District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2130930832
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Marathon Oil Permian LLC	OGRID 372098
Contact Name Melodie Sanjari	Contact Telephone 575-988-8753
Contact email msanjari@marathonoil.com	Incident # (assigned by OCD)
Contact mailing address 4111 S. Tidwell Rd., Carlsbad, NM 8220	·

Location of Release Source

Latitude 32.31677158

Longitude -104.2018314

(NAD 83 in decimal degrees to 5 decimal places)

Site Name CYPRESS FEE 23 27 9 #002H	Site Type Oil & Gas Facility
Date Release Discovered: 11/4/2021	API# (if applicable) 30-015-44374

Unit Letter	Section	Township	Range	County
L	09	23S	27E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Materi	al(s) Released (Select all that apply and attach calculations or specific	: justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 105	Volume Recovered (bbls) 105
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Report of a leaking flange gasket on the main water header on the Cypress pad was reported to the Marathon Oil Control Room. An operator was dispatched and the source of the release was isolated. The entire release foot print remained and the pad and a nearby trucks were dispatched to recovery all standing fluid immediately to prevent vertical migration through the caliche. A one call has also been placed to conduct a surficial scrape of the area so any impending weather does not cause horizontal migration of the impact prior to the initial characterization sampling event next week. A remediation closure report will be submitted within 90 days.

rm C-141	2 5:31:42 AM State of New Mexico	Incident ID	nAPP2130930832
ge 2 Oil Conservation Division	District RP	11/11/21/00/00/00/2	
	Facility ID		
	Application ID		
release as defined by 19.15.29.7(A) NMAC? Xes No	Volume		
	otice given to the OCD? By whom? To whom? Wh to NM OCD the morning of 11/5/21	en and by what means (phone,	email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Melodie Sanjari</u>	Title:Environmental Professional
Signature: <u>Melodíe Sanjarí</u>	Date: 11/5/2021
email: <u>msanjari@marathonoil.com</u>	Telephone: <u>575-988-8753</u>
OCD Only	
Received by:	Date:

Received by OCD: 3/31/2022 5:31:42 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 3 of 11.
Incident ID	nAPP2130930832
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>51-100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/31/2 Form C-141 Page 4	2022 5:31:42 AM State of New Mexico Oil Conservation Division		Incident ID District RP Facility ID Application ID	Page 4 of 113 nAPP2130930832
regulations all operators a public health or the enviro failed to adequately inves addition, OCD acceptance and/or regulations.	formation given above is true and complete to the re required to report and/or file certain release noti onment. The acceptance of a C-141 report by the C tigate and remediate contamination that pose a thre e of a C-141 report does not relieve the operator of	fications and perf OCD does not reli at to groundwate: responsibility for	Form corrective actions for releve the operator of liability sl r, surface water, human health compliance with any other for	leases which may endanger hould their operations have h or the environment. In ederal, state, or local laws
Printed Name: <u>M</u>	lelodie Sanjari	Title:	Environmental Profession	onal
Signature: <u>Melc</u>	rdie Sanjari	Date: 3/1/2	022	
email: <u>msanjari@ma</u>	rathonoil.com	Telephone:	<u> </u>	
OCD Only				
Received by:		Date:		

Page 6

Oil Conservation Division

	Page 5 of 113
Incident ID	nAPP2130930832
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following ite	ems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11	-
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of a	ediate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ions. The responsible party acknowledges they must substantially ditions that existed prior to the release or their final land use in
Printed Name: <u>Melodie Sanjari</u>	Title: <u>Environmental Professional</u>
Signature: <u>Melodíe Sanjarí</u>	Date: 3/31/2022
email: <u>msanjari@marathonoil.com</u>	Telephone: <u>575-988-8753</u>
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and rater, human health, or the environment nor does not relieve the responsible r regulations.
Closure Approved by:	Date: 03/31/2022
Closure Approved by:	Title: Environmental Specialist A

March 24, 2022

Melodie Sanjari Environmental Professional Permian & Oklahoma 575-988-8753 4111 S. Tidwell Rd., Carlsbad, NM 8220

SUBJECT: Remediation Closure Report for the Cypress Fee 23 27 9 #002H Release Id: (nAPP2130930832), Eddy County, New Mexico

Dear Ms. Sanjari,

Atkins Engineering Associates (Atkins) has prepared this Remediation Closure Report that describes the remediation of a release of liquids related to oil and gas production activities at the Cypress Fee 23 27 9 #002H. The site is in Unit L, Section 9, Township 23S, Range 27E, Eddy County, New Mexico, on private land. Figure 1 illustrates the vicinity and site location on an USGS 7.5-minute quadrangle map.

Table 1 summarizes release information and Closure Criteria.

Name	Cypress Fee 23 27 9 #002H	Company	Matador Resources	
API Number	30-015-44374	Location	32.31677158 -104.2018314	
Incident Number	nAPP2130930832			
Estimated Date of Release	11/4/2021	Date Reported to NMOCD	11/4/2021	
Land Owner	Fee	Reported To	NMOCD District I	
Source of Release	Failure at the meter run	'	, 	
Released Volume	105 bbls	Released Material	Produced Water	
Recovered Volume	105 bbls	Net Release	0 bbls	
NMOCD Closure Criteria	51-100 feet to groundwater	I		
Response Dates	11/11/2021 12/9/2021 1/17/2022 2/14/2022			

Table 1: Release Information and Closure Criteria

1.0 Release Background

Page 2 of 4

On November 4, 2021, a release was discovered at the Cypress Fee 23 27 9 #002H due to a leaking flange gasket on the main water header on the Cypress pad. An operator was dispatched, and the source of the release was isolated immediately. Initial response activities were conducted by the operator, and included source elimination by means of repair and a initial scrape of affected soils. Figures 1 and 2 illustrate the vicinity and site location, Figure 3 illustrates the release location. The C-141 forms are included in Appendix A.

2.0 Site Information and Closure Criteria

The Cypress Fee 23 27 9 #002H is located just south of Carlsbad, New Mexico on privately-owned land at an elevation of approximately 3152 feet above mean sea level (amsl).

Based upon the New Mexico Office of the State Engineers (NMOSE) online water well database, (Appendix B), depth to groundwater in the area is estimated to be 195 feet below grade surface (bgs). There are no known water within according sources $\frac{1}{2}$ -mile of the location, to the NMOSE database. (https://gis.ose.state.nm.us/gisapps/ose pod locations/; accessed 12/8/2021). The nearest significant watercourse is the South Canal, located approximately 780 feet north of the location. Figure 2 illustrates the site with 200 and 300-foot radii to indicate that it does not lie within a sensitive area as described in 19.15.29.12.C(4) NMAC.

Based on the information presented herein, the applicable NMOCD Closure Criteria for this site is for a groundwater depth of between 51-100 feet bgs. The site has been restored to meet the standards of Table I of 19.15.29.12 NMAC.

Table 2 demonstrates the Closure Criteria applicable to this location. Pertinent well data is attached in Appendix B.

3.0 Release Characterization and Remediation Activities

On November 11, 2021, Atkins personnel arrived on site in response to the release associated with Cypress Fee 23 27 #9. Atkins performed site delineation activities by collecting soil samples around the release site and throughout the visibly stained area. Soil samples were field-screened for chloride using an electrical conductivity (EC) meter.

A total of 3 sample locations (S1, L2 and L3) were investigated using excavated test pits, to depths up to 7 feet bgs. A delineation samples were collected at each sampling location and field-screened using the method above. A total of 10 samples were collected for laboratory analysis for total chloride using EPA Method 300.0.

Atkins returned to the site to oversee portions of the excavation of contaminated soil. ATKINS guided the excavation activities by collecting soil samples for field screening. The walls and base were excavated until field screening results indicated that the NMOCD Closure Criteria would be met.

On December 9, 2021 Atkins began conducting confirmation sampling of the walls and base of the excavation. The areas around sidewall sample locations SW1, SW2 and bottomhole location S5,L5 and L8 were found to below the closure criteria according to field EC. L4 could not be further delineated or excavated because of its unsafe proximity to an active underground utility. After giving the division 48 hour notice on February 14, 2022 Atkins conducted the closure sample event consisting of SW1-SW8 and BH1-BH5 in both excavated areas.

The confirmation samples were collected from within the excavation in accordance NMOCD guidance. Confirmation samples were comprised of five-point composites of the excavation. Lab analysis showed that all sample locations were below NMOCD requirements. No further excavation was required.

A total of 39 samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range

Page 3 of 4

CYPRESS FEE 23 27 9 #002H Remediation Closure Report March 24, 2022

organics (MRO, DRO, and GRO) by EPA Method 8015D. Laboratory samples were collected in accordance with the sampling protocol included in Appendix C. Samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Hall Environmental Analysis Laboratory in Albuquerque, and Envirotech Laboratory in Farmington, New Mexico (Appendix D).

Figure 3 shows the extent of the excavation and sample locations. All laboratory results are summarized in Table 3 and are under required action levels and therefore, Adkins requests closure for incident nAPP2130930832. Laboratory reports are included in Appendix D.

4.0 Scope and Limitations

The scope of our services included: assessment sampling; verifying release stabilization; regulatory liaison; remediation; and preparing this closure report. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact Austin Weyant at 575-626-3993

Submitted by:

1 Hustin Nevant

J. Austin Weyant Senior Scientist

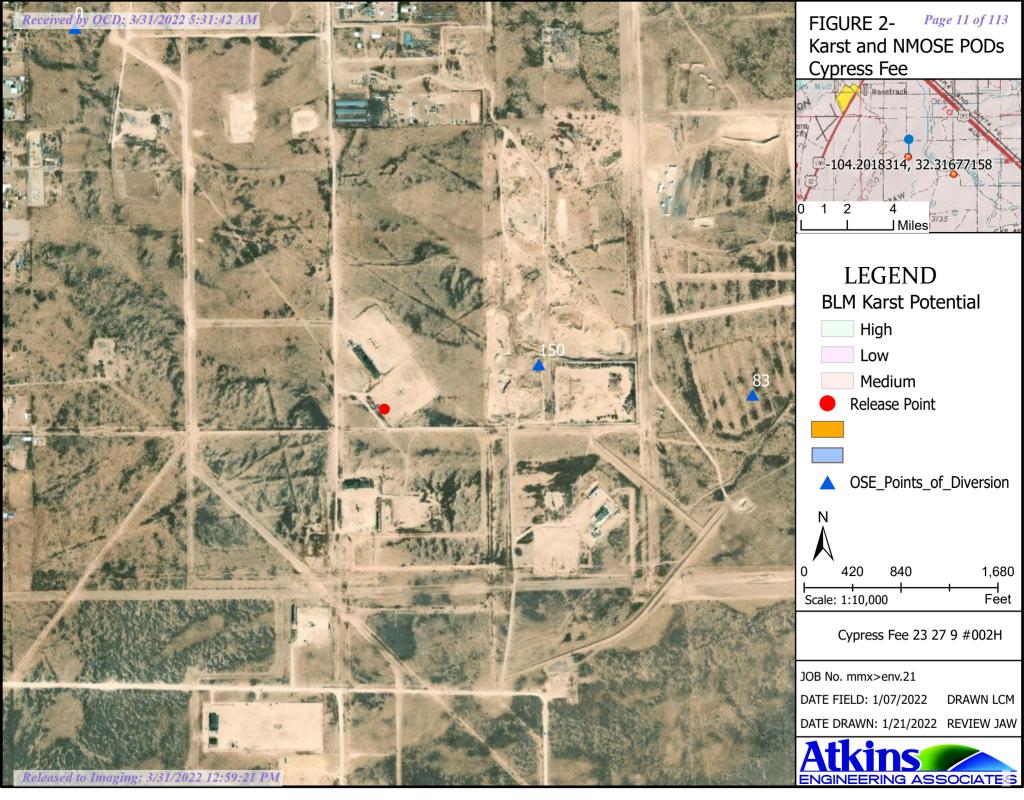
ATTACHMENTS:

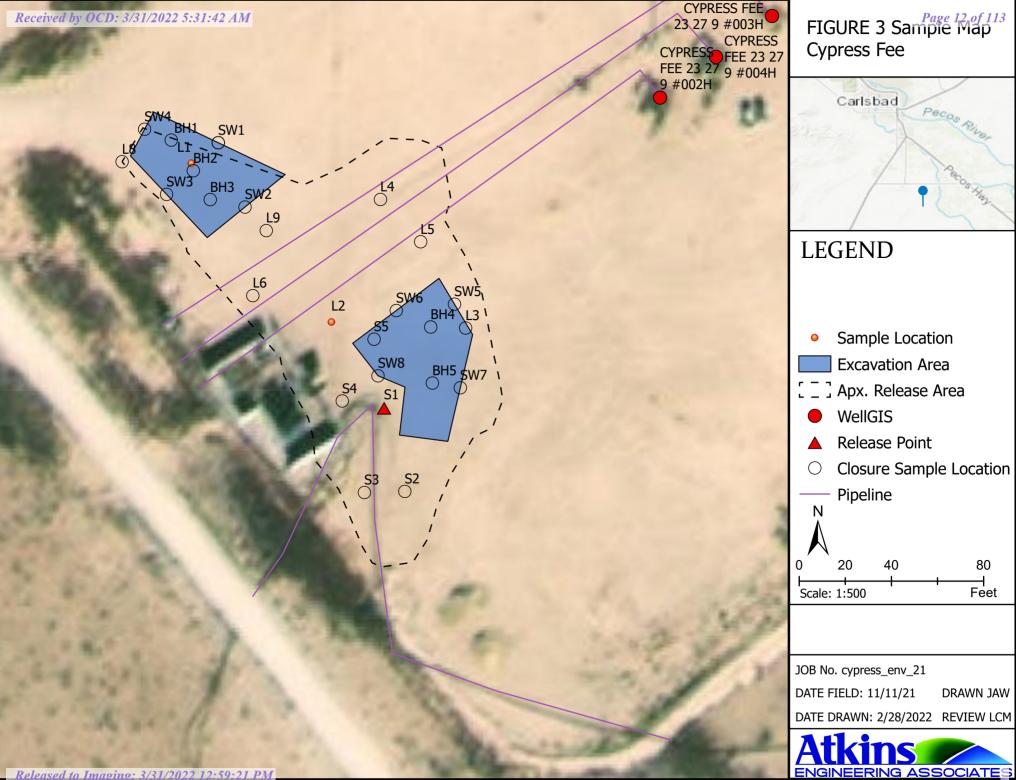
Figures:

Figure 1: Vicinity and Well Head Protection Map Figure 2: Surface Water Radius Map Figure 3: Site and Sample Location Map

Tables:

Table 2: NMOCD Closure Criteria JustificationTable 3: Summary of Sample Results


Appendices:


Appendix A: Form C141 Appendix B: Groundwater determination Appendix C: Laboratory Analytical Reports Appendix D: Open Excavation Photo Log

.

FIGURES

TABLES

Site Information (19.15.29.11.A(2, 3, and 4) NMAC)	Source/Notes	
Depth to Groundwater (feet bgs)	50-100	NMOSE
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)	>300	USGS
Hortizontal Distance to Nearest Significant Watercourse (ft)	800	USGS

Closure Criteria (19.15.2	d Table 1 NMAC)					
Depth to Groundwater		Closure Criteria (units in mg/kg)				
		Chloride *numerical limit or background, whichever is greater	ТРН	GRO + DRO	BTEX	Benzene
< 50' BGS		600	100		50	10
51' to 100'		10000	2500	1000	50	10
>100'		20000	2500	1000	50	10
Surface Water yes or no			if ye	s, then		
<300' from continuously flowing watercourse or other significant watercourse?	no					
<200' from lakebed, sinkhole or playa lake? no						
Water Well or Water Source					l I	
<500 feet from spring or a private, domestic fresh water well used by	20					
less than 5 households for domestic or stock watering purposes?	no					
<1000' from fresh water well or spring?	<1000' from fresh water well or spring? no					
Human and Other Areas		600	100		50	10
<300' from an occupied permanent residence, school, hospital, institution or church?	no	000	100		50	10
within incorporated municipal boundaries or within a defined	20					
unicipal fresh water well field?						
<100' from wetland? no						
within area overlying a subsurface mine	within area overlying a subsurface mine no					
within an unstable area? no		1				
within a 100-year floodplain?	no					

•

Summary of Sample Results Cypress								
Sample	Sample	Depth	Proposed Action/	GRO	DRO	MRO	Total TPH	CI-
ID	Date	(feet bgs)	Action Taken	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	NMOCD C	Closure Criteria	a				100	600
SW1	2/14/2022	0.5	insitu	<20	<25	<50	<95	69.5
SW2	2/14/2022	0.5	insitu	<20	<25	<50	<95	87.5
SW3	2/14/2022	0.5	insitu	<20	<25	<50	<95	26.6
SW4	2/14/2022	0.5	insitu	<20	<25	<50	<95	38
SW5	2/14/2022	1.5	insitu	<20	<25	<50	<95	223
SW6	2/14/2022	1.5	insitu	<20	<25	<50	<95	230
SW7	2/14/2022	1.5	insitu	<20	<25	<50	<95	<20
SW8	2/14/2022	1.5	insitu	<20	<25	<50	<95	181
BH1	2/14/2022	1	insitu	<20	<25	<50	<95	87.3
BH2	2/14/2022	1	insitu	<20	<25	<50	<95	<20
BH3	2/14/2022	2	insitu	<20	<25	<50	<95	62.7
BH4	2/14/2022	2	insitu	<20	<25	<50	<95	167
BH5	2/14/2022	2	insitu	<20	<25	<50	<95	256
S1	11/11/2021	0.5	insitu	<4.6	<9.2	<46	<59	540
S1	11/11/2021	1	insitu	<4.6	<9.2	<46	<59	120
S1	11/11/2021	2	insitu	<4.6	<9.2	<46	<59	200
S1	11/11/2021	3	insitu	<4.6	<9.2	<46	<59	88
S1	11/11/2021	7	insitu	<4.6	<9.2	<46	<59	140
S-SW1	12/9/2022	0.5	excavated	<4.9	<9.6	<48	<59	800
S-SW1	1/17/2022	1	insitu	<20.0	64.4	<50.0	64.4	242
S-SW2	12/9/2022	0.5	excavated	<4.8	<9.7	<48	<59	3200
S-SW2	1/17/2022	1	insitu	<20.0	66	<50.0	66	272
S-3	12/9/2022	0.5	excavated	<4.6	<9.2	<46	<59	2600
S-3	1/17/2022	1	insitu	<20.0	76.1	<50.0	76.1	287
S-5	12/9/2021	1	excavated	<4.6	<9.2	<46	<59	640
S-5	1/17/2022	1.5	insitu	<20.0	62.8	<50.0	62.8	293
L1	11/11/2021	0.5	excavated	<4.6	<9.2	<46	<59	980
L1	11/11/2021	1	insitu	<4.6	<9.2	<46	<59	82
L1	11/11/2021	2	insitu	<4.6	<9.2	<46	<59	<60
L2	11/11/2021	0.5	excavated	<4.6	<9.2	<46	<59	1400
L2	11/11/2021	4	insitu	<4.6	<9.2	<46	<59	<60
L3	12/9/2021	1	insitu	<4.7	<9.3	<46	<59	140
L4	12/9/2021	1	excavated	<4.8	<9.4	<46	<59	5900
L5	12/9/2021	1	excavated	<4.8	<9.4	<46	<59	1600
L5	1/17/2022	1.5	insitu	<20.0	85.6	<50	85.6	328
L6	12/9/2021	1	insitu	<4.6	<9.2	<46	<59	<60
L7	12/9/2021	9	insitu	<4.8	<9.9	<50	<63	370
L8	12/9/2021	1	excavated	<4.8	<9.9	<50	<63	1100
L8	1/17/2022	1.5	insitu	<20.0	63	<50.0	63	282
L9	12/9/2021	1	insitu	<4.6	<9.2	<46	<59	380
"" = Not	Analvzed							

•

APPENDIX A FORMS C141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 17cof 113

Incident ID	nAPP2130930832
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Marathon Oil Permian LLC	OGRID 372098
Contact Name Melodie Sanjari	Contact Telephone 575-988-8753
Contact email msanjari@marathonoil.com	Incident # (assigned by OCD)
Contact mailing address 4111 S. Tidwell Rd., Carlsbad, NM 8220	

Location of Release Source

Latitude 32.31677158

Longitude -104.2018314

(NAD 83 in decimal degrees to 5 decimal places)

Site Name CYPRESS FEE 23 27 9 #002H	Site Type Oil & Gas Facility
Date Release Discovered: 11/4/2021	API# (if applicable) 30-015-44374

Unit Letter	Section	Township	Range	County
L	09	23S	27E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Materi	al(s) Released (Select all that apply and attach calculations or specific	e justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 105	Volume Recovered (bbls) 105
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Report of a leaking flange gasket on the main water header on the Cypress pad was reported to the Marathon Oil Control Room. An operator was dispatched and the source of the release was isolated. The entire release foot print remained on the pad and nearby trucks were dispatched to recover all standing fluid immediately to prevent vertical migration through the caliche. A one call has also been placed to conduct a surficial scrape of the area so any impending weather does not cause horizontal migration of the impact prior to the initial characterization sampling event next week. A remediation closure report will be submitted within 90 days.

ceived by OCD: 3/31/2022 5:31:42/4M1 State of New Mexico			Page 18e	
m C-141		Incident ID	nAPP2130930832	
ge 2	Oil Conservation Division	District RP		
		Facility ID		
		Application ID		
release as defined by 19.15.29.7(A) NMAC? Xes No	Volume			
	otice given to the OCD? By whom? To whom? Wh to NM OCD the morning of 11/5/21	en and by what means (phone, o	email, etc)?	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Melodie Sanjari</u>	Title: <u>Environmental Professional</u>
Signature: <u>Melodie Sanjari</u>	Date: 11/5/2021
email: <u>msanjari@marathonoil.com</u>	Telephone: <u>575-988-8753</u>
OCD Only	
Received by:Ramona Marcus	Date: <u>11/8/2021</u>

NAPP2130930832

P.O. Box 2121 Carlsbac Phone# 575-649-5634 • uws Date 11-4-21 Company Coroton		96852
Location/Lease Cypics 2	4h	
Disposal/Ticket #NGLQuator		the state
	et #	
Top GageBotto	om Gage	
Truck No. 4422		
AM START TIME : PM END TIME	AM TOTAL	
Fresh water	Barrels	the second second
Brine water	Barrels	
Produced water 20	Barrels	
Other	Barrels	
	Barrels	
Job Description have a low	2,4H	
how and a long tor the	I and the good	
1 martin and		
Time leaving yard		
Time arriving location		and the second sec
Time leaving location		
Time arriving disposal/water st.		100
Time leaving disposal/water st.		1000
Time leaving disposar water at		the second se

Released to Imaging: 3/31/2022 12:59:21 PM

		0.00		
Received	by	OCD:	3/31/2022	5:31:424AM

United Well Services, LLC P.O. Box 2121 Carlsbad, NM 88221 Phone# 575-649-5634 • uws1999@gmail.com 96923 No Date Company FEE #ZH, YH 72 Location/Lease EES ANA Disposal/Ticket # UIN Water Station Ticket # Top Gage **Bottom Gage** Truck No. L TOTAL HOURS AM PM AM PM START TIME END TIME □ Fresh water Barrels Barrels □ Brine water **D** Barrels X Produced water Barrels □ Other Barrels Job Description 10 UO DAMDPM Time leaving yard DAMDPM Time arriving location DAMDPM Time leaving location Time arriving disposal/water st. Time leaving disposal/water st. Time arriving yard CAVY **Driver Name** Co-Personnel

Page 20eof 113 NAPP2130930832

Pa	ıge	21	ot	1	13

United Well Servic	NAPP2130930832
P.O. Box 2121 Carlsbad, N Phone# 575-649-5634 • uws199	
	Nº 97167
Date 11 - 4 - 2021	
Company MARATHON Location/Lease CYPRESSFEE	77-7-7-2H-4H
Location/Lease CYPRES FEE	CS-CCC CI
Disposal/Ticket #	
Water StationTicket #	I
Top GageBottom	Gage
Truck No.4438	Rac 2324241
	36 PRD HOURS 4
STARTTIME	Barrels
Fresh water	Barrels
Brine water 35	Barrels
Produced water	Barrels
Other	Barrels
	Barreis
Job Description	7.
working on LOCE	Tio-
- Plus spill	0.0.001
go ro di	SposA1
0 Unlond	ing .
Time leaving yard	
Time arriving location	
Time leaving location	
Time arriving disposal/water st.	
Time leaving disposal/water st.	
Time arriving yard	
Driver Name Ceonards 2m	guez
Co-Personnel	
	the second se

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MARATHON OIL PERMIAN LLC	372098
990 Town & Country Blvd.	Action Number:
Houston, TX 77024	60472
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
rmarcus	None	11/8/2021

Page 22eof 113 CONDITIONS

Action 60472

APPENDIX B NMOSE WELLS REPORT

Incident Id: nAPP2130930832

Released to Imaging: 3/31/2022 12:59:21 PM

New Mexico Office of the State Engineer Point of Diversion Summary

	· 1				IE 3=SV alargest	W 4=SE) t)	(NAD83 U			
Well Tag	POD Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	C 00195	4	1	4	09	23S	27E	576069	3575827*	
Driller Lic	ense:	Driller	· Con	npar	ıy:					
Driller Na	me: FRANK GENTRY									
Drill Start	Date:	Drill F	'inish	n Dat	te:	12	2/31/1936	Pl	ug Date:	
			CW Rcv Date: 10/16/1950							
Log File D	ate:	PCW	Rcv I	Date	:	10	0/16/1950	So	urce:	Shallow
Log File D Pump Typ		PCW I Pipe D			-	_	0/16/1950		urce: timated Yield:	Shallow 1500 GPM

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/1/22 5:52 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orpha C=the fil closed)	ned,	(qu						E 3=SW argest)	,	3 UTM in meters)	(In feet)	
		Sub-		Q	Q	Q							W	Vater
POD Number	Code	basin	County	64	16	4	Sec	Tws	Rng	X	Y	DepthWellDep	thWater Co	olumn
<u>C 00195</u>		CUB	ED	4	1	4	09	23S	27E	576069	3575827* 🌑	128	83	45
<u>C 00420</u>	С	CUB	ED		4	2	09	23S	27E	576370	3576337* 🌑	2151		
<u>C 04044 POD1</u>		CUB	ED	3	2	3	09	23S	27E	575504	3575907 🌑	290	150	140
<u>C 04581 POD1</u>		С	ED	3	1	1	09	23S	27E	575167	3576589	165	109	56
										1	Average Depth to	Water:	114 fee	et
											Minimu	n Depth:	83 fee	et
											Maximun	n Depth:	150 fee	et
Record Count: 4														
PLSS Search:														

Section(s): 9

Township: 23S Range: 27E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/1/22 5:51 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

APPENDIX C LABORATORY ANALYTICAL REPORTS

Incident Id: nAPP2130930832

Released to Imaging: 3/31/2022 12:59:21 PM

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Atkins Engineering Associates Inc.

Project Name:

Cypress

Work Order: E202084

Job Number: 20071-0001

Received: 2/15/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 2/23/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979)

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

J	• •			Du	ae Reponed.						
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-001	Client Sample ID: L1-0.5 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM										
Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed						
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB						
Diesel Range Organics (DRO)	ND	9.2	mg/K	g 1	11/20/2021 8:18:59 AM						
Motor Oil Range Organics (MRO)	ND	46	mg/K	g 1	11/20/2021 8:18:59 AM						
Surr: DNOP	63.9	70-130	S %Re	c 1	11/20/2021 8:18:59 AM						
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: NSB						
Gasoline Range Organics (GRO)	ND	4.9	mg/K	g 1	11/19/2021 12:00:41 AM						
Surr: BFB	102	70-130	%Re	c 1	11/19/2021 12:00:41 AM						
EPA METHOD 8021B: VOLATILES					Analyst: NSB						
Benzene	ND	0.025	mg/K	g 1	11/19/2021 12:00:41 AM						
Toluene	ND	0.049	mg/K	ig 1	11/19/2021 12:00:41 AM						
Ethylbenzene	ND	0.049	mg/K	g 1	11/19/2021 12:00:41 AM						
Xylenes, Total	ND	0.098	mg/K	.g 1	11/19/2021 12:00:41 AM						
Surr: 4-Bromofluorobenzene	104	70-130	%Re	c 1	11/19/2021 12:00:41 AM						
EPA METHOD 300.0: ANIONS					Analyst: JMT						
Chloride	980	61	mg/K	g 20	11/19/2021 6:32:38 AM						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

J	• •	ae Reponea.								
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-002	Client Sample ID: L1-1 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM									
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed					
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB					
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/22/2021 4:30:42 PM					
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/22/2021 4:30:42 PM					
Surr: DNOP	117	70-130	%Rec	1	11/22/2021 4:30:42 PM					
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst: NSB					
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/19/2021 1:10:19 AM					
Surr: BFB	99.9	70-130	%Rec	1	11/19/2021 1:10:19 AM					
EPA METHOD 8021B: VOLATILES					Analyst: NSB					
Benzene	ND	0.025	mg/Kg	1	11/19/2021 1:10:19 AM					
Toluene	ND	0.050	mg/Kg	1	11/19/2021 1:10:19 AM					
Ethylbenzene	ND	0.050	mg/Kg	1	11/19/2021 1:10:19 AM					
Xylenes, Total	ND	0.099	mg/Kg	1	11/19/2021 1:10:19 AM					
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	11/19/2021 1:10:19 AM					
EPA METHOD 300.0: ANIONS					Analyst: JMT					
Chloride	82	60	mg/Kg	20	11/19/2021 6:44:58 AM					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

6	e,									
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-003	Client Sample ID: L1-2 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM									
Analyses	Result	Result PQL Qual U			Date Analyzed					
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB					
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	11/22/2021 4:54:31 PM					
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	11/22/2021 4:54:31 PM					
Surr: DNOP	112	70-130	%Rec	1	11/22/2021 4:54:31 PM					
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: NSB					
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/19/2021 1:33:30 AM					
Surr: BFB	97.8	70-130	%Rec	1	11/19/2021 1:33:30 AM					
EPA METHOD 8021B: VOLATILES					Analyst: NSB					
Benzene	ND	0.024	mg/Kg	1	11/19/2021 1:33:30 AM					
Toluene	ND	0.049	mg/Kg	1	11/19/2021 1:33:30 AM					
Ethylbenzene	ND	0.049	mg/Kg	1	11/19/2021 1:33:30 AM					
Xylenes, Total	ND	0.097	mg/Kg	1	11/19/2021 1:33:30 AM					
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	11/19/2021 1:33:30 AM					
EPA METHOD 300.0: ANIONS					Analyst: JMT					
Chloride	ND	61	mg/Kg	20	11/19/2021 6:57:19 AM					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 3 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

	ŨÝ			- •							
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-004	Client Sample ID: S1-0.5 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM										
Analyses	Result	PQL Q	ual Units	DF	Date Analyzed						
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB						
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	11/20/2021 9:55:49 AM						
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	11/20/2021 9:55:49 AM						
Surr: DNOP	66.9	70-130	S %Rec	1	11/20/2021 9:55:49 AM						
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: NSB						
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/19/2021 1:56:38 AM						
Surr: BFB	98.9	70-130	%Rec	1	11/19/2021 1:56:38 AM						
EPA METHOD 8021B: VOLATILES					Analyst: NSB						
Benzene	ND	0.024	mg/Kg	1	11/19/2021 1:56:38 AM						
Toluene	ND	0.047	mg/Kg	1	11/19/2021 1:56:38 AM						
Ethylbenzene	ND	0.047	mg/Kg	1	11/19/2021 1:56:38 AM						
Xylenes, Total	ND	0.095	mg/Kg	1	11/19/2021 1:56:38 AM						
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	11/19/2021 1:56:38 AM						
EPA METHOD 300.0: ANIONS					Analyst: JMT						
Chloride	540	60	mg/Kg	20	11/19/2021 7:09:40 AM						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

J	e,	F				
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-005	Client Sample ID: S1-1 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM					
Analyses	Result	PQL Qual Units		DF Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	11/22/2021 5:18:17 PM	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	11/22/2021 5:18:17 PM	
Surr: DNOP	111	70-130	%Rec	1	11/22/2021 5:18:17 PM	
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/19/2021 2:19:50 AM	
Surr: BFB	95.4	70-130	%Rec	1	11/19/2021 2:19:50 AM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.025	mg/Kg	1	11/19/2021 2:19:50 AM	
Toluene	ND	0.050	mg/Kg	1	11/19/2021 2:19:50 AM	
Ethylbenzene	ND	0.050	mg/Kg	1	11/19/2021 2:19:50 AM	
Xylenes, Total	ND	0.099	mg/Kg	1	11/19/2021 2:19:50 AM	
Surr: 4-Bromofluorobenzene	98.5	70-130	%Rec	1	11/19/2021 2:19:50 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	120	60	mg/Kg	20	11/19/2021 7:22:02 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Oil Company Client Sample ID: S1-2 **Project:** CYPRESS FEE 23279 Collection Date: 11/11/2021 Lab ID: 2111827-006 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) ND 9.6 mg/Kg 1 11/20/2021 10:44:25 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 11/20/2021 10:44:25 AM Surr: DNOP 72.8 70-130 %Rec 1 11/20/2021 10:44:25 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 11/19/2021 2:42:57 AM 4.9 mg/Kg 1 Surr: BFB 100 70-130 %Rec 1 11/19/2021 2:42:57 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.024 mg/Kg 11/19/2021 2:42:57 AM 1 Toluene ND 0.049 mg/Kg 1 11/19/2021 2:42:57 AM Ethylbenzene ND 0.049 mg/Kg 1 11/19/2021 2:42:57 AM Xylenes, Total ND 0.098 mg/Kg 1 11/19/2021 2:42:57 AM Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 11/19/2021 2:42:57 AM **EPA METHOD 300.0: ANIONS** Analyst: JMT Chloride 200 60 11/19/2021 12:14:04 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

J	• •	But Reported.				
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-007	Client Sample ID: S1-3 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM					
	Result	PQL Qual Units DF				
Analyses	Kesuit			Dr	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/20/2021 11:08:43 AM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/20/2021 11:08:43 AM	
Surr: DNOP	73.7	70-130	%Rec	1	11/20/2021 11:08:43 AM	
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/19/2021 3:06:04 AM	
Surr: BFB	99.7	70-130	%Rec	1	11/19/2021 3:06:04 AM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	0.025	mg/Kg	1	11/19/2021 3:06:04 AM	
Toluene	ND	0.049	mg/Kg	1	11/19/2021 3:06:04 AM	
Ethylbenzene	ND	0.049	mg/Kg	1	11/19/2021 3:06:04 AM	
Xylenes, Total	ND	0.099	mg/Kg	1	11/19/2021 3:06:04 AM	
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	11/19/2021 3:06:04 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	88	60	mg/Kg	20	11/19/2021 12:51:18 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

ĩ	Û /		F				
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279 Lab ID: 2111827-008	Client Sample ID: S1-7 Collection Date: 11/11/2021 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM						
Analyses	Result	PQL Qual Units		DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	11/20/2021 11:32:52 AM		
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	11/20/2021 11:32:52 AM		
Surr: DNOP	71.5	70-130	%Rec	1	11/20/2021 11:32:52 AM		
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	11/19/2021 3:29:09 AM		
Surr: BFB	98.8	70-130	%Rec	1	11/19/2021 3:29:09 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	0.024	mg/Kg	1	11/19/2021 3:29:09 AM		
Toluene	ND	0.049	mg/Kg	1	11/19/2021 3:29:09 AM		
Ethylbenzene	ND	0.049	mg/Kg	1	11/19/2021 3:29:09 AM		
Xylenes, Total	ND	0.098	mg/Kg	1	11/19/2021 3:29:09 AM		
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	11/19/2021 3:29:09 AM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	140	60	mg/Kg	20	11/19/2021 1:53:22 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 8 of 0

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

J	• •	Duie Reporteu.				
CLIENT: Marathon Oil Company Project: CYPRESS FEE 23279	Client Sample ID: L2-0.5 Collection Date: 11/11/2021					
Lab ID: 2111827-009	Matrix: SOIL	Received Date: 11/17/2021 8:00:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	11/20/2021 11:57:12 AM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/20/2021 11:57:12 AM	
Surr: DNOP	71.8	70-130	%Rec	1	11/20/2021 11:57:12 AM	
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: mb	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	11/18/2021 9:20:00 AM	
Surr: BFB	97.6	70-130	%Rec	1	11/18/2021 9:20:00 AM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	11/18/2021 9:20:00 AM	
Toluene	ND	0.050	mg/Kg	1	11/18/2021 9:20:00 AM	
Ethylbenzene	ND	0.050	mg/Kg	1	11/18/2021 9:20:00 AM	
Xylenes, Total	ND	0.099	mg/Kg	1	11/18/2021 9:20:00 AM	
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	11/18/2021 9:20:00 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	1400	60	mg/Kg	20	11/19/2021 2:05:47 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 0

Analytical Report Lab Order 2111827

Date Reported:

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Oil Company Client Sample ID: L2-4 **Project:** CYPRESS FEE 23279 Collection Date: 11/11/2021 Lab ID: 2111827-010 Matrix: SOIL Received Date: 11/17/2021 8:00:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) 9.8 9.2 mg/Kg 1 11/20/2021 12:21:32 PM Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 11/20/2021 12:21:32 PM Surr: DNOP 79.8 70-130 %Rec 1 11/20/2021 12:21:32 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: mb Gasoline Range Organics (GRO) ND 11/18/2021 10:18:00 AM 5.0 mg/Kg 1 Surr: BFB 96.0 70-130 %Rec 1 11/18/2021 10:18:00 AM **EPA METHOD 8021B: VOLATILES** Analyst: mb Benzene ND 11/18/2021 10:18:00 AM 0.025 mg/Kg 1 Toluene ND 0.050 mg/Kg 1 11/18/2021 10:18:00 AM Ethylbenzene ND 0.050 mg/Kg 1 11/18/2021 10:18:00 AM Xylenes, Total ND 0.10 mg/Kg 1 11/18/2021 10:18:00 AM Surr: 4-Bromofluorobenzene 107 70-130 %Rec 1 11/18/2021 10:18:00 AM Analyst: JMT **EPA METHOD 300.0: ANIONS** Chloride ND 60 11/19/2021 2:18:12 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 0

Date Reported: 2/23/22

Austin Weyant 2904 W. 2nd Roswell, NM 88201

Project Name: Cypress Workorder: E202084 Date Received: 2/15/2022 10:53:00AM

Austin Weyant,

Page 38 of 113

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 2/15/2022 10:53:00AM, under the Project Name: Cypress.

The analytical test results summarized in this report with the Project Name: Cypress apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Cell: 505-320-4759

ljarboe@envirotech-inc.com

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227)

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SW1	5
SW2	6
SW3	7
SW4	8
SW5	9
SW6	10
SW7	11
SW8	12
BH1	13
BH2	14
BH3	15
BH4	16
BH5	17
QC Summary Data	18
QC - Volatile Organic Compounds by EPA 8260B	18
QC - Nonhalogenated Organics by EPA 8015D - GRO	19
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	20
QC - Anions by EPA 300.0/9056A	21
Definitions and Notes	22
Chain of Custody etc.	23

Sample Summary

		Sample Sum	mary		
Atkins Engineering Associates Inc.		Project Name:	Cypress		Reported:
2904 W. 2nd		Project Number:	20071-0001		-
Roswell NM, 88201		Project Manager:	Austin Weyant		02/23/22 15:34
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SW1	E202084-01A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW2	E202084-02A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW3	E202084-03A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW4	E202084-04A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW5	E202084-05A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW6	E202084-06A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW7	E202084-07A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
SW8	E202084-08A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
3H1	E202084-09A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
3H2	E202084-10A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
3H3	E202084-11A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
BH4	E202084-12A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.
H5	E202084-13A	Soil	02/11/22	02/15/22	Glass Jar, 4 oz.

		ampic D				
Atkins Engineering Associates Inc.	Project Name:	: Cyp	ress			
2904 W. 2nd	Project Numb	er: 2007	71-0001			Reported:
Roswell NM, 88201	Project Manag	ger: Aus	tin Weyant			2/23/2022 3:34:29PM
		SW1				
		E202084-01				
		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
p-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		94.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		94.2 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	ŀ	Analyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		94.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		94.2 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	A	Analyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Oil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		113 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: RAS		Batch: 2208103
Chloride	69.5	20.0	1	02/18/22	02/23/22	

Sample Data

	S	Sample D	ata			
Atkins Engineering Associates Inc.	Project Nam	e: Cyp	ress			
2904 W. 2nd	Project Num	ber: 2007	71-0001			Reported:
Roswell NM, 88201	Project Mana	ager: Aus	tin Weyant			2/23/2022 3:34:29PM
		SW2				
		E202084-02				
		Reporting				
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Aı	nalyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
p-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.2 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Aı	nalyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.2 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO) mg/kg	mg/kg	Aı	nalyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		115 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Aı	nalyst: RAS		Batch: 2208103
Chloride	87.5	20.0	1	02/18/22	02/23/22	

	S	Sample D	ata			
Atkins Engineering Associates Inc.	Project Name	e: Cyp	ress			
2904 W. 2nd	Project Num	ber: 2007	71-0001			Reported:
Roswell NM, 88201	Project Mana	ager: Aus	tin Weyant			2/23/2022 3:34:29PM
		SW3				
		E202084-03				
		Reporting				
Analyte	Result	Limit	Diluti	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	Analyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
p-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.4 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.0 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	Analyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.4 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.0 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC	mg/kg	mg/kg	A	Analyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		110 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	Analyst: RAS		Batch: 2208103
Chloride	26.6	20.0	1	02/18/22	02/23/22	

.

Page 43 of 113

	S	Sample D	ata			
Atkins Engineering Associates Inc. 2904 W. 2nd	Project Nam Project Num	• •	ress 71-0001			Reported:
Roswell NM, 88201	Project Mana		tin Weyant			2/23/2022 3:34:29PM
105/01/101,00201	i iojeet iviun	-	in weyant			
		SW4				
		E202084-04				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ana	ılyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
o-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.4 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.1 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	ılyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.4 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.1 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC) mg/kg	mg/kg	Ana	ılyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		115 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	ılyst: RAS		Batch: 2208103
Chloride	38.0	20.0	1	02/18/22	02/23/22	

	S	Sample D	ata			
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Nam Project Num Project Man	ber: 2007	ress 71-0001 tin Weyant			Reported: 2/23/2022 3:34:29PM
		SW5	-			
		E202084-05				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	An	alyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
o-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.1 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	An	alyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.1 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO) mg/kg	mg/kg	An	alyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Gurrogate: n-Nonane		122 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: RAS		Batch: 2208103
Chloride	223	20.0	1	02/18/22	02/23/22	

Chloride

	S	ample D	ata			
Atkins Engineering Associates Inc.	Project Name	21				
2904 W. 2nd	Project Numl		71-0001			Reported:
Roswell NM, 88201	Project Mana	ager: Aus	tin Weyant			2/23/2022 3:34:29PM
		SW6				
		E202084-06				
		Reporting				
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ar	nalyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
o-Xylene	ND	0.0250	1	02/18/22	02/21/22	
p,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.7 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	nalyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.7 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC) mg/kg	mg/kg	Ar	nalyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		112 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	nalyst: RAS		Batch: 2208103
Chloride	230	20.0	1	02/18/22	02/23/22	

Chloride

	Sa	ample D	ata			
Atkins Engineering Associates Inc.	Project Name:	Сур	ress			
2904 W. 2nd	Project Numbe	er: 2007	71-0001			Reported:
Roswell NM, 88201	Project Manag	ger: Aus	tin Weyant			2/23/2022 3:34:29PM
		SW7				
		E202084-07				
		Reporting				
Analyte	Result	Limit	Dilu	tion Prepa	red Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18	/22 02/21/22	
Ethylbenzene	ND	0.0250	1	02/18	/22 02/21/22	
Toluene	ND	0.0250	1	02/18	/22 02/21/22	
p-Xylene	ND	0.0250	1	02/18	/22 02/21/22	
p,m-Xylene	ND	0.0500	1	02/18	/22 02/21/22	
Total Xylenes	ND	0.0250	1	02/18	/22 02/21/22	
Surrogate: Bromofluorobenzene		90.6 %	70-130	02/18	/22 02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18	/22 02/21/22	
Surrogate: Toluene-d8		102 %	70-130	02/18	/22 02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18	/22 02/21/22	
Surrogate: Bromofluorobenzene		90.6 %	70-130	02/18	/22 02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18	/22 02/21/22	
Surrogate: Toluene-d8		102 %	70-130	02/18	/22 02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21	/22 02/22/22	
Oil Range Organics (C28-C36)	ND	50.0	1	02/21	/22 02/22/22	
Surrogate: n-Nonane		110 %	50-200	02/21	/22 02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: RAS		Batch: 2208103

 Chloride
 ND
 20.0
 1
 02/18/22
 02/23/22

	S	Sample D	ata			
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Nam Project Num Project Mana	ber: 2007	ress 71-0001 tin Weyant			Reported: 2/23/2022 3:34:29PM
		SW8				
		E202084-08				
		Reporting				
Analyte	Result	Limit	Dilutio	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ar	nalyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Foluene	ND	0.0250	1	02/18/22	02/21/22	
p-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.0 %	70-130	02/18/22	02/21/22	
urrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.3 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	alyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.0 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.3 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC	mg/kg	mg/kg	Ar	alyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Gurrogate: n-Nonane		111 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	alyst: RAS		Batch: 2208103
Chloride	181	20.0	1	02/18/22	02/23/22	

Page 48 of 113

	S	Sample D	ata			
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Nam Project Num Project Mana	ber: 2007	ress 71-0001 tin Weyant			Reported: 2/23/2022 3:34:29PM
		BH1				
		E202084-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
p-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		93.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.4 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		93.6 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		99.4 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/OR() mg/kg	mg/kg	Ana	lyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		114 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: RAS		Batch: 2208103
Chloride	87.3	20.0	1	02/18/22	02/23/22	

	S	Sample D	ata			
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Nam Project Num Project Mana	ber: 200	ress 71-0001 tin Weyant			Reported: 2/23/2022 3:34:29PM
	i rojeet man	0	thi Weyant			
		BH2 E202084-10				
		Reporting				
Analyte	Result	Limit	Dilutio	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	An	alyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
o-Xylene	ND	0.0250	1	02/18/22	02/21/22	
o,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		90.7 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		102 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	An	alyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		90.7 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		102 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC) mg/kg	mg/kg	An	alyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	
Dil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		113 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: RAS		Batch: 2208103
Chloride	ND	20.0	1	02/18/22	02/23/22	

Recei

Received by OCD: 3/31/2022 5:31:42 AM						Page 5.
	S	Sample D	ata			
Atkins Engineering Associates Inc.	Project Nam	ne: Cyp	ress			
2904 W. 2nd	Project Nun	nber: 200	71-0001			Reported:
Roswell NM, 88201	Project Man	nager: Aus	tin Weyant			2/23/2022 3:34:29PM
		BH3				
		E202084-11				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ana	alyst: IY		Batch: 2208104
Benzene	ND	0.0250	1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250	1	02/18/22	02/21/22	
Toluene	ND	0.0250	1	02/18/22	02/21/22	
o-Xylene	ND	0.0250	1	02/18/22	02/21/22	
p,m-Xylene	ND	0.0500	1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.0 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.0 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	alyst: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0	1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.0 %	70-130	02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	02/18/22	02/21/22	
Surrogate: Toluene-d8		98.0 %	70-130	02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	alyst: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0	1	02/21/22	02/22/22	

Oil Range Organics (C28-C36)	ND	50.0	1	02/21/22	02/22/22	
Surrogate: n-Nonane		115 %	50-200	02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2208103

	S	ample D	ata				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name Project Numl Project Mana	ber: 2007	ress 71-0001 tin Weyant	t			Reported: 2/23/2022 3:34:29PM
		BH4					
		E202084-12					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2208104
Benzene	ND	0.0250		1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250		1	02/18/22	02/21/22	
Toluene	ND	0.0250		1	02/18/22	02/21/22	
o-Xylene	ND	0.0250		1	02/18/22	02/21/22	
p,m-Xylene	ND	0.0500		1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250		1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.1 %	70-130		02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130		02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0		1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		91.1 %	70-130		02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		02/18/22	02/21/22	
Surrogate: Toluene-d8		100 %	70-130		02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0		1	02/21/22	02/22/22	
Oil Range Organics (C28-C36)	ND	50.0		1	02/21/22	02/22/22	
Surrogate: n-Nonane		114 %	50-200		02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2208103
Chloride	167	20.0		1	02/18/22	02/23/22	

	S	ample D	ata				
Atkins Engineering Associates Inc. 2904 W. 2nd	Project Name Project Num	ber: 2007	71-0001		Reported:		
Roswell NM, 88201	Project Mana	iger: Aust	tin Weyant				2/23/2022 3:34:29PM
		BH5					
		E202084-13					
		Reporting					
Analyte	Result	Limit	Dilt	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2208104
Benzene	ND	0.0250		1	02/18/22	02/21/22	
Ethylbenzene	ND	0.0250		1	02/18/22	02/21/22	
Toluene	ND	0.0250		1	02/18/22	02/21/22	
o-Xylene	ND	0.0250		1	02/18/22	02/21/22	
p,m-Xylene	ND	0.0500		1	02/18/22	02/21/22	
Total Xylenes	ND	0.0250		1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.5 %	70-130		02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		02/18/22	02/21/22	
Surrogate: Toluene-d8		99.7 %	70-130		02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2208104
Gasoline Range Organics (C6-C10)	ND	20.0		1	02/18/22	02/21/22	
Surrogate: Bromofluorobenzene		92.5 %	70-130		02/18/22	02/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		02/18/22	02/21/22	
Surrogate: Toluene-d8		99.7 %	70-130		02/18/22	02/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2209003
Diesel Range Organics (C10-C28)	ND	25.0		1	02/21/22	02/22/22	
Oil Range Organics (C28-C36)	ND	50.0		1	02/21/22	02/22/22	
Surrogate: n-Nonane		115 %	50-200		02/21/22	02/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2208103
Chloride	256	20.0		1	02/18/22	02/23/22	

QC Summary Data

Atkins Engineering Associates Inc. 2904 W. 2nd		Project Name: Project Number:	-	press 071-0001					Reported:		
		-						2	122/2022 2.24.20DM		
Roswell NM, 88201		Project Manager:	At	istin Weyant				2	2/23/2022 3:34:29PM		
		Volatile Organic	Compou	unds by EP.	A 82601	B			Analyst: IY		
Analyte		Reporting	Spike	Source		Rec		RPD			
	Result	Limit	Level	Result	Rec	Limits	RPD	Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2208104-BLK1)							Prepared: 02	2/18/22 An	alyzed: 02/21/22		
Benzene	ND	0.0250							-		
Ethylbenzene	ND	0.0250									
Foluene	ND	0.0250									
p-Xylene	ND	0.0250									
o,m-Xylene	ND	0.0500									
Fotal Xylenes	ND	0.0250									
Surrogate: Bromofluorobenzene	0.450		0.500		89.9	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.510		0.500		102	70-130					
Surrogate: Toluene-d8	0.515		0.500		103	70-130					
LCS (2208104-BS1)							Prepared: 02	2/18/22 An	alyzed: 02/21/22		
Benzene	2.76	0.0250	2.50		110	70-130	1		•		
Ethylbenzene	2.92	0.0250	2.50		117	70-130					
Toluene	3.00	0.0250	2.50		120	70-130					
-Xylene	2.76	0.0250	2.50		110	70-130					
o,m-Xylene	5.63	0.0500	5.00		113	70-130					
	8.39	0.0250	7.50		112	70-130					
Fotal Xylenes Surrogate: Bromofluorobenzene	0.486	0.0230	0.500		97.1	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.430		0.500		103	70-130					
Surrogate: Toluene-d8	0.544		0.500		109	70-130					
Matrix Spike (2208104-MS1)				Source: I	202084	04	Prenared: 0'	2/18/22 An	alyzed: 02/21/22		
• • /	2.86	0.0250	2.50				Trepared. 02	2/10/22 An	aryzed. 02/21/22		
Benzene	2.86	0.0250	2.50	ND	114	48-131					
Ethylbenzene	2.97	0.0250	2.50	ND	119	45-135					
Foluene	2.96	0.0250	2.50	ND	118	48-130					
-Xylene	2.87	0.0250	2.50	ND	115	43-135					
o,m-Xylene	5.78	0.0500	5.00	ND	116	43-135					
Total Xylenes	8.66	0.0250	7.50	ND	115	43-135					
Surrogate: Bromofluorobenzene	0.476		0.500		95.1	70-130					
Surrogate: 1,2-Dichloroethane-d4	0.509		0.500 0.500		102 102	70-130 70-130					
Surrogate: Toluene-d8	0.512		0.500								
Matrix Spike Dup (2208104-MSD1)	2.90	0.0250	2.50	Source: H			-		alyzed: 02/21/22		
Benzene	2.80 2.92	0.0250	2.50	ND	112	48-131 45-135	2.08 1.77	23 27			
Ethylbenzene		0.0250	2.50	ND	117						
Toluene	2.96	0.0250	2.50	ND	118	48-130	0.118	24			
-Xylene	2.79	0.0250	2.50	ND	112	43-135	2.79	27			
o,m-Xylene	5.62	0.0500	5.00	ND	112	43-135	2.93	27			
	8.41	0.0250	7.50	ND	112	43-135	2.88	27			
Fotal Xylenes					050	70 120					
-	0.480		0.500		95.9	70-130					
lotal Xylenes Surrogate: Bromofluorobenzene Surrogate: 1,2-Dichloroethane-d4	0.480 0.504		0.500 0.500		95.9 101	70-130 70-130					

QC Summary Data

		2000			-				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:	20	/press 071-0001 ustin Weyant					Reported: 2/23/2022 3:34:29PM
	No	onhalogenated O	rganics	by EPA 801	5D - GI	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2208104-BLK1)							Prepared: 0	2/18/22 A	Analyzed: 02/21/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.450		0.500		89.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.510		0.500		102	70-130			
Surrogate: Toluene-d8	0.515		0.500		103	70-130			
LCS (2208104-BS2)							Prepared: 0	2/18/22 A	Analyzed: 02/21/22
Gasoline Range Organics (C6-C10)	67.3	20.0	50.0		135	70-130			L2
Surrogate: Bromofluorobenzene	0.463		0.500		92.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.499		0.500		99.8	70-130			
Surrogate: Toluene-d8	0.552		0.500		110	70-130			
Matrix Spike (2208104-MS2)				Source: I	E 202084- (04	Prepared: 0	2/18/22 A	Analyzed: 02/21/22
Gasoline Range Organics (C6-C10)	61.5	20.0	50.0	ND	123	70-130			
Surrogate: Bromofluorobenzene	0.482		0.500		96.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.501		0.500		100	70-130			
Surrogate: Toluene-d8	0.508		0.500		102	70-130			
Matrix Spike Dup (2208104-MSD2)				Source: I	E 202084- ()4	Prepared: 0	2/18/22 A	Analyzed: 02/21/22
Gasoline Range Organics (C6-C10)	59.8	20.0	50.0	ND	120	70-130	2.88	20	
Surrogate: Bromofluorobenzene	0.472		0.500		94.3	70-130			
Surrogate: Bromofluorobenzene Surrogate: 1,2-Dichloroethane-d4	0.472 0.508		0.500 0.500		94.3 102	70-130 70-130			

QC Summary Data

		QC DI	umm	aly Data	L				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Reported: 2/23/2022 3:34:29PM
	Nonh	alogenated Orga	anics by	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2209003-BLK1)							Prepared: 0	2/21/22 A	analyzed: 02/22/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	53.8	50.0	50.0		108	50-200			
LCS (2209003-BS1)							Prepared: 0	2/21/22 A	analyzed: 02/22/22
Diesel Range Organics (C10-C28)	491	25.0	500		98.2	38-132			
Surrogate: n-Nonane	52.9		50.0		106	50-200			
Matrix Spike (2209003-MS1)				Source: l	E 202084 -	06	Prepared: 0	2/21/22 A	analyzed: 02/22/22
Diesel Range Organics (C10-C28)	505	25.0	500	ND	101	38-132			
Surrogate: n-Nonane	56.2		50.0		112	50-200			
Matrix Spike Dup (2209003-MSD1)				Source: l	E202084-	06	Prepared: 0	2/21/22 A	analyzed: 02/22/22
Diesel Range Organics (C10-C28)	504	25.0	500	ND	101	38-132	0.296	20	
Surrogate: n-Nonane	57.5		50.0		115	50-200			

QC Summary Data

				J					
Atkins Engineering Associates Inc.		Project Name:		Cypress					Reported:
2904 W. 2nd		Project Number:	: 1	20071-0001					
Roswell NM, 88201		Project Manager		Austin Weyant					2/23/2022 3:34:29PM
		Anions	by EPA	300.0/9056	١				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2208103-BLK1)							Prepared: 0	2/18/22 A	analyzed: 02/23/22
Chloride	ND	20.0							
LCS (2208103-BS1)							Prepared: 0	2/18/22 A	analyzed: 02/23/22
Chloride	250	20.0	250		99.9	90-110			
Matrix Spike (2208103-MS1)				Source:	E202084-	01	Prepared: 0	2/18/22 A	analyzed: 02/23/22
Chloride	316	20.0	250	69.5	98.6	80-120			
Matrix Spike Dup (2208103-MSD1)				Source:	E202084-	01	Prepared: 0	2/18/22 A	analyzed: 02/23/22
Chloride	314	20.0	250	69.5	97.8	80-120	0.657	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Atkins Engineering Associates Inc.	Project Name:	Cypress	
2904 W. 2nd	Project Number:	20071-0001	Reported:
Roswell NM, 88201	Project Manager:	Austin Weyant	02/23/22 15:34

L2 The LCS spike recovery was above acceptance limits. This analyte was not detected in the sample.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	
Project	Information

Chain of Custody

nt: A	TKANS	50	16		100	(Bill To		1.1.23	Stawford	La	ab Us	se Or	nly	arthe stress	§		TAT	Г	2	EPA P	rogram
ioct.		10-20		10	T	Attention:			Lab	WO#				Numb		1D	2D	3D	Stand	dard	CWA	SDWA
ject Ma	inager: A	USIJ	VV	161122	·	Address:			E	202	08.	Ч			0001							
dress:	2904	KI VA	IND			City, State, Zig Phone:)			<u> </u>	7	-	Analy	/sis an	d Metho					10.00		RCRA
ne: T	75 60	6	3943			Email:			15	15	1										State	L
ail: QU	Zip la 175 GU 15tmQ	atk	MSON	g.con	7				y 80.	y 80:	12	0		0.0		5			N	A CO	UT AZ	TX
port due	e by:							1	DRO L	SRO b	y 80.	y 826	s 601	de 30		C-N	X1 -			10		
îme npled	Date Sampled	Matrix	No. of Container	s Sample I	D			Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC - TX		_		Remarks	
11 1	13:16	5	(40		Sul			- I and								X						
	13:21	1	1		SW2			2		2						X	1					
	13:05		0		SWZ)		3								X					No.	
	12:53				SWL			4								X				_		×
	13:40				SWS	>		5								V						
	13:30			ſ	446	2	ē.	6		2						X						
	14207				Sh (Z	ta	7							-	X			1			
	13:26				SW 9)	s 	8								X						
	13:08				BH1			9								X						
7	13:03	A	N		BHZ	8. 1919 - 1919	51	10								X						
ditiona	l Instructio	ins:																				
eld sample	er), attest to the	e validity a	and auther	nticity of this sa	mple. I am aw	are that tampering v	vith or intentionally misla	belling the sample lo	cation,				Sample	es requiri	ing thermal j	oreserva	ion mus	t be recei	ved on ice	the day the	y are sample	d or receiv
e or time o	f collection is c	bosidered	fraud and	may be groun	ds for legal act	ion.	Sampled by:						packed	l in ice at	an avg tem					quent days	1	
Huisber	total Stemato	je)	Da	te	Time	aut	y: (Signature)	in 2/15/		Time	:5	3	Rece	eived	on ice:		b Us	e Only				
inquished	d by: (Signatu	ire)	Da	te	Time	Received b	y: (Signature)	Date		Time			T1			TO			TO			
inquished	d by: (Signatu	ire)	Da	te	Time	Received b	y: (Signature)	Date		Time				Tem		<u>T2</u>			<u>T3</u>			
onlo Matris	x: S - Soil, Sd - :	Solid Se -	Sludge A	- Aquequis Q -	Other			Containe	r Type	2:0-0	lass.					ergla	S. V -	VOA		in a contraction of the		State Server
upic matth	les are discar	ded 30 d	avs after	results are re	ported unle	ss other arrangem	ents are made. Haza												ort for	the analy	sis of the a	above

Release Project Information

S S.

Page 2 of 2 Received

ient: ATKSNS ENG oject: oject Attention: oject: Address: 2904 oject: 2904 12 NO ty, State, Zip USUBL, NM none: 545 oject due by: 2943 Time Date sampled Matrix Sampled Matrix Sampled Matrix Sampled Matrix Sampled BH3 3:32 BH44 1/2 3:35 BH5 3:35 BH5 1/4	. <u>E</u> 	PRO/OHO PV 8015 GRO/DRO by 8015	T	VOC by 8260	200	Chloride 300.0		1D WN-DODD	2D XL-2005	3D		IM CO	CWA State UT AZ Remarks	
Adress: 2904 W 2ND ty, State, Zip USWAL, NM hone: 545 616 3943 mail: Austmale apport due by: Email: Time Date Sampled Matrix Sampled Matrix Sampled Matrix Sampled Sample 3:32 BH3 3:32 BH43 12 3:35 BH5	- - 2 2 7		BTEX by 8021	es.	Analy	sis and N			BGDOC - TX		N	IM CO	UT AZ	TX
nail: <u>AUSTING attensorg com</u> <u>eport due by:</u> Time Date Matrix No. of Containers Sample ID Lab <u>ampled Sampled Matrix Containers</u> BAA3 // <u>3:32 BA44 /2</u> <u>3:35 BA45 /3</u>		DRO/ORO by 8015 GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDDC-TX		N	IM CO	UT AZ	
Time ampledDate SampledMatrixNo. of ContainersSample IDLab Numbe3:322 IL5 I userBH3//3:32BH4123:35BH513		DRO/ORO GRO/DRO	BTEX by 8	VOC by 82	Metals 60	Chloride 3		BGBDC-P	BGDOC - TX				Remarks	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>	×	5		XXXX	, , ,					<u>.</u>
3:32 BH4 12 3:35 BH5 13								X	, , 					
3:35 BH5 13								X	,					
3:35 BH5 13							-	K						
								T						
				1	1			X						
								K						
dditional Instructions:										ba	I	and a standard second second		
field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabelling the sample tever tighe of collection is considered fraud and may be grounds for legal action. Sampled by:	locat	on,				es requiring t I in ice at an							hey are sampl /s.	ad or receiv
linuined by: (Signature) Date 14 2 Time Received by: (Signature) Date 2/15	12		0:5	3	Rec	eived on	ice:	L V	ab U	se Onl I	y			
elinquished by: (Signature) Date Time Received by: (Signature) Date		Tim	ne		T1			T2			T	3		
elinquished by: (Signature) Date Time Received by: (Signature) Date Date		Tim	ne			i Temp °	c_4	(a la l						
						lastic, ag					nort fo	is the pap	lucic of the	abava
ote: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples w Imples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited	d to t	ne amo	ount pa	id for a	on the	report.		ent exp	Jense.	. mere	-port re	n the ana	e	above

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Atkins Engineering Associates Inc. Date	e Received:	02/15/22 1	.0:53	Work Order ID: E202084
Phone:	(575) 626-3993 Date	e Logged In:	02/15/22 1	0:58	Logged In By: Caitlin Christian
Email:		Date:	02/21/22 1	17:00 (4 day TAT)	
<u>Chain a</u>	of Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match th	e COC	No		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: U	I <u>PS</u>
4. Was t	the COC complete, i.e., signatures, dates/times, requested a	malyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the f i.e, 15 minute hold time, are not included in this disucssion.	ĩeld,	Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did tl	he COC indicate standard TAT, or Expedited TAT?		No		Missing sample # 14. Date and time
Sample	Cooler				relinquished not provided on COC. Project
7. Was a	a sample cooler received?		Yes		name was not provided on COC.
8. If yes	s, was cooler received in good condition?		Yes		1
9. Was t	the sample(s) received intact, i.e., not broken?		Yes		
10. Wer	e custody/security seals present?		No		
11. If ye	es, were custody/security seals intact?		NA		
12. Was	the sample received on ice? If yes, the recorded temp is 4°C, i.e., 6 Note: Thermal preservation is not required, if samples are rece minutes of sampling		Yes		
13. If no	o visible ice, record the temperature. Actual sample temp	perature: 4°	С		
	Container				
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	he head space less than 6-8 mm (pea sized or less)?		NA		
17. Was	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
19. Is the	e appropriate volume/weight or number of sample containers c	ollected?	Yes		
Field La	abel				
20. Wer	re field sample labels filled out with the minimum informat	ion:			
	Sample ID?		Yes		
	Date/Time Collected? Collectors name?		Yes	·	
			No		
	• Preservation s the COC or field labels indicate the samples were preserv	ved?	No		
	sample(s) correctly preserved?	· ·u.	NA		
	b filteration required and/or requested for dissolved metals	;?	No		
	hase Sample Matrix				
Multiel	the sample have more than one phase, i.e., multiphase?		No		
		,	NA		
26. Doe	es does the COC specify which phase(s) is to be analyzed?		INA		
26. Doe 27. If ye	es, does the COC specify which phase(s) is to be analyzed?				
26. Doe 27. If ye <u>Subcon</u>	tract Laboratory		No		
 26. Doe 27. If ye Subcon 28. Are 		vho?	No NA	Subcontract Lab	: na

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

Pro	ject	Inforr	nation

Chain of Custody

Project Information		Chain o	f Custody							•					Page	_of_Z	Received
Client: ATKINS ENG Project: Cypress Project Manager: AUSTIN Address: 2904 W 2NI		Bill To ention: ress: , State, Zip		Lab) E o	wo#	La	b Us	Job I	Numb	oer 000 J Id Metho		2D	TA 3D	T Standard		SDWA	t by OCD: 3/
City, State, Zip LOSWEL 7 Phone: 575 626 394 Email: AUSTING at KMSC Report due by: Time Date Mark No.	<u>Bag.com</u>		Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	c-tx			State D UT AZ	TX	3/31/2022 5:3
Sampled Sampled Matrix Conta	iners Sample ID		Number	DRO/	GRO,	BTEX	VOC	Meta	Chlor		BGDC	BGDOC			Remarks		5:31:42
2/11 13:14 5 1	400 Jul		1				•				X						AM
13.21	SW2		2								X	1					
13:05	SW3		3								V						
17:53	SWY		4								X						
13240	SWS		5								V	1					
13:30	5616		6								Ŵ	Í					
14:07	GW7		7								X						
13:26	SW8		8								X	1					
13:08	BHI		9								TV						
V 13:05 V	Name and a second secon		10								X	1				and area the second	
Additional Instructions:			1								Le S	1					
		at tampering with or intentionally mislabelling t	he sample loc	ation,		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								lved on ice the da		ed or received	
date or time of oplication is considered fraud Reinfusion (signature)	Date Time	Sampled by: Received by: (Signature)	Date 2/15/2	22	Time	:5:			iteda i	on ice:	نيا		se Onl			A Constant of	
Relinquished by: (Signature)	Date Time	Received by: (Signature)	Date	24	Time	2			aveu	on ice.	-	~/ 14					
Relinquished by: (Signature)	Date Time	Received by: (Signature)	Date		Time			<u>T1</u>	T		<u>12</u> 1			<u> </u>			
Sample Matrix: S - Soll, Sd - Solid, Sg - Sludge			Container				p - po	oly/pl		ag - amb							
		er arrangements are made. Hazardous s th this COC. The liability of the laboratory						a series and	and and a							and the second	P
							C	E	(er	11	V	ir	ot	e	ch	age 62 (
		Page 26	6 of 27														of 113

Released to Imaging: 3/31/2022 12:59:21 PM

1

Pro	iert	Inform	nation
FIU	Jecc	mom	lation

Released to Imaging: 3/31/2022 12:59:21 PM

roject Information		Chain of 0	Custody										P	age <u>2</u>	of Z
client: ATKINS ENG		Bill To		Si yatu	12 1.33	Lab	Use Or	nly				TAT		EPA Pro	gram
Project CLADRESS	Atter	ntion:	_ [Lab V	NO#	1. A.		Numb		1D	2D	3D St	andard	CWA	SDWA
Project Manager: HUSTIN M	Addr			E `		3.2	200	571-	6000			1			
Address: 2904 W 2ND		State, Zip				-	Anal	ysis an	d Metho	d					RCRA
City, State, Zip LOSWELL, N	M Phor													Charles	-
Phone: 575 616 3943	Emai	11;		8015	8015								NINAL COL	State	TVT
Email: austina, attensor	<u>j.cor</u> /			M	Ad 0	1702	3 9	300		WN	×		NIVI CO	UTAL	
Report due by: Time Date No. of		la construction de la construction	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BIEX by 8021	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC - TX				
Time Date Matrix No. of Containers	Sample ID		Number	DRO	GRO		Met	용		BGD	BGD(Remarks	
	Dua		11						6-1 We	V					
13.12 2/11 5 1402	BH3		11				S.			A		20 100			
	RILL		12							X					
13:32	DHT		Carlo and Color		-		-			14		-			
13:35	RHS		13							X					
	0110	the second s	A CONTRACTOR OF STREET, STREET	-						\mathbf{h}		-	No Se	molo	and the second second
13:39 0 0 0	BHG		14							V	-		Rec	ieved	
	- <u>p.</u>		Contraction of the							A					
							mar la service								
										Concerning of					
		6		Ch. I											
			Ser and												
										-			Contraction of the		
			NOCH AND AND										the second s	and the line	
													and the second department		
Additional Instructions:															
I, (field sampler), attest to the validity and authent	ticity of this sample. I am aware that	at tampering with or intentionally mislabelling the	e sample loc	ation,			A CONTRACTOR OF A CONTRACT						on ice the day t subsequent day	hey are sampled o	or received
date or time of collection is considered fraud and	may be grounds for legal action.	Sampled by:					packe	o in ice a	an avg tem;	Careford Street		A state	subsequent day	ya.	Salar and a start
I, (field sampler), attest to the validity and authent date or tight of collection is considered fraud and Relinguistical provider of the sample of the samp	2142 Time	Received by; (Signature)	alist.	22	Ime In'i	52		-	an last	820100	ab Use	Only	. Company	A STA	
Relinquished by: (Signature) Dat	te Time	Received by: (Signature)	Date	101	Time	22	Rec	eivea	on ice:	0	// N				
Relinquished by: (Signature) Dat	ie fine	neverated by, (Signature)					T1			Т2			тз		Section 12
Relinquished by: (Signature) Dat	te Time	Received by: (Signature)	Date		Time		1			12		No. 200 T	19		N.C.
including of the product of							AV	G Tem	p°c 4		E. parts				
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A -	- Aqueous, Q - Other	Anne and the second	Container	Type	:g-gla	ass, p		COLUMN TWO IS NOT THE OWNER.	and the second se	er gla	ss, v - 1	/OA		ALCONG GROUPS	
Note: Samples are discarded 30 days after i	results are reported unless othe	er arrangements are made. Hazardous sa	mples will	be ret	urned t	o clien	t or disp	osed of	at the clie	nt exp	ense.	The repor	t for the ana	lysis of the ab	ove
samples is applicable only to those samples	s received by the laboratory wit	th this COC. The liability of the laboratory i	is limited to	the a	mount	naid fo	or on the	report							
							E	3 (er	יר	Vi	ir	ot	ec	:h
		Page 27	of 27												

December 21, 2021

Jessica Atkins Atkins Engineering Associates 2904 West Second Street Roswell, NM 88201 TEL: (575) 624-2420 FAX: (575) 624-2421

RE: Cypros

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2112844

Dear Jessica Atkins:

Hall Environmental Analysis Laboratory received 11 sample(s) on 12/14/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D: S-S	SW-1			
Project: Cypros	Collection Date: 12/9/2021 12:00:00 PM							
Lab ID: 2112844-001	Matrix: SOIL		Received Dat	e: 12/	/14/2021 8:10:00 AM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analys	t: LRN		
Chloride	800	60	mg/Kg	20	12/19/2021 5:51:25 PN	1 64608		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: JME		
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	12/14/2021 8:11:45 PN	1 64498		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/14/2021 8:11:45 PN	1 64498		
Surr: DNOP	74.9	70-130	%Rec	1	12/14/2021 8:11:45 PN	1 64498		
EPA METHOD 8015D: GASOLINE RANGI	E				Analys	t: mb		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	12/15/2021 11:55:00 P	M 64491		
Surr: BFB	89.4	70-130	%Rec	1	12/15/2021 11:55:00 P	M 64491		
EPA METHOD 8021B: VOLATILES					Analys	t: mb		
Benzene	ND	0.024	mg/Kg	1	12/15/2021 11:55:00 P	M 64491		
Toluene	ND	0.049	mg/Kg	1	12/15/2021 11:55:00 P	M 64491		
Ethylbenzene	ND	0.049	mg/Kg	1	12/15/2021 11:55:00 P	M 64491		
Xylenes, Total	ND	0.097	mg/Kg	1	12/15/2021 11:55:00 P	M 64491		
Surr: 4-Bromofluorobenzene	78.8	70-130	%Rec	1	12/15/2021 11:55:00 P	M 64491		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cli	ient Sample II): S-	SW-2				
Project: Cypros	Collection Date: 12/9/2021 12:00:00 PM								
Lab ID: 2112844-002	Matrix: SOIL		Received Date	e: 12	/14/2021 8:10:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed Batch				
EPA METHOD 300.0: ANIONS					Analyst: JMT				
Chloride	3200	150	mg/Kg	50	12/20/2021 12:51:54 PM 64608				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: JME				
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	12/14/2021 8:22:17 PM 64498				
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/14/2021 8:22:17 PM 64498				
Surr: DNOP	90.8	70-130	%Rec	1	12/14/2021 8:22:17 PM 64498				
EPA METHOD 8015D: GASOLINE RANGE					Analyst: mb				
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	12/16/2021 12:14:00 AM 64491				
Surr: BFB	90.1	70-130	%Rec	1	12/16/2021 12:14:00 AM 64491				
EPA METHOD 8021B: VOLATILES					Analyst: mb				
Benzene	ND	0.024	mg/Kg	1	12/16/2021 12:14:00 AM 64491				
Toluene	ND	0.048	mg/Kg	1	12/16/2021 12:14:00 AM 64491				
Ethylbenzene	ND	0.048	mg/Kg	1	12/16/2021 12:14:00 AM 64491				
Xylenes, Total	ND	0.096	mg/Kg	1	12/16/2021 12:14:00 AM 64491				
Surr: 4-Bromofluorobenzene	80.7	70-130	%Rec	1	12/16/2021 12:14:00 AM 64491				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D: S-3	3				
Project: Cypros	Collection Date: 12/9/2021 12:00:00 PM								
Lab ID: 2112844-003	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed Ba	atch			
EPA METHOD 300.0: ANIONS					Analyst: JN	ЛT			
Chloride	2600	150	mg/Kg	50	12/20/2021 9:08:30 AM 64	608			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: JN	lΕ			
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	12/14/2021 8:32:49 PM 64	498			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/14/2021 8:32:49 PM 64	498			
Surr: DNOP	89.1	70-130	%Rec	1	12/14/2021 8:32:49 PM 64	498			
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: ml	b			
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	12/16/2021 12:34:00 AM 64	491			
Surr: BFB	89.1	70-130	%Rec	1	12/16/2021 12:34:00 AM 64	491			
EPA METHOD 8021B: VOLATILES					Analyst: ml	b			
Benzene	ND	0.025	mg/Kg	1	12/16/2021 12:34:00 AM 64	491			
Toluene	ND	0.050	mg/Kg	1	12/16/2021 12:34:00 AM 64	491			
Ethylbenzene	ND	0.050	mg/Kg	1	12/16/2021 12:34:00 AM 64	491			
Xylenes, Total	ND	0.10	mg/Kg	1	12/16/2021 12:34:00 AM 64	491			
Surr: 4-Bromofluorobenzene	81.0	70-130	%Rec	1	12/16/2021 12:34:00 AM 64	491			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р Reporting Limit
- RL

Page 3 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates Project: Cypros			ent Sample II		3 /9/2021 12:00:00 PN	Л
Project: Cypros Lab ID: 2112844-004	Matrix: SOIL	-			/14/2021 8:10:00 AN	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	vst: JMT
Chloride	140	61	mg/Kg	20	12/20/2021 9:20:54 /	M 64608
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analy	/st: JME
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	12/14/2021 8:43:23 F	PM 64498
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/14/2021 8:43:23 F	PM 64498
Surr: DNOP	76.7	70-130	%Rec	1	12/14/2021 8:43:23 F	PM 64498
EPA METHOD 8015D: GASOLINE RANG	E				Analy	vst: mb
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	12/16/2021 12:53:00	AM 64491
Surr: BFB	91.3	70-130	%Rec	1	12/16/2021 12:53:00	AM 64491
EPA METHOD 8021B: VOLATILES					Analy	vst: mb
Benzene	ND	0.025	mg/Kg	1	12/16/2021 12:53:00	AM 64491
Toluene	ND	0.050	mg/Kg	1	12/16/2021 12:53:00	AM 64491
Ethylbenzene	ND	0.050	mg/Kg	1	12/16/2021 12:53:00	AM 64491
Xylenes, Total	ND	0.099	mg/Kg	1	12/16/2021 12:53:00	AM 64491
Surr: 4-Bromofluorobenzene	83.1	70-130	%Rec	1	12/16/2021 12:53:00	AM 64491

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D: L-4	4				
Project: Cypros	Collection Date: 12/9/2021 12:00:00 PM								
Lab ID: 2112844-005	Matrix: SOIL		Received Dat	e: 12/	/14/2021 8:10:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: JMT			
Chloride	5900	300	mg/Kg	100	0 12/20/2021 9:33:18 AM	64608			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	12/15/2021 9:17:48 AM	64498			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/15/2021 9:17:48 AM	64498			
Surr: DNOP	92.8	70-130	%Rec	1	12/15/2021 9:17:48 AM	64498			
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: mb			
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	12/16/2021 1:13:00 AM	64491			
Surr: BFB	89.2	70-130	%Rec	1	12/16/2021 1:13:00 AM	64491			
EPA METHOD 8021B: VOLATILES					Analyst	: mb			
Benzene	ND	0.025	mg/Kg	1	12/16/2021 1:13:00 AM	64491			
Toluene	ND	0.050	mg/Kg	1	12/16/2021 1:13:00 AM	64491			
Ethylbenzene	ND	0.050	mg/Kg	1	12/16/2021 1:13:00 AM	64491			
Xylenes, Total	ND	0.10	mg/Kg	1	12/16/2021 1:13:00 AM	64491			
Surr: 4-Bromofluorobenzene	80.9	70-130	%Rec	1	12/16/2021 1:13:00 AM	64491			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 5 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II): L-:	5	
Project: Cypros		(Collection Dat	e: 12	/9/2021 12:00:00 PM	
Lab ID: 2112844-006	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed B	Batch
EPA METHOD 300.0: ANIONS					Analyst: J	ІМТ
Chloride	1600	59	mg/Kg	20	12/20/2021 1:04:19 PM 6	34622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: J	IME
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	12/14/2021 9:04:32 PM 6	64498
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	12/14/2021 9:04:32 PM 6	34498
Surr: DNOP	93.6	70-130	%Rec	1	12/14/2021 9:04:32 PM 6	34498
EPA METHOD 8015D: GASOLINE RANGE					Analyst: n	nb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	12/16/2021 1:33:00 AM 6	34491
Surr: BFB	89.8	70-130	%Rec	1	12/16/2021 1:33:00 AM 6	34491
EPA METHOD 8021B: VOLATILES					Analyst: n	nb
Benzene	ND	0.024	mg/Kg	1	12/16/2021 1:33:00 AM 6	34491
Toluene	ND	0.049	mg/Kg	1	12/16/2021 1:33:00 AM 6	64491
Ethylbenzene	ND	0.049	mg/Kg	1	12/16/2021 1:33:00 AM 6	64491
Xylenes, Total	ND	0.097	mg/Kg	1	12/16/2021 1:33:00 AM 6	64491
Surr: 4-Bromofluorobenzene	81.9	70-130	%Rec	1	12/16/2021 1:33:00 AM 6	34491

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D:L-	6	
Project: Cypros		(Collection Dat	e: 12	/9/2021 12:00:00 PM	
Lab ID: 2112844-007	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	ЈМТ
Chloride	ND	60	mg/Kg	20	12/20/2021 1:16:43 PM	64622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	JME
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	12/14/2021 9:15:13 PM	64498
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/14/2021 9:15:13 PM	64498
Surr: DNOP	89.2	70-130	%Rec	1	12/14/2021 9:15:13 PM	64498
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	mb
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	12/16/2021 1:52:00 AM	64491
Surr: BFB	92.8	70-130	%Rec	1	12/16/2021 1:52:00 AM	64491
EPA METHOD 8021B: VOLATILES					Analyst:	mb
Benzene	ND	0.024	mg/Kg	1	12/16/2021 1:52:00 AM	64491
Toluene	ND	0.048	mg/Kg	1	12/16/2021 1:52:00 AM	64491
Ethylbenzene	ND	0.048	mg/Kg	1	12/16/2021 1:52:00 AM	64491
Xylenes, Total	ND	0.095	mg/Kg	1	12/16/2021 1:52:00 AM	64491
Surr: 4-Bromofluorobenzene	84.4	70-130	%Rec	1	12/16/2021 1:52:00 AM	64491

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit
- RL

Page 7 of 17

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates	Client Sample ID: L-7 Collection Date: 12/9/2021 12:00:00 PM					
Project: Cypros						
Lab ID: 2112844-008	Matrix: SOIL	Received Date: 12/14/2021 8:10:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	370	59	mg/Kg	20	12/20/2021 1:29:08 PN	64622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	12/16/2021 1:23:35 PN	64526
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	12/16/2021 1:23:35 PN	64526
Surr: DNOP	99.5	70-130	%Rec	1	12/16/2021 1:23:35 PM	64526
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	12/16/2021 12:20:54 A	M 64506
Surr: BFB	100	70-130	%Rec	1	12/16/2021 12:20:54 A	M 64506
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	12/16/2021 12:20:54 A	M 64506
Toluene	ND	0.048	mg/Kg	1	12/16/2021 12:20:54 A	M 64506
Ethylbenzene	ND	0.048	mg/Kg	1	12/16/2021 12:20:54 A	M 64506
Xylenes, Total	ND	0.097	mg/Kg	1	12/16/2021 12:20:54 A	M 64506
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	12/16/2021 12:20:54 A	M 64506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 17

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D:L-	8	
Project: Cypros		(Collection Dat	e: 12	/9/2021 12:00:00 PM	
Lab ID: 2112844-009	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	ЈМТ
Chloride	1100	60	mg/Kg	20	12/20/2021 2:06:22 PM	64622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	JME
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	12/16/2021 1:34:13 PM	64526
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	12/16/2021 1:34:13 PM	64526
Surr: DNOP	99.4	70-130	%Rec	1	12/16/2021 1:34:13 PM	64526
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	12/16/2021 1:30:33 AM	64506
Surr: BFB	102	70-130	%Rec	1	12/16/2021 1:30:33 AM	64506
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.023	mg/Kg	1	12/16/2021 1:30:33 AM	64506
Toluene	ND	0.046	mg/Kg	1	12/16/2021 1:30:33 AM	64506
Ethylbenzene	ND	0.046	mg/Kg	1	12/16/2021 1:30:33 AM	64506
Xylenes, Total	ND	0.092	mg/Kg	1	12/16/2021 1:30:33 AM	64506
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	12/16/2021 1:30:33 AM	64506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 9 of 17

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D: L-9	9	
Project: Cypros		(Collection Dat	e: 12	/9/2021 12:00:00 PM	
Lab ID: 2112844-010	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	JMT
Chloride	380	60	mg/Kg	20	12/20/2021 2:18:47 PM	64622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	12/16/2021 9:38:35 AM	64526
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	12/16/2021 9:38:35 AM	64526
Surr: DNOP	76.7	70-130	%Rec	1	12/16/2021 9:38:35 AM	64526
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	12/16/2021 2:40:01 AM	64506
Surr: BFB	101	70-130	%Rec	1	12/16/2021 2:40:01 AM	64506
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.023	mg/Kg	1	12/16/2021 2:40:01 AM	64506
Toluene	ND	0.046	mg/Kg	1	12/16/2021 2:40:01 AM	64506
Ethylbenzene	ND	0.046	mg/Kg	1	12/16/2021 2:40:01 AM	64506
Xylenes, Total	ND	0.092	mg/Kg	1	12/16/2021 2:40:01 AM	64506
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	12/16/2021 2:40:01 AM	64506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 17

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2112844

Date Reported: 12/21/2021

CLIENT: Atkins Engineering Associates		Cl	ient Sample II	D: S-:	5	
Project: Cypros		(Collection Dat	e: 12	/9/2021 12:00:00 PM	
Lab ID: 2112844-011	Matrix: SOIL		Received Dat	e: 12	/14/2021 8:10:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	640	61	mg/Kg	20	12/20/2021 2:31:12 PM	64622
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	12/16/2021 9:49:08 AM	64526
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	12/16/2021 9:49:08 AM	64526
Surr: DNOP	95.5	70-130	%Rec	1	12/16/2021 9:49:08 AM	64526
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	12/16/2021 3:03:04 AM	64506
Surr: BFB	98.5	70-130	%Rec	1	12/16/2021 3:03:04 AM	64506
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	12/16/2021 3:03:04 AM	64506
Toluene	ND	0.048	mg/Kg	1	12/16/2021 3:03:04 AM	64506
Ethylbenzene	ND	0.048	mg/Kg	1	12/16/2021 3:03:04 AM	64506
Xylenes, Total	ND	0.097	mg/Kg	1	12/16/2021 3:03:04 AM	64506
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	12/16/2021 3:03:04 AM	64506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 11 of 17

Client: Project:	Atkins Er Cypros	ngineering	Associ	ates							
Sample ID:	MB-64608	SampT	ype: ml	olk	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	h ID: 64	608	F	RunNo: 8 4	4659				
Prep Date:	12/19/2021	Analysis D	Date: 12	2/19/2021	S	SeqNo: 29	976269	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-64608	SampT	ype: Ics	5	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	h ID: 64	608	F	RunNo: 8 4	4659				
Prep Date:	12/19/2021	Analysis D	Date: 12	2/19/2021	5	SeqNo: 29	976270	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	91.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2112844

21-Dec-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Atl	tins Engineering	Associa	ates							
Project: Cy	pros									
Sample ID: MB-64498	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 64	498	F	unNo: 8	4493				
Prep Date: 12/14/202	Analysis D	ate: 12	2/14/2021	S	eqNo: 2	970622	Units: mg/ł	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MF	RO) ND	50								
Surr: DNOP	8.8		10.00		87.9	70	130			
Sample ID: LCS-64498	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 64	498	F	unNo: 8	4493				
Prep Date: 12/14/202	Analysis D	ate: 12	2/14/2021	S	eqNo: 2	970623	Units: mg/ł	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	44	10	50.00	0	88.6	68.9	135			
Surr: DNOP	4.1		5.000		81.7	70	130			
Sample ID: MB-64526	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 64	526	F	unNo: 8	4564				
Prep Date: 12/15/202	Analysis D	ate: 12	2/16/2021	S	eqNo: 2	973590	Units: mg/ł	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)		10								
Motor Oil Range Organics (MF	,	50								
Surr: DNOP	9.2		10.00		91.6	70	130			
Sample ID: LCS-64526	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 64	526	F	lunNo: 8	4564				
Prep Date: 12/15/202	Analysis D	ate: 12	2/16/2021	S	eqNo: 2	973591	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	93.7	68.9	135			
Surr: DNOP			5.000							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

2112844

21-Dec-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	ngineering Associates			
Project: Cypros				
Sample ID: mb-64491	SampType: MBLK	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: PBS	Batch ID: 64491	RunNo: 84562		
Prep Date: 12/14/2021	Analysis Date: 12/15/2021	SeqNo: 2972095	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 870 1000	87.2 70	130	
Sample ID: Ics-64491	SampType: LCS	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: LCSS	Batch ID: 64491	RunNo: 84562		
Prep Date: 12/14/2021	Analysis Date: 12/15/2021	SeqNo: 2972097	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Gasoline Range Organics (GRO)	26 5.0 25.00	0 105 78.6	131	
Surr: BFB	1000 1000	102 70	130	
Sample ID: mb-64506	SampType: MBLK	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: PBS	Batch ID: 64506	RunNo: 84565		
Prep Date: 12/14/2021	Analysis Date: 12/15/2021	SeqNo: 2972207	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0			
Surr: BFB	1000 1000	104 70	130	
Sample ID: Ics-64506	SampType: LCS	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: LCSS	Batch ID: 64506	RunNo: 84565		
Prep Date: 12/14/2021	Analysis Date: 12/15/2021	SeqNo: 2972208	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Gasoline Range Organics (GRO)	25 5.0 25.00	0 101 78.6	131	
Surr: BFB	1100 1000	114 70	130	
Sample ID: 2112844-008ams	SampType: MS	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: L-7	Batch ID: 64506	RunNo: 84565		
Prep Date: 12/14/2021	Analysis Date: 12/16/2021	SeqNo: 2972212	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Gasoline Range Organics (GRO)	25 5.0 24.95	0 100 61.3	114	
Surr: BFB	1100 998.0	112 70	130	
Sample ID: 2112844-008amsd	SampType: MSD	TestCode: EPA Method	8015D: Gasoline Range	
Client ID: L-7	Batch ID: 64506	RunNo: 84565		
Prep Date: 12/14/2021	Analysis Date: 12/16/2021	SeqNo: 2972213	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Reporting Limit RL

Page 14 of 17

Page 78 of 113

2112844

21-Dec-21

WO#:

Р Sample pH Not In Range

Client: Project:	Atkins En Cypros	gineering	Associa	ates							
Sample ID: 2	2112844-008amsd	SampT	уре: М	SD	Test	Code: EF	PA Method	8015D: Gasc	line Rang	e	
Client ID:	L-7	Batch	n ID: 64	506	R	unNo: 84	1565				
Prep Date:	12/14/2021	Analysis D	ate: 12	2/16/2021	S	eqNo: 2	972213	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	24	4.8	23.76	0	101	61.3	114	3.96	20	
Surr: BFB		1100		950.6		110	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Limit RL

Page 15 of 17

2112844

21-Dec-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Atkins Er Cypros	ngineering	Associa	ates							
Sample ID: mb			ype: ME					8021B: Volat	iles		
Client ID: PB:	S		n ID: 644		F	RunNo: 84	1562				
Prep Date: 12	2/14/2021	Analysis D	oate: 12	2/15/2021	5	SeqNo: 29	972143	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluc	probenzene	0.78		1.000		78.0	70	130			
Sample ID: Ics	-64491	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: LC:	SS	Batch	n ID: 644	491	F	RunNo: 8 4	1562				
Prep Date: 12	2/14/2021	Analysis D	Date: 12	2/15/2021	S	SeqNo: 29	972145	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.91	0.025	1.000	0	90.8	80	120			
Toluene		0.89	0.050	1.000	0	88.8	80	120			
Ethylbenzene		0.88	0.050	1.000	0	87.8	80	120			
Xylenes, Total		2.6	0.10	3.000	0	85.4	80	120			
Surr: 4-Bromofluc	orobenzene	0.79		1.000		79.4	70	130			
Sample ID: mb	-64506	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: PB	S	Batch	n ID: 64	506	F	RunNo: 8 4	4565				
Prep Date: 12	2/14/2021	Analysis D	Date: 12	2/15/2021	S	SeqNo: 29	972255	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluc	orobenzene	1.1		1.000		106	70	130			
Sample ID: LC	S-64506	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: LC	SS	Batch	n ID: 64	506	F	RunNo: 8 4	1565				
Prep Date: 12	2/14/2021	Analysis D	Date: 12	2/15/2021	ę	SeqNo: 29	972256	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.99	0.025	1.000	0	98.6	80	120			
Toluene		0.96	0.050	1.000	0	96.3	80	120			
Ethylbenzene		0.96	0.050	1.000	0	95.9	80	120			
Xylenes, Total		2.9	0.10	3.000	0	95.2	80	120			
Surr: 4-Bromofluc	orobenzene	1.1		1.000		109	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2112844

21-Dec-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Atkins Er Cypros	igineering	Associa	ates							
Sample ID: 21	12844-009ams	SampT	Гуре: МS	3	Tes	Code: El	PA Method	8021B: Volat	tiles		
Client ID: L-8	В	Batc	h ID: 64	506	F	unNo: 84	4565				
Prep Date: 1	2/14/2021	Analysis E	Date: 12	2/16/2021	S	eqNo: 2	972302	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.93	0.023	0.9208	0	100	80	120			
Toluene		0.91	0.046	0.9208	0.01204	97.9	80	120			
Ethylbenzene		0.91	0.046	0.9208	0	99.0	80	120			
Xylenes, Total		2.7	0.092	2.762	0	98.4	80	120			
Surr: 4-Bromoflu	orobenzene	0.98		0.9208		107	70	130			
Sample ID: 21	12844-009amsd	SampT	Гуре: МS	SD.	Tes	Code: El	PA Method	8021B: Volat	tiles		
Client ID: L-8	8	Batc	h ID: 64	506	F	unNo: 84	4565				
Prep Date: 1	2/14/2021	Analysis E	Date: 12	2/16/2021	S	eqNo: 2	972303	Units: mg/k	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.93	0.023	0.9183	0	101	80	120	0.161	20	
Toluene		0.91	0.046	0.9183	0.01204	97.8	80	120	0.357	20	
Ethylbenzene		0.91	0.046	0.9183	0	99.2	80	120	0.0740	20	
Xylenes, Total		2.7	0.092	2.755	0	97.4	80	120	1.26	20	
	orobenzene	0.99		0.9183		108	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 17

2112844

21-Dec-21

Page	82	01	f 11	3
		~		~

	RONMENTAL	TEL: 505-345	eental Analysis Labo 4901 Hawki Albuquerque, NM 3975 FAX: 505-345 nts.hallenvironmenta	ns NE 87109 Sai -4107	mple Log-In Ch	Page eck List
Client Name:	Atkins Engineering Associates	Work Order Nur	nber: 2112844		RcptNo: 1	
Received By:	Desiree Dominguez	12/14/2021 8:10:0	00 AM	TAS		
Completed By: Reviewed By:	Sean Livingston	12/14/2021 9:18:0	9 AM	172 5-6	ingot-	
Chain of Cus	stody					
1. Is Chain of C	ustody complete?		Yes 🖌	No 🗌	Not Present	
2. How was the	sample delivered?		Courier			
Log In 3. Was an attem	npt made to cool the sample:	5?	Yes 🖌	No 🗌		
4. Were all samp	ples received at a temperatu	re of >0° C to 6.0°C	Yes 🔽	No 🗌		
5. Sample(s) in	proper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sam	ple volume for indicated test	(s)?	Yes 🔽	No 🗌		
7. Are samples (except VOA and ONG) prope	erly preserved?	Yes 🔽	No 🗌		
8. Was preservat	tive added to bottles?		Yes	No 🔽	NA 🗌	
9. Received at le	ast 1 vial with headspace <1	/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🔽	
	pple containers received brok		Yes	No 🗹 🛛		
	rk match bottle labels? ncies on chain of custody)		Yes 🔽	No 🗌	# of preserved bottles checked for pH:	unless noted)
	orrectly identified on Chain o	f Custody?	Yes 🔽	No 🗌	Adjusted?	uness noteu)
	analyses were requested?		Yes 🖌	No 🗌		•
4. Were all holdin (If no, notify cu	g times able to be met? stomer for authorization.)		Yes 🔽	No 🗌	Checked by:	1 12/14
	ng (if applicable)					
15. Was client not	ified of all discrepancies with	this order?	Yes 🗌	No 🗌	NA 🗹	
Person M	Notified:	Date:	-			
By Whor	n:	Via:	P	hone 🗌 Fax	In Person	
Regardir Client Ins	ng:					
16. Additional rem	A					
7. Cooler Inform						
Cooler No	I served a server a server and the server as the	eal Intact Seal No	Seal Date	Signed By		
1	1.5 Good			Signed By		

Received	>			1/20			1:42 A	M	e driv														1 5			-	<u>Pa</u>	<u>ge 83</u>	
ENVIRONMENTAL	ANALYSIS LABORATOR	www.hallenvironmental.com	Albuquerque, NM 87109	Fax 505-345-4107	is Request	(1	tnəzdA	ДUE			٥٨	-ime	250 (Vo 2270 (Se otal Co	3												-			
HALL EN	NALYS	alle	1		Analysis	¢(Ş	tals folg	9М ґ, И	2014 by 8 ARDS 8 ,7 C		,														
	A		4901 Hawkins NE	Tel. 505-345-3975		((2 P	80	8/s	əbi	stic	108:P4 1808 1 Pe 1901	3		-										Remarks:			
Dauf	-					(r208)	s'8	τM	No	BE	5+0.0=1.5 (°C) E	HEAL No.	0	1 200	003		730	500	000	100	200	bco	010	110	ne		F	01:8 12/14/21
Time:	I ARush	i 😵				ager:	5			IX Yes [Z	Cooler Temp(including CF): 1.5	Preservative Tvpe										\$		1 1	Via:	منبد	Via:	Pour ver
Turn-Around Time:	Project Name	CVRS	Proiect #-			Project Manager:			Sampler:	On Ice:	# of Coolers:	Cooler Temp	Container Tvpe and #	3702976		W3702974	0	3 102973	3702972	3762970	3702971	370294	370206	3762967	3702984	Received by:	5		S
Chain-of-Custody Record	tus	مرتبا د					Avel 4 (Eull Validation)		L AZ Compliance				Sample Name	Charles I s-sw-1	13300-13 J-5554-2	200 Stat Par labels . 11	Son Bakeran	1-3	2-4	5-7	7-10	1-1	2-7	5-01	2			d by:	u u u u
ain-of-Cu	TIMUNS TAR	dress:				x#: /	tage:			Other	pe)		Matrix													: Relinquished by:		M N N N N N N N N N N N N N N N N N N N	
Client:		Mailing Address:			Phone #:	email or Fax#:	A/QC Package: ☐ Standard	Acceditoria	Accreditation:		□ EDD (Type)		Date Time	12/9 12:												Date: Time:	- F	12 11 1 1 1 M	11 1 halon

naging:

Page 83 of 113

Desiree Dominguez

From:	Desiree Dominguez
Sent:	Tuesday, December 14, 2021 11:18 AM
То:	'sampling@atkinseng.com'
Subject:	2112844
Attachments:	DOC121421.pdf

Good morning,

We received your project: Cypros today (12/14/21) there wasn't a project manager listed so I couldn't call. Attached is the original COC. The sample names on COC didn't match the label or barcode #'s for samples 001-003. The Labels did match the barcode #'s; so we are going with the labels and barcodes. If you need me to change that or have any questions just let me know.

COC	Label	barcode #
001- S-2	S-SW-1	3702976
002- S-3	S-SW-2	3702975
003- S-4	S-3	3702974

Desiree Dominguez

Sample Control Manager Hall Environmental 4901 Hawkins NE Albuquerque NM 87109 Ph. (505) 345-3975 (Ext. 109) The holidays are coming and Hall Environmental will be closed on the following days:

Friday December 24th Friday December 31st

Please do not collect Total Coliform/e.Coli samples or ship samples to us on 12/23 or 12/30. Happy Holidays from all of us at Hall Environmental!

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Atkins Engineering Associates Inc.

Project Name:

Cypress

Work Order: E201097

Job Number: 20071-0001

Received: 1/24/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 1/26/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 1/26/22

Austin Weyant 2904 W. 2nd Roswell, NM 88201

Project Name: Cypress Workorder: E201097 Date Received: 1/24/2022 8:28:00AM

Austin Weyant,

Page 86 of 113

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 1/24/2022 8:28:00AM, under the Project Name: Cypress.

The analytical test results summarized in this report with the Project Name: Cypress apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
S-SW-1	5
S-SW-2	6
S-3	7
L 5	8
L 8	9
S 5	10
QC Summary Data	11
QC - Volatile Organics by EPA 8021B	11
QC - Nonhalogenated Organics by EPA 8015D - GRO	13
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	15
QC - Anions by EPA 300.0/9056A	17
Definitions and Notes	19
Chain of Custody etc.	20

Sample Summary

		Sample Sum	mai y		
Atkins Engineering Associates Inc. 2904 W. 2nd	c. Project Name: Project Number:		Cypress 20071-0001		Reported:
Roswell NM, 88201		Project Manager:	Austin Weyant		01/26/22 17:46
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
S-SW-1	E201097-01A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.
S-SW-2	E201097-02A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.
S-3	E201097-03A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.
L 5	E201097-04A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.
L 8	E201097-05A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.
S 5	E201097-06A	Soil	01/17/22	01/24/22	Glass Jar, 4 oz.

	5	umpic D	utu			
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name Project Numb Project Mana	ber: 200	ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM
		S-SW-1				
		E201097-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	t: IY		Batch: 2205014
Benzene	ND	0.0250	1	01/24/22	01/25/22	
Ethylbenzene	ND	0.0250	1	01/24/22	01/25/22	
Toluene	0.0356	0.0250	1	01/24/22	01/25/22	
o-Xylene	ND	0.0250	1	01/24/22	01/25/22	
o,m-Xylene	ND	0.0500	1	01/24/22	01/25/22	
Total Xylenes	ND	0.0250	1	01/24/22	01/25/22	
Surrogate: 4-Bromochlorobenzene-PID		97.6 %	70-130	01/24/22	01/25/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	t: IY		Batch: 2205014
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/24/22	01/25/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		101 %	70-130	01/24/22	01/25/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	t: JL		Batch: 2205018
Diesel Range Organics (C10-C28)	64.4	25.0	1	01/24/22	01/25/22	
Dil Range Organics (C28-C36)	ND	50.0	1	01/24/22	01/25/22	
Surrogate: n-Nonane		108 %	50-200	01/24/22	01/25/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2205006
Chloride	242	200	10	01/24/22	01/24/22	
Chloride	242	200	10	01/24/22	01/24/22	

Sample Data

Sample Data									
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Nam Project Num Project Mana	ber: 200'	ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM			
		S-SW-2							
		E201097-02							
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes			
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2205014			
Benzene	ND	0.0250	1	01/24/22	01/25/22				
Ethylbenzene	ND	0.0250	1	01/24/22	01/25/22				
Toluene	ND	0.0250	1	01/24/22	01/25/22				
o-Xylene	ND	0.0250	1	01/24/22	01/25/22				
p,m-Xylene	ND	0.0500	1	01/24/22	01/25/22				
Total Xylenes	ND	0.0250	1	01/24/22	01/25/22				
Surrogate: 4-Bromochlorobenzene-PID		95.3 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2205014			
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/24/22	01/25/22				
Surrogate: 1-Chloro-4-fluorobenzene-FID		103 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2205018			
Diesel Range Organics (C10-C28)	66.0	25.0	1	01/24/22	01/25/22				
Oil Range Organics (C28-C36)	ND	50.0	1	01/24/22	01/25/22				
Surrogate: n-Nonane		109 %	50-200	01/24/22	01/25/22				

mg/kg Analyst: RAS mg/kg Anions by EPA 300.0/9056A 10 01/24/22 01/24/22 Chloride 272 200

Batch: 2205006

Sample Data										
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name: Project Number Project Manage		ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM				
		S-3								
]	E201097-03								
		Reporting								
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes				
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2205014				
Benzene	ND	0.0250	1	01/24/22	01/25/22					
Ethylbenzene	ND	0.0250	1	01/24/22	01/25/22					
Toluene	0.0471	0.0250	1	01/24/22	01/25/22					
p-Xylene	ND	0.0250	1	01/24/22	01/25/22					
o,m-Xylene	ND	0.0500	1	01/24/22	01/25/22					
Total Xylenes	ND	0.0250	1	01/24/22	01/25/22					
Surrogate: 4-Bromochlorobenzene-PID	!	96.9 %	70-130	01/24/22	01/25/22					
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	Analyst: IY		Batch: 2205014				
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/24/22	01/25/22					
Surrogate: 1-Chloro-4-fluorobenzene-FID		102 %	70-130	01/24/22	01/25/22					
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: JL			Batch: 2205018				
Diesel Range Organics (C10-C28)	76.1	25.0	1	01/24/22	01/25/22					
Oil Range Organics (C28-C36)	ND	50.0	1	01/24/22	01/25/22					
Surrogate: n-Nonane		108 %	50-200	01/24/22	01/25/22					
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2205006				
Chloride	287	200	10	01/24/22	01/24/22					

Sample Data									
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name: Project Numbe Project Manage		ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM			
		L 5							
	1	E201097-04							
		Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes			
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: IY		Batch: 2205014			
Benzene	ND	0.0250	1	01/24/22	01/25/22				
Ethylbenzene	ND	0.0250	1	01/24/22	01/25/22				
Foluene	0.0460	0.0250	1	01/24/22	01/25/22				
p-Xylene	ND	0.0250	1	01/24/22	01/25/22				
o,m-Xylene	ND	0.0500	1	01/24/22	01/25/22				
Total Xylenes	ND	0.0250	1	01/24/22	01/25/22				
Surrogate: 4-Bromochlorobenzene-PID		90.5 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2205014			
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/24/22	01/25/22				
Surrogate: 1-Chloro-4-fluorobenzene-FID		101 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: JL			Batch: 2205018			
Diesel Range Organics (C10-C28)	85.6	25.0	1	01/24/22	01/25/22				
Dil Range Organics (C28-C36)	ND	50.0	1	01/24/22	01/25/22				
Surrogate: n-Nonane		112 %	50-200	01/24/22	01/25/22				
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2205006			
Chloride	328	200	10	01/24/22	01/24/22				

Sample Data									
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name: Project Numbe Project Manag	er: 200'	ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM			
		L 8							
		E201097-05							
		Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes			
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2205033			
Benzene	ND	0.0250	1	01/26/22	01/26/22				
Ethylbenzene	ND	0.0250	1	01/26/22	01/26/22				
Toluene	0.0304	0.0250	1	01/26/22	01/26/22				
p-Xylene	ND	0.0250	1	01/26/22	01/26/22				
p,m-Xylene	ND	0.0500	1	01/26/22	01/26/22				
Total Xylenes	ND	0.0250	1	01/26/22	01/26/22				
Surrogate: 4-Bromochlorobenzene-PID		92.7 %	70-130	01/26/22	01/26/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2205033			
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/26/22	01/26/22				
Surrogate: 1-Chloro-4-fluorobenzene-FID		102 %	70-130	01/26/22	01/26/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2205034			
Diesel Range Organics (C10-C28)	63.0	25.0	1	01/25/22	01/26/22				
Oil Range Organics (C28-C36)	ND	50.0	1	01/25/22	01/26/22				
Surrogate: n-Nonane		74.7 %	50-200	01/25/22	01/26/22				
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: RAS		Batch: 2205038			
Chloride	282	200	10	01/25/22	01/26/22				

Sample Data									
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201	Project Name: Project Numbe Project Manage		ress 71-0001 tin Weyant			Reported: 1/26/2022 5:46:56PM			
		S 5							
]	E201097-06							
		Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes			
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: IY		Batch: 2205014			
Benzene	ND	0.0250	1	01/24/22	01/25/22				
Ethylbenzene	ND	0.0250	1	01/24/22	01/25/22				
Toluene	0.0351	0.0250	1	01/24/22	01/25/22				
o-Xylene	ND	0.0250	1	01/24/22	01/25/22				
p,m-Xylene	ND	0.0500	1	01/24/22	01/25/22				
Total Xylenes	ND	0.0250	1	01/24/22	01/25/22				
Surrogate: 4-Bromochlorobenzene-PID		93.5 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2205014			
Gasoline Range Organics (C6-C10)	ND	20.0	1	01/24/22	01/25/22				
Surrogate: 1-Chloro-4-fluorobenzene-FID		102 %	70-130	01/24/22	01/25/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: JL		Batch: 2205018			
Diesel Range Organics (C10-C28)	62.8	25.0	1	01/24/22	01/25/22				
Oil Range Organics (C28-C36)	ND	50.0	1	01/24/22	01/25/22				
Surrogate: n-Nonane		110 %	50-200	01/24/22	01/25/22				
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2205006			
Chloride	293	200	10	01/24/22	01/24/22				

QC Summary Data

				J						
Atkins Engineering Associates Inc.		Project Name:	С	ypress					Reported:	
2904 W. 2nd		Project Number:	20	0071-0001						
Roswell NM, 88201		Project Manager:	А	ustin Weyant					1/26/2022 5:46:56PM	
Volatile Organics by EPA 8021B										
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2205014-BLK1)							Prepared: 0	1/24/22 A	analyzed: 01/25/22	
Benzene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Toluene	ND	0.0250								
o-Xylene	ND	0.0250								
p,m-Xylene	ND	0.0500								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	7.96		8.00		99.5	70-130				
LCS (2205014-BS1)							Prepared: 0	1/24/22 A	analyzed: 01/25/22	
Benzene	4.67	0.0250	5.00		93.4	70-130				
Ethylbenzene	4.83	0.0250	5.00		96.6	70-130				
Toluene	5.01	0.0250	5.00		100	70-130				
p-Xylene	4.79	0.0250	5.00		95.8	70-130				
p,m-Xylene	9.80	0.0500	10.0		98.0	70-130				
Total Xylenes	14.6	0.0250	15.0		97.2	70-130				
Surrogate: 4-Bromochlorobenzene-PID	7.95		8.00		99.4	70-130				
Matrix Spike (2205014-MS1)				Source: 1	E201081-	06	Prepared: 0	1/24/22 A	analyzed: 01/25/22	
Benzene	4.77	0.0250	5.00	ND	95.4	54-133				
Ethylbenzene	4.92	0.0250	5.00	ND	98.3	61-133				
Toluene	5.09	0.0250	5.00	ND	102	61-130				
p-Xylene	4.85	0.0250	5.00	ND	97.0	63-131				
p,m-Xylene	9.97	0.0500	10.0	ND	99.7	63-131				
Total Xylenes	14.8	0.0250	15.0	ND	98.8	63-131				
Surrogate: 4-Bromochlorobenzene-PID	7.73		8.00		96.6	70-130				
Matrix Spike Dup (2205014-MSD1)				Source: 1	E201081-	06	Prepared: 0	1/24/22 A	analyzed: 01/25/22	
Benzene	4.57	0.0250	5.00	ND	91.4	54-133	4.22	20		
Ethylbenzene	4.73	0.0250	5.00	ND	94.6	61-133	3.90	20		
Toluene	4.90	0.0250	5.00	ND	98.1	61-130	3.85	20		
o-Xylene	4.70	0.0250	5.00	ND	94.1	63-131	3.06	20		
p,m-Xylene	9.57	0.0500	10.0	ND	95.7	63-131	4.12	20		
Total Xylenes	14.3	0.0250	15.0	ND	95.1	63-131	3.77	20		
Total Xylenes Surrogate: 4-Bromochlorobenzene-PID	14.3 7.71	0.0250	15.0 8.00	ND	95.1 96.3	63-131 70-130	3.77	20		

QC Summary Data

	Project Name: Project Number: Project Manager:	20						Reported: 1/26/2022 5:46:56PM
	Volatile Or	rganics b	oy EPA 802	1B				Analyst: IY
Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
						Prepared: 0	1/25/22 A	nalyzed: 01/26/22
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0500							
ND	0.0250							
7.77		8.00		97.1	70-130			
						Prepared: 0	1/25/22 A	nalyzed: 01/26/22
4.49	0.0250	5.00		89.8	70-130			
4.64	0.0250	5.00		92.8	70-130			
4.81	0.0250	5.00		96.1	70-130			
4.59	0.0250	5.00		91.9	70-130			
9.42	0.0500	10.0		94.2	70-130			
14.0	0.0250	15.0		93.4	70-130			
7.75		8.00		96.9	70-130			
			Source:	E 201104- 0	1	Prepared: 0	1/25/22 A	nalyzed: 01/26/22
4.38	0.0250	5.00	ND	87.6	54-133			
4.54	0.0250	5.00	ND	90.8	61-133			
4.68	0.0250	5.00	ND	93.6	61-130			
4.51	0.0250	5.00	ND	90.2	63-131			
9.23	0.0500	10.0	ND	92.3	63-131			
13.7	0.0250	15.0	ND	91.6	63-131			
7.75		8.00		96.8	70-130			
			Source: 1	E 201104- 0	1	Prepared: 0	1/25/22 A	nalyzed: 01/26/22
4.48	0.0250	5.00	ND	89.6	54-133	2.23	20	
4.62	0.0250	5.00	ND	92.4	61-133	1.71	20	
4.81	0.0250	5.00	ND	96.3	61-130	2.84	20	
4.60	0.0250	5.00	ND	92.0	63-131	2.02	20	
9.36	0.0500	10.0	ND	93.6	63-131	1.47	20	
14.0	0.0250	15.0	ND	93.1	63-131	1.65	20	
	mg/kg ND ND ND ND ND ND ND 7.77 4.49 4.64 4.81 4.59 9.42 14.0 7.75 4.38 4.54 4.68 4.51 9.23 13.7 7.75 4.48 4.68 4.51 9.23 13.7 7.75	ND 0.0250 7.77	ND 0.0250 ND	ND Spike Source Result mg/kg mg/kg mg/kg ND 0.0250 mg/kg 4.49 0.0250 mg/kg 4.44 0.0250 mg/kg 4.38 0.0250 mg/kg 4.48 0.0250 mg/kg	Project Manager: Austin Weyant Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec mg/kg mg/kg mg/kg mg/kg % ND 0.0250 mg/kg mg/kg % ND 0.0250 mb 97.1 ND 0.0250 mb 92.8 ND 0.0250 92.8 A64 0.0250 5.00 92.8 4.49 0.0250 5.00 92.8 4.41 0.0250 5.00 91.9 9.42 0.0500 91.9 9.42 0.0500 91.9 9.42 0.0500 91.9 9.42 0.0500 91.9 9.43 0.0250 5.00 91.9 9.44 0.0250 5.00 ND 96.9 Correct EDUTOHO 93.4 7.75 8.00 92.0 9.23 0.0500 10.0 ND	Project Manager: Austin Weyant Volatile Organics by EPA 8021B Result Reporting mg/kg Spike mg/kg Source Result Rec Rec Limit ND 0.0250 mg/kg mg/kg %/ %/ ND 0.0250 supported to the second to	Project Manager: Austin Weyant Volatile Organics by EPA 8021B Result Reporting mg/kg Spike mg/kg Source Result mg/kg Rec % Rec % Rec % Rep % ND 0.0250 mg/kg % % % % % ND 0.0250 mg/kg % % % % % ND 0.0250 ND 0.0250 ND % <	Project Manager: Austin Weyant Volatile Organics by EPA 8021B Result Reporting mg/kg Spike mg/kg Source mg/kg Res Rec Limits RPD % RPD % RPD %

QC Summary Data

		$\mathbf{t} \in \mathcal{S}$		ary Dau	•				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Reported: 1/26/2022 5:46:56PM
	N	onhalogenated O	rganic	s by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limi	t
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2205014-BLK1)							Prepared:	01/24/22	Analyzed: 01/25/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.23		8.00		103	70-130			
Matrix Spike Dup (2205014-MSD1)				Source:	E201081-	06	Prepared:	01/24/22	Analyzed: 01/25/22
Gasoline Range Organics (C6-C10)	54.3	20.0		ND		70-130	7.91	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.22		8.00		103	70-130			
LCS (2205014-BS2)							Prepared:	01/24/22	Analyzed: 01/25/22
Gasoline Range Organics (C6-C10)	47.7	20.0	50.0		95.3	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.22		8.00		103	70-130			
Matrix Spike (2205014-MS2)				Source:	E201081-	06	Prepared:	01/24/22	Analyzed: 01/25/22
Gasoline Range Organics (C6-C10)	50.1	20.0	50.0	ND	100	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.38		8.00		105	70-130			
Matrix Spike Dup (2205014-MSD2)				Source:	E201081-	06	Prepared:	01/24/22	Analyzed: 01/25/22
Gasoline Range Organics (C6-C10)	48.8	20.0	50.0	ND	97.5	70-130	2.76	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.23		8.00		103	70-130			

Page 13 of 21

envirotech Inc.

.

3

QC Summary Data

					-				
Atkins Engineering Associates Inc. 2904 W. 2nd		Project Name: Project Number:		Cypress 20071-0001					Reported:
Roswell NM, 88201		Project Manager:		Austin Weyant					1/26/2022 5:46:56PM
	No	onhalogenated O	rganic	s by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2205033-BLK1)							Prepared: 0	1/25/22 A	analyzed: 01/26/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.13		8.00		102	70-130			
LCS (2205033-BS2)							Prepared: 0	1/25/22 A	analyzed: 01/26/22
Gasoline Range Organics (C6-C10)	46.1	20.0	50.0		92.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.29		8.00		104	70-130			
Matrix Spike (2205033-MS2)				Source: l	E201104-(01	Prepared: 0	1/25/22 A	analyzed: 01/26/22
Gasoline Range Organics (C6-C10)	47.1	20.0	50.0	ND	94.2	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.09		8.00		101	70-130			
Matrix Spike Dup (2205033-MSD2)				Source: l	E201104-(01	Prepared: 0	1/25/22 A	analyzed: 01/26/22
Gasoline Range Organics (C6-C10)	47.8	20.0	50.0	ND	95.5	70-130	1.41	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	8.01		8.00		100	70-130			

QC Summary Data

		QC DI		ary Data	L				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Reported: 1/26/2022 5:46:56PM
	Nonh	alogenated Orga	anics by	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2205018-BLK1)							Prepared: 0	1/24/22 A	analyzed: 01/24/22
Diesel Range Organics (C10-C28)	ND ND	25.0							
Oil Range Organics (C28-C36) Surrogate: n-Nonane	46.8	50.0	50.0		93.6	50-200			
LCS (2205018-BS1)							Prepared: 0	1/24/22 A	analyzed: 01/24/22
Diesel Range Organics (C10-C28)	446	25.0	500		89.2	38-132			-
Surrogate: n-Nonane	46.9		50.0		93.8	50-200			
Matrix Spike (2205018-MS1)				Source: I	E 201081 -	07	Prepared: 0	1/24/22 A	analyzed: 01/25/22
Diesel Range Organics (C10-C28)	476	25.0	500	ND	95.2	38-132			
Surrogate: n-Nonane	47.9		50.0		95.8	50-200			
Matrix Spike Dup (2205018-MSD1)				Source: I	E201081-	07	Prepared: 0	1/24/22 A	analyzed: 01/25/22
Diesel Range Organics (C10-C28)	500	25.0	500	ND	100	38-132	4.86	20	
Surrogate: n-Nonane	49.2		50.0		98.3	50-200			

QC Summary Data

		QC D		ary Date					
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Reported: 1/26/2022 5:46:56PM
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2205034-BLK1)							Prepared: 0	1/25/22 A	Analyzed: 01/25/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	49.9		50.0		99.8	50-200			
LCS (2205034-BS1)							Prepared: 0	1/25/22 A	Analyzed: 01/25/22
Diesel Range Organics (C10-C28)	490	25.0	500		98.0	38-132			
Surrogate: n-Nonane	53.5		50.0		107	50-200			
Matrix Spike (2205034-MS1)				Source: 1	E 201100-	06	Prepared: 0	1/25/22 A	Analyzed: 01/25/22
Diesel Range Organics (C10-C28)	484	25.0	500	ND	96.9	38-132			
Surrogate: n-Nonane	52.5		50.0		105	50-200			
Matrix Spike Dup (2205034-MSD1)				Source:]	E201100-	06	Prepared: 0	1/25/22 A	Analyzed: 01/25/22
Diesel Range Organics (C10-C28)	494	25.0	500	ND	98.8	38-132	2.00	20	
Surrogate: n-Nonane	53.0		50.0		106	50-200			

QC Summary Data

		$\mathbf{x} \circ \sim$	••••••		•					
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Repor 1/26/2022	
		Anions	by EPA	300.0/9056A					Analyst: R	RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	N	otes
Blank (2205006-BLK1)							Prepared: 0	1/24/22	Analyzed: 01	/24/22
Chloride	ND	20.0								
LCS (2205006-BS1)							Prepared: 0	1/24/22	Analyzed: 01	/24/22
Chloride	249	20.0	250		99.7	90-110				
Matrix Spike (2205006-MS1)				Source:	E201078-0	03	Prepared: 0	1/24/22	Analyzed: 01	/24/22
Chloride	285	20.0	250	28.6	103	80-120				
Matrix Spike Dup (2205006-MSD1)				Source:	E201078-0	03	Prepared: 0	1/24/22	Analyzed: 01	/24/22
Chloride	284	20.0	250	28.6	102	80-120	0.281	20		

QC Summary Data

					•				
Atkins Engineering Associates Inc. 2904 W. 2nd Roswell NM, 88201		Project Name: Project Number: Project Manager:		Cypress 20071-0001 Austin Weyant					Reported: 1/26/2022 5:46:56PM
		Anions	by EPA	300.0/9056A					Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2205038-BLK1)							Prepared: 0	1/25/22 A	nalyzed: 01/26/22
Chloride	ND	20.0							
LCS (2205038-BS1)							Prepared: 0	1/25/22 A	nalyzed: 01/26/22
Chloride	248	20.0	250		99.2	90-110			
Matrix Spike (2205038-MS1)				Source:	E201125-0)1	Prepared: 0	1/25/22 A	analyzed: 01/26/22
Chloride	308	20.0	250	62.6	98.0	80-120			
Matrix Spike Dup (2205038-MSD1)				Source:	E201125-0)1	Prepared: 0	1/25/22 A	nalyzed: 01/26/22
Chloride	309	20.0	250	62.6	98.5	80-120	0.340	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Atkins Engineering Associates Inc.	Project Name:	Cypress	
l	2904 W. 2nd	Project Number:	20071-0001	Reported:
	Roswell NM, 88201	Project Manager:	Austin Weyant	01/26/22 17:46

ND	Analyte NOT DETECTED at or above the reporting limit
1.12	rinaryte no r beree reb at or above the reporting initi

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Project	Information

Chain of Custody

of

Project Information	Chain of (Custody											Page <u></u>	of
Project Information Client: ATTENS ENG Project: CHDIESS Project Manager: AUSTEN WEMANT Address: 2904 W 2ND City, State, Zip DOSNEW, NM Phone: Email: auStin@atkmScng.com Report due by:	Bill To Attention: Address: City, State, Zip		Lab W E <mark>20</mark>	/0#		20	Numb	er 0000 d Metho	1D d	2D	TAT 3D S	tandard X	EPA P CWA	rogram SDWA RCRA
City, State, Zip DSNEA, NM Phone: Email: ANSTING atknscrg. Com Report due by:	Phone: Email:		RO by 8015	30 by 8015 , 8021	8260								State UT AZ	
Time Sampled Date Sampled Matrix No. of Containers Sample ID V V V S 1/402 S-SW		Lab Number	DRO/ORO by	GRO/DRO by RTEX hv 8021	VOC by 8260	Metals 6010	Chloride 300.0	BGDOC					Remarks	
1/17/22 S 1/402 S-SW	-	1						X	_					
S-SW	-2	23			_			X						
5-7	>	3			_			X	_					
		5		_		-								
		6						\rightarrow						
	1													
								0						
Additional Instructions:														
I, (field sampler), attest to the validity and authenticity of this sample. I am a		he sample lo	cation,		in the second	a second second second						l on ice the day t	ND 0.022 C 0.0005 (1978) 5 C 45500	ed or receive
date or time of collection is considered fraud and may be grounds for legal at Relinquished by: (Signature) Date I 20 27 Time	55 m Received by: (Bignature)	Date 1-20-2	2	ime 13 :	55	10000		on ice:	La	ab Use		n subsequent da	ys.	
Relinquished by: (Signature) Date Time 1·20·22 17 Relinquished by: (Signature) Date Time	45 Carthy Chaten	Date Date	Pas	ime 8:2	8	<u>T1</u>			<u>T2</u>			<u>T3</u>		
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		Container				oly/p		g - ambe						
Note: Samples are discarded 30 days after results are reported unless samples is applicable only to those samples received by the laborate								the client	t exper	nse. Th	ne report	for the analy	sis of the a	bove
					E	3	(ar	77	vi	ir	ot	0	ck
	Page 20 c	of 21											v	

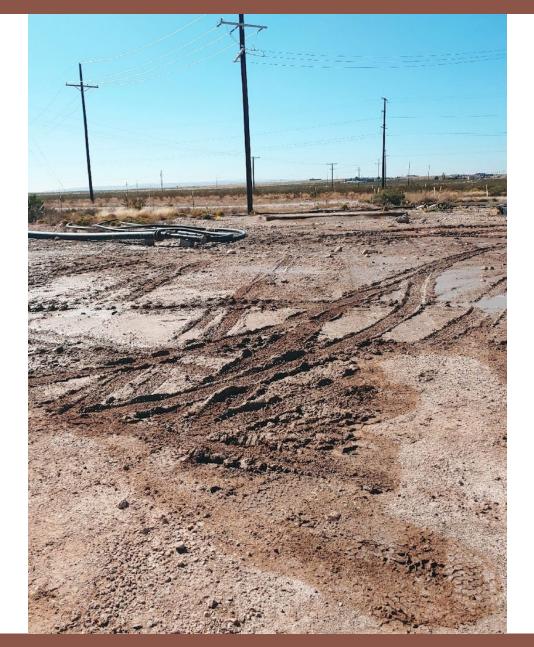
Envirotech Analytical Laboratory

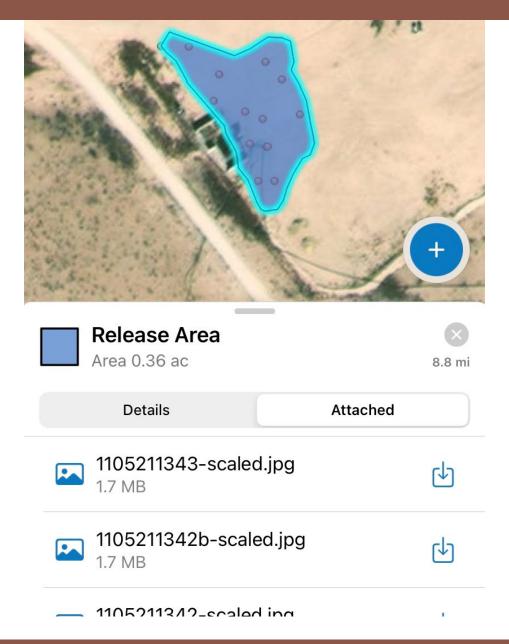
Sample Receipt Checklist (SRC)

Client:	Atkins Engineering Associates Inc. D	ate Received:	01/24/22 0	8:28	Work Orde	er ID:	E201097	
Phone:	(575) 626-3993 D	ate Logged In:	01/21/22 1	1:38	Logged In	By:	Caitlin Christian	
Email:		ue Date:	01/25/22 1	7:00 (1 day TAT)				
Chain o	of Custody (COC)							
1. Does	the sample ID match the COC?		Yes					
2. Does	the number of samples per sampling site location match	the COC	Yes					
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	ourrier			
4. Was t	he COC complete, i.e., signatures, dates/times, requested	l analyses?	No					
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes	_	<u>Cor</u>	nmen	nts/Resolution	
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				F O 1 1			
6. Did th	he COC indicate standard TAT, or Expedited TAT?		Yes		Time Sampled not	prov	vived on coc.	
<u>Sample</u>	Cooler							
	a sample cooler received?		Yes					
8. If yes	, was cooler received in good condition?		Yes					
9. Was t	he sample(s) received intact, i.e., not broken?		Yes					
10. Were	e custody/security seals present?		No					
11. If ye	es, were custody/security seals intact?		NA					
12. Was 1	the sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are re minutes of sampling		Yes					
13. If no	visible ice, record the temperature. Actual sample ter	nperature: <u>4°</u>	<u>C</u>					
Sample	Container							
	aqueous VOC samples present?		No					
15. Are	VOC samples collected in VOA Vials?		NA					
16. Is th	e head space less than 6-8 mm (pea sized or less)?		NA					
17. Was	a trip blank (TB) included for VOC analyses?		NA					
18. Are	non-VOC samples collected in the correct containers?		Yes					
19. Is the	e appropriate volume/weight or number of sample containers	s collected?	Yes					
Field La	abel							
20. Were	e field sample labels filled out with the minimum inform	ation:						
	Sample ID?		Yes					
	Date/Time Collected? Collectors name?		No	-				
	Preservation		No					
_	s the COC or field labels indicate the samples were press	erved?	No					
-1. 000	sample(s) correctly preserved?		NA					
22. Are	b filteration required and/or requested for dissolved meta	als?	No					
24. Is la	nase Samnle Matrix		No					
24. Is lai <u>Multiph</u>	nase Sample Matrix							
24. Is lai <u>Multiph</u> 26. Does	nase Sample Matrix							
24. Is lat Multiph 26. Does 27. If ye	s the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyze		NA					
24. Is latMultiph26. Does27. If yetSubcontered	s the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyze tract Laboratory_	d?	NA					
 24. Is lat Multiph 26. Does 27. If yes Subcont 28. Are 	s the sample have more than one phase, i.e., multiphase? es, does the COC specify which phase(s) is to be analyze	d?		Subcontract Lab	• na			

Signature of client authorizing changes to the COC or sample disposition.

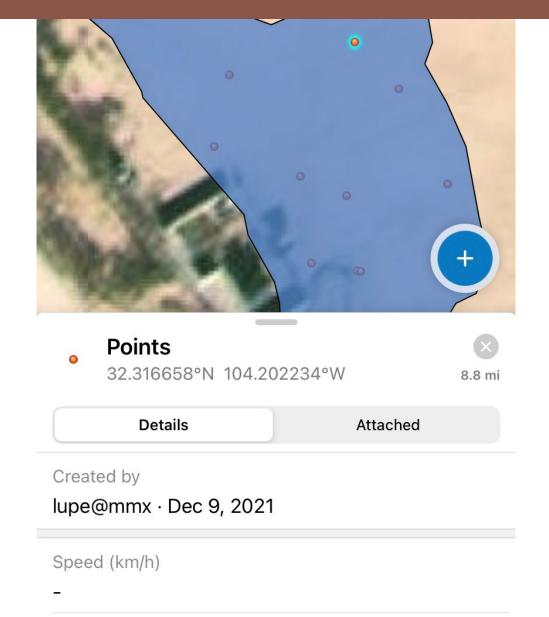
envirotech Inc.

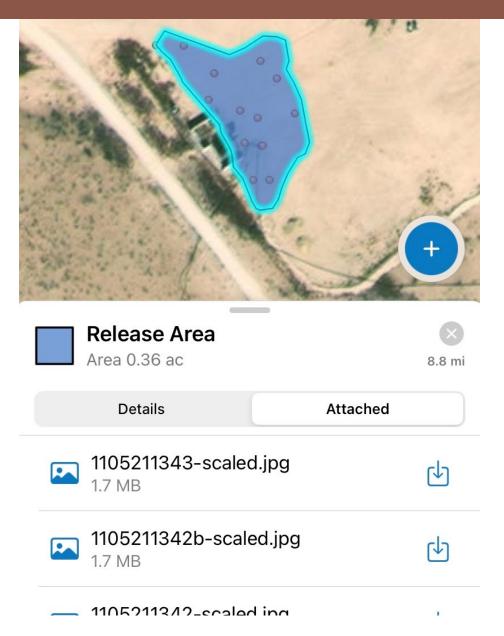

•

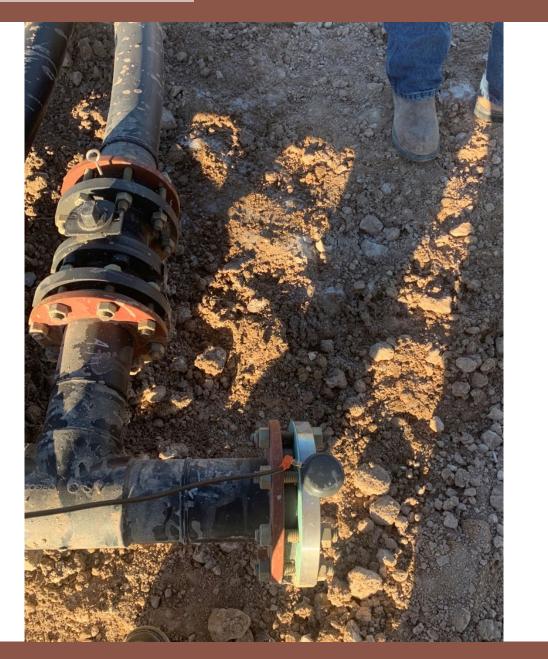

APPENDIX D OPEN EXCAVATION PHOTO LOG

Incident Id: nAPP2130930832

CYPRESS FEE 23 27 9 #002H






KMaps \bigotimes Q ••• GPS accuracy 42.5 ft · required 30 ft **Release Area** Area 0.36 ac 8.8 mi Attached Details 1105211343-scaled.jpg 1.7 MB (J) 1105211342b-scaled.jpg 1.7 MB 4 1105211342-scaled.jpg 1.8 MB (J 1105211341a_HDR-scaled.jpg 1.5 MB ¢ 1105211341_HDR-scaled.jpg (J

K Maps	\$	Q
	ccuracy 15.8 ft	7
• Points 32.316410°N 10	4.202231°W	8.8 mi
Details		ached
Edited by austin@atkins · Nov 3	30, 2021	
Speed (km/h) -		
Direction of travel (°) 240.36		
/	Ē	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MARATHON OIL PERMIAN LLC	372098
990 Town & Country Blvd.	Action Number:
Houston, TX 77024	94608
	Action Type:
	[C-141] Release Corrective Action (C-141)
	•

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved.	3/31/2022

Action 94608

Page 113 of 113