Remediation Summary & Backfill Request

Mewbourne Oil Company PWMS Derringer to VF Line

Eddy County, New Mexico Unit Letter "I", Section 25, Township 19 South, Range 28 East Latitude 32.628615 North, Longitude 104.122338 West NMOCD Reference No. nAPP2134428244

Prepared By:

Etech Environmental & Safety Solutions, Inc. 2507 79th St., Unit A Lubbock, TX 79423

n J. Arguijo

Environmental & Safety Solutions, Inc.

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

C .			
Se	CH	n	7

PROJECT INFORMATION.	1.0
SITE CHARACTERIZATION.	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
INITIAL SITE ASSESSMENT	4.0
PROPOSED REMEDIATION PLAN.	5.0
REGULATORY STIPULATIONS & APPROVALS.	6.0
REMEDIATION ACTIVITIES SUMMARY	
BACKFILL REQUEST	8.0
RESTORATION, RECLAMATION & RE-VEGETATION PLAN.	
LIMITATIONS	
DISTRIBUTION.	

FIGURES

Figure 1 - Topographic Map Figure 2 - Aerial Proximity Map Figure 3 - Site & Sample Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH & Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data & Soil Profile Logs
- Appendix C Photographic Log
- Appendix D Multimedia Exposure Assessment Model (MULTIMED)
- Appendix E Laboratory Analytical Reports

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company (Mewbourne), has prepared this *Remediation Summary & Backfill Request* for the release site known as the PWMS Derringer to VF Line (henceforth, "PWMS Derringer"). The legal description of the site is Unit Letter "I" (NE/SE), Section 25, Township 19 South, Range 28 East, in Eddy County, New Mexico. The property affected by the release is owned by the State of New Mexico and is administered by the New Mexico State Land Office (NMSLO). The geographic coordinates of the point of release are 32.628615° North latitude and 104.122338° West longitude. A topographic map of the area is provided as Figure 1.

On November 29, 2021, Mewbourne discovered a produced water release from a newly installed four-inch (4") poly line. Immediately upon discovery, the line was shut down, the pipeline was repaired, and a vacuum truck was dispatched to the site to recover any free-standing liquid. Approximately 100 barrels (bbls) of produced water were recovered during initial response activities. The total volume of the release was not able to be determined.

The release affected an area of pasture/rangeland measuring approximately 70,174 square feet. General photographs of the release are provided in Appendix C.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a halfmile radius of the PWMS Derringer release site.

Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. In addition, on December 10, 2021, an investigative soil boring/temporary monitor well was drilled at the site in an effort to determine if shallow groundwater is present in the area. The soil boring was advanced to a total depth of approximately 55 feet below ground surface (bgs) and left open for over 72 hours. No indications of inflow and/or accumulation of water were noted during the advancement of the soil boring or during a well gauging event conducted on December 13, 2021. The location of the investigative soil boring/temporary monitor well is depicted in Figure 2. A drilling log is provided in Appendix B.

New Mexico Oil Conservation Division (NMOCD) Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish and Wildlife Services (FWS) shapefiles, topographic maps, NMOSE and USGS databases, and aerial imagery. The results are depicted in Figures 1, 2, 4, and 5.

Site Characterization

What is the shallowest depth to groundwater beneath the area affected by the release? >55 Did the release impact groundwater or surface water? Yes No Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other Yes No significant watercourse? Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured Yes No from the ordinary high-water mark? Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, Yes No hospital, institution or church? Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh Yes No water well used by less than five households for domestic or stock watering purposes? Are the lateral extents of the release within 1000 feet of any other fresh water well or spring? Х Yes No

Site Characterization (cont.)

Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes	X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes	X No
Are the lateral extents of the release overlying a subsurface mine?	Yes	X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	X Yes	No
Are the lateral extents of the release within a 100-year floodplain?	Yes	X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes	No

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the PWMS Derringer release site are as follows:

Probable Depth to Groundwater	Constituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standard*‡
	Chloride (Cl-)	EPA 300.0 or SM4500 Cl B	600	600
	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	100	100
>55'	Gas Range Organics + Diesel Range Organics (GRO + DRO)	EPA SW-846 Method 8015M	N/A	N/A
	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

* Measured in milligrams per kilogram (mg/kg)

† Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas. Section 19.15.29.13 D.(1) NMAC.

4.0 INITIAL SITE ASSESSMENT

On December 9 and 10, 2021, an initial site assessment was conducted by a third-party environmental contractor that is no longer affiliated with the site. During the initial site assessment, a series of 27 soil bores and/or test trenches (PD-1 through PD-27) were advanced within the release margins in an effort to determine the vertical extent of impacted soil. In addition, four (4) hand-augered soil bores (Background-N, Background-E, Background-S, and Background-W) were advanced in unaffected areas around the release site in order to assess the background concentrations of contaminants of concern. During the advancement of the soil bores/test trenches, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit and/or the presence of Volatile Organic Compounds (VOCs) utilizing olfactory/visual senses.

Based on field observations and field test data, a total of 61 delineation soil samples were submitted to a certified commercial laboratory for analysis of BTEX, TPH, and/or chloride. Based on laboratory analytical results, the vertical extent of impacted soil was adequately defined and ranged from approximately four (4) feet bgs in the areas characterized by sample points PD-3, PD-22, PD-23, PD-24, and PD-25 to 50 feet bgs in the areas characterized by sample points PD-10, PD-13, PD-14, PD-17, and PD-20.

The locations of the soil bores and test trenches are depicted in Figure 3, "Site & Sample Location Map". Soil chemistry data is summarized in Table 1. Field data is provided in Appendix B. General photographs of the site are provided in Appendix C. Laboratory analytical reports are provided in Appendix E.

On December 13, 2021, Mewbourne contracted Etech to assume remediation activities for the release.

5.0 PROPOSED REMEDIATION PLAN

Based on laboratory analytical results, site characteristics, and field observations made during the initial site assessment, Mewbourne proposed the following remediation activities designed to advance the PWMS Derringer release site toward an approved closure:

- Utilizing mechanical equipment, excavate impacted soil within the inferred release margins (approximately 70,174 square feet) to a total depth of four (4) feet bgs.
- Advance the sidewalls of the excavated area until laboratory analytical results indicate BTEX, TPH, and chloride concentrations are below the NMOCD Closure Criteria and NMOCD Reclamation Standards.
- Transport excavated soil to an NMOCD-permitted surface waste facility for disposal.
- Upon completion of excavation activities, collect representative composite confirmation soil samples from the excavation sidewalls in each cardinal direction, representing no more than 50 linear feet. Collect additional, discrete samples as necessary from wet or visibly stained areas inferred to have been affected by the release.
- Upon receiving laboratory analytical results from excavation confirmation soil samples, install a 20-mil, string-reinforced, polyurethane liner on the floor of the excavated area in the areas characterized by sample points PD-1, PD-2, PD-4 through PD-21, PD-26, and PD-27.
- Following installation of the 20-mil liner, backfill the excavated area with locally sourced, non-impacted, "like" material.
- Upon completion of remediation activities, prepare a *Remediation Summary & Soil Closure Request* detailing field activities and laboratory analytical results from confirmation soil samples.

6.0 **REGULATORY APPROVALS & STIPULATIONS**

In January 2022, a *Site Assessment Report & Proposed Remediation Workplan* was submitted to the NMOCD proposing the aforementioned remediation activities designed to advance the release site toward regulatory closure. In addition, due to safety and environmental concerns, Mewbourne requested a variance to Section 19.15.29.12.C(3) NMAC to leave chloride contamination beyond four (4) bgs in-situ in the areas characterized by sample points PD-1, PD-2, PD-4 through PD-21, PD-26, and PD-27. Permission was also requested to install a 20-mil, string-reinforced, polyurethane liner on the floor of the proposed excavation, atop the affected soil.

Please reference the *Site Assessment Report & Proposed Remediation Workplan* (henceforth, "Workplan") for additional details regarding site characterization and proposed remediation activities.

On February 28, 2022, the Workplan was denied by the NMOCD, citing a "lack of sufficient characterization data at depth to provide proof of environmental safety."

On March 3, 2022, representatives of Mewbourne met with representatives of the NMOCD Artesia District Office to discuss the site and determine a path forward to an approved closure. Mewbourne proposed to advance three (3) soil borings in representative areas of the excavation in order to sufficiently characterize the impacted soil to remain in-situ and to demonstrate that vertical delineation had been achieved. The proposal was approved by the NMOCD.

7.0 **REMEDIATION ACTIVITIES SUMMARY**

On January 14, 2022, remediation activities commenced at the release site. In accordance with the Workplan, impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated to approximately four (4) feet bgs and stockpiled on-site, pending transfer to an NMOCD-permitted surface waste facility for disposal. A Hach Quantab ® chloride test kit and/or olfactory/visual senses and/or were utilized to field-screen the horizontal extent of impacted soil and to guide the excavation. The sidewalls of the excavation were advanced until field tests and field observations suggested BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards.

On January 26, 2022, Etech collected eight (8) confirmation soil samples (NW #1, NW #2, NW #3, EW #1, EW #2, WW #1, WW #2, and WW #3) from the sidewalls of the excavated area. The soil samples were submitted to a certified, commercial laboratory (henceforth, "the laboratory") for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. TPH and BTEX concentrations were also below the applicable laboratory method detection limit (MDL). Chloride concentrations ranged from 16.0 mg/kg in soil sample NW #2 to 416 mg/kg in soil sample WW #1.

On February 1, 2022, Etech collected nine (9) confirmation soil samples (EW #3, EW #4, EW #5, SW #1, SW #2, SW #3, SW #4, WW #4, and WW #5) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. TPH and BTEX concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from less than the laboratory MDL in soil samples EW #4, EW #5, and SW #3 to 112 mg/kg in soil sample SW #1.

On February 4, 2022, Etech collected seven (7) confirmation soil samples (NW #4, NW #5, EW #6, EW #7, WW #6, WW #8, and WW #9) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from less than the laboratory MDL in soil sample EW #7 to 288 mg/kg in soil sample WW #6.

On February 11, 2022, Etech collected three (3) confirmation soil samples (SW #7, SW #8, and WW #8) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from 64 mg/kg in soil sample SW #8 to 112 mg/kg in soil sample WW #8.

On February 14, 2022, Etech collected six (6) confirmation soil samples (EW #8, EW #9, SW #5, SW #6, WW #7, and WW #10) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from less than the laboratory MDL in soil sample WW #10 to 128 mg/kg in soil sample EW #8.

On February 15, 2022, in accordance with the Workplan, upon receiving laboratory analytical results from confirmation soil samples, a 20-mil, string-reinforced, polyurethane liner was installed on the floor of the excavation atop impacted soil affected above the NMOCD Closure Criteria in the areas characterized by PD-1 through PD-27. The liner was sloped to facilitate shedding of moisture outside the footprint of the excavation and the maximum horizontal extent of in-situ impacted soil. Prior to installation of the liner, an approximate 6-inch layer of pad material was installed below the liner in an effort to maintain its integrity during future backfilling activities.

On March 10, 2022, in accordance with the NMOCD, an auger truck was utilized to advance three (3) boreholes (B.H. #1, B.H. #2, and B.H. #3) in the floor of the excavation in an effort to better characterize affected soil in areas representative of each section of the excavation, as well as the deepest zones of contamination. Borehole B.H. #1 was advanced in the southern portion of the excavation (the secondary pooling area of the release), in the area characterized by sample points PD-26 and PD-27. Borehole B.H. #2 was advanced in the northern portion of the main excavation (the primary pooling area of the release), in the area characterized by sample points PD-1 through PD-9. Borehole B.H. #3 was advanced in the southern portion of the main excavation, in the area characterized by sample points PD-10 through PD-21.

During the advancement of the boreholes, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit and/or the presence of VOCs utilizing olfactory/visual senses. Based on field observations and field test data, a total of 22 delineation soil samples (B.H. #1 @ 5' through B.H. #1 @ 30', B.H. #2 @ 5' through B.H. #2 @ 45', and B.H. #3 @ 5' through B.H. #3 @ 35') were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX and TPH concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples, with the exception of soil sample B.H. #1 @ 15', which exhibited a TPH concentration of 143 mg/kg. BTEX concentrations were also below the laboratory MDL in each of the submitted soil samples. Chloride concentrations ranged from 32.0 mg/kg in soil sample B.H. #1 @ 30' to 10,200 mg/kg in soil sample B.H. #2 @ 5'. Based on these laboratory analytical results, the vertical extent of impacted soil was adequately characterized.

The locations of the boreholes are depicted in Figure 3, "Site & Sample Location Map". Drilling logs are provided in Appendix B.

On March 17, 2022, the damaged sections of liner around boreholes B.H. #1, B.H. #2, and B.H. #3 were replaced to ensure the structural integrity and impermeability of the liner were restored.

The dimensions of the excavated area are approximately 300 to 551 feet in length, 20 to 273 feet in width, and four (4) feet in depth. To date, Etech has transported approximately 16,536 cubic yards of impacted soil to an NMOCD-permitted surface waste facility for disposal.

The locations of the boreholes and confirmation soil samples, as well as the extents of the excavated area and liner, are depicted in Figure 3, "Site & Sample Location Map". Soil chemistry data is summarized in Table 1. Field data and soil profile logs are provided in Appendix B. General photographs of the release site are provided in Appendix C. Laboratory analytical reports are provided in Appendix E.

8.0 BACKFILL REQUEST

Impacted soil affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standards was excavated to the extent practicable due to safety and environmental concerns. All excavated soil was transported to an NMOCD-permitted facility for disposal. Laboratory analytical results from confirmation soil samples indicate concentrations of BTEX and TPH are below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards.

A 20-mil, string-reinforced, polyurethane liner was installed on the floor of the excavation in the areas characterized by sample points PD-1 through PD-27. This engineered control is designed to inhibit the vertical migration of chloride contamination remaining in-situ.

Etech utilized the Environmental Protection Agency's (EPA) Multimedia Exposure Assessment Model (MULTIMED) to determine if the contamination remaining in-situ under the liner poses a threat to groundwater quality. In addition to the synthetic liner, the MULTIMED assessment accounted for naturally occurring layers of clay and sandy clay that were encountered at various depths during the advancement of soil boring SB-1 and boreholes B.H. #1, B.H. #2, and B.H. #3 (see drilling logs in Appendix B). Using the most appropriate parameters for the site in regard to depth to groundwater (56 feet bgs), porosity of the various soil types, etc., the model indicates that the peak concentration of chloride in the underlying groundwater contributed by the contamination remaining in-situ would be approximately 241 mg/L in 301 years, versus 2,211 mg/L in 85.2 years if the excavation was not lined (see Appendix D).

Since the estimated peak chloride concentration in the underlying groundwater is below the standard of 250.0 mg/L specified in Section 20.6.2.3103 B.(1) NMAC, the MULTIMED model effectively demonstrates that leaving the chloride contamination insitu "does not cause an imminent risk to human health, the environment, or ground water", pursuant to Section 19.15.29.12.C(2) NMAC.

Based on the information summarized above, Mewbourne hereby requests permission to cease remediation activities at the PWMS Derringer release site and to backfill the excavation.

Following backfilling, a *Remediation Summary & Soil Closure Request* will be submitted, documenting completed restoration, reclamation, and revegetation activities.

9.0 RESTORATION, RECLAMATION & RE-VEGETATION PLAN

Areas affected by remediation and closure activities will be substantially restored to the condition that existed prior to the release, to the extent practicable. Excavated areas will be backfilled with locally sourced, non-impacted, "like" material placed at or near original relative positions. The affected area will be compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable. Affected areas not on production pads and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture during the first favorable growing season following closure of the site.

10.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this *Remediation Summary & Backfill Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents reference in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.

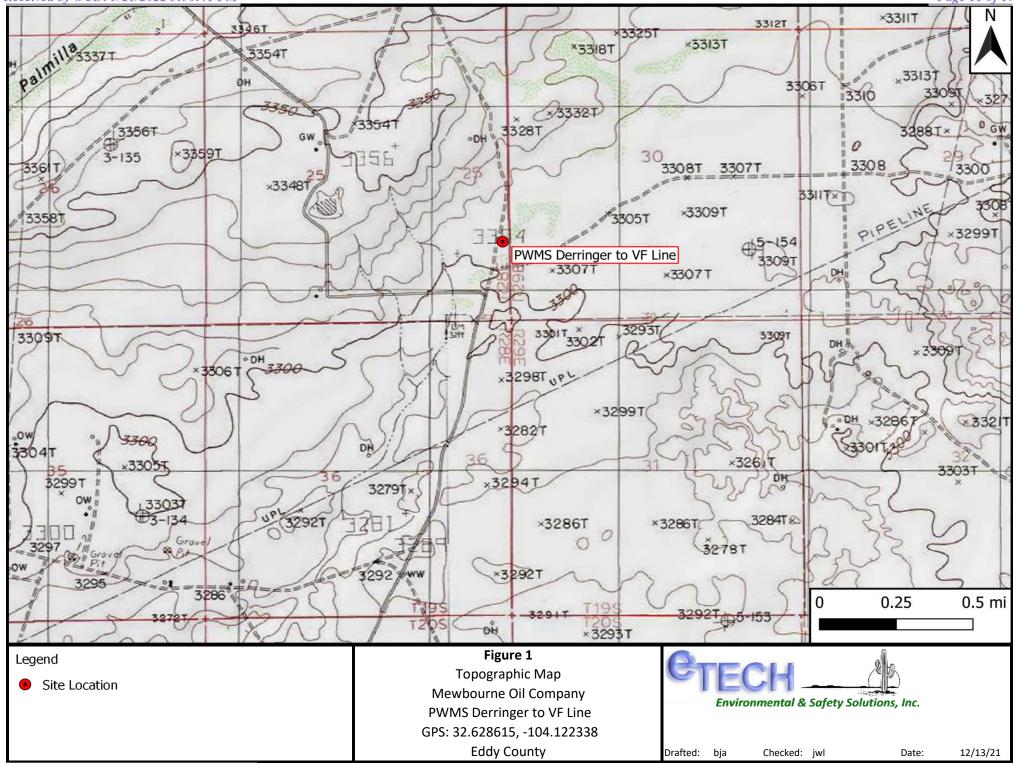
11.0 DISTRIBUTION

Mewbourne Oil Company

4801 Business Park Blvd. Hobbs, NM 88240

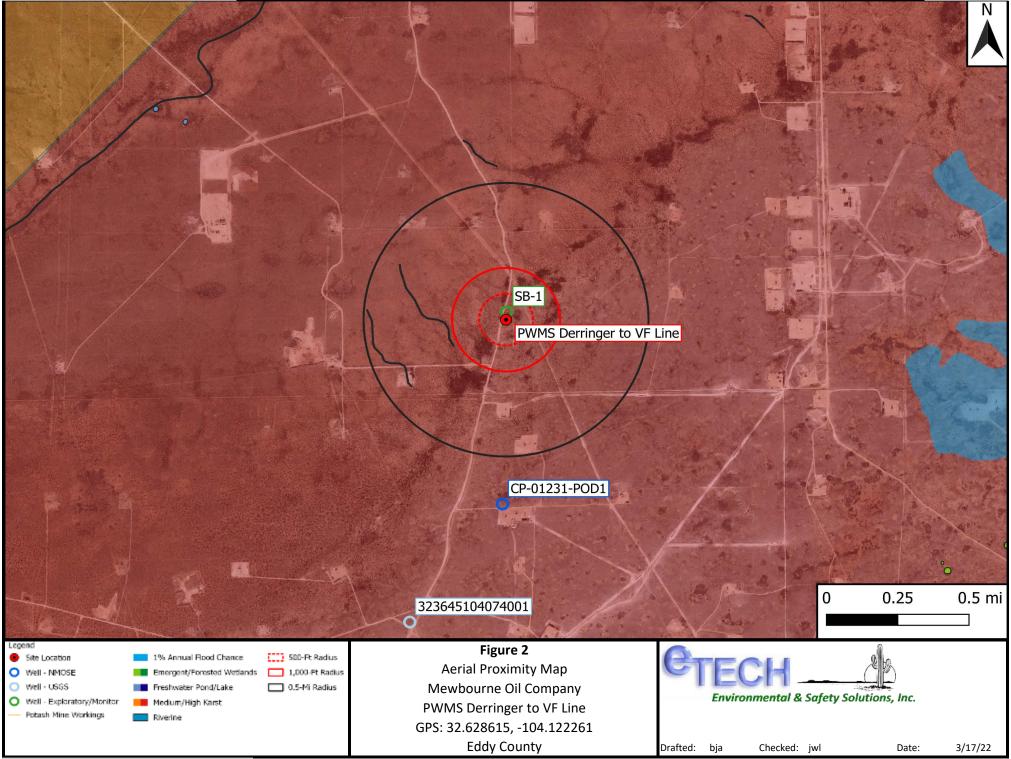
New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 2 811 S. First Street Artesia, NM 88210


Hobbs Field Office

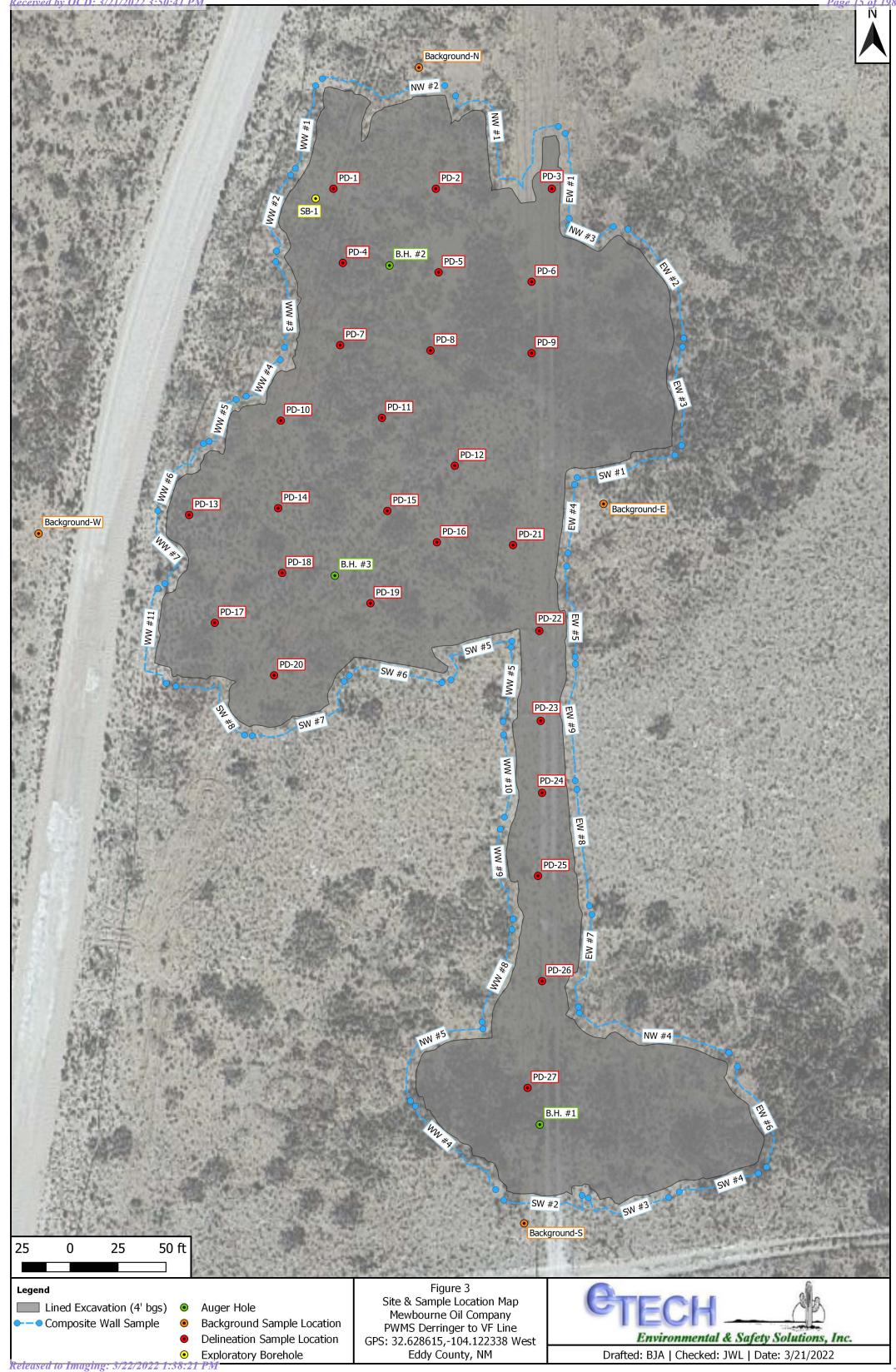
New Mexico State Land Office 2827 North Dal Paso Street Suite 117 Hobbs, NM 88240

(Electronic Submission)


Figure 1 Topographic Map

Page 11 of 198

Released to Imaging: 3/22/2022 1:38:21 PM


Figure 2 Aerial Proximity Map

Released to Imaging: 3/22/2022 1:38:21 PM

•

Figure 3 Site & Sample Location Map

Table 1Concentrations of BTEX, TPH & Chloride in Soil

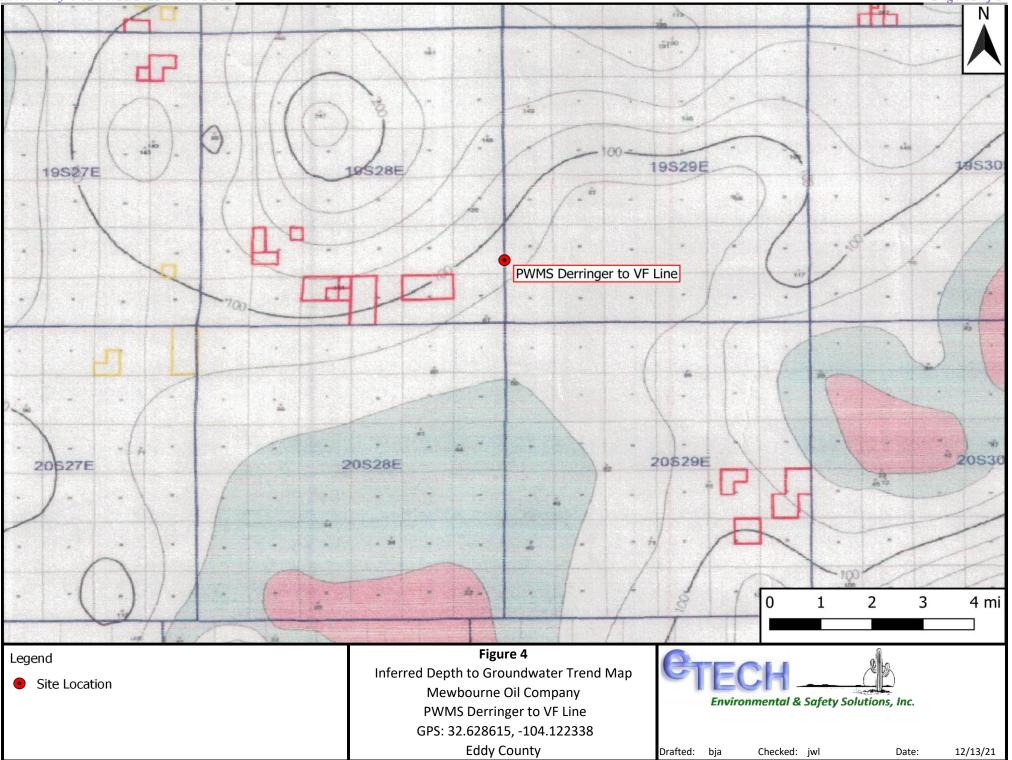
	Table 1 Concentrations of BTEX, TPH & Chloride in Soil													
			Conce		· · · · · · · · · · · · · · · · · · ·			ı Soil						
					vbourne (-	•							
					IS Derring	-								
) Ref. #: n	APP2134	428244		-					
	CD Closure C			10	50	-	-	-	-	100	600			
NMOCD	Reclamation	Standard		10	50	-	-	-	-	100	600			
				SW 840	5 8021B		SW	846 8015M	Ext.		4500 Cl			
Sample ID	Date	Depth	Soil	Benzene	BTEX	GRO	DRO	GRO + DRO	ORO	TPH	Chloride			
_		(Feet)	Status	(mg/kg)	(mg/kg)	$C_{6}-C_{10}$	$C_{10}-C_{28}$	C ₆ -C ₂₈	C ₂₈ -C ₃₆ (mg/kg)	$C_{6}-C_{36}$	(mg/kg)			
						(mg/kg)	(mg/kg)	(mg/kg)	(ing/kg)	(mg/kg)				
	12/0/2021	4	L. City	<0.050	Delineation	_	<10.0	<10.0	<10.0	<10.0	5 (90			
PD-1 Vertical @ 4'	<u>12/9/2021</u>	4 45	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,680			
PD-1 Vertical @ 45'	12/10/2021 12/9/2021	43	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0			
PD-2 Vertical @ 4'	12/10/2021	4	In-Situ								5,200 0.00			
PD-2 Vertical @ 40'		40	In-Situ In-Situ	- <0.050	- <0.300	- <10.0	- <10.0	- <10.0	- <10.0	- <10.0	48.0			
PD-3 Vertical @ 4' PD-4 Vertical @ 4'		4	In-Situ In-Situ	<0.030	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	6,320			
PD-4 Vertical @ 4' PD-4 Vertical @ 40'	12/10/2021	4	In-Situ In-Situ	~0.030	~0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0			
	12/9/2021	40	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,200			
PD-5 Vertical @ 4' PD-5 Vertical @ 25'		25	In-Situ	~0.030	~0.300	<10.0	-10.0	<10.0	-10.0	<10.0	32.0			
PD-5 Vertical @ 25	12/9/2021	4	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,120			
PD-6 Vertical @ 20'	12/10/2021	20	In-Situ	<0.030	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	160			
PD-7 Vertical @ 20	12/9/2021	4	In-Situ In-Situ	< 0.050	< 0.300	<10.0	47.7	47.7	<10.0	47.7	4,820			
PD-7 Vertical @ 40'	12/10/2021	20	In-Situ		<0.500	<10.0		-	<10.0		496			
PD-8 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,440			
PD-8 Vertical @ 25'		25	In-Situ	-	-	-	-	-	-	-	32.0			
PD-9 Vertical @ 25		4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	6,080			
PD-9 Vertical @ 25'		25	In-Situ	-0.050	-0.500	-10.0	-10.0	-10.0	-10.0	-10.0	32.0			
PD-10 Vertical @ 25	1.0.10.00.0.1	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	6,560			
PD-10 Vertical @ 50'	12/10/2021	50	In-Situ	-	-	-	-	-	-	-	32.0			
PD-11 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	3,400			
PD-11 Vertical @ 25'	12/10/2021	25	In-Situ	-0.050		-10.0	-10.0	-10.0		-10.0	192			
PD-12 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,680			
PD-12 Vertical @ 25'			In-Situ	-	-	-	-	-	-	-	208			
PD-13 Vertical @ 4'		4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	4,800			
Ŭ		50	In-Situ	-	-	-	-	-	-	-	48.0			
PD-14 Vertical @ 4'		4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	4,800			
PD-14 Vertical @ 50'	12/10/2021	50	In-Situ	-	-	-	-	-	-	-	16.0			
PD-15 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	800			
PD-15 Vertical @ 30'	12/10/2021	30	In-Situ	-	-	-	-	-	-	-	208			
PD-16 Vertical @ 4'		4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	2,880			
PD-16 Vertical @ 16'		16	In-Situ	-	-	-	-	-	-	-	192			
PD-17 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	13.8	13.8	<10.0	13.8	3,160			
PD-17 Vertical @ 50'	12/10/2021	50	In-Situ	-	-	-	-	-	-	-	16.0			
PD-18 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	6,400			
PD-18 Vertical @ 40'	12/10/2021	40	In-Situ	-	-	-	-	-	-	-	48.0			
PD-19 Vertical @ 4'		4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,200			
PD-19 Vertical @ 35'		35	In-Situ	-	-	-	-	-	-	-	176			
PD-20 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	3,800			
PD-20 Vertical @ 50'	12/10/2021	50	In-Situ	-	-	-	-	-	-	-	32.0			
PD-21 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	20.6	20.6	<10.0	20.6	3,760			

Dash (-): Not applicable OR sample not analyzed for that constituent. **Bold:** NMOCD Closure Criteria exceedance.

Bold: NMOCD Closure Criteria exceedance. Red: NMOCD Reclamation Standard exceedance.

Table 1 Comparison of the transmission of														
	Concentrations of BTEX, TPH & Chloride in Soil Mewbourne Oil Company													
						-	·							
					-	ger to VF								
NMO	CD Closure C	witawia				APP2134	428244	1		100	(00			
	Reclamation			10	50	-	-	-	-	100	600			
NMOCD	Reclamation	Stanuaru		10 SW 840	50	-	-	- / 846 8015M	- F4	100	600 4500 Cl			
		D 4	6 7	5 10 640	0 00215			GRO +			4500 CI			
Sample ID	Date	Depth (Feet)	Soil Status	Benzene	BTEX	GRO C6-C10	DRO C ₁₀ -C ₂₈	DRO	ORO C ₂₈ -C ₃₆	ТРН С6-С36	Chloride			
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	C ₆ -C ₂₈	(mg/kg)	(mg/kg)	(mg/kg)			
PD-21 Vertical @ 30'	12/10/2021	30	In-Situ	-	-	-	_	(mg/kg)	-	-	192			
PD-22 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0			
PD-23 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	752			
PD-24 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	0.00			
	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0			
PD-26 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	5,440			
PD-26 Vertical @ 20'	12/10/2021	20	In-Situ	-	-	-	-	-	-	-	0.00			
PD-27 Vertical @ 4'	12/9/2021	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	3,600			
PD-27 Vertical @ 30'	12/10/2021	30	In-Situ	-	-	-	-	-	-	-	0.00			
B.H. #1 @ 5'	3/10/2022	5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	4,480			
B.H. #1 @ 10'	3/10/2022	10	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	4,960			
B.H. #1 @ 15'	3/10/2022	15	In-Situ	< 0.050	< 0.300	<10.0	143	143	<10.0	143	4,000			
B.H. #1 @ 20'	3/10/2022	20	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	3,160			
B.H. #1 @ 25'	3/10/2022	25	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,060			
0	3/10/2022	30	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0			
	3/10/2022	5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	10,200			
	3/10/2022	10	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	3,440			
\sim	3/10/2022	15	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	8,530			
	3/10/2022	20	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	7,730			
	3/10/2022	25	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	5,120			
Ŭ	3/10/2022	30	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,480			
	3/10/2022	35	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	496			
Ŭ	3/10/2022	40	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160			
B.H. #2 @ 45'		45	In-Situ		< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128			
Ŭ	3/10/2022	5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	6,240			
	3/10/2022	10	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,160			
\sim	3/10/2022	15	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,400			
Ŭ	3/10/2022	20	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	240			
B.H. #3 @ 25' B.H. #3 @ 30'	3/10/2022	25 30	In-Situ In-Situ	<0.050 <0.050	<0.300 <0.300	<10.0 <10.0	<10.0 <10.0	<20.0 <20.0	<10.0 <10.0	<30.0 <30.0	560 256			
	3/10/2022	35	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	236			
D.11. #3 @ 33	3/10/2022	55	m-siu	~0.030	<0.300 Excavation		~10.0	~20.0	<10.0	~30.0	200			
NW #1	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0			
NW #2	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0			
NW #3	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0			
NW #4	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0			
NW #5	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0			
EW #1	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0			
EW #2	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0			
EW #3	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0			
EW #4	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	<16.0			

Dash (-): Not applicable OR sample not analyzed for that constituent.


Bold: NMOCD Closure Criteria exceedance. Red: NMOCD Reclamation Standard exceedance.

Released to Imaging: 3/22/2022 1:38:21 PM

					Tab	le 1								
Concentrations of BTEX, TPH & Chloride in Soil														
Mewbourne Oil Company														
PWMS Derringer to VF Line														
NMOCD Ref. #: nAPP2134428244														
NMOCD Closure Criteria 10 50 - - - 100														
NMOCD Reclamation Standard 10 50 - - 100														
	SW 846 8021B SW 846 8015M Ext.													
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C6-C10 (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C6-C36 (mg/kg)	Chloride (mg/kg)			
EW #5	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	<16.0			
EW #6	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	224			
EW #7	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	<16.0			
EW #8	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128			
EW #9	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0			
SW #1	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112			
SW #2	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0			
SW #3	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	<16.0			
SW #4	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0			
SW #5	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0			
SW #6	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112			
SW #7	2/11/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0			
SW #8	2/11/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0			
WW #1	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	416			
WW #2	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0			
WW #3	1/26/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128			
WW #4	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0			
WW #5	2/1/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0			
WW #6	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	288			
WW #7	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0			
WW #8	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0			
WW #9	2/4/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0			
WW #10	2/14/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	<16.0			
WW #11	2/11/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112			

•

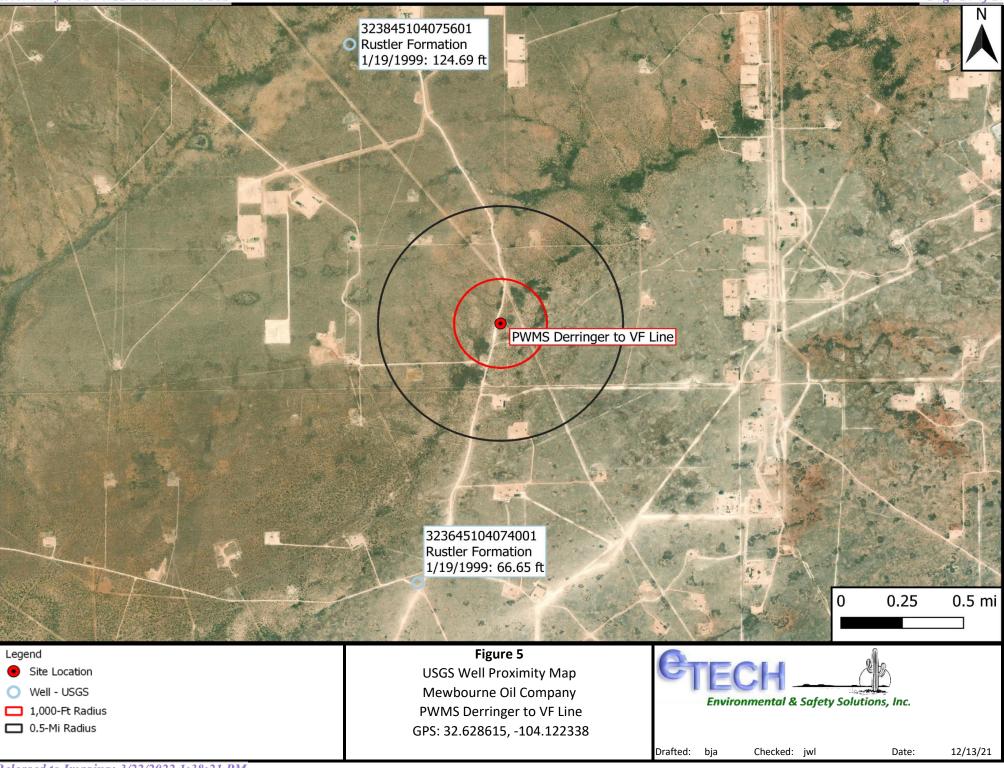
Appendix A Depth to Groundwater Information

Released to Imaging: 3/22/2022 1:38:21 PM

	V	/ at						•	the Stat ge De			ter	
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orpha C=the fil closed)	ned,	n	(1			V 2=NE 3 est to larg	3=SW 4=SE gest) (N	E) IAD83 UTM in n	neters)	(In fe	et)	
		POD Sub-		000)							W	ater
POD Number	Code		County		•	Tws	Rng	Х	Y	DistanceDe	othWellDeptl		
<u>CP 01231 POD1</u>		СР	ED	4 4	2 36	19S	28E	582311	3609372 🌍	1084	300	75	225
									Avera	ge Depth to Wate	er:	75 fee	t
										Minimum De	pth:	75 fee	t
										Maximum Dep	pth:	75 fee	t
Record Count: 1													
<u>UTMNAD83 Radiu</u>	is Search (in	n meters	<u>):</u>										
Easting (X): 58	2330.64		Nortl	hing (Y):	3610)456.4			Radius: 1610				

12/20/21 12:04 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER


New Mexico Office of the State Engineer **Point of Diversion Summary**

			• •	ers are 1= ters are si			W 4=SE) t)	(NAD83 UT	ſM in meters)	
Well Tag	POD	Number	Q64	Q16 Q4	Sec	: Tws	Rng	X	Y	
	CP 0	1231 POD1	4	4 2	36	19S	28E	582311	3609372 🌍	
^x Driller Lic Driller Nai		1654	Driller	Comp	any:			KING FOR STRUC	HIRESIRMA	N DRILLING
Drill Start	Date:	10/21/2013	Drill F	inish D	ate:	1	0/21/201	13 Plu	ıg Date:	
Log File D	ate:	PCW I	Rev Dat	te:			So	urce:	Shallow	
Pump Type	e:		Pipe D	ischarg	e Siz	e:		Est	imated Yield:	80 GPM
Casing Siz	e:	8.00	Depth		3	00 feet	De	pth Water:	75 feet	
X	Wate	r Bearing Stratif	fications:	ſ	op	Bottom	Descr	ription		
				2	200	300) Limes	stone/Dolom	ite/Chalk	
X		Casing Per	forations:	T	op .	Bottom	I			
				220	300					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

12/20/21 12:04 PM

POINT OF DIVERSION SUMMARY

Released to Imaging: 3/22/2022 1:38:21 PM

Page 25 of 198

✓ GO

USGS Home Contact USGS Search USGS

Geographic Area:

United States

Data Category:

Groundwater

National Water Information System: Web Interface

USGS Water Resources

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323645104074001 19S.28E.36.43233

Eddy County, New Mexico Latitude 32°36'45", Longitude 104°07'40" NAD27 Land-surface elevation 3,292 feet above NAVD88 The depth of the well is 87 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
			72019								
1965-12-07		D	72019	69.03			1	L Z			А
1968-04-02		D	72019	68.51			1	Z	:		А
1971-02-01		D	72019	71.75			1	L Z	:		А
1976-12-09		D	72019	67.29			1	Z	:		А
1983-02-16		D	72019	67.18			1	L Z	:		А
1986-06-03		D	72019	72.85			1	L S	;		А

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
			72019								
1994-03-04		D	72019	66.68			1	S			А
1999-01-19		D	72019	66.65			1	S	USGS	S	А

Explanation						
Section	Code	Description				
Water-level date-time accuracy	D	Date is accurate to the Day				
Parameter code	62610	Groundwater level above NGVD 1929, feet				
Parameter code	62611	Groundwater level above NAVD 1988, feet				
Parameter code	72019	Depth to water level, feet below land surface				
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988				
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929				
Status	1	Static				
Method of measurement	S	Steel-tape measurement.				
Method of measurement	Z	Other.				
Measuring agency		Not determined				
Measuring agency	USGS	U.S. Geological Survey				
Source of measurement		Not determined				
Source of measurement	S	Measured by personnel of reporting agency.				
Water-level approval status	А	Approved for publication Processing and review completed.				

Questions about sites/data?					
Feedback on this web site					
Automated retrievals					
<u>Help</u>					
Data Tips					
Explanation of terms					
Subscribe for system changes					
News					

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2021-12-20 14:08:48 EST 0.37 0.32 nadww02

USA.gov

✓ GO

USGS Home Contact USGS Search USGS

Geographic Area:

United States

Data Category:

Groundwater

National Water Information System: Web Interface

USGS Water Resources

Click forNews Bulletins

Groundwater levels for the Nation

O Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323845104075601 19S.28E.24.32233

Eddy County, New Mexico Latitude 32°38'45", Longitude 104°07'56" NAD27 Land-surface elevation 3,352 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
			72019								
1965-11-03		D	72019	128.04			1	. Z			А
1968-04-02		D	72019	128.15			1	. Z			А
1971-02-01		D	72019	130.10			3	Z Z			А
1976-12-07		D	72019	126.36			t	. Z			А
1983-02-16		D	72019	125.48			1	. Z			А
1986-06-03		D	72019	125.43			1	. S			А
1994-03-04		D	72019	124.82			1	. S			А

Released to Imaging: 3/22/2022 1:38:21 PM

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
			72019								
1999-01-19		D	72019	124.69			1	S	USGS	S	А

Explanation						
Section	Code	Description				
Water-level date-time accuracy	D	Date is accurate to the Day				
Parameter code	62610	Groundwater level above NGVD 1929, feet				
Parameter code	62611	Groundwater level above NAVD 1988, feet				
Parameter code	72019	Depth to water level, feet below land surface				
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988				
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929				
Status	1	Static				
Status	3	True value is above reported value due to local conditions				
Method of measurement	S	Steel-tape measurement.				
Method of measurement	Z	Other.				
Measuring agency		Not determined				
Measuring agency	USGS	U.S. Geological Survey				
Source of measurement		Not determined				
Source of measurement	S	Measured by personnel of reporting agency.				
Water-level approval status	Α	Approved for publication Processing and review completed.				

Questions about sites/data?					
Feedback on this web site					
Automated retrievals					
<u>Help</u>					
Data Tips					
Explanation of terms					
Subscribe for system changes					
News					

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team Page Last Modified: 2021-12-20 14:06:39 EST 0.3 0.24 nadww01

USA.gov

Appendix B Field Data & Soil Profile Logs

Environmenta	a sujety solutions	, <i>m</i> c.			Date:	12/8 - 12/10/2021
Project:	PWMS Derr	inger to VF Line				
Project Numb	ber:	15345	Latitude:	32.628615	Longitude:	-104.122338
	_					

Sample ID	PID/Odor	Chloride Conc.	GPS
PD-1 @ 1'	None	4,799	
PD-1 @ 2'	None	6,298	
PD-1 @ 3'	None	4,199	
PD-1 @ 4'	None	6,148	
PD-1 @ 6'	None	5,698	
PD-1 @ 8'	None	5,398	
PD-1 @ 10'	None	7,498	
PD-1 @ 20'	None	1,972	
PD-1 @ 25'	None	2,524	
PD-1 @ 30'	None	1,492	
PD-1 @ 35'	None	2,524	
PD-1 @ 40'	None	1,859	
PD-1 @ 45'	None	300	
PD-2 @ 1'	None	5,698	
PD-2 @ 2'	None	4,948	
PD-2 @ 3'	None	4,799	
PD-2 @ 4'	None	4,499	
PD-2 @ 6'	None	7,498	
PD-2 @ 8'	None	6,298	
PD-2 @ 10'	None	7,498	
PD-2 @ 20'	None	2,524	
PD-2 @ 25'	None	1,972	
PD-2 @ 30'	None	1,600	
PD-2 @ 35'	None	904	
PD-2 @ 40'	None	300	
PD-3 @ 4'	None	300	
PD-4 @ 1'	None	7,198	
PD-4 @ 2'	None	6,448	
PD-4 @ 3'	None	6,748	
PD-4 @ 4'	None	6,748	
PD-4 @ 6'	None	6,598	
PD-4 @ 8'	None	5,998	
PD-4 @ 10'	None	1,799	
PD-4 @ 20'	None	1,972	
PD-4 @ 25'	None	1,840	
PD-4 @ 30'	None	1,128	
PD-4 @ 35'	None	776	
PD-4 @ 40'	None	300	
*Samples collected and field-screened by a thi	rd-party contractor that	is no longer affiliated with the site.	·

Environmento	n & Sajety Solutions,	inc.			Date:	12/8 - 12/10/2021
Project:	PWMS Derr	inger to VF Line				
Project Numb	ber:	15345	Latitude:	32.628615	Longitude:	-104.122338
	-					

Sample ID	PID/Odor	Chloride Conc.	GPS
PD-5 @ 1'	None	6,298	
PD-5 @ 2'	None	5,998	
PD-5 @ 3'	None	6,598	
PD-5 @ 4'	None	6,898	
PD-5 @ 6'	None	7,198	
PD-5 @ 8'	None	7,498	
PD-5 @ 10'	None	6,448	
PD-5 @ 20'	None	1,200	
PD-5 @ 25'	None	300	
PD-6 @ 1'	None	7,498	
PD-6 @ 2'	None	7,198	
PD-6 @ 3'	None	7,498	
PD-6 @ 4'	None	6,448	
PD-6 @ 8'	None	2,280	
PD-6 @ 10'	None	712	
PD-6 @ 14'	None	840	
PD-6 @ 20'	None	300	
PD-7 @ 4'	None	6,298	
PD-7 @ 10'	None	6,748	
PD-7 @ 20'	None	7,648	
PD-7 @ 25'	None	3,749	
PD-7 @ 30'	None	5,098	
PD-7 @ 35'	None	1,200	
PD-7 @ 40'	None	300	
PD-8 @ 4'	None	13,852	
PD-8 @ 8'	None	4,144	
PD-8 @ 10'	None	4,856	
PD-8 @ 20'	None	1,799	
PD-8 @ 25'	None	300	
PD-9 @ 4'	None	2,720	
PD-9 @ 8'	None	1,676	
PD-9 @ 20'	None	14,995	
PD-9 @ 25'	None	300	
PD-10 @ 4'	None	13,852	
PD-10 @ 8'	None	4,856	
PD-10 @ 12'	None	2,524	
PD-10 @ 14'	None	1,600	
PD-10 @ 20'	None	3,899	

*Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Environment	al & Sajety Solutions,	inc.			Date:	12/8 - 12/10/2021
Project:	PWMS Derr	inger to VF Line				
Project Numl	per:	15345	Latitude:	32.628615	Longitude:	-104.122338

Sample ID	PID/Odor	Chloride Conc.	GPS
PD-10 @ 25'	None	5,698	
PD-10 @ 30'	None	1,050	
PD-10 @ 35'	None	1,050	
PD-10 @ 40'	None	1,050	
PD-10 @ 45'	None	750	
PD-10 @ 50'	None	300	
PD-11 @ 4'	None	9,990	
PD-11 @ 8'	None	976	
PD-11 @ 20'	None	1,200	
PD-11 @ 25'	None	300	
PD-12 @ 4'	None	6,128	
PD-12 @ 8'	None	6,128	
PD-12 @ 10'	None	6,128	
PD-12 @ 20'	None	600	
PD-12 @ 25'	None	300	
PD-13 @ 4'	None	6,128	
PD-13 @ 8'	None	4,144	
PD-13 @ 10'	None	4,856	
PD-13 @ 20'	None	4,499	
PD-13 @ 25'	None	4,499	
PD-13 @ 30'	None	2,999	
PD-13 @ 35'	None	2,999	
PD-13 @ 40'	None	1,050	
PD-13 @ 45'	None	1,050	
PD-13 @ 50'	None	300	
PD-14 @ 4'	None	13,852	
PD-14 @ 8'	None	6,128	
PD-14 @ 10'	None	4,144	
PD-14 @ 20'	None	3,899	
PD-14 @ 25'	None	3,899	
PD-14 @ 30 '	None	2,399	
PD-14 @ 35'	None	2,399	
PD-14 @ 40'	None	1,350	
PD-14 @ 45'	None	1,350	
PD-14 @ 50'	None	300	
PD-15 @ 4'	None	13,852	
PD-15 @ 8'	None	7,148	
PD-15 @ 10'	None	4,488	

*Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Environmenta	r & Sajety Solutions, Inc.				Date:	12/8 - 12/10/2021
Project:	PWMS Derringer t	to VF Line			_	
Project Numb	er:	15345	Latitude:	32.628615	Longitude:	-104.122338

Sample ID	PID/Odor	Chloride Conc.	GPS
PD-15 @ 12'	None	4,144	
PD-15 @ 14'	None	3,236	
PD-15 @ 20'	None	750	
PD-15 @ 25'	None	300	
PD-15 @ 30'	None	300	
PD-16 @ 4'	None	13,852	
PD-16 @ 8'	None	13,852	
PD-16 @ 10'	None	13,852	
PD-16 @ 12'	None	2,524	
PD-16 @ 14'	None	1,600	
PD-16 @ 20'	None	600	
PD-16 @ 25'	None	600	
PD-16 @ 30'	None	300	
PD-17 @ 4'	None	13,852	
PD-17 @ 8'	None	2,056	
PD-17 @ 12'	None	1,860	
PD-17 @ 14'	None	3,236	
PD-17 @ 18'	None	976	
PD-17 @ 20'	None	3,299	
PD-17 @ 25'	None	3,299	
PD-17 @ 30'	None	1,799	
PD-17 @ 35'	None	1,799	
PD-17 @ 40'	None	1,050	
PD-17 @ 45'	None	1,050	
PD-17 @ 50'	None	300	
PD-18 @ 4'	None	13,852	
PD-18 @ 8'	None	976	
PD-18 @ 12'	None	1,212	
PD-18 @ 14'	None	1,212	
PD-18 @ 20'	None	3,299	
PD-18 @ 25'	None	3,299	
PD-18 @ 30'	None	1,799	
PD-18 @ 35'	None	1,799	
PD-18 @ 40'	None	300	
PD-19 @ 4'	None	3,824	
PD-19 @ 12'	None	4,144	
PD-19 @ 14'	None	4,856	
PD-19 @ 20'	None	1,500	

*Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Environmental	a sajety solutions, i	mc.			Date:	12/10/2021
Project:	PWMS Derri	inger to VF Line				
Project Numb	er:	15345	Latitude:	32.628615	Longitude: _	-104.122338

Sample ID	PID/Odor	Chloride Conc.	GPS
PD-19 @ 25'	None	1,500	
PD-19 @ 30'	None	1,050	
PD-19 @ 35'	None	300	
PD-20 @ 4'	None	7,148	
PD-20 @ 8'	None	2,720	
PD-20 @ 10'	None	6,128	
PD-20 @ 18'	None	4,144	
PD-20 @ 20'	None	3,149	
PD-20 @ 25'	None	3,299	
PD-20 @ 30'	None	3,299	
PD-20 @ 35'	None	1,050	
PD-20 @ 40'	None	1,050	
PD-20 @ 45'	None	1,050	
PD-20 @ 50'	None	300	
PD-21 @ 4'	None	4,144	
PD-21 @ 8'	None	4,144	
PD-21 @ 14'	None	2,524	
PD-21 @ 20'	None	1,300	
PD-21 @ 25'	None	776	
PD-22 @ 4'	None	300	
PD-23 @ 4'	None	300	
PD-24 @ 4'	None	300	
PD-25 @ 4'	None	300	
PD-26 @ 4'	None	5,998	
PD-26 @ 8'	None	6,148	
PD-26 @ 18'	None	1,050	
PD-26 @ 20'	None	300	
PD-27 @ 4'	None	2,699	
PD-27 @ 8'	None	6,598	
PD-27 @ 18'	None	2,524	
PD-27 @ 20'	None	1,799	
PD-27 @ 25'	None	1,050	
PD-27 @ 30'	None	300	

*Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Sample Log

Date:

PWMS Derringer to Winchester Line Project: Project Number: 32.628577 -104.122261 15345 Latitude: Longitude: Г PID/Odor Chloride Conc GPS Sample ID

	ND ND 492 2.536	
	ND 492	
	492	
-		
_	2,536	
-	7.72	
-		
~		
-		
-		
-	392	1
	1.536	
-	772	1
-		<u>+</u>
	3%	
<u> </u>		
+		
	<u> </u>	
	2.4	
		· · · · · · · · · · · · · · · · · · ·
		+
1		
<u> </u>		
ļ		
-		
-		+
-		+
	ND	
-	144	
	Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
	Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
	Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Sample Log

Project:	Rums	Derringer	τo	Winchester	Line
Project Num	ber:	V		Latitude:	

Project Number:

Longitude:

Date:

Sample ID	PID/Odor		GPS
EW #8,	-	2.536	
C witho	-	2376	
いい村9, いい村9, いい村10. こい村8. こい村9.		NO	
NW# 10.	-	172	
w#8.	-	260 ND	
w#9.	-	ND	
wff5.	-	168	
Sw #6.	-	116	
Sw #6. Sw #7.	-	168 116 2,536	
ww#7. Sw#7.	-	332	
SW#7.	-	332	
			1
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Cattlete adapt to be Deferred CD #4 O at the Cha	
SIGGAAGII - DAA HI CLC		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Area
SIGEAAUL - DAA WI ELL		Soli intended to be Deferred = SP #1 @ 4' in-Situ	GPS Sample Points, Center of Comp Area

Sample Log

Date:

3-10-22

Project: Winchester Project Number:

_____ Latitude:

_Longitude:

Sample ID	PID/Odor	Chloride Conc.	GPS
B.H.1 @5'	-	72464	
B. H. L @10 /	-	72464	
B.H. 1 Q 15'	-	72414	
B.H. 1 Q 15 ' B.H. 1 Q 20'	-	1816	
B.H. 1@25'	-	546	
P. H. 1 @ 30	~	2116	· ·
B. H2@5'	-	72464	
BHZQ 10'	-	> 2464	
B.H2@5' B.H2@10' B.H2@15'	-	7 2464	
В. H 2@20' В. H 2@25'	-	>2464	
B.H 2@25'	-	22464	
B·H2@30' BH2@35'	-	1888	
13.1.2 @35'	-	592	
B.H.2@40'	-	570	
B. H.2 @45	-	404	
3-4,3(251		72424	
B.H-3010		2090	
B.H 3@15		1710	
B·H·J@∂0' B·H·3@25' B·H-3@30'		404	
B-H.3@25		5-40	
B.H-3@30'		<i>Ч44</i>	
B.H. 2@351		404	
			······································
·			
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Sample Point = SP #1 @ ## etc Floor = FL #1 etc Sidewall = SW #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas
2			
•			

•

Company: Mewbourne Oil Company Site: PWMS Derringer to VF Line NMOCD Reference #: nAPP2134428244 Location: Eddy Co., NM PLSS: U/L "M", Sec. 25, T19S, R28E			MS Derringer to VF Line Coordinates (NAD 83): 32.629031,-104.122296 Dril Reference #: nAPP2134428244 Drilling Date: 12/10/2021 Dril : Eddy Co., NM Depth of Boring (ft): 55 Log /L "M", Sec. 25, T19S, R28E Depth to Groundwater (ft): >55 Draw			rilling Company: Ready Drill, Inc. riller: Ready Drill, Inc. rilling Method: Air Rotary ogged By: Ready Drill, Inc. rafted By: B. Arguijo raft Date: 12/17/2021				
Comp	letior	1: N/A		Casing: N/A	Screen:	N/A				
Comm	ents	: N/A								
Depth (ft)	Groundwater	Lithology		Material Description		Chloride Field Test	Lab Result	PID Reading	Well Construction	
- 5						-	-	-		
- 10			Sandy Dirt			-	-	-		
- 15		· · · · · · · · ·				-	-	-		
20						-	-	-		
25			Red Dirt			-	-	-	Bentonite	
30						-	-	-	Be	
- 35			Clumpy Sand			-	-	-		
40						-	-	-		
45			Red Clay			-	-	-		
- 50 - 55						-	-	-		
00 -			Notes: Lines between material may be gradual.	types represent approximate boundaries. Actual transiti	ions					

Company: Mewbourne Oil Company Site: PWMS Derringer to VF Line NMOCD Reference #: nAPP2134428244 Location: Eddy Co., NM PLSS: U/L "M", Sec. 25, T19S, R28E				Well/Borehole ID: B.H. #1 Coordinates (NAD 83): 32.627703,-104.121920 Drilling Date: 3/10/2022 Depth of Boring (ft): 30 Depth to Groundwater (ft): >55 Plugging Date: 3/10/2022	Driller: Ready E Drilling Method Logged By: L. (Drafted By: B. /	ling Company: Ready Drill, Inc. ler: Ready Drill, Inc. ling Method: Auger ged By: L. Crenshaw fted By: B. Arguijo ft Date: 3/18/2022				
Compl	completion: N/A Casing: N/A Screen: N/A									
Comm	ents	: N/A								
Depth (ft)	Groundwater	Lithology		Material Description	Chloride Field Test	Lab Result	PID Reading	Well Construction		
		-	Excavation							
5		0000 0000	Caliche rock		>2,464	4,480	-			
10					>2,464	4,960	-			
10			Caliche - clay mix		>2,464	4,000	-	installed –		
15			Clay		1,816	3,160	-	Open hole. No casing installed		
20			Sand, clay		596	1,060	-	Open hole		
25					<116	32.0	-			
30		///	Notes:							
35				types represent approximate boundaries. Actual transi	tions					
40										
45										
50										
55										

Company: Mewbourne Oil Company Site: PWMS Derringer to VF Line NMOCD Reference #: nAPP2134428244 Location: Eddy Co., NM PLSS: U/L "M", Sec. 25, T19S, R28E				Coordinates (NAD 83): 32.628935,-104.122171 Dri ference #: nAPP2134428244 Drilling Date: 3/10/2022 Dri iddy Co., NM Depth of Boring (ft): 45 Log 'M", Sec. 25, T19S, R28E Depth to Groundwater (ft): >55 Draw			Drilling Company: Ready Drill, Inc. Driller: Ready Drill, Inc. Drilling Method: Auger Logged By: L. Crenshaw Drafted By: B. Arguijo Draft Date: 3/18/2022					
Compl	etion	1: N/A		Screen: N/A								
Comm	ents	N/A										
Depth (ft)	Groundwater	Lithology		Material Description	Chloride Field Test	Lab Result	PID Reading	Well Construction				
		-	Excavation									
5		0000 0000	Caliche rock		>2,464	10,200	-		T			
4.0		0000			>2,464	3,440	-					
10			Caliche - clay mix		>2,464	8,530	-					
15			Clay		>2,464	7,730	-		ed			
20			Sand, clay		>2,464	5,120	-	sind install	sing install			
25					1,888	2,480	-		Open hole. No casing installed			
30			Sand		592	496	-					
35					570	160	-					
40		· · · ·			404	128	_					
45												
45 50			Notes: Lines between material may be gradual.	types represent approximate boundaries. Actual transit	ions				-			
55												

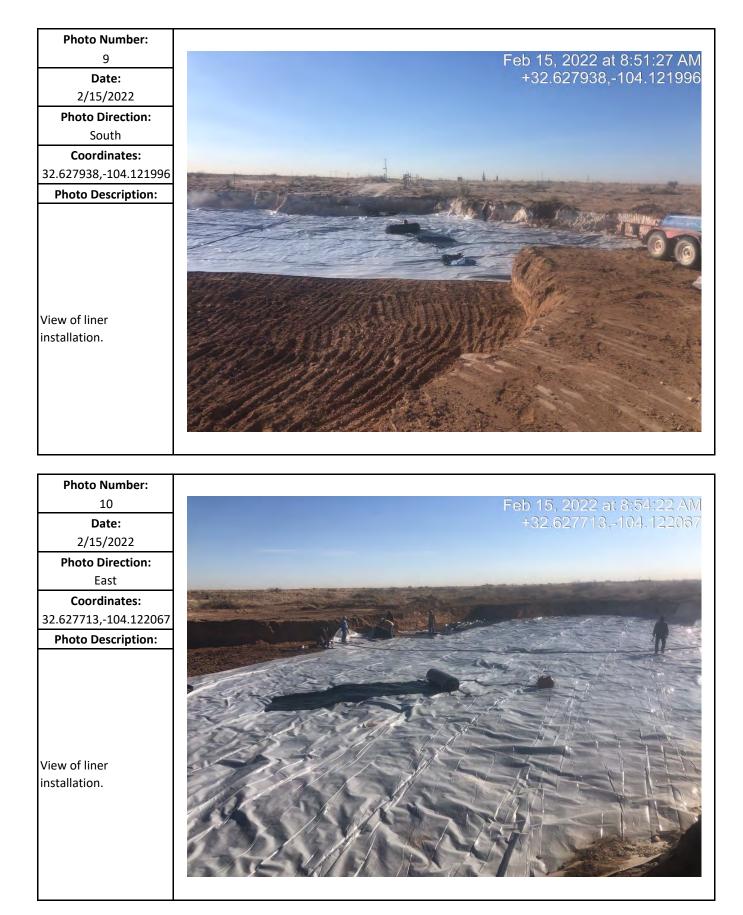
Company: Mewbourne Oil Company Site: PWMS Derringer to VF Line NMOCD Reference #: nAPP2134428244 Location: Eddy Co., NM PLSS: U/L "M", Sec. 25, T19S, R28E			er to VF Line #: nAPP2134428244 NM	Coordinates (NAD 83): 32.628491,-104.122265 Drille 428244 Drilling Date: 3/10/2022 Drilling Depth of Boring (ft): 35 Logg 8E Depth to Groundwater (ft): >55 Draff			Iling Company: Ready Drill, Inc. Iler: Ready Drill, Inc. Iling Method: Auger gged By: L. Crenshaw Ifted By: B. Arguijo Ift Date: 3/18/2022				
Comp	letion	1: N/A		Screen: N/A							
Comm	ents	: N/A									
Depth (ft)	Groundwater	Lithology		Material Description	Chloride Field Test	Lab Result	PID Reading	Well Construction			
-		-	Excavation								
- 5			Caliche rock		>2,464	6,240	-				
- 10			Caliche - clay mix		2,090	2,160	-				
- 15					1,760	2,400	-	alled			
			Clay		404	240	-	asing inst			
- 20			Sand, clay		540	560	-	Open hole. No casing installed			
- 25					444	256	-	- Open			
- 30			Sand								
-35					404	288	-				
- 40		-	Notes: Lines between material may be gradual.	types represent approximate boundaries. Actual transiti	ions						
45											
- 50											
55											

Appendix C Photographic Log

[_]	
Photo Number:	
1	
Date:	
11/29/2021	
Photo Direction:	
Northeast	
Coordinates:	
32.628615,-104.122338	
Photo Description:	
View of the affected area.	
Photo Number:	
2	
Date:	
11/29/2021	
Photo Direction:	
East	
Coordinates:	
32.628615,-104.122338	
Photo Description:	
View of the affected area.	

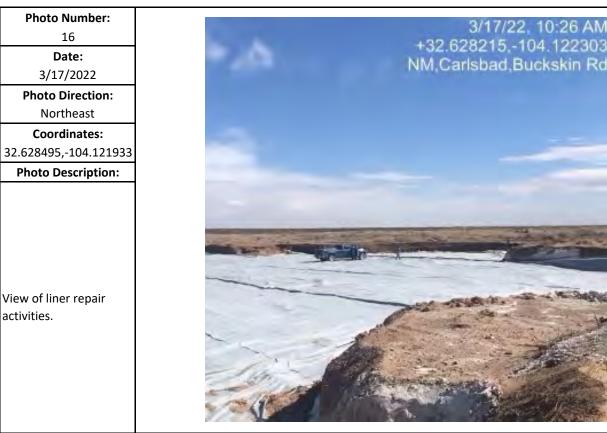
Photo Number:	
3	
Date:	
11/29/2021	
Photo Direction:	
South	
Coordinates:	
32.628495,-104.121933	
Photo Description:	
View of the affected area.	
Photo Number: 4	
Date:	
11/29/2021 Photo Direction:	
Photo Direction:	
North	and the second
North Coordinates:	
North Coordinates: 32.628495,-104.121933	
North Coordinates:	

Photographic Log


Photo Number:
5
Date:
1/26/2022
Photo Direction:
North
Coordinates:
32.628356,-104.122397
Photo Description:
View of the excavated area.

area.

Photo Number:	
7	
Date:	
1/26/2022	
Photo Direction:	
East	
Coordinates:	
32.628356,-104.122397	
Photo Description:	
View of the excavated area.	
Photo Number:	
8	Feb 1, 2022 at 8:56:3
Data	122 628109 104 12



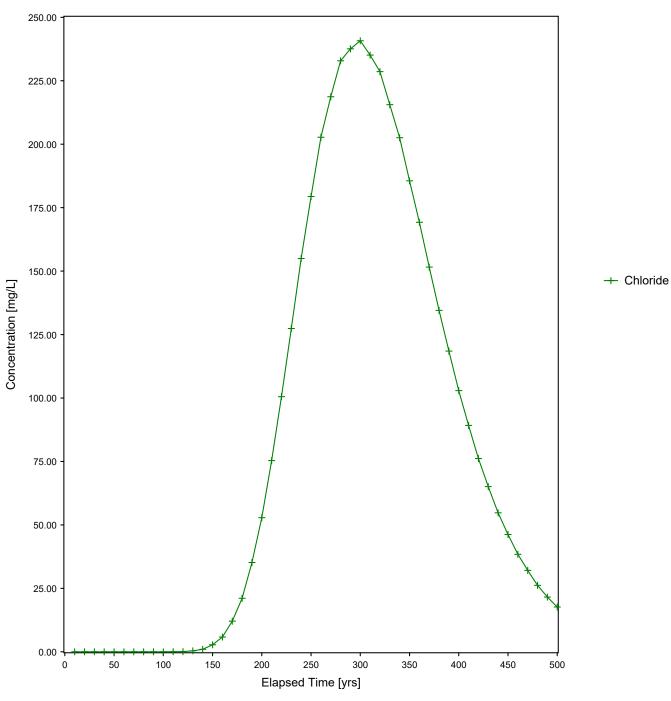
Photographic Log

Released to Imaging: 3/22/2022 1:38:21 PM

Photographic Log

Photo Number:	3/17/22, 10:26 AM
17	+32.628215,-104.122303
Date:	NM,Carlsbad,Buckskin Rd
3/17/2022	
Photo Direction:	
North	
Coordinates:	
32.628920,-104.122253	the second se
Photo Description:	
View of liner repair activities.	
Photo Number:	3/17/22, 10:26 AM
18	+32.628215,-104.122303
Date:	NM,Carlsbad,Buckskin Rd
3/17/2022	NW,Cansbad, Buckskin Ko
Photo Direction:	

Northwest Coordinates: 32.628495,-104.121933 Photo Description:


View of repaired liner.

•

Appendix D Multimedia Exposure Assessment Model (MULTIMED)

Chloride Concentration At The Receptor Well (w/ Liner) Mewbourne Oil Company PWMS Derringer to VF Line

Released to Imaging: 3/22/2022 1:38:21 PM

Rele	U. S.	ENVIRONMENTAL PROTECTION A	GENCY
used		EXPOSURE ASSESSMENT	
to In		MULTIMEDIA MODEL	
uagin		MULTIMED (Version 1.50, 2005)	
Released to Imaging: 1 Releas	J AL TITUE		
Option Chosen Run was Infiltration Spec Run was transient Well Times: Find Reject runs if Y Reject runs if Z Gaussian source w	t Maximium Conce coordinate out coordinate out	entration side plume side plume	
1 UNSATURATED ZONE (input parameter NP - Total n NMAT - Number KPROP - Van Gen IMSHGN - Spatia NVFLAYR - Number	description an number of nodal of different p nuchten or Broo l discretizatio	ad value) points 240 porous materials 3 por option 1	
OPTIONS CHOSEN			
Van Genuchten fur User defined coo: 1		cients	
Layer information	n		
LAYER NO. LAY	- ER THICKNESS	MATERIAL PROPERTY	
1 2 3	2.90 2.13 3.96	 1 1 1	

DATA FOR MATERIAL 1

____ ___ ___

VADOSE ZONE MATERIAL VARIABLES

Rele	
vased	
to	
Released to Imaging: 3/22/2022 1:38:21 PM	
àð	
3/22/.	Sat Uns
2022	Aiı Dep
1:38:	
21	
PM	

VARIABLE NAME	UNITS	DISTRIBUTION		METERS	LIMITS		
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity	cm/hr	CONSTANT	3.60	-999.	-999.	-999.	
Unsaturated zone porosity		CONSTANT	0.250	-999.	-999.	-999.	
Air entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
Depth of the unsaturated zone	m	CONSTANT	8.99	0.000	0.000	0.000	

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		 LI	MITS	
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999.	-999.	-999.	
Brook and Corey exponent,EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-02	-999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

DATA FOR MATERIAL 2

---- --- ------

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA MEAN	METERS STD DEV	LIMITS MIN MAX	
Saturated hydraulic conductivity Unsaturated zone porosity Air entry pressure head Depth of the unsaturated zone	cm/hr m m	CONSTANT CONSTANT CONSTANT CONSTANT CONSTANT	0.140 0.120 0.700 8.99	-999. -999. -999. 0.000	-999. -999. -999. 0.000	-999. -999. -999. 0.000

DATA FOR MATERIAL 2

----- -----

VADOSE ZONE FUNCTION VARIABLES

							Pag
VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		LIMITS		e 55
			MEAN	STD DEV	MIN	MAX	of
Residual water content		CONSTANT	0.116	-999.	-999.	-999.	198

Brook and Corey exponent, EN ALFA coefficient	 1/cm	CONSTANT CONSTANT	-999. 0.500E-02	-999. -999	-999. -999.	-999. -999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	
	DATA FO	or material 3					
	VADOSE ZONI	E MATERIAL VARIABL	ES				
					 т.т	·	
VARIABLE NAME	UNITS	DISTRIBUTION	PARAME MEAN	ETERS STD DEV	LI MIN	IMITS MAX	
VARIABLE NAME Saturated hydraulic conductivity	UNITS cm/hr	DISTRIBUTION		STD DEV			
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity		CONSTANT	MEAN 0.848E-03 0.150	STD DEV 	MIN -999.	MAX -999.	

DATA FOR MATERIAL 3

---- --- ------

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS	LI	MITS
			MEAN	STD DEV	MIN	MAX
Residual water content		CONSTANT	0.116	-999.	-999.	-999.
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.
ALFA coefficient	1/cm	CONSTANT	0.500E-03	-999.	-999.	-999.
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.

1

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY	_	Number of different layers used	1
NTSTPS	_	Number of time values concentration calc	40
DUMMY	-	Not presently used	1
ISOL	-	Type of scheme used in unsaturated zone	2
Ν	-	Stehfest terms or number of increments	18
NTEL	-	Points in Lagrangian interpolation	3
NGPTS	-	Number of Gauss points	104
NIT	-	Convolution integral segments	2
IBOUND	-	Type of boundary condition	3
ITSGEN	-	Time values generated or input	1
TMAX	-	Max simulation time	0.0
WTFUN	-	Weighting factor	1.2

OPTIONS CHOSEN

Convolution integral approach Exponentially decaying continuous source Computer generated times for computing concentrations

	DATA FOR LAYER 1									
	VADOSE TRANSPORT VARIABLES									
VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS MEAN STD DEV		LI MIN	MITS MAX				
 Thickness of layer	m	CONSTANT	8.99	-999.						
ongitudinal dispersivity of layer	m	DERIVED	-999.	-999.	-999.	-999.				
ercent organic matter		CONSTANT	0.000	-999.	-999.	-999.				
Bulk density of soil for layer	g/cc	CONSTANT	1.99	-999.	-999.	-999.				
Biological decay coefficient	1/yr	CONSTANT	0.000	-999.	-999.	-999.				

CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	 DADA	 Meters	т.т	 MITS
VARIADLE NAME	UNIIS	DISTRIBUTION	MEAN	STD DEV	MIN	MAX
Solid phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Dissolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Overall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Acid catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Neutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Base catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Reference temperature	С	CONSTANT	25.0	-999.	-999.	-999.
Normalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.
Distribution coefficient		DERIVED	-999.	-999.	-999.	-999.
Biodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Air diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.
Reference temperature for air diffusio	n C	CONSTANT	-999.	-999.	-999.	-999.
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.
Vapor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.
Henry`s law constant	atm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.
Overall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00
Not currently used	-	CONSTANT	0.000	0.000	0.000	0.000
Not currently used		CONSTANT	0.000	0.000	0.000	0.000

SOURCE SPECIFIC VARIABLES

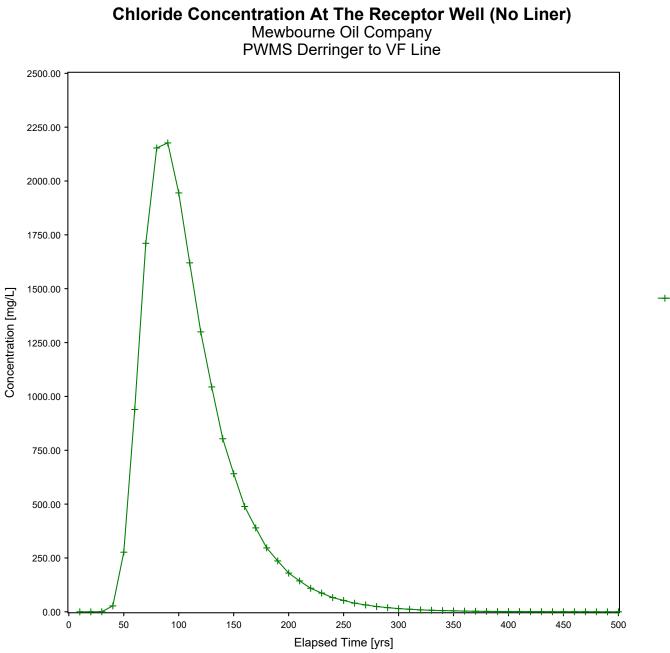
VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS MEAN STD DEV		LIMITS MIN MAX		Pa
Infiltration rate Area of waste disposal unit Duration of pulse Spread of contaminant source	m/yr m^2 yr m	CONSTANT CONSTANT DERIVED DERIVED	0.762E-02 0.875E+04 0.100E-08 -999.	-999. -999.	-999. -999. -999. -999.	-999. -999. -999. -999.	ge 57 of 198

1

•

1

Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.	
Source decay constant	1/yr	CONSTANT	0.250E-0	01 0.000	0.000	0.000	-
Initial concentration at landfill	mg/l	CONSTANT	0.265E+0	04 -999.	-999.	-999.	Received
Length scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	en
Width scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	vea
Near field dilution		DERIVED	1.00	0.000	0.000	1.00	l by
							~


AQUIFER SPECIFIC VARIABLES

Source decay constant Initial concentration at landfill Length scale of facility Width scale of facility Near field dilution	1/yr mg/l m m	CONSTANT CONSTANT DERIVED DERIVED DERIVED	0.250E-01 0.265E+04 -999. -999. 1.00	-999. -999. -999.	0.000 -999. -999. -999. 0.000	-999.	Received by OCD: 3/2
	AQUIFE	R SPECIFIC VARIABLE	S				00
							0: 3/21
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS	LI	MITS	1/2022
			MEAN	STD DEV		MAX	
Particle diameter	 CM	CONSTANT	-999.	-999.	-999.		3:50:41 PM
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	:4
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	1 P
Aquifer thickness	m	CONSTANT	4.57	-999.	-999.	-999.	M
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.	-999.	
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	
Gradient (hydraulic)		CONSTANT	0.300E-02	-999.	-999.	-999.	
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.	
Longitudinal dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.	
рН		CONSTANT	7.00	-999.	-999.	-999.	
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.	
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.	
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.	
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.	

MAXIMUM WELL CONCENTRATION IS 241.0 AT 301 YEARS

.

1

Rele	U. S.	ENVIRONMENTAL PROTECTION AGENCY
ased		EXPOSURE ASSESSMENT
to Im		MULTIMEDIA MODEL
agin		MULTIMED (Version 1.50, 2005)
Released to Imaging: 1 Reprint options Missibourne Oil Comp Physical Science to Chemical simulated	VI DIUC	
Chemical Simulate	a is chioride	
NMAT - Number	Maximium Conce coordinate out sed in saturat FLOW MODEL PAR description an umber of nodal of different p uchten or Broo discretizatio	AMETERS d value) points 240 prous materials 3 cs and Corey 1 n option 1
OPTIONS CHOSEN		
Van Genuchten fun User defined coord 1		cients
Layer information		
LAYER NO. LAYE	R THICKNESS	MATERIAL PROPERTY
1 2 3	2.90 2.13 3.96	1 1 1 1

DATA FOR MATERIAL 1

____ ___ ___

VADOSE ZONE MATERIAL VARIABLES

Rel	
eased	
6	
Imagin	
vo.	
Released to Imaging: 3/22/2022 1:38:21 PM	Sat Uns Air Dep
1:38:21	
PM	

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		LIMITS		
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity	cm/hr	CONSTANT	3.60	-999.	-999.	-999.	
Unsaturated zone porosity		CONSTANT	0.250	-999.	-999.	-999.	
Air entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
Depth of the unsaturated zone	m	CONSTANT	8.99	0.000	0.000	0.000	

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		 LI	MITS	
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999.	-999.	-999.	
Brook and Corey exponent,EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-02	-999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

DATA FOR MATERIAL 2

---- --- ------

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA MEAN	METERS STD DEV	LI MIN	MITS MAX
Saturated hydraulic conductivity Unsaturated zone porosity Air entry pressure head Depth of the unsaturated zone	cm/hr m m	CONSTANT CONSTANT CONSTANT CONSTANT CONSTANT	0.140 0.120 0.700 8.99	-999. -999. -999. 0.000	-999. -999. -999. 0.000	-999. -999. -999. 0.000

DATA FOR MATERIAL 2

----- -----

VADOSE ZONE FUNCTION VARIABLES

							Pag
VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS	e 61
			MEAN	STD DEV	MIN	MAX	of
Residual water content		CONSTANT	0.116	-999.	-999.	-999.	198

-

Brook and Corey exponent, EN ALFA coefficient	 1/cm	CONSTANT CONSTANT	-999. 0.500E-02	-999. -999	-999. -999.	-999. -999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	
	DATA FO	or material 3					
	VADOSE ZONI	E MATERIAL VARIABL	ES				
					 т.т	·	
VARIABLE NAME	UNITS	DISTRIBUTION	PARAME MEAN	ETERS STD DEV	LI MIN	IMITS MAX	
VARIABLE NAME Saturated hydraulic conductivity	UNITS cm/hr	DISTRIBUTION		STD DEV			
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity		CONSTANT	MEAN 0.848E-03 0.150	STD DEV 	MIN -999.	MAX -999.	

DATA FOR MATERIAL 3

---- --- ------

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS	LI	MITS
			MEAN	STD DEV	MIN	MAX
Residual water content		CONSTANT	0.116	-999.	-999.	-999.
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.
ALFA coefficient	1/cm	CONSTANT	0.500E-03	-999.	-999.	-999.
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.

1

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY	_	Number of different layers used	1
NTSTPS	_	Number of time values concentration calc	40
DUMMY	-	Not presently used	1
ISOL	-	Type of scheme used in unsaturated zone	2
Ν	-	Stehfest terms or number of increments	18
NTEL	-	Points in Lagrangian interpolation	3
NGPTS	-	Number of Gauss points	104
NIT	-	Convolution integral segments	2
IBOUND	-	Type of boundary condition	3
ITSGEN	-	Time values generated or input	1
TMAX	-	Max simulation time	0.0
WTFUN	-	Weighting factor	1.2

OPTIONS CHOSEN

Convolution integral approach Exponentially decaying continuous source Computer generated times for computing concentrations

DATA FOR LAYER 1									
	VADOSE	TRANSPORT VARIABL	ES						
VARIABLE NAME	UNITS	DISTRIBUTION	PARA PARA MEAN	METERS STD DEV	LI MIN	MITS MAX			
Thickness of layer	m	CONSTANT	8.99	-999.		-999.			
Longitudinal dispersivity of layer	m	DERIVED	-999.	-999.	-999.	-999.			
Percent organic matter		CONSTANT	0.000	-999.	-999.	-999.			
Bulk density of soil for layer	g/cc	CONSTANT	1.99	-999.	-999.	-999.			
Biological decay coefficient	1/yr	CONSTANT	0.000	-999.	-999.	-999.			

CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	 DADA	 Meters	т.т	 MITS
VARIADLE NAME	UNIIS	DISTRIBUTION	MEAN	STD DEV	MIN	MAX
Solid phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Dissolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Overall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Acid catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Neutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Base catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Reference temperature	С	CONSTANT	25.0	-999.	-999.	-999.
Normalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.
Distribution coefficient		DERIVED	-999.	-999.	-999.	-999.
Biodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Air diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.
Reference temperature for air diffusio	n C	CONSTANT	-999.	-999.	-999.	-999.
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.
Vapor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.
Henry`s law constant	atm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.
Overall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00
Not currently used	-	CONSTANT	0.000	0.000	0.000	0.000
Not currently used		CONSTANT	0.000	0.000	0.000	0.000

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM MEAN	ETERS STD DEV	LI MIN	MITS MAX	Pag
Infiltration rate Area of waste disposal unit Duration of pulse Spread of contaminant source	m/yr m^2 yr m	CONSTANT CONSTANT DERIVED DERIVED	0.305E-01 0.875E+04 0.100E-08 -999.	-999. -999.	-999. -999. -999. -999.	-999. -999. -999. -999.	e 63 of 198

1

•

1

Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.	
Source decay constant	1/yr	CONSTANT	0.250E-0	0.000	0.000	0.000	>
Initial concentration at landfill	mg/l	CONSTANT	0.265E+0)4 -999.	-999.	-999.	lec
Length scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	ei
Width scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	vea
Near field dilution		DERIVED	1.00	0.000	0.000	1.00	l by
							~

AQUIFER SPECIFIC VARIABLES

Source decay constant Initial concentration at landfill Length scale of facility Width scale of facility Near field dilution	1/yr mg/l m m	CONSTANT CONSTANT DERIVED DERIVED DERIVED	0.250E-01 0.265E+04 -999. -999. 1.00	-999. -999.		-999.	
	AQUIFE	R SPECIFIC VARIABLE:	S				
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM			MITS	
			MEAN	STD DEV	MIN	MAX	
Particle diameter	CM	CONSTANT	-999.	-999.	-999.	-999.	
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	
Aquifer thickness	m	CONSTANT	4.57	-999.	-999.	-999.	
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.		
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	
Gradient (hydraulic)		CONSTANT	0.300E-02	-999.	-999.	-999.	
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.	
Longitudinal dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.	
рН		CONSTANT	7.00	-999.	-999.	-999.	
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.	
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.	
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.	
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.	

MAXIMUM WELL CONCENTRATION IS 2211. AT 85.2 YEARS *** WARNING *** Near field mixing factor is greater than 1. Mixing factor = 1.58

Released to Imaging: 3/22/2022 1:38:21 PM

1

Appendix E Laboratory Analytical Reports

December 16, 2021

JOHN FARRELL TRINITY OILFIELD SERVICES & RENTALS, LLC P. O. BOX 2587 HOBBS, NM 88241

RE: WINCHESTER 36 AD STATE 1H

Enclosed are the results of analyses for samples received by the laboratory on 12/13/21 15:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 1 VERTICAL @ 4' (H213589-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.82	91.1	2.00	8.15	
Toluene*	<0.050	0.050	12/14/2021	ND	1.92	96.0	2.00	7.14	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	4.28	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	6.42	107	6.00	4.73	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5680	16.0	12/14/2021	ND	416	104	400	3.77	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	101	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	94.3	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 2 VERTICAL @ 4' (H213589-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.82	91.1	2.00	8.15	
Toluene*	<0.050	0.050	12/14/2021	ND	1.92	96.0	2.00	7.14	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	4.28	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	6.42	107	6.00	4.73	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	12/14/2021	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	99.0	44.3-13	3						
Surrogate: 1-Chlorooctadecane	93.3	38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 3 VERTICAL @ 4' (H213589-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.82	91.1	2.00	8.15	
Toluene*	<0.050	0.050	12/14/2021	ND	1.92	96.0	2.00	7.14	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	4.28	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	6.42	107	6.00	4.73	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 %	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	105 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	98.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 4 VERTICAL @ 4' (H213589-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.82	91.1	2.00	8.15	
Toluene*	<0.050	0.050	12/14/2021	ND	1.92	96.0	2.00	7.14	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	4.28	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	6.42	107	6.00	4.73	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6320	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	100 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	94.0	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 5 VERTICAL @ 4' (H213589-05)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	104 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	97.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 6 VERTICAL @ 4' (H213589-06)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5120	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	105 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	98.9	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 7 VERTICAL @ 4' (H213589-07)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.4	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4800	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	188	94.0	200	0.890	
DRO >C10-C28*	47.7	10.0	12/14/2021	ND	190	94.9	200	2.92	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	103 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	99.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 8 VERTICAL @ 4' (H213589-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5440	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	97.6	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	94.9	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 9 VERTICAL @ 4' (H213589-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6080	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	97.2	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	91.5	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 10 VERTICAL @ 4' (H213589-10)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6560	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	103 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	96.4	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 11 VERTICAL @ 4' (H213589-11)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3400	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	104 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	98.2	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 12 VERTICAL @ 4' (H213589-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5680	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	91.6	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	86.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 13 VERTICAL @ 4' (H213589-13)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4800	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	95.6	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	90.5	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 14 VERTICAL @ 4' (H213589-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4800	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	97.5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	92.9	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 15 VERTICAL @ 4' (H213589-15)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	90.5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	85.7	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 16 VERTICAL @ 4' (H213589-16)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.3 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2880	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	96.5 9	44.3-13	3						
Surrogate: 1-Chlorooctadecane	91.4 9	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 17 VERTICAL @ 4' (H213589-17)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3160	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	13.8	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	105 9	44.3-13	3						
Surrogate: 1-Chlorooctadecane	<i>99.7</i>	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 18 VERTICAL @ 4' (H213589-18)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6400	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	101 9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	95.4	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 19 VERTICAL @ 4' (H213589-19)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5200	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	96.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	91.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 20 VERTICAL @ 4' (H213589-20)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3800	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	98.0	44.3-13	3						
Surrogate: 1-Chlorooctadecane	95.2	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 21 VERTICAL @ 4' (H213589-21)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3760	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	20.6	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	93.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	92.3	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 22 VERTICAL @ 4' (H213589-22)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	83.4	44.3-13	3						
Surrogate: 1-Chlorooctadecane	80.2	38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 23 VERTICAL @ 4' (H213589-23)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	89.3	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	85.8	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 24 VERTICAL @ 4' (H213589-24)

BTEX 8021B	mg/	'kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/14/2021	ND	1.98	99.0	2.00	7.03	
Toluene*	<0.050	0.050	12/14/2021	ND	1.88	94.0	2.00	6.58	
Ethylbenzene*	<0.050	0.050	12/14/2021	ND	1.90	94.8	2.00	6.10	
Total Xylenes*	<0.150	0.150	12/14/2021	ND	5.90	98.3	6.00	5.79	
Total BTEX	<0.300	0.300	12/14/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	98.2	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	94.2	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 25 VERTICAL @ 4' (H213589-25)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	89.4	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	84.0	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 26 VERTICAL @ 4' (H213589-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5440	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	97.9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	92.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 27 VERTICAL @ 4' (H213589-27)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3600	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/15/2021	ND	203	102	200	0.750	
DRO >C10-C28*	<10.0	10.0	12/15/2021	ND	206	103	200	0.149	
EXT DRO >C28-C36	<10.0	10.0	12/15/2021	ND					
Surrogate: 1-Chlorooctane	96.6	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	92.8	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVI	CES & RENTALS, LLC
JOHN FARRELL	
P. O. BOX 2587	
HOBBS NM, 88241	
Fax To: NONE	

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - N @ 0 SURFACE (H213589-28)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	75.3	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	74.5	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - N @ 2' (H213589-29)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	90.4	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	91.6	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - N @ 4' (H213589-30)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	82.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	83.1	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - E @ 0 SURFACE (H213589-31)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	89.7	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	91.4	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - E @ 2' (H213589-32)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	82.1	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	82.2	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - E @ 4' (H213589-33)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	79.1	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	78.2	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC	2
JOHN FARRELL	
P. O. BOX 2587	
HOBBS NM, 88241	
Fax To: NONE	

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - W @ 0 SURFACE (H213589-34)

BTEX 8021B	mg	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	76.1	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	75.0	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OIL	FIELD SERVICES & RENTALS, LLC
JOHN FARRE	ELL
P. O. BOX 25	587
HOBBS NM,	88241
Fax To:	NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - W @ 2' (H213589-35)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	88.0	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	89.1	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC
JOHN FARRELL
P. O. BOX 2587
HOBBS NM, 88241
Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - W @ 4' (H213589-36)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	84.3	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	83.9	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - S @ 0 SURFACE (H213589-37)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	89.9	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	89.1	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - S @ 2' (H213589-38)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	80.4	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	80.3	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/09/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: BACKGROUND - S @ 4' (H213589-39)

BTEX 8021B	mg/	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/15/2021	ND	1.81	90.5	2.00	9.39	
Toluene*	<0.050	0.050	12/15/2021	ND	1.95	97.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/15/2021	ND	2.00	99.9	2.00	7.40	
Total Xylenes*	<0.150	0.150	12/15/2021	ND	6.77	113	6.00	6.81	
Total BTEX	<0.300	0.300	12/15/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/14/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/14/2021	ND	202	101	200	9.49	
DRO >C10-C28*	<10.0	10.0	12/14/2021	ND	203	102	200	7.54	
EXT DRO >C28-C36	<10.0	10.0	12/14/2021	ND					
Surrogate: 1-Chlorooctane	80.5	% 44.3-13	3						
Surrogate: 1-Chlorooctadecane	80.3	% 38.9-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/10/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 1 VERTICAL @ 45' (H213589-40)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/14/2021	ND	416	104	400	0.00	

Sample ID: PD - 2 VERTICAL @ 40' (H213589-41)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	416	104	400	0.00	

Sample ID: PD - 4 VERTICAL @ 40' (H213589-42)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	416	104	400	0.00	

Sample ID: PD - 5 VERTICAL @ 25' (H213589-43)

Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 6 VERTICAL @ 20' (H213589-44)

Chloride, SM4500Cl-B	mg	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	12/14/2021	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/10/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 7 VERTICAL @ 40' (H213589-45)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 8 VERTICAL @ 25' (H213589-46)

Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 9 VERTICAL @ 25' (H213589-47)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 10 VERTICAL @ 50' (H213589-48)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 11 VERTICAL @ 25' (H213589-49)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/14/2021	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/10/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 12 VERTICAL @ 25' (H213589-50)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 13 VERTICAL @ 50' (H213589-51)

Chloride, SM4500Cl-B	mg/kg			Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 14 VERTICAL @ 50' (H213589-52)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 15 VERTICAL @ 30' (H213589-53)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 16 VERTICAL @ 16' (H213589-54)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/14/2021	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/10/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 17 VERTICAL @ 50' (H213589-55)

Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 18 VERTICAL @ 40' (H213589-56)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 19 VERTICAL @ 35' (H213589-57)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 20 VERTICAL @ 50' (H213589-58)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 21 VERTICAL @ 30' (H213589-59)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/14/2021	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TRINITY OILFIELD SERVICES & RENTALS, LLC JOHN FARRELL P. O. BOX 2587 HOBBS NM, 88241 Fax To: NONE

Received:	12/13/2021	Sampling Date:	12/10/2021
Reported:	12/16/2021	Sampling Type:	Soil
Project Name:	WINCHESTER 36 AD STATE 1H	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO NM		

Sample ID: PD - 26 VERTICAL @ 20' (H213589-60)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	400	100	400	0.00	

Sample ID: PD - 27 VERTICAL @ 30' (H213589-61)

Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/14/2021	ND	400	100	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393-2326 FAX (575) 393-2476

Company Name:	Trinity Oilfield Services									1	BILL TO							ANA	LYSIS	REQU	EST				
Project Manager:	John Farrell							P.0	. #:							T									T
Address:	8426 N Dal Paso							Cor	mpany:	: 1	Mewbourne C	Dil Co.	1			1	1								
City:	Hobbs	State: NM	Zip	c 3	8824	1		Att	n:	1	Robbie Runn	els	1												
Phone #:	575 390 7560	Fax #:	-					Add	dress:										1						
Project #:		Project Owne	HT:	(500	belo	w)		City	y:				1										- 1		
Project Name:	Winchester 36 AD State 1H	john@trinityo	oilfie	idse	rvice	s.co	m	Sta	te: I	NM	Zip:														
Project Location:	Eddy Co., NM							Pho	one #:																
Sampler Name:	GR							Fax	c#:]				- 1		1						
FOR LAB USE ONLY			C)OMP.	SS		MAT	RIX		PRESE	RV.	SAM	PLING													
H213589 Lab I.D.	Sample I.	D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER WASTEWATER	SOIL	OIL	OTHER .	ACID/BASE: ICE / COOL	OTHER :	DATE	TIME	Chloride	HdT	BTEX				-						
1	PD-1 Vertical @ 4'		1 1	1	T	X			T	-	12/9/2021	9:00	X	Х	X	T									
2	PD-2 Vertical @ 4'		G	1	T	X		Π			12/9/2021	9:05	X	x	X						T				T
	PD-3 Vertical @ 4'		G	1		X					12/9/2021	9:10	X	x	X										
4	P'D-4 Vertical @ 4'		G	1		X				-	12/9/2021	9:15	X	х	X										
5	PD-5 Vertical @ 4'		G	1		X					12/9/2021	9:20	X	х	X										
6	F'D-6 Vertical @ 4'		G	1		X		Π			12/9/2021	9:25	X	x	X										
5	PD-7 Vertical @ 4'		G	1	T	X		Π			12/9/2021	9:30	X	X	X										
8	FPD-8 Vertical @ 4'		G	1	T	X		Π			12/9/2021	9:35	X	х	X										
	FPD-9 Vertical @ 4'		G	1		X		П			12/9/2021	9:40	X	x	X										
10	FPD-10 Vertical @ 4'		G	1		X		Π			12/9/2021	9:45	X	x	X										
analyses. All clams including service in no event shall Car	Elevenages Cardinal's liability and client's phose for nogligence and any other cause nitival be liable for incidential or consequent go out of or related to the performance of so	whatsoever shall be dee tel demogra, including wi	med wi hout in datail re	erved u shallor gardie	niess m , bunin	nade in ees inte hether :	writing a	and reco	of wee, or i	ardmai bes of	within 30 days at profile incurred by	Ner completion of the y client, its subsidiari	applicable ns. t:	Yes		No	-	Add'i Ph	one #:					 	
C	R	Time: 5:00		0	la	M	al	1	de	ld	K	All resources a	TO ETHOMSOL F	Name pro										 	
Relinquished By:		Date:	Red	ceive	ed By	<i>r</i> :						REMARKS:													
		Time:											_		Ctop 1				Dent					 	
Delivered By: (Circle Sampler - UPS - Bus		bserved Temp. *C prrected Temp. *C	30	5	Cod		res No	1	СН	(Init	ED BY:	Turnaround Thermometer	D #113		Standa Rush	ard	X		Cool		/es No	Obser	ted Tem		

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinatlabsnm.com

53
đ
48
ð
ag

CARDINAL Laboratories CHAIN-OF-CUSTODY AND ANALYSIS REQUEST 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 **BILL TO ANALYSIS REQUEST** Company Name: Trinity Oilfield Services Project Manager: John Farrell P.O. #: Address: 8426 N Dal Paso Company: Mewbourne Oil Co. City: Hobbs State: NM Zip: 88241 Attn: **Robbie Runnels** Phone #: 575 390 7560 Fax #: Address: Project #: Project Owner: (see below) City: Winchester 36 AD State 1H john@trinityoilfieldservices.com State: NM Zip: **Project Name:** Project Location: Eddy Co., NM Phone #: Sampler Name: GR Fax #: PRESERV MATRIX SAMPLING FOR LAB USE ONLY (G)RAB OR (C)OMP. **GROUNDWATER** CONTAINERS 1213589 VASTEWAT CID/BASE CE / COOI Chloride SLUDGE OTHER THER BTEX LPH OIL Lab I.D. Sample I.D. DATE TIME G PD-11 Vertical @ 4' 1 X 12/9/2021 9:50 X X X G 12 PD-12 Vertical @ 4' 1 x 12/9/2021 9:55 Х X X G 13 PD-13 Vertical @ 4' 4 X 12/9/2021 10:00 X X X 14 PD-14 Vertical @ 4' G 1 x 12/9/2021 10:05 X X X x PD-15 Vertical @ 4' G 1 12/9/2021 10:10 X X X PD-16 Vertical @ 4' G 1 x 12/9/2021 10:15 X X x PD-17 Vertical @ 4' G x 12/9/2021 10:20 X X X 1 8 PD-18 Vertical @ 4' G 1 x 12/9/2021 10:25 X Х X PD-19 Vertical @ 4' G X 12/9/2021 10:30 х X 1 X 20 PD-20 Vertical @ 4' G 1 X 12/9/2021 10:35 X X X PLEASE NOTE. Liability and Damages. Cardinal's liability and cleant's exclusive remody for any clearn arising whether based in contract or tort, shall be limited to the amount paid by the clent for the anelysies. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service in no event shall Central to fishin for incidental or consequential damagne, including without function, business interruptions, loss of use, or loss of profile incurrent by client, its subsidienes. sors arraine out of or related to the performance of services hereunder by Cardinal, recerdiess of whether such claim is be my of the above stated reasons or otherwise Dette 12/13 **Relinquished By:** Received By: Verbal Result: Yes Min Add'I Phone #: All Results are emailed. Please provide Email address: The : 00 Received By: **Relinquished By:** Date: REMARKS: Time: Observed Temp. *C 30 Bacteria (only) Sample Condition **Delivered By: (Circle One)** Sample Condition CHECKED BY: **Turnaround Time:** Standard X Cool Intact (Initials) Rush Observed Temp. *C Cool Intact Corrected Temp. *C Sampler - UPS - Bus - Other: Yes Lies Thermometer ID #113 Yes Yes VO

† Cardinal cannot accept verbal changes. Please email changes to celey,keene@cardinallabsnm.com

tion Factor -0.5 °C

Received by OCD: 3/21/2022 3:50:41 PM

No

Corrected Temp. *C

No

	oratories	01 East Marlan 575) 393-2326 F											C	HAIN	I-OF	CUS	TOD	Y AN	D AN	ALYS	IS R	EQU	EST	
Company Name:	Trinity Oilfield Services									BILL TO							ANAL	YSIS	REQUE	ST				
Project Manager:				_			1	20. #					T		T									T
ddress:	8426 N Dal Paso						-	Comp	any:	Mewbourne	Dil Co.	1							I					
ity:	Hobbs	State: NM	Zip	0:	8824	1	1	ttn:		Robbie Runn	els	1										- 1		
hone #:	575 390 7560	Fax #:	-				1	ddre	8 5:			1									1	- 1		
oject #:		Project Owne	H:	(50	e belo	w)	0	ity:				1												1
oject Name:	Winchester 36 AD State 11	H john@trinity@	oilfie	Idse	arvice	S.CON	n	state:	N	A Zip:		1												
oject Location:	Eddy Co., NM						1	hone	#:			1												
mpler Name:	GR						1	ax #:				1												
FOR LAB USE ONLY						MATR	X	PR	ESERV	. SAJ	PLING]		1			- 1							
213589 Lab I.D.	Sample I	.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER WASTEWATER	SOIL	SLUDGE	ACID/BASE:	ICE / COOL OTHER :	DATE	TIME	Chloride	ТРН	втех										
21	PD-21 Vertical @ 4'		G	1	T	X	Π		T	12/9/2021	10:40	X	X	X										T
22	PD-22 Vertical @ 4'		G	1		x	Π			12/9/2021	10:45	X	X	X										T
23	PD-23 Vertical @ 4'		G	1	1	x	Ħ	T		12/9/2021	10:50	X	X	X										
	PD-24 Vertical @ 4'		G	1		X	T			12/9/2021	10:55	X	X	X					T					T
25	PD-25 Vertical @ 4'		G	1		X				12/9/2021	11:00	X	X	X										T
26	FPD-26 Vertical @ 4'		G	1		X	Π			12/9/2021	11:05	X	X	X										
25	PD-27 Vertical @ 4'		G	1		X	Π	T		12/9/2021	11:10	X	×	X										
28	Background- N @ 0 Sur	face	G	1		X				12/9/2021	1:00	X	×	X										
	Background-N @ 2		G	1		X		T		12/9/2021	1:05	X	×	X										
30	Background- N @ 4'		G	1		X				12/9/2021	1:10	×	X	X									_	
lyses. All clasms including vice in an event shall Ca	3 Exempts: Cardinal's liability and client's g those for negligence and any other cause udinal the liable for incidental or consequent ng out of or related to the performance of s	e whatscever shall be dee nial damages, including wi	med w	bevea	uniess m n, india	ade as w	nling and uplicate, i	received	i by Card in, or loss	anal within 30 days a of prolite incurred t	der completion of the y client, its extenderie	applicable III,												
linguished By:		Date: 1/17	Red	ceiv	ed By	F			-		Verbal Result		Yes		No		d'i Pho	ie #:						
Ċ	R	Times (00)			h	ua	era	A		lats	All Results an	re emailed.	Please pro	vide Em	nil addre	185:								
linquished By:		Data: Time:	Red	ceiv	ed By	:		- ()	REM/NRKS:													
Delivered By: (Circle One) Observed Temp. 'C 3.0 Sample Condit Sampler - UPS - Bus - Other: Corrected Temp. 'C 3.5 No N					ct	(Initials) Rush Cool Intact Observed Temp. °C																		

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Received by OCD: 3/21/2022 3:50:41 PM

Page 49 of 53

Released to Imaging: 3/22/2022 1:38:21 PM

53
ď
50
ge
Ра

Г

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

CARDINAL Laboratories 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name:	Trinity Oilfield Services									BILL TO						AN	ALYSIS	REQUE	ST			
Project Manager:	John Farrell						5	P.O. #	k													
Address:	8426 N Dal Paso						0	Comp	any:	Mewbourne (Del Co.											
City:	Hobbs	State: NM	Zip	: 8	8241		1	Attn:		Robbie Runn	els											
Phone #:	575 390 7560	Fax #:					1	Addre	HES:					1	1							
Project #:		Project Owne	H.	(see	below)	0	City:	1.1			1		1				1				
Project Name:	Winchester 36 AD State 1H	john@trinityo	oilfiel	dser	vices.	con	ns	State	: N	Zip:							1					
Project Location:	Eddy Co., NM						F	Phone	e #:			1					1				1	
Sampler Name:	GR						F	Fax #									1					
FOR LAB USE ONLY			(G)RAB OR (C)OMP.	CONTAINERS	ĸ	ATRI			NESERV		IPLING	16	eg									
Lab I.D.	Sample I.C).	G)RAB	# CONT	WASTEWATER	OIL	SLUDGE	ACID/BA	ICE / COOL	DATE	TIME	Chloride	НД	BTEX								
31	Background- E @ 0 Surfac		G	1	TE	x	TT	T	ΓT	12/9/2021	1:15	X	X	x		1						
32	Background- E @ 2'			1		x	T			12/9/2021	1:20	X	х	X								
33	Background- E @ 4'		G	1		x	TT		\square	12/9/2021	1:25	X	X	X								
34	Background- W @ 0 Surfa	ICE	G	1		×	T		\square	12/9/2021	1:30	X	X	×								
35	Background- W @ 2'		G	1		x			\square	12/9/2021	1:35	X	×	×			-					
36	Background- W @ 4'		G	1		×	T		\square	12/9/2021	1:40	X	X	×								
37	Background- S @ 0 Surfac	Ce	G	1		×	П		\square	12/9/2021	1:45	X	×	X								
38	Background- S @ 2'		G	1		×	\square		\square	12/9/2021	1:50	X	×	×								
	Background- S @ 4'		G	1		×	TT		\square	12/9/2021	1:55	X	X	×								
40	PD-1 Vertical @ 45'		G	1		x	T		\square	12/10/2021	9:00	X										
analyses All claims including service. In no event shall Ca	Eliamages Cardinal's liability and client's exi g those for negligence and any other cause w urdinal be liable for incidential or consequential ing out of or related to the performance of serv	hetsoever shall be dee damages, including wi	imed wa thout lin dinal. re	nu beve notativ	liess med buenese s of whet	e an we	ning and uptions l	t receive loss of u	ed by Card ee. or loss	inal within 30 days a s of profits incurred b	iter completion of the ry client, its subuction	es.	Yes		No	Add'i P	hone #:					_
C	\mathcal{A}	Time: 3/0/0			la	U	at	01	de	lass	All Results a											
Relinquished By:		Date:	Rec	eive	d By:			~ •)	REMARKS:											
Delivered By: (Circle One) Delivered By: (Circle One) Observed Temp. "C 30 Sampler - UPS - Bus - Other: Corrected Temp. "C 35 Ves U					ct	1		CKED BIY: nitials)	Turnaround '			Standar Rush	nd IX	-	Cool	a (only) Sa Intact IIS Y		dition Observed	Temp. °C			
							Yes No		A	0.	Thermometer I Correction Fac									Corrected	Temp. *C	

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Page 51 of 53

CARDINAL Laboratories CHAIN-OF-CUSTODY AND ANALYSIS REQUEST 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Company Name: Trinity Oilfield Services **BILL TO ANALYSIS REQUEST** Project Manager: John Farrell P.O. #: Address: 8426 N Dal Paso Mewbourne Oil Co. Company: City: Hobbs State: NM Zip: 88241 Attn: **Robbie Runnels** Phone #: 575 390 7560 Fax #: Address: Project #: Project Owner: (see below) City: State: NM Zip: **Project Name:** Winchester 36 AD State 1H john@trinityoilfieldservices.com Project Location: Eddy Co., NM Phone #: Sampler Name: GR Fax #: MATRIX PRESERV SAMPLING FOR LAB USE ONLY (G)RAB OR (C)OMP **BROUNDWATER** CONTAINERS H213589 CID/BASE **IASTEWAT** CE / COOI Chloride LUDGE THER OTHER **BTEX** LPH OIL Lab I.D. Sample I.D. DATE TIME 4/ PD-2 Vertical @ 40' G 1 1x 12/10/2021 9:05 х 42 PD-4 Vertical @ 40' G 1 x 12/10/2021 9:10 х 43 PD-5 Vertical @ 25' G 1 x 12/10/2021 X 9:15 44 PD-6 Vertical @ 20' G 1 X 12/10/2021 9:20 X 45 PD-7 Vertical @ 40' G 1 X х 12/10/2021 9:25 46 PD-8 Vertical @ 25' G x 1 12/10/2021 9:30 X 47 PD-9 Vertical @ 25' G X 1 12/10/2021 9:35 х 48 PD-10 Vertical @ 50' G X 12/10/2021 9:40 х 1 49 PD-11 Vertical @ 25' G X 12/10/2021 X 9:45 1 50 PD-12 Vertical @ 25' G 1 X x 12/10/2021 9:50 PLEASE NOTE. Liability and Damages. Cardinal's liability and client's exclusive remedy for any client ansing whether based in contract or tort, shall be la led to the an ount paid by the client for the anelyses. All cleams including those for negligence and any other cause whataoever shell be deemed warved unless made an writing and received by Cardinel within 30 days alter completion of the applicable service. In no event shall Cerdinal be liable for incidental or consequential demages. and data without liable for, business interruptions, less of use, or less of profile incurrent by class, in subardiaries allitiates or successors arising out of or related to the performance of services h nder by Cardinal, regardless of whether such claim is ons or otherwas **Relinguished By: Received By** Add'I Phone #: Date 1 Verbal Result: Yes No 2 All Results are emailed. Please provide Email address: Time: 3 /0 **Relinquished By:** Date: **Received By:** REMARKS: Time: Observed Temp. °C 3 () Sample Condition **Delivered By: (Circle One)** CHECKED BY: Turnaround Time: Standard X Bacteria (only) Sample Condition Cool Intact (Initials) Rush Cool intact Observed Temp. *C Corrected Temp. *C 25 Yes Yes Sampler - UPS - Bus - Other: Yes Thermometer ID #113 Yes $^{\circ}$

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Correction Factor -0.5 °C

No

No

Corrected Temp. *C

Company Name	Trinity Oilfield Services	5) 393-2326 F					Τ			BILL TO		1					AN	ALYSIS	REQU	EST				
Project Manager:			-		-		P	0. #	_			1		T	T		T	T			1	_		
Address:	8426 N Dal Paso		-				-	omp		Mewbourne	Dil Co.	1						1						
City:	Hobbs	State: NM	Zip	88	241	-		ttn:		Robbie Runn		1												
Phone #:	575 390 7560	Fax #:			-		A	ddre	55:			1												
Project #:		Project Owne	HT:	(see b	elow)		C	ity:				1												
Project Name:	Winchester 36 AD State 1H	john@trinityo						tate:	N	Zip:		1		1										
Project Location:	Eddy Co., NM						P	hone	#:			1												
Sampler Name:	GR						Fa	ax #:						1										1
FOR LAB USE ONLY			Π		M	TRIX		PR	ESER	. SAN	IPLING						1							
H213589 Lab I.D.	Sample I.I	0.	(G)RAB OR (C)OMP.	# CONTAINERS GROUNDWATER	WASTEWATER		SLUDGE OTHER ·	ACID/BASE:	ICE / COOL	DATE	TIME	Chloride	ТРН	DTCV										
51	PD-13 Vertical @ 50'	_	G	1)	++		\square	-	12/10/2021	9:55	X		-	_									_
52	PD-14 Vertical @ 50'			1		++	+	\square	+	12/10/2021	10:00	X	-	-	-	_			-					_
53	PD-15 Vertical @ 30'	_	G				+	+	+	12/10/2021	10:05	X			-	_	-	-	+					
~ /	PD-16 Vertical @ 16'		G	_	-		-	+	+	12/10/2021	10:10	X			-	_		+						
00	PD-17 Vertical @ 50'		G	-)	++	+	+	+	12/10/2021	10:15	X		-	-									
Sle	PD-18 Vertical @ 40'		G	_)		+	+	+	12/10/2021	10:20	X		-	-			+	+				-+-	
	PD-19 Vertical @ 35'		G	-)	\rightarrow	+	++	+	12/10/2021	10:25	X		+	-	_	+		+					
-	PD-20 Vertical @ 50'		G	-	1	++	+	+	+	12/10/2021	10:30	X			-		+		-	-			-	
12	FPD-21 Vertical @ 30'		G	+		++	+	+	+	12/10/2021	10:35	X		-	-			-	-		-		-	
	FD-26 Vertical @ 20' Clamages Cardinal's liability and clent's co g those for negligence and any other cause w				ther be	sed in co																		
service in no event shell Ca	indinial be liable for incidential or consequential ing out of or related to the performance of ser-	demages, including will	hout in	tation b	usiness	internet	ions, Im	es of us	e, or les	of profile incurred in	y clast, its subsulini													
Relinquished By:		Data: 2/12	Rec	eived	By:				1	1	Verbal Result		Yes			No	Add'l P	hone #:						-
Ct	2	Time: 3:10	0			114	1	I		Holl	All Results a	re emailed.	Please pr	ovide E	Email (address:								
Relinquished By:		Date: Time:	Rec	eived	By:	act.	a_ c	42		J	RIÊMARKS:													

† Cardinal cannot accept verbai changes. Please email changes to celey.keene@cardinallabsnm.com

0

Correction Factor -0.5 °C

Received by OCD: 3/21/2022 3:50:41 PM

No

Corrected Temp. *C

No

Page 52 of 53

Page 118 of 198

1	
	CARDINAL Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393-2326 FAX (575) 393-2476

101 East Marland, Hobbs, NM 88240

Company Name:	Trinity Oilfield Services							_		BILL TO							AN	ALYS	SIS R	EQUE	ST					
Project Manager:	John Farrell						P.	0. #:																		
Address:	8426 N Dal Paso						C	ompa	wny:	Mewbourne C	Dil Co.	1														
City:	Hobbs	State: NM	Zip:	8	8241		A	itn:		Robbie Runne	elis															
Phone #:	575 390 7560	Fax #:					A	ddres	IS:]														
Project #:		Project Owne	нт. ((see	woled)	C	ity:			_		1													
Project Name:	Winchester 36 AD State 1H	john@trinity@	oilfiel	dsen	vices.	com	S	ate:	NM	Zip:																
Project Location:	Eddy Co., NM						P	hone	#:			1	1									_				
Sampler Name:	GR						Fa	ax #:				1														
FOR LAB USE ONLY			Π	T	M	ATRO	¢	PRE	SERV.	SAM	PLING	1														
H213589 Lab I.D.	Sample I.I	D.	(G)RAB OR (C)OMP.	# CONTAINERS	WASTEWATER	OIL	SLUDGE	ACID/BASE:	ICE / COOL OTHER ;	DATE	TIME															
lol	PD-27 Vertical @ 30'		G	1		ĸ		Π		12/10/2021	10:45	X														
	-		Π		TT			П																		
	-		Π		Π			Π														I				
	-		П		TT			П																		
1	-		П		T			Π																		
	-				T			П														T				
	-		t t		Ħ			П													1					
	-		t t		T								1													
	-		H	+	++	T									-											
	-		H	+		H	-	Ħ	+												1				-	
analyses All clams including service. In no event shall Car	d Demages. Cardinal's liability and client's e g those for negligence and any other cause individ be liable for incidental or consequents ig out of or reliated to the performance of ser	whatsoever shall be dee il demeges including will work bereunder by Car	med we hout him	ived uni	esa madi	internet	ing and r plices, los	ecewed as of use	by Carda a. or loss	nal within 30 days al of profile incurred by	her completion of the y class, its subsidiarie	applicable III,														
Relinquished By:		Date: 12/13	Rec	eived	By:	1				nii	All Results an		- Income in the second se	es	la Email	No		hone #								
1 -	\wedge	- 01 0	١.					~	./	11.1	All Resulton an		Presse	PLOAID			-									
	-1-	Time: 7:00			10	U	ah.	1	14	aar	M															_
Relinquished By:		Date:	Rec	eived	By:		000		21	- And -	REMARIKS:															
		Time:]																							
Delivered By: (Circle	e One) Ob	served Temp. 'C	30							KED EIY:	Turnaround 1	'ime:			tandar	d X	-			only) Sa	mple C					
			~		Cool	Intac	t	F	(In	itials)				R	ush	L		Coo	٦	Intact		Obse	erved Te	mp. "C		
Sampler - UPS - Bus	- Other: Col	rected Temp. 'C	as		V	sU	es		77	0	Thermometer if	D#113						-	Yes	Ye						
					N	0	No		Y.		Correction Fact	tor -0.5 °C							No	N	0	Corre	ected Te	mp. °C		

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

January 31, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 01/26/22 16:22.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: NW # 1 (H220310-01)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	01/29/2022	ND	2.08	104	2.00	4.39	
Toluene*	<0.050	0.050	01/29/2022	ND	1.99	99.6	2.00	4.42	
Ethylbenzene*	<0.050	0.050	01/29/2022	ND	1.97	98.7	2.00	3.77	
Total Xylenes*	<0.150	0.150	01/29/2022	ND	5.95	99.1	6.00	3.49	
Total BTEX	<0.300	0.300	01/29/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 \$	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	102 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: NW # 2 (H220310-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/29/2022	ND	2.08	104	2.00	4.39	
Toluene*	<0.050	0.050	01/29/2022	ND	1.99	99.6	2.00	4.42	
Ethylbenzene*	<0.050	0.050	01/29/2022	ND	1.97	98.7	2.00	3.77	
Total Xylenes*	<0.150	0.150	01/29/2022	ND	5.95	99.1	6.00	3.49	
Total BTEX	<0.300	0.300	01/29/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	108	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	106	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: WW # 1 (H220310-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/29/2022	ND	2.08	104	2.00	4.39	
Toluene*	<0.050	0.050	01/29/2022	ND	1.99	99.6	2.00	4.42	
Ethylbenzene*	<0.050	0.050	01/29/2022	ND	1.97	98.7	2.00	3.77	
Total Xylenes*	<0.150	0.150	01/29/2022	ND	5.95	99.1	6.00	3.49	
Total BTEX	<0.300	0.300	01/29/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	97.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: WW # 2 (H220310-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/28/2022	ND	2.01	100	2.00	9.32	
Toluene*	<0.050	0.050	01/28/2022	ND	2.18	109	2.00	5.72	
Ethylbenzene*	<0.050	0.050	01/28/2022	ND	2.03	101	2.00	3.91	
Total Xylenes*	<0.150	0.150	01/28/2022	ND	6.30	105	6.00	3.50	
Total BTEX	<0.300	0.300	01/28/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	108	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	105	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: WW # 3 (H220310-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/28/2022	ND	2.01	100	2.00	9.32	
Toluene*	<0.050	0.050	01/28/2022	ND	2.18	109	2.00	5.72	
Ethylbenzene*	<0.050	0.050	01/28/2022	ND	2.03	101	2.00	3.91	
Total Xylenes*	<0.150	0.150	01/28/2022	ND	6.30	105	6.00	3.50	
Total BTEX	<0.300	0.300	01/28/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	116 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	114 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: EW # 1 (H220310-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/28/2022	ND	2.01	100	2.00	9.32	
Toluene*	<0.050	0.050	01/28/2022	ND	2.18	109	2.00	5.72	
Ethylbenzene*	<0.050	0.050	01/28/2022	ND	2.03	101	2.00	3.91	
Total Xylenes*	<0.150	0.150	01/28/2022	ND	6.30	105	6.00	3.50	
Total BTEX	<0.300	0.300	01/28/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	103	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: NW # 3 (H220310-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/28/2022	ND	2.01	100	2.00	9.32	
Toluene*	<0.050	0.050	01/28/2022	ND	2.18	109	2.00	5.72	
Ethylbenzene*	<0.050	0.050	01/28/2022	ND	2.03	101	2.00	3.91	
Total Xylenes*	<0.150	0.150	01/28/2022	ND	6.30	105	6.00	3.50	
Total BTEX	<0.300	0.300	01/28/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 \$	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	96.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	01/26/2022	Sampling Date:	01/26/2022
Reported:	01/31/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE -		

Sample ID: EW # 2 (H220310-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/28/2022	ND	2.01	100	2.00	9.32	
Toluene*	<0.050	0.050	01/28/2022	ND	2.18	109	2.00	5.72	
Ethylbenzene*	<0.050	0.050	01/28/2022	ND	2.03	101	2.00	3.91	
Total Xylenes*	<0.150	0.150	01/28/2022	ND	6.30	105	6.00	3.50	
Total BTEX	<0.300	0.300	01/28/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/27/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/28/2022	ND	210	105	200	6.76	
DRO >C10-C28*	<10.0	10.0	01/28/2022	ND	252	126	200	3.17	
EXT DRO >C28-C36	<10.0	10.0	01/28/2022	ND					
Surrogate: 1-Chlorooctane	110	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARDINAL LABORATORIES

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 11 of 11

101	East	Marland,	Hobbs,	NM	88240	
-----	------	----------	--------	----	-------	--

(575) 393-2326 FAX (575) 393-2476

ompany Name: Etech Environmental & Safety Solutions, Inc.	B	ILL TO			ANALYSIS REQUEST
roject Manager: Jance Cranshaw	P.O. #:				
ddress: 2617 West Marland	Company 9	Newboure			
ity: Hobbs State: NM Zip: 88240	Attn: Robh	ie Runnels			
hone #: (575) 264-9884 Fax #:	Address:			1	
roject #: 15345 Project Owner:	City:				
roject Name: PWMS Deminger to winchester	ine State:	Zip:	<u>e</u>	2W)	S1B
roject Location:	Phone #:		Chloride	TPH (8015M)	BTEX (8021B)
ampler Name: Aaron Rios	Fax #:		E	H	
OR LAB USE ONLY	TRIX PRESERV	SAMPLING		14	
Tap I'D' Samble I'D' CONP. # CONTAINERS GROUNDWATER MASTEWATER	OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	DATE TIME			
1 NW#1. X	X	1-26-22	X	X	X
Z NW#2. X	x	1-26-22	X	X	X
3 WW# 1. X	×	1-26-22	X	X	X
4 WW#2. x	×	1-26-22	X	X	X
5 WW# 3. X	×	1-26-22	X	X	X
4 εω#1. x	×	1-26-22	X	-	X
2 NW#3. ×	×	1-26-22	X		×
8 Ew#2. x	×	1-26-22	X	X	X
				-	
2.00 C-010C Coo	in writing and received by Cardinal terruptions, loss of use, or loss of p rsuch claim is based upon any of the Man Addated upon any of the Ma	within 30 days after completion of profile nourred by client, its subsidie the above stated reasons or otherw Phone Re Fax Resu REMARK	he applicable ries, se ssult: [lt: [S:	□ Yes □ Yes	
FORM-006 T Cardinal cannot	No V				

Nd

Page 129 of 198

February 04, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 02/01/22 15:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: SW #1 (H220387-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	02/03/2022	ND	1.97	98.6	2.00	10.9	
Toluene*	<0.050	0.050	02/03/2022	ND	1.91	95.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.86	93.2	2.00	11.6	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.62	93.7	6.00	11.6	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	219	109	200	0.879	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	223	112	200	1.38	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	108	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	116 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: EW # 3 (H220387-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.97	98.6	2.00	10.9	
Toluene*	<0.050	0.050	02/03/2022	ND	1.91	95.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.86	93.2	2.00	11.6	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.62	93.7	6.00	11.6	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	219	109	200	0.879	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	223	112	200	1.38	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	110 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	118 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: EW # 4 (H220387-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.97	98.6	2.00	10.9	
Toluene*	<0.050	0.050	02/03/2022	ND	1.91	95.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.86	93.2	2.00	11.6	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.62	93.7	6.00	11.6	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	95.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: EW # 5 (H220387-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.97	98.6	2.00	10.9	
Toluene*	<0.050	0.050	02/03/2022	ND	1.91	95.4	2.00	10.8	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.86	93.2	2.00	11.6	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.62	93.7	6.00	11.6	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: WW #4 (H220387-05)

BTEX 8021B	EX 8021B mg/kg		Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.95	97.7	2.00	4.97	
Toluene*	<0.050	0.050	02/03/2022	ND	2.08	104	2.00	0.518	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.92	96.2	2.00	1.03	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.96	99.4	6.00	0.695	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	91.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: WW # 5 (H220387-06)

BTEX 8021B	B mg/kg		Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.95	97.7	2.00	4.97	
Toluene*	<0.050	0.050	02/03/2022	ND	2.08	104	2.00	0.518	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.92	96.2	2.00	1.03	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.96	99.4	6.00	0.695	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	95.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: SW # 2 (H220387-07)

BTEX 8021B mg/kg		Analyze	d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	02/03/2022	ND	1.95	97.7	2.00	4.97	
Toluene*	<0.050	0.050	02/03/2022	ND	2.08	104	2.00	0.518	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.92	96.2	2.00	1.03	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.96	99.4	6.00	0.695	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	94.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.8	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: SW # 3 (H220387-08)

BTEX 8021B mg/kg		Analyze	d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	02/03/2022	ND	1.95	97.7	2.00	4.97	
Toluene*	<0.050	0.050	02/03/2022	ND	2.08	104	2.00	0.518	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.92	96.2	2.00	1.03	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.96	99.4	6.00	0.695	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	97.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	98.4	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/04/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE		

Sample ID: SW # 4 (H220387-09)

STEX 8021B mg/kg		Analyze	d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	1.95	97.7	2.00	4.97	
Toluene*	<0.050	0.050	02/03/2022	ND	2.08	104	2.00	0.518	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	1.92	96.2	2.00	1.03	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	5.96	99.4	6.00	0.695	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/03/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	204	102	200	5.27	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	220	110	200	5.25	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	91.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.4	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

RDINAL LABORATORIES 101 East Martand, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 12 of 12

(575) 202,2326 EAY (575) 202 2476

Company Name: Etech Environmental & Safety Sol	itions,	, Inc					BILL TO									ANA	LYSI	S RI	EQUE	EST	
Project Manager: Lance Crunshaw							P.O.	-											T		
Address: P.O. Box 301							Company Mewboure				e	1									
City: Lovington State: NM	Zip:	882	260				Attn:	La	hh	ie Runn	10/5										
Phone #: (575) 396-2378 Fax #: (575)	396-1-	429					Addr			C. 7. 1100	UNV.										
Project #: /5345 Project Owne	er:						City:														
Project Name: Pwms Deringer To Wine	hear	n,	ine		-		State			Zip:			(W)	18)							
Project Location:	10.000	1.0	WILL.			-	Phor					Drid	015	802							
Sampler Name: Aaron Rics							Fax					Chloride	TPH (8015M)	BTEX (8021B							
R LAB USE ONLY	T			MA	TRI		-	RESE	RV.	SAMPLI	NG	ľ	TP	BTE							
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	Solt	OIL	SLUDGE	OTHER :	ICE / COOL	OTHER .	DATE	TIME										10
1 5W #1.		X		X				X		2-1-22		X	X	X							
Z EW#3.		×		X				X		2-1-22		X	X	×							
3 Ew#4.		X		X				X		2-1-22		X	X	X							
4 EW#5.		X		X				X		2-1-22		X	x	x							
5 Ww#4.		X		X				X	1	2-1-22		X	x	x							
6 W w # 5.		X		X	and the second second		-	X		2-1-22		X	×	X							_
7 Sw # 2. 8 Sw # 3.		X		X				X		2-1-22		X	X	X				-			
8 Sw # 3.		×		X			-	×		2-1-22		X	X	X							
9 Sw # 4.		X		X			+	×		2-1-22		X	×	X		-	-	-	-		
PLEASE NOTE: Lability and Damages. Cardinal's fability and client's evolutive remedy for analyses. All claim: Including those for negligence and any other cause whatsoever shall be service. In no event shall cardinal be liable for inclidential or correspondit damages, including this or or consequential damages, including filteres or successors analyses. Relinquished By: Date: Time: Delivered By: (Circle One) Sampler - UPS - Bus - Other: 3, 4 c	e deamed ng withou <u>Cardinal</u> Re Re	ceiv ceiv	d united tion, burid dess of v red B ved B	made i news in whether V: V: V: V: mple	in well ternap such	ing and tions, to claim is 2	received es of us s based i l	thy Card	dinati w s of pro- y of the	this 30 days also oils incarred by a book stated re book stated re ED BY: iats)	r completion of th tient, its subsidier	he applica les, se. esult: lt: S:		es 🗆	No No	Add'i	Phone Fax #:				

Released to Imaging: 3/22/2022 1:38:21 PM

Page 141 of 198

Revision 1.0

February 09, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 02/04/22 16:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: WW # 6 (H220436-01)

BTEX 8021B	mg/kg		Analyzed By: MS/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300	0.300	02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	e (PID 104 % 69.9-1		0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	112 % 66.9-13		6						
Surrogate: 1-Chlorooctadecane	121	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: EW # 6 (H220436-02)

BTEX 8021B	mg/kg		Analyzed By: MS/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300	0.300	02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	116 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	124 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: NW # 4 (H220436-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300 0.300		02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID		% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	108 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	114 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: NW # 5 (H220436-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300 0.300		02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID		69.9-14	10						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	108 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	115 %	59.5-14							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: EW #7 (H220436-05)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300 0.300		02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	117 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	123 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: WW # 8 (H220436-06)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300	0.300	02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	109 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	114 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/04/2022	Sampling Date:	02/04/2022
Reported:	02/09/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Jodi Henson
Project Location:	MEWBOURNE		

Sample ID: WW # 9 (H220436-07)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/08/2022	ND	2.02	101	2.00	6.62	
Toluene*	<0.050	0.050	02/08/2022	ND	1.98	98.9	2.00	7.04	
Ethylbenzene*	<0.050	0.050	02/08/2022	ND	2.00	99.8	2.00	6.49	
Total Xylenes*	<0.150	0.150	02/08/2022	ND	6.15	103	6.00	6.36	
Total BTEX	<0.300 0.300		02/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/08/2022	ND	201	101	200	0.812	
DRO >C10-C28*	<10.0	10.0	02/08/2022	ND	222	111	200	0.862	
EXT DRO >C28-C36	<10.0	10.0	02/08/2022	ND					
Surrogate: 1-Chlorooctane	113 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	119 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240

Page 151 of 198

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 10 of 10

Company Name	e: Etech Environme	ental & Safety Solu	tions,	Inc.			BI	LL TO					ANALYSIS REQUEST
roject Manage	Jance Crens	chaw). #:						
ddress: 261	7 West Marland					Co	mpany	lew bou	re				
ity: Hobbs		State: NM	Zip:	88240)	Att	n: Robbi	e Run	nels				
hone #: (57	5) 264-9884	Fax #:					dress: "						
Project #: 15345 Project Owner: Project Name: PWMS Derringer To Winchester Line				Cit									
					ate:	Zip:		e	EM)	1B			
roject Locatio	n:					Ph	one #:			orid	801	803	
ampler Name:	Aaron Kios					Fai	x #:			Chloride	TPH (8015M)	BTEX (8021B	
FOR LAB USE ONLY			Π	T	MATRIX		PRESERV	SAMPL	ING	1	L ⊨	BT	
Lab I.D.	Sample	I.D.	(G)RAB OR (C)OMP	# CONTAINERS GROUNDWATER	WASTEWATER SOIL OIL	OTHER :	ACID/BASE: ICE / COOL OTHER :	DATE	TIME				
1	WW#6.			x	X		X	2-4-22		X	X	X	
2	EW#6.			×	×		X	2-4-22		X	X	X	
3	NW#4.			×	×		×	2-4-22		X	×	X	
4	NW#5.			X	×		×	2-4-22		×	×	×	
5	Ew#7.			×	X	_	X	2-4-22		×	¥	×	
(p)	WW#8.			X	X		X	2-4-22		X	X	X	
.1	WW#9.			X	X		X	2-4-22		×	X	X	
alyses All claims includ	nd Damages. Cardinal's liability and ing those for negligence and any off	ner cause whatsoever shall be	bemeeb	waiwad un	less made in writing a	ind recei	wed by Cardinal w	itinn 30 days alte	r completion of t	he applica	ble		
	5		Cardinal		of whether such clai					^{se} Isult: It:	C Ye		
	: (Circle One) 2 - Bus - Other:		11 -	7	Sample Cond Cool Intact Yes Y	es		ED BY:	Please e	email o	хору с	of COC	and results to pm@etechenv.com.

March 18, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 02/11/22 15:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Etech Environmental & Safety Soluti 2617 W MARLAND HOBBS NM, 88240		Project Number:	PWMS DERRINGER TO WINCHEST 15345 LANCE CRENSHAW	Reported: 18-Mar-22 14:19
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW # 7	H220555-01	Soil	11-Feb-22 00:00	11-Feb-22 15:05
SW # 8	H220555-02	Soil	11-Feb-22 00:00	11-Feb-22 15:05
WW # 11	H220555-03	Soil	11-Feb-22 00:00	11-Feb-22 15:05

03/18/22 - Client changed the sample ID of -03. This is the revised report and will replace the one sent on 02/15/22.

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS NM, 88240		Project Num Project Mana	Project: PWMS DERRINGER TO WINCHEST Project Number: 15345 Project Manager: LANCE CRENSHAW Fax To:					Reported: 18-Mar-22 14:19			
				W # 7 555-01 (So	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	80.0		16.0	mg/kg	4	2021501	GM	15-Feb-22	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			103 %	69.9	-140	2021404	MS/	14-Feb-22	8021B		
Petroleum Hydrocarbons by GC	FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
Surrogate: 1-Chlorooctane			96.9 %	66.9	-136	2021406	CK	14-Feb-22	8015B		
Surrogate: 1-Chlorooctadecane			111 %	59.5	-142	2021406	СК	14-Feb-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Sa 2617 W MARLAND HOBBS NM, 88240	fety Solutions		Project Num Project Mana	ber: 153			INCHEST	1	Reported: 18-Mar-22 14:19		
			~	SW #8 555-02 (So	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds	(1.0		16.0	ma/ka	4	2021501	GM	15-Feb-22	4500-Cl-B		
Chloride	64.0		16.0	mg/kg	4	2021501	GM	15-Feb-22	4300-CI-B		
Volatile Organic Compound	s by EPA Method 80	021									
Benzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2021404	MS/	14-Feb-22	8021B		
Surrogate: 4-Bromofluorobenzene (PL	ID)		102 %	69.9	-140	2021404	MS/	14-Feb-22	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2021406	CK	14-Feb-22	8015B		
Surrogate: 1-Chlorooctane			103 %	66.9	-136	2021406	СК	14-Feb-22	8015B		
Surrogate: 1-Chlorooctadecane			117 %	59.5	-142	2021406	СК	14-Feb-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety 2617 W MARLAND HOBBS NM, 88240	/ Solutions		Project Num Project Mana	, ber: 153		Reported: 18-Mar-22 14:19				
				W # 11 555-03 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	112		16.0	mg/kg	4	2021501	GM	15-Feb-22	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2021404	MS/	14-Feb-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2021404	MS/	14-Feb-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2021404	MS/	14-Feb-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			102 %	69.9	-140	2021404	MS/	14-Feb-22	8021B	
Petroleum Hydrocarbons by GC	C FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2021406	CK	15-Feb-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2021406	CK	15-Feb-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2021406	СК	15-Feb-22	8015B	
Surrogate: 1-Chlorooctane			109 %	66.9	-136	2021406	СК	15-Feb-22	8015B	
Surrogate: 1-Chlorooctadecane			124 %	59.5	-142	2021406	СК	15-Feb-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS NM, 88240	Project: P Project Number: 1 Project Manager: L Fax To:		Reported: 18-Mar-22 14:19	
---	--	--	------------------------------	--

Inorganic Compounds - Quality Control

Cardinal Laboratories										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2021501 - 1:4 DI Water										
Blank (2021501-BLK1)				Prepared &	Analyzed:	15-Feb-22				
Chloride	ND	16.0	mg/kg							
LCS (2021501-BS1)				Prepared &	Analyzed:	15-Feb-22				
Chloride	416	16.0	mg/kg	400		104	80-120			
LCS Dup (2021501-BSD1)				Prepared &	Analyzed:	15-Feb-22				
Chloride	400	16.0	mg/kg	400		100	80-120	3.92	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS NM, 88240	Project Number:	PWMS DERRINGER TO WINCHEST 15345 LANCE CRENSHAW	Reported: 18-Mar-22 14:19
---	-----------------	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2021404 - Volatiles										
Blank (2021404-BLK1)				Prepared &	z Analyzed:	14-Feb-22				
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0518		mg/kg	0.0500		104	69.9-140			
LCS (2021404-BS1)				Prepared &	Analyzed:	14-Feb-22				
Benzene	1.82	0.050	mg/kg	2.00		91.1	85.1-114			
Toluene	1.83	0.050	mg/kg	2.00		91.6	88.6-116			
Ethylbenzene	1.80	0.050	mg/kg	2.00		90.0	84.4-115			
m,p-Xylene	3.80	0.100	mg/kg	4.00		94.9	85.5-116			
o-Xylene	1.82	0.050	mg/kg	2.00		91.2	85.2-111			
Total Xylenes	5.62	0.150	mg/kg	6.00		93.7	86.2-113			
Surrogate: 4-Bromofluorobenzene (PID)	0.0500		mg/kg	0.0500		100	69.9-140			
LCS Dup (2021404-BSD1)				Prepared &	z Analyzed:	14-Feb-22				
Benzene	2.03	0.050	mg/kg	2.00		101	85.1-114	10.8	12.6	
Toluene	2.03	0.050	mg/kg	2.00		101	88.6-116	10.2	13.3	
Ethylbenzene	1.98	0.050	mg/kg	2.00		98.8	84.4-115	9.35	13.9	
m,p-Xylene	4.14	0.100	mg/kg	4.00		103	85.5-116	8.55	13.6	
o-Xylene	1.99	0.050	mg/kg	2.00		99.6	85.2-111	8.81	14.1	
Total Xylenes	6.13	0.150	mg/kg	6.00		102	86.2-113	8.63	13.4	
Surrogate: 4-Bromofluorobenzene (PID)	0.0499		mg/kg	0.0500		99.9	69.9-140			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS NM, 88240	Project Number:	PWMS DERRINGER TO WINCHEST 15345 LANCE CRENSHAW	Reported: 18-Mar-22 14:19
---	-----------------	---	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2021406 - General Prep - Organics										
Blank (2021406-BLK1)				Prepared &	Analyzed:	14-Feb-22				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	56.8		mg/kg	50.0		114	66.9-136			
Surrogate: 1-Chlorooctadecane	65.1		mg/kg	50.0		130	59.5-142			
LCS (2021406-BS1)				Prepared &	z Analyzed:	14-Feb-22				
GRO C6-C10	202	10.0	mg/kg	200		101	81.6-129			
DRO >C10-C28	206	10.0	mg/kg	200		103	83-129			
Total TPH C6-C28	408	10.0	mg/kg	400		102	84.5-127			
Surrogate: 1-Chlorooctane	61.5		mg/kg	50.0		123	66.9-136			
Surrogate: 1-Chlorooctadecane	68.6		mg/kg	50.0		137	59.5-142			
LCS Dup (2021406-BSD1)				Prepared &	Analyzed:	14-Feb-22				
GRO C6-C10	198	10.0	mg/kg	200		99.2	81.6-129	1.64	21.4	
DRO >C10-C28	204	10.0	mg/kg	200		102	83-129	1.06	17.9	
Total TPH C6-C28	402	10.0	mg/kg	400		101	84.5-127	1.35	17.6	
Surrogate: 1-Chlorooctane	60.0		mg/kg	50.0		120	66.9-136			
Surrogate: 1-Chlorooctadecane	67.3		mg/kg	50.0		135	59.5-142			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 161 of 198

Received by OCD: 3/21/2022 3:50:41 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

Company Name	e: Etech Environmental & Safety Solu	-	, In	C.						1	8/	LL TO	1.11					AN	ALYS	IS F	REQL	JEST	-		
Project Manage	er: Lance Crenshaw							P.(0. #:							Γ	T	T	T	T		T	1		
Address: 26	17 West Marland							Co	mpa	any		Mewbo	ume												
City: Hobbs	State: NM	Zip	: 88	240				Attn: Robbie Runnels					nels												
Phone #: (57	75) 264-9884 Fax #:							Address:						1											
Project #: 15	345 Project Owne	r:	Me	ewbo	ourne	9		City:																	
Project Name:	PWMS Derringer to Winchester Line		-				-	1	ate:			Zip:			(W)	B								1	
Project Locatio	on: Rural Eddy County, NM	_				-		Ph	one	#:				Chloride	TPH (8015M)	BTEX (8021B)									
Sampler Name	: Matthew Grieco							1	x #:					- H	H	X									
FOR LAB USE ONLY		T	Г		M	ATRI	X		PRE	SE	RV.	SAMPL	ING	Ĭ	E I	EI I									
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER	OIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DATE	TIME												
1	SW # 7	С	1)	(X		2/11/22		X	X	X									
2	SW # 8	С	1)	(X		2/11/22		x	X	X									
3	WW#8 NOW #11	С	1)	(X		2/11/22		х	X	X									
					_		1										-	-	-			_			
						1	-				_					-	-	-	-	-	-	-	_		
		-	L		-	-	-	-		_	_				-	-	-	-	+	+	-	-		-	
					-	+	-	-		_	_		-	-	-	-	+	+	-	+	+	+	-		-
		+			-	+	-	-		-	-			-	-	+	-	+	+	+	+	+	-	+-	
		+	⊢		-	+	+	-		-	-			-	-	-	+	+	+	+		+	+	+-	-
PLEASE NOTE: Liability a	and Damages. Cardinal's liability and client's exclusive remody for a	itry clair	n arisi	ng whe	ther bas	ed in c	ontract	t or tor	t, shall	be lim	ited to	o the amount pai	d by the client for	the		-	-	1	_			_	_	_	1
analyses. All claims includ	ting those for negligence and any other cause whateoever shall be Cardinal be liable for incidental or consequental damages, including	deeme	d walv	ed unle	es medi	in wri	King and	d rece	ived by	Cardi	inal w	thin 30 days afte	r completion of th	e applica	bie										
Relinquished B	1 1 -11-22 Time: 505	Re	cei	ved	By:	er suct	h claim	is bas		n any	of the	above stated re	Phone Re Fax Result REMARKS	sult: t:		-	No No	Add	'l Phor 'l Fax #	#:	~~ V	Ben	. 3	Inh	
Relinquished B	Time:			ved							-		Thease e											C	k
	: (Circle One) _ 3.1 c) (-4 - Bus - Other: _ 34 c			(Int	act				Initi	ED BY: als)													
FORM-0 Revision		Indin	al c	ann	ot ac	cep	t vei	rbal	cha	nge	95 .	Please fa	x written c	hange	es to s	575-3	393-24	76							

February 16, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 02/14/22 15:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: EW #8 (H220568-01)

BTEX 8021B	mg/	′kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	86.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	90.3	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: EW #9 (H220568-02)

BTEX 8021B	mg/	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	91.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: WW #10 (H220568-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	92.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: SW #5 (H220568-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	83.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	86.0	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: SW #6 (H220568-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	82.1	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	02/14/2022	Sampling Date:	02/14/2022
Reported:	02/16/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	Cool & Intact
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: WW #7 (H220568-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/15/2022	ND	1.81	90.4	2.00	12.2	
Toluene*	<0.050	0.050	02/15/2022	ND	1.81	90.6	2.00	10.4	
Ethylbenzene*	<0.050	0.050	02/15/2022	ND	1.76	87.8	2.00	9.82	
Total Xylenes*	<0.150	0.150	02/15/2022	ND	5.49	91.5	6.00	9.49	
Total BTEX	<0.300	0.300	02/15/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/15/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/15/2022	ND	246	123	200	4.40	
DRO >C10-C28*	<10.0	10.0	02/15/2022	ND	220	110	200	1.39	
EXT DRO >C28-C36	<10.0	10.0	02/15/2022	ND					
Surrogate: 1-Chlorooctane	84.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	87.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 9 of 9

(575) 393-2326 FAX (575) 393-2476 Company Name: Etech Environmental & Safety Solutions, Inc.	BILL TO	ANALYSIS REQUEST
Project Manager: Lorce Crenshaw	P.O. #:	
Address: P.O. Box 301		
City: Lovington State: NM Zip: 88260	Company: Mewberre	
Phone #: (575) 396-2378 Fax #: (575) 396-1429	Attn: Robbie Runnels	
	Address:	
Project #: 15345 Project Owner:	City:	
Project Name: PWMS Derringer To winchester Line	State: Zip:	Chloride TPH (8015M) 3TEX (8021B)
Project Location:	Phone #:	Chloride EX (802151
Sampler Name: Awon Kick	Fax #:	Chick
R LAB USE ONLY	X PRESERV. SAMPLING	
Tap I.D. Sample I.D. (G)RAB OR (C)OMP (G)RAB OR (C)OMP # CONTAINERS # CONTAINERS Soll Soll	OTHER : ACID/BASE: ICE / COOL OTHER :	
1 Ew#8. X X	X 2-H-D	XXX
$2 F \omega # 9.$ X X	× 2-14-22	XXX
3 WW#10. X X	× 2-N-20	y x x
4 SW#5. X X	X 2-14-20	XXX
5 SWH6 X X	X 2-H-22	XXX
6 ww#7. × ×	X 2-H-22	XXX
PLEASE NOTE: Liability and Darmages. Cardinal's liability and client's exclusive remody for any claim artising whether bised in analyses. All claim: including those for negligence and any other cause whatsoever shall be deemed waived unless made in w service. In no event shall Cardinal be Bubble for incidential or consequential demages, including without limitation, beginses intern	ing and received by Cantinut within 30 days after completion of	the applicable
affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether su		wise.
Relinquished By: 2-14-22 Time: Time:	Fax Resi	ult: 🛛 Yes 🗋 No 🛛 Add'I Fax #:
storon 1000 1500 silling	ta Waappe	
Relinquished By: Date: Received By:		
Time:	Please	email results to pm@etechenv.com.
Delivered By: (Circle One) 4.8°C (C-0.5°C Sample C	ondition CHECKED BY:	under round to price contain.com.
Sampler - UPS - Bus - Other: 4.3c #113	act (Initials)	
T Cardinal cannot acce	t verbal changes. Please fax written	changes to 5/5-393-24/6

Revision 1.0

March 14, 2022

LANCE CRENSHAW Etech Environmental & Safety Solutions 2617 W MARLAND HOBBS, NM 88240

RE: PWMS DERRINGER TO WINCHESTER LINE

Enclosed are the results of analyses for samples received by the laboratory on 03/10/22 14:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 5' (H220972-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4480	16.0	03/11/2022	ND	416	104	400	3.77	QM-07
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	93 .7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	104	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 10' (H220972-02)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4960	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	101 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	112 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 15' (H220972-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4000	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	143	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	90.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 20' (H220972-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3160	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	97.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	109 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 25' (H220972-05)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1060	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	96.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	108 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. #1 @ 30' (H220972-06)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	100 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	112 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 5' (H220972-07)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10200	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	98.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	111 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 10' (H220972-08)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/10/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/10/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/10/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/10/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3440	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	91.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 15' (H220972-09)

BTEX 8021B	mg/	'kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8530	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	98.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	112 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 20' (H220972-10)

BTEX 8021B	mg/	'kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7730	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	88.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	100 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 25' (H220972-11)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5120	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	90.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	101 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 30' (H220972-12)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	2.01	101	2.00	8.51	
Toluene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.90	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	2.00	99.9	2.00	8.82	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.18	103	6.00	8.31	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	94.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	105 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 35' (H220972-13)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	96.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 40' (H220972-14)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	94.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	105 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 2 @ 45' (H220972-15)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 5' (H220972-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6240	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	104	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 10' (H220972-17)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2160	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	96.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	108 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 15' (H220972-18)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2400	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	98.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	106	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 20' (H220972-19)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	91.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	101 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 25' (H220972-20)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	199	99.7	200	4.03	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	199	99.7	200	3.00	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	91.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	105 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 30' (H220972-21)

BTEX 8021B	mg/	′kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	03/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	202	101	200	18.5	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	191	95.5	200	19.6	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	108 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	109 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	03/10/2022	Sampling Date:	03/10/2022
Reported:	03/14/2022	Sampling Type:	Soil
Project Name:	PWMS DERRINGER TO WINCHESTER LIN	Sampling Condition:	** (See Notes)
Project Number:	15345	Sample Received By:	Tamara Oldaker
Project Location:	MEWBOURNE - EDDY CO., NM		

Sample ID: B.H. # 3 @ 35' (H220972-22)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/11/2022	ND	1.98	99.1	2.00	8.81	
Toluene*	<0.050	0.050	03/11/2022	ND	1.98	98.9	2.00	9.02	
Ethylbenzene*	<0.050	0.050	03/11/2022	ND	1.97	98.7	2.00	9.31	
Total Xylenes*	<0.150	0.150	03/11/2022	ND	6.11	102	6.00	8.90	
Total BTEX	<0.300	0.300	03/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	03/11/2022	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/11/2022	ND	202	101	200	18.5	
DRO >C10-C28*	<10.0	10.0	03/11/2022	ND	191	95.5	200	19.6	
EXT DRO >C28-C36	<10.0	10.0	03/11/2022	ND					
Surrogate: 1-Chlorooctane	109	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	111 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

A		
	LABORATO	RIES

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 25 of 27

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

	Etech Environmental & Safety Solu	tions, Inc.			BI	LL TO					AN/	LYSIS	REQU	JEST		
roject Manage	r: Joel LONRY			P.O. 1	k:											
ddress: 261	7 W Marland			Comp	bany A	newboon	rne									
ity: Hobbs	State: NM	Zip: 88240		Attn:												
hone #: (575	5) 264-9884 Fax #:			Addre	ess:											
	5345 Project Owne	r: Mewborn	rne	City:				1								
roject Name: /	PWMS Derringer to Winch	ester		State:		Zip:			EM)	218						
roject Location	PWMS Derringer to Winch n: Rural Eddy Co, NM			Phone	e #:			Chloride	FPH (8015M)	(8021B)						
	Miquel Raminez			Fax #	:		-	Ē	H	BTEX						
FOR LAB USE ONLY			MATRIX	PR	ESERV	SAMPLI	NG		₽							
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER	Soil Soil	OTHER : ACID/BASE:	ICE / COOL OTHER :	DATE	TIME									
1	B.H.#1.@5'	GI	X		X	3/10/12		X	X	X						
Ż	B.H. # 1 @ 10'	11	1		1	1		1	1	1,						
	B.H. # 2 @ 15'															
	B.H.#1@20'															
	B.H.#1 @ 25'							1								
	B.H. # 1 @ 30'							11	\square						-	
	B.H.#2 @5'							11								
8	B.H. #2 @10'						-	11		11				· · · ·		
9	B.H. # 2 @15'							11	\square	11						-
ASE NOTE: Liability an	B.H. #2 020	44	Y		V	1		4	4	4						
alyses. All claims includie vice. In no event shall Ca listes or successors arisin elinquished By elinquished By	Ken Time 450	decensed weived unless n without limitudion, busins ardinal, regardless of ve Received By Received By	nade in writing an ses interruptions, hether such clam k	d received b fous of use, is based up	criters of provide the second	within 30 days after rollin incurred by c e above stated res	r completion of the lient, its suboldine soons or otherwise Phone Ree Fax Resul REMARKS	he applicat riss, ss. ssult: it: S: Rv email r	vsh results	Pleo	No Add		@etech		n. M F	

Page 195 of 198

ARDINAL LABORATORIES

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

Company Name	: Etech Environmental & Safety Solu	tions	s, In	Ċ.							B	IL	LTO						AN	ALYS	SIS	REC	UE	ST			
Project Manage	T. Joel Lowry					-		1	P.O.	#:							Т										
Address: 261								-	Com	npar	ny /	M	enbour	ne													
City: Hobbs	State: NM	Zip	: 88	3240	0				Attn																		
Phone #: (575	5) 264-9884 Fax #:								Add	ress	s:																
Project #: 15	345 Project Owne			so	our	re			City	:							L										
Project Name:	PWMS Deringer to Winche	ster	-						State	e:		z	lip:		0	SM)	Ш	38									
Project Location								-	Pho	ne i	e:				Chloride	TPH (8015M)		BTEX (8021B									
Sampler Name:	Miguel Rumine								Fax	#:				_	- E	H	1	ы									
FOR LAB USE ONLY		T	Т	T		MAT	RIX	_	P	RES	SERV	4	SAMPLI	NG	1	Ħ											
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	OTHER :		DATE	TIME													
11	B.H.2 @ 25'	G	1	Γ		X				1	X	ŀ	3/10/22		X	K	>	X									
	B.H.2 @ 30'	1	\square			1				1	1	L	1		1	1		1	-			_	_				
13	D.H. 2 P 35'	11	\square						-	12					11	\square		11	_	_		-					
14	B.H.2 @ 40'	11	Ц	L	-				-			L			1		1	11	_	-	-	-		_			
15	B.H.2 @ 45'	11	11						-			Ł			11		+	11		+	-	-	_			_	-
16	B.H.3@5'	11	11					-	-		1	₽	-		11	\square	+	11		-	+	-	_	_	-		
17	B.H.3 @ 10'	11	11	⊢		1	_	-	+	-		₽	+		11-	\vdash	+	11	-	+	+	-	_		-	_	
18	B.H.3. (215'	11	\square			-	_	+	+	-	1	₽			\mathbf{H}	++	+	++	-	+	+	\rightarrow	_	_	-		-
19	B.H.3 @m	\square					-	-	+		1	₽	1		\square		+	11	-	+	+	+	-	-		-	-
PLEASE NOTE: Liability an	5. 1 3 (a) 35' d Damages, Cardinal's liability and client's exclusive remedy for a	uny clai		ing wh	other t	-	in con	tract or	tort si	hall be	limited	1 to t	the amount paid	by the client for	U.	V		VI				_					
analyses. All claims includin	ig those for negligence and any other cause whatsoever shall be indinal be liable for incidential or consequential damages, including	deeme	nd web	ved un	lees m	ade in	writing	g and r	ecelve	d by C	ardinal	with	in 30 days after	completion of th	te applica	ble											
Relinquished By Relinquished By Delivered By:	g out of or related to the performance of services hereunder by Date: Time: 450 (Circle One) - Bus - Other: 21.1c C-C	Re Re	ecei	ved	By: By: Sam Coo	ple i Yes			n	c	any of t	KE	bove stated read	Phone Re Fax Resul REMARKS	sult: t: S: h		es		o Ade	d'I Pho d'I Fax	#:	Dete	chen	v.com	l.		

Page 196 of 198

Revision 1.0

Page 197 of 198

Received by OCD: 3/21/2022 3:50:41 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name:	Etech Environmental & Safety Solu	tions	, Inc							BI	LL TO						ANAL	YSIS	RE	QUE	ST	-	
Project Manager	: Joel Lowry				-		1	P.O.	#:														
Address: 2617	7 W Marland							Com	par	iy (Ucubour	ne											
City: Hobbs	State: NM	Zip	: 88	240				Attn	:														
Phone #: (575	i) 264-9884 Fax #:							Add	ress	:			1										
Project #: /S				600	rr	e		City	:				1										
Project Name:	PWMS Derringer to Winch	ske	-					Stat	e:		Zip:		9	5M)	21B								
Project Location	" Rural Eddy CO, NM Miguel Rangerz							Pho	ne il	:			Chloride	TPH (8015M)	BTEX (8021B)								
Sampler Name:	Mibuel Rangez							Fax	#:				-B	H	X								
FOR LAB USE ONLY	,	L	Г	-	M	ATRI	X	P	RES	ERV.	SAMPLI	ING		F	6								
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	WASTEWATER	-	SLUDGE	OTHER :	ACIU/BASE:	L X	DATE	TIME											
21	B.H.3@ 30'	G	1		1	4		-	X	-	3/10/22		X	X	X	-			-	-	-		
32	W.H.3 Q35	1	¥		-	4	$\left \right $	+	1	0	V		V	¥	4			-	-	-	+		
		+	-		-	+	$\left \right $	+	-	-				-	-	-		-	-	+	+		
		+		\vdash	+	+	++	+	+	-					-				-	-	+		-
		+			-	+-		÷	+	+				-	-	-		-	-	+-	-		
		+			-	+		+	+	1	-								-	-	-		
					+	+		+	+	+				-						1	1		
		1					11	1	T														
															-								
enalyses. All claims includin service. In no event shall Ca affiliates or successors arisin Relinquished By Relinquished By	$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	deeme witho Cardina Re Re O	d walk at limits acceiv acceiv acceiv acceiv	ed unless stion, but releas o ved E	ampl	e Co Inta Interrup	ng and tions, lo claim is claim is claim for claim is claim is cla	based	d by Cale, or is upon a upon a Cale	HECK	within 30 days after to by a above stated re with the second state of the second secon	r compatition of 8 diret, its subsidia <u>Phone Re</u> <u>Fax Resu</u> <u>REMARK</u>	he applicat ries, issuit: it: S: PC(ermail r		s 🗆	No Copy o	of CoC	ax #:		teche	nv.con	n.	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	91764
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobu	Remediation Summary and Backfill Request Accepted. Please backfill excavation per plan and provide photos and confirmation that backfill occurred in Closure Report. Please submit Closure Report to the OCD portal by April 22, 2022.	3/22/2022

Action 91764