d40.0 83.9 d40.0 83.9 %Recovery , 6 , c	Qualifier U Qualifier	RL 40.0 40.0 40.0 40.0 Limits 26 - 176	5 r Ēz r 5 r Ēz r 5 r Ēz r	<u>D</u>	Prepared 0<5yy5y1 08:n6 0<5yy5y1 08:n6 0<5yy5y1 08:n6 0<5yy5y1 08:n6 Prepared 62@3@1 6c/4t	Analyzed 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6 0<5yy5y1 14:)6 Analyzed 6203081 1y/7t	Dil Fac

40.0

5 r Er

0<Fy) Fy1 06:yy

Surrogate Summary

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-965-1	FS06	117	97	
390-965-2	FS07	106	97	
390-965-3	FS08	112	98	
390-965-4	FS09	122	105	
_CS 880-5481/1-A	Lab Control Sample	100	102	
LCSD 880-5481/2-A	Lab Control Sample Dup	102	105	
MB 880-5481/5-A	Method Blank	126	95	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

_			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-965-1	FS06	92	101
890-965-2	FS07	103	116
890-965-3	FS08	103	115
890-965-4	FS09	90	98
LCS 880-5350/2-A	Lab Control Sample	89	88
LCSD 880-5350/3-A	Lab Control Sample Dup	96	96
MB 880-5350/1-A	Method Blank	100	115

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Xenco, Carlsbad

Released to Imaging: 2/28/2022 4:36:12 PM

2

4

6

ا

9

11

13

QC Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5481/5-A

Matrix: Solid Analysis Batch: 5527 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 5481

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2 engene	d0.00y00	U	0.00y00	5 r E⁄z r		0 <fyyfy1 10:00<="" td=""><td>0<fyyfy1 1myy<="" td=""><td>1</td></fyyfy1></td></fyyfy1>	0 <fyyfy1 1myy<="" td=""><td>1</td></fyyfy1>	1
Kol7ene	d0.00y00	U	0.00y00	5 r ⊵ r		0<БууБу1 10:00	0<БууБу1 1myy	1
j t3Bbengene	d0.00y00	U	0.00y00	5 r ⊵ r		0<БууБу1 10:00	0<БууБу1 1myy	1
5 -h Blene X &-h Blene	d0.00u00	U	0.00u00	5 r Ez r		0<БууБу1 10:00	0 <fyyfy1 1myy<="" td=""><td>1</td></fyyfy1>	1
o-h Blene	d0.00y00	U	0.00y00	5 r ⊵ r		0<БууБу1 10:00	0<БууБу1 1myy	1
h Bleneps Kot, I	d0.00u00	U	0.00u00	5 r ⊵ r		0<БууБу1 10:00	0 <fyyfy1 1myy<="" td=""><td>1</td></fyyfy1>	1
Kot, I 2Kj h	d0.00u00	U	0.00u00	5 r Ez r		0<БууБу1 10:00	0<БууБу1 1myy	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130	07/22/21 10	07/22/21 13:22	1
1,4-Difluorobenzene (Surr)	95		70 - 130	07/22/21 10	0:00 07/22/21 13:22	1

Lab Sample ID: LCS 880-5481/1-A

Matrix: Solid

Analysis Batch: 5527

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 5481

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec 2 engene 0.100 0.09my0 5 r Er 9m <0 - 1m0 0.100 0.08u<6 Kol7ene 5 r Er 84 <0 _ 1m0 0.08u9y 0.100 j t3Bbengene 5 r Er 84 <0 - 1m0 5 -h Blene X &-h Blene 0.1<mu <0 _ 1m0 0.y00 5 r Er 0.08uu< o-h Blene 0.100 5 r Er <0 - 1m0 8u

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1 4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-5481/2-A

Matrix: Solid

Analysis Batch: 5527

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 5481

Sp	oike LCSD	LCSD			%Rec.		RPD
Analyte Add	ded Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
2 engene 0.	100 0.1016	5 r 🗷		10y	<0 - 1m0	9	m4
Kol7ene 0.	100 0.09146	5 r E z ı	,	9у	<0 ₋ 1m0	8	m4
j t3Blbengene 0.	100 0.090m≤	5 r 🔁 ı	•	90	<0 ₋ 1m0	6	m4
5 -h Blene X &-h Blene 0.	y00 0.18u<	5 r E zı	•	9у	<0 - 1m0	6	m4
o-h Blene 0.	100 0.091yu	5 r		91	<0 - 1m0	8	m4

LCSD LCSD

Surrogate	%Recovery Qu	ialitier Limits	
4-Bromofluorobenzene (Surr)	102	70 - 130	
1,4-Difluorobenzene (Surr)	105	70 - 130	

j 7@ainp hencosC, Opb, /

3

_

0

8

10

12

QC Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5350/1-A Client Sample ID: Method Blank Matrix: Solid

Analysis Batch: 5510

Prep Type: Total/NA Prep Batch: 5350 MR MR

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
R, poline O, nr e (&, nicp	d40.0	U	40.0	5 r 🔁 r		0<∄9Ey1 08:u6	0 <fyyfy1 1y:0<<="" td=""><td>1</td></fyyfy1>	1
)RO(v-C6-C10								
Diepel O, nr e (G, nicp)(HeG	d40.0	U	40.0	5 r E z r		0<∄9Ey1 08:u6	0 <fyyfy1 1y:0<<="" td=""><td>1</td></fyyfy1>	1
C10-Cy8v								
(IIO, nre(G, nicp)(HeGCy8-Cm6v	d40.0	U	40.0	5 r 🔁 r		0<∄95y1 08:u6	0<5yy5y1 1y:0<	1
Kot, I KPf	d40.0	U	40.0	5 r Er		0<∄95y1 08:u6	0 <fyyfy1 1y:0<<="" td=""><td>1</td></fyyfy1>	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-8 Gorooha ne	100		70 - 130	07/19/21 0a:46	07/22/21 12:07	1
o-TerpCenyl	115		70 - 130	07/19/21 0a:46	07/22/21 12:07	1

Lab Sample ID: LCS 880-5350/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 5510

Prep Batch: 5350 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits R, poline O, nr e (G, nicp 1000 5 r Er <6 <0 - 1m0 <6y.1)RO(v-C6-C10 Diepel O, nre (G, nicp)(HeG 1000 881.8 5 r Er 88 <0 - 1m0 C10-Cy8v

LCS LCS %Recovery Qualifier Limits Surrogate 1-8 Gorooha ne а9 70 - 130 o-TerpCenyl 70 - 130 aa

Lab Sample ID: LCSD 880-5350/3-A Matrix: Solid

Analysis Batch: 5510

Prep Batch: 5350 LCSD LCSD Spike %Rec. **RPD** Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit 808.y R, poline O, nr e (&, nicp 1000 81 <0 - 1m0 6 y0)RO(v-C6-C10 Diepel O, nre (&, nicp)(HeG 1000 9u9.u 5 r Er 94 y0 <0 - 1m0C10-Cy8v

Surrogate	%Recovery	Qualifier	Limits
1-8 Goroohd ne	96		70 - 130
o-TerpCenyl	96		70 - 130

LCSD LCSD

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5537/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5560

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C3lo@ e	d4.00	U	4.00	5 r E r			0 <fymfy1 0mu4<="" td=""><td>1</td></fymfy1>	1

j 7@ainp hencosC, @pb, /

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCS 880-5537/2-A

QC Sample Results

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Method: 300.0 - Anions, Ion Chromatography (Continued)

Client Sample ID: Lab Control Sample

90 - 110

100

Matrix: Solid Prep Type: Soluble Analysis Batch: 5560

yu9.y

5 r Er

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits C3lo@ e

y40

Lab Sample ID: LCSD 880-5537/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5560

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec C3lo⊕ e y40 yu9.9 5 r Er 100 90 - 110 0 y0

j 7@ainp hencosC, @pb, /

QC Association Summary

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

GC VOA

Prep Batch: 5481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Total/NA	Solid	5035	
890-965-2	FS07	Total/NA	Solid	5035	
890-965-3	FS08	Total/NA	Solid	5035	
890-965-4	FS09	Total/NA	Solid	5035	
MB 880-5481/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5481/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5481/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 5527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Total/NA	Solid	8021B	5481
890-965-2	FS07	Total/NA	Solid	8021B	5481
890-965-3	FS08	Total/NA	Solid	8021B	5481
890-965-4	FS09	Total/NA	Solid	8021B	5481
MB 880-5481/5-A	Method Blank	Total/NA	Solid	8021B	5481
LCS 880-5481/1-A	Lab Control Sample	Total/NA	Solid	8021B	5481
LCSD 880-5481/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5481

GC Semi VOA

Prep Batch: 5350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Total/NA	Solid	8015NM Prep	
890-965-2	FS07	Total/NA	Solid	8015NM Prep	
890-965-3	FS08	Total/NA	Solid	8015NM Prep	
890-965-4	FS09	Total/NA	Solid	8015NM Prep	
MB 880-5350/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5350/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5350/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Total/NA	Solid	8015B NM	5350
890-965-2	FS07	Total/NA	Solid	8015B NM	5350
890-965-3	FS08	Total/NA	Solid	8015B NM	5350
890-965-4	FS09	Total/NA	Solid	8015B NM	5350
MB 880-5350/1-A	Method Blank	Total/NA	Solid	8015B NM	5350
LCS 880-5350/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5350
LCSD 880-5350/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5350

HPLC/IC

Leach Batch: 5537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Soluble	Solid	DI Leach	
890-965-2	FS07	Soluble	Solid	DI Leach	
890-965-3	FS08	Soluble	Solid	DI Leach	
890-965-4	FS09	Soluble	Solid	DI Leach	
MB 880-5537/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5537/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5537/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

, ,

12

QC Association Summary

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

HPLC/IC

Analysis Batch: 5560

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-965-1	FS06	Soluble	Solid	300.0	5537
890-965-2	FS07	Soluble	Solid	300.0	5537
890-965-3	FS08	Soluble	Solid	300.0	5537
890-965-4	FS09	Soluble	Solid	300.0	5537
MB 880-5537/1-A	Method Blank	Soluble	Solid	300.0	5537
LCS 880-5537/2-A	Lab Control Sample	Soluble	Solid	300.0	5537
LCSD 880-5537/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5537

4

4

5

7

0

10

13

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Client Sample ID: FS06

Lab Sample ID: 890-965-1 Date Collected: 07/20/21 07:40

Matrix: Solid

Date Received: 07/21/21 12:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5481	07/22/21 10:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5527	07/22/21 14:04	KL	XEN MID
Total/NA	Prep	8015NM Prep			5350	07/22/21 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1	5510	07/22/21 14:33	AJ	XEN MID
Soluble	Leach	DI Leach			5537	07/22/21 12:08	CH	XEN MID
Soluble	Analysis	300.0		10	5560	07/23/21 06:06	CH	XEN MID

Client Sample ID: FS07 Lab Sample ID: 890-965-2 Date Collected: 07/20/21 07:43

Date Received: 07/21/21 12:29

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035 5481 07/22/21 10:00 KL XEN MID Total/NA 8021B 5527 07/22/21 14:24 XEN MID Analysis 1 KL Total/NA Prep 07/22/21 08:46 XEN MID 8015NM Prep 5350 DM Total/NA 8015B NM XEN MID Analysis 1 5510 07/22/21 14:54 AJ XEN MID Soluble Leach DI Leach 5537 07/22/21 12:08 СН XEN MID Soluble Analysis 300.0 20 5560 07/23/21 06:11 CH

Client Sample ID: FS08 Lab Sample ID: 890-965-3

Date Collected: 07/20/21 07:46 **Matrix: Solid** Date Received: 07/21/21 12:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5481	07/22/21 10:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5527	07/22/21 14:45	KL	XEN MID
Total/NA	Prep	8015NM Prep			5350	07/22/21 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1	5510	07/22/21 15:15	AJ	XEN MID
Soluble	Leach	DI Leach			5537	07/22/21 12:08	CH	XEN MID
Soluble	Analysis	300.0		10	5560	07/23/21 06:16	CH	XEN MID

Client Sample ID: FS09 Lab Sample ID: 890-965-4 Date Collected: 07/21/21 07:48

Date Received: 07/21/21 12:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5481	07/22/21 10:00	KL	XEN MID
Total/NA	Analysis	8021B		1	5527	07/22/21 15:05	KL	XEN MID
Total/NA	Prep	8015NM Prep			5350	07/22/21 08:46	DM	XEN MID
Total/NA	Analysis	8015B NM		1	5510	07/22/21 15:36	AJ	XEN MID
Soluble	Leach	DI Leach			5537	07/22/21 12:08	CH	XEN MID
Soluble	Analysis	300.0		10	5560	07/23/21 06:22	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Job ID: 890-965-1

Project/Site: Big Eddy Unit 150

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		Program	Identification Number	Expiration Date 06-30-22	
		IELAP	T104704400-20-21		
The following analytes the agency does not of	1 /	out the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for whic	
Analysis Method	Prep Method	Matrix	Analyte		
8015B NM	8015NM Prep	Solid	Total TPH		
8021B	5035	Solid	Total BTEX		

3

4

O

9

11

12

Method Summary

Client: WSP USA Inc. Job ID: 890-964-1

P@TectEsite: 2ir j // BUnit 140

Method	Method Description	Protocol	Laboratory
80d12	yol5tile V G 5nic Coa Comn/ p us C(SW8g6) j X NID
80142 XN	Diepel M5nr e V G 5nicp LDMV (us C(SW8g6) j X NID
R00.0	Anionp3Ion C, @a 5tor (\$O, B	NCAWW) j X NID
10R4	Clope/ SBptea Pm@e 5n/ h@O	SW8g6) j X NID
8014XN P@O	Nic@ext@ction	SW8g6) j X NID
DI Le5c,	Deionize/ W5teGLe5c, inr Pace/ ma	AShN) j X NID

Protocol References:

AShN = AShN Inte@5tion5I

NCAWW = "Net, o/ p FoGc, ea ic5l An5lBpip Vf W5teGAn/ W5ptep"3j PA-600fg-79-0d03N5@, 198RAn/ Snbpeqment Mevipionp.

SW8g6 = "hept Net, o/ p FoGj v5ln6tinr Soli/ W5pte3P, Bpic5lfc, ea ic5l Net, o/ p"3h, iG j / ition3Xovea beG1986 An/ Itp UO' 5tep.

Laboratory References:

) j X NID = j m@finp) enco3Ni/ l5n/ 31d11 W. Flo@ 5 Ave3Ni/ l5n/ 3h) 797013hj L ugRd(70g-4gg0

3

4

6

0

9

11

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-965-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-965-1	FS06	Solid	07/20/21 07:40	07/21/21 12:29	- 4
890-965-2	FS07	Solid	07/20/21 07:43	07/21/21 12:29	- 4
890-965-3	FS08	Solid	07/20/21 07:46	07/21/21 12:29	- 4
890-965-4	FS09	Solid	07/21/21 07:48	07/21/21 12:29	- 4

Project Manager:

Dan Moir

Bill to: (if different)

Company Name: Address:

Company Name:

WSP USA

Sampler's Name: P.O. Number:

Temperature (°C):

SAMPLE RECEIPT

Temp Blank: Yes 50

S

Wet ice:

Wes

Ew. 2531. 01562. Exp.

175

10011409801

iners

Jeremy Hill

Project Name:

Bis Folly Unit

Project Number:

In. NEM 202 4854 885

TE014920126

Rush:

1445

Routine

Turn Around

ANALYSIS REQUEST

Deliverables: EDD Reporting:Level II Program: UST/PST □RP □rownfields □RC

\$□perfund

Work Order Comments

State of Project:

□evel III □ST/UST

RP

UBvel IV

ADaPT |

Other:

Work Order Notes

Due Date: 7/4/1

Phone:

(432) 236-3849 Midland, TX 79705 3300 North A Street

Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com

City, State ZIP:

Carlsbad, NM 88220 522 W. Mermod St. XTO Energy

City, State ZIP:

ddress:

13

Work Order No:

Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Allanta, GA (770-449-8800) Tampa, FL (813-820-2000)	Hobbs.NM (575-392-
Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	Midland
Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334	Houston,
Chain of Custody	

Login Sample Receipt Checklist

Job Number: 890-965-1

SDG Number:

Login Number: 965 List Source: Eurofins Xenco, Carlsbad

List Number: 1 Creator: Clifton, Cloe

Client: WSP USA Inc.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Eurofins Xenco, Carlsbad Page 19 of 20

Login Sample Receipt Checklist

Job Number: 890-965-1

SDG Number:

List Source: Eurofins Xenco, Midland
List Number: 2
List Creation: 07/22/21 10:09 AM

Creator: Phillips, Kerianna

Client: WSP USA Inc.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

2

4

6

8

10

12

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-980-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

MAMER

Authorized for release by: 7/26/2021 5:43:14 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

4.0

13

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-980-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	6
QC Sample Results	7
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

2

3

4

6

8

10

12

13

Definitions/Glossary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Qualifiers

GC VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit
PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

2

6

7

8

3

Case Narrative

Client: WSP USA Inc.

Job ID: 890-980-1 SDG: TE012920126 Project/Site: Big Eddy Unit 150

Job ID: 890-980-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-980-1

Receipt

The sample was received on 7/22/2021 4:31 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 9.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

41Cient WSt Pli UA

W2orl Unjt @e:/ BiGggd Si@e6y0

Job ID: 890-980-6 t Dc:. G06T9T06TE

t Dc:. G06T9T06TE

Lab Sample ID: 890-980-6

Wat5iM Sr lix

Client Sample ID: S4 01

Date Cr lleotex: 0dd1d6 60:7d Date Reoei/ ex: 0dd1d6 62:v6

Sample Dept3: 0 - h

Analyte	Result	Qualifie5	RL	Unit	D	P5epa5ex	Analyzex	Dil Fac
/ l i 5l i l	z0 <i>A</i> 00T0T	S	0 <i>A</i> 00T0T	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
. oʻlul i l	z0 A 00T0T	S	0 <i>A</i> 00T0T	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
Gend1bli5lil	z0 A 00T0T	S	0 <i>A</i> 00T0T	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
<-Xd1il & p-Xd1il	z0A00307	S	0 <i>A</i> 00307	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
o-Xd1 i I	z0 A 00T0T	S	0 <i>A</i> 00T0T	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
Xd1 ils, .oea1	z0A00307	S	0 <i>A</i> 00307	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
. oea1/ . GX	z0/400307	S	0 <i>A</i> 00307	< BjmB		0KjT7jT6 66:06	0KjT3jT6 0T:63	6
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		67 - 107			763' 03' 1 11:71	763 43 1 7/:14	1
194-5 ,fluorobenzene (Surr)	Di		67 - 107			763 03 1 11:71	763 43 1 7/:14	1
Wot2ry: 9067P NW Diagol Pane	no Ofganios (D	BO) (GC)						
Wet3r x: 8067B NW - Diesel Rang	ge O5ganios (Di	RO) (GC)						
Wet3rx: 8067B NW - Diesel Rang Analyte c aso © Rai B O2Bai ©s		Qualifie5	RL 39/9		<u>D</u>	P5epa5ex 0KjT7jT6 63:T9	Analyzex 0KjT3jT6 69:y3	
Analyte caso1Cl RaiBl O2BaiCbs	Result	Qualifie5			<u>D</u>			
Analyte caso 10:1 Rai Bl O2Bai 00:5 (cRO)-4E-460 D0:sl1Rai Bl O2Bai 00:5 (Ovl2	Result	Qualifie5			<u>D</u>			6
Analyte c aso 1C Rai B O2Bai CLs (c RO)-4 E-460 DCs 1Rai B O2Bai CLs (Ov 2 460-4T8)	Result z39/9	Qualifie5 S	39 <i>A</i> 9	< BjmB	<u>D</u>	0КјТ7јТ6 63:Т9	0KjT3jT6 69:y3	6
Analyte c aso 1C Rai B O2Bai CLs (c RO)-4 E-460 DCs 1Rai B O2Bai CLs (Ov 2 460-4T8)	Result	Qualifie5 S S	39A9 39A9	< BjmB	<u>D</u>	0қ/T7/T6 63:Т9 0қ/T7/T6 63:Т9	0қ/Т3/Т6 69:у3 0қ/Т3/Т6 69:у3	6
Analyte c aso 1Cl Rai Bl O2Bai CLs (c RO)-4 E-460 DCsl 1Rai Bl O2Bai CLs (Ovl 2 460-4 T8) Ol1Rai Bl O2Bai CLs (Ovl 24 T8-4 7E) . oea1. WH	Result	Qualifie5 S S	39A9 39A9 39A9	< BjmB < BjmB < BjmB	<u>D</u>	0KjT7jT6 63:T9 0KjT7jT6 63:T9 0KjT7jT6 63:T9 0KjT7jT6 63:T9	0ҚТ3јТ6 69:y3 0ҚТ3јТ6 69:y3 0ҚТ3јТ6 69:y3	6
Analyte c aso 10:1 Rai Bl O2Bai Cus (c RO)-4 E-4 60 DCsl 1Rai Bl O2Bai Cus (Ovl 2 4 60-4 T8) O11Rai Bl O2Bai Cus (Ovl 24 T8-4 7E)	Result	Qualifie5 S S S S	39A9 39A9 39A9 39A9	< BjmB < BjmB < BjmB	<u>D</u>	0ҚТ7јТ6 63:Т9 0ҚТ7јТ6 63:Т9 0ҚТ7јТ6 63:Т9 0ҚТ7јТ6 63:Т9	ОҚТЗ]Т6 69:у3 ОҚТЗ]Т6 69:у3 ОҚТЗ]Т6 69:у3 ОҚТЗ]Т6 69:у3 ОҚТЗ]Т6 69:у3	6
Analyte c aso 1Cl Rai Bl O2Bai CLs (c RO)-4 E-4 60 DCsl 1Rai Bl O2Bai CLs (Ovl 2 4 60-4 T8) Ol1Rai Bl O2Bai CLs (Ovl 24 T8-4 7E) . 0ea1. WH	Result z39A z39A z39A z39A %Recovery	Qualifie5 S S S S	39A9 39A9 39A9 39A9	< BjmB < BjmB < BjmB	<u> </u>	0Қ177jT6 63:Т9 0Қ177jT6 63:Т9 0Қ177jT6 63:Т9 0Қ177jT6 63:Т9 <i>Prepared</i>	0ҚТЗ]Т6 69:у3 0ҚТЗ]Т6 69:у3 0ҚТЗ]Т6 69:у3 0ҚТЗ]Т6 69:у3 ОҚТЗ]Т6 69:у3 Analyzed	66 66 Dil Fac
Analyte c aso tCl Rai Bl O2Bai Cts (c RO)-4 E-4 60 DCsl 1Rai Bl O2Bai Cts (Ovl 2 4 60-4 T8) Ol1Rai Bl O2Bai Cts (Ovl 24 T8-4 7E) . oea1. WH Surrogate 1-8 Cloroohd ne	Result	Qualifie5 S S S Qualifier	39A9 39A9 39A9 Limits 67 - 107	< BjmB < BjmB < BjmB	<u>D</u>	0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 Prepared 763 03 1 14:/ D	OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 Analyzed 763 43 1 1Da4	6 6
Analyte c aso tCl Rai Bl O2Bai Cts (c RO)-4 E-4 60 DCsl 1Rai Bl O2Bai Cts (Ovl 2 4 60-4 T8) Ol1Rai Bl O2Bai Cts (Ovl 24 T8-4 7E) . oea1. WH Surrogate 1-8 Cloroohd ne o-TerpCenyl	Result	Qualifie5 S S S Qualifier	39A9 39A9 39A9 Limits 67 - 107	< BjmB < BjmB < BjmB	<u>D</u>	0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 0kjT7jT6 63:T9 Prepared 763 03 1 14:/ D	OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 OKjT3jT6 69:y3 Analyzed 763 43 1 1Da4	Dil Fao 6 6 6 6 6 Dil Fac

DF/, = 63f-D@uo2obli(III)t u22Z

Surrogate Summary

41Cient WSt PliUA W2orl Unjt @e:/ @BGggd Si @6y0

Job ID: 890-980-6

t Dc:.G06T9T06TE

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-				Percent Surrogate Rec
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-980-6	t n 0T	66E	98	
890-980-6 5 t	t n OT	6T6	60E	
890-980-6 5 t D	t n OT	666	607	
M4t 880-yy8Lj6-P	Mab 4 oi e2o1t amp1	666	607	
M4t D 880-yy8LjT-P	Mab 4 oi e2o1t amp1 Dup	60L	607	
5 / 880-yy70jy-P	5 lehog / 1aik	608	9E	
5 / 880-yy8Ljy-P	5 lehog / 1aik	60E	9L	
Surrogate Legend				
/ F/ = f -/ 2omozuo2obl i (I	il)tu22Z			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-980-6	t n 0T	98	668	
890-980-6 5 t	t n OT	9f	60L	
890-980-6 5 t D	t n OT	9E	60y	
M4t 880-yE0LjT-P	Mab 4 oi e2o1t amp1	99	666	
M4t D880-yE0LjL-P	Mab 4 oi e2o1t amp1 Dup	97	609	
5 / 880-yE0Lj6-P	5 Iehog / 1aik	9T	66f	
Surrogate Legend				
64 O = 6-4 h1b2boUtai I				

Gu2oz0s XI i Uo34 a2sbag

O. WH = o-. I 2phl i d1

41Cient WSt Pli UA

Job ID: 890-980-6 t Dc:.G06T9T06TE W2orl Unjt @l:/ @lGggd Si @6y0

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5570/5-A

Matrix: Solid

Analysis Batch: 5575

Client	Sample	ID:	Method	Blank
--------	--------	-----	--------	-------

Prep Type: Total/NA

Prep Batch: 5570

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ li 5li l	z0A00T00	S	0A00T00	< BjmB	_	0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
. o13I i I	z0A00T00	S	0A00T00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
Geud1bli5lil	z0 A 00T00	S	0A00T00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
<-Xd1il & p-Xd1il	z0A00h00	S	0 A 00h00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
o-Xd1 i l	z0A00T00	S	0A00T00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
Xd1 i I s, . oea1	z0A00h00	S	0 A 00h00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6
. oea1/ . GX	z0A00h00	S	0 A 00h00	< BjmB		0KjT7jT6 60:TT	0KjT7jT6 6y:06	6

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		72 - 102	273 03 1 129/	273 03 1 1: 921	1
1 🗗 - i 8 luorobenzene (Surr)	5,		72 - 102	273 03 1 129/	273'03'1 1: 921	1

Lab Sample ID: MB 880-5583/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 5575

MB M

					Prep Type: 1	Total/NA	
					Prep Bato	:h: 5583	
ИВ							
Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
3	0A00T00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ l i 5l i l	z0A00T00	S	0A00T00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
. oƁl i l	z0A00T00	S	0A00T00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
Geud1bli5lil	z0 A 00T00	S	0A00T00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
<-Xd1il & p-Xd1il	z0A00h00	S	0A00h00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
o-Xd1 i I	z0A00T00	S	0A00T00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
Xd1ils,.oea1	z0A00h00	S	0 A 00h00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6
. oea1/ . GX	z0A00h00	S	0A00h00	< BjmB		0KjT7jT6 66:06	0KjThjT6 06:yT	6

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	12,		72 - 102	273 03 1 11921	273 43 1 219 /	1
1 🗗 - i 🕯 luorobenzene (Surr)	50		72 - 102	273 03 1 11921	273 43 1 219 /	1

Lab Sample ID: LCS 880-5583/1-A

Matrix: Solid

Analysis Batch: 5575

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 5583

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
/ I i 5I i I	0 <i>A</i> 600	0 <i>A</i> 60TT		< BjmB		60T	K0 ₋ 670	
.oBlil	0 <i>A</i> 600	0A09Th7		< BjmB		9T	K0 ₋ 670	
Geud1bli5liI	0 <i>A</i> 600	0 A 089h0		< BjmB		89	K0 - 670	
<-Xd1il & p-Xd1il	0 <i>A</i> T00	0 <i>A</i> 6876		< BjmB		9T	K0 ₋ 670	
o-Xd1 i l	0 <i>A</i> 600	0 A 09T0K		< BjmB		9T	K0 - 670	

LCS	LCS
LUS	LUS

Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene (Surr)	111	72 - 102
1DI-i 8luorobenzene (Surr)	127	72 - 102

G32oRCs XI i Ub, 4 a2sbag

41Cient WSt Pli UA W2orl Unjt @l:/ @lGggd Si @6y0 Job ID: 890-980-6

t Dc: . G06T9T06TE

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5583/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 5575** Prep Batch: 5583

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
/ l i 5l i l	0 <i>A</i> 600	0 /6 0T8		< BjmB		607	K0 - 670	6	7у	
. o13IiI	0/4600	0A089K8		< BjmB		90	K0 ₋ 670	7	7у	
Geud1bli5lil	0 <i>A</i> 600	0 A 08Ehy		< BjmB		8E	K0 ₋ 670	7	7y	
<-Xd1il & p-Xd1il	0 <i>A</i> T00	0 /6 KyT		< BjmB		88	K0 ₋ 670	h	7у	
o-Xd1 i I	0 <i>A</i> 600	0 A 08K9h		< BjmB		88	K0 ₋ 670	У	7y	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	120		72 - 102
1124-i 8lluorobenzene (Surr)	127		72 - 102

Lab Sample ID: 890-980-1 MS Client Sample ID: SW02 Matrix: Solid Prep Type: Total/NA **Analysis Batch: 5575** Prep Batch: 5583

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

, j			,			_	,0.100		
/ I i 5I i I	z0A00T0T	S	0A099E	0A096T7	< BjmB		9T	K0 ₋ 670	
. oƁlil	z0A00T0T	S	0 A 099E	0 <i>A</i> 08777	< BjmB		8h	K0 ₋ 670	
Geud1bli5lil	z0A00T0T	S	0 A 099E	0 <i>A</i> 086Ky	< BjmB		8T	K0 - 670	
<-Xd1il & p-Xd1il	z0A00h07	S	0.4699	0.46E9h	< BjmB		8y	K0 ₋ 670	
o-Xd1 i I	z0A00T0T	S	0 A 099E	0.4087Eh	< BjmB		8h	K0 - 670	
	MS	Me							

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	1/1		72 - 102
1D4-i 8luorobenzene (Surr)	12,		72 - 102

Lab Sample ID: 890-980-1 MSD Client Sample ID: SW02 Matrix: Solid Prep Type: Total/NA

Analysis Batch: 5575

	Sample	Sample	Spike	MSD	MSD				%Rec.	-	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
/ I i 5I i I	z0 A 00T0T	S	0 A 099h	0A08E9E		< BjmB		8K	K0 ₋ 670	у	7y
. o13l i l	z0 A 00T0T	S	0 A 099h	0A0KKy7		< BjmB		K8	K0 - 670	K	7y
Geud1bli5lil	z0 A 00T0T	S	0 A 099h	0 A 0K7Ty		< BjmB		Kh	K0 ₋ 670	66	7y
<-Xd1il & p-Xd1il	z0 A 00h07	S	0.4699	0 <i>A</i> 6h99		< BjmB		Ky	K0 ₋ 670	6T	7y
o-Xd1 i l	z0A00T0T	S	0 A 099h	0.40KhEK		< BjmB		Ky	K0 ₋ 670	66	7y

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		72 - 102
1D-i 8luorobenzene (Surr)	127		72 - 102

G32oRCs XI i Ub, 4 a2sbag

Prep Batch: 5583

41Cient WSt Pli UA

W2orl Unjt @l:/ @lGggd Si @6y0

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Job ID: 890-980-6 t Dc: . G06T9T06TE

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 5603

Prep Batch: 5603

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Lab Sample I	ID: MB	880-5603/1-A
--------------	--------	--------------

Matrix: Solid

Analysis Batch: 5611

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
caso1ClOaiBl(2BaiCLs	zy0A0	S	y0 A 0	< BjmB		0KjT7jT6 6h:T9	0KjThjT6 68:y6	6
)c O(v-4 E-4 60								
DCsl 10ai Bl (2Bai Cls)(H2	zy0A0	S	y0 A 0	< BjmB		0KjT7jT6 6h:T9	0KjThjT6 68:y6	6
4 60-4 T8v								
(I1OaiBl (2BaiCLs)(H24T8-47Ev	zy0A0	S	y0 A 0	< BjmB		0KjT7jT6 6h:T9	0KjThjT6 68:y6	6
. oea1. Wf	zy0A0	S	y0 A 0	< BjmB		0KjT7jT6 6h:T9	0KjThjT6 68:y6	6

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	5/		72 - 102	273 03 1 149 5	273 43 1 169 1	1
o-Terphenyl	114		72 - 102	273 03 1 149 5	273 43 1 169 1	1

Lab Sample ID: LCS 880-5603/2-A

Matrix: Solid

Analysis Batch: 5611

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
caso1ClOaiBl(2BaiCLs	6000	8y7 <i>A</i> T		< BjmB		8y	K0 - 670	
)c O(v-4 E-4 60								
DCsl1OaiBl(2BaiCbs)(H2	6000	988 <i>A</i> T		< BjmB		99	K0 - 670	
4 60-4 T8v								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	55		72 - 102
o-Terphenyl	111		72 - 102

Lab Sample ID: LCSD 880-5603/3-A

Matrix: Solid

Analysis Batch: 5611							Pre	p Batch:	: 5603
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
caso1ClOaiBl(2BaiCLs	6000	86y <i>A</i> 7		< BjmB		8T	K0 - 670	у	T0
)c O(v-4 E-4 60									
DCsl1OaiBl(2BaiCbs)(H2	6000	98h A 0		< BjmB		98	K0 - 670	0	T0
4 60-4 T8v									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	57		72 - 102
o-Terphenyl	125		72 - 102

Lab Sample ID: 890-980-1 MS

Matrix: Solid									Prep T	ype: Total/NA
Analysis Batch: 5611									Pre	p Batch: 5603
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
caso1Cl OaiBl (2BaiCLs	zh9Æ9	S	999	8y6 A 0		< BjmB		8h	K0 ₋ 670	
)c O(v-4 E-4 60										
DCsl 10ai Bl (2Bai Cbs)(H2	zh9 A 9	S	999	9Th A 0		< BjmB		9T	K0 ₋ 670	
4 60-4 T8v										

G32oRCs XI i Ub, 4 a2sbag

Client Sample ID: SW02

41Cient WSt PliUA

Job ID: 890-980-6 W2orl Unit @ : / @ Gggd Si @ 6y0 t Dc: . G06T9T06TE

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-980-1 MS Client Sample ID: SW02 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 5611**

Prep Batch: 5603

MS MS

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 54 72 - 102 o-Terphenyl 120 72 - 102

Lab Sample ID: 890-980-1 MSD Client Sample ID: SW02

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 5611** Prep Batch: 5603 RPD

Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit zh9A9 s 99K 8h9A0 < BjmB 8h K0 - 670O TO caso1Cl OaiBl (2BaiCb)c O(v-4 E-4 60 DCsl 10ai Bl (2Bai Cb) (H2 99K 9E0A0 9E T0 zh949 S < BjmB K0 - 670h 460-4T8v

MSD MSD %Recovery Surrogate Qualifier Limits 72 - 102 1-Chlorooctane 5, 12: 72 - 102 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5608/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5616

MB MB

Analyte Result Qualifier RL Unit Dil Fac D Prepared Analyzed < BjmB 4 u1b20gl zyA00 S v*A*00 0KjThjT6 T0:yT

Lab Sample ID: LCS 880-5608/2-A Client Sample ID: Lab Control Sample Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5616

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 4 u1b20gl Ty0 TyEA6 < BjmB 60T 90 - 660

Lab Sample ID: LCSD 880-5608/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5616

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 4 u1b20gl Ty0 Ty7A9 < BjmB 60T 90 - 660

Lab Sample ID: 890-980-1 MS Client Sample ID: SW02 **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5616

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec

Limits 4 u1b20gl hh9 Ty6 K66AT < BjmB 60h 90 - 660

G32oRCs XI i Ub, 4 a2sbag

4 1Ci e n t WSt P li UA Job ID: 890-980-6
W2orl Uşt @::/ CB Gggd Si @6y0 t Dc:: G06T9T06TE

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-980-1 MSD

Matrix: Solid

Client Sample ID: SW02

Prep Type: Soluble

Analysis Batch: 5616

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4 u 1b 20gl	hh9		Ty6	K6TA7		< BjmB		60y	90 - 660	0	T0

1

4

O

7

9

11

QC Association Summary

Client: WSP USA Inc. Project/Site: Big Eddy Unit 150 Job ID: 890-980-1

SDG: TE012920126

GC VOA

Prep Batch: 5570

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-5570/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 5575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-980-1	SW02	Total/NA	Solid	8021B	5583
MB 880-5570/5-A	Method Blank	Total/NA	Solid	8021B	5570
MB 880-5583/5-A	Method Blank	Total/NA	Solid	8021B	5583
LCS 880-5583/1-A	Lab Control Sample	Total/NA	Solid	8021B	5583
LCSD 880-5583/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5583
890-980-1 MS	SW02	Total/NA	Solid	8021B	5583
890-980-1 MSD	SW02	Total/NA	Solid	8021B	5583

Prep Batch: 5583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-980-1	SW02	Total/NA	Solid	5035	_
MB 880-5583/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5583/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5583/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-980-1 MS	SW02	Total/NA	Solid	5035	
890-980-1 MSD	SW02	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 5603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-980-1	SW02	Total/NA	Solid	8015NM Prep	
MB 880-5603/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5603/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5603/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-980-1 MS	SW02	Total/NA	Solid	8015NM Prep	
890-980-1 MSD	SW02	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-980-1	SW02	Total/NA	Solid	8015B NM	5603
MB 880-5603/1-A	Method Blank	Total/NA	Solid	8015B NM	5603
LCS 880-5603/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5603
LCSD 880-5603/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5603
890-980-1 MS	SW02	Total/NA	Solid	8015B NM	5603
890-980-1 MSD	SW02	Total/NA	Solid	8015B NM	5603

HPLC/IC

Leach Batch: 5608

Lab Sample ID 890-980-1	Client Sample ID SW02	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
MB 880-5608/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-980-1 MS	SW02	Soluble	Solid	DI Leach	
890-980-1 MSD	SW02	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

HPLC/IC

Analysis Batch: 5616

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-980-1	SW02	Soluble	Solid	300.0	5608
MB 880-5608/1-A	Method Blank	Soluble	Solid	300.0	5608
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	300.0	5608
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5608
890-980-1 MS	SW02	Soluble	Solid	300.0	5608
890-980-1 MSD	SW02	Soluble	Solid	300.0	5608

1

8

9

11

13

Date Received: 07/22/21 16:31

Lab Chronicle

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Client Sample ID: SW02 Lab
Date Collected: 07/22/21 10:57

Lab Sample ID: 890-980-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5583	07/23/21 11:01	KL	XEN MID
Total/NA	Analysis	8021B		1	5575	07/24/21 02:14	KL	XEN MID
Total/NA	Prep	8015NM Prep			5603	07/23/21 14:29	AJ	XEN MID
Total/NA	Analysis	8015B NM		1	5611	07/24/21 19:54	AJ	XEN MID
Soluble	Leach	DI Leach			5608	07/23/21 16:33	SC	XEN MID
Soluble	Analysis	300.0		1	5616	07/24/21 22:25	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

3

5

7

_

1 0

12

13

Accreditation/Certification Summary

Client: WSP USA Inc. Job ID: 890-980-6 P4o1ectrSite: j i/ BggEUnit 6d0 SDy: 5B06@006GT

Laboratory: Eurofins Xenco, Midland

Unle22 otse4h i2e notegw, II , n, IE te2 a - 4tsi2 I, bo4, to4E he4e cof e4eg vnge4e, cs , cc4egit, tionrce4tiac, tion beloh .

 Authority		Program	Identification Number	Expiration Date
5eu, 2		NBLAP	560x70xx00-Q0-Q6	0T-30-GG
5se aollohin/, n, lEte2 tse, / encEgoe2 not oa	, 00	bvt tse I, bo4, to4Ei2 not ce4tia	ieg bEtse / of e4nin/ , vtso4tE 5si2 li2t m,	Einclyge, n, IEte2 ao4hsi
An, IE2i2 Metsog	P4ep Metsog	M, t4u	An, IEte	
806dj NM	806dNM P4ep	Solig	5ot, I 5PH	
80 G 6j	d03d	Solig	5ot, I j 5BX	

Method Summary

41Cient WSt PliUA

W2orl Unjt @ : / @ Gggd Si @ 6y0

Job ID: 890-980-6

t Dc:. G06T9T06TE

Method	Method Description	Protocol	Laboratory
80T6/	Vo1ae3 O2Bai CJ4 ompoui gs (c 4)	t n 85E	XGN MID
806y/ NM	DCsl 1Rai Bl O2Bai Cs (DRO) (c 4)	t n 85E	XGN MID
300A0	Pi @is, loi 4 h2omaeoB2aphd	M4 Pn n	XGN MID
y03y	4 1oslgtdselm Wu28laig. 2ap	t n 85E	XGN MID
806yNM W21 p	MCDol xe2uleoi	t n 85E	XGN MID
DI LI aUh	DI @ i @ I g n aeł 2LI aUh CB W2oU gu2	Pt . M	XGN MID

Protocol References:

Pt . M = Pt . M li el 2 aecoi a1

 $M4\,Pn\,\,n\,\,=\text{"MI ehogs Fo24}\,hl\,\,m\text{Cb1Pi attsC}\,\,Of\,n\,\,a\text{et}\,\,2Pi\,g\,\,n\,\,a\text{set}\,\,s",\,\,GWP-E00j5-79-0T0,\,\,Ma2Lh\,\,6983\,\,Pi\,g\,\,t\,\,ubsl\,\,qul\,\,i\,\,eRl\,\,v\text{CGOi}\,\,sA$ t n 85E = ".1 seMI ehogs Fo2Gva1uaeCBt o1Q n ase, WhdsCLa14 hI mCLa1MI ehogs", . hCQ GgCAC in, NovI mbI 2698E Pi g les Spgael sA

Laboratory References:

XGN MID = Gu2ofCs XI i Uo, MQtai g, 6T66 n AFto2Qa PvI, MQtai g, . X 79706, . GL (53T)705-y550

Gu2of@s XI i Ub, 4 a2sbag

Sample Summary

Client: WSP USA Inc.

P2orectjSite: / iB Gggd Unit 6y0

Job ID: 890-980-6

SD4: 1G06T9T06TE

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-980-6	SW0T	Solig	05jTTjT6 60:y5	05jTTjT6 6E:76	0 - 3

3

4

5

9

11

12

EA	BORATORIES		Midland.TX (432-7	04-5440) EL Paso	TX (915)585-344	Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (805)794-1295 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (805)794-1295 Libbo NM (575-302-7550) Phoenix AZ (480-355-0900) Atlanta GA (770-449-8800) Tampa,FL (813-520-2000)		www.xenco.com Page	of _
oject Manager:	Dan Moir	1 Indepent	Bill to: (if different)	fferent) Kyle Littrell	ittrell			On	10
mpany Name:	WSP USA		Company Name:	**	nergy		Program: UST/PST	□RP □rownfields □RC	C Derfund
dress:	3300 North A Street		Address:		522 W. Mermod St.		State of Project:		
y, State ZIP:	Midland, TX 79705		City, State ZIP:		Carlsbad, NM 88220		Reporting:Level II	PevelIII □ST/UST □	□RP (eliv
one:	(432) 236-3849		Email: Jeremy. Hill@wsp.com, Dan. Moir@wsp.com	ill@wsp.com, Dai	n.Moir@wsp.co	B	Deliverables: EDD	ADaPT []	Other:
oject Name:	Bin Fully Unit	051 1	Turn Around			ANALYSIS R	EQUEST	Wo	Work Order Notes
ject Number:	50/30	2010	Routine					c	
		588 HS8h	Rush: 3412	•				10801	1086741001
ne:		y Hill	Due Date: 7/24/21	(2)				AF IN	THE YORK OF SCA. EXPO
AMPLE RECEIPT	Tei	No No	Wet loa: Yes N	8				n 1	
mperature (°C):	9-16/9.4	,	Thermometer ID	inera	-	890-980 C	Chain of Custody		
ceived Intact:	(3)	1	18-W/W				-	-	
mple Custody Seals:	Yes No		Total Containers:	200				lab, if	lab, if received by 4:30pm
Sample Identification	tification Matrix	Date Sampled	Time Depth	Numbe	BTEX (I			San	Sample Comments
Swaa	٠ د	1/4/11/1	1057 0-41	-	X			Ce-	Ce-pest
/									
			1			1			
			1	1					
						/			
					(
Total 200.7 / 6010	otal 200.7 / 6010 200.8 / 6020:		8RCRA 13PPM Texas 11 A		As Ba Be B	Sb As Ba Be B Cd Ca Cr Co Cu Fe	Fe Pb Mg Mn Mo Ni K Se Mo Ni Se Ag TI U	Ag SiO2	Na Sr Ti Sn U V Zn 1631 / 245.1 / 7470 / 7471 · Hg
ce: Signature of this arvice. Xenco will be	nature of this document and reiniquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. Xenco will be itable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses a	nt of samples constitu	tes a valid purchase orde	or from client compar for any losses or ex	y to Xenco, its aff	fillates and subcontractors. It a y the client if such losses are d	ce. Signature of this document and reinfiquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions ervice. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control and the control of the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the cost of samples and shall not assume any responsibility for any losses or expenses.	lons	
Relinquished by: (Signature)		Received by: (Signature)	: (Signature)	Date	Date/Time	Relinquished by: (Signature)		Received by: (Signature)	Date/Time
1	h	loe Lu	1	7.22.2	1625				
					4 0				
									Date Office Bon 2018

Chain of Custody Record

	Relinquished by:	reinquisined by:	(10eCva 1.23.2	elinguished by:	Convertable Asserted 1 II, III IV Other (specify)	Possible Hazard Identification Unconfirmed Deliverable Possible 11 III III N. Other Japania	Note Since laboratory accreditations are subject to change Eurofins Xenco LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory in the State of Origin listed above for analysis/tests/matrix being analyzed. The samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC.					SW02 (890-980-1)		Sample Identification - Client ID (Lab ID)	Site	Big Eddy Unit 150	Email	432-704-5440(Tel)	Slate, Zlp: TX, 79701	Midland	1211 W Florida Ave,	Eurofins Xenco	Shipping/Receiving	Client Information (Sub Contract Lab)	Carlsbad NM 88220 Phone 575-988-3199 Fax: 575-988-3199
	Date/Time	Date/Time	Caterinae		Primary Deliverable Rank 2	7	LLC places the ownership atrix being analyzed the s return the signed Chain				r constant	100001	\langle	Sample Date	SSOW#	Project #: 89000004	WO#	PO#		TAT Requested (days)	7/23/2021		ā	Sampler	
				Date	ble Rank 2		of method, an amples must bof Custody atte				Mountain	10 57	\langle	Sample Time						ays)	ed				of Successful Manager
							alyte & accred e shipped bac esting to said c			M			Preserva	Sample Type (C=comp, G=grab)											1
	Company	Company	Company				litation complis k to the Eurofi omplicance to				Cond	Solid	Preservation Code:	(W=water S=solid. O=wasteloil, BT=Tissue, A=Atr)									Jessic Jessic	Kra	ou y
	Rec	Rec	Rec	Time	Specia	Sampi	ince upon out is Xenco LLC Eurofins Xenx				>	3		Field Filtered Perform MS/M 8015MOD_NM/8	SD (Y	es or	No)	7		100		NELAP -	E-Mail Jessica kramer@eurofir	Kramer, Jessica	1000
	Received by	Received by	Received by		Instructio	le Disposal (A f Return To Client	subcontract laboratory or LLC		Ė		>	<	2	300_ORGFM_28	D/DI_L	EACH		_				Accreditations Required (See note) NELAP - Louisiana NELAP -	@eurofins	à	i e
		4	13	2	Special Instructions/QC Requirements	Sample Disposal (A fee may be	aboratories other instruct														Analysis	(See note) NELAP - T	set.com		
			رے		uirements	ay be ass	This sample s					1									is Requested	Texas	Ne.	Ca	
				Method of Shipment		assessed if samples are retained longer Disposal By Lab Archive For	hipment is for ovided. Any														sted		State of Origin New Mexico	Carrier Tracking No(s)	
	Date/Time	Date/Timb	Jate/Time/	Shipment		mples are	warded under changes to ac																	No(s)	
		-	137			retained long	r chain-of-cus creditation st			+	þ	>	d'	Total Number	of con	ΓX	<u></u>		mod		Pre	-068 # qor	Page Page	890	
						longer than For	tody If the la					1	phecial	0	P	EDTA	lce DI Water	Amchlor	Nitric Acid	NaOH	Preservation Codes	Job #- 890-980-1	Page 1 of 1	COC No. 890-314 1	
- Total	Company	Company	Company			1 mo	boratory doe e brought to l						epecial instructions/Note.				<c-< td=""><td>05 00</td><td>P Nazi</td><td>N None</td><td>0.55</td><td></td><td></td><td></td><td>America</td></c-<>	05 00	P Nazi	N None	0.55				America
4	V	Ų	Ϋ́			nth) Months	s not curren Eurofins Xer						ons/Note			pH 4-5 other (specify)	Acetone MCAA	S203	Na204S Na2SO3	None					America

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-980-6 S41 Number: DG06T9T06TE

List Source: Eurofins Xenco, Carlsbad

Login Number: 980 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
D2e coolerh cu' tosd ' eylai, f re' entai' intyct.	Drue	
Symf le cu' tosd ' eyl' ai, f re' entayre intyct.	Drue	
D2e cooler or ' ymf le' so not yf f eyr to 2ype been comf romi' es or tymf eres v it2.	Drue	
Symf le' v ere receipes on ice.	Drue	
Cooler Demf eryture i' yccef tyble.	Drue	
Cooler Demf eryture i' recorses.	Drue	
CwC i' f re' ent.	Drue	
CwC i', illes out in inOyns lekible.	Drue	
CwC i', illes out vit2 yll f ertinent in,ormytion.	Drue	
I' t2e giels Symf lerh nyme f re' ent on CwCF	Drue	
D2ere yre no si' cref yncie' betv een t2e contyiner' receipes yns t2e CwC.	Drue	
Symf le' yre receipes v it2in ? olsink Dime He(clusink te' t' v it2 immesiyte ? D x	Drue	
Symf le contyiner' 2ype lekible lybel' .	Drue	
Contyiner' yre not bro@n or ley@nk.	Drue	
Symf le collection syte)time' yre f ropises.	Drue	
Af f rof riyte ' ymf le contyiner' yre u' es.	Drue	
Symf le bottle' yre comf leteld ,illes.	Drue	
Symf le Pre' erpytion / eri,ies.	N)A	
D2ere i' ' u,,icient pol. ,or yll reVue' tes ynyld' e' aincl. ynd reVue' tes q S)q S4'	Drue	
Contyiner' reVuirink Mero 2eys' f yce 2ype no 2eys' f yce or bubble i'	N)A	

3

5

6

8

10

12

13

14

z Emm **H6**)<"x

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-980-6

S41 Number: DG06T9T06TE

List Source: Eurofins Xenco, Midland

List Creation: 07/23/21 02:12 PM

List Number: 2 Creator: Phillips, Kerianna

Login Number: 980

Question	Answer	Comment
D2e coolerh cu' tosd ' eylai, f re' entai' intyct.	Drue	
Symf le cu' tosd ' eyl' ai, f re' entayre intyct.	Drue	
D2e cooler or ' ymf le' so not yf f eyr to 2ype been comf romi' es or	Drue	
tymf eres v it2.		
Symf le' v ere receipes on ice.	Drue	
Cooler Demf eryture i' yccef tyble.	Drue	
Cooler Demf eryture i' recorses.	Drue	
CwC i' f re' ent.	Drue	
CwC i', illes out in inOyns lekible.	Drue	
CwC i', illes out v it2 yll f ertinent in,ormytion.	Drue	
I' t2e giels Symf lerh nyme f re' ent on CwCF	Drue	
D2ere yre no si' cref yncie' betv een t2e contyiner' receipes yns t2e CwC.	Drue	
Symf le' yre receipes v it2in ? olsink Dime He(clusink te' t' v it2 immesiyte ? D x	Drue	
Symf le contyiner' 2ype lekible lybel'.	Drue	
Contyiner' yre not bro@en or ley@nk.	Drue	
Symf le collection syte)time' yre f ropises.	Drue	
Af f rof riyte ' ymf le contyiner' yre u' es.	Drue	
Symf le bottle' yre comf leteld ,illes.	Drue	
Symf le Pre' erpytion / eri,ies.	Drue	
D2ere i' 'u,,icient pol. ,or yll reVue' tes ynyld' e' aincl. ynd reVue' tes q S)q S4'	Drue	
Contyiner' reVuirink Mero 2eys' f yce 2ype no 2eys' f yce or bubble i'	Drue	

Eurofins Xenco, Carlsbad

Released to Imaging: 2/28/2022 4:36:12 PM

z Emm **H6**)<"x

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-981-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

Revision: 2

For:

WSP USA Inc. 2777 N. Stemmons Freeway **Suite 1600** Dallas, Texas 75207

Attn: Dan Moir

RAMPR

Authorized for release by: 8/5/2021 4:34:58 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

.....LINKS **Review your project** results through Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-981-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Racaint Chacklists	19

3

4

6

8

40

11

12

4 /

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-981-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Surrogate recovery exceeds control limits, high biased. S1+ Indicates the analyte was analyzed for but not detected. U

GC Semi VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Case Narrative

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

Job ID: 890-981-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-981-1

REVISION

The report being provided is a revision of the original report sent on 7/26/2021. The report (revision 1) is being revised due to Per client email, requesting laboratory to re-homogenize/extract and re run TPH FS23.

Report revision history

Receipt

The samples were received on 7/22/2021 4:24 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 9.4°C

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: WSP USA Inc. Job ID: 890-981-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS23

Date Collected: 07/22/21 11:38 Date Received: 07/22/21 16:24

Sample Depth: - 4

Lab	Samp	le ID:	890-9	81-1

08/05/21 08:40 08/05/21 14:52

Matrix: Solid

Method: 8021B - Volatile O	rganic Compo	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
Total BTEX	<0.00400	U	0.00400	mg/Kg		07/23/21 11:01	07/24/21 02:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	131	S1+	70 - 130			07/23/21 11:01	07/24/21 02:34	1
1,4-Difluorobenzene (Surr)	107		70 - 130			07/23/21 11:01	07/24/21 02:34	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac <50.0 U 50.0 08/05/21 08:40 08/05/21 14:52 Gasoline Range Organics mg/Kg (GRO)-C6-C10 **Diesel Range Organics (Over** 50.0 mg/Kg 08/05/21 08:40 08/05/21 14:52 75.3 C10-C28) OII Range Organics (Over C28-C36) 50.0 08/05/21 08:40 08/05/21 14:52 <50.0 U mg/Kg 08/05/21 08:40 08/05/21 14:52 **Total TPH** 75.3 50.0 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 94 70 - 130 08/05/21 08:40 08/05/21 14:52

Method: 300.0 - Anions, lo	n Chromatography - Solub	le					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	489	25.0	mg/Kg			07/24/21 22:42	5

70 - 130

98

Client Sample ID: FS17 Lab Sample ID: 890-981-2 Date Collected: 07/22/21 12:34 **Matrix: Solid**

Date Received: 07/22/21 16:24

Sample Depth: - 4

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
Xylenes, Total	< 0.00399	U	0.00399	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
Total BTEX	<0.00399	U	0.00399	mg/Kg		07/23/21 11:01	07/24/21 02:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			07/23/21 11:01	07/24/21 02:55	1
1,4-Difluorobenzene (Surr)	104		70 - 130			07/23/21 11:01	07/24/21 02:55	1

Sample Depth: - 4

o-Terphenyl

Client Sample Results

Client: WSP USA Inc. Job ID: 890-981-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS17 Lab Sample ID: 890-981-2

112

Matrix: Solid

07/23/21 14:29 07/24/21 21:17

Date Collected: 07/22/21 12:34 Date Received: 07/22/21 16:24

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit Prepared Dil Fac Analyzed <50.0 U 50.0 07/23/21 14:29 07/24/21 21:17 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 07/23/21 14:29 07/24/21 21:17 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 07/23/21 14:29 07/24/21 21:17 Total TPH <50.0 U 50.0 mg/Kg 07/23/21 14:29 07/24/21 21:17 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 1-Chlorooctane 95 07/23/21 14:29 07/24/21 21:17

 Method: 300.0 - Anions, Ion Ch	nromatograp	hy - Soluble						
Analyte	Result C	Qualifier	RL	Uni	t D	Prepared	Analyzed	Dil Fac
Chloride	737		50.3	mg	Kg		07/24/21 22:47	10

70 - 130

Eurofins Xenco, Carlsbad

Surrogate Summary

Client: WSP USA Inc. Job ID: 890-981-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		DED4		nt Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-981-1	FS23	131 S1+	107	
890-981-2	FS17	120	104	
LCS 880-5583/1-A	Lab Control Sample	111	107	
LCSD 880-5583/2-A	Lab Control Sample Dup	103	107	
MB 880-5570/5-A	Method Blank	108	96	
MB 880-5583/5-A	Method Blank	106	93	
Surrogate Legend				
BFB = 4-Bromofluoro	benzene (Surr)			
DFBZ = 1.4-Difluorob	enzene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-981-1	FS23	94	98	
890-981-2	FS17	95	112	
LCS 880-5603/2-A	Lab Control Sample	99	111	
LCS 880-6092/2-A	Lab Control Sample	91	89	
LCSD 880-5603/3-A	Lab Control Sample Dup	97	109	
LCSD 880-6092/3-A	Lab Control Sample Dup	95	96	
MB 880-5603/1-A	Method Blank	92	114	
MB 880-6092/1-A	Method Blank	88	97	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: WSP USA Inc. Job ID: 890-981-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5570/5-A

Matrix: Solid

Analysis Batch: 5575

Client	Sam	ole	ID:	V	leti	nod	ВІ	an	k
		D.		70			4.41	L/KI	A

Prep Type: Total/NA

Prep Batch: 5570

	MB N	ИB						
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 U	J	0.00200	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
Tol4ene	<0.00200 L	J	0.00200	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
Etuylbenzene	<0.00200 L	J	0.00200	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
m-Xylene & p-Xylene	<0.00h00 L	j	0.00h00	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
o-Xylene	<0.00200 L	J	0.00200	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
Xylenes, Total	<0.00h00 L	J	0.00h00	mg/Kg		07/23/21 10:22	07/23/21 15:01	1
Total BTEX	<0.00h00 L	j	0.00h00	mg/Kg		07/23/21 10:22	07/23/21 15:01	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130	07/23/21 10:22	07/23/21 15:01	1
1,4-Difluorobenzene (Surr)	96		70 - 130	07/23/21 10:22	07/23/21 15:01	1

Lab Sample ID: MB 880-5583/5-A

Matrix: Solid

Analysis Batch: 5575

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 5583

	MR MR						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200 U	0.00200	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
Tol4ene	<0.00200 U	0.00200	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
Etuylbenzene	<0.00200 U	0.00200	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
m-Xylene & p-Xylene	<0.00h00 U	0.00h00	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
o-Xylene	<0.00200 U	0.00200	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
Xylenes, Total	<0.00h00 U	0.00h00	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1
Total BTEX	<0.00h00 U	0.00h00	mg/Kg		07/23/21 11:01	07/2h/21 01:52	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106	70 - 130	07/23/21 11:01	07/24/21 01:52	1
1.4-Difluorobenzene (Surr)	93	70 - 130	07/23/21 11:01	07/24/21 01:52	1

Lab Sample ID: LCS 880-5583/1-A

Matrix: Solid

Analysis Batch: 5575

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 5583

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1022		mg/Kg		102	70 - 130	
Tol4ene	0.100	0.092h3		mg/Kg		92	70 - 130	
Etuylbenzene	0.100	0.089h0		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1831		mg/Kg		92	70 - 130	
o-Xylene	0.100	0.09207		mg/Kg		92	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

E4roRns Xenco, Carlsbad

Client: WSP USA Inc. Job ID: 890-981-1 SDG: TE012920126 Project/Site: Big Eddy Unit 150

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5583/2-A

Matrix: Solid

Analysis Batch: 5575

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 5583

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit **Analyte** Benzene 0.100 0.1028 mg/Kg 103 70 - 130 1 35 Tol4ene 0.100 0.08978 mg/Kg 90 70 - 130 3 35 Etuylbenzene 0.100 0.086h5 70 - 130 mg/Kg 86 3 35 m-Xylene & p-Xylene 0.200 0.1752 70 - 130 35 mg/Kg 88 h 0.100 35 o-Xylene 0.0879h mg/Kg 88 70 - 130

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1.4-Difluorobenzene (Surr)	107		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5603/1-A

Matrix: Solid

Analysis Batch: 5611

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 5603

MR MR

	1410	1410						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Oange (rganics	<50.0	U	50.0	mg/Kg		07/23/21 1h:29	07/2h/21 18:51	1
)GO(v-C6-C10								
Diesel Oange (rganics)(f er	<50.0	U	50.0	mg/Kg		07/23/21 1h:29	07/2h/21 18:51	1
C10-C28v								
(Il Oange (rganics)(f er C28-C36v	<50.0	U	50.0	mg/Kg		07/23/21 1h:29	07/2h/21 18:51	1
Total TPH	<50.0	U	50.0	mg/Kg		07/23/21 1h:29	07/2h/21 18:51	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	07/23/21 14:29	07/24/21 18:51	1
o-Terphenyl	114		70 - 130	07/23/21 14:29	07/24/21 18:51	1

Lab Sample ID: LCS 880-5603/2-A

Matrix: Solid

Analysis Batch: 5611

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 5603

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Oange (rganics	1000	853.2		mg/Kg		85	70 - 130	
)GO(v-C6-C10								
Diesel Oange (rganics)(fer	1000	988.2		mg/Kg		99	70 - 130	
C10-C28v								

LCS LCS

Surrogate	%Recovery Qualify	ier Limits
1-Chlorooctane	99	70 - 130
o-Terphenyl	111	70 - 130

Lab Sample ID: LCSD 880-5603/3-A

Matrix: Solid

Analysis Batch: 5611

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 5603 RPD

LCSD LCSD %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Oange (rganics 1000 815.3 mg/Kg 82 70 - 130

)GO(v-C6-C10

E4roRns Xenco, Carlsbad

Client: WSP USA Inc. Job ID: 890-981-1 SDG: TE012920126 Project/Site: Big Eddy Unit 150

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-5603/3-A

Matrix: Solid Analysis Batch: 5611 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 5603

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Unit %Rec Limits RPD Limit Diesel Oange (rganics)(fer 1000 98h 0 mg/Kg 98 70 - 130 0 20

C10-C28v

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	97		70 - 130
o-Terphenyl	109		70 - 130

Lab Sample ID: MB 880-6092/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 6104

Prep Type: Total/NA Prep Batch: 6092

MB MB Result Qualifier RL Unit Dil Fac **Analyte** Prepared **Analyzed** Gasoline Oange (rganics <50.0 U 50.0 08/05/21 08:h0 08/05/21 12:50 mg/Kg)GO(v-C6-C10 08/05/21 08:h0 08/05/21 12:50 Diesel Oange (rganics)(fer <50.0 U 50.0 mg/Kg C10-C28v (Il Oange (rganics)(fer C28-C36v <50.0 U 50.0 mg/Kg 08/05/21 08:h0 08/05/21 12:50

MB MB

<50.0 U

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130	08/05/21 08:40	08/05/21 12:50	1
o-Terphenyl	97		70 - 130	08/05/21 08:40	08/05/21 12:50	1

50.0

mg/Kg

Lab Sample ID: LCS 880-6092/2-A

Matrix: Solid

Total TPH

Analysis Batch: 6104

Client Sample ID: Lab Control Sample

08/05/21 08:h0 08/05/21 12:50

Prep Type: Total/NA

Prep Batch: 6092

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Gasoline Oange (rganics 1000 918.h 92 70 - 130 mg/Kg)GO(v-C6-C10 Diesel Oange (rganics)(fer 1000 870.h mg/Kg 70 - 130

C10-C28v

Matrix: Solid

Analysis Batch: 6104

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	91	70 - 130
o-Terphenyl	89	70 - 130

Lab Sample ID: LCSD 880-6092/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 6092

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 1000 869.5 70 - 130 Gasoline Oange (rganics mg/Kg 87 5 20)GO(v-C6-C10 1000 Diesel Oange (rganics)(fer 931.5 mg/Kg 93 70 - 130 20

C10-C28v

LCSD LCSD

Limits Surrogate %Recovery Qualifier 1-Chlorooctane 70 - 130 95

E4roRns Xenco, Carlsbad

Client: WSP USA Inc. Job ID: 890-981-1 SDG: TE012920126 Project/Site: Big Eddy Unit 150

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-6092/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 6104** Prep Batch: 6092

LCSD LCSD

%Recovery Qualifier Surrogate Limits o-Terphenyl 96 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5608/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 5616 MB MB

Result Qualifier Analyte RL Unit **Prepared Analyzed** Dil Fac Culoride <5.00 U 5.00 07/2h/21 20:52 mg/Kg

Lab Sample ID: LCS 880-5608/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5616

Spike LCS LCS %Rec. Added Result Qualifier Limits **Analyte** Unit D %Rec 250 Culoride 256.1 mg/Kg 102 90 - 110

Lab Sample ID: LCSD 880-5608/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 5616

LCSD LCSD **RPD** Spike %Rec. Added Limits **Analyte** Result Qualifier Unit D %Rec RPD Limit Culoride 250 253.9 102 90 - 110 20 mg/Kg

E4roRns Xenco, Carlsbad

QC Association Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

GC VOA

Prep Batch: 55	70
----------------	----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-5570/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 5575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-981-1	FS23	Total/NA	Solid	8021B	5583
890-981-2	FS17	Total/NA	Solid	8021B	5583
MB 880-5570/5-A	Method Blank	Total/NA	Solid	8021B	5570
MB 880-5583/5-A	Method Blank	Total/NA	Solid	8021B	5583
LCS 880-5583/1-A	Lab Control Sample	Total/NA	Solid	8021B	5583
LCSD 880-5583/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5583

Prep Batch: 5583

Lab Sample ID 890-981-1	Client Sample ID FS23	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
890-981-2	FS17	Total/NA	Solid	5035	
MB 880-5583/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5583/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5583/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 5603

Lab Sample ID 890-981-2	Client Sample ID FS17	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-5603/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5603/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5603/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-981-2	FS17	Total/NA	Solid	8015B NM	5603
MB 880-5603/1-A	Method Blank	Total/NA	Solid	8015B NM	5603
LCS 880-5603/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5603
LCSD 880-5603/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5603

Prep Batch: 6092

Lab Sample ID 890-981-1	Client Sample ID FS23	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-6092/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-6092/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-6092/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 6104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-981-1	FS23	Total/NA	Solid	8015B NM	6092
MB 880-6092/1-A	Method Blank	Total/NA	Solid	8015B NM	6092
LCS 880-6092/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	6092
LCSD 880-6092/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	6092

Eurofins Xenco, Carlsbad

5

2

5

_

9

1 1

13

QC Association Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

HPLC/IC

Leach Batch: 5608

Lab Sample ID 890-981-1	Client Sample ID FS23	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
890-981-2	FS17	Soluble	Solid	DI Leach	
MB 880-5608/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 5616

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-981-1	FS23	Soluble	Solid	300.0	5608
890-981-2	FS17	Soluble	Solid	300.0	5608
MB 880-5608/1-A	Method Blank	Soluble	Solid	300.0	5608
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	300.0	5608
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5608

Eurofins Xenco, Carlsbad

3

4

6

0

9

10

12

13

Lab Chronicle

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

Client Sample ID: FS23

Lab Sample ID: 890-981-1

Matrix: Solid

Date Collected: 07/22/21 11:38 Date Received: 07/22/21 16:24

Client Sample ID: FS17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5583	07/23/21 11:01	KL	XEN MID
Total/NA	Analysis	8021B		1	5575	07/24/21 02:34	KL	XEN MID
Total/NA	Prep	8015NM Prep			6092	08/05/21 08:40	DM	XEN MID
Total/NA	Analysis	8015B NM		1	6104	08/05/21 14:52	AJ	XEN MID
Soluble	Leach	DI Leach			5608	07/23/21 16:33	SC	XEN MID
Soluble	Analysis	300.0		5	5616	07/24/21 22:42	SC	XEN MID

Lab Sample ID: 890-981-2

Matrix: Solid

Date Collected: 07/22/21 12:34 Date Received: 07/22/21 16:24

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5583	07/23/21 11:01	KL	XEN MID
Total/NA	Analysis	8021B		1	5575	07/24/21 02:55	KL	XEN MID
Total/NA	Prep	8015NM Prep			5603	07/23/21 14:29	AJ	XEN MID
Total/NA	Analysis	8015B NM		1	5611	07/24/21 21:17	AJ	XEN MID
Soluble	Leach	DI Leach			5608	07/23/21 16:33	SC	XEN MID
Soluble	Analysis	300.0		10	5616	07/24/21 22:47	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

2

3

4

6

8

9

13

Accreditation/Certification Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		rogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-20-21	06-30-22
The following analyte:	s are included in this rep	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for what
the agency does not	offer certification.	•		The not may more an arytic to the
the agency does not of Analysis Method	offer certification. Prep Method	Matrix	Analyte	
0 ,		•	, , ,	

4

6

8

10

40

13

Method Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Carlsbad

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-981-1

SDG: TE012920126

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-981-1	FS23	Solid	07/22/21 11:38	07/22/21 16:24	- 4
890-981-2	FS17	Solid	07/22/21 12:34	07/22/21 16:24	- 4

roject Manager: Dan Sompany Name: WSF State ZIP: Midla Midla Mone: (432) roject Number: (432) roject Number: Zagampler's Name: Zagampler's Name:	Moir No	14. 62. 4	Houston,TX Midland,T. bbs,NM (575-392-75 Bil Cc Ad Cci Ad Cri Routine % \$ Rush: Due Dat	Chain of Cus louston,TX (281) 240-4200 Dallas,TX (214) 902-0300 Sa Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 S75-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (7 Bill to: (if different) Kyle Littrell Company Name: XTO Energy Address: XTO Energy Address: S22 W. Mermod St. City, State ZIP: Carlsbad, NM 88220 Email: Jeremy,Hill@wsp.com, Dan,Moir@wsp.com Turn Around Routine Rush: 34 H- Due Date: \$1/14/3/	Ch. (480.3 AZ (480.3 Ky)) Ky (52 Com., 152 Com., 152 Com.	hain of Cu llas,TX (214) 902-0300 L Paso,TX (915)565-34 0-355-0900) Atlanta,GA Kyle Littrell XTO Energy S22 W. Mermod St. Carlsbad, NM 88220 m, Dan Moir@wsp.cc	of (915)58 (915)58 (916) Atlant	Chain of Custody	194-1296 194		ww.xenco.com Page of work Order Comments Work Order Comments Prownfields RC Perfund
22	36	94 6548 my Hill		Date: \$1144X		32.23					
SAMPLE RECEIPT emperature (°C):	Temp Blank(9-14/9-4	ank Yes No		Yes) No	ners	-	Ý	890-981	31 Chain of Custody		-
color Custody Seals:	Yes No N	/A	Correction Factor	8		800	1 / 13 1	-			
ample Custody Seals:	Z.		Total Containers:								-
Sample Identification		Matrix Date Sampled	Time d Sampled	Depth	Numbe	TPH (EF	Chlorid				
F533	5		\vdash	141		1	,				
13 Ja	517	5 7/22/21		4,	**	×	X				
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	200.8 / 6020: nd Metal(s) to be	: analyzed	BRCRA 13F	RCRA 13PPM Texas 11 A		Al Sb As	Ba Be B Ba Be Cd	3 Cd Ca Cr Co Cu d Cr Co Cu Pb Mr	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Ni K Se Ag	SiO2 Na Sr Ti Sn U V Zn 1631 / 245.1 / 7470 / 7471 · Hg
xica: Signature of this document and retinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be	rent and rennquishmonth only for the cost of s	ent of samples co samples and shall ed to each project	nstitutes a valid pu not assume any re t and a charge of \$	urchase order fron esponsibility for a	n client co ny losses o submitted	mpany to or expens to Xence	Xenco, ses incur o, but no	affiliates and subcontrac by the client if such loss alyzed. These terms will	tors, it assigns standard terms and conditions ses are due to circumstances beyond the control be enforced unless previously negotiated.	rms and conditions i beyond the control ily negotiated.	
Relinquished by: (Signature)	gnature)	Receive	Received by: (Signature)	ıre)	D	Date/Time	ne	Relinquished by:	y: (Signature)	Received by: (Signature)	Signati
2/10	7	loe C	£		7:2	50	11/10	4			
								6			

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-981-1

SDG Number: TE012920126

List Source: Eurofins Xenco, Carlsbad

Login Number: 981 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

2

4

6

2 Q

10

12

13

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-981-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Midland
List Number: 2
List Creation: 07/23/21 02:11 PM

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Eurofins Xenco, Carlsbad
Page 20 of 20

Released to Imaging: 2/28/2022 4:36:12 PM

3

Δ

5

7

9

11

13

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-982-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

MAMER

Authorized for release by: 7/26/2021 5:45:05 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

4.0

11

12

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-982-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

И	K

Definitions/Glossary

 I ient V.WS PU APc It . G
 Job ID: 890-981-C

 Urojn. WP MY: Beg 2ddy At MC50
 PDT: E20C1910C16

2

Qualifiers

GC VOA

Qualifier Qualifier Description

A It de a\Ws \Wn at aiy\W was at aiyznd for bu\W o\Wn\W. \WdG

GC Semi VOA

Qualifier Qualifier Description

A It de a\text{VN} at aiy\text{VV} was at aiyznd for bu\text{VV} o\text{Vd} n\text{VV}. \text{VVdG}

HPLC/IC

Qualifier Qualifier Description

A It de a Ws Who at aiy W was at aiyznd for bu W o Wdn W. WdG

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ LesWord ut dnr Whn "D". oiumt Wordnsegta WorWhn rnsuiWes rnpor Whold ot a dry wnegh Wbases

%R Unr. nt WRn. ovnry
I FL I ot Valets Frnn Lequed
I FA I oiot y Formet g At avV
I NF I ot Valets No Frnn Lequed

D2R Dupie aWV2rror RaWb (t ormaicand absoiuWV deffnrnt.n)

Deir Fa. Deiu West Fa. Wor

DL Dn\r\r\rangle

DL, Rc, R2, IN It de a Ws a Déu Wot, Rn-at aiyses, Rn-nx Wa. Wot, or addéwot ai It éveti mn Wars/at eot at aiyses of Wn sampin

DLI Dn. seet Lnvnil ot.ntWaNeot (Radeo.hnmssWy)

 2 DL
 2 s Verha Wrd Dn Wr. Vebt Leme V(Debxet)

 LOD
 Leme Vof Dn Wr. Vebt (DoD/DO2)

 LOQ
 Leme Vof Quat Vebb Vebt (DoD/DO2)

MIL 2 Uc rn. ommnt dnd "Maxemum I ot Warmet at WLnvni"

MDc Met emum DnWr. Varbin c . Varbelly (Radeo. hnmes Wry)

MDI Met emum DnWr. Varbin I ot . nt Wel Webt (Radeo. hnmes Wry)

 MDL
 Mn/Wod DnW/. Wat Leene/V

 ML
 Met emum Lnvni (Deoxet)

 MUN
 MosVWrobabin Numbnr

 MQL
 Mn/Wod Quat Wat Leene/W

NI NoW ai. uia Wd

ND NoWDn\f\vert \text{. Wdd aV\f\f\n rnpor\f\\eta g iem\eta\f\\f\or MDL or 2DL \eta showt)

N2T Nnga\delta / c bsnt W UOP Uos\delta / n / Urnsnt W

UQL Ura. Wayai Quat Wada Magot Leemely

UR2P Urnsump\&/n QI Quai&\(\frac{1}{2}\)/I ot \(\frac{1}{2}\)/ot

R2R Rnia\\(\text{Rm} \text{rror Ra\(\text{Mo} \) (Rad\(\text{ep} \). \\ \text{hnm\(\text{es} \) \\ \\ \text{VIV})

RL RnporVMg LemeVfor RnqunsVMd LemeV(Radeo. hnmesVfy)

RUD Rnial&m Unr. nt WDeffnrnt . n, a mnasurn of \mathbb{\text{W}}n rnial\mathbb{\text{m}} n deffnrnt . n bn\mathbb{\text{W}}nnt \mathbb{\text{W}} o poet \mathbb{\text{V}}

E2F Eoxe eN/2 quevaint WFa. Wor (Deoxet)
E2Q Eoxe eN/2 quevaint WQuo Went W(Deoxet)

ENEI Eoo Numnrous Eo I out W

2

1

6

7

Ö

10

12

Case Narrative

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-982-1 SDG: TE012920126

Job ID: 890-982-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-982-1

Receipt

The samples were received on 7/22/2021 4:24 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 9.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPI C/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

2

4

7

_

9

IU

15

13

Client Sample Results

1 Cent WS PWU leAc

S2ori AnjWni:/IBTggdPeln4y0

Client Sample ID: SW06

Job ID: 890-986-4 WD.: GT04696046E

Lab Sample ID: 890-982-1

Matrix: Solid

Date Collected: 07/22/21 07:42 Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0606	P	0@0606	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
CoQi ei	z0@0606	Р	0@0606	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
Trhd®ie5iei	z0@0606	Р	0@0606	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
<-XdCei & p-XdCei	z0@0307	Р	0@0307	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
o-Xd©ei	z0@0606	Р	0@0606	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
XdCeis, ConaC	z0@0307	Р	0@0307	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
Gona C'GTX	z0@0307	Р	0@0307	< BjmB		0Kj67j64 44:04	0Kj63j64 07:4y	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
			10-			763 03 1 11:71	763 43 1 70:19	1
4-Bromofluorobenzene (Surr)	112		67 - 107			703 03 1 11.71	103 43 1 10.13	,
154-, Buorobenzene (Surr)	177	- 0. (0.0)	67 - 107 67 - 107			763 03 1 11:71	763 43 1 70:19	•
(/	177 ge Organics (DI	RO) (GC) Qualifier		Unit	D			1
154-, Buorobenzene (Surr) Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs	177 ge Organics (DI	Qualifier	67 - 107	Unit < BjmB	<u>D</u>	763 03 1 11:71	763' 43' 1 70:19	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs (. RO)-1 E-1 40 Dli si CRaeBi O2BaelAs (Ovi 2	ge Organics (DI Result	Qualifier P	67 - 107		<u>D</u>	763 03 1 11:71 Prepared	763 43 1 70:19 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs (. RO)-1 E-140	ge Organics (DI Result zy0d)	Qualifier P	67 - 107 RL y0@	< BjmB	<u>D</u>	763 03 1 11:71 Prepared 0Kj67j64 43:69	763 43 1 70:19 Analyzed 0Kj63j64 64:78	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs (. RO)-1E-140 Dli si CRaeBi O2BaelAs (Ovi 2 140-168)	ge Organics (DI Result zy000 zy000	Qualifier P P	67 - 107 RL y0@ y0@	< BjmB	<u>D</u>	Prepared 0Kj67j64 43:69 0Kj67j64 43:69	Analyzed 0kg63j64 64:78	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs (. RO)-1 E-140 Dli si CRaeBi O2BaelAs (Ovi 2 140-168) OICRaeBi O2BaelAs (Ovi 2168-17E)	ge Organics (DI Result zy00 zy00 zy00	Qualifier P P P	67 - 107 RL y0:0 y0:0 y0:0	< BjmB < BjmB < BjmB	<u>D</u>	Prepared 0Kj67j64 43:69 0Kj67j64 43:69	Analyzed OKj63j64 64:78 OKj63j64 64:78	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi O2BaelAs (. RO)-1 E-140 Dli si CRaeBi O2BaelAs (Ovi 2 140-168) OICRaeBi O2BaelAs (Ovi 2168-17E) GDraCGSH	ge Organics (DI Result zy00 zy00 zy00 zy00	Qualifier P P P	RL y0d0 y0d0 y0d0 y0d0	< BjmB < BjmB < BjmB	<u>D</u>	Prepared 0Kj67j64 43:69 0Kj67j64 43:69 0Kj67j64 43:69 0Kj67j64 43:69	Analyzed OKj63j64 64:78 OKj63j64 64:78 OKj63j64 64:78	Dil Fac

Client Sample ID: SW04 Lab Sample ID: 890-982-2

RL

y@7

Result Qualifier

407

Date Collected: 07/22/21 08:01 **Matrix: Solid**

Unit

< BjmB

D

Prepared

Analyzed

0Kj63j64 67:03

Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	
GoQi ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	2
Trhd©i e5i ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	2
<-XdCei & p-XdCei	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	4
o-Xd©ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	2
Xd©eis, GonaC	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	4
Gora C GTX	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:7E	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		67 - 107			763' 03' 1 11:71	763 43 1 70:0y	1
154-, Bluorobenzene (Surr)	177		67 - 107			763 03 1 11:71	763 43 1 70:0v	1

Dil Fac

Client Sample Results

1 Cent WS PWU leAc

S2ori AnjWni:/IBTggdPeln4y0

WD.: GT04696046E

Lab Sample ID: 890-982-2

Matrix: Solid

Job ID: 890-986-4

Client Sample ID: SW04 Date Collected: 07/22/21 08:01

Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. aso@ei RaeBi O2BaelAs	zy0@	P	y0@	< BjmB		0Kj67j64 43:69	0Kj63j64 64:y9	4
(. RO)-1 E-1 40								
Dli si CRaeBi O2BaelAs (Ovi 2	zy0@	Р	у0Ф	< BjmB		0Kj67j64 43:69	0Kj63j64 64:y9	4
1 40-1 68)								
OICRaeBi O2BaelAs (Ovi 2168-17E)	zy0@	Р	y0@	< BjmB		0Kj67j64 43:69	0Kj63j64 64:y9	4
Gora CCSH	zy0d0	Р	y0@	< BjmB		0Kj67j64 43:69	0Kj63j64 64:y9	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i 8lorooŒrne	t 9		67 - 107			763 03 1 14:/ t	763 43 1 / 1:9t	1
o-aerT8enpl	114		67 - 107			763 03 1 14:/ t	76 3 4 3 1 / 1:9t	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	521		6yc7	< BjmB			0Kj63j64 67:09	

Client Sample ID: SW03 Lab Sample ID: 890-982-3 Matrix: Solid

Date Collected: 07/22/21 08:04 Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
CoQi ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
Tmldobie5iei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
<-XdCei & p-XdCei	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
o-Xd©ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
XdCeis, GonaC	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
Gona C GTX	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 07:yE	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			67 - 107			763 03 1 11:71	763 43 1 70:9y	1
154-, 🗗 uorobenzene (Surr)	t 9		67 - 107			763 03 1 11:71	76 3 4 3 1 70:9y	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. asotei RaeBi O2BaelAs	zy0d0	P	y0d0	< BjmB		0Kj67j64 43:69	0Kj63j64 66:60	4
(. RO)-1 E-1 40								
Dli si CRaeBi O2BaelAs (Ovi 2	zy0d0	Р	y0 c 0	< BjmB		0Kj67j64 43:69	0Kj63j64 66:60	4
1 40-1 68)								
OlCRaeBi O2BaelAs (Ovi 2168-17E)	zy0@	Р	y0œ	< BjmB		0Kj67j64 43:69	0Kj63j64 66:60	4
Gora CGSH	zy0@	Р	y0@	< BjmB		0Kj67j64 43:69	0Kj63j64 66:60	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i 8lorooOtcne	179		67 - 107			763 03 1 14:/ t	763 43 1 / / :/ 7	1
o-aerT8enpl	1/9		67 - 107			763 03 1 14:/ t	763 43 1 / / :/ 7	1

Method: 300.0 - Anions, Ion Chroma	tography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	411	3.9K	< BjmB			0Kj63j64 67:4y	4

Tu2ofles Xi eAo, 1 a2Sbag

Matrix: Solid

Client Sample Results

1 Cent WS PWU leAc

S2ori AnjWni:/IBTggdPeln4y0

Job ID: 890-986-4 WD.: GT04696046E

Lab Sample ID: 890-982-4

Client Sample ID: SW09 Date Collected: 07/22/21 09:15 Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0499	P	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
GoQi ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
Trhd®i e5i ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
<-XdCei & p-XdCei	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
o-Xd©ei	z0@0499	Р	0@0499	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
Xd©eis, GonaC	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
Gora C GTX	z0@0798	Р	0@0798	< BjmB		0Kj67j64 44:04	0Kj63j64 03:4E	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	17t		67 - 107			763 03 1 11:71	763 43 1 74:1y	1
154-, Bluorobenzene (Surr)	t 2		67 - 107			763' 03' 1 11:71	763 43 1 74:1 _V	1

Method: 8015B NM - Diesel Rang	, ,	, , ,						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. aso@ei RaeBi O2BaelAs	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 66:34	4
(. RO)-1 E-1 40								
Dli si CRaeBi O2BaelAs (Ovi 2	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 66:34	4
1 40-1 68)								
OICRaeBi O2BaelAs (Ovi 2168-17E)	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 66:34	4
Gora CGSH	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 66:34	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i 8lorooŒne	171		67 - 107			763 03 1 14:/ t	763 43 1 / / :41	1
o-aerT8enpl	1//		67 - 107			763 03 1 14:/ t	763 43 1 / / :41	1

	Method: 300.0 - Anions, Ion Chrom	natography - So	oluble					
	Analyte	Result Q	Qualifier R	_ Unit	D	Prepared	Analyzed	Dil Fac
Į	Chloride	438	309	S < BjmB			0Kj63j64 67:60	4

Client Sample ID: SW08 Date Collected: 07/22/21 10:28

Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0604	Р	0@0604	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
GoQi ei	z0@0604	Р	0@0604	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
Trhd®i e5i ei	z0@0604	Р	0@0604	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
<-XdCei & p-XdCei	z0@0306	Р	0@0306	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
o-Xd©ei	z0@0604	Р	0@0604	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
Xd©eis, GonaC	z0@0306	Р	0@0306	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
Gora C GTX	z0@0306	Р	0@0306	< BjmB		0Kj67j64 44:04	0Kj63j64 03:7K	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	17t		67 - 107			763 03 1 11:71	763 43 1 74:06	1
154-, Bluorobenzene (Surr)	t y		67 - 107			763 03 1 11:71	763 43 1 74:06	1

Lab Sample ID: 890-982-5

Matrix: Solid

Client Sample Results

1 Clent WS PWU leAc

S2ori ArjWri: / IB Tggd Peln4y0

Job ID: 890-986-4 WD.: GT04696046E

Client Sample ID: SW08

Date Collected: 07/22/21 10:28

Date Received: 07/22/21 16:24

Lab Sample ID: 890-982-5

Matrix: Solid

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. asotei RaeBi O2BaelAs	z39c9	P	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 67:06	4
(. RO)-1 E-1 40								
Dli si CRaeBi O2BaelAs (Ovi 2	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 67:06	4
1 40-1 68)								
OlCRaeBi O2BaelAs (Ovi 2168-17E)	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 67:06	4
Gora CGSH	z39@	Р	39@	< BjmB		0Kj67j64 43:69	0Kj63j64 67:06	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i 8lorooŒcne	t y		67 - 107			763 03 1 14:/ t	763 43 1 / 0:7/	1
o-aerT8enpl	119		67 - 107			763 03 1 14:/ t	763 43 1 / 0:7/	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.3		3@9	< BjmB			0Kj63j64 67:6E	

Client Sample ID: SW07 Lab Sample ID: 890-982-6

Date Collected: 07/21/21 14:26 Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
GoQi ei	z0@0600	Р	000600	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
Trhd®i e5i ei	z0@0600	Р	000600	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
<-Xd€ei & p-Xd€ei	z0@0300	Р	0@0300	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
o-XdCei	z0@0600	Р	000600	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
XdCeis, GonaC	z0@0300	Р	0@0300	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
ComaC GTX	z0@0300	Р	0@0300	< BjmB		0Kj67j64 44:04	0Kj63j64 03:yK	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			67 - 107			763 03 1 11:71	763 43 1 74:96	1
154-, B luorobenzene (Surr)	t 9		67 - 107			763 03 1 11:71	763 43 1 74:96	1
- Method: 8015B NM - Diesel Ra	ange Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
asofiai RaeBi O2BaelAs		P	v0m	< RimR		0Ki67i64 43:69	0Ki63i64 67:66	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. aso@ei RaeBi O2BaelAs	zy0d0	P	y0d0	< BjmB		0Kj67j64 43:69	0Kj63j64 67:66	4
(. RO)-1 E-1 40								
Dli si CRaeBi O2BaelAs (Ovi 2	zy0d	Р	y0 c 0	< BjmB		0Kj67j64 43:69	0Kj63j64 67:66	4
1 40-1 68)								
OlCRaeBi O2BaelAs (Ovi 2168-17E)	zy0d0	Р	y0œ	< BjmB		0Kj67j64 43:69	0Kj63j64 67:66	4
GoraCGSH	zy0@	Р	y0@	< BjmB		0Kj67j64 43:69	0Kj63j64 67:66	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i 8lorooŒcne	t 0		67 - 107			763 03 1 14:/ t	763 43 1 / 0://	1
o-aerT8enpl	117		67 - 107			763 03 1 14:/ t	763 43 1 / 0://	1

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier Dil Fac RLUnit Analyzed Prepared 3@9 < BjmB 0Kj63j64 67:74 Chloride 375

Tu2ofles Xi eAo, 1 a2Sbag

Matrix: Solid

Client Sample Results

1 Cent WS PWU leAc

S2ori AnjWni:/IBTggdPeln4y0

Job ID: 890-986-4 WD.: GT04696046E

Lab Sample ID: 890-982-7

Client Sample ID: SW01

Date Collected: 07/21/21 07:57 Date Received: 07/22/21 16:24

Sample Depth: 0 - 4

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0600	P	0@0600	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
GoQiei	z0@0600	P	0ൻ0600	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
TmldoGie5iei	z0@0600	Р	0ф0600	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
< -XdCei & p-XdCei	z0@0304	Р	0ф0304	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
o-Xd © ei	z0@0600	Р	0ф0600	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
Xd©eis, GomaC	z0@0304	P	0ф0304	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
Gora O'GTX	z0@0304	Р	0@0304	< BjmB		0Kj67j64 44:04	0Kj63j64 0y:48	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	179		67 - 107			763 03 1 11:71	763 43 1 79:12	1
154-, Duorobenzene (Surr)	t 2		67 - 107			763 03 1 11:71	763 43 1 79:12	1
			<i>G 10.</i>					
Method: 8015B NM - Diesel Rang	ge Organics (DI	RO) (GC) Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte . asotei RaeBi O2BaelAs	ge Organics (DI	Qualifier		Unit < BjmB	<u>D</u>	Prepared 0Kj67j64 43:69	Analyzed 0Kj63j64 67:37	
Method: 8015B NM - Diesel Rang Analyte aso@i RaeBi O2BaelAs (. RO)-1 E-140 Diesel Range Organics (Over	ge Organics (DI	Qualifier	RL		<u>D</u>			4
Method: 8015B NM - Diesel Rang Analyte aso@i RaeBi OæaelAs (. RO)-1 E-1 40 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result z39ø	Qualifier P	RL 39@	< BjmB	<u>D</u>	0Kj67j64 43:69	0Kj63j64 67:37	4
Method: 8015B NM - Diesel Rang Analyte aso@ei RaeBi O2BaelAs . RO)-1E-140 Diesel Range Organics (Over C10-C28) DICRaeBi O2BaelAs (Ovi 2168-17E)	ge Organics (DI Result z39:9	Qualifier P	RL 39:9	< BjmB	<u>D</u>	0Kj67j64 43:69 0Kj67j64 43:69	0Kj63j64 67:37 0Kj63j64 67:37	4
Method: 8015B NM - Diesel Rang Analyte aso@ei RaeBi O2BaelAs (. RO)-1E-140 Diesel Range Organics (Over C10-C28) OICRaeBi O2BaelAs (Ovi 2168-17E) Total TPH	ge Organics (DI Result 2390) 86.3	Qualifier P	RL 39:9 39:9 39:9	< BjmB < BjmB < BjmB	<u>D</u>	0lý67j64 43:69 0lý67j64 43:69 0lý67j64 43:69	0Қ63ј64 67:37 0Қ63ј64 67:37 0Қ63ј64 67:37	4
Method: 8015B NM - Diesel Rang Analyte aso@ei RaeBi O2BaelAs (. RO)-1E-140 Diesel Range Organics (Over C10-C28) OICRaeBi O2BaelAs (Ovi 2168-17E) Total TPH Surrogate	ge Organics (DI Result z39:0) 86.3 239:0 86.3	Qualifier P	RL 39:9 39:9 39:9 39:9	< BjmB < BjmB < BjmB	<u>D</u>	0Қ67ј64 43:69 0Қ67ј64 43:69 0Қ67ј64 43:69 0Қ67ј64 43:69	0\(\beta\)63\(\beta\)64\(\delta\)7:37 0\(\beta\)63\(\beta\)64\(\delta\)7:37 0\(\beta\)63\(\beta\)64\(\delta\)7:37	4
Method: 8015B NM - Diesel Rang Analyte . aso@i RaeBi OZaelAs (. RO)-1 E-140 Diesel Range Organics (Over C10-C28) OICRaeBi OZaelAs (Ovi 2168-17E) Total TPH Surrogate 1-i 8lorooOcne	ge Organics (DI Result 2390) 86.3 2390 86.3 2390 86.3	Qualifier P	RL 39:9 39:9 39:9 39:9 <i>Limits</i>	< BjmB < BjmB < BjmB	<u> </u>	0Қ67ј64 43:69 0Қ67ј64 43:69 0Қ67ј64 43:69 0Қ67ј64 43:69 <i>Prepared</i>	0қ63ј64 67:37 0қ63ј64 67:37 0қ63ј64 67:37 0қ63ј64 67:37 <i>Analyzed</i>	4 4 4 Dil Fac
Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI Result 2390) 86.3 2390 86.3 %Recovery 6 6 11y	Qualifier P P Qualifier	RL 39:9 39:9 39:9 39:9 Limits 67 - 107	< BjmB < BjmB < BjmB	<u>D</u>	0Kj67j64 43:69 0Kj67j64 43:69 0Kj67j64 43:69 0Kj67j64 43:69 Prepared 763 03 1 14:/ t	0kj63j64 67:37 0kj63j64 67:37 0kj63j64 67:37 0kj63j64 67:37 0kj63j64 67:37 Analyzed 763'43'1/0:40	Dil Fac 4 4 4 Dil Fac

317

< BjmB

0Kj63j64 67:7E

Released to Imaging: 2/28/2022 4:36:12 PM

Surrogate Summary

1 Cent WS PWU leAc Job ID: 890-986-4 S2ori AnjWni:/IBTggdPeln4y0 WD.: GT04696046E

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

_				Percent Surroga
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-986-4	Wt 0E	448	400	
890-986-6	Wt 05	445	400	
890-986-7	Wt 07	46E	9у	
890-986-5	Wt 09	409	98	
890-986-y	Wt 08	409	9E	
890-986-E	Wt OM	440	9у	
890-986-M	Wt 04	40y	98	
L1 W880-yy87j4-U	Lab 1 oer2oOVamp€	444	40M	
L1 WD 880-yy87j6-U	Lab 1 oer2oO\/amp@ Dup	407	40M	
h / 880-yyM0jy-U	hinkog/QaeF	408	9E	
h / 880-yy87jy-U	h i rkog / @eF	40E	97	
Surrogate Legend / =/ f 5-/ 2omoz0o2obi	e(iei)Wu22Z			

D=/, f 435-DlzQo2obie(iei)Wu22Z

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (A
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-986-4	Wt 0E	40y	46E	
890-986-6	Wt 05	9у	445	
890-986-7	Wt 07	40y	46y	
890-986-5	Wt 09	404	466	
890-986-у	Wt 08	9E	44y	
890-986-E	Vt 0M	97	440	
890-986-M	Wt 04	9M	44E	
L1 W880-yE07j6-U	Lab 1 oer2oCVamp©	99	444	
L1 WD 880-yE07j7-U	Lab 1 oer2oCV/amp© Dup	9M	409	
h / 880-yE07j4-U	h i rkog / @eF	96	445	

Surrogate Legend

41 O f 4-1 k@2ooAnaei

OGSHf o-G 2pki edC

Tu2ozles Xi eAo31 a2Sbag

1 Clent WS PWU leAc Job ID: 890-986-4 WD.: GT04696046E S2ori AnjWni: / IB Tggd Peln4y0

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5570/5-A

Matrix: Solid

Analysis Batch: 5575

Client	Sample	ID:	Method	Blank
	_			

Prep Type: Total/NA

Prep Batch: 5570

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
GoCiei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
Trud(Chie5iei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
<-XdCei & p-XdCei	z0@0h00	Р	0@0h00	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
o-Xd©ei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
Xd©eis, GonaC	z0@0h00	Р	0@0h00	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4
Gona O'GTX	z0@0h00	Р	0@0h00	< BjmB		0Kj67j64 40:66	0Kj67j64 4y:04	4

MB MB

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126	72 - 102	273 03 1 129/	273 03 1 1: 921	1
1124-i 8luorobenzene (Surr)	5,	72 - 102	273 03 1 129/	273 03 1 1: 921	1

Lab Sample ID: MB 880-5583/5-A

Matrix: Solid

Analysis Batch: 5575

MB MB

Client	Sample	ID:	Method	Blank
	Dr	an '	Type: To	tal/NA

ep Type: Total/NA

Prep Batch: 5583

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
/ i e5i ei	z0@0600	P	0@0600	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
GoGiei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
Trud®cie5iei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
<-XdCei & p-XdCei	z0@0h00	Р	0@0h00	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
o-Xd©ei	z0@0600	Р	0@0600	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
Xd©reis, GomaC	z0@0h00	Р	0@0h00	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4
Gona C'GTX	z0@0h00	P	0@0h00	< BjmB		0Kj67j64 44:04	0Kj6hj64 04:y6	4

MB	M

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	12,		72 - 102	273 03 1 11921	273 43 1 219 /	1
1 🗗 - i 🕯 luorobenzene (Surr)	50		72 - 102	273 03 1 11921	273 43 1 219 /	1

Lab Sample ID: LCS 880-5583/1-A

Matrix: Solid

Analysis Batch: 5575

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 5583 Spike LCS LCS %Rec.

	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	/ i e5i ei	00400	0œ4066		< BjmB		406	K0 ₋ 470	
	GoGi ei	0æ400	0@96h7		< BjmB		96	K0 ₋ 470	
	Trud®i e5i ei	0¢400	0 @ 89h0		< BjmB		89	K0 - 470	
	<-XdCei & p-XdCei	0600	0¢4874		< BjmB		96	K0 ₋ 470	
	o-Xd©ei	0¢400	0 @ 960K		< BjmB		96	K0 - 470	
1									

LCS	LCS
LUS	LUS

Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene (Surr)	111	72 - 102
1DI-i 8luorobenzene (Surr)	127	72 - 102

T32oRes Xi eAo, 1 a2Sbag

1 @ ent WS PWU leAc Job ID: 890-986-4 S2ori ArjWri: / IBTggd Peln4y0 WD.: GT04696046E

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5583/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 5575** Prep Batch: 5583

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
/ i e5i ei	00400	0¢4068		< BjmB		407	K0 - 470	4	7y
GoCiei	00400	0@89K8		< BjmB		90	K0 ₋ 470	7	7y
Trud®tie5iei	00400	0 d 08Ehy		< BjmB		8E	K0 ₋ 470	7	7y
<-XdCei & p-XdCei	0600	0¢4Ky6		< BjmB		88	K0 ₋ 470	h	7у
o-XdCei	00400	0 : 08K9h		< BjmB		88	K0 ₋ 470	у	7y

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 72 - 102 120 127 1D4-i 8luorobenzene (Surr) 72 - 102

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5603/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 5611

	ИВ МВ					•	
Analyte Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. asoOei OaeBi (2BaelAs zyo	0:00 P	y0d0	< BjmB		0Kj67j64 4h:69	0Kj6hj64 48:y4	4
). O(v-1 E-1 40							
Dli si COaeBi (2BaelAs)(H2 zyl	000 P	y0 : 0	< BjmB		0Kj67j64 4h:69	0Kj6hj64 48:y4	4
1 40-1 68v							
(ICOaeBi (2BaelAs)(H 2168-17Ev zyl	000 P	y0 ©	< BjmB		0Kj67j64 4h:69	0Kj6hj64 48:y4	4
Gora CGSf zy(0:00 P	у0Ф	< BjmB		0Kj67j64 4h:69	0Kj6hj64 48:y4	4

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 5/ 72 - 102 273 03 1 149 5 273 43 1 169 1 o-Terphenyl 114 72 - 102 273 03 1 149 5 273 43 1 169 1

Lab Sample ID: LCS 880-5603/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 5611** Prep Batch: 5603

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
. asotei OaeBi (2BaelAs	4000	8y7c6		< BjmB		8y	K0 - 470	
). O(v-1 E-1 40								
Dli si COaeBi (2BaelAs)(H2	4000	9886		< BjmB		99	K0 - 470	
140-168v								

LCS LCS %Recovery Qualifier Limits Surrogate 72 - 102 1-Chlorooctane 55 111 72 - 102 o-Terphenyl

Lab Sample ID: LCSD 880-5603/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid

Analysis Batch: 5611

Prep Batch: 5603 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits Limit aso@ei OaeBi (2BaelAs 4000 84yc7 < BjmB 86 K0 ₋ 470 60

). O(v-1 E-1 40

T32oRes Xi eAo, 1 a2Sbag

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 5603

 1 © en t WS PWU leAc
 Job ID: 890-986-4

 S2bri ArjWri: / IB Tggd Peln4y0
 WD. : GT04696046E

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-5603/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 5611** Prep Batch: 5603 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit < BjmB 4000 98hc0 98 K0 - 470 60 Dli si ODaeBi (2BaelAs)(H 2 0

140-168v

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	57		72 - 102
o-Terphenyl	125		72 - 102

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5608/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Soluble

Analysis Batch: 5616

 Analyte
 Result
 Qualifier
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 1 u@2gi
 zyd0
 P
 yd0
 < BjmB</td>
 0Kj6hj64 60:y6
 4

Lab Sample ID: LCS 880-5608/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 5616

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1 u@2qi 6yEc4 < BimB 90 - 440 6y0 406

Lab Sample ID: LCSD 880-5608/3-A Client Sar

Lab Sample ID: LCSD 880-5608/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Soluble

Analysis Batch: 5616

LCSD LCSD RPD Spike %Rec. Analyte Added Qualifier Result Unit %Rec Limits Limit 1 u**@**2gi 6y0 6y7c9 < BjmB 406 90 - 440 60

T32oRes Xi eAo, 1 a2Sbag

QC Association Summary

1 © en t WS PWU leAc

S2ori AnjWni:/IBTggdPeln4y0

Job ID: 890-986-4

WD.: GT04696046E

GC VOA

Prep Batch: 5570

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
3 / 880-yya0jy-U	3 i rNog / CNeh	GorlMJk U	Wb@	y05y	

Analysis Batch: 5575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Wt 0E	GorlMjjk U	Wb@	8064/	yy85
890-986-6	Wt OL	GorlMjjk U	Wb@	8064/	yy85
890-986-5	Wt 05	GorMjk U	Wb@	8064/	yy85
890-986-L	Wt 09	GorlMjjk U	Wb@	8064/	yy85
890-986-y	Wt 08	GorMjk U	Wb@	8064/	yy85
890-986-E	Wt 0a	GorlMjjk U	Wb@	8064/	yy85
890-986-a	Wt 04	GorMjk U	Wb@	8064/	yy85
3 / 880-yya0jy-U	3 inNog/ OWeh	GorMjk U	Wb@	8064/	yya0
3 / 880-yy85jy-U	3 in Nog/ OWeh	GorlMjjk U	Wb@	8064/	yy85
ml W880-yy85j4-U	mMb 1 oen2oOVMþ u€	GorlMjjk U	Wb@	8064/	yy85
m1 WD 880-yy85j6-U	mMb 1 oen2oCNMp u€ D7u	GorlMjjk U	Wb@	8064/	yy85

Prep Batch: 5583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Wt 0E	Gorl/Mjjk U	Wb@	у05у	
890-986-6	Wt OL	GorlMjjk U	Wb@	y05y	
890-986-5	Wt 05	GorlMjjk U	Wb@	y05y	
890-986-L	Wt 09	GorlMjjk U	Wb@	у05у	
890-986-y	Wt 08	GorlMjjk U	Wb@g	у05у	
890-986-E	Wt 0a	GorlMjjk U	Wb@g	у05у	
890-986-a	Wt 04	GorlMjjk U	Wb@	у05у	
3 / 880-yy85jy-U	3 in Nog / ONeh	GorlMjjk U	Wb@	y05y	
ml W880-yy85j4-U	mMb 1 oen2oO/Mp u€	GorlMjjk U	Wb@	y05y	
m1 WD 880-yy85j6-U	mMb 1 oen2oOVMp u℃ D7u	GorlMjjk U	Wb@	y05y	

GC Semi VOA

Prep Batch: 5603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Vt 0E	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-6	Wt OL	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-5	Wt 05	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-L	Wt 09	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-у	Wt 08	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-E	Wt 0a	GorlMjjk U	Wb@	804yk 3 S2 u	
890-986-a	Wt 04	GorlMjjk U	Wb@	804yk 3 S2 u	
3 / 880-yE05j4-U	3 i rNog / CMeh	GorlMjjk U	Wb@	804yk 3 S2 u	
ml W880-yE05j6-U	mMb 1 oen2oO/Mp u€	GorlMjjk U	Wb@	804yk 3 S2 u	
ml WD 880-yE05j5-U	mMb 1 oen2oCWMb u€ D7u	GorM⊈k U	Wb@j	804yk 3 S2 u	

Analysis Batch: 5611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Wt 0E	GorlMJk U	Wb@	804y/ k 3	yE05
890-986-6	Vt OL	GorlMjjk U	Wb@	804y/ k 3	yE05
890-986-5	Vt 05	GorlMjjk U	Wb@	804y/ k 3	yE05
890-986-L	Wt 09	GorlMJk U	Wb@	804y/ k3	yE05
890-986-y	Wt 08	GorlMjjk U	Wb@	804y/ k 3	yE05

T72ofles Xi eAo, 1 M23bMg

Page 14 of 24

QC Association Summary

1 © en t WS PWU leAc S2ori AnjWni: / IB Tggd Peln4y0 Job ID: 890-986-4 WD.: GT04696046E

GC Semi VOA (Continued)

Analysis Batch: 5611 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-E	Wt 0a	Gorl/Mjk U	Wo@	804y/ k 3	yE05
890-986-a	Vt 04	GorlMJJk U	Wb@	804y/ k 3	yE05
3 / 880-yE05j4-U	3 i nNog / CMeh	GorlMDk U	Wb@	804y/ k 3	yE05
ml W880-yE05j6-U	mMb 1 oer2oO/Mp u€	GorlMjjk U	Wb@	804y/ k 3	yE05
m1 WD 880-yE05j5-U	mMb 1 oen2oCWMp u€ D7u	GorlMÇk U	Wb@	804y/ k3	yE05

HPLC/IC

Leach Batch: 5608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Wt 0E	VbØb€	Wb@	DI mi MAN	
890-986-6	Wt OL	₩bØb©	Wb@	DI mi MAN	
890-986-5	Wt 05	VbØb€	Wb@	DI mi MAN	
890-986-L	Wt 09	₩bØb©	Wb@	DI mi MAN	
890-986-y	Wt 08	V6Øb€	Wb@	DI mi MAN	
890-986-E	Wt 0a	₩bØb©	Wb@	DI mi MAN	
890-986-a	Wt 04	₩0.0pc	Wb@	DI mi MAN	
3 / 880-yE08j4-U	3 in Nog / OMeh	₩bØb©	Wb@	DI mi MAN	
ml W880-yE08j6-U	mMb 1 oen2oCVMp u€	V6Øb€	Wb@	DI mi MAN	
m1 WD 880-yE08j5-U	mMb 1 oen2oOVMp u℃ D7u	₩0.0pc	Wb@	DI mi MAN	

Analysis Batch: 5616

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-986-4	Wt 0E	MpQp@	Wb@	500₺	yE08
890-986-6	Wt OL	₩6Øb©	Wb@g	500₺	yE08
890-986-5	Wt 05	₩0 ₽ ₽₽	Wb@g	500₺	yE08
890-986-L	Wt 09	₩bØb©	Wb@	500₺	yE08
890-986-y	Wt 08	₩0 ₽ ₽₽	Wb@g	500₺	yE08
890-986-E	Wt 0a	₩6Øb©	Wb@g	500₺	yE08
890-986-a	Wt 04	₩oæp©	Wb@	500₺	yE08
3 / 880-yE08j4-U	3 in Nog / 00/eh	₩0 ₽ ₽©	Wb@	500₺	yE08
ml W880-yE08j6-U	mMb 1 oen2oCVMp u€	₩6Øb©	Wb@g	500₺	yE08
m1 WD 880-yE08j5-U	mMb 1 oer2oCWMp u€ D7u	Wb\QpC	Wb@	500₺	yE08

T72ofles Xi eAo, 1 M2SbMg

-

3

4

6

0

46

11

13

Client: WSP USA Inc.

Client Sample ID: SW05

Date Collectex: 0d766764 0d:/ 6

Date 2 eceiRex: 0d766764 45:6/

Pjo/ectBSite: giEdyy5 Unit r @

SDT: 2d 0r 1910r 16

Lab Sample ID: 890-986-4

1 atriM Solix

Job ID: 890-981-r

	Tatch	Tatch		DilAtion	Tatch	yreparex		
yrep v3pe	v3pe	1 ethox	2 An	zactor	u Amber	or Bnal3sex	Bnal3Pt	Lab
2otalBNA	Pjep	03G			G33	07Bl3Blr rr:0r	KL	XdN MID
2otalBNA	Anal5sis	801rg		r	GG7G	07B14B1r 03:rG	KL	XdN MID
2otalBNA	Pjep	80r GNM Pjep			G603	07B13B1r r4:19	AJ	XdN MID
2otalBNA	Anal5sis	80r Gg NM		r	G6rr	07B14B1r 1r:38	AJ	XdN MID
Soluble	Leach	DI Leach			G608	07Bl3Blr r6:33	SC	XdN MID
Soluble	Anal5sis	300.0		r	G6r 6	07B14B1r 13:04	SC	XdN MID

Client Sample ID: SW0/ Lab Sample ID: 890-986-6

1 atriM Solix Date Collectex: 0d766764 08:04

Date 2 eceiRex: 0d766764 45:6/

_	Tatch	Tatch		DilAtion	Tatch	yreparex		
yrep v3pe	v3pe	1 ethox	2 An	zactor	u Amber	or Bnal3sex	Bnal3Pt	Lab
2otalBNA	Pjep	003G			GG83	07Bl3Blr rr:0r	KL	XdN MID
2otalBNA	Anal5sis	801rg		r	GG7G	07B14B1r 03:36	KL	XdN MID
2otalBNA	Pjep	80r GNM Pjep			G603	07B13B1r r4:19	AJ	XdN MID
2otalBNA	Anal5sis	80r Gg NM		r	G6rr	07B14B1r 1r:G9	AJ	XdN MID
Soluble	Leach	DI Leach			G608	07Bl3Blr r6:33	SC	XdN MID
Soluble	Anal5sis	300.0		G	G6r 6	07BI4BIr 13:09	SC	XdN MID

Client Sample ID: SW0N Lab Sample ID: 890-986-N

Date Collectex: 0d766764 08:0/ 1 atriM Solix

Date 2 eceiRex: 0d766764 45:6/

	Tatch	Tatch		DilAtion	Tatch	yreparex		
yrep v3pe	v3pe	1 ethox	2 An	zactor	u Amber	or Bnal3sex	Bnal3Pt	Lab
2otalBNA	Pjep	003G			G33	07Bl3Blr rr:0r	KL	XdN MID
2otalBNA	Anal5sis	801rg		r	GG7G	07B14B1r 03:G6	KL	XdN MID
2otalBNA	Pjep	80r GNM Pjep			G603	07B13B1r r4:19	AJ	XdN MID
2otal B NA	Anal5sis	80r Gg NM		r	G6rr	07B14B1r 11:10	AJ	XdN MID
Soluble	Leach	DI Leach			G608	07Bl4Blr r6:33	SC	XdN MID
Soluble	Anal5sis	300.0		r	G6r 6	07Bl4Blr 13:rG	SC	XdN MID

Client Sample ID: SW09 Lab Sample ID: 890-986-/ Date Collectex: 0d766764 09:4F

Date 2 eceiRex: 0d766764 45:6/

	Tatch	Tatch		DilAtion	Tatch	yreparex		
yrep v3pe	v3pe	1 ethox	2 An	zactor	u Amber	or Bnal3sex	Bnal3Pt	Lab
2otalBNA	Pjep	@3G			G33	07B13B1r rr:0r	KL	XdN MID
2otalBNA	Anal5sis	801rg		r	GG7G	07B14B1r 04:r6	KL	XdN MID
2otalBNA	Pjep	80r GNM Pjep			G603	07B13B1r r4:19	AJ	XdN MID
2otalBNA	Anal5sis	80r Gg NM		r	G6rr	07B14B1r 11:4r	AJ	XdN MID
Soluble	Leach	DI Leach			G608	07BI3BIr r6:33	SC	XdN MID
Soluble	Anal5sis	300.0		r	G6r 6	07BI4BIr 13:10	SC	XdN MID

dujoins Xencof Cajlsbay

1 atriM Solix

 Client: WSP USA Inc.
 Job ID: 890-981-r

 Pjo/ectsite: g iE dyy5 Unit r c0
 SDT: 2d0r 1910r 16

Client Sample ID: SW08 Lab Sample ID: 890-986-F

Date Collectex: 0d766764 40:68

1 atriM Solix

Date 2 eceiRex: 0d766764 45:6/

	Tatch	Tatch		DilAtion	Tatch	yreparex		
yrep v3pe	v3pe	1 ethox	2 An	zactor	u Amber	or Bnal3sex	Bnal3Pt	Lab
2otalBNA	Pjep	003G			G33	07Bl3Blr rr:0r	KL	XdN MID
2otalBNA	Anal5sis	801rg		r	GG7G	07Bl4Blr 04:37	KL	XdN MID
2otalBNA	Pjep	80r GNM Pjep			G603	07B13B1r r4:19	AJ	XdN MID
2otalBNA	Anal5sis	80r Gg NM		r	G6rr	07Bl4Blr 13:01	AJ	XdN MID
Soluble	Leach	DI Leach			G608	07Bl3Blr r6:33	SC	XdN MID
Soluble	Anal5sis	300.0		r	G6r 6	07BI4BIr 13:16	SC	XdN MID

Client Sample ID: SW0d Lab Sample ID: 890-986-5

Date Collectex: 0d764764 4/:65
Date 2 eceiRex: 0d766764 45:6/

Tatch Tatch DilAtion Tatch y reparex yrep v3pe v3pe 1 ethox 2 An zactor u Amber or Bnal3sex Bnal3Pt Lab 2otalBNA Pjep **@3G** GC#33 07BI3BIr rr:0r KL XdN MID 2otalBNA Anal5sis 801rg GG7G XdN MID 07BI4BIr 04:G7 KL 2otalBNA XdN MID Piep 80r GNM Pjep G603 07BI3BIr r4:19 AJ 2otalBNA XdN MID Anal5sis 80r Gg NM Œrr 07BI4BIr 13:11 AJ

Client Sample ID: SW04

Date Collectex: 0d764764 0d:Fd

Lab Sample ID: 890-986-d

1 atriM Solix

G608

G6r 6

G6r 6

07BI3BIr r 6:33

07B14B1r 13:3r

07Bl4Blr 13:36

SC

SC

SC

Date 2 eceiRex: 0d766764 45:6/

Tatch Tatch DilAtion Tatch y reparex yrep v3pe v3pe 1 ethox 2 An zactor u Amber or Bnal3sex Bnal3Pt Lab 2otalBNA Pjep **@3G** GC#33 07B13B1r rr:0r KL XdN MID 2otalBNA Anal5sis 801rg 07Bl4Blr 0Gr8 XdN MID GG7G KL 2otalBNA XdN MID Piep 80r GNM Pjep G603 07BI3BIr r4:19 AJ 2otalBNA XdN MID Anal5sis 80r Gg NM G6rr 07BI4BIr 13:43 AJ 07BI3BIr r6:33 XdN MID Soluble Leach DI Leach G608 SC

Laborator3 2 eferenceP:

Soluble

Soluble

Soluble

Leach

Anal5sis

Anal5sis

DI Leach

300.0

XdN MID, dujo≑ns Xencof Miylanyf r 1rr W. Flojiya Avef Miylanyf 2X 7970rf 2dL (431)704-G440

300.0

dujoins Xencof Cajlsbay

XdN MID

XdN MID

XdN MID

Accreditation/Certification Summary

 Client: WSP USA Inc.
 Job ID: 890-986-4

 P1orectjSite: / iB g EEd Unit 4y0
 SD5: Gg 04696046T

Laboratory: Eurofins Xenco, Midland

Authority	Pr	ogram	Identification Number	Expiration Date
Geu, 2	Ng	JLAP	G40x70xx00-60-64	0T-30-66
Ose anllohinB n ldte2	1e inclyEeE in tsi2 1eno1twhy	rt tse I ho1 to1d i2 not ce1tia	eEbd tse Bof e1ninB, vtso1itd. Gsi2 li2t m,	dinclyEq n ldto2 a
tse , Bencd Eoe2 not oa	•	t too i, bo i, to ki iz not oo kid	ee bu tee boi e mind, viso mu. Gsiz iizi iii,	, a movee, m, latez a
	•	M, t1iu	An, Idte	, a movee , n, latez a
tse , Bencd Eoe2 not oa	æ1ce1tiaic, tion.	, ,	,	, u move, m, lutez a

Method Description

MIA2oi xr2aArloe

Vo@rl© O2BaelA1 ompouegs (. 1) Dli si CRaeBi O2BaelAs (DRO) (. 1)

Ueloes, loe 1 h2omaroB2aphd

1 @sig Wdsnim Su2Bi aeg G2ap

Di loelzi g t ani 2Li aAhleB S2oAi gu2

Method Summary

1 Clent WS PWU leAc

Method

804y/ NM 3000

804yNM S2 p

DI Li aAh

8064/

y03y

S2ori ArjWri: / IB Tggd Peln4y0

Job ID: 890-986-4

WD.: GT04696046E

Protocol	Laboratory
Wt 85E	XTN MID
Wt 85E	XTN MID
M1 Ut t	XTN MID
Wt 85E	XTN MID

> XTN MID XTN MID

Wt 85E

UWGM

Protocol References:

UWGM = UWGM leri 2earloeaC

M1 Ut t = "Mi rhogs Fo21 hi mlAaQJea@sls Of t an 2Ueg t asnis", TSU-E00j5-79-060, Ma2Ah 4983 Ueg Wubsi qui enRi vlsloesc Wt 85E = "G snMi rhogs Fo2Tva@arleB Wo@g t asri , ShdslAa@t hi mlAaOMi rhogs", Chl2g Tglrloe, Novi mbi 2498E Ueg Ins Ppgari sc

Laboratory References:

XTN MID = Tu2ofles Xi eAo, Mlg@eg, 4644 t cF@2ga Uvi , Mlg@eg, GX 79704, GTL (536)705-y550

Tu2ofles Xi eAo, 1 a2Sbag

Sample Summary

Client: WSP USA Inc.

P2orectjSite: / iBTggd Unit 4y0

Job ID: 890-986-4

SD1: GT04696046E

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-986-4	SW0E	Solig	05j66j64 05:76	05j66j64 4E:67	0 - 7
890-986-6	SW07	Solig	05j66j64 08:04	05j66j64 4E:67	0 - 7
890-986-3	SW03	Solig	05j66j64 08:07	05j66j64 4E:67	0 - 7
890-986-7	SW09	Solig	05j66j64 09:4y	05j66j64 4E:67	0 - 7
890-986-y	SW08	Solig	05j66j64 40:68	05j66j64 4E:67	0 - 7
890-986-E	SW05	Solig	05j64j64 47:6E	05j66j64 4E:67	0 - 7
890-986-5	SW04	Solig	05j64j64 05:y5	05j66j64 4E:67	0 - 7

Л

5

6

8

9

12

13

Project Name:

Turn Around

ANALYSIS REQUEST

Work Order Notes

	tate ZIP: Midland TX 79705	ss: 3300 North A Street	any Name: WSP USA	Manager: Dan Moir	LABORATORIES	
	05 City, State ZIP: Carlsbad, NM 88220	reet Address: 522 W. Mermod St.	Company Name: XTO Energy	Bill to: (if different) Kyle Littrell	Houston, TX (281) 240-4200 Dalias, IX (214) 902-0300 San Antonio, IX (210) 309-333-443 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (81	
Deliverables: FDD ADaPT II Off	Reporting:Level III FT/UST IRP	State of Project:	Program: UST/PST _RPrownfields _RC	Work Order Comments	296 (813-620-2000) <u>www.xenco.com</u> Page	Work Order No:

				-					
		4							3
		にのけ		2.22.2		Carl	los		in som
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Time	Date/Time	ture)	Received by: (Signature)	Recei	ature)	Relinquished by: (Signature)
	rd terms and conditions ances beyond the control eviously negotiated.	Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75,00 will be applied to each project and a charge of \$6 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	y to Xenco, its at benses incurred t enco, but not ana	client compan losses or exp ubmitted to X	purchase order from responsibility for any \$5 for each sample s	constitutes a valid all not assume any ect and a charge of	of samples of ples and sha to each proje	it and relinquishment ily for the cost of sam 75.00 will be applied	Notices Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontract of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such loss of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will
1245.117470 17471 Hg	TI U 1631	Shas Ba Be Cd Cr Co Cu Ph Mn Mo Ni Se Ag Ti U	s Ba Be Cd	RA Sb A	BRCRA 13PPM lexas 11 Al So As Ba Be TCLP / SPLP 6010: 8RCRA Sb As Ba Be	TCLP / SF	nalyzed	200.8 / 6020: Metal(s) to be a	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed
Sp II V Zp	Ma Ni K Sa Ag SiO3 Na Sr T							_	
						+			
						++	117		
E			<	4	0-4'	6757	7/3//3/		1005
			/		0-41	2 125 1c	7/21/21		SWO7
					4	1008	4		Sw08
					3	5160			Swaq
						4080			52063
				-	*	1080	-		SWOY
company	c		×	\ \(\chi\)	0-4	61 0742	7/22/21	v	Swob
Sample Comments	S		BTEX (Numb	Depth	ed Sampled	Date Sampled	on Matrix	Sample Identification
lab, if received by 4.30pm	a					Total Containers:		Yes (No) NIA	Sample Custody Seals:
TAT starts the day recevied by the	TAT st				4	Correction Factor:	c	Yes NA NA	Cooler Custody Seals:
	Custody	Chain of Custody				480-WWD		red No	Received Intact:
		890.983	-	iner		Thermometer ID		9.6/9.9	Temperature (°C):
Em 3501.0180 EX1.61	Ew.				Wet loe: Yes No	No Wet los	Yes	Temp Blank:	SAMPLE RECEIPT
	APE.			1196/	Due Date: 44551	Due) <u>=</u>	Jeremy Hill	Sampler's Name:
1001 41001	1,401		_	141	Rush: 137		8548	NAMOON4854885	P.O. Number: Zn.
	33				tine 1	Routine	26	75010900125	Project Number: 7.

perfund

Level IV

Carlsbad, NM 88220

1089 N Canal St.

Eurofins Xenco, Carlsbad

13 14

Chain of Custody Record

eurofins

America Environment Testing

State Zip. TX, 79701 SW08 (890-982-5) SW09 (890-982-4) Empty Kit Relinquished by Note. Since laboratory accreditations are subject to change, Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. SW01 (890-982-7) SW07 (890-982-6) SW03 (890-982-3) SW04 (890-982-2) SW06 (890-982-1) Sample Identification - Client ID (Lab ID) Shipping/Receiving Deliverable Requested 1 II III IV Other (specify) Possible Hazard Identification Big Eddy Unit 150 432-704-5440(Tel) Midland Phone 575-988-3199 Fax: 575-988-3199 1211 W Florida Ave, urofins Xenco Custody Seals Intact. linquished by oject Name: lient Information (Sub Contract Lab) nquished by: nquished by: Yes A No Custody Seal No WO# Date/Time Date/Time PO# Date/Time Primary Deliverable Rank. 2 89000004 TAT Requested (days) Due Date Requested Sampler Sample Date 7/23/2021 none roject # 7/22/21 7/22/21 7/22/21 7/22/21 7/21/21 7/21/21 7/22/21 Date Mountain 07 57 Mountain 14 26 Mountain 10 28 Mountain 09 15 Mountain 08 04 Mountain 08 01 Mountair Sample 07 42 G=grab) (C=comp, Sample Preservation Code: Type Company Company BT*TIssue Matrix Solid Solid Solid Solid Solid Solid Solid Kramer Jessica jessica kramer@eurofinset.com E-Mail Lab PM Time Field Filtered Sample (Yes or No) NELAP - Louisiana, NELAP - Texas ccreditations Required (See note) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Received by Cooler Temperature(s) °C and Other Remarks × × × × × × × 8015MOD_NM/8015NM_S_Prep Full TPH × × × × 300 ORGFM_28D/DI_LEACH Chloride × × × × × × × × × 8021B/5035FP_Calc BTEX Analysis Requested New Mexico State of Origin Method of Shipment Tracking No(s) Date/Time Date/Time 4 ۵ Total Number of containers 40 ع 4 -890-314 1 MOCEN I O Preservation 890-982-1 Page 1 of 1 age DI Water EDTA Amchlor Ascorbic Acid NaOH
Zn Acetate
Nitric Acid
NaHSO4 Special Instructions/Note: - to 70 SZOFO Company Company Company MCAA AsNaO2 Na2O4S Na2SO3 other (specify) pH 4-5 TSP Dodecahydrate Acetone H2S04 Na2S2O3 Months

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-986-4

S1 D Number: GT04696046E

Login Number: 982 List Source: Eurofins Xenco, Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
G2e coolerh cu' tosd ' eylai, f re' entai' intyct.	Grue	
Symf le cu' tosd ' eyl' ai, f re' entayre intyct.	Grue	
G2e cooler or 'ymf le' so not yf f eyr to 2ype been comf romi' es or tymf eres v it2.	Grue	
Symf le' v ere receipes on ice.	Grue	
Cooler @mf eryture i' yccef tyble.	Grue	
Cooler @mf eryture i' recorses.	Grue	
CwC i' f re' ent.	Grue	
CwC i', illes out in inOyns lekible.	Grue	
CwC i', illes out vit2 yll f ertinent in,ormytion.	Grue	
I' t2e giels Symf lerh nyme f re' ent on CwCF	Grue	
G2ere yre no si' cref yncie' betv een t2e contyiner' receipes yns t2e CwC.	Grue	
Symf le' yre receipes v it2in ? olsink Gme He(clusink te' t' v it2 immesiyte ? G x	Grue	
Symf le contyiner' 2ype lekible lybel' .	Grue	
Contyiner' yre not bro@en or ley@nk.	Grue	
Symf le collection syte)time' yre f ropises.	Grue	
Af f rof riyte ' ymf le contyiner' yre u' es.	Grue	
Symf le bottle' yre comf leteld ,illes.	Grue	
Symf le Pre' erpytion / eri,ies.	N)A	
G2ere i' 'u,,icient pol.,or yll reVue' tes ynyld' e' aincl. ynd reVue' tes q S)q S1'	Grue	
Contyiner' reVuirink Mero 2eys' f yce 2ype no 2eys' f yce or bubble i' zEmm H)<"x	N)A	

-

Eurofins Xenco, Carlsbad

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-986-4 S1 D Number: GT04696046E

List Source: Eurofins Xenco, Midland

List Creation: 07/23/21 02:09 PM

Creator: Phillips, Kerianna

Login Number: 982

List Number: 2

z Emm **H**)<"x

Question	Answer Comment
G2e coolerh cu' tosd ' eylai, f re' entai' intyct.	Gue
Symf le cu' tosd ' eyl' ai, f re' entayre intyct.	Gue
G2e cooler or 'ymf le' so not yf f eyr to 2ype been comf romi' es or	Grue
tymf eres v it2.	
Symf le' v ere receipes on ice.	Grue
Cooler @mf eryture i' yccef tyble.	Grue
Cooler @mf eryture i' recorses.	Gue
CwC i' f re' ent.	Gue
CwC i' ,illes out in inOyns lekible.	Grue
CwC i', illes out v it2 yll f ertinent in,ormytion.	Grue
I' t2e giels Symf lerh nyme f re' ent on CwCF	Grue
G2ere yre no si' cref yncie' betv een t2e contyiner' receipes yns t2e CwC.	Grue
Symf le' yre receipes v it2in ? olsink Gme He(clusink te' t' v it2 immesiyte ? G x	Grue
Symf le contyiner' 2ype lekible lybel'.	Grue
Contyiner' yre not bro@en or ley@nk.	Grue
Symf le collection syte)time' yre f ropises.	Grue
Affrof riyte 'ymfle contyiner' yre u'es.	Grue
Symf le bottle' yre comf leteld ,illes.	Grue
Symf le Pre' erpytion / eri,ies.	Grue
G2ere i' ' u,,icient pol. ,or yll re Vue' tes ynyld' e' aincl. ynd re Vue' tes q $\mbox{S}\mbox{\sc q}$ $\mbox{S}\mbox{\sc d}$	Grue
Contyiner' reVuirink Mero 2eys' f yce 2ype no 2eys' f yce or bubble i'	Grue

Eurofins Xenco, Carlsbad

Released to Imaging: 2/28/2022 4:36:12 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-983-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

MAMER

Authorized for release by: 7/28/2021 8:59:19 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

IOIOIACCESS

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

6

0

9

11

14

М

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-983-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	15
QC Sample Results	17
QC Association Summary	22
Lab Chronicle	26
Certification Summary	
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	35

3

4

6

8

10

11

13

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Qualifiers

GC VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS **PQL Practical Quantitation Limit**

PRES Presumptive

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TFF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: WSP USA Inc. Pjo/ectBSite: giEdyy5 Unit r CO Job ID: 890-981-r

SDT: 2d 0r 6960r 6h

Job ID: 890-983-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-983-1

Receipt

2se amp wlea v eje jecei7ey on 48668506r 3:63 PM. Unleaa otsejv iae notey belov, tse amp wlea mjji7ey in Eooy conyition, mmy, v seje jequijey, wjowejl5 wjeaej7ey mny on ice. 2se tep wejmtuje of tse coolej mt jeceiwt tip e v ma 9.3°C

GC VOA

No myyitionm mm/5ticm oj qumit5 iaauea v eje notey, otsej tsmn tsoae yeacjibey mbo7e oj in tse DefinitionaBT loaamj5 wmEe.

GC Semi VOA

No myyitionm mm/5ticm oj qumit5 iaauea v eje notey, otsej tsmn tsoae yeacjibey mbo7e oj in tse DefinitionaBT loaamj5 wmEe.

No myyitionm mm/5ticm oj qumit5 iaauea v eje notey, otsej tsmn tsoae yeacjibey mbo7e oj in tse DefinitionaBT loaamj5 wmEe.

Lab Sample ID: 890-983-1

Client Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS25

Date Collected: 07/22/21 11:33 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00543		0.00202	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
Toluene	<0.00202	U	0.00202	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
Ethylbenzene	0.00863		0.00202	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
m-Xylene & p-Xylene	0.00703		0.00403	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
o-Xylene	0.00915	F1	0.00202	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
Xylenes, Total	0.0162		0.00403	mg/Kg		07/23/21 14:19	07/24/21 02:25	1
Total BTEX	0.0302		0.00403	mg/Kg		07/23/21 14:19	07/24/21 02:25	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	175	S1+	70 - 130	07/23/21 14:19	07/24/21 02:25	1
1,4-Difluorobenzene (Surr)	115		70 - 130	07/23/21 14:19	07/24/21 02:25	1

Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 12:40	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 12:40	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 12:40	1
Total TPH	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 12:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa

Surroyate	Mecovery Quanties	LIIIIII	riepaieu	Allalyzeu	DII Fac
1-Chlorooctane	95	70 - 130	07/26/21 16:18	07/28/21 12:40	1
o-Terphenyl	103	70 - 130	07/26/21 16:18	07/28/21 12:40	1
Method: 300.0 - Anions, Ion Chron	natography - Soluble				

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 50.3 07/24/21 20:01 Chloride 3670 mg/Kg **Client Sample ID: FS20** Lab Sample ID: 890-983-2

Date Collected: 07/22/21 11:45 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
Toluene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 02:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/23/21 14:19	07/24/21 02:46	1
1,4-Difluorobenzene (Surr)	108		70 - 130			07/23/21 14:19	07/24/21 02:46	1

Matrix: Solid

Lab Sample ID: 890-983-2

Client Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS20

Date Collected: 07/22/21 11:45 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 13:42	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 13:42	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 13:42	1
Total TPH	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 13:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130			07/26/21 16:18	07/28/21 13:42	1
o-Terphenyl	101		70 - 130			07/26/21 16:18	07/28/21 13:42	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: FS19 Lab Sample ID: 890-983-3 Matrix: Solid

Date Collected: 07/22/21 12:31 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
Toluene	< 0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 03:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			07/23/21 14:19	07/24/21 03:07	1
1,4-Difluorobenzene (Surr)	103		70 - 130			07/23/21 14:19	07/24/21 03:07	1
Method: 8015B NM - Diesel Ranç Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mothod: 8015B NM - Diosal Pane	no Organics (D	BO) (GC)						
Analyte Gasoline Range Organics		Qualifier	RL	Unitmg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 14:03	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result < 50.0	Qualifier U	50.0	mg/Kg	<u>D</u>			1
Analyte Gasoline Range Organics	Result	Qualifier U			<u>D</u>	07/26/21 16:18	07/28/21 14:03	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result < 50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 14:03	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 14:03 07/28/21 14:03	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 14:03 07/28/21 14:03 07/28/21 14:03	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result <50.0 <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 07/28/21 14:03	1 1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	Result	Qualifier U U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared	07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 Analyzed	Dil Face 1 1 1 1 1 1 Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier Soluble	50.0 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 Analyzed 07/28/21 14:03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 130	mg/Kg mg/Kg mg/Kg	D	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 07/28/21 14:03 Analyzed 07/28/21 14:03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Lab Sample ID: 890-983-4

Client Sample Results

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-983-1

SDG: TE012920126

Client Sample ID: FS18

Date Collected: 07/22/21 12:32 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
Toluene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
Xylenes, Total	< 0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
Total BTEX	<0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 03:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130			07/23/21 14:19	07/24/21 03:28	1
1,4-Difluorobenzene (Surr)	105		70 - 130			07/23/21 14:19	07/24/21 03:28	1
Method: 8015B NM - Diesel Rand	ge Organics (DI	RO) (GC)						
Method: 8015B NM - Diesel Ranç Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
Analyte Gasoline Range Organics		Qualifier		<mark>Unit</mark> mg/Kg	D	Prepared 07/26/21 16:18	Analyzed 07/28/21 14:24	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>	<u> </u>		1
Analyte	Result <50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 14:24	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 14:24	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Total TPH	Result <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 14:24 07/28/21 14:24 07/28/21 14:24	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 14:24 07/28/21 14:24 07/28/21 14:24 07/28/21 14:24	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	Result	Qualifier U U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 <i>Prepared</i>	07/28/21 14:24 07/28/21 14:24 07/28/21 14:24 07/28/21 14:24 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 Limits 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 14:24 07/28/21 14:24 07/28/21 14:24 07/28/21 14:24 Analyzed 07/28/21 14:24	

Client Sample ID: FS15

Date Collected: 07/22/21 12:39

Lab Sample ID: 890-983-5

Matrix: Solid

1180

5.04

mg/Kg

Date Received: 07/22/21 16:24

Sample Depth: - 4

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 03:48	
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
Total BTEX	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 03:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			07/23/21 14:19	07/24/21 03:48	
1,4-Difluorobenzene (Surr)	102		70 - 130			07/23/21 14:19	07/24/21 03:48	1

Eurofins Xenco, Carlsbad

07/24/21 18:41

2

3

4

6

8

10

10

13

ь

Lab Sample ID: 890-983-5

Client Sample Results

Client: WSP USA Inc.

Job ID: 890-983-1

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Client Sample ID: FS15

Date Collected: 07/22/21 12:39 Date Received: 07/22/21 16:24

Sample Depth: - 4

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		07/26/21 16:18	07/28/21 14:44	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		07/26/21 16:18	07/28/21 14:44	1
C10-C28)								
OII Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		07/26/21 16:18	07/28/21 14:44	1
Total TPH	<49.8	U	49.8	mg/Kg		07/26/21 16:18	07/28/21 14:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130			07/26/21 16:18	07/28/21 14:44	1
o-Terphenyl	95		70 - 130			07/26/21 16:18	07/28/21 14:44	1
- Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	988		5.00	mg/Kg			07/24/21 18:46	1

Client Sample ID: FS14

Date Collected: 07/22/21 12:41

Lab Sample ID: 890-983-6

Matrix: Solid

Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
o-Xylene	< 0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
Xylenes, Total	< 0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 04:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			07/23/21 14:19	07/24/21 04:09	1
1,4-Difluorobenzene (Surr)	104		70 - 130			07/23/21 14:19	07/24/21 04:09	1
_ Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			49.7	mg/Kg		07/26/21 16:18	07/28/21 15:05	1
Gasoline Range Organics	<49.7	U	45.7					
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	45.7	9/.19				
5 5	<49.7 <49.7		49.7	mg/Kg		07/26/21 16:18	07/28/21 15:05	1
(GRO)-C6-C10 Diesel Range Organics (Over		U				07/26/21 16:18 07/26/21 16:18	07/28/21 15:05 07/28/21 15:05	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130	07/26/21 16:18	07/28/21 15:05	1
o-Terphenyl	96		70 - 130	07/26/21 16:18	07/28/21 15:05	1

Method: 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	265		5.00	mg/Kg			07/24/21 18:52	1

Eurofins Xenco, Carlsbad

Page 8 of 36

Lab Sample ID: 890-983-7

Client Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS13

Date Collected: 07/22/21 13:11 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
Toluene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 04:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			07/23/21 14:19	07/24/21 04:30	1
4 4 10 15 1 10 10 1						07/00/04 44 40	07/04/04 04 00	4
1,4-Difluorobenzene (Surr)	99		70 - 130			07/23/21 14:19	07/24/21 04:30	7
1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Rang		RO) (GC)	70 - 130			07/23/21 14:19	07/24/21 04:30	7
	ge Organics (D	RO) (GC) Qualifier	70 ₋ 130 RL	Unit	D	0//23/21 14:19 Prepared	07/24/21 04:30 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang	ge Organics (D	Qualifier		Unit mg/Kg	<u>D</u>			Dil Fac
Method: 8015B NM - Diesel Rang Analyte	ge Organics (D	Qualifier	RL		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	Qualifier U	RL		<u>D</u>	Prepared	Analyzed	Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (Di Result <49.9	Qualifier U	RL 49.9	mg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 15:26	Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di Result <49.9	Qualifier U	RL 49.9	mg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 15:26	Dil Fac 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <49.9	Qualifier U U	RL 49.9	mg/Kg	<u>D</u>	Prepared 07/26/21 16:18 07/26/21 16:18	Analyzed 07/28/21 15:26 07/28/21 15:26	Dil Fac 1 1 1
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D) Result <49.9 <49.9	Qualifier U U U U	RL 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	Analyzed 07/28/21 15:26 07/28/21 15:26 07/28/21 15:26	Dil Fac 1 1 1 1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	ge Organics (D) Result <49.9 <49.9 <49.9 <49.9	Qualifier U U U U	RL 49.9 49.9 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	Analyzed 07/28/21 15:26 07/28/21 15:26 07/28/21 15:26 07/28/21 15:26	1 1 1

Client Sample ID: FS12 Lab Sample ID: 890-983-8 Date Collected: 07/22/21 13:14 **Matrix: Solid**

RL

24.8

Unit

mg/Kg

D

Prepared

Analyzed

07/25/21 21:15

Result Qualifier

1350

Date Received: 07/22/21 16:24

Method: 300.0 - Anions, Ion Chromatography - Soluble

Sample Depth: - 4

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
Total BTEX	<0.00401	U	0.00401	mg/Kg		07/23/21 14:19	07/24/21 04:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			07/23/21 14:19	07/24/21 04:50	
1,4-Difluorobenzene (Surr)	98		70 - 130			07/23/21 14:19	07/24/21 04:50	1

Eurofins Xenco, Carlsbad

Dil Fac

Lab Sample ID: 890-983-8

Client Sample Results

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Client Sample ID: FS12

Date Collected: 07/22/21 13:14 Date Received: 07/22/21 16:24

Sample Depth: - 4

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 15:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 15:47	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 15:47	1
Total TPH	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 15:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130			07/26/21 16:18	07/28/21 15:47	1
o-Terphenyl	101		70 - 130			07/26/21 16:18	07/28/21 15:47	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	654		4.97	mg/Kg			07/24/21 19:17	1

Client Sample ID: FS11

Date Collected: 07/22/21 13:18

Lab Sample ID: 890-983-9

Matrix: Solid

Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
o-Xylene	0.00234		0.00200	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
Xylenes, Total	< 0.00399	U	0.00399	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
Total BTEX	<0.00399	U	0.00399	mg/Kg		07/23/21 14:19	07/24/21 05:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			07/23/21 14:19	07/24/21 05:11	1
1,4-Difluorobenzene (Surr)	108		70 - 130			07/23/21 14:19	07/24/21 05:11	1
			RL	Unit	D	Prepared	Analyzed	Dil Fac
Made de COASD NIM Discoul Donn		DO) (OO)						
Method: 8015B NM - Diesel Rang Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL 50.0	Unit mg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 16:07	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result < 50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 16:07	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>			1
Analyte Gasoline Range Organics (GRO)-C6-C10	Result < 50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 16:07	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 16:07 07/28/21 16:07	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 16:07 07/28/21 16:07 07/28/21 16:07	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <50.0 <50.0 <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 07/28/21 16:07	1 1 1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	Result <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery	Qualifier U U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared	07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 Analyzed 07/28/21 16:07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 07/28/21 16:07 Analyzed 07/28/21 16:07	Dil Fac 1 Dil Fac 1 Dil Fac

Eurofins Xenco, Carlsbad

3

4

6

8

10

12

13

Lab Sample ID: 890-983-10

Client: WSP USA Inc.

Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS10

Date Collected: 07/22/21 13:21 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
Toluene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
Xylenes, Total	< 0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
Total BTEX	<0.00396	U	0.00396	mg/Kg		07/23/21 14:19	07/24/21 05:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/23/21 14:19	07/24/21 05:32	1
1,4-Difluorobenzene (Surr)	101		70 - 130			07/23/21 14:19	07/24/21 05:32	1
Method: 8015B NM - Diesel Ran	• • •	, , ,	DI	Unit	Ь	Dronovod	Anglyzod	Dil Eo
•								
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	• • •	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 16:28	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U	49.9	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 16:28	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			<u>D</u>	<u>.</u>		1
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U	49.9	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 16:28	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U U	49.9	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 16:28 07/28/21 16:28	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U U	49.9 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 16:28 07/28/21 16:28 07/28/21 16:28	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <49.9 <49.9 <49.9 <49.9 <49.9	Qualifier U U U U	49.9 49.9 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 07/28/21 16:28	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U U U	49.9 49.9 49.9 49.9 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 <i>Prepared</i>	07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	49.9 49.9 49.9 49.9 Limits 70.130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 Analyzed 07/28/21 16:28	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	49.9 49.9 49.9 49.9 Limits 70.130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 07/28/21 16:28 Analyzed 07/28/21 16:28	Dil Fac

Client Sample ID: FS01 Lab Sample ID: 890-983-11 Date Collected: 07/22/21 14:42 **Matrix: Solid**

Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
Toluene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 06:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130			07/23/21 14:19	07/24/21 06:55	1
1,4-Difluorobenzene (Surr)	105		70 - 130			07/23/21 14:19	07/24/21 06:55	1

Lab Sample ID: 890-983-11

Client Sample Results

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-983-1

SDG: TE012920126

Client Sample ID: FS01

Date Collected: 07/22/21 14:42 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 17:09	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 17:09	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 17:09	1
Total TPH	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 17:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130			07/26/21 16:18	07/28/21 17:09	1
o-Terphenyl	97		70 - 130			07/26/21 16:18	07/28/21 17:09	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	246		5.03	mg/Kg			07/24/21 21:09	

Client Sample ID: FS02

Date Collected: 07/22/21 14:44

Lab Sample ID: 890-983-12

Matrix: Solid

Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
Toluene	< 0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130			07/23/21 14:19	07/24/21 07:15	1
1,4-Difluorobenzene (Surr)	81		70 - 130			07/23/21 14:19	07/24/21 07:15	1
Method: 8015B NM - Diesel Rand	ge Organics (D	RO) (GC)						
Mathadi 204ED NM Diagal Dani	no Ormanico (Di	BOY (CC)						
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result	Qualifier	RL	Unit ma/Ka	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 17:30	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier U	50.0	mg/Kg	D	07/26/21 16:18	07/28/21 17:30	1
Analyte Gasoline Range Organics	Result	Qualifier U			<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0	Qualifier U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 17:30	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U	50.0	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 17:30 07/28/21 17:30	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 17:30 07/28/21 17:30 07/28/21 17:30	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <50.0 <50.0 <50.0 <50.0 <50.0	Qualifier U U U U	50.0 50.0 50.0 50.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 07/28/21 17:30	1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate	Result	Qualifier U U U U	50.0 50.0 50.0 50.0 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u> </u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 <i>Prepared</i>	07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 Analyzed	1 1 1 1 1 1 Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 Analyzed 07/28/21 17:30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U U Qualifier	50.0 50.0 50.0 50.0 <i>Limits</i> 70 - 130	mg/Kg mg/Kg mg/Kg	D_	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 07/28/21 17:30 Analyzed 07/28/21 17:30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Eurofins Xenco, Carlsbad

2

2

4

7

9

10

4.0

1 1

М

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS03

Date Collected: 07/22/21 14:47 Date Received: 07/22/21 16:24

Sample Depth: - 4

Lab Sample ID: 890-983-13

07/26/21 16:18

07/28/21 17:51

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 07:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/23/21 14:19	07/24/21 07:36	1
1,4-Difluorobenzene (Surr)	107		70 - 130			07/23/21 14:19	07/24/21 07:36	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier Unit Analyzed Dil Fac RLPrepared <49.9 U 07/28/21 17:51 Gasoline Range Organics 49.9 mg/Kg 07/26/21 16:18 (GRO)-C6-C10 07/26/21 16:18 07/28/21 17:51 Diesel Range Organics (Over <49.9 U 49.9 mg/Kg C10-C28) OII Range Organics (Over C28-C36) 49.9 07/26/21 16:18 07/28/21 17:51 <49.9 U mg/Kg Total TPH <49.9 U 49.9 mg/Kg 07/26/21 16:18 07/28/21 17:51 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 90 70 - 130 07/26/21 16:18 07/28/21 17:51

Method	Method: 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride		40	4.96	mg/Kg			07/24/21 21:31	1			

70 - 130

98

Client Sample ID: FS04 Lab Sample ID: 890-983-14

Date Collected: 07/22/21 14:49 Date Received: 07/22/21 16:24

Sample Depth: - 4

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:57	
Toluene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:57	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:57	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:57	
o-Xylene	<0.00199	U	0.00199	mg/Kg		07/23/21 14:19	07/24/21 07:57	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:57	1
Total BTEX	<0.00398	U	0.00398	mg/Kg		07/23/21 14:19	07/24/21 07:57	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			07/23/21 14:19	07/24/21 07:57	
1,4-Difluorobenzene (Surr)	106		70 - 130			07/23/21 14:19	07/24/21 07:57	1

Lab Sample ID: 890-983-14

Client Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Client Sample ID: FS04

Date Collected: 07/22/21 14:49 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 18:12	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 18:12	1
C10-C28)								
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 18:12	1
Total TPH	<49.9	U	49.9	mg/Kg		07/26/21 16:18	07/28/21 18:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130			07/26/21 16:18	07/28/21 18:12	1
o-Terphenyl	97		70 - 130			07/26/21 16:18	07/28/21 18:12	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: FS05 Lab Sample ID: 890-983-15 Matrix: Solid

Date Collected: 07/22/21 14:51 Date Received: 07/22/21 16:24

Sample Depth: - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
Toluene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
Total BTEX	<0.00402	U	0.00402	mg/Kg		07/23/21 14:19	07/24/21 08:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			07/23/21 14:19	07/24/21 08:18	1
1,4-Difluorobenzene (Surr)	103		70 - 130			07/23/21 14:19	07/24/21 08:18	1
Method: 8015B NM - Diesel Ranç Analyte Gasoline Range Organics		Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared 07/26/21 16:18	Analyzed 07/28/21 18:33	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U		mg/Kg	<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U	49.9		<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U	49.9	mg/Kg	<u>D</u>	07/26/21 16:18	07/28/21 18:33	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U	49.9	mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <49.9 <49.9 <49.9	Qualifier U U U U	49.9 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33 07/28/21 18:33	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH	Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49	Qualifier U U U U	49.9 49.9 49.9 49.9	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 07/28/21 18:33	
· · · · · · · · · · · · · · · · · · ·	Result <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U U U	49.9 49.9 49.9 49.9 <i>Limits</i>	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared	07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 <49.9 <49.9 <49.9 <9.9 <9.9 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.0 <9.	Qualifier U U U Qualifier	49.9 49.9 49.9 49.9 Limits 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 Analyzed 07/28/21 18:33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Total TPH Surrogate 1-Chlorooctane	Result	Qualifier U U U Qualifier	49.9 49.9 49.9 49.9 Limits 70 - 130	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 07/26/21 16:18 Prepared 07/26/21 16:18	07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 07/28/21 18:33 Analyzed 07/28/21 18:33	Dil Fac

Surrogate Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-983-1	FS25	175 S1+	115	
890-983-1 MS	FS25	102	97	
890-983-1 MSD	FS25	96	89	
890-983-2	FS20	113	108	
890-983-3	FS19	115	103	
890-983-4	FS18	126	105	
890-983-5	FS15	110	102	
890-983-6	FS14	112	104	
890-983-7	FS13	118	99	
890-983-8	FS12	101	98	
890-983-9	FS11	107	108	
890-983-10	FS10	119	101	
890-983-11	FS01	121	105	
890-983-12	FS02	85	81	
890-983-13	FS03	113	107	
890-983-14	FS04	113	106	
890-983-15	FS05	112	103	
LCS 880-5601/1-A	Lab Control Sample	94	90	
LCSD 880-5601/2-A	Lab Control Sample Dup	98	102	
	Method Blank	107	100	
MB 880-5574/5-A		113	97	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-983-1	FS25	95	103	
890-983-1 MS	FS25	92	94	
890-983-1 MSD	FS25	89	90	
890-983-2	FS20	94	101	
890-983-3	FS19	104	109	
890-983-4	FS18	93	100	
890-983-5	FS15	89	95	
890-983-6	FS14	92	96	
890-983-7	FS13	93	100	
890-983-8	FS12	95	101	
890-983-9	FS11	93	101	
890-983-10	FS10	94	101	
890-983-11	FS01	92	97	
890-983-12	FS02	97	105	
890-983-13	FS03	90	98	
890-983-14	FS04	90	97	
890-983-15	FS05	93	100	
LCS 880-5671/2-A	Lab Control Sample	91	96	

Surrogate Summary

Client: WSP USA Inc.

Job ID: 890-983-1

Project/Site: Big Eddy Unit 150

SDG: TE012920126

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCSD 880-5671/3-A	Lab Control Sample Dup	93	100	
MB 880-5671/1-A	Method Blank	86	95	
Surrogate Legend				
100 = 1 Chlorocotono				

1CO = 1-Chlorooctane OTPH = o-Terphenyl -

3

Л

5

6

9

11

13

14

QC Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5574/5-A

Analysis Batch: 5576

Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Prep Batch: 5574 MD MD

	MR	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/23/21 10:39	07/23/21 15:02	1
Total BTEX	<0.00400	U	0.00400	mg/Kg		07/23/21 10:39	07/23/21 15:02	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 62 - 172 26@7@1 12:79 26@7@1 1/:23 4-Bromofluorobenzene (Surr) 126 26@7@1 12:79 62 - 172 26@7@1 1/:23 154-, Bluorobenzene (Surr) 122

Lab Sample ID: MB 880-5601/5-A

Matrix: Solid

Analysis Batch: 5576

Prep Type: Total/NA Prep Batch: 5601 MD MD

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
Toluene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 02:04	1
Total BTEX	<0.00400	U	0.00400	mg/Kg		07/23/21 14:19	07/24/21 02:04	1

мв мв Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 117 62 - 172 26@7@1 14:19 26@4@1 23:24 62 - 172 154-, Eluorobenzene (Surr) 26037031 14:19 26@4@1 23:24 96

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 880-5601/1-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 5576 Prep Batch: 5601

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1022		mg/Kg		102	70 - 130	
Toluene	0.100	0.09442		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.08224		mg/Kg		82	70 - 130	
m-Xylene & p-Xylene	0.200	0.1744		mg/Kg		87	70 - 130	
o-Xylene	0.100	0.08746		mg/Kg		87	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		62 - 172
154-, Bluorobenzene (Surr)	92		62 - 172

Eurofins Xenco, Carlsbad

Client Sample ID: Method Blank

QC Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5601/2-A

Matrix: Solid

Analysis Batch: 5576

Client Sam	ple ID:	Lab	Control	Sample	Dup

Prep Type: Total/NA

Prep Batch: 5601

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1231		mg/Kg		123	70 - 130	19	35
Toluene	0.100	0.09686		mg/Kg		97	70 - 130	3	35
Ethylbenzene	0.100	0.09021		mg/Kg		90	70 - 130	9	35
m-Xylene & p-Xylene	0.200	0.1881		mg/Kg		94	70 - 130	8	35
o-Xylene	0.100	0.09010		mg/Kg		90	70 - 130	3	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	9i		62 - 172
154 Bluorobenzene (Surr)	123		62 - 172

Lab Sample ID: 890-983-1 MS Matrix: Solid

Analysis Batch: 5576

Client Sample ID: FS25 Prep Type: Total/NA Prep Batch: 5601

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00543		0.100	0.09457		mg/Kg		89	70 - 130	
Toluene	<0.00202	U	0.100	0.08346		mg/Kg		83	70 - 130	
Ethylbenzene	0.00863		0.100	0.07850		mg/Kg		70	70 - 130	
m-Xylene & p-	Xylene 0.00703		0.200	0.1724		mg/Kg		83	70 - 130	
o-Xylene	0.00915	F1	0.100	0.07933		mg/Kg		70	70 - 130	
1										

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		62 - 172
154 Buorobenzene (Surr)	96		62 - 172

Lab Sample ID: 890-983-1 MSD

Matrix: Solid

Analysis Batch: 5576

Client Sample ID: FS25 Prep Type: Total/NA Prep Batch: 5601

Analysis Batom core									1.10	p Baton	. 000 .
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00543		0.100	0.09070		mg/Kg		85	70 - 130	4	35
Toluene	<0.00202	U	0.100	0.07954		mg/Kg		80	70 - 130	5	35
Ethylbenzene	0.00863		0.100	0.08050		mg/Kg		72	70 - 130	3	35
m-Xylene & p-Xylene	0.00703		0.200	0.1509		mg/Kg		72	70 - 130	13	35
o-Xylene	0.00915	F1	0.100	0.07475	F1	mg/Kg		66	70 - 130	6	35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	98	62 - 172
154-, Bluorobenzene (Surr)	i 9	62 - 172

QC Sample Results

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5671/1-A

Analysis Batch: 5739

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 5671

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 11:37	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 11:37	1
C10-C28)								
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 11:37	1
Total TPH	<50.0	U	50.0	mg/Kg		07/26/21 16:18	07/28/21 11:37	1

мв мв

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	i 8		62 - 172	26@8@1 18:1i	2608i 081 11:76	1
o-Terphenyl	9/		62 - 172	26@8@1 18:1i	2603i 031 11:76	1

Lab Sample ID: LCS 880-5671/2-A

Matrix: Solid

Analysis Batch: 5739

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 5671

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 741.4 74 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 851.3 mg/Kg 85 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	91		62 - 172
o-Terphenyl	98		62 - 172

Lab Sample ID: LCSD 880-5671/3-A

Matrix: Solid

Analysis Batch: 5739

Client Sa	mple ID:	Lab Con	trol Sami	ole Dup

Prep Type: Total/NA Prep Batch: 5671

LCSD LCSD %Rec. RPD Spike Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit 1000 772.9 77 70 - 130 20 Gasoline Range Organics mg/Kg 4 (GRO)-C6-C10 Diesel Range Organics (Over 1000 897.0 mg/Kg 90 70 - 1305 20

C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits 97 62 - 172 1-Chlorooctane 62 - 172 o-Terphenyl 122

Lab Sample ID: 890-983-1 MS

Matrix: Solid

Analysis Batch: 5739

Client Sample ID: FS25 Prep Type: Total/NA

Prep Batch: 5671

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	996	849.3		mg/Kg		85	70 - 130
Diesel Range Organics (Over	<50.0	U	996	898.6		mg/Kg		90	70 - 130

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-983-1 MS **Client Sample ID: FS25 Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 5739 Prep Batch: 5671

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 93 62 - 172 o-Terphenyl 94 62 - 172

Lab Sample ID: 890-983-1 MSD **Client Sample ID: FS25**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 5739** Prep Batch: 5671

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit <50.0 U 996 830.2 83 70 - 1302 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 996 865.2 <50.0 U mg/Kg 87 70 - 13020 C10-C28)

MSD MSD %Recovery Surrogate Qualifier Limits 62 - 172 1-Chlorooctane i 9 92 62 - 172 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 880-5466/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5555

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 250 247.5 mg/Kg 99 90 - 110

Lab Sample ID: MB 880-5608/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 5616

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 07/24/21 20:52

Lab Sample ID: LCS 880-5608/2-A Client Sample ID: Lab Control Sample Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5616

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		250	256.1		mg/Kg		102	90 - 110	

Lab Sample ID: LCSD 880-5608/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5616

Spike LCSD LCSD %Rec.

RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 253.9 mg/Kg 102 90 - 110

Eurofins Xenco, Carlsbad

Prep Type: Soluble

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-983-11 MS Client Sample ID: FS01 Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5616

Sample Sample Spike MS MS %Rec. Qualifier Analyte Result Added Result Qualifier Unit D %Rec Limits Chloride 246 252 485.1 mg/Kg 95 90 - 110

Client Sample ID: FS01 Lab Sample ID: 890-983-11 MSD Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5616

Sample Sample Spike MSD MSD %Rec. RPD Qualifier Added Limits RPD Limit Analyte Result Result Qualifier Unit D %Rec Chloride 246 252 484.1 mg/Kg 90 - 110 0 20

Lab Sample ID: MB 880-5615/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5617

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 07/24/21 17:06 mg/Kg

Lab Sample ID: LCS 880-5615/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5617

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 269.0 108 90 - 110 mg/Kg

Lab Sample ID: LCSD 880-5615/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 5617

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 269.1 mg/Kg 108 90 - 110

Lab Sample ID: 890-983-6 MS Client Sample ID: FS14 Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 5617

Sample Sample Spike MS MS %Rec. Result Added Qualifier Analyte Result Qualifier Unit D %Rec Limits Chloride 265 250 526.2 mg/Kg 105 90 - 110

Lab Sample ID: 890-983-6 MSD

Matrix: Solid

Analysis Batch: 5617

MSD MSD %Rec. RPD Sample Sample Spike Qualifier Added Analyte Result Result Qualifier Limits RPD Limit Unit %Rec Chloride 265 250 526.9 mg/Kg 105 90 - 110 20

Eurofins Xenco, Carlsbad

Client Sample ID: FS14

Prep Type: Soluble

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-983-1

SDG: TE012920126

GC VOA

Prep Batch: 5574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-5574/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 5576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-1	FS25	Total/NA	Solid	8021B	5601
890-983-2	FS20	Total/NA	Solid	8021B	5601
890-983-3	FS19	Total/NA	Solid	8021B	5601
890-983-4	FS18	Total/NA	Solid	8021B	5601
890-983-5	FS15	Total/NA	Solid	8021B	5601
890-983-6	FS14	Total/NA	Solid	8021B	5601
890-983-7	FS13	Total/NA	Solid	8021B	5601
890-983-8	FS12	Total/NA	Solid	8021B	5601
890-983-9	FS11	Total/NA	Solid	8021B	5601
890-983-10	FS10	Total/NA	Solid	8021B	5601
890-983-11	FS01	Total/NA	Solid	8021B	5601
890-983-12	FS02	Total/NA	Solid	8021B	5601
890-983-13	FS03	Total/NA	Solid	8021B	5601
890-983-14	FS04	Total/NA	Solid	8021B	5601
890-983-15	FS05	Total/NA	Solid	8021B	5601
MB 880-5574/5-A	Method Blank	Total/NA	Solid	8021B	5574
MB 880-5601/5-A	Method Blank	Total/NA	Solid	8021B	5601
LCS 880-5601/1-A	Lab Control Sample	Total/NA	Solid	8021B	5601
LCSD 880-5601/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5601
890-983-1 MS	FS25	Total/NA	Solid	8021B	5601
890-983-1 MSD	FS25	Total/NA	Solid	8021B	5601

Prep Batch: 5601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-983-1	FS25	Total/NA	Solid	5035	
890-983-2	FS20	Total/NA	Solid	5035	
890-983-3	FS19	Total/NA	Solid	5035	
390-983-4	FS18	Total/NA	Solid	5035	
890-983-5	FS15	Total/NA	Solid	5035	
890-983-6	FS14	Total/NA	Solid	5035	
890-983-7	FS13	Total/NA	Solid	5035	
390-983-8	FS12	Total/NA	Solid	5035	
390-983-9	FS11	Total/NA	Solid	5035	
890-983-10	FS10	Total/NA	Solid	5035	
890-983-11	FS01	Total/NA	Solid	5035	
890-983-12	FS02	Total/NA	Solid	5035	
890-983-13	FS03	Total/NA	Solid	5035	
890-983-14	FS04	Total/NA	Solid	5035	
890-983-15	FS05	Total/NA	Solid	5035	
MB 880-5601/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5601/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5601/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
390-983-1 MS	FS25	Total/NA	Solid	5035	
890-983-1 MSD	FS25	Total/NA	Solid	5035	

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

GC Semi VOA

Prep Batch: 5671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-983-1	FS25	Total/NA	Solid	8015NM Prep	
890-983-2	FS20	Total/NA	Solid	8015NM Prep	
890-983-3	FS19	Total/NA	Solid	8015NM Prep	
890-983-4	FS18	Total/NA	Solid	8015NM Prep	
890-983-5	FS15	Total/NA	Solid	8015NM Prep	
890-983-6	FS14	Total/NA	Solid	8015NM Prep	
890-983-7	FS13	Total/NA	Solid	8015NM Prep	
890-983-8	FS12	Total/NA	Solid	8015NM Prep	
890-983-9	FS11	Total/NA	Solid	8015NM Prep	
890-983-10	FS10	Total/NA	Solid	8015NM Prep	
890-983-11	FS01	Total/NA	Solid	8015NM Prep	
890-983-12	FS02	Total/NA	Solid	8015NM Prep	
890-983-13	FS03	Total/NA	Solid	8015NM Prep	
890-983-14	FS04	Total/NA	Solid	8015NM Prep	
890-983-15	FS05	Total/NA	Solid	8015NM Prep	
MB 880-5671/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5671/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5671/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-983-1 MS	FS25	Total/NA	Solid	8015NM Prep	
890-983-1 MSD	FS25	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-1	FS25	Total/NA	Solid	8015B NM	5671
890-983-2	FS20	Total/NA	Solid	8015B NM	5671
890-983-3	FS19	Total/NA	Solid	8015B NM	5671
890-983-4	FS18	Total/NA	Solid	8015B NM	5671
890-983-5	FS15	Total/NA	Solid	8015B NM	5671
890-983-6	FS14	Total/NA	Solid	8015B NM	5671
890-983-7	FS13	Total/NA	Solid	8015B NM	5671
890-983-8	FS12	Total/NA	Solid	8015B NM	5671
890-983-9	FS11	Total/NA	Solid	8015B NM	5671
890-983-10	FS10	Total/NA	Solid	8015B NM	5671
890-983-11	FS01	Total/NA	Solid	8015B NM	5671
890-983-12	FS02	Total/NA	Solid	8015B NM	5671
890-983-13	FS03	Total/NA	Solid	8015B NM	5671
890-983-14	FS04	Total/NA	Solid	8015B NM	5671
890-983-15	FS05	Total/NA	Solid	8015B NM	5671
MB 880-5671/1-A	Method Blank	Total/NA	Solid	8015B NM	5671
LCS 880-5671/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5671
LCSD 880-5671/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5671
890-983-1 MS	FS25	Total/NA	Solid	8015B NM	5671
890-983-1 MSD	FS25	Total/NA	Solid	8015B NM	5671

HPLC/IC

Leach Batch: 5466

Lab Sample ID 890-983-1	Client Sample ID FS25	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
890-983-2	FS20	Soluble	Solid	DI Leach	
890-983-3	FS19	Soluble	Solid	DI Leach	

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

HPLC/IC (Continued)

Leach Batch: 5466 (Continued)

Lab Sample ID Client Sample ID		Prep Type	Matrix	Method	Prep Batch
LCS 880-5466/2-A	Lab Control Sample	Soluble	Solid	DI Leach	

Analysis Batch: 5555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-1	FS25	Soluble	Solid	300.0	5466
890-983-2	FS20	Soluble	Solid	300.0	5466
890-983-3	FS19	Soluble	Solid	300.0	5466
LCS 880-5466/2-A	Lab Control Sample	Soluble	Solid	300.0	5466

Leach Batch: 5608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-11	FS01	Soluble	Solid	DI Leach	_
890-983-12	FS02	Soluble	Solid	DI Leach	
890-983-13	FS03	Soluble	Solid	DI Leach	
890-983-14	FS04	Soluble	Solid	DI Leach	
890-983-15	FS05	Soluble	Solid	DI Leach	
MB 880-5608/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-983-11 MS	FS01	Soluble	Solid	DI Leach	
890-983-11 MSD	FS01	Soluble	Solid	DI Leach	

Leach Batch: 5615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-4	FS18	Soluble	Solid	DI Leach	
890-983-5	FS15	Soluble	Solid	DI Leach	
890-983-6	FS14	Soluble	Solid	DI Leach	
890-983-7	FS13	Soluble	Solid	DI Leach	
890-983-8	FS12	Soluble	Solid	DI Leach	
890-983-9	FS11	Soluble	Solid	DI Leach	
890-983-10	FS10	Soluble	Solid	DI Leach	
MB 880-5615/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5615/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5615/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-983-6 MS	FS14	Soluble	Solid	DI Leach	
890-983-6 MSD	FS14	Soluble	Solid	DI Leach	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-11	FS01	Soluble	Solid	300.0	5608
890-983-12	FS02	Soluble	Solid	300.0	5608
890-983-13	FS03	Soluble	Solid	300.0	5608
890-983-14	FS04	Soluble	Solid	300.0	5608
890-983-15	FS05	Soluble	Solid	300.0	5608
MB 880-5608/1-A	Method Blank	Soluble	Solid	300.0	5608
LCS 880-5608/2-A	Lab Control Sample	Soluble	Solid	300.0	5608
LCSD 880-5608/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5608
890-983-11 MS	FS01	Soluble	Solid	300.0	5608
890-983-11 MSD	FS01	Soluble	Solid	300.0	5608

Eurofins Xenco, Carlsbad

Analysis Batch: 5616

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-983-1

SDG: TE012920126

HPLC/IC

Analysis Batch: 5617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-983-4	FS18	Soluble	Solid	300.0	5615
890-983-5	FS15	Soluble	Solid	300.0	5615
890-983-6	FS14	Soluble	Solid	300.0	5615
890-983-7	FS13	Soluble	Solid	300.0	5615
890-983-8	FS12	Soluble	Solid	300.0	5615
890-983-9	FS11	Soluble	Solid	300.0	5615
890-983-10	FS10	Soluble	Solid	300.0	5615
MB 880-5615/1-A	Method Blank	Soluble	Solid	300.0	5615
LCS 880-5615/2-A	Lab Control Sample	Soluble	Solid	300.0	5615
LCSD 880-5615/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5615
890-983-6 MS	FS14	Soluble	Solid	300.0	5615
890-983-6 MSD	FS14	Soluble	Solid	300.0	5615

6

Ω

9

10

12

13

12

Client: WSP USA Inc.

P1orectjSite: / iBgEEd Unit 4y0

SD5: Gg04T9T04T2

Client Sample ID: FS06 Date Collecte7: -/ 20020MMM11 Date 4 eceiRe7: - / 20020MMv:0T Lab Sample ID: 89-59815M x atrid: Soli7

Job ID: 890-986-4

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 0T:Ty	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 4T:70	AJ	XgN MID
Soluble	Leach	DI Leach			y722	03jT6jT4 43:00	CH	XgN MID
Soluble	Analdsis	600.0		40	уууу	03jT7jT4 T0:04	SC	XgN MID

Lab Sample ID: 89-598150

x atrid: Soli7

Date Collecte7: -/ 20020MMMT6 Date 4 eceiRe7: - / 20020MMv:0T

Client Sample ID: FS0-

Patch Patch Dilztion Patch Arepare7 Arep yBpe уВре x etho7 4zn Factor 3 z mber orsnalBNe7 s nalBut Lab **G**otalj NA P1ep y06y y204 03jT6jT4 47:49 KL XgN MID **G**otalj NA 80T4/ Analdsis 03jT7jT4 0T:72 KL XgN MID 4 yy32 **G**otalj NA P1ep 804yNM P1ep 03jT2jT4 42:48 DM XgN MID y234 **G**otalj NA 804y/ NM 03jT8jT4 46:7T XgN MID Analdsis y369 AJ Soluble 03jT6jT4 43:00 XgN MID Leach DI Leach y722 СН XgN MID Soluble Analdsis 600.0 4 уууу 03jT7jT4 T0:02 SC

Client Sample ID: FSM9 Lab Sample ID: 89-598151 Date Collecte7: -/ 20020MM0:1M

Date 4 eceiRe7: -/ 20020MMv:0T

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	yBpe	x etho7	4zn	Factor	3 z mber	or s naIBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 06:03	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 47:06	AJ	XgN MID
Soluble	Leach	DI Leach			y722	03jT6jT4 43:00	CH	XgN MID
Soluble	Analdsis	600.0		4	уууу	03jT7jT4 T0:44	SC	XgN MID

Client Sample ID: FSMB Lab Sample ID: 89-59815T

Date Collecte7: - / 20020MM0:10

x atrid: Soli7

Date 4 eceiRe7: -/ 20020MMv:0T

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	or s nalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 06:T8	KL	XgN MID
Gotalj NA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 47:T7	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Soluble	Analdsis	600.0		4	y243	03jT7jT4 48:74	SC	XgN MID

y243 03jT7jT4 48:72 SC

Client: WSP USA Inc.

P1orectjSite: / iBgEEd Unit 4y0

Client Sample ID: FSM6

Date Collecte7: -/ 20020MMD:19

Date 4 eceiRe7: -/ 20020MMv:0T

Job ID: 890-986-4 SD5: Gg 04T9T04T2

Lab Sample ID: 89-598156

x atrid: Soli7

_	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	or s nalBNe7	s nalBut	Lab
Gotalj NA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 06:78	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 47:77	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID

Client Sample ID: FSMT

Soluble

Date Collecte7: -/ 20020MMD:TM Date 4 eceiRe7: -/ 20020MMv:0T

Analdsis

600.0

Lab Sample ID: 89-59815/

XgN MID

x atrid: Soli7

Page Page Page Page Page Page Page Page	x etho7 y06y 80T4/	4zn	Factor	3 z mber y 204	or s nalBNe7 03jT6jT4 47:49	s nalBut KL	Lab Xq N MID
	, ,			y204	03jT6jT4 47:49	KL	XaN MID
Analdsis	80T4/						5
			4	yy32	03jT7jT4 07:09	KL	XgN MID
P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
Analdsis	804y/ NM		4	y369	03jT8jT4 4y:0y	AJ	XgN MID
each	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Analdsis	600.0		4	y243	03jT7jT4 48:yT	SC	XgN MID
\r .e	naldsis each	naldsis 804y/ NM each DI Leach	naldsis 804y/ NM	naldsis 804y/ NM 4 each DI Leach	naldsis 804y/ NM 4 y369 each DI Leach y24y	naldsis 804y/ NM 4 y369 03jT8jT4 4y:0y each DI Leach y24y 03jT6jT4 49:46	naldsis 804y/ NM 4 y369 03jT8jT4 4y:0y AJ each DI Leach y24y 03jT6jT4 49:46 SC

Client Sample ID: FSMI

Date Collecte7: -/ 20020MMI:MM Date 4 eceiRe7: -/ 20020MMv:0T

Lab Sample ID: 89-59815

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 07:60	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
Gotalj NA	Analdsis	804y/ NM		4	y369	03jT8jT4 4y:T2	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Soluble	Analdsis	600.0		у	y243	03jTyjT4 T4:4y	SC	XgN MID

Client Sample ID: FSM0

Date Collecte7: -/ 20020MMI:MT Date 4 eceiRe7: -/ 20020MMv:0T Lab Sample ID: 89-598158 x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 07:y0	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 4y:73	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Soluble	Analdsis	600.0		4	y243	03jT7jT4 49:43	SC	XgN MID

Client: WSP USA Inc.

P1orectjSite: / iBgEEd Unit 4y0

Job ID: 890-986-4 SD5: Gg 04T9T04T2

Client Sample ID: FSMM

Date Collecte7: -/ 20020MMI:M8 Date 4 eceiRe7: -/ 20020MMv:0T Lab Sample ID: 89-598159

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	or s naIBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 0y:44	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 42:03	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Soluble	Analdsis	600.0		4	y243	03jT7jT4 49:62	SC	XgN MID

Client Sample ID: FSM

Date Collecte7: -/ 20020MM1:0M Date 4 eceiRe7: -/ 20020MMv:0T Lab Sample ID: 89-59815M

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 0y:6T	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
G otaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 42:T8	AJ	XgN MID
Soluble	Leach	DI Leach			y24y	03jT6jT4 49:46	SC	XgN MID
Soluble	Analdsis	600.0		4	y243	03jT7jT4 49:74	SC	XgN MID

Client Sample ID: FS-M

Date Collecte7: -/ 20020MMT:T0
Date 4 eceiRe7: -/ 20020MMv:0T

Lab Sample ID: 89-59815MM

x atrid: Soli7

	Patch	Patch	Dilztion Patch Arepare7					
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 02:yy	KL	XgN MID
Gotalj NA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 43:09	AJ	XgN MID
Soluble	Leach	DI Leach			y208	03jT6jT4 42:66	SC	XgN MID
Soluble	Analdsis	600.0		4	y242	03jT7jT4 T4:09	SC	XgN MID

Client Sample ID: FS-0

Date Collecte7: -/ 20020MMT:TT Date 4 eceiRe7: -/ 20020MMv:0T Lab Sample ID: 89-59815W0

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
G otalj NA	Analdsis	80T4/		4	yy32	03jT7jT4 03:4y	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 43:60	AJ	XgN MID
Soluble	Leach	DI Leach			y208	03jT6jT4 42:66	SC	XgN MID
Soluble	Analdsis	600.0		4	y242	03jT7jT4 T4:Ty	SC	XgN MID

Client: WSP USA Inc. Job ID: 890-986-4 P1orectjSite: / iBgEEd Unit 4y0 SD5: Gg 04T9T04T2

Client Sample ID: FS-1

Lab Sample ID: 89-59815W1

x atrid: Soli7

Date Collecte7: -/ 20020MMT:T/ Date 4 eceiRe7: -/ 20020MMv:0T

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 03:62	KL	XgN MID
Gotalj NA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
Gotalj NA	Analdsis	804y/ NM		4	y369	03jT8jT4 43:y4	AJ	XgN MID
Soluble	Leach	DI Leach			y208	03jT6jT4 42:66	SC	XgN MID
Soluble	Analdsis	600.0		4	y242	03jT7jT4 T4:64	SC	XgN MID

Client Sample ID: FS-T

Date Collecte7: -/ 20020MMT:T9 Date 4 eceiRe7: -/ 20020MMv:0T Lab Sample ID: 89-59815MT

x atrid: Soli7

	Patch	Patch		Dilztion	Patch	Arepare7		
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	s nalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
GotaljNA	Analdsis	80T4/		4	yy32	03jT7jT4 03:y3	KL	XgN MID
Gotalj NA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
G otaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 48:4T	AJ	XgN MID
Soluble	Leach	DI Leach			y208	03jT6jT4 42:66	SC	XgN MID
Soluble	Analdsis	600.0		4	y242	03jT7jT4 T4:62	SC	XgN MID

Client Sample ID: FS-6

Date Collecte7: -/ 20020MMT:6M

Date 4 eceiRe7: -/ 20020MMv:0T

Lab Sample ID: 89-59815W6

x atrid: Soli7

	Patch	Patch		Dilztion	Patch			
Arep yBpe	уВре	x etho7	4zn	Factor	3 z mber	orsnalBNe7	snalBut	Lab
GotaljNA	P1ep	y06y			y204	03jT6jT4 47:49	KL	XgN MID
Gotalj NA	Analdsis	80T4/		4	yy32	03jT7jT4 08:48	KL	XgN MID
GotaljNA	P1ep	804yNM P1ep			y234	03jT2jT4 42:48	DM	XgN MID
GotaljNA	Analdsis	804y/ NM		4	y369	03jT8jT4 48:66	AJ	XgN MID
Soluble	Leach	DI Leach			y208	03jT6jT4 42:66	SC	XgN MID
Soluble	Analdsis	600.0		у	y242	03jTyjT4 T0:72	SC	XgN MID

LaboratorB4 eferenceu:

XgNMID, gu10 = ns Xencof MieIanef 4T44 W. Flo1eIea Avef MieIanef GX 39304f eGL (76T)307-y770

Accreditation/Certification Summary

 Client: WSP USA Inc.
 Job ID: 890-986-4

 P1orectjSite: / iB g EEd Unit 4y0
 SD5: Gg 04T9T04T2

Laboratory: Eurofins Xenco, Midland

 $Unless othe \verb§1wise§ noteE, all analytes fo§ this labo§ 1 ato§ 1 d we§ 1 e cove§ 1 e EunEe§ 1 each acc§ 1 e Eitationjce§ 1 tification below. \\$

Authority		rogram	Identification Number	Expiration Date		
Gexas	L	g3AP	G407N07700-T0-T4	02-60-TT		
Che followinB analdtes	a 10 incluEoE in this 10 no 1t h	ut the laho1ato1d is not ce1tifi	eEbd the Bove1ninBautho1itd. Ghis list ma	ad incluEo analdtoa fa		
the aBencd Eoes not of		at the labolato a 13 not ce lim	ec bu the bove initid authority. Glis list ma	au iliciume allaidles ic		
		Mat1ix	Analdte	au include analules ic		
the aBencd Eoes not of	fe1 ce1tification.			au include analotes ic		

J

7

9

44

12

14

Method Summary

1 © ent WS PWU leAc

Sroji AnWini : Blg Tddy Peln450

Job ID: 890-986-4

WD.: GT04E9E04E2

Method	Method Description	Protocol	Laboratory
80E4B	ao@n@ mrgOelA1op uosed(). 1X	Wt 8V2	NTMRID
8045B MR	Dli (i C3 Qegi mrgQelA()D3 mX). 1 X	Wt 8V2	NTMRID
600₺	Ueloe(, loe 1 hrop OrogrOuhy	R1Ut t	NTMRID
5065	1 @(id Wy(nip Ssrgi Oed GrOu	Wt 8V2	NTMRID
8045MR Sri u	RIAroi xrrOArloe	Wt 8V2	NTMRID
DI Li OAh	Di loelzi d t Oni r Li OAhleg SroAi dsri	UWGR	NTMRID

Protocol References:

UWGR = UWGR leri reOtloeOC

R1 Ut t = "Ri mhod(For 1 hi p IACCUeO)(I(mft Oir Ued t O(ni(", TSU-200/V-79-0E0, ROrAh 4986 Ued Wash(i qsi en 3 i vl(loe(c Wt 8V2 = "G (nRi nhod(For TvOsOtleg Wold) t O(ni, Shy(IAOO) hi p IACORi nhod(", GhIrd TdIrloe, Movi p bi r 4982 Ued In(PudOni(c))) has a simple of the state o

Laboratory References:

NTM RID = Tsrofle(Ni eAo, RId@ed, 4E44 t cF@rldOUvi , RId@ed, GN 79704, GTL)V6EX70V-5VV0

Tsrofle(Ni eAo, 1 OrCbOd

3

4

6

9

11

12

14

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-983-1

SDG: TE012920126

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-983-1	FS25	Solid	07/22/21 11:33	07/22/21 16:24	- 4
890-983-2	FS20	Solid	07/22/21 11:45	07/22/21 16:24	- 4
890-983-3	FS19	Solid	07/22/21 12:31	07/22/21 16:24	- 4
890-983-4	FS18	Solid	07/22/21 12:32	07/22/21 16:24	- 4
890-983-5	FS15	Solid	07/22/21 12:39	07/22/21 16:24	- 4
890-983-6	FS14	Solid	07/22/21 12:41	07/22/21 16:24	- 4
890-983-7	FS13	Solid	07/22/21 13:11	07/22/21 16:24	- 4
890-983-8	FS12	Solid	07/22/21 13:14	07/22/21 16:24	- 4
890-983-9	FS11	Solid	07/22/21 13:18	07/22/21 16:24	- 4
890-983-10	FS10	Solid	07/22/21 13:21	07/22/21 16:24	- 4
890-983-11	FS01	Solid	07/22/21 14:42	07/22/21 16:24	- 4
890-983-12	FS02	Solid	07/22/21 14:44	07/22/21 16:24	- 4
890-983-13	FS03	Solid	07/22/21 14:47	07/22/21 16:24	- 4
890-983-14	FS04	Solid	07/22/21 14:49	07/22/21 16:24	- 4
890-983-15	FS05	Solid	07/22/21 14:51	07/22/21 16:24	- A

S	ENCO		Hobs NM (575-3	ton,TX (281) 240- land,TX (432-704-	4200 Dalla 5440) EL × AZ (480-	s,TX (214) Paso,TX (9) 902-0300 915)585-34 Atlanta.G/	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbook,TX (806)794-1296 Hobbs NM (575-392-7550) Phoenix AZ (480-355-0900) Atlanta GA (770-449-8800) Tampa,FL (813-520-2000)		www.xenco.com Page	of
Project Manager:	Dan Moir			Bill to: (if different)	ent) K	Kyle Littrell				Work Order Comments	8
	WSP USA			Company Name:		XTO Energy	ly	Pro	Program: UST/PST RP	□rownfields	CRC Deerfund
	3300 North A Street	et		Address:		522 W. Mermod St	rmod St.		State of Project:		
te ZIP:	Midland, TX 79705	5		City, State ZIP:		arisbad, N	Carlsbad, NM 88220	Rep	Reporting:Level II evel III	□\$T/UST	DRP Upvel IV
	(432) 236-3849		Ema	Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com	wsp.com	. Dan.Mo	ir@wsp.c		Deliverables: EDD	ADaPT []	Other:
Name:	B. Ell	Unit 1	22	Turn Around				ANALYSIS REQUEST		W	Work Order Notes
Project Number:			R	Routine []						22	and tall
P.O. Number:	In. NAM.	588 HS8 HEOR WAN	Ŋi.	Rush: 3 ds						108	08017 1001
Sampler's Name:	Jer	Jeremy Hill		Due Date: 7/33/20					-	AFE	
SAMPLE RECEIPT	IPT Temp Blank	Yes)	No Wet ice:	XES No		-				Ew. 9	EW 9031.01563. EXP.01
Temperature (°C):	9.6/0.	£	Thermometer ID	ter ID	iners)				
Received Intact:	Search Control	No 1	I NW 1	8	onta	17.0	300.		Market Ma		
Sample Custody Seals:			Total Containers:	rs:	r of		e (EP	000000		lab	lab, if received by 4:30pm
Sample Identification		Matrix Sampled	ed Sampled	Depth	Numbe	TPH (EI	Chlorid			Sa	Sample Comments
FSOS		S 7100/1	11 1133	14			X			C	Capant
FSOO			1145			-	E				
FSIT			1231								
815-1			1272								
F515			1238								
FSIK			1966			E					
F5/3			1311			E					
FSIA			1314			E					
FSII		1	1318				/				
F510		*	1331	4	<	<	-				
Total 200.7 / 6010 Circle Method(s) a		0: be analyzed	8RCRA 1	RCRA 13PPM Texas 11 A	RCRA S	AISD AS E	Ba Be B Cd Ca Ba Be Cd Cr Co	Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Mn Mo Ni K Se Ag Ag TI U	SiO2	Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 · Hg
Notice: Signature of this desement and reinquistrant or samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontract of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such loss of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will	coument and relinquist fable only for the cost of the cost of \$75.00 will be ap	ment or samples of samples and sh piled to each proj	constitutes a valid all not assume an ect and a charge of	d purchase order fr y responsibility for of \$5 for each samp	om client co any losses le submitte	or expense of expense	Xenco, its a as incurred but not ana	newhend reinquistrant or samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the control of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of the control of samples are the sample and the sample are the sample and the control of the	ors. It assigns standard terms and conditions as are due to circumstances beyond the control be enforced unless previously negotiated.		
Relinquished by: (Signature)	(Signature)	Recei	Received by: Sign.	(Signature)		Date/Time	O O	Relinquished by: (Signature)	Received by	Received by: (Signature)	Date/Time
100	l l	Sup	ex to		7.2	12.2	111024				
3			100								
5							o				

Address: Company Name: Project Manager:

> WSP USA Dan Moir

3300 North A Street

Email: Leremy Hill@wsp.com Dan Moir@wsp.com	City, State ZIP: Carlsbad, NM 88220	Address: 522 W. Mermod St.	Company Name: XTO Energy	Bill to: (if different) Kyle Littrell	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Chain of Custody
Deliverables: EDD ADaPT Other:	Reporting:Level III PT/UST RP Pel IV	State of Project:	Program: UST/PST RP Drownfields RC Experiund	Work Order Comments	69-3334 4-1296 a,FL(813-620-2000) www.xenco.com Page → of	Work Order No:

Sih	Relinquished by: (Signature)	totice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such josses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Total 200.7 / 6010 Circle Method(s) a			F505	PSOY	E503	FSOD	FSOI	Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT Temperature (°C):	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	Phone:	City, State ZIP:
7	: (Signature)	document and relinguing liable only for the coserge of \$75.00 will be	otal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed								tification	IS: Yes No	s: Yes No	Yes		J	The NR.	75013931006	BIG Edd	(432) 236-3849	Midland, TX 79705
() () Z	ishment of sar st of samples a applied to eac	020: to be analy:			e)	5 7	Matrix Si	N/A	N/A	No	Temp Blank: Yes	Jeremy Hill	macay!	1006	Un.+		705
108 CV	eceived by	nples constitut nd shall not as n project and a	00	4		×		973	-)	7/22/21	Date Sampled S	Total Co	Correction	0	8		NEW JOHN 824 882		150		
1	Received by (Signature)	es a valid purc sume any resp charge of \$5 fo	8RCRA 13PP TCLP/SPLP			1341	1444	しかト	HAH	C+11	Time Sampled	Total Containers:	Correction Factor:		Wet ice:	Due Da	Rush:	Routine	Turn	Email: Je	Ω
		hase order fron onsibility for ar or each sample	RCRA 13PPM Texas 11 AISb As Ba Be B Cd Ca Cr Co Co TCLP / SPLP 6010: BRCRA Sb As Ba Be Cd Cr Co Cu Pb M			•				14	Depth				Yes No	Due Date:7/3%	3 dry		Turn Around	Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com	City, State ZIP:
7.27.21 1624	Da	n client comp ny losses or submitted to	1 AI Sb As CRA Sb As	4	H	1			-	~	Numb TPH (E	J. D. S	1 4 5 1		ners	_				/sp.com, D	
1.2.1	Date/Time	expenses in Xenco, but	As Ba Be As Ba Be		Ħ	1		E	2	X	втех (EPA	0=8	021)						an.Moir@	Carlsbad, NM 88220
62	1	o, its affiliat curred by th not analyze	Be B Cd 3e Cd Cr		11	1	=	F	-	8	Chloric	le (E	PA 3	0.00)	_	-			wsp.com	88220
	Relinquished by	tes and subco ne client if suci d. These term	d Ca Cr (į							_				ANA		
		ntractors. It a n losses are c s will be enfo	Cr Co Cu Fe Cu Pb Mn Mc				ŀ												ANALYSIS RE		
	(Signature)	ussigns stand lue to circum: rced unless p	n Mo Ni Se Ag TI U			+	-	-	H		-	_				-	_		REQUEST	Deliv	Repo
	R	s. It assigns standard terms and condi- are due to circumstances beyond the c enforced unless previously negotiated.	Ph Mg Mn Mo Ni K Se Ag SiO2 Ni Se Ag Ti U					-		-										Deliverables: EDD	Reporting:Level II
	Received by: (Signature)	d conditions id the control otiated.	K Se A) o	evel
	(Signatu	1	g SiO2 N		H	+						-					-			ADaPT	Tanana .
1	re)		Na Sr TI Sn U V 1631 / 245.1 / 7470							60	San	lab, i	TAT start		En as	新	1000	22	Wo	F	IST
	Date/Time		Sr TI Sn U V Zn 1245.117470 (7471: Hg			•				Copert	Sample Comments	lab, if received by 4:30pm	TAT starts the day recevied by the		EN ADOLL DISES EXPLO		108071-	201001	Work Order Notes	Other	□RP Ubvel IV □
1	1_		-	للـــا لا	11	1-1-	1	1	P	ane	34 0	F 36		1					1	1	

Revised Date 051418 Rev. 2018.1

Login Sample Receipt Checklist

Job Number: 890-983-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Carlsbad

Login Number: 982 List Number: 1 Creator: Clifton, Cloe

Client: WSP USA Inc.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

ľ

3

5

7

9

11

. .

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-983-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Midland
List Number: 3
List Creation: 07/32/31 03:08 PM

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

1

2

4

6

0

16

11

13

14

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-985-1

Laboratory Sample Delivery Group: TE012920126

Client Project/Site: Big Eddy Unit 150

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

MAMER

Authorized for release by: 7/26/2021 10:32:30 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

10

12

13

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-985-1

SDG: TE012920126

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-985-1 Project/Site: Big Eddy Unit 150 SDG: TE012920126

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TFF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Xenco, Carlsbad

Case Narrative

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-985-1

SDG: TE012920126

Job ID: 890-985-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-985-1

Receipt

The samples were received on 7/23/2021 1:08 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.0°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Xenco, Carlsbad 7/26/2021

Matrix: Solid

Client Sample Results

Sroji An/Wini: Blg Tddy Peln460

1 Clent WS PWU leAc Job ID: 890-986-4 WD.: GT04E9E04E2

Client Sample ID: FS24 Lab Sample ID: 890-985-1

Date Collected: 07/23/21 10:17 Date Received: 07/23/21 13:08

Sample Depth: 4 - 8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bi e5i ei	z0@0E00	P	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
CoQi ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
Trhy®i e5i ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
<-XyCei & p-XyCei	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
o-Xy©ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
Xy©eis, GonaC	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
Gora CBGTX	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 43:68	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		75 - 1+5			57034031 11/55	57032031 1+/: 9	1
1,4-Difluorobenzene (Surr)	155		75 ₋ 1+5			57@4@1 11/55	57@2@1 1+/: 9	1
- Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. aso@ei Raegi OrgaelAs (. RO)-12-140	z60@	P	6000	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:40	4
Dli si CRaegi OrgaelAs (Ovi r 1 40-1 E8)	z60@	Р	6000	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:40	4
OlCRaegi OrgaelAs (Ovi r 1 E8-1 32)	z60@	Р	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:40	4
Gora CGSH	z60@	Р	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:40	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		75 ₋ 1+5			57032031 56/54	57032031 17/15	1

Method: 300.0 - Anions, Id	on Chromatography - Sol	luble			
Analyte	Result Qu	ıalifier RL	Unit	D	Pres

69

epared Analyzed Dil Fac 6@0 0K/E2/E4 4K:E2 Chloride 149 < g/mg

75 - 1+5

Client Sample ID: FS22 Date Collected: 07/23/21 10:02 Date Received: 07/23/21 13:08

Sample Depth: 4 - 8

o-8erThenpl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bi e5i ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
GoQi ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
Trhytoi e5i ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
<-XyCei & p-XyCei	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
o-Xy©ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
Xy©eis, GonaC	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
Gora CBGT X	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:48	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			75 - 1+5			57@4@1 11/55	57082081 14/19	1
1,4-Difluorobenzene (Surr)	155		75 ₋ 1+5			57@4@1 11/55	57032031 14/19	1

57@2@1 56/54

57@2@1 17/15

Lab Sample ID: 890-985-2

Matrix: Solid

Job ID: 890-986-4

Client Sample Results

1 Cent WS PWU leAc

Client Sample ID: FS22

Sroji An/Wni : Blg Tddy Peln460

WD.: GT04E9E04E2

Lab Sample ID: 890-985-2

Matrix: Solid

Date Collected: 07/23/21 10:02 Date Received: 07/23/21 13:08

Sample Depth: 4 - 8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
. aso@ei Raegi OrgaelAs	z79@	P	79@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:34	4
(. RO)-12-140								
Dli si CRaegi OrgaelAs (Ovi r	z79@	P	79@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:34	4
1 40-1 E8)								
OlCRaegi OrgaelAs (Ovi r 1 E8-1 32)	z79@	P	79@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:34	4
Obra CCSH	z79¢9	Р	79:9	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4K:34	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	9:		75 - 1+5			57@2@1 56/54	57032031 17/+1	1
o-8erThenpl	151		75 ₋ 1+5			57@2@1 56/54	57@2@1 17/+1	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.2		7.92	< g/mg			0K/E2/E4 4K:3E	4

Client Sample ID: FS21 Lab Sample ID: 890-985-3 Matrix: Solid

Date Collected: 07/23/21 11:51 Date Received: 07/23/21 13:08

Sample Depth: - 5.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bi e5i ei	z0@0E00	P	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
GoQi ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
Tmly®bie5iei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
<-XyCei & p-XyCei	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
o-Xy©ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
Xy©eis, GonaC	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
Gona CBGT X	z0@0704	Р	0@0704	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:39	4
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	1+3	S1y	75 - 1+5			57@4@1 11/55	57@2@1 14/+6	1
1,4-Difluorobenzene (Surr)	153		75 ₋ 1+5			57@4@1 11/55	57@2@1 14/+6	1
Method: 8015B NM - Diesel Rang Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	
Marthaula 0045D NRA - Diagraf Danie	O	DO) (OO)						
		Qualifier	RL 60თ		<u>D</u>	Prepared 0K/E2/E4 09:07	Analyzed 0K/E2/E4 48:4E	Dil Fac
Analyte . aso0ei Raegi OrgaelAs	Result	Qualifier P			<u>D</u>			
Analyte . aso@ei Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8)	Result z6000	Qualifier P	60d	< g/mg	<u>D</u>	0K/E2/E4 09:07	0K/E2/E4 48:4E 0K/E2/E4 48:4E	4
Analyte . aso@i Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OICRaegi OrgaelAs (Ovi r 1E8-132)	Result z60d z60d z60d	Qualifier P P	60a 60a	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E	4
Analyte . aso@i Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OICRaegi OrgaelAs (Ovi r 1E8-132)	Result z6000	Qualifier P P	60d	< g/mg	<u>D</u>	0K/E2/E4 09:07	0K/E2/E4 48:4E 0K/E2/E4 48:4E	4
Analyte . aso@i Raegi OrgaelAs (. RO)-12-140	Result z60d z60d z60d	Qualifier P P P	60a 60a	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E	4
Analyte . aso@i Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OlCRaegi OrgaelAs (Ovi r 1E8-132) GbraCGSH	Result z60d z60d	Qualifier P P P	60d 60d 60d	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E	4 4 Dil Fac
Analyte . aso@ei Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OICRaegi OrgaelAs (Ovi r 1E8-132) GoraCCSH	Result	Qualifier P P P	60d 60d 60d 60d Limits	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 Prepared	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E Analyzed	2 2 2 2 Dil Fac
Analyte . aso@ei Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OlCRaegi OrgaelAs (Ovi r 1E8-132) CoraCCSH Surrogate 1-Chlorooctane	Result	P P Qualifier S1- Soluble	600 600 600 600 Limits 75 - 1+5	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 Prepared 57082081 56/54	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E Analyzed 57082081 19/13	4 4 4 Dil Fac
Analyte . aso@ei Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OlCRaegi OrgaelAs (Ovi r 1E8-132) CoraCCSH Surrogate 1-Chlorooctane o-8erThenpl	Result	Qualifier P P P Qualifier S1-	600 600 600 600 Limits 75 - 1+5	< g/mg < g/mg < g/mg	<u>D</u>	0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 0K/E2/E4 09:07 Prepared 57082081 56/54	0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E 0K/E2/E4 48:4E Analyzed 57082081 19/13	4

Turofles Xi eAo, 1 ar@bad

1 Cent WS PWU leAc Sroji An/Wni : Blg Tddy Peln460 Job ID: 890-986-4

WD.: GT04E9E04E2

Matrix: Solid

Lab Sample ID: 890-985-4

Client Sample ID: FS16

Date Collected: 07/23/21 11:55 Date Received: 07/23/21 13:08

Sample Depth: - 5.5

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bi e5i ei	z0d0499	P	0@0499	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	4
⊙oQiei	z0@0499	Р	0@0499	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	4
Tmlyobi e5i ei	z0@0499	Р	0დ0499	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	4
<-XyCei & p-XyCei	z0@0398	Р	0ω0398	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	
o-Xy©ei	z0@0499	Р	0@0499	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	4
Xy©eis, GonaC	z0@0398	Р	0დ0398	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	4
Gorna CBGTX	z0@0398	Р	0ф0398	< g/mg		0K/E7/E4 44:00	0K/E2/E4 47:69	
	0/5	Ovalifian	Limits			Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Quaimer	LIIIIII					
		Quaimer	75 - 1+5			57034031 11/55	57032031 14/: 6	
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran	159 15+							
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran	159 15+ ge Organics (D	RO) (GC)	75 - 1+5 75 - 1+5	Unit	D	57@4@1 11/55 57@4@1 11/55	57@2@1 14/: 6 57@2@1 14/: 6	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte	159 15+ ge Organics (D	RO) (GC) Qualifier	75 - 1+5	<u>Unit</u> < g/mg	<u>D</u>	57@4@1 11/55	57082081 14/: 6	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte . aso@i Raegi OrgaelAs (. RO)-12-140	159 15+ ge Organics (DI Result z60d)	RO) (GC) Qualifier	75 - 1+5 75 - 1+5 RL 60:0	< g/mg	<u>D</u>	57@4@1 11/55 57@4@1 11/55 Prepared 0K/E2/E4 09:07	57@2@1 14/: 6 57@2@1 14/: 6 Analyzed 0K/E2/E4 48:33	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte . asotei Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r	159 15+ ge Organics (D	RO) (GC) Qualifier	75 - 1+5 75 - 1+5 RL		<u>D</u>	57@4@1 11/55 57@4@1 11/55 Prepared	57@2@1 14/: 6 57@2@1 14/: 6 Analyzed	4
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte aso@i Raegi OrgaelAs (, RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8)	159 15+ ge Organics (DI Result z60d)	RO) (GC) Qualifier P	75 - 1+5 75 - 1+5 RL 60:0	< g/mg	<u> </u>	57@4@1 11/55 57@4@1 11/55 Prepared 0K/E2/E4 09:07	57@2@1 14/: 6 57@2@1 14/: 6 Analyzed 0K/E2/E4 48:33	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte . aso@i Raegi OrgaelAs (. RO)-12-140	159 15+ ge Organics (DI Result z60@ z60@	RO) (GC) Qualifier P	75 - 1+5 75 - 1+5 RL 600	< g/mg	<u> </u>	57@4@1 11/55 57@4@1 11/55 Prepared 0K/E2/E4 09:07	57@2@1 14/: 6 57@2@1 14/: 6 Malyzed 0K/E2/E4 48:33	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte aso@i Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OICRaegi OrgaelAs (Ovi r 1E8-132)	759 154 ge Organics (Di Result 260d 260d	RO) (GC) Qualifier P P	75 - 1+5 75 - 1+5 RL 60d 60d 60d	< g/mg < g/mg < g/mg	<u>D</u>	57@4@1 11/55 57@4@1 11/55 Prepared 0k/e2/e4 09:07 0k/e2/e4 09:07	57082081 14/: 6 57082081 14/: 6 Analyzed 0K/E2/E4 48:33 0K/E2/E4 48:33	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 8015B NM - Diesel Ran Analyte aso@i Raegi OrgaelAs (. RO)-12-140 Dli si CRaegi OrgaelAs (Ovi r 140-1E8) OICRaegi OrgaelAs (Ovi r 1E8-132) CoraCCSH	759 159 15+ ge Organics (Di Result 260d 260d 260d 260d	RO) (GC) Qualifier P P	75 - 1+5 75 - 1+5 RL 60d 60d 60d 60d	< g/mg < g/mg < g/mg	<u>D</u>	57@4@1 11/55 57@4@1 11/55 Prepared 0k/E2/E4 09:07 0k/E2/E4 09:07 0k/E2/E4 09:07	57082081 14/: 6 57082081 14/: 6 Analyzed 0K/E2/E4 48:33 0K/E2/E4 48:33 0K/E2/E4 48:33	4

1130

< g/mg

0K/E2/E4 4K:67

Surrogate Summary

Client: WSP USA Inc. Job ID: 890-983-1 Project/Site: Big Eddy Unit 130 SDG: TE012920126

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-983-1	7S25	115	100
890-983-2	7 S22	113	100
890-983-+	7S21	1+2 S1F	102
890-983-5	7S16	108	10+
MCS 880-3603/1-A	M4b Control S4L ale	99	105
MCSD 880-3603/2-A	M4b Control S4L ale Dpa	111	10m
u B 880-3603/3-A	u ethod Bl4nk	123	9+

B7B = 5-BroL oflporobenzene (Sprr) D7BZ = 1,5-Diflporobenzene (Sprr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA **Matrix: Solid**

_			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-983-1	7\$25	85	98
890-983-2	7\$22	83	101
890-983-+	7S21	83	3mS1-
890-983-5	7S16	83	9m
MCS 880-3631/2-A	M4b Control S4L ale	99	110
MCSD 880-3631/+-A	M4b Control S4L ale Dpa	98	109
u B 880-3631/1-A	u ethod Bl4nk	83	100

Surrogate Legend

1Cs = 1-Chlorooct4ne

s TPX = o-Terahenyl

EprofinOHenco, C4rlOb4d

1 Clent WS PWU leAc Sroji An/Wni : Blg Tddy Peln460 Job ID: 890-986-4

WD.: GT04E9E04E2

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5605/5-A

Matrix: Solid

Analysis Batch: 5650

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 5605

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bi e5i ei	z0@0E00	P	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
GoCiei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
Truy © i e5i ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
<-hyCei X &-hyCei	z0@0700	Р	0@0700	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
o-h y©ei	z0@0E00	Р	0@0E00	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
hy©ei psGon, C	z0@0700	Р	0@0700	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4
Con, CBGTh	z0@0700	Р	0@0700	< g/mg		0K/E7/E4 44:00	0K/E2/E4 44:67	4

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126		70 - 130	07/24/21 11900	07/2: /21 11964	1
1,4-Difluorobenzene (Surr)	53		70 - 130	07/24/21 11900	07/2: /21 11964	1

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 5650

Lab Sample ID: LCS 880-5605/1-A

Prep Type: Total/NA Prep Batch: 5605

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Bi e5i ei	0¢400	0¢4066	<	g/mg	402	K0 - 4a0	
GoCiei	0ଔ00	0@9844	<	g/mg	98	K0 ₋ 4a0	
Truy © i e5i ei	0¢400	0@9207	<	g/mg	92	K0 - 4a0	
<-hy€ei X &-hy€ei	0∉00	0¢49K8	<	g/mg	99	K0 ₋ 4a0	
o-h y℃ei	0¢400	0@9289	<	g/mg	9K	K0 ₋ 4a0	

LCS LCS

Surrogate	%Recovery Qualified	r Limits
4-Bromofluorobenzene (Surr)	55	70 - 130
1 4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: LCSD 880-5605/2-A

Matrix: Solid

Analysis Batch: 5650

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 5605

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Bi e5i ei	0c400	0¢4078		< g/mg		406	K0 ₋ 4a0	4	a6	
ര േദ് ei	0 c 400	0@9287		< g/mg		9K	K0 ₋ 4a0	4	a6	
Truy(b)i e5i ei	0c400	0 @ 9K0K		< g/mg		9K	K0 ₋ 4a0	4	a6	
<-hyCei X &-hyCei	0Œ00	0¢499a		< g/mg		400	K0 ₋ 4a0	4	a6	
o-hy©ei	0¢400	0@9888		< g/mg		99	K0 - 4a0	E	a6	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1.4-Difluorobenzene (Surr)	107	70 - 130

T3roRep hi eAos1, rOpb, d

1 @ ent WS PWU leAc Job ID: 890-986-4 Sroji An/Wni: Blg Tddy Peln460 WD.: GT04E9E04E2

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5651/1-A

Matrix: Solid

Analysis Batch: 5658

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 5651

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
., po@ei O, egi (rg, elAp	z60@	Р	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4E:aE	4
). O(v-1 2-1 40								
DlipiCO, egi (rg, elAp)(Hr	z60@	P	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4E:aE	4
1 40-1 E8v								
(ICO, egi (rg, elAp)(Hr1E8-1a2v	z60@	P	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4E:aE	4
Gon, CGSf	z60@	Р	60@	< g/mg		0K/E2/E4 09:07	0K/E2/E4 4E:aE	4

мв мв

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	1-8 Gorooha ne	а6		70 - 130	07	7/2: /21 05904	07/2: /21 12982	1
Į	o-TerpCenyl	100		70 - 130	07	7/2: /21 05904	07/2: /21 12982	1

Lab Sample ID: LCS 880-5651/2-A

Matrix: Solid

Analysis Batch: 5658

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 5651

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits ., po@ei O, egi (rg, elAp 4000 82468 82 K0 - 4a0 < g/mg). O(v-12-140 Dli pi CO, egi (rg, elAp)(H r 4000 96866 < g/mg 92 K0 - 4a0 140-1E8v

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-8 Clorooha ne	55		70 - 130
o-TerpCenyl	110		70 - 130

Lab Sample ID: LCSD 880-5651/3-A

Matrix: Solid

Analysis Batch: 5658

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 5651

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
., po@ei O, egi (rg, elAp	4000	9E2¢4		< g/mg		9a	K0 - 4a0	K	E0
). O(v-12-140									
Dlipi ℂO, egi (rg, elAp)(Hr	4000	976œ		< g/mg		96	K0 - 4a0	4	E0
1 40-1 E8v									

	LUSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1-8 Gorooha ne	5a		70 - 130
o-TerpCenyl	105		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5654/1-A

Matrix: Solid

Analysis Batch: 5670

Client Sample ID: Method Blank

Prep Type: Soluble

MB MB Analyte Result Qualifier RL Unit Dil Fac D Prepared Analyzed z6000 P 6@0 1 u@rldi < g/mg 0K/E2/E4 42:78

T3roRep hi eAos1, rOpb, d

1 u@rldi

QC Sample Results

 1 @ en t WS PWU leAc
 Job ID: 890-986-4

 Sroji An/Wni : Blg Tddy Peln460
 WD. : GT04E9E04E2

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-5654/2-A Matrix: Solid					Client	Sample	ID: Lab Control Sample Prep Type: Soluble
Analysis Batch: 5670							Trop Typer Coldate
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

EKEc6

< g/mg

409

90 - 440

Lab Sample ID: LCSD 880-5654/3-A Matrix: Solid Analysis Batch: 5670					Clier	nt Sam	ple ID:	Lab Contro Prep	ol Sampl Type: So	
		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1 u@rldi	· -	E60	E26d8		< g/mg		402	90 - 440	Е	E0

E60

T3roRep hi eAos1, rOpb, d

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

SDG: TE012920126

GC VOA

Prep Batch: 5605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Total/NA	Solid	5035	
890-985-2	FS22	Total/NA	Solid	5035	
890-985-3	FS21	Total/NA	Solid	5035	
890-985-4	FS16	Total/NA	Solid	5035	
MB 880-5605/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5605/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5605/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 5650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Total/NA	Solid	8021B	5605
890-985-2	FS22	Total/NA	Solid	8021B	5605
890-985-3	FS21	Total/NA	Solid	8021B	5605
890-985-4	FS16	Total/NA	Solid	8021B	5605
MB 880-5605/5-A	Method Blank	Total/NA	Solid	8021B	5605
LCS 880-5605/1-A	Lab Control Sample	Total/NA	Solid	8021B	5605
LCSD 880-5605/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5605

GC Semi VOA

Prep Batch: 5651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Total/NA	Solid	8015NM Prep	
890-985-2	FS22	Total/NA	Solid	8015NM Prep	
890-985-3	FS21	Total/NA	Solid	8015NM Prep	
890-985-4	FS16	Total/NA	Solid	8015NM Prep	
MB 880-5651/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5651/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5651/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Total/NA	Solid	8015B NM	5651
890-985-2	FS22	Total/NA	Solid	8015B NM	5651
890-985-3	FS21	Total/NA	Solid	8015B NM	5651
890-985-4	FS16	Total/NA	Solid	8015B NM	5651
MB 880-5651/1-A	Method Blank	Total/NA	Solid	8015B NM	5651
LCS 880-5651/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5651
LCSD 880-5651/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5651

HPLC/IC

Leach Batch: 5654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Soluble	Solid	DI Leach	
890-985-2	FS22	Soluble	Solid	DI Leach	
890-985-3	FS21	Soluble	Solid	DI Leach	
890-985-4	FS16	Soluble	Solid	DI Leach	
MB 880-5654/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5654/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5654/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Xenco, Carlsbad

9

11

12

14

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-985-1

SDG: TE012920126

HPLC/IC

Analysis Batch: 5670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-985-1	FS24	Soluble	Solid	300.0	5654
890-985-2	FS22	Soluble	Solid	300.0	5654
890-985-3	FS21	Soluble	Solid	300.0	5654
890-985-4	FS16	Soluble	Solid	300.0	5654
MB 880-5654/1-A	Method Blank	Soluble	Solid	300.0	5654
LCS 880-5654/2-A	Lab Control Sample	Soluble	Solid	300.0	5654
LCSD 880-5654/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5654

1

7

^

10

12

IR

12

Lab Chronicle

Client: WSP USA Inc. Job ID: 890-981-r Pjo/ectBSite: giEdyy5 Unit r 10 SDG: Td 0r 2920r 26

Client Sample ID: FS06

Date Receive7: -/ 20420MM4:-8

Lab Sample ID: 89-59815M Date Collecte7: -/ 20420MM:M

x atrid: Soli7

	Batch	Batch		Dilution	Batch	Prepare7		
Prep Type	Туре	x etho7	Run	Factor	Number	or Analyze7	Analyst	Lab
TotsIBMA	Pjep	1031			1601	07E2KE2r rr:00	LX	NdMaID
TotsIBMA	AnsI54i4	802r g		r	1610	07B26B2rr3:18	LX	NdMaID
TotsIBMA	Pjep	80r 1Ma Pjep			161r	07E26E2r 09:0K	Da	NdMaID
TotsIBMA	AnsI54i4	80r 1g Ma		r	1618	07B26B2rr7:r0	AJ	NdMaID
Soluble	Xesch	DI Xesch			161K	07E26E2rr0:07	SC	NdMaID
Soluble	AnsI54i4	300.0		r	1670	07B26B2rr7:26	SC	NdMaID

Client Sample ID: FS00 Lab Sample ID: 89-598150

Date Collecte7: -/ 20420MM:-0 x atrid: Soli7 Date Receive7: -/ 20420MM4:-8

Batch Batch Dilution Batch Prepare7 Prep Type Туре x etho7 Run Factor Number or Analyze7 Analyst Lab TotsIBMA Pjep 1031 1601 07E2KE2r rr:00 LX Nd M a ID TotsIBMA AnsI54i4 802r g 07E26E2rrK:r8 NdMaID 1610 LX TotsIBMA NdMaID Piep 80r 1Ma Pjep 161r 07E26E2r 09:0K Da Tots/BMA NdMaID AnsI54i4 80r 1g Ma 1618 07B26B2r r 7:3r AJNd M a ID Soluble Xesch DI Xesch 161K 07B26B2rr0:07 SC NdMaID Soluble AnsI54i4 300.0 1670 07E26E2rr7:32 SC

Client Sample ID: FS0M Lab Sample ID: 89-598154

Date Collecte7: -/ 20420MMM1M x atrid: Soli7 Date Receive7: -/ 20420MM4:-8

	Batch	Batch		Dilution	Batch	Prepare7		
Prep Type	Type	x etho7	Run	Factor	Number	or Analyze7	Analyst	Lab
TotsIBMA	Pjep	1031			1601	07E2KE2r rr:00	LX	Nd M a ID
TotsIBMA	AnsI54i4	802r g		r	1610	07B26B2rrK:39	LX	NdMaID
TotsIBMA	Pjep	80r 1Ma Pjep			161r	07E26E2r 09:0K	Da	NdMaID
TotsIBMA	AnsI54i4	80r 1g Ma		r	1618	07B26B2rr8:r2	AJ	NdMaID
Soluble	Xesch	DI Xesch			161K	07E26E2rr0:07	SC	NdMaID
Soluble	AnsI54i4	300.0		r	1670	07B26B2rr7:37	SC	NdMaID

Client Sample ID: FSMB Lab Sample ID: 89-598156

Date Collecte7: -/ 20420MM11 x atrid: Soli7 Date Receive7: -/ 20420MM4:-8

	Batch	Batch		Dilution	Batch	Prepare7		
Prep Type	Type	x etho7	Run	Factor	Number	or Analyze7	Analyst	Lab
TotsIBMA	Pjep	1031			1601	07E2KE2r rr:00	LX	NdMaID
TotsIBMA	AnsI54i4	802r g		r	1610	07B26B2rrK:19	LX	NdMaID
TotsIBMA	Pjep	80r 1Ma Pjep			161r	07E26E2r 09:0K	Da	NdMaID
TotsIBMA	AnsI54i4	80r 1g Ma		r	1618	07B26B2rr8:33	AJ	NdMaID
Soluble	Xesch	DI Xesch			161K	07E26E2rr0:07	SC	NdMaID
Soluble	Ansl54i4	300.0		r	1670	07E26E2rr7:1K	SC	NdMaID

Laboratory References:

Nd Ma ID = dujofin4 Nenco, a iylsny, r 2rr W. Flojiys Ave, a iylsny, TN 7970r, Td X (K32)70K-1KK0

dujofin4 Nenco, Csjl4bsy

Accreditation/Certification Summary

 Client: WSP USA Inc.
 Job ID: 890-986-4

 P1orectjSite: / iB g EEd Unit 460
 SDy: 5g 04@004GT

Laboratory: Eurofins Xenco, Midland

Authority	Pr	ogram	Identification Number	Expiration Date
5eu, 2	Ng	JLAP	540x70xx00-Q0-G4	0T-30-GG
5se anlloh in R n ldte2	10 incly EqE in toi2 1000 tuby	t to a L had to 1d i2 not co 1tia	eEbd tse Bof e1ninB, vtso1itd. 5si2 li2t m,	dinaly Eq. in lette 2 mg
tse , Bencd Eoe2 not oa	•	t (Se i, DO i, to la 12 not ce ida	ee bu tse boi e minb, viso ma. Ssiz iizt m,	d incivee, ii, idle2 ab
	•	M, t1iu	An, Idte	d Incivite , II, idiez ab
tse , Bencd Eoe2 not oa	æ1ce1tiaic, tion.	, ,	,	d incivee , n, idle2 ab

Method Summary

1 Clent WS PWU leAc

Job ID: 890-986-4 Sroji An/Wni : Blg Tddy Peln460 WD.: GT04E9E04E2

Method	Method Description	Protocol	Laboratory
80E4B	Vo@rlC OrgaelA1 ompoueds (. 1)	Wt 852	XTN MID
8046B NM	Dli si CRaegi OrgaelAs (DRO) (. 1)	Wt 852	XTN MID
300d	Ueloes, loe 1 hromarography	M1 Ut t	XTN MID
6036	1 @si d Wysri m Surgi aed Grap	Wt 852	XTN MID
3046NM Sri p	MIAroi xmaArloe	Vt 852	XTN MID
DI Li aAh	Di loelzi d t an r Li aAhleg SroAi duri	UWGM	XTN MID

Protocol References:

UWGM = UWGM leri rearloeaC

M1 Ut t = "Mi rhods For 1 hi mlAaQJeaQsls Of t an r Jed t asnis", TSU-200/5-79-0E0, MarAh 4983 Jed Wubsi qui enRi vlsloesc Wt 852 = "G snMi rhods For TvaQarleg WoQt t asri , ShyslAaQt hi mlAaQMi rhods", Chlrd TdIrloe, Novi mbi r 4982 Ued Ins Ppdari sc

Laboratory References:

XTN MID = Turofles Xi eAo, MId@ed, 4E44 t $\,$ cF@rlda Uvi , MId@ed, GX 79704, GTL (53E)705-6550

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 130

Job ID: 890-983-1

SDG: TE012920126

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-983-1	5S2F	Solid	07/24/21 10:17	07/24/21 14:08	F - 8
890-983-2	5S22	Solid	07/24/21 10:02	07/24/21 14:08	F-8
890-983-4	5S21	Solid	07/24/21 11:31	07/24/21 14:08	- 3.3
890-983-F	5S16	Solid	07/24/21 11:33	07/24/21 14:08	- 3.3

Relinquished by: (Signature)

Received by: (Signature)

7.23-711308

Date/Time

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

Revised Date 051418 Rev. 2018 1

Company Name: Project Manager:

Address:

Chain of Custody

(432) 236-3849	Midland, TX 79705	3300 North A Street	WSP USA	Dan Moir	XENCO	
Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com	City, State ZIP:	Address:	Company Name: XTO Energy	Bill to: (if different)	Houston, TX (281) 240-4200 C Midland, TX (432-704-5440) Hobbs, NM (575-392-7550) Phoenix, AZ (4	0
com, Dan.Moir@wsp.com	Carlsbad, NM 88220	522 W. Mermod St.	XTO Energy	Kyle Littrell	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)	Chain of Custody
Deliverables: EDD ADaPT Other:	Reporting:Level III Level III LET/UST LIRP UPVELIV	State of Project:	Program: UST/PST RP rownfields RC perfund	Work Order Comments	3334 295 _(813-820-2000) www.xenco.com Page (of)	Work Order No:

City, State ZIP: Carlsbad, NM 88220	City, State ZIP: Carlsbad, NM 88220 Email: Jeremy.Hill@wsp.com, Dan.Moir@wsp.com Turn Around Routine [] Rush: 3+1+ / Due Date: 1/3/JJ Due Date: 1/3/JJ Polet Ice: Yes No ometer ID A COCA ainers: Depth Number of Containers TPH (EPA 8015) BTEX (EPA 300.0)
ANAL	ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST B90-985 Chain of Custody
	s: EDD ADaPT

nquished by

Carisbad, NM 88220

1089 N Canal St.

Phone 575-988-3199 Fax 575-988-3199

State Zip. TX, 79701

oject Name:

Midland

Eurofins Xenco, Carlsbad

13 14

Chain of Custody Record

eurofins

Environment Testing

Empty Kit Relinquished by Possible Hazard Identification Note. Since laboratory accreditations are subject to change. Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC. Deliverable Requested Till III, IV Other (specify) Big Eddy Unit 150 432-704-5440(Tel) S16 (890-985-4) Sample Identification - Client ID (Lab ID) S21 (890-985-3) S22 (890-985-2) S24 (890-985-1) 1211 W Florida Ave Shipping/Receiving Custody Seals Intact: urofins Xenco inquished by: lient Information (Sub Contract Lab) quished by: Yes A No 100 Custody Seal No WO# Date/Time Primary Deliverable Rank 2 89000004 Phone: PO# Due Date Requested 7/26/2021 TAT Requested (days) Sample Sample Date 7/23/21 7/23/21 7/23/21 7/23/21 Date Mountain 11 55 Mountain 11 51 Mountain 10 02 Mountain Sample 10 17 (C=comp, G=grab Sample Type Preservation Code: XENCO Company O-waste/oil Solid Solid Solid Solid jessica kramer@eurofinset.com Kramer Jessica Lab PM Time Field Filtered Sample (Yes or No) Accreditations Required (See note)
NELAP - Louisiana NELAP - Texas Perform MS/MSD (Yes or No) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Special Instructions/QC Requirements Received by Received by Cooler Temperature(s) °C and Other Remarks × × × 8015MOD_NM/8015NM_S_Prep Full TPH × ved by × × × × 300_ORGFM_28D/DI_LEACH Chloride 8021B/5035FP_Calc BTEX × × × **Analysis Requested** Disposal By Lab State of Origin. New Mexico Carrier Tracking No(s) Method of Shipment Date/Time Date/Time Date/Time Archive For Total Number of containers 10 4 بغد A - HCL B NaOH C Zn Acetate D Nithic Acid E NaHSO4 F MeOH G Amchlor H Ascorbic Acid I - Ice J DI Water K - EDTA L EDA COC No: 890-316 1 Preservation Codes: 890-985-1 Page 1 of 1 Job # age: Special Instructions/Note: Company Company H2S04 other (specify) MCAA TSP Dodecahydrate AsNaO2 Na2O4S Na2SO3 Acetone Na2S2O3 PH 4-5 Months Page 19 of 21

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-985-1 SDG Number: TE012920126

List Source: Eurofins Xenco, Carlsbad

Login Number: 985 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 2/28/2022 4:36:12 PM

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-985-1 SDG Number: TE012920126

Login Number: 985 List Source: Eurofins Xenco, Midland List Number: 2

List Creation: 07/26/21 08:33 AM

Creator: Lowe, Katie

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-995-1

Laboratory Sample Delivery Group: TE012921026

Client Project/Site: Big Eddy Unit 150

Revision: 4

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Dan Moir

MRAMER

Authorized for release by: 8/5/2021 9:55:47 AM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

lotal Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 2/28/2022 4:36:12 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

10

12

13

14

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Laboratory Job ID: 890-995-1

SDG: TE012921026

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	25

Definitions/Glossary

Client: WSP USA Inc. Job ID: 890-995-1 Project/Site: Big Eddy Unit 150

SDG: TE012921026

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TFF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Xenco, Carlsbad

Case Narrative

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-995-1

SDG: TE012921026

Job ID: 890-995-1

Laboratory: Eurofins Xenco, Carlsbad

Narrative

Job Narrative 890-995-1

REVISION

The report being provided is a revision of the original report sent on 7/28/2021. The report (revision 3) is being revised due to per client email, 08/05/2021 Correct sample ID BH04 to BH03.

Report revision history

The report being provided is a revision of the original report sent on 7/28/2021. The report (revision 3) is being revised due to per client email, 08/05/2021 Correct sample ID BH04 to BH03.

Revision 2 - 8/4/2021 - Reason - Per client email 08/03/2021, requesting laboratory to re-homogenize/extract and re run TPH BH04 @1 and BH04 18.

Revision 2 - 8/4/2021 - Reason - Per client email 08/03/2021, requesting laboratory to re-homogenize/extract and re run TPH BH04 @1

Revision 1 - 8/4/2021 - Reason - Per client email, requesting laboratory to re-homogenize/extract and re run TPH for samples BH01 and BH02.

Receipt

The samples were received on 7/26/2021 3:25 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.6°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Released to Imaging: 2/28/2022 4:36:12 PM

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Xenco, Carlsbad 8/5/2021 (Rev. 4)

Page 4 of 26

Job ID: 890-991-C

Client Sample Results

I ient WS PU APc It . G Ujo/n. WBP No/h/: g ed 2 yy 5 At No/C10

PDT: E200696006r

Client Sample ID: BH01 Lab Sample ID: 890-995-1

Date Collected: 07/26/21 08:44 Matrix: Solid Date Received: 07/26/21 15:25

Sample Depth: - 18

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
gnt znt n	<0 @ 0C98	A	000098	mdBKd		07B68B6C08:37	07B68B6CC3:0r	C
Eoi4nt n	<0 @ 0 C 98	Α	0 © 0 © 8	md B Kd		07B68B6C08:37	07B68B6CC3:0r	С
2W/5ibnt znt n	<0 @ 0 C 98	Α	0 © 0 © 8	md B Kd		07B68B6C08:37	07B68B6CC3:0r	С
m-h5int n X &-h5int n	<0 @ 039r	Α	0 © 039r	md B Kd		07B68B6C08:37	07B68B6CC3:0r	С
o-h5int n	<0 @ 0 C 98	Α	0 © 0 © 8	md B Kd		07B68B6C08:37	07B68B6CC3:0r	С
h 5int nps Eo\;\/i	<0 @ 039r	Α	0 © 039r	md B Kd		07B68B6C08:37	07B68B6CC3:0r	С
Eo,Wi g E2 h	<0 © 039r	Α	0 © 039r	mdBKd		07B68B6C08:37	07B68B6CC3:0r	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			87 - 137			78/02/01 72538	78/02/01 1357:	1
194-6 ,fluorobenzene (Surr)	DD		87 ₋ 137			78/02/01 72538	78/02/01 1357:	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T, poietna, t dn Rjd, t e p OraR(-I r-I CO	<) 909	A) 909	mdBKd		07B3CB5C CO:) 9	08B0CB6C60:C6	С
Denpnia, tdn Rjd, te p ORvnj ICO-I68(<) 9 9	Α) 9 ©	md B Kd		07B3CB5CCO:)9	08B0CB6C60:C6	С
Rlia, tdn Rjd, tep ORvnj I 68-I 3r (<) 9 9	Α) 9 ©	md B Kd		07B3CB5CC0:)9	08B0CB6C60:C6	С
Eo;∖∕i EUf	<) 9 9	Α) 9 ©	md B Kd		07B3CB5CC0:)9	08B0CB6C60:C6	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i Goroohd ne	172		87 - 137			78/31/01 1754D	72/71/01 075/0	1
o-aerTCenpl	10y		87 - 137			78/31/01 1754D	72/71/01 075/10	1

Method: 300.0 - Anions, Ion Cl	hromatography - Soluk	ole					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	342) (98	mdBKd			07B68B6CC1:66	C

Lab Sample ID: 890-995-2 **Client Sample ID: BH02** Date Collected: 07/26/21 10:15 Matrix: Solid

Date Received: 07/26/21 15:25

Sample Depth: - 18

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
gnt znt n	<0 © 0600	A	0 0 0600	mdBKd		07B68B6C08:37	07B68B6CC3:6r	
Eoi4nt n	<0 @ 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	0756856CC3:6r	
2 W/5ibnt znt n	<0 @ 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	0756856CC3:6r	
m-h5int n X &-h5int n	<0 © 0399	Α	0 © 0399	md B Kd		07B58B5C08:37	0756856CC3:6r	
o-h 5int n	<0 © 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	07B68B6CC3:6r	
h5int npsEoWi	<0 © 0399	Α	0 © 0399	md B Kd		07B58B5C08:37	0756856CC3:6r	
EoWigE2h	<0 © 0399	Α	0 © 0399	mdBKd		07B68B6C08:37	07B68B6CC3:6r	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			87 - 137			78/02/01 72538	78/02/01 1350:	
194-6 ,fluorobenzene (Surr)	D2		87 ₋ 137			78/02/01 72538	78/02/01 1350:	

24jolet p h nt . osl , jipb, y

I ient WS PU APc It . G Ujo/n. VBP eM: g ed 2 yy5 At eMC10

PDT: E200696006r

Client Sample ID: BH02

Lab Sample ID: 890-995-2

Date Collected: 07/26/21 10:15 Date Received: 07/26/21 15:25

Matrix: Solid

Job ID: 890-991-C

Sample Depth: - 18

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T, poietna, t dn Rjd, t e p OraR(-Ir-IO0	<100	A	100	mdBKd		07B3CB5CCO:)9	08B0CB6C60:3)	С
Denpnia, tdn Rjd, tep ORvnj ICO-I68(<10 ©	Α	10 ©	md B Kd		07B3CB5CCO:)9	08B0CB6C60:3)	С
Rlia, tdn Rjd, tep ORvnj I 68-I 3r (<100	Α	10 ©	mdBKd		07B3CB5CC0:)9	08B0CB6C60:3)	С
Eo\M EUf	<10 ©	Α	10 ©	md B Kd		07B3CB5CC0:)9	08B0CB6C60:3)	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i Goroohd ne	17:		87 - 137			78/31/01 1754D	72/71/01 07534	1
o-aerTCenpl	100		87 - 137			78/31/01 1754D	72/71/01 07534	1
_			ıblo					
Method: 300.0 - Anions, Ion C	hromatogra	ipny - Soiu	inie					
Method: 300.0 - Anions, Ion C Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH03 Lab Sample ID: 890-995-3

Date Collected: 07/26/21 10:51 **Matrix: Solid**

Date Received: 07/26/21 15:25

Released to Imaging: 2/28/2022 4:36:12 PM

Method: 8021B - Volatile Organic Compounds (GC)

Sample Depth: - 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
gnt znt n	<0@0600	A	0 0 0600	mdBKd		07B68B6C08:37	07B68B6CC3:)7	
Eoi4nt n	<0 @ 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	07B58B5CC3:)7	
2 W/5ibnt znt n	<0 © 0600	Α	0 © 0600	md B Kd		07B68B6C08:37	07B68B6CC3:)7	(
m-h5int n X &-h5int n	<0 © 0399	Α	0 © 0399	md B Kd		07B68B6C08:37	07B68B6CC3:)7	(
o-h 5int n	<0 © 0600	Α	0 © 0600	md B Kd		07B68B6C08:37	07B68B6CC3:)7	(
h5int npsEoV,Vi	<0 © 0399	Α	0 © 0399	mdBKd		07B68B6C08:37	07B68B6CC3:)7	
EoWigE2h	<0 © 0399	Α	0 © 0399	md B Kd		07B68B6C08:37	07B68B6CC3:)7	(
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	11:		87 - 137			78/02/01 72538	78/02/01 13548	
194-6 ,fluorobenzene (Surr)	D4		87 - 137			78/02/01 72538	78/02/01 13 5 48	
Method: 8015B NM - Diesel R	ange Organi	ics (DRO)	(GC)					
		Qualifier	` RL	11	D	Prepared	A malumad	Dil E-
Analyte	Result	Qualifier	KL	Unit	U	riepaieu	Analyzed	DII Fa
T, poid n a, t dn Rjd, t e p	<) 9 9)99	mdBKd	_ =	08B03B6CC1:37	08B03B6C63:37	
T, poidena, tdn Rjd, tep OfaR(-Ir-IOO Denpnia, tdn Rjd, tep ORvnj		A						
T, poietn a, t dn Rjd, tep OfaR(-Ir-IOO Denpnia, t dn Rjd, tep ORvnj IOO-I68(<)99	A A) 9 9	mdBKd		08B03B6CC1:37	08B03B6C63:37	
T, poiden a, tdn Rjd, tep OTaR(-Ir-IOO Denpnia, tdn Rjd, tep ORvnj IOO-I68(Rlia, tdn Rjd, tep ORvnj I68-I3r(<) 9 9	A A A)99	md B Kd		08B03B6C C1:37	08B03B5C63:37	
T, poid na, t dn Rjd, t e p OraR(-Ir-IOO) Denpnia, t dn Rjd, t e p ORvnj IOO-I68(Rlia, t dn Rjd, t e p ORvnj I68-I3r (Eo WiEUf	<) 9 9 <) 9 9 <) 9 9	A A A) 9 ©) 9 ©) 9 ©	mdBKd mdBKd mdBKd		08B03B5CC1:37 08B03B5CC1:37 08B03B5CC1:37	08B03B5C63:37 08B03B5C63:37 08B03B5C63:37	
T, poid n a, t dn Rjd, t e p Of a R(-Ir-IO) Denpnia, t dn Rjd, t e p ORvnj IOO-I68(Rlia, t dn Rjd, t e p ORvnj I68-I3r(EoW, EUf Surrogate	<) 99 <) 99 <) 99 <) 99	A A A) 9 G) 9 G) 9 G	mdBKd mdBKd mdBKd		08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37	08B03B5C63:37 08B03B5C63:37 08B03B5C63:37 08B03B5C63:37	
T, poietna, t dn Rjd, t e p OfaR(-Ir-IO) Denpnia, t dn Rjd, t e p ORvnj IOO-I68(Rlia, t dn Rjd, t e p ORvnj I68-I3r(EoWiEUf Surrogate 1-i Oroohd ne	<) 99 <) 99 <) 99 <) 99 <%Recovery	A A A) 9G) 9G) 9G) 9G	mdBKd mdBKd mdBKd		08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 Prepared 72/73/01 1958	08B03B5C63:37 08B03B5C63:37 08B03B5C63:37 08B03B5C63:37 Analyzed	Dil Fa
T, poietna, tdn Rjd, tep OfaR(-Ir-IO) Denpnia, tdn Rjd, tep ORvnj IOO-I68(Rlia, tdn Rjd, tep ORvnj I68-I3r(EoWi EUf Surrogate 1-i Cloroohd ne o-aerTCenpl	<) 99 <) 99 <) 99 <) 99 %Recovery 23 24	A A A A Qualifier) 9G) 9G) 9G) 9G Limits 87 - 137 87 - 137	mdBKd mdBKd mdBKd	<u>U</u>	08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 Prepared 72/73/01 1958	08B03B6C63:37 08B03B6C63:37 08B03B6C63:37 08B03B6C63:37 Analyzed 72/73/01 03588	Dil Fa
Analyte T, poid n a, t dn Rjd, t e p Of a R(-I r-I CO) Denpni a, t dn Rjd, t e p ORvnj I CO-I 68(Rli a, t dn Rjd, t e p ORvnj I 68-I 3r (Eo\times EUf Surrogate 1-i Coroohd ne o-aerTCenpl Method: 300.0 - Anions, Ion C Analyte	<) 99 <) 99 <) 99 <) 99 **Recovery 23 24	A A A A Qualifier) 9G) 9G) 9G) 9G Limits 87 - 137 87 - 137	mdBKd mdBKd mdBKd	<u>U</u>	08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 08B03B5C C1:37 Prepared 72/73/01 1958	08B03B6C63:37 08B03B6C63:37 08B03B6C63:37 08B03B6C63:37 Analyzed 72/73/01 03588	Dil Fa

24jolet p h nt . osl , jipb, y

I ient WS PU APc It . G Ujo/n. VMSP eWn/: g ed 2 yy 5 At eWC10

PDT: E200696006r

Client Sample ID: BH03 Date Collected: 07/26/21 11:02 Lab Sample ID: 890-995-4

Date Received: 07/26/21 15:25

Matrix: Solid

Job ID: 890-991-C

Sample Depth: - 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
gnt znt n	<0 © 0098	A	000098	mdBKd		07B68B6C08:37	07B68B6CC):07	C
Eoi4nt n	<0 @ 0 © 98	Α	0 © 0 © 8	mdBKd		07B68B6C08:37	07B68B6CC):07	С
2W/5ibnt znt n	<0 @ 0 © 98	Α	0 © 0©8	md B Kd		07B58B5C08:37	07B68B6CC):07	С
m-h5int n X &-h5int n	<0 © 039r	Α	0 © 039r	md B Kd		07B58B5C08:37	07B68B6CC):07	С
o-h5int n	<0 © 0098	Α	0 © 0 © 8	mdBKd		07B58B5C08:37	07B68B6CC):07	С
h 5int nps Eo\;\/i	<0 © 039r	Α	0 © 039r	mdBKd		07B58B5C08:37	07B68B6CC):07	С
Eo,Wi g E2 h	<0 © 039r	Α	0 © 039r	md B Kd		07B68B6C08:37	07B68B6CC):07	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			87 - 137			78/02/01 72538	78/02/01 145/8	1
194-6 ,fluorobenzene (Surr)	D2		87 - 137			78/02/01 72538	78/02/01 145/8	1

Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T, poietna, tdn Rjd, tep OfaR(-Ir-IOO	<100	A	100	md B Kd		07B58B5C 00:00	07B58B5CC1:6r	С
Denpnia, tdn Rjd, te p ORvnj ICO-I68(<100	Α	10 ©	md B Kd		07B58B5C00:00	07B58B5CC1:6r	С
Rlia, tdn Rjd, tep ORvnj I68-I3r (<10 ©	Α	10 ©	md B Kd		07B58B5C CO:00	07B68B6CC1:6r	С
Eo\M EUf	<10@	Α	10 ©	md B Kd		07B58B5CC0:00	07B58B5CC1:6r	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i Goroohd ne	110		87 - 137			78/02/01 175/7	78/02/01 1y 5 0:	1
o-aerTCenpl	113		87 - 137			78/02/01 175/7	78/02/01 1y 5 0:	1

Method: 300.0 - Anions, Ion C	hromatography - Solub	le					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	112) G r	mdBKd			07B68B6CC1:)9	С

Client Sample ID: BH03 Date Collected: 07/26/21 11:44 Date Received: 07/26/21 15:25

Sample Depth: - 10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
gnt znt n	<0 © 0600	A	0 0 0600	mdBKd		07B68B6C08:37	07B68B6CC):67	
Eoi4nt n	<0 @ 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	07B68B6CC):67	
2W/5ibnt znt n	<0 @ 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	07B68B6CC):67	
m-h5int n X &-h5int n	<0@0) 00	Α	000)00	md B Kd		07B58B5C08:37	07B68B6CC):67	
o-h 5int n	<0 © 0600	Α	0 © 0600	md B Kd		07B58B5C08:37	07B68B6CC):67	
h5int npsEoWi	<0 © 0) 00	Α	000)00	md B Kd		07B58B5C08:37	07B68B6CC):67	
EoV,MigE2h	<0@0)00	Α	0 © 0) 00	mdBKd		07B68B6C08:37	07B68B6CC):67	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			87 - 137			78/02/01 72538	78/02/01 14508	
194-6 ,fluorobenzene (Surr)	D4		87 - 137			78/02/01 72538	78/02/01 14508	

24jolet p h nt . osl , jipb, y

Lab Sample ID: 890-995-5

Matrix: Solid

I ient WS PU APc It . G Ujo/n. VBPeN/V: ged 2yy5 At eV/C10

Job ID: 890-991-C PDT: E200696006r

Client Sample ID: BH03

Lab Sample ID: 890-995-5

Date Collected: 07/26/21 11:44 Date Received: 07/26/21 15:25 **Matrix: Solid**

Sample Depth: - 10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T, poidena, t dn Rjd, t e p OraR(-Ir-IOO	<)90	A) 9 9	mdBKd		07B68B6C00:00	07B68B6CC1:)7	С
Denpnia, t dn Rjd, t e p ® vnj I OO-I 68(<) 9 9	Α) 9 9	mdBKd		0756856CCO:00	07B58B5CC1:)7	С
Rlia, tdn Rjd, tep ØRvnj I 68-I 3r (<) 9 9	Α) 9 9	md B Kd		07B58B5C00:00	07B68B6CC1:)7	С
Eo\M EUf	<) 9 9	Α) 9 ©	md B Kd		07B68B6CC0:00	07B68B6CC1:)7	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i Goroohd ne	D2		87 - 137			78/02/01 175/7	78/02/01 1y <i>5</i> 48	1
o-aerTCenpl	170		87 - 137			78/02/01 175/7	78/02/01 1y <i>5</i> 48	1
-	N .	mby Colu	ıblo					
Method: 300.0 - Anions, Ion C	hromatogra	ipriy - Soiu	IDIC					
Method: 300.0 - Anions, Ion C Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH03 Lab Sample ID: 890-995-6

Date Collected: 07/26/21 12:30 **Matrix: Solid**

Date Received: 07/26/21 15:25

Method: 8021B - Volatile Organic Compounds (GC)

Sample Depth: - 15

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
gnt znt n	<0000099	A	000099	md B Kd		07B68B6C08:37	07B68B6CC):)8	
Eoi4nt n	<0 © 0 C 99	Α	0 © 0 © 9	md B Kd		07B68B6C08:37	07B68B6CC):)8	
2 W/5ibnt znt n	<0 © 0 © 99	Α	0 © 0 © 9	md B Kd		07B68B6C08:37	07B68B6CC):)8	
m-h5int n X &-h5int n	<0@0398	Α	0 © 0398	md B Kd		07B68B6C08:37	07B58B5CC):)8	
o-h 5int n	<0 © 0 © 9	Α	0 © 0 © 9	md B Kd		07B68B6C08:37	07B68B6CC):)8	
h5int npsEoV,Vi	<0 © 0398	Α	0 © 0398	md B Kd		07B68B6C08:37	07B68B6CC):)8	
Eo\M g E2h	<0 © 0398	Α	0 © 0398	md B Kd		07B68B6C08:37	07B68B6CC):)8	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	171		87 - 137			78/02/01 72538	78/02/01 145 1 2	
194-6,fluorobenzene (Surr)	D4		87 - 137			78/02/01 72538	78/02/01 14 <i>5</i> 42	
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
T, poidena, t dn Rjd, t e p OraR(-Ir-IO0	<100	A	100	md B Kd		07B58B5C CO:00	07B68B6C Or :07	
Denpnia,tdn Rjd,tep ORvnj ICO-I68(<100	Α	10 ©	md B Kd		07E68E6C CO:00	07B68B6COr:07	
Rlia, tdn Rjd, tep ORvnj I68-I3r (<100	Α	10 ©	md B Kd		07B58B5C 00:00	07B58B5CO::07	
EoV,Vi EUf	<10₲	Α	10 ©	md B Kd		07B68B6CC0:00	07B68B6C Or:07	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-i Gorooha ne	D:		87 - 137			78/02/01 175/7	78/02/01 1: 578	
o-aerTCenpl	171		87 - 137			78/02/01 17 5 77	78/02/01 1: 5 78	
Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	36.6		10)	mdBKd			07B68B6C Or :CO	

24jolet p h nt . osl , jipb, y

I ient WS PU APc It . G Ujo/n. VBP eM/: ged 2 yy5 At eMC10

Job ID: 890-991-C PDT: E200696006r

Client Sample ID: BH03 Lab Sample ID: 890-995-7 Date Collected: 07/26/21 13:46

Matrix: Solid

Date Received: 07/26/21 15:25 Sample Depth: - 18

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
gnt znt n	<0 © 0606	A	0 0 0606	mdBKd		07B68B6C08:37	07B68B6CC1:08	C
Eoi4nt n	<0 © 0606	Α	0 © 0606	md B Kd		07B68B6C08:37	07B68B6CC1:08	С
2 W/5ibnt znt n	<0 © 0606	Α	0 © 0606	md B Kd		07B68B6C08:37	07B58B5CC1:08	С
m-h5int n X &-h5int n	<0@0) 03	Α	0@0)03	md B Kd		07B68B6C08:37	07B68B6CC1:08	С
o-h 5int n	<0 © 0606	Α	0 © 0606	md B Kd		07B68B6C08:37	07B58B5CC1:08	С
h 5int nps Eo\;\/i	<0 © 0) 03	Α	0@0)03	md B Kd		07B68B6C08:37	07B58B5CC1:08	С
Eo,Wi g E2 h	<0 © 0) 03	Α	0 © 0) 03	md B Kd		07B68B6C08:37	07B68B6CC1:08	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			87 - 137			78/02/01 72538	78/02/01 1y <i>5</i> 72	1
194-6 ,fluorobenzene (Surr)	D2		87 - 137			78/02/01 72538	78/02/01 1y <i>5</i> 72	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T, poid n a, t dn Rjd, t e p Of a R(-I r-I O)	<100	A	100	mdBKd		08B03B6CC1:37	08B03B6C63:18	C
Denpnia, t dn Rjd, t e p ® vnj I 00-I 68(<10@	A	10 ©	md B Kd		08B03B6CC1:37	08B03B6C63:18	С
Rlia, tdn Rjd, tep ORvnj I 68-I 3r (<100	Α	10 ©	mdBKd		08B03B6CC1:37	08B03B6C63:18	С
Eo\M EUf	<10₲	Α	100	md B Kd		08B03B6CC1:37	08B03B6C63:18	С
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-i Goroohd ne	DD		87 - 137			72/73/01 1y538	72/73/01 035/2	1
o-aerTCenpl	D4		87 - 137			72/73/01 1v538	72/73/01 035/2	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	26.5		1@3	mdBKd			07B68B6C Or : Or	С	

Surrogate Summary

Client: WSP USA Inc. Job ID: 890-995-1 Project/Site: Big Eddy Unit 150 SDG: TE012921026

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-			Pero	cent Surrogate Rec
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-995-1 E	BH01	112	99	
890-995-1 MS	BH01	105	106	
890-995-2 E	BH02	97	98	
890-995-3 E	BH03	116	94	
890-995-4 E	BH03	116	98	
890-995-5	BH03	111	94	
890-995-6 E	BH03	101	94	
890-995-7 E	BH03	110	98	
LCS 880-5729/1-A	Lab Control Sample	112	107	
LCSD 880-5729/2-A I	Lab Control Sample Dup	113	105	
MB 880-5729/5-A	Method Blank	99	90	
Surrogate Legend				
BFB = 4-Bromofluorobenze	ne (Surr)			
DFBZ = 1,4-Difluorobenzen	e (Surr)			

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID		
890-995-1 MSD	BH01		
Surrogate Legend			
BFB = 4-Bromofluo	robenzene (Surr)		
DFBZ = 1,4-Difluoro	obenzene (Surr)		

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

OTPH = o-Terphenyl

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recove	ery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	' 0-130)	
390-995-1	BH01	108	125	
390-995-2	BH02	106	122	
390-995-3	BH03	83	84	
390-995-4	BH03	112	113	
390-995-5	BH03	98	102	
390-995-6	BH03	96	101	
390-995-7	BH03	99	94	
_CS 880-5604/2-A	Lab Control Sample	89	90	
_CS 880-5924/2-A	Lab Control Sample	100	107	
_CSD 880-5604/3-A	Lab Control Sample Dup	103	102	
_CSD 880-5924/3-A	Lab Control Sample Dup	108	115	
MB 880-5604/1-A	Method Blank	97	96	
MB 880-5924/1-A	Method Blank	92	111	
Surrogate Legend				

Eurofins Xenco, Carlsbad

I ient WS PU APc It . G Ujo/n. VBPeNV: ged 2yy5 At eVVC10 Job ID: 890-991-C

PDT: E200696006r

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5729/5-A

Matrix: Solid

Analyte

Analysis Batch: 5734

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 5729

MB MB Result Qualifier Unit Dil Fac RL D Prepared Analyzed <0**©**0600 A 0**©**0600 mdBKd 07B58B5C08:37 07B58B5C06:44 С <000000 A **0©**0600 mdBKd 07B58B5C08:37 07B58B5CC6:44 С <0**©**0600 A 0765865C08:37 0765865CO6:44 С 0**©**0600 mdBKd

gnt znt n Eoiunt n 2 Wh5ibnt znt n m-X5int n & p-X5int n <0**©**0400 A 0@0400 mdBKd 07B68B6C08:37 07B58B5C C6:44 o-X5int n <0@0600 A 0.0000 mdBKd 07B68B6C08:37 07F68F6C C6:44 mdBKd 07B68B6C08:37 X5int ns, EoVa/i <0**©**0400 A 0@0400 07F68F6C C6:44 <0**©**0400 A O**©**0400 mdBKd 07B58B5C08:37 07B68B6CC6:44 EoVavi g E2 X

MB MB

%Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 08 - 738 80/25/27 85:30 80/25/27 72:44 4-Bromofluorobenzene (Surr) 11 794-6, fluorobenzene (Surr) 08 - 738 18 80/25/27 85:30 80/25/27 72:44

Lab Sample ID: LCS 880-5729/1-A

Matrix: Solid

Analysis Batch: 5734

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 5729

Spike LCS LCS %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits 0@00 0@099 gnt znt n mdBKd ∞ 70 - C30 0@00 0@068 Eoiunt n mdBKd ωз 70 - C30 2 W/5ibnt znt n 0@00 0@037 mdBKd Ω 4 70 - C300600 0**6**06r Ωr 70 - C30 m-X5int n & p-X5int n mdBKd 0**©**0r 4 0@00 o-X5int n mdBKd Ωr 70 - C30

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	772	08 - 738
794-6 fluorobenzene (Surr)	780	08 - 738

Lab Sample ID: LCSD 880-5729/2-A

Matrix: Solid

Analysis Batch: 5734

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 5729

Spike LCSD LCSD %Rec. **RPD Analyte** Added Result Qualifier Unit D %Rec Limits **RPD** I imit gnt znt n 0@00 0@011 mdBKd 001 70 ₋ C30 4 31 Eoiunt n 0@00 0@9847 mdBKd 98 70 - C3031 99 70 - C30 2 W/5ibnt znt n 0@00 0@9811 mdBKd 31 006 m-X5int n & p-X5int n 0600 0604C mdBKd 70 - C30 31 0@00 **C**06 o-X5int n 000008 mdBKd 70 - C30 31

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 773 08 - 738 794-6, fluorobenzene (Surr) 08 - 738 78D

Lab Sample ID: 890-995-1 MSD

Matrix: Solid

Analysis Batch: 5734

Client Sample ID: BH01 Prep Type: Total/NA Prep Batch: 5729 Sample Sample MSD MSD **RPD** Spike %Rec.

Result Qualifier Added Result Qualifier D Limits **RPD** Limit Analyte Unit %Rec gnt znt n <000008 A 0@994 0@9989 mdBKd

2ujoRes Xnt.o, I ajisbay

С

С

С

С

I ient WS PU APc It . G Ujo/n. VBPeNV: ged 2yy5 At eVVC10 Job ID: 890-991-C

Client Sample ID: BH01

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 5604

PDT: E200696006r

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-995-1 MSD **Client Sample ID: BH01 Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 5734** Prep Batch: 5729 MSD MSD **RPD** Sample Sample Spike %Rec.

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Eoiunt n <0**0**00098 Α 0@994 0@9634 mdRKd 2 W/5ibnt znt n <0000098 A 0@994 0**©**968r mdBKd 0@99 0@909 m-X5int n & p-X5int n <0**©**039r A mdBKd 0@994 o-X5int n <0000008 A 0@9400 mdBKd

MSD MSD

%Recovery Qualifier Surrogate Limits

4-Bromofluorobenzene (Surr) 794-6, fluorobenzene (Surr)

Lab Sample ID: 890-995-1 MS

Matrix: Solid

Analysis Batch: 5734

794-6, fluorobenzene (Surr)

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 78D 08 - 738 78i 08 - 738

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-5604/1-A **Matrix: Solid**

Analysis Batch: 5741 MB MB

Result Qualifier RL Unit D Dil Fac Analyte Prepared Analyzed Tasoiet n Oat dn (jdates <100 A 10**©** mdBKd 07B63B6CC4:43 07B68B6C CC:37)TO(v-l r-l 00 07B53B5CC4:43 07B58B5CCC:37 Densni Oat dn (jdat es)(fnj С <100 A 100 mdBKd I CO-I 68v <1009 A 10**©** mdBKd 07B63B6CC4:43 07B68B6CCC:37 С (li Oat dn (jdat es)(fnj l 68-l 3r v EoVa/i EUH <100 A 10**©** mdBKd 07B53B5CC4:43 07B68B6C CC:37 C

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 7-Chlorooctane 10 08 - 738 80/23/27 74:43 80/25/27 77:30 o-Terphenyl 1i 08 - 738 80/23/27 74:43 80/25/27 77:30

Lab Sample ID: LCS 880-5604/2-A

Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA **Analysis Batch: 5741** Prep Batch: 5604

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Tasoie n Oat dn (jdat es 0000 8348 mdBKd 83 70 ₋ C30)TO(v-l r-l 00 Densni Oat dn (jdat es)(fnj ∞ 00 869**G** mdBKd 83 70 - C30

I CO-I 68v

LCS LCS %Recovery Qualifier Limits Surrogate 7-Chlorooctane 51 08 - 738 o-Terphenyl 18 08 - 738

2ujoRes Xnt.o, I ajisbay

Released to Imaging: 2/28/2022 4:36:12 PM

I ient WS PU APc It . G Ujo/n. VBP eM/: ged 2 yy5 At eMC10

Job ID: 890-991-C PDT: E200696006r

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-5604/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 5741

Prep Batch: 5604

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tasoietn Oat dn (jdates	0000	948 ©		mdBKd		91	70 - C30		60
)TO(v-l r-l 00									
DensniOatdn (jdates)(fnj	∞00	91r G		md B Kd		9r	70 - C30	C4	60
I M-I 68v									

LCSD LCSD

Surrogate %Recovery Qualifier Limits 7-Chlorooctane 08 - 738 783 782 08 - 738 o-Terphenyl

Lab Sample ID: MB 880-5924/1-A

Client Sample ID: Method Blank

Matrix: Solid

Prep Type: Total/NA Prep Batch: 5924

Analysis Batch: 5934

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Tasoid n Oat dn (jdat es	<10 ©	A	100	mdBKd		07B3CB6C CO:49	08B0CB6CC3:C3	C
)TO(v-l r-l 00								
Densni Oat dn (jdat es)(fnj	<10 ©	Α	10 ©	mdBKd		07B3CB5CC0:49	08B0CB6CC3:C3	С
I CO-I 68v								
(liOatdn (jdates)(fnjl 68-l 3rv	<10 ©	Α	10 ©	mdBKd		07B3CB6CC0:49	08B00B6CC3:C3	С
Eo\&/i EUH	<10 ©	Α	10 ©	mdBKd		07B3CB5CC0:49	08B0CB6CC3:C3	С

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
7-Chlorooctane	12		08 - 738	80/37/27 78:41	85/87/27 73:73	7
o-Terphenyl	777		08 - 738	80/37/27 78:41	85/87/27 73:73	7

Lab Sample ID: LCS 880-5924/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 5934

Prep Type: Total/NA Prep Batch: 5924

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tasoit n Oat dn (jdat es	0000	971 6		mdBKd		98	70 - C30	
)TO(v-l r-l 00								
Densni Oat dn (jdat es)(fnj	∞00	C 070		mdBKd		Ω7	70 - C30	
I CO-I 68v								

LCS LCS

Lab Sample ID: LCSD 880-5924/3-A

Surrogate %Recovery Qualifier Limits 7-Chlorooctane 788 08 - 738 08 - 738 o-Terphenyl 780

> Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid Analysis Batch: 5934

Prep Batch: 5924

Alialysis Dalcii. 3334							Fieh	Datell.	3324
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tasoietn Oat dn (jdates		9C1 4		mdBKd		96	70 - C30	r	60
)TO(v-l r-l 00									
DensniOatdn (jdates)(fnj	O000	0009		mdBKd		0006	70 - C30	1	60
I CO-I 68v									

2ujoRes Xnt.o, I ajisbay

I ient WS PU APc It . G Ujo/n. VBP Nov ged 2 yy 5 At Nov C10 Job ID: 890-991-C

PDT: E200696006r

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-5924/3-A **Matrix: Solid**

Analysis Batch: 5934

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: BH01

Client Sample ID: BH01

Prep Type: Soluble

Prep Type: Soluble

Prep Batch: 5924

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

LCSD LCSD

%Recovery Qualifier Limits Surrogate 7-Chlorooctane 785 08 - 738 o-Terphenyl 77D 08 - 738

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-5753/1-A

Matrix: Solid

Analysis Batch: 5764

MB MB

RL **Analyte** Result Qualifier Unit Prepared Analyzed Dil Fac 1000 mdBKd 07B68B6CC1:0r l hiojeyn <1000 A

LCS LCS

Lab Sample ID: LCS 880-5753/2-A

Matrix: Solid

Analysis Batch: 5764

Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits l hiojeyn 610 64r **4** 99 90 - 000

Lab Sample ID: LCSD 880-5753/3-A

Matrix: Solid

Analysis Batch: 5764

Spike LCSD LCSD **RPD** %Rec. Added Analyte Result Qualifier Unit %Rec Limits RPD Limit 610 mdBKd 90 - 000 I hiojeyn 64r **G** 99

Lab Sample ID: 890-995-1 MS

Matrix: Solid

Analysis Batch: 5764

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Unit D %Rec Analyte 649 176**6** mdBKd 96 90 - 000 I hiojeyn 346

Lab Sample ID: 890-995-1 MSD

Matrix: Solid

Analysis Batch: 5764

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Limits RPD **Analyte** Result Qualifier Unit %Rec Limit l hiojeyn 346 649 1703 mdBKd 96 90 - 000 60

2ujoRes Xnt.o, I ajisbay

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-995-1

SDG: TE012921026

GC VOA

Prep Batch: 5729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1	BH01	Total/NA	Solid	5035	
890-995-2	BH02	Total/NA	Solid	5035	
890-995-3	BH03	Total/NA	Solid	5035	
890-995-4	BH03	Total/NA	Solid	5035	
890-995-5	BH03	Total/NA	Solid	5035	
890-995-6	BH03	Total/NA	Solid	5035	
890-995-7	BH03	Total/NA	Solid	5035	
MB 880-5729/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-5729/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-5729/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-995-1 MSD	BH01	Total/NA	Solid	5035	

Analysis Batch: 5734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1	BH01	Total/NA	Solid	8021B	5729
890-995-2	BH02	Total/NA	Solid	8021B	5729
890-995-3	BH03	Total/NA	Solid	8021B	5729
890-995-4	BH03	Total/NA	Solid	8021B	5729
890-995-5	BH03	Total/NA	Solid	8021B	5729
890-995-6	BH03	Total/NA	Solid	8021B	5729
890-995-7	BH03	Total/NA	Solid	8021B	5729
MB 880-5729/5-A	Method Blank	Total/NA	Solid	8021B	5729
LCS 880-5729/1-A	Lab Control Sample	Total/NA	Solid	8021B	5729
LCSD 880-5729/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	5729
890-995-1 MS	BH01	Total/NA	Solid	8021B	
890-995-1 MSD	BH01	Total/NA	Solid	8021B	5729

GC Semi VOA

Prep Batch: 5604

Lab Sample ID 890-995-4	Client Sample ID BH03	Prep Type Total/NA	Matrix Solid	Method Prep	p Batch
890-995-5	BH03	Total/NA	Solid	8015NM Prep	
890-995-6	BH03	Total/NA	Solid	8015NM Prep	
MB 880-5604/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5604/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5604/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5741

Lab Sample ID 890-995-4	Client Sample ID BH03	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 5604
890-995-5	BH03	Total/NA	Solid	8015B NM	5604
890-995-6	BH03	Total/NA	Solid	8015B NM	5604
MB 880-5604/1-A	Method Blank	Total/NA	Solid	8015B NM	5604
LCS 880-5604/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5604
LCSD 880-5604/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5604

Prep Batch: 5924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1	BH01	Total/NA	Solid	8015NM Prep	
890-995-2	BH02	Total/NA	Solid	8015NM Prep	

Eurofins Xenco, Carlsbad

Page 15 of 26

Client: WSP USA Inc. Job ID: 890-995-1 Project/Site: Big Eddy Unit 150 SDG: TE012921026

GC Semi VOA (Continued)

Prep Batch: 5924 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-5924/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-5924/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-5924/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 5934

Lab Sample ID 890-995-1	Client Sample ID BH01	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 5924
890-995-2	BH02	Total/NA	Solid	8015B NM	5924
MB 880-5924/1-A	Method Blank	Total/NA	Solid	8015B NM	5924
LCS 880-5924/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	5924
LCSD 880-5924/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	5924

Analysis Batch: 6001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-3	BH03	Total/NA	Solid	8015B NM	6026
890-995-7	BH03	Total/NA	Solid	8015B NM	6026

Prep Batch: 6026

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-3	BH03	Total/NA	Solid	8015NM Prep	
890-995-7	BH03	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 5753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1	BH01	Soluble	Solid	DI Leach	
890-995-2	BH02	Soluble	Solid	DI Leach	
890-995-3	BH03	Soluble	Solid	DI Leach	
890-995-4	BH03	Soluble	Solid	DI Leach	
890-995-5	BH03	Soluble	Solid	DI Leach	
890-995-6	BH03	Soluble	Solid	DI Leach	
890-995-7	BH03	Soluble	Solid	DI Leach	
MB 880-5753/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-5753/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-5753/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-995-1 MS	BH01	Soluble	Solid	DI Leach	
890-995-1 MSD	BH01	Soluble	Solid	DI Leach	

Analysis Batch: 5764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1	BH01	Soluble	Solid	300.0	5753
890-995-2	BH02	Soluble	Solid	300.0	5753
890-995-3	BH03	Soluble	Solid	300.0	5753
890-995-4	BH03	Soluble	Solid	300.0	5753
890-995-5	BH03	Soluble	Solid	300.0	5753
890-995-6	BH03	Soluble	Solid	300.0	5753
890-995-7	BH03	Soluble	Solid	300.0	5753
MB 880-5753/1-A	Method Blank	Soluble	Solid	300.0	5753
LCS 880-5753/2-A	Lab Control Sample	Soluble	Solid	300.0	5753
LCSD 880-5753/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	5753

Eurofins Xenco, Carlsbad

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-995-1

SDG: TE012921026

HPLC/IC (Continued)

Analysis Batch: 5764 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-995-1 MS	BH01	Soluble	Solid	300.0	5753
890-995-1 MSD	BH01	Soluble	Solid	300.0	5753

А

4

6

8

10

11

13

14

Job ID: 890-991-r

SDG: Td 0r 292r 026

Pjo/ectBSite: giEdyy5 Unit r 10 **Client Sample ID: BH01**

Client: WSP USA Inc.

Lab Sample ID: 890-995-1

Matrix: Solid

Date Collected: 07/26/21 08:44 Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07B28B2r 08:37	KL	Xd N MID
TotalBNA	Anal5sis	802r g		r	1734	07E28E2rr3:06	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			1924	07B3rB2rr0:49	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	1934	08B0rB2r 20:r2	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07B28B2rr1:22	SC	XdN MID

Lab Sample ID: 890-995-2

Date Collected: 07/26/21 10:15 Date Received: 07/26/21 15:25

Client Sample ID: BH02

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	07E28E2rr3:26	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			1924	07B3rB2rr0:49	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	1934	08B0rB2r 20:34	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07E28E2rr1:38	SC	XdN MID

Client Sample ID: BH03 Lab Sample ID: 890-995-3 Date Collected: 07/26/21 10:51

Matrix: Solid

Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	07E28E2rr3:47	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			6026	08B03B2rr1:37	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	600r	08B03B2r 23:37	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07E28E2rr1:43	SC	XdN MID

Client Sample ID: BH03 Lab Sample ID: 890-995-4 Date Collected: 07/26/21 11:02 Matrix: Solid

Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	0752852rr4:07	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			1604	07E28E2rr0:00	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	174r	07E28E2rr1:26	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07B28B2r r 1:49	SC	XdN MID

dujoins Xencof Cajlsbay

Lab Chronicle

Client: WSP USA Inc. Job ID: 890-991-r Pjo/ectBite: giEdyy5 Unit r 10 SDG: Td 0r 292r 026

Client Sample ID: BH03

Lab Sample ID: 890-995-5

Matrix: Solid

Date Collected: 07/26/21 11:44 Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	07B28B2rr4:27	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			1604	07B28B2rr0:00	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	174r	07B28B2rr1:47	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07E28E2rr1:14	SC	XdN MID

Lab Sample ID: 890-995-6 **Client Sample ID: BH03** Date Collected: 07/26/21 12:30 **Matrix: Solid**

Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	07E28E2rr4:48	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			1604	07E28E2rr0:00	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	174r	07E28E2rr6:07	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07E28E2rr6:r0	SC	XdN MID

Lab Sample ID: 890-995-7 **Client Sample ID: BH03** Date Collected: 07/26/21 13:46 **Matrix: Solid**

Date Received: 07/26/21 15:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TotalBNA	Pjep	1031			1729	07E28E2r 08:37	KL	XdN MID
TotalBNA	Anal5sis	802r g		r	1734	07E28E2rr1:08	KL	XdN MID
TotalBNA	Pjep	80r 1NM Pjep			6026	08B03B2rr1:37	DM	XdN MID
TotalBNA	Anal5sis	80r 1g NM		r	600r	08B03B2r 23:18	AJ	XdN MID
Soluble	Leach	DI Leach			1713	07E28E2rr3:03	SC	XdN MID
Soluble	Anal5sis	300.0		r	1764	07E28E2rr6:r6	SC	XdN MID

Laboratory References:

XdN MID, dujo=ns Xencof Miylanyf r 2rr W. Flojiya Avef Miylanyf TX 7970r f TdL (432)704-1440

dujoins Xencof Cajlsbay

Released to Imaging: 2/28/2022 4:36:12 PM

Accreditation/Certification Summary

Client: WSP USA Inc. Job ID: 890-991-r Pjo/ectBite: giEdyy5 Unit r 10 SDG: Td 0r 292r 026

Laboratory: Eurofins Xenco, Midland

Unless othejwise notey, all anal5tes foj this labojatoj 5 weje covejey unyej each accjeyitation bej tification below.

Authority	· ·	Program	Identification Number	Expiration Date
Texas	1	NdLAP	Tr 04704400-20-2r	06-30-22
The followinE anal5te the aEenc5 yoes not		pojt, but the labojatoj5 is r	not cejtifiey b5 the EovejninE authojit5.	This list ma5 incluye anal5tes foj w
Anal5sis Methoy	Pjep Methoy	Matjix	Anal5te	
Anal5sis Methoy 80r 1g NM	Pjep Methoy 80r 1NM Pjep	Matjix Soliy	Anal5te Total TPH	

dujofins Xenco, Cajlsbay

Method Summary

I ient WS PU APc It . G Ujo/n. VBP eM/: g ed 2 yy5 At eMC10 Job ID: 890-991-C

PDT: E200696006r

Method	Method Description	Protocol	Laboratory
806Cg	Voia Wah Ojdat e I ompout ys (TI)	PS 84r	X2N MID
80C1g NM	Densni Rat dn Ojdat e s (DRO) (TI)	PS 84r	X2N MID
300 ©	cteots, lot I hjoma\bdjaph5	MIcSS	X2N MID
1031	I iosny P5s W m Uujdn at y Ejap	PS 84r	X2N MID
80C1NM Ujnp	Mejonx\ y Ya.\Hoot	PS 84r	X2N MID
DI Lna. h	Dneotezny SaWn Lna. hetd Ujo. nyujn	cPEM	X2N MID

Protocol References:

cPEM = cPEM It Whit a Webt ai

MI cSS = "MnWoys Foj I hnme ai ct ai5ses Of SaWij ct y SasWis", 2 Uc-r 0054-79-060, Maj. h C983 ct y Pubsnqunt WRnvesert sG PS 84r = "EnsVM/nVMoys Foj 2 vaiua VM/d Poiey S as VM, Uh5se ai Bhnme ai MnVMoys", Ehey 2 yeke/dt, Novnmbnj C98r cty IV2/Apya VMsG

Laboratory References:

X2N MID = 2ujofe s Xnt . o, Meyiat y, C6CCS CFiojeya c vn, Meyiat y, EX 7970C, E2L (436)704-1440

2ujofets Xnt.o, I ajisbay

Sample Summary

Client: WSP USA Inc.

Project/Site: Big Eddy Unit 150

Job ID: 890-995-1 SDG: TE012921026

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-995-1	BH01	Solid	07/26/21 08:44	07/26/21 15:25	- 18
890-995-2	BH02	Solid	07/26/21 10:15	07/26/21 15:25	- 18
890-995-3	BH03	Solid	07/26/21 10:51	07/26/21 15:25	- 1
890-995-4	BH03	Solid	07/26/21 11:02	07/26/21 15:25	- 5
890-995-5	BH03	Solid	07/26/21 11:44	07/26/21 15:25	- 10
890-995-6	BH03	Solid	07/26/21 12:30	07/26/21 15:25	- 15
890-995-7	BH03	Solid	07/26/21 13:46	07/26/21 15:25	- 18

3

4

Ę

6

0

10

11

13

12

Project Manager:

Da

Company Name:

Phone:

City, State ZIP:

Midland, TX 79705 (432) 236-3849

\ddress:

P.O. Number:

Project Number: Project Name:

JE01374 1036

NRM 2024854865

Rush: 2412

Routine

Essa

Unt

150

Turn Around

Jeremy.Hill@wsp.com. City, State ZIP:

Dan.Moir@wsp.com

ANALYSIS REQUEST

Deliverables: EDD

ADaPT |

Other:

Work Order Notes

1080741001

Carlsbad, NM 88220

5 6

13 14

	0	Chain of Custody	Work Order No:
	Houston,TX (281) 240-4200 [Midland,TX (432-704-5440)	Houston.TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296	
4.5.5	Hobbs,NM (575-392-7550) Phoenix,AZ (4	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-820-2000)	3-620-2000) www.xenco.com Page / off
Moir	Bill to: (if different) Kyle Littrell	Kyle Littrell	Work Order Comments
PUSA	Company Name: XTO Energy	XTO Energy	Program: UST/PST _RPprownfields _RCperfund
0 North A Street	Address:	522 W. Mermod St.	State of Project:
land, TX 79705	City, State ZIP:	City, State ZIP: Carlsbad, NM 88220	Reporting:Level IIIST/USTRP U_Evel IV

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$76.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Sampler's Name: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions Sample Custody Seals: Received Intact: SAMPLE RECEIPT emperature (°C): ooler Custody Seals: Relinquished by: (Signature) Total 200.7 / 6010 Circle Method(s) and Metal(s) to be analyzed Sample Identification BACO 3,404 0504 BITCO Birch SHO ひてるよ Yes 200.8 / 6020: Yes \No 60 Temp Blank: 8 4 Jeremy Hill No Matrix NA NA 10/201 Sampled Received by: (Signature) Date Correction Factor: Total Containers: 8RCRA TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U 1180 hermometer ID Sampled 5101 100 150 346 コキー >30 Time Wet Ice: Due Date: 7/34/3 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg 8 151 Depth 18. 10. 3 **Number of Containers** Date/Time TPH (EPA 8015) BTEX (EPA 0=8021) 152 Chloride (EPA 300.0) Relinquished by: (Signature) 890-995 Chain of Custody Mn Mo Ni Received by: (Signature) K Se Ag SiO2 Na Sr TI Sn U V 1631 / 245.1 / 7470 / 7471 : Hg かって EW. 3031,01563, EXP.C TAT starts the day received by lab, if received by 4:30pm Sample Comments CHYCLE Revised Date 051418 Rev. 2018.1 Date/Time Zn

Page 23 of 26

1089 N Canal St.

Eurofins Xenco, Carlsbad

13 14

Chain of Custody Record

: eurofins

Environment Testing America

BH04 (890-995-4) BH04 (890-995-7) BH04 (890-995-6) BH04 (890-995-5) BH04 (890-995-3) BH02 (890-995-2) BH01 (890-995-1) Big Eddy Unit 150 State Zip TX, 79701 Deliverable Requested I, II III IV Other (specify) Possible Hazard Identification fole. Since laboratory accreditations are subject to change. Eurofins Xenco LLC places the ownership of method analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently realistic accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Xenco LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Xenco. Carlsbad, NM 88220 Phone 575-988-3199 Fax: 575-988-3199 impty Kit Relinquished by LC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said complicance to Eurofins Xenco LLC Sample Identification - Client ID (Lab ID) 432-704-5440(Tel) Shipping/Receiving Client Information Viidland 211 W Florida Ave Custody Seals Intact. oject Name urofins Xenco iquished by iquished by iquished by △ Yes △ No 3 (Sub Contract Lab) Custody Seal No Phone WO# PO# Due Date Requested 7/28/2021 Date/Time Primary Deliverable Rank 2 SSOW# 89000004 TAT Requested (days) roject # imple Date 7/26/21 7/26/21 7/26/21 7/26/21 7/26/21 7/26/21 7/26/21 Mountain Mountain 12 30 Mountain 11 44 Mountain 11 02 Mountain 10 51 Mountain 10 15 Mountain 13 46 Sample 08 44 G=grab) (C=comp Sample Preservation Code Type Company SCHOOL (Wewater Sesolid, Owwaste/oil BTeTissue, Solid Solid Solid Solid Solid Solid Solid essica kramer@eurofinset.com Kramer Jessica Field Filtered Sample (Yes or No) Ime Accreditations Required (See note)
NELAP - Louisiana NELAP - Texas Special Instructions/QC Requirements Perform MS/MSD (Yes or No) Received by × × × × × × × 8015MOD_NM/8015NM_S_Prep Full TPH Cooler Temperature(s) °C and Other Remarks Return To Client × × × × × 300_ORGFM_28D/DI_LEACH Chloride × × × × × × × × 8021B/5035FP_Calc BTEX Analysis Requested Disposal By Lab New Mexico Carrier Tracking No(s) State of Origin: Method of Shipment Date/Time Date/Time Date/Time Archive For Total Number of containers 4 A HCL B NaOH C Zn Acetate D Nitric Acid F MacOH G Amchior H Ascorbic Acid I loc J DI Water K EDTA L EDA 890-320 1 Preservation Codes. 890-995-1 Job # Page 1 of 1 age Special Instructions/Note: SZOTOKNH D > SN Company Company Na2O4S Na2SO3 Na2SO3 Na2SO3 Na2SO4 TSP Dodecatydrate MCAA. Acetone Months

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-995-1

SDG Number: TE012921026

List Source: Eurofins Xenco, Carlsbad

List Number: 1 Creator: Clifton, Cloe

Login Number: 995

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1

3

4

6

8

10

12

13

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: WSP USA Inc.

Job Number: 890-995-1
SDG Number: TE012921026

List Source: Eurofins Xenco, Midland

List Creation: 07/28/21 10:55 AM

List Number: 2 Creator: Lowe, Katie

Login Number: 995

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

1

2

Λ

5

7

9

11

46

14

								PH Name:		Date:
7	119		7		WSP USA			BH01		7/21/2021 & 7/26/2021
\		7 I		Ε.		9				7/21/2021 & 7/26/2021
				5U Carl	08 West Stevens S sbad, New Mexico	areet 88220		Site Name: Big Eddy I Incident Number NRM		F
				Ouri	sbad, New Mexico	00220		WSP Job Number: TE		
		LITH		CIC / SOIL	SAMPLING LO					
I at/I a	ng: 32.478				Field Screening:	G		Logged By: JH		Method: Backhoe/Core Drill
LavLo	ing: 32.478	372, -104.	.11118		HACH chloride strips	s PID		Hole Diameter: NA		Total Depth: 18 feet bgs
Comm										
Chlori	de test per	formed w	ith 1:4	dilution factor	of soil to distilled wat		do not incl	ude correction factor. S	SAA - Same	As Above
	40		_	#		USCS/Rock Symbol				
Moisture Content	Chloride (ppm)	j (E	Staining	Sample #	Sample Depth	'Ro bol			thata /D	and a
lois on	old)	Vapor (ppm)	tair	amg mg	Depth (ft bgs)	CS,		Li	thology/R	emarks
≥ 0	0		S	Š	(it bgs)	S S				
					0					
					ΙT					
					l I					
					ļ ļ					
					+					
					†					
					†					
					<u> </u>					
					Ţ					
					│					
					 					
					+					
					†					
					†					
					<u>I</u> 10					
					 					
					+40					
					12					
					†					
					†					
					l T					
Dry	1,652	0.2	Ν	BH01	15 <u>T</u> 15	SP-SC		rly-graded sand (f	.) with cla	y, slight plasticity, no stain, no
					ļ ļ		odor			
					+					
					 					
Dry	340	0.1	N	BH01	18 🕇 18	CCHE	CALICH	E, dry, off white, m	noderately	consolidated, no stain, no odo
					<u> </u>			, , ,	,	,
						TD	18' bgs			
		_								
			\							
					_					
								_		
									_	

\	11	SI)			P USA			PH Name: BH02		Date: 7/21/2021 & 7/26/2021
				Carl	08 West S sbad, Nev	stevens S w Mexico	88220		Site Name: Big Eddy Incident Number NRM		35
									WSP Job Number: TE		
LITHOLOGIC / SOIL SAMPLING LOG							Logged By: JH		Method: Backhoe/Core Drill		
Lat/Lo	Lat/Long: 32.478727, -104.111295 Field Screening:						Hole Diameter:		Total Depth:		
Comm	nents:				HACH chl	oride strips	s, PID		NA		18 feet bgs
	Chloride test performed with 1:4 dilution factor of soil to distilled water. Values do not include correction factor. SAA - Same As Above										
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol		Li	thology/R	demarks
Dry	1,268	0.1	Z	BH02	12	0 5 10 - 12	SP-SC	odor	orly-graded sand (f	.) with cla	ay, slight plasticity, no stain, no
Dry	1,268	0.1	N N	BH02 BH02	15 _ - - 18	_ 15 _ - _ _ _ 18	SP-SC		E, dry, off white, m	noderately	/ consolidated, no stain, no odo
لــــاا	_			_	_						
\parallel							TD) 18' bgs			
		<u></u>									
							\				
									_		
										_	

WSP USA							PH Name:	Dat			
							BH03	7/2	1/2021 & 7/26/2021		
							Site Name: Big Eddy Un				
Canspau, New Mexico 88220							Incident Number NRM20				
									WSP Job Number: TE01	12920126	
LITHOLOGIC / SOIL SAMPLING LOG							Logged By: JH		thod: Core Drill		
Lat/Lo	ng: 32.478	3705, -104	1.11103	2	Field Scre				Hole Diameter:		al Depth:
Comm	ents:				HACH chi	oride strips	s, PID		1.75"	181	feet bgs
		formed w	ith 1:4 d	dilution factor	of soil to di	istilled wat	er. Values	do not incl	ude correction factor. SA/	A - Same As A	Above
				**			长				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol		Lith	ology/Rem	arks
						0					
Dry	212	0.1	N	BH03	1 <u>-</u>	1	SP	Brown - odor	red, poorly-graded s	sand (f.), lo	w plasticity, no stain and no
Dry	240	0.2	Ν	BH03	5 -	5	SP-SC	Red poo	orly-graded sand (f.)	with clay, lo	ow plasticity, no stain and
Dry	212	0.4	Ν	BH03	10 _ - - 10 _ -	10	SP-SC	SAA			
Dry	132	0.3	N N	BH03	15 _ - - - - - -	15		odor			onsolidated, no stain, no
					•			no odor			
	TD 18' bgs										

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 41924

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	41924
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved. DEFERRAL REQUEST DENIED. OCD requires three (3) soil samples from the deferred area from 1 and 4 ft bgs to be analyzed for constituents of concern in order to approve deferral request. If collection of soil samples are not feasible due to obstructions, please provide OCD with photographic evidence. Please resubmit deferral request through the OCD portal.	2/28/2022