District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 lof 49

Incident ID	NAPP2132240471
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude			

Site Name	Site Type
Date Release Discovered	API# (if applicable)

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

	Application ID
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Incident ID

District RP Facility ID

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Clobrian Daks	Date:
email:	Telephone:
OCD Only	
Received by: <u>Ramona Marcus</u>	Date: 11/18/2021

Location:	Corral Canyon Expansion Tank Battery			
Spill Date:	11/7/2021			
	Area 1			
Approximate A	rea =	58.90	cu.ft.	
	VOLUME OF LEAK			
Total Crude Oil	=	0.00	bbls	
Total Produced Water = 10.50			bbls	
TOTAL VOLUME OF LEAK				
Total Crude Oil	=	0.00	bbls	
Total Produced Water = 10.50		bbls		
TOTAL VOLUME RECOVERED				
Total Crude Oil	=	0.00	bbls	
Total Produced	Water =	10.50	bbls	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	62500
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

marcus When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141 11/18/2021	Created B	/ Condition	Condition Date
	rmarcus	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141	11/18/2021

CONDITIONS

Page 440f A9

.

Action 62500

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>50-100 (</u> ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

.

Page 3

Received by OCD: 1 Form C-141 Page 4	/31/2022 12:59:21 PM State of New Mexic Oil Conservation Divi		Incident ID District RP Facility ID Application ID	Page 6 of 49 NAPP2132240471
regulations all operations public health or the efficiency failed to adequately it	the information given above is true and complete tors are required to report and/or file certain relea environment. The acceptance of a C-141 report b investigate and remediate contamination that pos- tance of a C-141 report does not relieve the open	ase notifications and perform by the OCD does not relieve e a threat to groundwater, s	n corrective actions for the operator of liability urface water, human heat	releases which may endanger should their operations have lth or the environment. In
Printed Name:	Adrian Baker	Title:	Environmental C	Coordinator
Simoturo	Advian Baks	Data	02/05/2022	
Signature:		Date:	02/05/2022	
Email:	adrian.baker@exxonmobil.com	Telephone:	432-2	36-3808
OCD Only				
Received by:		Date:		

Oil Conservation Division

	Page 7 of 4
Incident ID	NAPP2132240471
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Classes Depart Attackment Chashlist, Each of the following i	the second the instruction of the structure man and
<u>Closure Report Attachment Checklist</u>: Each of the following in	tems must de included in the closure report.
\boxtimes A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
I handly partify that the information given above is true and comple	te to the best of my knowledge and understand that pursuant to OCD rules
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	n release notifications and perform corrective actions for releases which a C-141 report by the OCD does not relieve the operator of liability nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Printed Name: Adrian Baker	Title: Environmental Coordinator
Advian Bakes	
Signature:	Date: 02/05/2022
email: adrian.baker@exxonmobil.com	
OCD Only	
Received by: Ramona Marcus	Date: <u>2/9/2022</u>
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by: <u>Jennifer Nobui</u> Printed Name: Jennifer Nobui	Date: <u>03/09/2022</u>
Printed Name: Jennifer Nobui	Title:Environmental Specialist A
_	

WSP USA

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

February 05, 2022

District II New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

Re: Closure Request Corral Canyon Expansion Incident Number NAPP2132240471 Eddy County, New Mexico

To Whom It May Concern:

WSP USA Inc. (WSP) on behalf of XTO Energy, Inc. (XTO), presents the following Closure Request detailing site assessment and soil sampling activities at the Corral Canyon Expansion (Site) located in Unit P, Section 5, Township 25 South, Range 29 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil following the release of produced water within lined containment at the Site. Based on field observations, field screening activities, and soil sample laboratory analytical results, XTO is submitting this Closure Request and requesting no further action (NFA) for Incident Number NAPP2132240471.

RELEASE BACKGROUND

On November 7, 2021, corrosion on a water line weld resulted in the release of approximately 10.5 barrels (bbls) of produced water into the lined tank battery containment. A vacuum truck was immediately dispatched to the Site to recover freestanding fluids; all fluid was recovered from within the lined containment. A 48-hour advance notice of a liner inspection was provided via email to New Mexico Oil Conservation Division (NMOCD) District II office. A liner integrity inspection was conducted by XTO personnel following the fluid recovery and upon inspection, the liner was determined to be insufficient. XTO submitted a Release Notification Form C-141 (Form C-141) on November 18, 2021. The release was assigned Incident Number NAPP2132240471.

SITE CHARACTERIZATION

WSP characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be between 50-100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater wells with depth to groundwater data are New Mexico Office of the State Engineer (NMOSE)

vsp

District II Page 2

wells C-04324, six monitoring wells, located approximately 0.09 miles southeast of the Site. The groundwater wells have reported depths to groundwater ranging from 60 feet bgs to 65 feet bgs and a maximum total depth of 69 feet bgs. NMOSE records indicate the wells were plugged and abandoned in February 2021. All wells used for depth to groundwater determination are depicted on Figure 1 and referenced well records are provided in Attachment 1.

The closest continuously flowing water or significant watercourse to the Site is an intermittent dry wash, located approximately 851 feet southwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (medium potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total Petroleum Hydrocarbons (TPH)- gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On December 30, 2021, WSP personnel were at the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. WSP personnel advanced one borehole (BH01) via hand-auger at the location of the tear in the liner identified during the liner integrity inspection. Two soil samples were collected from borehole BH01 at depths of 0.5 feet and 1-foot bgs. Soil from the borehole was field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photo-ionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. Field screening results and observations from the borehole were documented on a lithologic/soil sampling log which is included as Attachment 2. The borehole was backfilled with the soil removed and XTO repaired the tear in the liner. The borehole delineation soil sample location is depicted on Figure 2. Photographic documentation was conducted during the Site visit. The photographic log is included in Attachment 3.

wsp

District II Page 3

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH- DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

SOIL ANALYTICAL RESULTS

Laboratory analytical results for delineation soil samples BH01 and BH01A, collected at depths of 0.5 feet and 1-foot bgs, indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical report is included as Attachment 4.

CLOSURE REQUEST

Following the failed liner integrity inspection at the Site, WSP personnel advanced one borehole (BH01) at the location of the tear in the liner to assess for the presence or absence of soil impacts resulting from the November 07, 2021 produced water release within lined containment. Two delineation soil samples were collected from borehole BH01 at depths of approximately 0.5 feet and 1-foot bgs. Laboratory analytical results indicated that benzene, BTEX, TPH-GRO/TPH-DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria and compliant with the most stringent Table 1 Closure Criteria. Additionally, field screening of soil from the borehole indicated no elevated volatile aromatic hydrocarbons or chloride concentrations beneath the tear in the liner. The release was contained laterally by the lined containment and all released fluids were recovered during initial response activities. The tear in the liner was subsequently repaired.

Based on initial response efforts, absence of elevated field screening results, and soil sample laboratory analytical results compliant with the Closure Criteria directly below the tear in the liner, XTO respectfully requests NFA for Incident Number NAPP2132240471.

vsp

District II Page 4

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096.

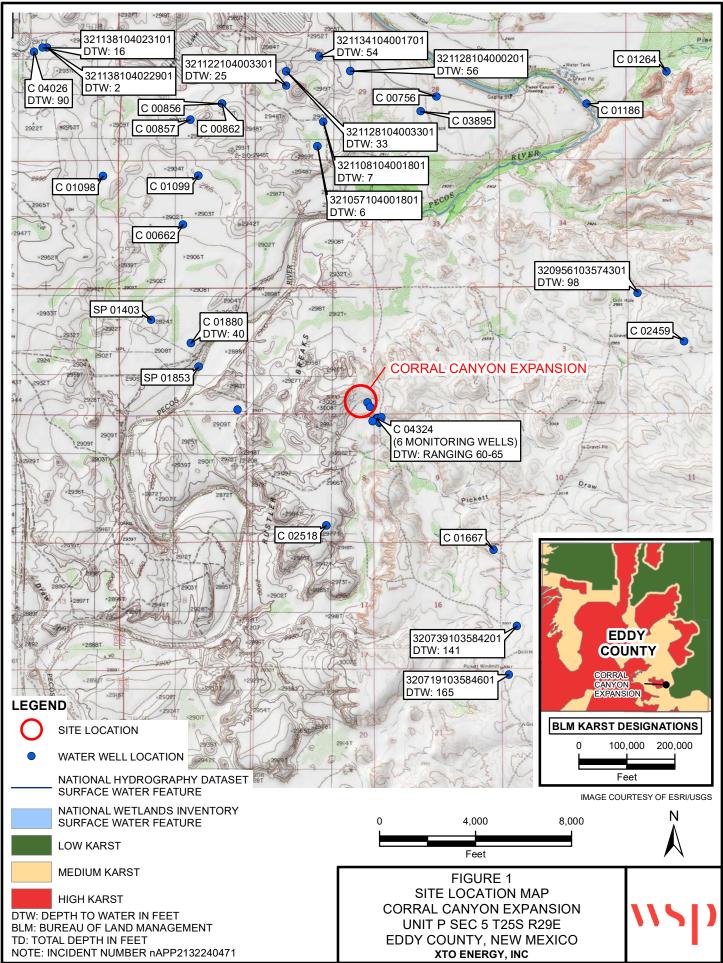
Sincerely,

WSP USA Inc.

Ashley L. ager

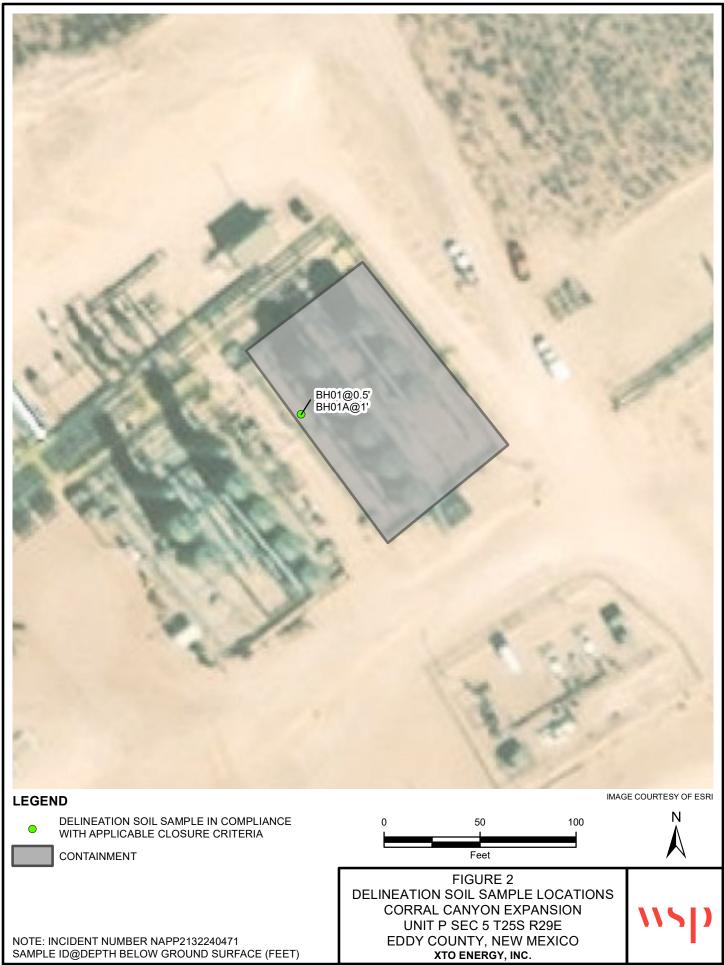
Nihaar Katoch Assistant Consultant, Geologist

Ashley L. Ager, P.G. Managing Director, Geologist


cc: Shelby Pennington, XTO Adrian Baker, XTO Bureau of Land Management

Attachments:

- Figure 1 Site Location Map
- Figure 2 Delineation Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 Lithologic/Soil Sampling Log
- Attachment 3 Photographic Log
- Attachment 4 Laboratory Analytical Reports


FIGURES

Released to Imaging: 3/9/2022 4:33:23 PM

Released to Imaging: 3/9/2022 4:33:23 PM

P3XTO Energy/GISI31403236.020.0129.15_CORRAL CANYON EXPANSION/MXD/31403236.020.0129.15_FIG01_SL_RECEPTOR_2021.mxd

Released to Imaging: 3/9/2022 4:33:23 PM

Table 1

Soil Analytical Results Corral Canyon Expansion Incident number: nAPP2132240471 Eddy County, New Mexico

Sample ID	Sample Date	Sample Depth (ft bgs)	Benzene (mg/kg)	BTEX (mg/kg)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	TPH-ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCD Tab	le 1 Closure Cri	iteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	10,000
Delineation Sa	amples									
BH01	12/30/2021	0.5	< 0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	547
BH01A	12/30/2021	1	< 0.00202	< 0.00404	<50.0	<50.0	<50.0	<50.0	<50.0	88.1

Notes:

BGS - Below ground surface

GRO - Gasoline range organics

DRO - Diesel range organics

ORO - Oil range organics

BTEX - Benzene, toluene, ethylbenzene, and total xylenes

mg/Kg - milligrams per kilogram

TPH - Total Petroleum Hydrocarbons

NE - Not established

<- Indicated result is below laboratory reporting limits

New Mexico Office of the State Engineer
Water Right Summary

F	WR File Number:	C 04324	Subbasin: CUB	Cross Reference:	-
	Primary Purpose:	MON MONITORING	WELL		
<u>get image list</u>	Primary Status:	PMT PERMIT			
	Total Acres:		Subfile: -		Header: -
	Total Diversion:	0	Cause/Case: -		
	Agent:	LT ENVIRONMENTAL	INC		
	Contact:	DUSTIN HELD			

Documents on File

				Sta	atus		From/			
	Trn #	Doc	File/Act	1	2	Transaction Desc.	То	Acres	Diversion	Consumptive
images	<u>654446</u>	EXPL	2019-07-12	PMT	LOG	C 04324 POD6-12	Т	0	0	
images	<u>648753</u>	EXPL	2019-05-07	PMT	APR	C 04324 POD1-5	Т	0	0	

Current Points of Diversion

irrent rounts of Diversi	UII		Q						(NAD83 UTM	in meters)	
POD Number	Well Tag	Source	-	Q16	Q4		Tws	0	X	Y	Other Location Desc
<u>C 04324 POD1</u> C 04324 POD10	NA NA	Shallow	1	1	1	09	258 258	29E	594539 594563	3557658	BH01 BH05(D)
<u>C 04324 POD10</u>	NA		1	1	1			29E 29E	594505	3557619	BH05(E)
<u>C 04324 POD12</u>	NA	Shallow	2	2	2		25S		594476	3557627	BH06(F)
<u>C 04324 POD2</u>	NA		1	1	1	09	25S	29E	594524	3557660	BH02
<u>C 04324 POD3</u>	NA		1	1	1	09	25S	29E	594548	3557656 🧧	BH03
<u>C 04324 POD4</u>	NA		1	1	1	09	25S	29E	594540	3557668 🧧	BH04
<u>C 04324 POD5</u>	NA		1	1	1	09	25S	29E	594532	3557644 🌍	BH05
<u>C 04324 POD6</u>	NA	Shallow	1	1	1		25S		594538	3557657 🧧	BH01(A)
<u>C 04324 POD7</u>	NA		4	4	4		258		594410	3557863	BH02(B)
<u>C 04324 POD8</u>	NA	Shallow	4	4	4		25S		594442	3557807	BH02(B)'
<u>C 04324 POD9</u>	NA	Shallow	1	1	1	09	200	29E	594590	3557676 🧲	BH04(C)

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/16/21 1:01 PM

WATER RIGHT SUMMARY

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarter	rs are 1=N	W 2=1	NE 3=S	W 4=SE)			
			(quarte	ers are sm	allest t	o larges	t)	(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 (Q16 Q4	Sec	Tws	Rng	Χ	Y	
NA	C 04	4324 POD8	4	4 4	05	25S	29E	594442	3557807 🍯	
^x Driller Lic	cense:	1664	Driller	Compa	ny:	CA	SCADE	E DRILLING	G, LP	
Driller Na	me:	CAIN, SHAWN	N.NJR.L.NE	R						
Drill Start	Date:	07/21/2019	Drill Fi	nish Da	te:	0	7/21/20	19 Pl	ug Date:	
Log File D	ate:	08/28/2019	PCW R	cv Date	e:			So	urce:	Shallow
Pump Typ	e:		Pipe Di	scharge	Size	:		Es	timated Yield	:
Casing Siz	ze:	2.06	Depth V	Well:		6	9 feet	De	epth Water:	65 feet
X	Wate	er Bearing Strati	fications:	To	op B	ottom	Desc	ription		
				ϵ	50	69	Shale	/Mudstone/	Siltstone	
X		Casing Per	forations:	Та	op B	ottom	l			
				2	19	69	,			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/16/21 1:01 PM

POINT OF DIVERSION SUMMARY

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS	Water	Resources	(Coope
0000	a a ci ci ci ci	110001000	(COOPC

erator Access) Data Category:

Geographic Area: United States

GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access realtime water data from over 13,500 stations nationwide.
- Full News 🔊

USGS 320739103584201 25S.29E.15.31134

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 GO

Well Site

DESCRIPTION:

Latitude 32°07'39", Longitude 103°58'42" NAD27 Eddy County, New Mexico , Hydrologic Unit 13060011 Well depth: 192 feet Land surface altitude: 3,017 feet above NAVD88. Well completed in "Other aquifers" (N99990THER) national aquifer. Well completed in "Rustler Formation" (312RSLR) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1983-02-01	1998-01-29	4
Revisions	Unavailable (site:0) (timese	eries:0)

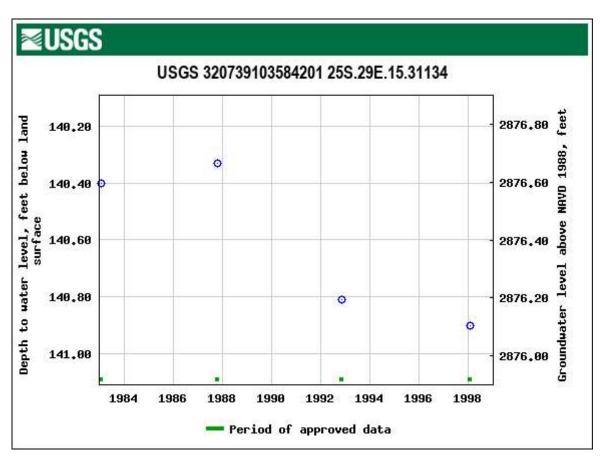
OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Released to Imaging: 3/9/2022 4:33:23 PM

Accessibility FOIA Privacy Policies and Notices


U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory? agency_code=USGS&site_no=320739103584201

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2021-12-16 15:04:39 EST 0.26 0.25 sdww02

Page 21 of 49

Released to Imaging: 3/9/2022 4:33:23 PM

•

								BH or PH Name: B	H01	Date: 12-30-2021
					WS	P USA				
				5	08 West S	Stevens S	Street	Site Name: Corral Canyo	on Expa	ansion
				Car	lsbad, Nev	w Mexico	88220	RP or Incident Number:	NAPP2	132240471
								WSP Job Number: 3140	3236.0	20.0129
				SIC / SOIL	SAMPL	ING LO	G	Logged By: GM		Method: Hand Auger
.at/Lo	ng: 32.153	357, -103.	99961		Field Scre			Hole Diameter: 4"		Total Depth: 1 feet
Comm	ł		do fiold	screenings	Hach chlo	ride strips,	, PID			
omm	ents.			Y-yes; N-no;			;			
Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol	Lith	ology/	′Remarks
Μ	694	8	Ν	BH01	0.5	0.5	SM	Silty sand, fine grains, poorly	grad	ed, tan/brown
Μ	162	4	Ν	BH01A	1	1	SM	Fine to medium grained san	d with	silt, well graded, tan
$\overline{}$							TD	@ 1 ft bgs		

Released to Imaging: 3/9/2022 4:33:23 PM

wsp

		PHOTOGRAPHIC LOG	
XTO Ene	ergy	Corral Canyon Expansion	NAPP2132240471
		Eddy County, New Mexico	
		- II. Subleman	
Photo No.	Date		061 📣 📲 E115
1	November 11,		
	2021		and the second se
	of the release and		
damag	ged liner		and the second second
			a count the second
			and the second
			and there
		and the second second	and the second
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		and a start	
			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
		4	10 666
		Created with	
		free versione	
		, GPS Camera	
		LATEN STREET	and a second second
		11Nov21 09:17 Ad-hoc Carlsbad NM 88220, United States @ 11	L-Nov-21 09:17:17
		Gansoad NW 88220, Onlied States @ T	T-NUV-21 U9.17.17

•

wsp

		PHOTOGRAPHIC LOG	
XTO Ene	ergy	Corral Canyon Expansion	NAPP2132240471
		Eddy County, New Mexico	
Photo No.	Date		- And and and a start
2	December 30,		
	2021		
	er after delineation		A Company of the second
and ba	ckfilling		A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OF THE OWNER OWNE OWNER OWNE
			and the second sec
			A BALL AND A BALL
			and the second sec
		A CALL AND A CALL AND A	
		and the second	A CONTRACTOR
			and the second second
			the state of the
		Carlo - M. M.	C. C. Martine
			* * 10

•

Released to Imaging: 3/9/2022 4:33:23 PM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-1787-1

Laboratory Sample Delivery Group: 31403236.020.0129 Client Project/Site: Corral Canyon Expansion Tank Battery

For:

WSP USA Inc. 2777 N. Stemmons Freeway Suite 1600 Dallas, Texas 75207

Attn: Tacoma Morrissey

RAMER

Authorized for release by: 1/6/2022 2:22:22 PM

Jessica Kramer, Project Manager (432)704-5440 jessica.kramer@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert

www.eurofinsus.com/Env Released to Imaging: 3/9/2022 4:33:23 PM

Visit us at:

Laboratory Job ID: 890-1787-1

SDG: 31403236.020.0129

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	7
	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
	18
Receipt Checklists	19

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

	Definitions/Glossary	
Client: WSP US		
Project/Site: Co	rral Canyon Expansion Tank Battery SDG: 31403236.020.0129	
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
Glossary		0
Abbreviation	These commonly used abbreviations may or may not be present in this report.	3
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	4.0
DL	Detection Limit (DoD/DOE)	13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	

LOQ

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL

PRES QC

RER

RL RPD

TEF

TEQ

TNTC

Eurofins Xenco

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery Job ID: 890-1787-1 SDG: 31403236.020.0129

Job ID: 890-1787-1

Laboratory: Eurofins Xenco

Narrative

Job Narrative 890-1787-1

Receipt

The samples were received on 1/3/2022 8:47 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-15881 and analytical batch 880-15940 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

Client Sample Results

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Client Sample ID: BH01

Date Collected: 12/30/21 10:50 Date Received: 01/03/22 08:47

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		01/04/22 10:19	01/04/22 18:14	
Toluene	<0.00201	U	0.00201	mg/Kg		01/04/22 10:19	01/04/22 18:14	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/04/22 10:19	01/04/22 18:14	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/04/22 10:19	01/04/22 18:14	
p-Xylene	<0.00201	U	0.00201	mg/Kg		01/04/22 10:19	01/04/22 18:14	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/04/22 10:19	01/04/22 18:14	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	126		70 - 130			01/04/22 10:19	01/04/22 18:14	
1,4-Difluorobenzene (Surr)	109		70 - 130			01/04/22 10:19	01/04/22 18:14	
Method: Total BTEX - Total BTEX	Calculation							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/06/22 15:01	
Method: 8015 NM - Diesel Range								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			01/06/22 15:12	
Method: 8015B NM - Diesel Rang								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/04/22 08:34	01/04/22 16:49	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/04/22 08:34	01/04/22 16:49	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/04/22 08:34	01/04/22 16:49	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130			01/04/22 08:34	01/04/22 16:49	
o-Terphenyl	125		70 - 130			01/04/22 08:34	01/04/22 16:49	
Method: 300.0 - Anions, Ion Chro								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	547		4.99	mg/Kg			01/05/22 12:31	
lient Sample ID: BH01A						Lab San	nple ID: 890-	1787-2
ate Collected: 12/30/21 10:55							Matri	x: Soli
ate Received: 01/03/22 08:47								
ample Depth: 1								
Method: 8021B - Volatile Organic	Compounds ((GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	.0.00000		0.00202	malla		01/04/22 10:19	01/04/00 10:04	
Benzene	<0.00202	0	0.00202	mg/Kg		01/04/22 10.19	01/04/22 18:34	
Benzene Toluene	<0.00202 <0.00202		0.00202	mg/Kg		01/04/22 10:19	01/04/22 18:34	

4-Bromofluorobenzene (Surr)	115		70 - 130		01/04/22 10:19	01/04/22 18:34	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00404	U	0.00404	mg/Kg	01/04/22 10:19	01/04/22 18:34	1
o-Xylene	<0.00202	U	0.00202	mg/Kg	01/04/22 10:19	01/04/22 18:34	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg	01/04/22 10:19	01/04/22 18:34	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg	01/04/22 10:19	01/04/22 18:34	1
Toluene	<0.00202	U	0.00202	mg/Kg	01/04/22 10:19	01/04/22 18:34	1

Job ID: 890-1787-1 SDG: 31403236.020.0129

Lab Sample ID: 890-1787-1

Matrix: Solid

Eurofins Xenco

Project/Site: Corral Canyon Expansion Tank Battery

Method: Total BTEX - Total BTEX Calculation

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Limits

70 - 130

RL

RL

50.0

0.00404

Unit

Unit

Unit

mg/Kg

mg/Kg

Job ID: 890-1787-1 SDG: 31403236.020.0129

Client Sample ID: BH01A

Date Collected: 12/30/21 10:55 Date Received: 01/03/22 08:47

Sample Depth: 1

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Client: WSP USA Inc.

Lab Sample ID: 890-1787-2

Analyzed

01/04/22 18:34

Analyzed

01/06/22 15:01

Analyzed

01/06/22 15:12

Analyzed

Prepared

01/04/22 10:19

Prepared

Prepared

Prepared

D

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

1

1

5

8
9

Me	thod: 8015B NM - Diesel Range	Organics (D	RO) (GC)		
An	alyte	Result	Qualifier	RL	

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

Result Qualifier

Result Qualifier

<50.0 U

95

<0.00404 U

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
o-Terphenyl	115		70 - 130		01/04/22 08:34	01/04/22 17:10	1	
1-Chlorooctane	116		70 - 130		01/04/22 08:34	01/04/22 17:10	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	01/04/22 08:34	01/04/22 17:10	1	
C10-C28)								
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg	01/04/22 08:34	01/04/22 17:10	1	
Gasoline Range Organics	<50.0	U	50.0	mg/Kg	01/04/22 08:34	01/04/22 17:10	1	
	(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane 116 o-Terphenyl 115	(GRO)-C6-C10 <50.0 U Diesel Range Organics (Over <50.0 U C10-C28) Oll Range Organics (Over C28-C36) <50.0 U Surrogate %Recovery Qualifier 1-Chlorooctane 116 115 Method: 300.0 - Anions, Ion Chromatography - Soluble Soluble	(GR0)-C6-C10 50.0 50.0 Diesel Range Organics (Over <50.0 50.0 C10-C28) Oll Range Organics (Over C28-C36) <50.0 50.0 Surrogate %Recovery Qualifier Limits 1-Chlorooctane 116 70 - 130 o-Terphenyl 115 70 - 130	(GR0)-C6-C10 0 50.0 mg/Kg Diesel Range Organics (Over <50.0 U 50.0 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg Surrogate %Recovery Qualifier Limits 1-Chlorooctane 116 70 - 130 o-Terphenyl 115 70 - 130	(GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 01/04/22 08:34 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 01/04/22 08:34 Surrogate %Recovery Qualifier Limits Prepared 1-Chlorooctane 116 70 - 130 01/04/22 08:34 o-Terphenyl 115 70 - 130 01/04/22 08:34	(GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 01/04/22 08:34 01/04/22 17:10 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 01/04/22 08:34 01/04/22 17:10 Surrogate %Recovery Qualifier Limits Prepared Analyzed 1-Chlorooctane 116 70 - 130 01/04/22 08:34 01/04/22 17:10 o-Terphenyl 115 70 - 130 01/04/22 08:34 01/04/22 17:10	(GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 01/04/22 08:34 01/04/22 17:10 1 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 01/04/22 08:34 01/04/22 17:10 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 116 70 - 130 01/04/22 08:34 01/04/22 17:10 1 o-Terphenyl 115 70 - 130 01/04/22 08:34 01/04/22 17:10 1

	quanto	=		 ,	
Chloride	88.1	4.95	mg/Kg	01/05/22 12:56	1

Eurofins Xenco

Surrogate Summary

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)
	BFB1	DFBZ1	
Sample ID Client Sample ID	(70-130)	(70-130)	
9776-A-1-B MS Matrix Spike	117	112	
9776-A-1-C MSD Matrix Spike Duplicate	112	102	
I787-1 BH01	126	109	
1787-2 BH01A	115	95	
880-15881/1-A Lab Control Sample	113	105	
D 880-15881/2-A Lab Control Sample Dup	114	104	
80-15881/5-A Method Blank	123	104	
urrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	1CO1 (70-130)	OTPH1 (70-130)	
880-9776-A-1-F MS	Matrix Spike	108	107	
880-9776-A-1-G MSD	Matrix Spike Duplicate	104	108	
890-1787-1	BH01	124	125	
890-1787-2	BH01A	116	115	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

1CO2 OT
Lab Sample ID Client Sample ID (70-130) (70-
LCS 880-15946/2-A Lab Control Sample 94 9
LCSD 880-15946/3-A Lab Control Sample Dup 98 9
MB 880-15946/1-A Method Blank 110 11

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 35 of 49

Job ID: 890-1787-1 SDG: 31403236.020.0129

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-15881/5-A

QC Sample Results

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid							Prep Type: 1	fotal/NA
Analysis Batch: 15940							Prep Batch	n: 1 5 881
	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/03/22 16:00	01/04/22 12:52	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			01/03/22 16:00	01/04/22 12:52	1
1,4-Difluorobenzene (Surr)	104		70 - 130			01/03/22 16:00	01/04/22 12:52	1

Lab Sample ID: LCS 880-15881/1-A Matrix: Solid

Analysis Batch: 15940

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07225		mg/Kg		72	70 - 130	
Toluene	0.100	0.07317		mg/Kg		73	70 - 130	
Ethylbenzene	0.100	0.08304		mg/Kg		83	70 ₋ 130	
m-Xylene & p-Xylene	0.200	0.1620		mg/Kg		81	70 - 130	
o-Xylene	0.100	0.08231		mg/Kg		82	70 ₋ 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 880-15881/2-A

Matrix: Solid

Analysis Batch: 15940							Prep	Batch:	15881
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07039		mg/Kg		70	70 - 130	3	35
Toluene	0.100	0.07719		mg/Kg		77	70 - 130	5	35
Ethylbenzene	0.100	0.08395		mg/Kg		84	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.1671		mg/Kg		84	70 - 130	3	35
o-Xylene	0.100	0.08181		mg/Kg		82	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-9776-A-1-B MS

Matrix: Solid

Analysis Batch: 15940									Prep	Batch: 15881
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1	0.101	0.06410	F1	mg/Kg		63	70 - 130	
Toluene	<0.00201	U F1	0.101	0.07526		mg/Kg		75	70 - 130	

Eurofins Xenco

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 890-1787-1 SDG: 31403236.020.0129

Client Sample ID: Method Blank

13

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

rop ijpor rotanini	
Prep Batch: 15881	

Released to	Imaging:	3/9/2022	4:33:23	PM

QC Sample Results

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery Job ID: 890-1787-1 SDG: 31403236.020.0129

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-9776-A Matrix: Solid									Sample ID: Prep T	ype: To	
Analysis Batch: 15940										Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00201	U	0.101	0.07811		mg/Kg		77	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1524		mg/Kg		75	70 - 130		
o-Xylene	<0.00201	U	0.101	0.07818		mg/Kg		77	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	112		70 - 130								
Lab Sample ID: 880-9776-A						CI	iont S	amnio IF): Matrix Sp	niko Dur	licate
Matrix: Solid										ype: To	
Analysis Batch: 15940										Batch:	
Analysis Datch. 13540	Sample	Sample	Spike	MSD	MSD				%Rec.	Datch.	RPE
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00201	U F1	0.101		F1	mg/Kg		58	70 - 130	9	
Toluene	< 0.00201		0.101	0.06520	F1	mg/Kg		65	70 - 130	14	3
Ethylbenzene	< 0.00201		0.101	0.07257		mg/Kg		72	70 - 130	7	35
m-Xylene & p-Xylene	<0.00402	U	0.201	0.1434		mg/Kg		71	70 - 130	6	35
o-Xylene	<0.00201		0.101	0.07200		mg/Kg		72	70 - 130	8	35
5		MSD									
	MSD										
		Qualifier	Limits								
Surrogate	MSD %Recovery 	Qualifier	Limits								
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery	Qualifier									
Surrogate 4-Bromofluorobenzene (Surr)			70 - 130 70 - 130								

Matrix: Solid

Analysis Batch: 15965							Prep Batcl	h: 15946
	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/04/22 08:34	01/04/22 10:57	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/04/22 08:34	01/04/22 10:57	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/04/22 08:34	01/04/22 10:57	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

1-Chlorooctane	110	70 - 130
o-Terphenyl	118	70 - 130

Lab Sample ID: LCS 880-15946/2-A Matrix: Solid

Analysis Batch: 15965							Prep Ba	atch: 15946
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	884.9		mg/Kg		88	70 _ 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	902.4		mg/Kg		90	70 - 130	
C10-C28)								

Eurofins Xenco

Prep Type: Total/NA

01/04/22 08:34 01/04/22 10:57

01/04/22 10:57

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

01/04/22 08:34

Released to Imaging: 3/9/2022 4:33:23 PM

1

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 890-1787-1 SDG: 31403236.020.0129

Lab Sample ID: LCS 880-159 Matrix: Solid	946/2-A						Client	Sample	ID: Lab Co		
										Type: Tot	
Analysis Batch: 15965									Frep	Batch:	1594
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	94		70 - 130								
o-Terphenyl	93		70 - 130								
Lab Sample ID: LCSD 880-1	5946/3-A					Clier	nt Sam	ple ID:	Lab Contro	I Sample	e Du
Matrix: Solid									Prep 1	Type: Tot	tal/N
Analysis Batch: 15965									Prep	Batch:	1594
			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	893.6		mg/Kg		89	70 - 130	1	2
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	858.4		mg/Kg		86	70 - 130	5	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
o-Terphenyl	92		70 - 130								
Lab Sample ID: 880-9776-A-									Sample ID		-
									Prep	Type: Tot Batch:	
Analysis Batch: 15965	Sample	-	Spike		MS				Prep %Rec.		
Analysis Batch: 15965 Analyte	Result	Qualifier	Added	Result	MS Qualifier	Unit	D	%Rec	Prep %Rec. Limits		
Analysis Batch: 15965 Analyte Gasoline Range Organics	-	Qualifier	-			- <mark>Unit</mark> mg/Kg	D	%Rec 97	Prep %Rec.		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	Added	Result			<u> </u>		Prep %Rec. Limits		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U U	Added 996	Result 987.8		mg/Kg	<u>D</u>	97	Prep %Rec. Limits 70 - 130		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 <49.9	Qualifier U U	Added 996	Result 987.8		mg/Kg	D	97	Prep %Rec. Limits 70 - 130		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Result <49.9 <49.9 MS	Qualifier U U	Added996	Result 987.8		mg/Kg	<u>D</u>	97	Prep %Rec. Limits 70 - 130		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane		Qualifier U U	Added 996 996 Limits	Result 987.8		mg/Kg	<u>D</u>	97	Prep %Rec. Limits 70 - 130		
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 MS %Recovery 108 107	Qualifier U U	Added 996 996 Limits 70 - 130	Result 987.8		mg/Kg		97 100	Prep %Rec. Limits 70 - 130	Batch:	1594
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 MS %Recovery 108 107	Qualifier U U	Added 996 996 Limits 70 - 130	Result 987.8		mg/Kg		97 100	Prep %Rec. Limits 70 - 130 70 - 130 20 - 130	Batch:	1594
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid	Result <49.9 <49.9 MS %Recovery 108 107	Qualifier U U	Added 996 996 Limits 70 - 130	Result 987.8		mg/Kg		97 100	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1	Batch:	1594
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid	Result <49.9 <49.9 MS %Recovery 108 107	Qualifier U U MS Qualifier	Added 996 996 Limits 70 - 130	Result 987.8 998.3		mg/Kg		97 100	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1	Dike Dup	licat tal/N 1594
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965	Result <49.9 <49.9 <i>MS</i> %Recovery 108 107 -1-G MSD Sample	Qualifier U U MS Qualifier	Added 996 996 Limits 70 - 130 70 - 130	Result 987.8 998.3 998.3	Qualifier	mg/Kg		97 100	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep T	Dike Dup	licat tal/N RP
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics	Result <49.9 <49.9 <i>MS</i> %Recovery 108 107 -1-G MSD Sample	Qualifier U MS Qualifier Sample Qualifier	Added 996 996 Limits 70 - 130 70 - 130 Spike	Result 987.8 998.3 998.3	Qualifier	mg/Kg mg/Kg Cl	ient Sa	97 100	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	Dike Dup Type: Tot Batch:	olicat tal/N 1594 RP Lim
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U MS Qualifier Qualifier U	Added 996 996 Limits 70 - 130 70 - 130 70 - 130	Result 987.8 998.3 998.3 MSD Result	Qualifier	mg/Kg mg/Kg Cl	ient Sa	97 100 ample IE %Rec	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	Dike Dup Type: Tot Batch: RPD	olicat tal/N 1594 RP Lim 2
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U MS Qualifier Qualifier U U	Added 996 996 <u>Limits</u> 70 - 130 70 - 130 70 - 130 800 70 - 130	Result 987.8 998.3 MSD Result 984.4	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	97 100 ample IE <u>%Rec</u> 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec. Limits 70 - 130	bike Dup Type: Tot Batch: RPD 0	olicat tal/N 1594 RP Lim 2
Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U MS Qualifier Qualifier U U MSD	Added 996 996 <u>Limits</u> 70 - 130 70 - 130 70 - 130 800 70 - 130	Result 987.8 998.3 MSD Result 984.4	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	97 100 ample IE <u>%Rec</u> 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec. Limits 70 - 130	bike Dup Type: Tot Batch: RPD 0	olicat tal/N 1594 RP Lim 2
Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-9776-A- Matrix: Solid Analysis Batch: 15965 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U MS Qualifier Qualifier U U MSD	Added 996 996 Limits 70 - 130 70 - 130 Spike Added 999 999	Result 987.8 998.3 MSD Result 984.4	Qualifier	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	97 100 ample IE <u>%Rec</u> 97	Prep %Rec. Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec. Limits 70 - 130	bike Dup Type: Tot Batch: RPD 0	1594

Client: WSP USA Inc.

Job ID: 890-1787-1 SDG: 31403236.020.0129

Project/Site: Corral Canyon Expansion Tank Battery

Method: 300.0 - Anions, Ion Chromatography

_ Lab Sample ID: MB 880-15970/1-A								Client	Sample ID	Method	Blank
Matrix: Solid										o Type: S	
Analysis Batch: 16092											
-		MB MB									
Analyte	R	esult Qua	lifier	RL	Unit	t	D	Prepared	Anal	/zed	Dil Fac
Chloride	<	<5.00 U		5.00	mg/l	Kg			01/05/22	2 12:06	1
 Lab Sample ID: LCS 880-15970/2-A							Clie	ent Samp	le ID: Lab (Control S	ample
Matrix: Solid									Pre	o Type: S	oluble
Analysis Batch: 16092											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Resul	t Qualifier	Unit		D %Rec	Limits		
Chloride			250	239.9)	mg/Kg		96	90 - 110		
 Lab Sample ID: LCSD 880-15970/3-	A					CI	ient S	ample ID	: Lab Contr	ol Samp	le Dup
Matrix: Solid										o Type: S	
Analysis Batch: 16092											
-			Spike	LCSI	LCSD				%Rec.		RPD
Analyte			Added	Resul	t Qualifier	Unit		D %Rec	Limits	RPD	Limit
Chloride			250	249.5	5	mg/Kg		100	90 _ 110	4	20
– Lab Sample ID: 890-1787-1 MS									Client Sa	ample ID:	: BH01
Matrix: Solid										o Type: S	
Analysis Batch: 16092											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Resul	t Qualifier	Unit		D %Rec	Limits		
Chloride	547		250	771.7	,	mg/Kg		90	90 - 110		
_ Lab Sample ID: 890-1787-1 MSD									Client Sa	ample ID:	: BH01
Matrix: Solid										o Type: S	
Analysis Batch: 16092											
	Sample	Sample	Spike	MSE	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	Resul	Qualifier	Unit		D %Rec	Limits	RPD	Limit
Analyte	Result	quanner	Auucu	Regul	Quanner	Unit		01100	Linnis		Ennine .

Eurofins Xenco

QC Association Summary

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery Job ID: 890-1787-1 SDG: 31403236.020.0129

GC VOA

Prep Batch: 15881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	5035	
890-1787-2	BH01A	Total/NA	Solid	5035	
MB 880-15881/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-15881/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-15881/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9776-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-9776-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 15940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	8021B	15881
890-1787-2	BH01A	Total/NA	Solid	8021B	15881
MB 880-15881/5-A	Method Blank	Total/NA	Solid	8021B	15881
LCS 880-15881/1-A	Lab Control Sample	Total/NA	Solid	8021B	15881
LCSD 880-15881/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	15881
880-9776-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	15881
880-9776-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	15881

Analysis Batch: 16173

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	Total BTEX	
890-1787-2	BH01A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 15946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	8015NM Prep	
890-1787-2	BH01A	Total/NA	Solid	8015NM Prep	
MB 880-15946/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-15946/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-15946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-9776-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-9776-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 15965

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	8015B NM	15946
890-1787-2	BH01A	Total/NA	Solid	8015B NM	15946
MB 880-15946/1-A	Method Blank	Total/NA	Solid	8015B NM	15946
LCS 880-15946/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	15946
LCSD 880-15946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	15946
880-9776-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	15946
880-9776-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	15946

Analysis Batch: 16174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1787-1	BH01	Total/NA	Solid	8015 NM	
890-1787-2	BH01A	Total/NA	Solid	8015 NM	

5

QC Association Summary

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Job ID: 890-1787-1 SDG: 31403236.020.0129

HPLC/IC

Leach Batch: 15970

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-1787-1	BH01	Soluble	Solid	DI Leach	
390-1787-2	BH01A	Soluble	Solid	DI Leach	
MB 880-15970/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-15970/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
-CSD 880-15970/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-1787-1 MS	BH01	Soluble	Solid	DI Leach	
390-1787-1 MSD	BH01	Soluble	Solid	DI Leach	
nalysis Batch: 16092					
nalysis Batch: 16092					/ /
nalysis Batch: 16092 .ab Sample ID	Client Sample ID BH01	Prep Type Soluble	Matrix Solid	<u>Method</u> 300.0	Prep Batch 15970
nalysis Batch: 16092 ab Sample ID 390-1787-1	Client Sample ID				_ <u> </u>
	Client Sample ID BH01	Soluble	Solid	300.0	15970
nalysis Batch: 16092 Lab Sample ID 390-1787-1 390-1787-2 MB 880-15970/1-A	Client Sample ID BH01 BH01A	Soluble	Solid Solid	300.0 300.0	15970 15970
nalysis Batch: 16092 Lab Sample ID 390-1787-1 390-1787-2	Client Sample ID BH01 BH01A Method Blank	Soluble Soluble Soluble	Solid Solid Solid	300.0 300.0 300.0	15970 15970 15970 15970
Lab Sample ID 390-1787-1 390-1787-2 VIB 880-15970/1-A LCS 880-15970/2-A	Client Sample ID BH01 BH01A Method Blank Lab Control Sample	Soluble Soluble Soluble Soluble	Solid Solid Solid Solid	300.0 300.0 300.0 300.0	15970 15970 15970 15970 15970

Analysis Batch: 16092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-1787-1	BH01	Soluble	Solid	300.0	15970
890-1787-2	BH01A	Soluble	Solid	300.0	15970
MB 880-15970/1-A	Method Blank	Soluble	Solid	300.0	15970
LCS 880-15970/2-A	Lab Control Sample	Soluble	Solid	300.0	15970
LCSD 880-15970/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	15970
890-1787-1 MS	BH01	Soluble	Solid	300.0	15970
890-1787-1 MSD	BH01	Soluble	Solid	300.0	15970

Project/Site: Corral Canyon Expansion Tank Battery

Client Sample ID: BH01

Client: WSP USA Inc.

Date Collected: 12/30/21 10:50 Date Received: 01/03/22 08:47

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			15881	01/04/22 10:19	KL	XEN MID
Total/NA	Analysis	8021B		1	15940	01/04/22 18:14	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	16173	01/06/22 15:01	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	16174	01/06/22 15:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			15946	01/04/22 08:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1	15965	01/04/22 16:49	AJ	XEN MID
Soluble	Leach	DI Leach			15970	01/04/22 11:46	CA	XEN MID
Soluble	Analysis	300.0		1	16092	01/05/22 12:31	СН	XEN MID

Client Sample ID: BH01A Date Collected: 12/30/21 10:55

Date Received: 01/03/22 08:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			15881	01/04/22 10:19	KL	XEN MID
Total/NA	Analysis	8021B		1	15940	01/04/22 18:34	KL	XEN MID
Total/NA	Analysis	Total BTEX		1	16173	01/06/22 15:01	AJ	XEN MID
Total/NA	Analysis	8015 NM		1	16174	01/06/22 15:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			15946	01/04/22 08:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1	15965	01/04/22 17:10	AJ	XEN MID
Soluble	Leach	DI Leach			15970	01/04/22 11:46	CA	XEN MID
Soluble	Analysis	300.0		1	16092	01/05/22 12:56	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 42 of 49

Job ID: 890-1787-1 SDG: 31403236.020.0129

Lab Sample ID: 890-1787-1 Matrix: Solid

Lab Sample ID: 890-1787-2

Matrix: Solid

Accreditation/Certification Summary

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Laboratory: Eurofins Xenco

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	P	rogram	Identification Number	Expiration Date	
as		ELAP	T104704400-21-22	06-30-22	
The following analytes	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for	
the agency does not o					
the agency does not o Analysis Method	fer certification. Prep Method	Matrix	Analyte		
0,		Matrix Solid	Analyte Total TPH		

Eurofins Xenco

10

Job ID: 890-1787-1 SDG: 31403236.020.0129

Method Summary

Client: WSP USA Inc. Project/Site: Corral Canyon Expansion Tank Battery

Job ID: 890-1787-1 SDG: 31403236.020.0129

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Xenco, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-1787-1 SDG: 31403236.020.0129

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-1787-1	BH01	Solid	12/30/21 10:50	01/03/22 08:47	0.5	
890-1787-2	BH01A	Solid	12/30/21 10:55	01/03/22 08:47	1	

of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control ref Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by 1 1 1 1 1 1 Received by: (Signature) Received by 3 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Ca Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co	Х × трн (1 Х X ВТЕХ	Project Number: 31403236.020.0129 Routine Sampler's Name: Gilbert Moreno Rush: Sampler's Name: Gilbert Moreno Due Date: Sampler's Name: Gilbert Moreno Due Date: Sampler's Name: Gilbert Moreno Due Date: Received Intact: 1.0 0.5 Thermometer ID Received Intact: Ves No Total Containers PA 8015) (EPA 0=8021) de (EPA 300.0)	Project Name: Corral Canyon Expansion Tank Battery Turn Around	Phone 337-257-8307 Gilbert Moreno@wsp.com, Adrian Baker@exxonmobil	le ZIP: Midland, TX 79705 Oity State 21 th	3300 North A Street	Company Name: WSP Company Name: WSP Company Name XTO Energy	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)
ne client if such losses are due to circumstances beyond the control d. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Revised by: (Signature) Revised Date 051418 Rev 2018 Revised Date 051418 Rev 2018	Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Cu Pb Mn Mo Ni Se Ag TI U 1631/245.1/7470 /7471 : Hg	Sample Comments	890-1787 Chain of Custody Hab, if received by 4:30pm	ANALYSIS REQUEST Work Order Notes	<u>com</u> Deliverables: EDD ADaPT			Work Order Comments Program: UST/PST PRP Brownfields RRC Superfund	M

Received by OCD: 1/31/2022 12:59:21 PM

1

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1787 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	False	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-1787-1 SDG Number: 31403236.020.0129

List Source: Eurofins Xenco

Job Number: 890-1787-1

List Source: Eurofins Xenco

SDG Number: 31403236.020.0129

List Creation: 01/04/22 11:06 AM

Login Sample Receipt Checklist

Client: WSP USA Inc.

Login Number: 1787 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	76915
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created	Condition	Condition
Ву		Date
jnobui	Closure Report Approved. Going forward, please submit with Closure Report photos of intact liner.	3/9/2022

Page 49 of 49

Action 76915