Page 1 of 206

Incident ID nAPP2124632147 District RP Facility ID Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no taler than 90 days after the release discovery date.								
What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)							
Did this release impact groundwater or surface water?	☐ Yes 🗸 No							
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes 🗸 No							
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes 🗸 No							
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes 🗸 No							
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes 🗸 No							
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes 🗸 No							
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ✓ No							
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes 🗸 No							
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes 🗸 No							
Are the lateral extents of the release overlying an unstable area such as karst geology?	✓ Yes ☐ No							
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes 🗸 No							
Did the release impact areas not on an exploration, development, production, or storage site?	✓ Yes 🗌 No							
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.								

Characterization Report Checklist: Each of the following items must be included in the report.
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
✓ Field data
☐ Data table of soil contaminant concentration data
✓ Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
✓ Boring or excavation logs
Photographs including date and GIS information
✓ Topographic/Aerial maps
Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 4/19/2022 2:20:24 PM Form C-141 State of New Mexico Oil Conservation Division Page 4

	Page 2 of 206)
)	nAPP2124632147	

Incident ID	nAPP2124632147
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Connor Walker Title: Sr. Engineer _____ Date: ____ Signature: email: cwalker@mewbourne.com Telephone: (806)202-5281 **OCD Only** Received by: Date:

Page 3 of 206 Incident ID nAPP2124632147 District RP Facility ID Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.								
Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)									
	, 11 ,								
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around predeconstruction.									
Extents of contamination must be fully delineated.									
Contamination does not cause an imminent risk to human health	n, the environment, or groundwater.								
I haraby cartify that the information given shove is true and comple	te to the best of my knowledge and understand that pursuant to OCD								
	pertain release notifications and perform corrective actions for releases not of a C-141 report by the OCD does not relieve the operator of a and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of								
Printed Name: Connor Walker	Title: Sr. Engineer								
Signature:	Date:								
email: cwalker@mewbourne.com	Telephone: (806)202-5281								
OCD Only									
Received by:	Date:								
Approved	Approval								
Signature:	Date:								

Remediation Summary, Variance & Deferral Request

Mewbourne Oil Company Red Hills Recycle Pond Facility

Lea County, New Mexico
Unit Letter "J", Section 16, Township 26 South, Range 32 East
Latitude 32.0397980 North, Longitude 103.675828 West
NMOCD Reference No. nAPP2124632147

Prepared By:

Etech Environmental & Safety Solutions, Inc.

2507 79th Street, Unit A Lubbock, Texas 79423

Zen J. Arguijo

Joel W. Lowry

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

	Section
PROJECT INFORMATION	1.0
SITE CHARACTERIZATION	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	
INITIAL SITE ASSESSMENT	4.0
REMEDIATION ACTIVITIES SUMMARY	5.0
IN-SITU CHLORIDE MIGRATION MODELING	6.0
VARIANCE REQUEST	
DEFERRAL REQUEST	8 . 0
RESTORATION, RECLAMATION & RE-VEGETATION PLAN	9.0
LIMITATIONS	10.0
DISTRIBUTION	11.0

FIGURES

- Figure 1 Topographic Map
- Figure 2 Aerial Proximity Map
- Figure 3A Site & Sample Location Map (Delineation)
- Figure 3B Site & Sample Location Map (Excavation)

TABLES

Table 1 - Concentrations of BTEX, TPH & Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data & Soil Profile Logs
- Appendix C Photographic Log
- Appendix D Multimedia Exposure Assessment Model (MULTIMED) Excavation
- Appendix E Multimedia Exposure Assessment Model (MULTIMED) Deferral Area
- Appendix F Laboratory Analytical Reports
- Appendix G Regulatory Correspondence

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company, has prepared this *Remediation Summary, Variance & Deferral Request* for the release site known as the Red Hills Recycle Pond Facility (henceforth, "Red Hills Recycle"). Details of the release are summarized below:

			Locatio	on of Release So	ource				
Latitude:		32.03	397980	Longitude:	-103.675828				
			Provide	ed GPS are in WGS84 for	mat.				
Site Name: Red Hills Recycle Pond Facility Site Type: Water Treatment Facility									
Date Release Dis	covere	1:	8/30/2021	API # (if appli	cable):	N/A			
Unit Letter	Sec	tion	Township	Range	County	у			
"J"	1	6	26S	32E	Lea				
Surface Owner:	X Sta	te	Federal Tribal	Private (Na	-				
Crude Oil		Volum	ne Released (bbls)		Volume F	Recovered (bbls)			
X Produced W	/ater	Volum	e Released (bbls)	Unknown	Volume F	Recovered (bbls) 1,420			
			oncentration of total of the produced water		XY	res No N/A			
Condensate		Volum	ne Released (bbls)		Volume F	Volume Recovered (bbls)			
Natural Gas	3	Volum	e Released (Mcf)		Volume F	Volume Recovered (Mcf)			
Other (describe) Volume/Weight Released Volume/Weight Recovered					Veight Recovered				
Cause of Releas The tanks overf		overran	secondary containme	ent, and released pr	oduced water	both on and off the location.			
			Iı	nitial Response					
X The source of	of the re	lease ha	s been stopped.						
X The impacte	d area l	nas been	secured to protect hur	nan health and the e	nvironment.				
X Release mate	erials h	ave beer	contained via the use	of berms or dikes, a	bsorbent pad,	or other containment devices			
X All free liqu	ids and	recover	able materials have been	en removed and man	naged appropria	ately.			

Previously submitted portions of the NMOCD Form C-141 are available in the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a half-mile radius of the Red Hills Recycle release site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	215'
Did the release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	X Yes No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish & Wildlife Services (FWS) shapefiles, topographic maps, NMOSE and USGS databases, and aerial imagery. The results are depicted in Figures 1, 2, 4, and 5.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the Red Hills Recycle release site are as follows:

Probable Depth to Groundwater	('onstituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standard*‡
	Chloride (Cl-)	EPA 300.0 or SM4500 Cl B	600	600
	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	100	100
215'	Gas Range Organics + Diesel Range Organics (GRO + DRO)	EPA SW-846 Method 8015M	N/A	N/A
	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

^{*} Measured in milligrams per kilogram (mg/kg)

[†] Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

[‡] The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas. Section 19.15.29.13 D.(1) NMAC.

4.0 INITIAL SITE ASSESSMENT

On September 17 and 18, 2021, an initial site assessment was conducted by a third-party environmental contractor that is no longer affiliated with the site. During the initial site assessment, a series of eight (8) soil bores and/or test trenches (SP1 through SP8) were advanced within the release margins in an effort to determine the vertical extent of impacted soil. In addition, five (5) soil bores and/or test trenches (H1 through H5) were advanced at the inferred edges of the affected area in an effort to determine the horizontal extent of impacted soil. During the advancement of the soil bores/test trenches, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit.

Based on field test data, the vertical extent of chloride contamination was adequately defined and ranged from approximately two (2) feet below ground surface (bgs) in the area characterized by sample point SP1 to eight (8) feet bgs in the area characterized by sample point SP3. However, additional delineation was required to determine the horizontal extent of chloride contamination, as well as the horizontal and vertical extent of BTEX and TPH contamination.

Field data is provided in Appendix B. General photographs of the site are provided in Appendix C.

5.0 REMEDIATION ACTIVITIES SUMMARY

On November 9, 2021, Mewbourne contracted Etech to assume remediation activities for the release.

On February 8, 2022, Etech commenced remediation activities at the release site. In accordance with NMOCD regulatory guidelines, impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated to the extent practicable and stockpiled on-site, pending transfer to an NMOCD-permitted surface waste facility for disposal. Olfactory/visual senses and/or a chloride test kit were utilized to field-screen the vertical and horizontal extent of impacted soil and to guide the excavation. The sidewalls of the excavation were advanced to the extent practicable or until field tests and field observations suggested BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards. The excavation was advanced vertically to approximately four (4) feet bgs.

On February 9, 2022, Etech collected five (5) confirmation soil samples (NW1, NW2, NW3, NW4, and EW1) from the sidewalls of the excavated area. The soil samples were submitted to a certified, commercial laboratory (henceforth, "the laboratory") for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory method detection limit (MDL). Chloride concentrations ranged from 112 mg/kg in soil sample EW1 to 288 mg/kg in soil sample NW1.

In addition, Etech advanced three (3) test trenches (FS1, FS2, and FS4) in the floor of the excavated area to further investigate the vertical extent of impacted soil. During the advancement of the test trenches, soil samples were collected and field-screened for concentrations of chloride utilizing a Hach Quantab ® chloride test kit and/or the presence of Volatile Organic Compounds (VOCs) utilizing olfactory/visual senses. Based on field observations and field test data, three (3) delineation soil samples (FS1 @ 12', FS2 @ 13', and FS4 @ 4') were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from 48.0 mg/kg in soil sample FS2 @ 13' to 336 mg/kg in soil sample FS1 @ 12'. Based on these laboratory analytical results, the vertical extent of impacted soil was adequately defined in the areas characterized by test trenches FS1, FS2, and FS4.

On February 10, 2022, Etech collected two (2) confirmation soil samples (SW1 and SW2) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results

indicated BTEX and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX concentrations were also below the laboratory MDL. TPH concentrations ranged from less than the laboratory MDL in soil sample SW2 to 264 mg/kg in soil sample SW1. Chloride concentrations were 80.0 mg/kg in soil sample SW1 and 32.0 mg/kg in soil sample SW2.

On February 17, 2022, Etech collected 20 confirmation soil samples (NW5, NW6, NW7, NW8, NW9, NW10, NW11, NW12, NW13, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10, SW11, SW12, and SW13) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from 16.0 mg/kg in soil sample SW6 to 272 mg/kg in soil sample SW11.

On February 24, 2022, Etech advanced six (6) test trenches (SP1 through SP6) within the release margins in an effort to further investigate the vertical extent of impacted soil. During the advancement of the test trenches, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit and/or the presence of VOCs utilizing olfactory/visual senses. Based on field observations and field test data, a total of 10 delineation soil samples (SP1 @ Surf., SP1 @ 2', SP2 @ Surf., SP2 @ 20', SP3 @ Surf., SP3 @ 14', SP4 @ Surf., SP4 @ 14', SP6 @ Surf., and SP6 @ 2') were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX and TPH concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX concentrations were also below the laboratory MDL. Chloride concentrations ranged from 32.0 mg/kg in soil sample SP3 @ 14' to 2,000 mg/kg in soil sample SP1 @ Surf. Based on these laboratory analytical results, the vertical extent of impacted soil was adequately defined in the areas characterized by test trenches SP1, SP3, SP4, SP5, and SP6. However, additional vertical delineation was required in the area characterized by test trench SP2.

On February 25, 2022, Etech advanced 10 hand-augered soil bores (NH1, NH2, NH3, EH1, EH2, SH1, SH2, SH3, WH1, and WH2) at the inferred edges of the affected area in an effort to further investigate the horizontal extent of impacted soil. During the advancement of the hand-augered soil bores, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit and/or the presence of VOCs utilizing olfactory/visual senses. Based on field observations and field test data, a total of 20 delineation soil samples (NH1 @ Surf., NH1 @ 1', NH2 @ Surf., NH2 @ 1', NH3 @ Surf., NH3 @ 1', EH1 @ Surf., EH1 @ 1', EH2 @ Surf., EH2 @ 1', SH1 @ Surf., SH1 @ 1', SH2 @ Surf., SH2 @ 1', SH3 @ Surf., SH3 @ 1', WH1 @ Surf., WH1 @ 1', WH2 @ Surf., and WH2 @ 1') were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL, with the exception of soil sample NH1 @ 1', which exhibited a TPH concentration of 13.7 mg/kg. Chloride concentrations ranged from 32.0 mg/kg in soil samples NH1 @ Surf., EH1 @ 1', and SH3 @ 1' to 336 mg/kg in soil sample SH1 @ Surf. Based on these laboratory analytical results, the horizontal extent of impacted soil was adequately defined.

On March 1, 2022, Etech further advanced test trench SP2 in an effort to determine the vertical extent of chloride contamination in the area. During the advancement of the test trench, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit. Based on field observations and field test data, one (1) delineation soil sample (SP2 @ 21') was submitted to the laboratory for analysis of chloride. Laboratory analytical results indicated the chloride concentration was 96.0 mg/kg and below the NMOCD Closure Criteria and NMOCD Reclamation Standard. Based on these laboratory analytical results, the vertical extent of chloride contamination was adequately defined.

On March 9, 2022, the excavation was further advanced in the area characterized by soil sample SW1. Etech collected eight (8) confirmation soil samples (NW14, NW15, NW16, NW17, NW18, SW1-A, SW14, and SW15) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and/or chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and

NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from 16.0 mg/kg in soil sample NW14 to 256 mg/kg in soil sample SW14.

On March 10, 2022, Etech collected one (1) confirmation soil sample (SW16) from the sidewall of the excavated area. The soil sample was submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard. BTEX and TPH concentrations were also below the applicable laboratory MDL. The chloride concentration was 64.0 mg/kg.

On March 15, 2022, Etech collected eight (8) confirmation soil samples (EW2, EW3, EW4, EW5, SW17, WW6, WW7, and WW8) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations ranged from 48.0 mg/kg in soil samples EW2, EW3, and EW5 to 160 mg/kg in soil sample SW17.

On March 16, 2022, Etech collected two (2) confirmation soil samples (EW6 and SW18) from the sidewalls of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standard in each of the submitted soil samples. BTEX and TPH concentrations were also below the applicable laboratory MDL. Chloride concentrations were 64.0 mg/kg in soil sample EW6 and 544 mg/kg in soil sample SW18.

From March 18 through 21, 2022, Etech advanced a series of nine (9) hand-augered soil bores and/or test trenches (DSP1 through DSP9) to further characterize the affected area adjacent to and/or beneath the on-site storage tanks and associated containment area, piping, appurtenances, and electrical facilities requiring deferral of remediation. During the advancement of the soil bores/test trenches, soil samples were collected and field-screened for concentrations of chloride utilizing a chloride test kit and/or the presence of VOCs utilizing olfactory/visual senses. Based on field observations and field test data, a total of 18 deferral characterization soil samples (DSP1 @ Surf., DSP1 @ 1', DSP2 @ Surf., DSP3 @ Surf., DSP3 @ 8', DSP4 @ Surf., DSP5 @ Surf., DSP5 @ 8', DSP6 @ Surf., DSP6 @ 10', DSP7 @ Surf., DSP7 @ 14', DSP8 @ Surf., DSP8 @ 8', DSP9 @ Surf., and DSP9 @ 8') were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Based on laboratory analytical data, the extent of impacted soil was adequately defined and ranged from approximately one (1) foot bgs in the areas characterized by sample points DSP1 and DSP2 to 14 feet bgs in the area characterized by sample point DSP7.

The dimensions of the excavated area are approximately 282 to 748 feet in length, 18 to 111 feet in width, and four (4) feet in depth. To date, Etech has transported approximately 9,720 cubic yards of impacted soil to an NMOCD-permitted surface waste facility for disposal and imported approximately 9,660 cubic yards of locally sourced, non-impacted material to the site for use as backfill.

The extent of the affected area and the locations of the hand-augered soil bores and test trenches are depicted in Figure 3A, "Site & Sample Location Map (Delineation)". The extent of the excavated area, the area to be deferred, and the locations of the confirmation and deferral characterization samples are depicted in Figure 3B, "Site & Sample Location Map (Excavation)". Soil chemistry data is summarized in Table 1. Field data and soil profile logs are provided in Appendix B. General photographs of the site are provided in Appendix C. Laboratory analytical reports are provided in Appendix F.

6.0 IN-SITU CHLORIDE MIGRATION MODELING

Review of the most recent GIS map data published by the BLM's Carlsbad Field Office on January 14, 2021, indicates the Red Hills Recycle release site is in an area of "medium" potential for karst occurrence. However, it is less than 1,200 feet from the area denoted as having a "high" karst potential and is potentially unstable. Due to the possible presence of karst and unstable soil, deeper excavation in this area poses a risk to human health and safety that exceeds the benefits of the removal of additional soil affected above the NMOCD Closure Criteria.

Etech utilized the Environmental Protection Agency's (EPA) Multimedia Exposure Assessment Model (MULTIMED) to determine if the chloride contamination remaining in-situ in the areas characterized by sample points FS1, FS2, and SP1 through SP5 poses a threat to groundwater quality, as well as to simulate the efficacy of installing a geosynthetic liner on the floor of the excavation. The most appropriate and conservative parameter values possible for the site were used for the assessment model in regard to depth to groundwater (125 feet bgs), deepest depth investigated (21 feet bgs), etc. Additional parameter values were utilized that have been previously approved by the NMOCD as being representative of the general area and for simulating lined versus unlined excavations and/or oil and gas facilites. The model indicates the peak concentration of chloride in the underlying groundwater contributed by the contamination remaining in-situ would be approximately 19.38 mg/L in 958 years if a liner were installed on the floor of the excavated area, versus 291.1 mg/L in 258 years if the excavation is not lined (see Appendix D).

Since the estimated chloride concentration is below the standard of 250.0 mg/L specified in Section 20.6.2.3103 B.(1) NMAC, pursuant to Section 19.15.29.14.A(2) NMAC, the migration model effectively demonstrates that the four (4) foot bgs excavation and installation of a geosynthetic liner provides an "equal or better protection of fresh water, public health and the environment" as a deeper excavation.

Etech also utilized the EPA MULTIMED simulator to determine if the contamination remaining in-situ adjacent to and/or beneath the on-site storage tanks and associated containment area, piping, appurtenances, and electrical facilities poses a threat to groundwater quality. Again, using the most appropriate and conservative parameters possible for the site and area of concern, the model indicates that the concentration of chloride contributed to the underlying groundwater will not exceed the standard of 250 mg/L until approximately 238 years have lapsed (see Appendix E).

Pursuant to Section 19.15.29.12.C(2) NMAC, the model effectively demonstrates that leaving the contamination in-situ in the areas characterized by sample points DSP1 through DSP9 "does not cause an imminent risk to human health, the environment, or ground water".

7.0 VARIANCE REQUEST

Pursuant to Section 19.15.29.14 NMAC, Mewbourne requests a variance to install a 20-mil, string-reinforced liner on the floor of the excavated area atop impacted soil affected above the NMOCD Closure Criteria in the areas characterized by sample points FS1, FS2, and SP1 through SP5. Approximately six (6) inches of pad material will be installed both above and below the liner in an effort to maintain its integrity during backfilling activities. The liner will be sloped to facilitate shedding of moisture outside both the footprint of the excavation and the maximum horizontal extent of impacted soil. This engineered control is designed to inhibit the vertical migration of chloride contamination remaining in-situ.

Immediately following installation of the liner and pad material, the excavated area will be backfilled with locally sourced, non-impacted, "like" material placed at or near original relative positions and compacted/contoured to achieve erosion control, stability, and preservation of surface water flow to the extent practicable.

8.0 DEFERRAL REQUEST

Remediation activities were conducted in accordance with NMOCD regulatory guidelines. Impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and transported to an NMOCD-permitted disposal facility. Laboratory analytical results from confirmation soil samples indicate concentrations of BTEX are below the applicable NMOCD Closure Criterion and NMOCD Reclamation Standard. Remediation of TPH- and/or chloride-impacted soil affected above the NMOCD Closure Criteria remaining in-situ adjacent to and/or beneath the on-site storage tanks and associated containment area, pipes, appurtenances, and electrical facilities will be completed upon decommissioning and abandonment of the water treatment facility, in accordance with Sections 19.15.29.12 and 19.15.29.13 NMAC.

9.0 RESTORATION, RECLAMATION & RE-VEGETATION PLAN

Areas affected by remediation and closure activities will be substantially restored to the condition that existed prior to the release, to the extent practicable. Excavated areas will be backfilled with locally sourced, non-impacted, "like" material placed at or near original relative positions. The affected area will be compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable. Affected areas not on production pads, pipeline right-of-ways, and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture during the first favorable growing season following closure of the site. Final reclamation and re-vegetation of the active location will be conducted upon decommissioning and abandonment of the facility.

10.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this *Remediation Summary, Variance & Deferral Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents reference in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

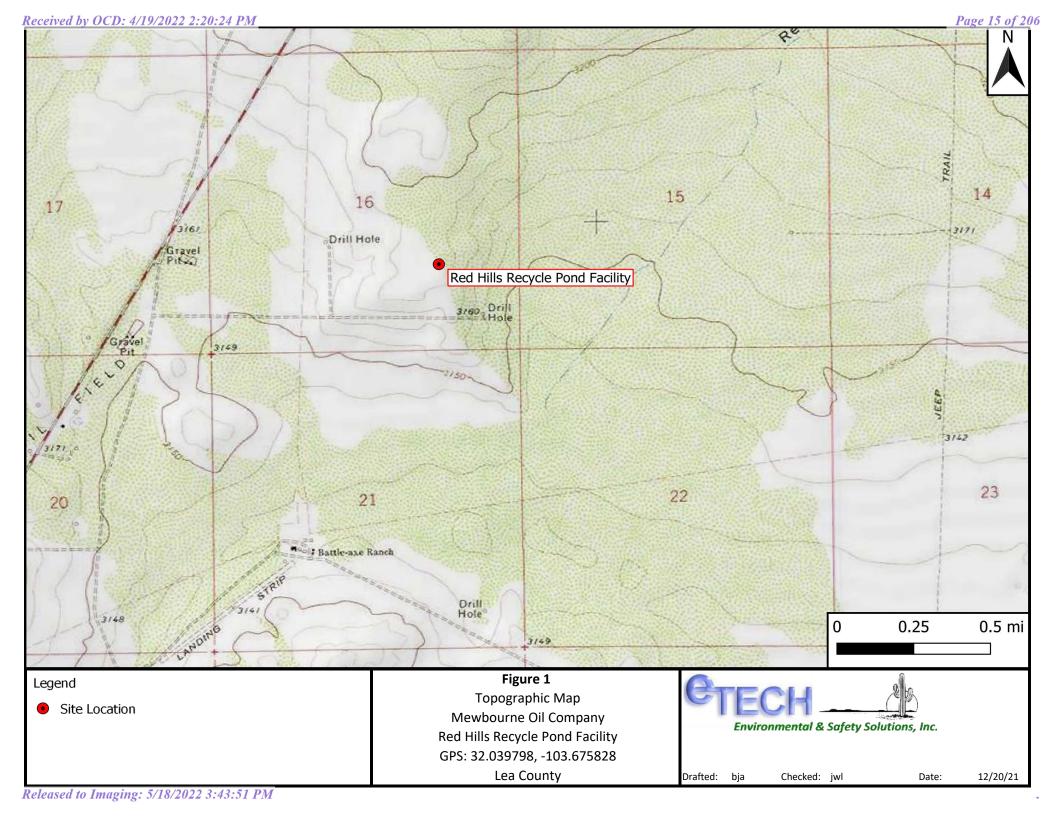
This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.

11.0 DISTRIBUTION

Mewbourne Oil Company

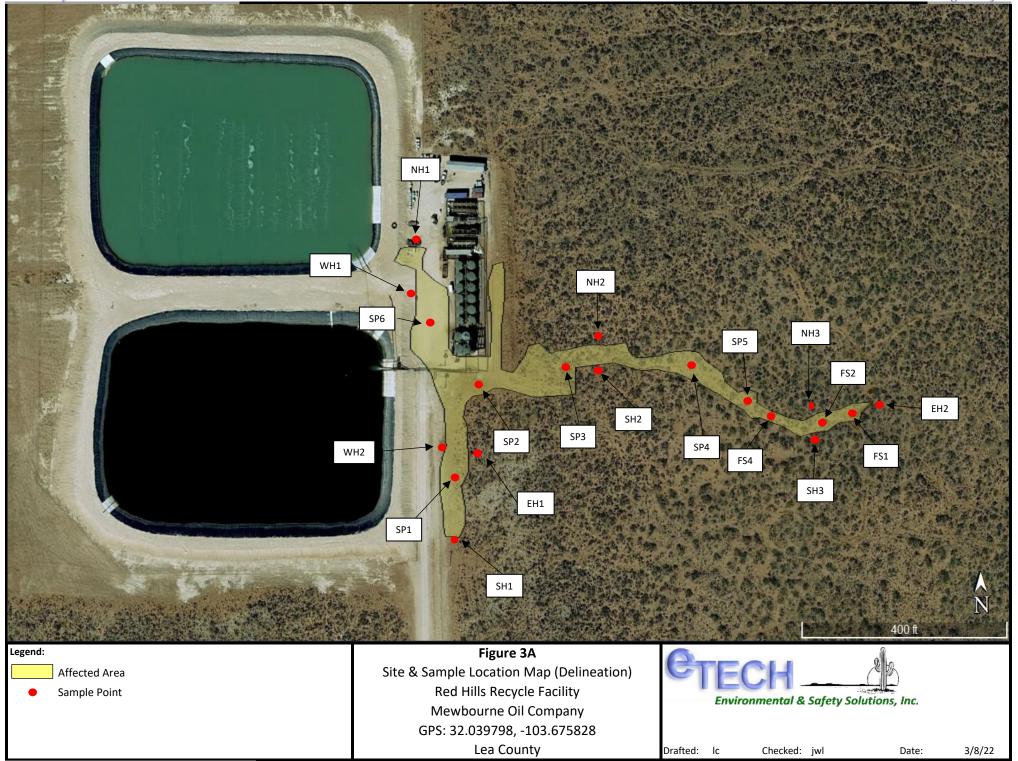
4801 Business Park Blvd. Hobbs, NM 88240

New Mexico Energy, Minerals and Natural Resources Department


Oil Conservation Division, District 1 1220 South St. Francis Drive Santa Fe, NM 87505

Hobbs Field Office

New Mexico State Land Office 2827 North Dal Paso Street Suite 117 Hobbs, NM 88240


(Electronic Submission)

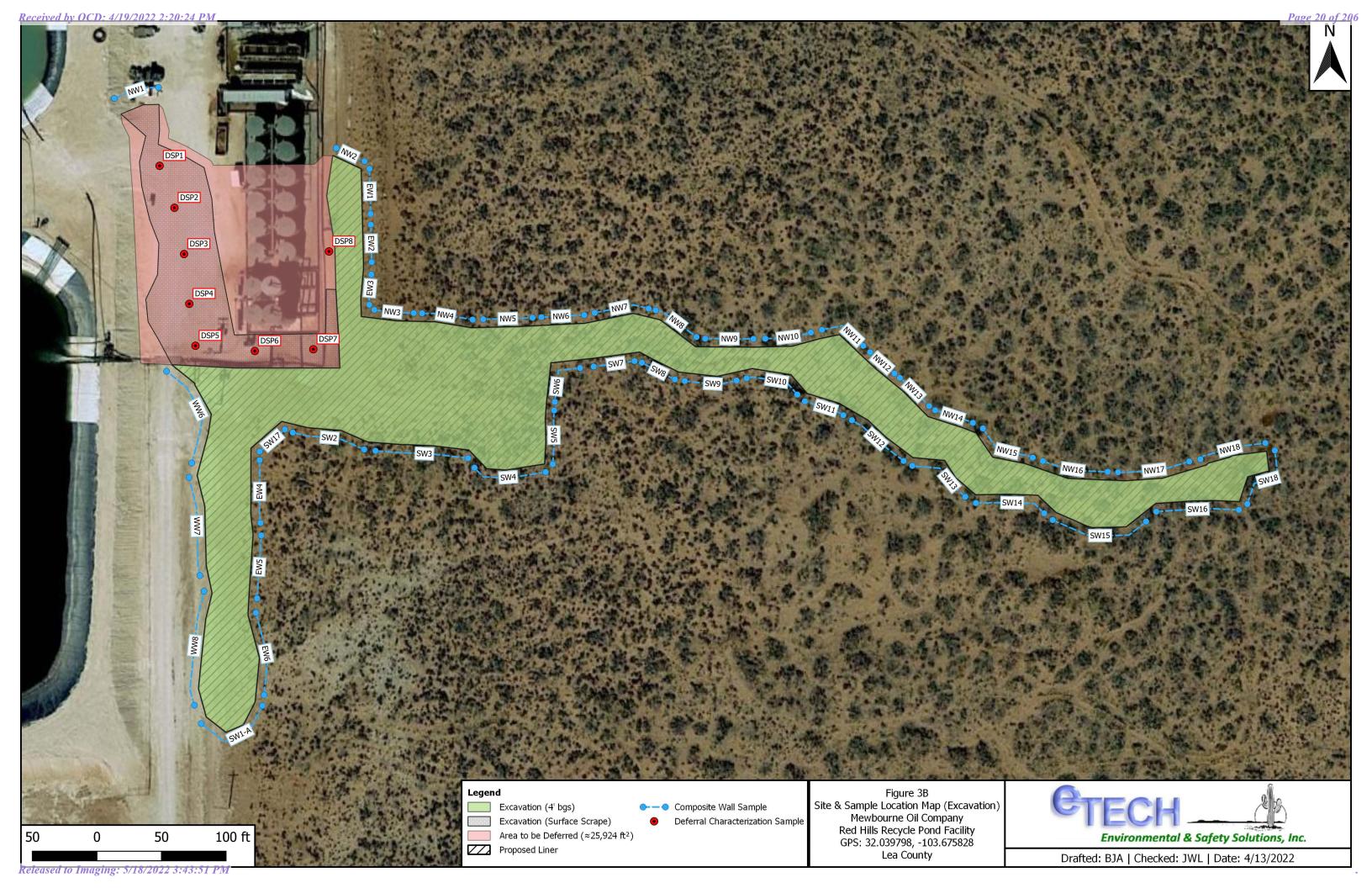

Figure 1 Topographic Map

Figure 2 Aerial Proximity Map

Figure 3A & 3B Site & Sample Location Maps

Table 1 Concentrations of BTEX, TPH & Chloride in Soil

					Tab	le 1					
			Conce	entrations			Chloride ir	soil Soil			
				Me	wbourne (Dil Compa	any				
				Red H	ills Recycl	le Pond Fa	acility				
	NMOCD Ref. #: nAPP2124632147										
NMO	CD Closure C	riteria		10	50	-	-	-	-	100	600
NMOCD	Reclamation	Standard		10	50	-	-	-	-	100	600
SW 846 8021B SW 846 8015M Ext. 4500 Cl											
Sample ID	Date	Depth	Soil		DEDA	GRO	DRO	GRO +	ORO	ТРН	G11 11
Sample 1D	Date	(Feet)	Status	Benzene (mg/kg)	BTEX (mg/kg)	C ₆ -C ₁₀	C_{10} - C_{28}	DRO C ₆ -C ₂₈	C ₂₈ -C ₃₆	C ₆ -C ₃₆	Chloride (mg/kg)
				(g/.kg)	(g/.kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					neation & De						
FS1 @ 12'	2/9/2022	12	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	336
FS2 @ 13'	2/9/2022	13	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
FS4 @ 4'	2/9/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112
SP1 @ Surf.	2/24/2022	0	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	2,000
SP1 @ 2'	2/24/2022	2	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	464
SP2 @ Surf.	2/24/2022	0	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,060
SP2 @ 20'	2/24/2022	20	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	752
SP2 @ 21'	3/1/2022	21	In-Situ	-	-	-	-	-	-	-	96.0
SP3 @ Surf.	2/24/2022	0	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,920
SP3 @ 14'	2/24/2022	14	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
SP4 @ Surf.	2/24/2022	0	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,520
SP4 @ 14'	2/24/2022	14	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	400
SP6 @ Surf.	2/24/2022	0	Excavated	< 0.050	< 0.300	<10.0	98.0	98.0	<10.0	98.0	832
SP6 @ 2'	2/24/2022	2	In-Situ	< 0.050	< 0.300	<10.0	13.9	13.9	<10.0	13.9	96.0
NH1 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
NH1 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	13.7	13.7	<10.0	13.7	80.0
NH2 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	192
NH2 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
NH3 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144
NH3 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	256
EH1 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
EH1 @ 1'	2/25/2022	1	In-Situ		< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
EH2 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144
EH2 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
SH1 @ Surf.	2/25/2022	0	Excavated	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	336
SH1 @ 1'	2/25/2022	1	Excavated		< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
SH2 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0
SH2 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0
SH3 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
SH3 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
WH1 @ Surf.	2/25/2022	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160
WH1 @ 1'	2/25/2022	1	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128
WH2 @ Surf.	2/25/2022	0	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
WH2 @ 1'	2/25/2022	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
DSP1 @ Surf.		0	Deferral	< 0.050	< 0.300	<10.0	29.8	29.8	22.6	52.4	20,800
DSP1 @ 1'	3/18/2022	1	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
	3/18/2022	0	Deferral	< 0.050	< 0.300	<10.0	1,040	1,040	928	1,970	26,000
DSP2 @ 1'	3/18/2022	1	Deferral	< 0.050	< 0.300	<10.0	18.4	18.4	18.2	36.6	80.0
DSP3 @ Surf.	3/18/2022	0	Deferral	< 0.050	< 0.300	<10.0	4,700	4,700	1,260	5,960	32,800

< 0.300

<10.0

<10.0

< 20.0

<10.0

<30.0

Dash (-): Not applicable OR Sample not analyzed for that constituent.

8

Deferral

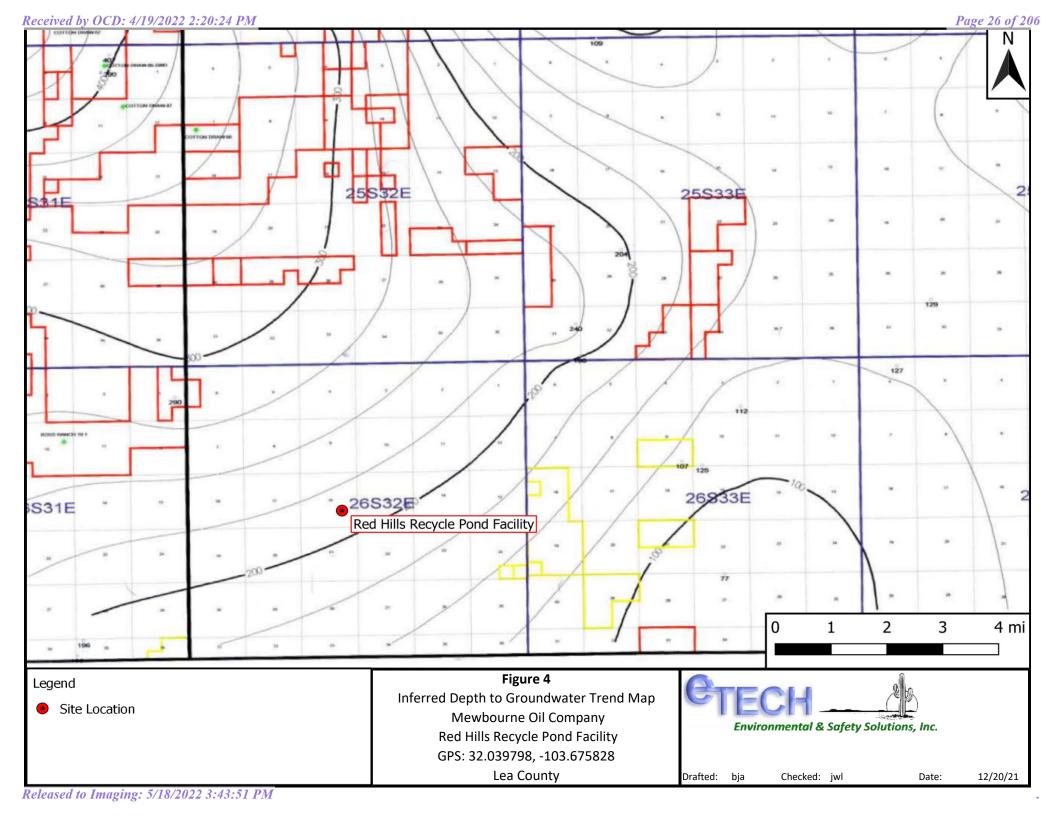
< 0.050

3/18/2022

528

DSP3 @ 8'

Table 1 Concentrations of BTEX, TPH & Chloride in Soil Mewbourne Oil Company Red Hills Recycle Pond Facility NMOCD Ref. #: nAPP2124632147


NMOCD Ref. #: nAPP2124632147											
NMO	CD Closure C	riteria		10	50	-	-	-	-	100	600
NMOCD	Reclamation	Standard	ı	10	50	-	100				600
				SW 846	6 8021B	SW 846 8015M Ext.				4500 Cl	
Sample ID	Date	Depth	Soil	Benzene	BTEX	GRO	DRO	GRO + DRO	ORO	ТРН	Chloride
•		(Feet)	Status	(mg/kg)	(mg/kg)	C ₆ -C ₁₀	C ₁₀ -C ₂₈	C_6 - C_{28}	C ₂₈ -C ₃₆	C ₆ -C ₃₆	(mg/kg)
						(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
$\overline{}$	3/18/2022	0	Deferral	< 0.050	< 0.300	<10.0	232	232	104	336	54,000
DSP4 @ 4'	3/18/2022	4	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
$\overline{}$	3/18/2022	0	Deferral	< 0.050	< 0.300	<10.0	68.4	68.4	27.0	95.4	1,330
DSP5 @ 8'	3/18/2022	8	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	416
DSP6 @ Surf.	3/21/2022	0	Deferral	< 0.050	< 0.300	<10.0	71.4	71.4	43.3	115	93,600
DSP6 @ 10'	3/21/2022	10	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	528
	3/21/2022	0	Deferral	< 0.050	< 0.300	<10.0	689	689	456	1,150	26,000
DSP7 @ 14'	3/21/2022	14	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	304
Ü	3/21/2022	0	Deferral	< 0.050	< 0.300	<10.0	11.0	11.0	<10.0	11.0	78,400
DSP8 @ 8'	3/21/2022	8	Deferral	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	272
DSP9 @ Surf.	3/21/2022	0	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	49,600
DSP9 @ 8'	3/21/2022	8	Deferral	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	208
2			l- a: l	0.070	Excavation	_	100	• • •	100		• • • •
NW1	2/9/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	288
NW2	2/9/2022	2	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160
NW3	2/9/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	224
NW4	2/9/2022	2	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	240
NW5	2/17/2022	2	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
NW6	2/17/2022	2	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
NW7	2/17/2022	2	In-Situ	< 0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144
NW8	2/17/2022	2	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
NW9	2/17/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176
NW10	2/17/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160
NW11	2/17/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128
NW12	2/17/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112
NW13	2/17/2022	2	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	256
NW14 NW15	3/9/2022	2	In-Situ	<0.050 <0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0 16.0
	3/9/2022					<10.0	<10.0	<20.0	<10.0	<30.0	
NW16 NW17	3/9/2022 3/9/2022	2	In-Situ In-Situ	<0.050 <0.050	<0.300	<10.0 <10.0	<10.0 <10.0	<20.0 <20.0	<10.0 <10.0	<30.0 <30.0	32.0 32.0
NW17 NW18	3/9/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
EW1	2/9/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112
EW1 EW2	3/15/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
EW2 EW3	3/15/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
EW3	3/15/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
EW5	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
EW5	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
SW1	2/10/2022	2	Excavated	< 0.050	< 0.300	<10.0	206	20.0	57.8	264	80.0
SW1-A	3/9/2022	2	In-Situ	-0.030	-	<10.0	<10.0	<20.0	<10.0	<30.0	- 80.0
SW2	2/10/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
SW2 SW3	2/10/2022	2	In-Situ In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0
U 77 U	2/1//2022		าน-อเน	\U.UJU	~0.500	\1U.U	\1U.U	\ _ U.U	\1U.U	\JU.U	90.0

Dash (-): Not applicable OR Sample not analyzed for that constituent.

Table 1
Concentrations of BTEX, TPH & Chloride in Soi
Mewbourne Oil Company
Red Hills Recycle Pond Facility
NMOCD Ref. #: nAPP2124632147

	NINOCD RCI, W. HALL ELEVOZITI										
NMOCD Closure Criteria			10	50	-	-	-	-	100	600	
NMOCD Reclamation Standard		10	50	-	-	-	-	100	600		
		SW 846 8021B SW 846 8015M Ext. 45				4500 Cl					
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C6-C28 (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)
SW4	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	< 30.0	80.0
SW5	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
SW6	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	16.0
SW7	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	144
SW8	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	96.0
SW9	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
SW10	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128
SW11	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	272
SW12	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
SW13	2/17/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	48.0
SW14	3/9/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	256
SW15	3/9/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	64.0
SW16	3/10/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	64.0
SW17	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	160
SW18	3/16/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	544
WW6	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
WW7	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
WW8	3/15/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0

Appendix A Depth to Groundwater Information

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

POD

Sub- Q Q Q

Water
Y DistanceDepthWellDepthWater Column

POD Number

 Code
 basin
 County
 64 16 4
 Sec
 Tws
 Rng

 R
 CUB
 LE
 2 3 21 26S 32E

X Y 624449 3544111*

1609 150 125

Average Depth to Water:

125 feet

Minimum Depth: Maximum Depth: 125 feet 125 feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 625025.97

Northing (Y): 3545613.55

Radius: 1610

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/15/21 10:49 AM

WATER COLUMN/ AVERAGE DEPTH TO

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng 21 26S 32E

3544111*

Driller License:

C 02271

Driller Company:

Driller Name: Drill Start Date:

Drill Finish Date:

12/31/1909 Plug Date:

PCW Rcv Date:

Source:

Log File Date:

Pipe Discharge Size:

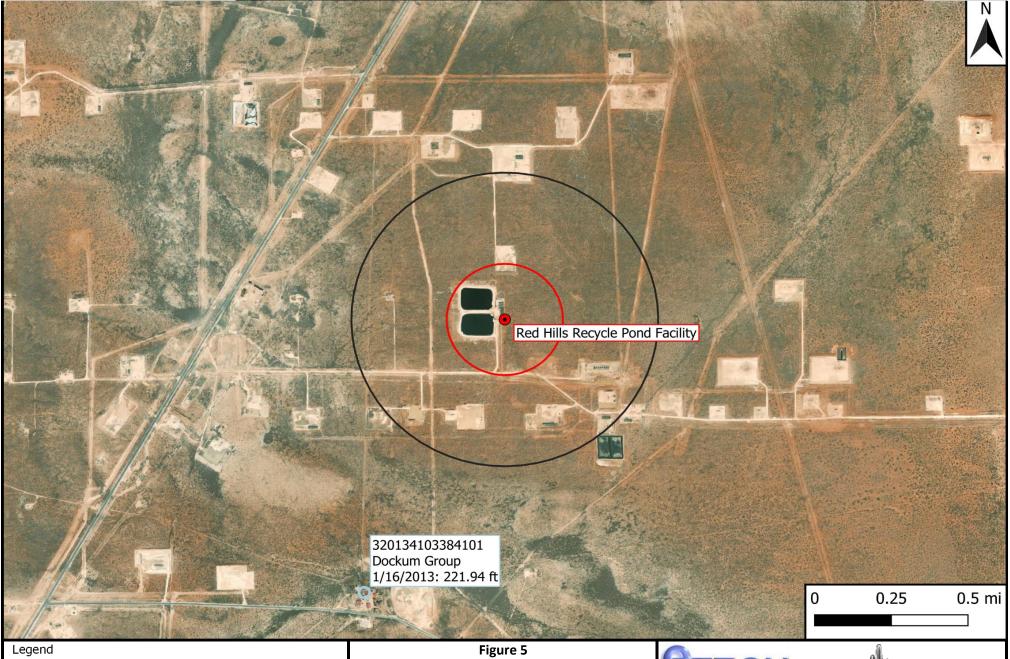
Estimated Yield: 15 GPM

Pump Type: Casing Size:

8.00

UNKNOWN

Depth Well: 150 feet Depth Water:


125 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

11/15/21 10:49 AM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

Site Location

Well - USGS

1,000-Ft Radius

0.5-Mi Radius

USGS Well Proximity Map Mewbourne Oil Company Red Hills Recycle Pond Facility GPS: 32.039798, -103.675828 Lea County

Environmental & Safety Solutions, Inc.

Drafted: bja

Checked: jwl

Date:

12/20/21

Click for News Bulletins

Groundwater levels for the Nation

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usqs site no list =

• 320134103384101

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320134103384101 26S.32E.21.32311

Lea County, New Mexico

Table of data Tab-separated data

Latitude 32°01'35.2", Longitude 103°41'01.8" NAD83

Land-surface elevation 3,130 feet above NAVD88

The depth of the well is 405 feet below land surface.

The depth of the hole is 405 feet below land surface.

This well is completed in the Pecos River Basin alluvial aguifer (N100PCSRVR) national aguifer.

This well is completed in the Dockum Group (231DCKM) local aguifer.

Output formats

Graph of data											
Reselect period											
Date \$	Time \$? Water- level ≎ date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above \$pecific vertical datum	Referenced vertical \$\phi\$ datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1993-06-16		D	72019	405.00			1	L			А
2013-01-16	19:10 UTC	m	72019	221.94			Р	S	USGS	S	Α

Received by OCD: 4/19/2022 2:20:24 PM

Explanation

Section \$	Code \$	Description \$
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	L	Interpreted from geophysical logs.
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2022-04-11 14:04:53 EDT

0.43 0.32 nadww01

USA.gov

Appendix B Field Data & Soil Profile Logs

Field Samples*

Date: 9/17 - 9/18/2021

Project: Red Hills Recycle Facility

 Project Number:
 14966
 Latitude:
 32.039798
 Longitude:
 -103.675828

Sample ID	PID/Odor	Chloride Conc.	GPS
SP1 @ Surface		5,938	
SP1 @ 1'		2,221	
SP1 @ 2'		219	
SP2 @ Surface		14,253	
SP2 @ 1'		4,503	
SP2 @ 2'		2,036	
SP2 @ 3'		4,738	
SP2 @ 4'		3,018	
SP2 @ 5'		2,256	
SP2 @ 6'		3,072	
SP2 @ 7'		403	
SP3 @ 1'		1,192	
SP3 @ 2'		1,059	
SP3 @ 3'		1,071	
SP3 @ 4'		2,827	
SP3 @ 5'		1,500	
SP3 @ 6'		1,114	
SP3 @ 7'		815	
SP3 @ 8'		453	
SP4 @ Surface		12,338	
SP4 @ 1'		3,573	
SP4 @ 2'		1,924	
SP4 @ 3'		951	
SP4 @ 4'		900	
SP4 @ 5'		747	
SP4 @ 6'		370	
SP5 @ Surface		4,501	
SP5 @ 1'		1,374	
SP5 @ 2'		1,286	
SP5 @ 3'		604	
SP5 @ 4'		460	
SP6 @ Surface		346	
SP7 @ Surface		218	
SP8 @ Surface		66,619	
SP8 @ 1'		3,697	
SP8 @ 2'		3,203	
SP8 @ 3'		1,943	
SP8 @ 4'		1,305	

^{*}Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Field Samples*

Date:	9/17 - 9/18/2021

Project: Red Hills Recycle Facility

Project Number: 14966 Latitude: 32.039798 Longitude: -103.675828

Sample ID	PID/Odor	Chloride Conc.	GPS
SP8 @ 5'		485	
H1		302	
H2		217	
Н3		3,683	
H4		132	
H5		160	
H5		296	
			1
			1

^{*}Samples collected and field-screened by a third-party contractor that is no longer affiliated with the site.

Sample Log

Date:

2-9-22

Project:

Red Hills Recycle Facility

Project Number:

14966 Latitude:

32.039798

Longitude:

-103.675828

T.	Sample ID	PID/Odor	Chloride Conc.	- GPS
	FS1e3. FS1e6. FS1e10	_	2840 - 1532 - 1240 >	FS1012 516
· È	WI but EWI Roset	_	384 384	
	IWILL NWI MAN		<120)532	
N	IN 2 WA NW2 " THE		468 732	
A	INS " NWS FISH		418 324	
	NW4 ecolo		344	
	WITT SWITT	_	231 1072-1152	
	Wara SNa "	-	924/1020	
	W3 TA SW3 PINST		236 672	
-£	W4 4004 SW4 8.76	-	516	
Ï	·Siget. Foreg. Este	-	2204-2376-	
7	5304.FS3e6.FS3e	_	1768-924	
F	SYNF		468	
¥ .	\$2-10-FS2-12-FS2-13" \$3-10-FS3-12	-	1332 • 732 • 172	
F	S3e10: FS3-12	_	1900-620-	
5	WI	_	304	
<u>S</u>	Water	-	1340 ~ 1960 ~ 144	
F	57011		384	
F	S 5 e 5 F S 5 e 2 - F S 5 e 8 '		120.672.996·155012984·7550件公	236
Λ	W5" NW5""		218 < 120	
্	W5 ""		236	
Λ	IN6	-	172	·
<u> </u>	Wb		20#	
F	SE@?		213	
	W7)	268	
	W 8	_	172	
	IW7	-	172	
	W8)	1428 - < 120	
N	W9	Copport.	792-236	
F	57@4°	Cartesian	304	
1	5804		996	
10	N T		768.<292	
15	W/0		327	
1			1760	
1	51064		480	
<u> </u>				

Sample Point = SP #1 @ ## etc

Floor = FL #1 etc

Sidewall = SW #1 etc

Test Trench = TT #1 @ ##

Refusal = SP #1 @ 4'-R

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Resamples= SP #1 @ 5b or SW #1b

Stockpile = Stockpile #1

GPS Sample Points, Center of Comp Areas

Released to Imaging: 5/18/2022 3:43:51 PM

Sample Log

Date: 02/16/22 32.0397911 Long ude: -103.675824

14966

Sample ID	PID/Odor	Chloride Conc.	GPS
SW 10	_	228	
UWI	_	228	
5 11941	_	1.232	
31294'	_	984	
SUII	_	1232 . 4324	
VWIA	_	Demod < 200	
F\$ 13G4'	-	708	
FS 1494'	_	1.144	
5(1)2	-	592	
NWI3		1026	
FS 15@4'		996	
NW13		516	
VWIF	Agentinin'	856.732.672	
SWIZ	~	144	*
5W/3		144	
ES1604'	-	996	the state of the s
FS ITEY	~	1332	
SW 14	-	1240-000 1900-1332	
F518e4"	-	1768	
NW14	_	172:568	
NWIS		996.792	
SOM OF SWIH	-	9902 115Q	
WW15	_	996-1532-1428-620	
SW 13+	-	924.1072.1072.996	
SW14+	_	1072-856	
W13+	-	1340-996	
SW13++	_	1333	
WW15	_	856-620-620	
VW 15+	_	1340	. 4.
VW 15+ VW 15+ SW 13+	_	520 1152	
W13+	-	1152	
1115+	_	144	
SW13+ SW12++	_	144 468 924.568.384	3
SW latt	_	924.568.384	
NWIE	_	996-796	
1.7			

Sample Point = SP #1 @ ## etc

Floor = FL #1 etc

Sidewall = SW #1 etc

Test Trench = TT #1 @ ##

Refusal = SP #1 @ 4'-R

Soil Intended to be Deferred = 5P #1 @ 4' In-Situ

Resamples= SP #1 @ 5b or SW #1b

Stockpile = Stockpile #1

GP5 Sample Points, Center of Comp Areas

Sample Log

Date:	
-------	--

Proi	ect:

Project Number: Longitude: Latitude:

Sample ID	PID/Odor	Chloride Conc.	GPS
SW 13+	de Caraciano de Ca	732-856-856-620-568	
NW 16?	~-	516-468	
NWIL+++	_	296.260.238	
WWI	-	1576	
WWa	-	4332	
NW15	_	1'44	
NWIL	_	296	
NW17	_	260	
NWI8	_	228	
SW14		1468	
SW15		468 384	
15W16		1116	
IWW3		a464	
WW+ 3W/7		704	
		196	
WW5		1368	
SW17+	_	228	
SW17++		372	
WW6		4 3	
WW7 EWa		500	
FWZ		296	
EWS		296	
WW8	<u> </u>	228	
EW4		196	
FA=4'	-	260	
FB & 4'	-	372	
Fcel'		138	The state of the s
FDe2'		760	
EW5		228	
WW9		956	
LW W 9		834.596.412	
FDe3. FDe4.		576-228	
Ee2'		196	
EWB		116	
SFFED'		452	
		548	
Sample Point = SP #1 @ ## etc FGe 2	-	19 L Test Irench = TT #1 @ ##	Resembles - 37 W1 To No or NW #30

Sample Point = SP #1 @ ## etc FGe2

Test Irenci = TT #1 @ ##

Resemples=37 Hz @ 50 or 5W #10

Released to Imaging: 5/18/2022 3:43:51 PM

Floor = FL #1 etc FHe2

168

Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1

Sidewall = SW #1 etc

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

GPS Sample Points, Center of Comp Areas

Sample Log

Test Trenches + Horizontal;

Date:

2-24-22

Project: Red Hills Recycle Facility

Project Number:

14966 Latitude: 32.039798 Longitude: -103.675828

Test Trenshes			
Sample ID	PID/Odor	Chloride Conc.	
SPIesut. · SPIez	_	1,900-344	
SPZeS,f.oSPZeZ	_	1,532016480	
SPZet espZel	_	2572 • 2376 •	
SP2@8'osPael0'	_	12,600 - 2,204 -	
SP2012'0SP2014'	_	1072012400	
SPACIL OSPACIS OSPACAD	_	1152.620.418 SP2.21-236	
SP3eS.,f SP3e2: SP3e4	_	2.600-2376-2572-	
5730 6 - S73e8 - S730 10	~	1900 • 1.648 • 1.532 •	
SP3@12'=SP3@14'	_	1152 • 468	
SP4es,f SP4e2' - SP4e4'		1900 • 1240 • 996 •	
SP406' 0SP408' 0SP4010'		792 • 672 • 924 •	
SP4012'0 SP4014'		620.516	
SP5eS.f . SP5e2 . SP5e4	_	2840-2100-2376-	
SP5@6'.SP5~8'.SP5@10'		1900 • 1,532 • 1,240 •	
SP5@12		512	
SP6@Suf SP6@2'	_	1,240 - 172	
*Horizontals			
NHIES, f. NHIEL	_	1336 • 172	
NH2es,f. >NH2e1	_	384 - 144	
NH3eJ.,f. = NH3el	-	128. 20</td <td></td>	
EHles, f. · EHlel'		236 0<120	
EHZesuf . EHZel		228 • 172	
SHIeSuf. = SHIEI		324 • 144	
SH 2es, f SH2el		268 • 144	
SH3cSuf. · SH3el'	-	268 - < 120	
WHIES.,f WHIEL	_	236 • 172	
WH2esuf WHZel'	_	236 • 144	
Wa			
24			
.02			
2.			
302			
762			
The state of the s			

Sample Point = SP #1 @ ## etc

Floor = FL #1 etc

Sidewall = SW #1 etc

Test Trench = TT #1 @ ##

Refusal = SP #1 @ 41-R

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Resamples= SP #1 @ 5b or SW #1b

Stockpile = Stockpile #1

GPS Sample Points, Center of Comp Areas

Soil Profile

Environmental a sujety solutions, Inc.				Date:	
Project: Red Hills Recycle					400 675000
Project Number:	14966	_atitude:	32.039798	Longitude:	-103.675828
Depth (ft. bgs) Surface			Des	scription	
3	Sand	Red	Sand, dr.	ift Sano	
6	Cali	che, r	ock,		
8 <u>g</u> ′	Cali	ch c	lay		
11 12 13					
14 15 16 //2	Sano	d, Cla			
17 18 19	AND ADDRESS OF THE PROPERTY OF	ay			
20 20 21 22					
23					
26					
28					
31 32 33					
34 35 36	With Control of the C				
37 38 39					

Received by OCD: 4/19/2022 2:20:24 PM

Released to Imaging: 5/18/2022 3:43:51 PM

Appendix C Photographic Log

Photo Number:

1

Date:

7/12/2021

Photo Direction:

North

Coordinates:

32.039739,-103.676102

Photo Description:

View of the affected area.

Photo Number:

2

Date:

7/12/2021

Photo Direction:

Northeast

Coordinates:

32.039810,-103.676211

Photo Description:

View of the affected area.

Photo Number:

3

Date:

7/12/2021

Photo Direction:

Southeast

Coordinates:

32.039904,-103.676145

Photo Description:

View of the affected area.

Photo Number:

4

Date:

7/12/2021

Photo Direction:

East-Northeast

Coordinates:

32.039904,-103.676145

Photo Description:

View of the affected area.

Photo Number:

5

Date: 7/12/2021

Photo Direction:

South

Coordinates:

32.039904,-103.676145

Photo Description:

View of the affected area.

Photo Number:

6

Date:

7/12/2021

Photo Direction:

South

Coordinates:

32.040566,-103.675829

Photo Description:

View of the affected area.

Photo Number:

7

Date: 7/12/2021

Photo Direction:

South

Coordinates:

32.039659,-103.676085

Photo Description:

View of the affected area.

Photo Number:

8

Date:

3/15/2022

Photo Direction:

East

Coordinates:

32.039770, -103.676123

Photo Description:

Photo Number:

9

Date: 3/15/2022

Photo Direction:

South

Coordinates:

32.039770, -103.676123

Photo Description:

View of the excavated area.

Photo Number:

10

Date:

3/15/2022

Photo Direction:

North

Coordinates:

32.039875, -103.675798

Photo Description:

Photo Number:

11

Date:

3/15/2022

Photo Direction:

Southwest

Coordinates: 32.039784, -103.675357

Photo Description:

View of the excavated area.

Photo Number:

12

Date:

3/15/2022

Photo Direction:

Northwest

Coordinates:

32.039612, -103.675372

Photo Description:

Photo Number:

13

Date: 3/15/2022

Photo Direction:

East

Coordinates:

32.039855, -103.675144

Photo Description:

View of the excavated area.

Photo Number:

14

Date: 3/15/2022

Photo Direction:

East

Coordinates:

32.039803, -103.674826

Photo Description:

Photo Number:

15

Date: 3/15/2022

Photo Direction:

East-Northeast

Coordinates:

32.039531, -103.674077

Photo Description:

View of the excavated area.

Photo Number:

16

Date:

3/15/2022

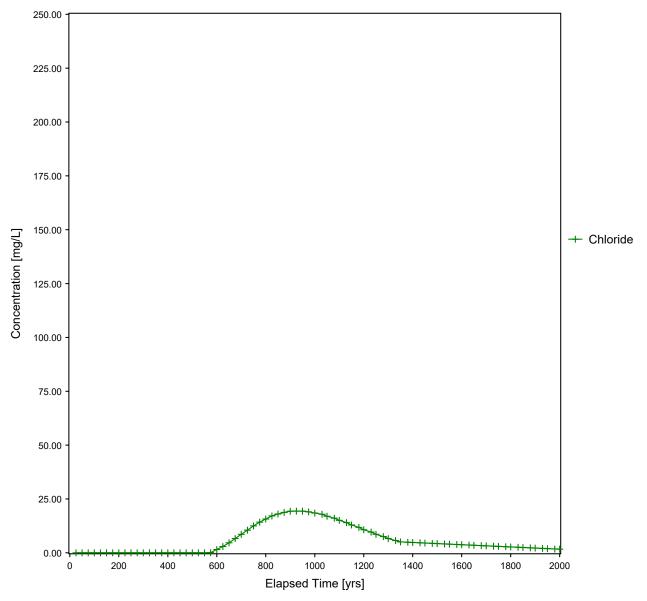
Photo Direction:

West

Coordinates:

32.039575, -103.673456

Photo Description:



Appendix D Multimedia Exposure Assessment Model (MULTIMED)

Excavation

Received by OCD: 4/19/2022 2:20:24 PM

Chloride Concentration at the Receptor Well (Lined Excavation) Mewbourne Oil Company Red Hills Recycle Pond Facility


```
MULTIMED V1.01 DATE OF CALCULATIONS: 13-APR-2022 TIME: 21:55:13
```

Received by OCD: 4/19/2022 2:20:24 PM

```
Page 31 of 200
```

```
ENVIRONMENTAL PROTECTION AGENCY
                                      EXPOSURE ASSESSMENT
Imagin
                                         MULTIMEDIA MODEL
                                       MULTIMED (Version 1.50, 2005)
Stitched to Stehfest algorithm to avoid numerical problems
with Convolution algorithm. Problems were caused by
high source decay rate. Everything ok now, execution continuing...
Ren options
Mewbourne Oil Company
Red Hills Recycle Pond Facility
Chemical simulated is Chloride
Option Chosen
                                    Saturated and unsaturated zone models
Run was
                                    DETERMIN
Infiltration Specified By User: 7.620E-03 m/yr
Run was transient
Well Times: Find Maximium Concentration
Reject runs if Y coordinate outside plume
Reject runs if Z coordinate outside plume
Gaussian source used in saturated zone model
UNSATURATED ZONE FLOW MODEL PARAMETERS
(input parameter description and value)
       - Total number of nodal points
                                                    240
NP
       - Number of different porous materials
                                                    1
NMAT
KPROP - Van Genuchten or Brooks and Corey
                                                     1
IMSHGN - Spatial discretization option
NVFLAYR - Number of layers in flow model
OPTIONS CHOSEN
Van Genuchten functional coefficients
User defined coordinate system
Layer information
```

LAYER NO. LAYER THICKNESS MATERIAL PROPERTY

1 31.70 1

DATA FOR MATERIAL 1

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA MEAN	AMETERS STD DEV	LI MIN	MAX	CD: 4/1
Saturated hydraulic conductivity Unsaturated zone porosity Air entry pressure head Depth of the unsaturated zone	cm/hr m m	CONSTANT CONSTANT CONSTANT CONSTANT	3.60 0.250 0.700 31.7	-999. -999. -999. 0.000	-999. -999. -999. 0.000	-999. -999. -999. 0.000	9/2022 2:20

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	 ŒTERS	LIMITS		
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999 .	
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-02	2 -999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY	_	Number of different layers used	1
NTSTPS	_	Number of time values concentration calc	40
DUMMY	_	Not presently used	1
ISOL	_	Type of scheme used in unsaturated zone	1
N	_	Stehfest terms or number of increments	18
NTEL	_	Points in Lagrangian interpolation	3
NGPTS	_	Number of Gauss points	104
NIT	_	Convolution integral segments	2
IBOUND	_	Type of boundary condition	3
ITSGEN	_	Time values generated or input	1
TMAX	_	Max simulation time	0.0
WTFUN	-	Weighting factor	1.2

OPTIONS CHOSEN

Stehfest numerical inversion algorithm Exponentially decaying continuous source Computer generated times for computing concentrations

DATA FOR LAYER 1

____ ___

VADOSE TRANSPORT VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	AMETERS	LIMITS		
			MEAN	STD DEV	MIN	MAX	
hickness of layer	m	CONSTANT	31.7	-999 .	-999 .	-999 .	
ongitudinal dispersivity of layer	m	DERIVED	-999.	-999.	-999.	-999.	
ercent organic matter		CONSTANT	0.000	-999.	-999.	-999.	
ulk density of soil for layer	g/cc	CONSTANT	1.99	-999.	-999.	-999.	
siological decay coefficient	1/vr	CONSTANT	0.000	-999.	-999.	-999.	

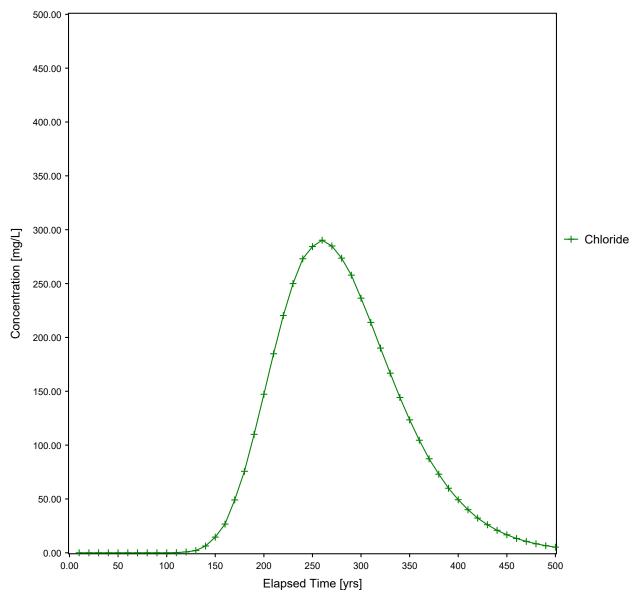
CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS
			MEAN	STD DEV	MIN	MAX
olid phase decay coefficient	1/yr	DERIVED	-999 .	-999 .	-999 .	-999 .
issolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
verall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
cid catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
eutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.
ase catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
eference temperature	C	CONSTANT	25.0	-999.	-999.	-999.
ormalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.
istribution coefficient		DERIVED	-999.	-999.	-999.	-999.
iodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.
ir diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.
eference temperature for air diffusion	С	CONSTANT	-999.	-999.	-999.	-999.
olecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.
ole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.
apor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.
enry`s law constant	atm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.
verall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00
ot currently used	_	CONSTANT	0.000	0.000	0.000	0.000
ot currently used		CONSTANT	0.000	0.000	0.000	0.000

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		LIMITS		
			MEAN	STD DEV	MIN	MAX	
Infiltration rate	m/yr	CONSTANT	0.762E-02	-999 .	-999 .	-999 .	
Area of waste disposal unit	m^2	CONSTANT	0.459E+04	-999.	-999.	-999.	Pa
Duration of pulse	yr	DERIVED	0.100E-08	-999.	-999.	-999.	800
Spread of contaminant source	m	DERIVED	-999.	-999.	-999.	-999.	ည
Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.	.0
Source decay constant	1/yr	CONSTANT	0.250E-01	0.000	0.000	0.000	12
Initial concentration at landfill	mg/l	CONSTANT	0.128E+04	-999.	-999.	-999.	96

Length scale of facility -999. -999. -999. -999. m DERIVED Width scale of facility DERIVED -999. -999. -999. -999. m Near field dilution 1.00 0.000 0.000 1.00 DERIVED


AQUIFER SPECIFIC VARIABLES

Width scale of facility Near field dilution	m	DERIVED DERIVED	-999. 1.00	-999. 0.000	-999. 0.000	-999. 1.00	Rec
	∆∩∷⊺₽₽	R SPECIFIC VARIABLES	3				Received
	7100111	IN BIHCIIIC VANNIABIIN	J				d by C
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS	 LI	 MITS	·
			MEAN	STD DEV	MIN	MAX	4/19
Particle diameter		CONSTANT	-999.	-999 .	-999 .	-999 .	9/2022
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	22
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	2:
Aquifer thickness	m	CONSTANT	6.10	-999.	-999.	-999.	2:20:24
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.	-999.	:2
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	7
Gradient (hydraulic)		CONSTANT	0.300E-02	-999.	-999.	-999.	X
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.	
Longitudinal dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.	
рН		CONSTANT	7.00	-999.	-999.	-999.	
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.	
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.	
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.	
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.	

MAXIMUM WELL CONCENTRATION IS 19.38 AT 958 YEARS

Received by OCD: 4/19/2022 2:20:24 PM

Chloride Concentration at the Receptor Well (Unlined Excavation) Mewbourne Oil Company Red Hills Recycle Pond Facility


```
U.S.
    ENVIRONMENTAL PROTECTION AGENCY
```

EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.50, 2005)

Released to Imaging: Rem options

Mewbourne Oil Company

Rod Hills Recycle Pond Facility

Cremical simulated is Chloride

Option Chosen

Saturated and unsaturated zone models Run was

DETERMIN

Infiltration Specified By User: 3.048E-02 m/yr

Run was transient

Well Times: Find Maximium Concentration Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model

UNSATURATED ZONE FLOW MODEL PARAMETERS (input parameter description and value)

NP - Total number of nodal points 240 TAMN - Number of different porous materials 1 KPROP - Van Genuchten or Brooks and Corey 1 IMSHGN - Spatial discretization option 1 NVFLAYR - Number of layers in flow model 1

OPTIONS CHOSEN

Van Genuchten functional coefficients User defined coordinate system

Layer information

1	31.70	1
LAYER NO.	LAYER THICKNESS	MATERIAL PROPERTY

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS DISTRIBUTION		PARA	PARAMETERS		LIMITS	
			MEAN	STD DEV	MIN	MAX	
aturated hydraulic conductivity	cm/hr	CONSTANT	3.60	-999 .	-999 .	-999 .	
nsaturated zone porosity		CONSTANT	0.250	-999.	-999.	-999.	
ir entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
epth of the unsaturated zone	m	CONSTANT	31.7	0.000	0.000	0.000	

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	 ETERS	LI	 MITS
			MEAN	STD DEV	MIN	MAX
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999 .
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.
ALFA coefficient	1/cm	CONSTANT	0.500E-02	-999.	-999.	-999.
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY	-	Number of different layers used	1
NTSTPS	-	Number of time values concentration calc	40
DUMMY	-	Not presently used	1
ISOL	-	Type of scheme used in unsaturated zone	2
N	-	Stehfest terms or number of increments	18
NTEL	_	Points in Lagrangian interpolation	3
NGPTS	-	Number of Gauss points	104
NIT	-	Convolution integral segments	2
IBOUND	_	Type of boundary condition	3
ITSGEN	-	Time values generated or input	1
TMAX	_	Max simulation time	0.0
WTFUN	-	Weighting factor	1.2

OPTIONS CHOSEN

Convolution integral approach Exponentially decaying continuous source Computer generated times for computing concentrations

DATA FOR LAYER 1

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		LIMITS		
			MEAN	STD DEV	MIN	MAX	
Thickness of layer	m	CONSTANT	31.7	-999 .	-999 .	-999 .	
Longitudinal dispersivity of layer	m	DERIVED	-999.	-999.	-999.	-999.	
Percent organic matter		CONSTANT	0.000	-999.	-999.	-999.	
Bulk density of soil for layer	g/cc	CONSTANT	1.99	-999.	-999.	-999.	
Biological decay coefficient	1/yr	CONSTANT	0.000	-999.	-999.	-999.	

CHEMICAL SPECIFIC VARIABLES

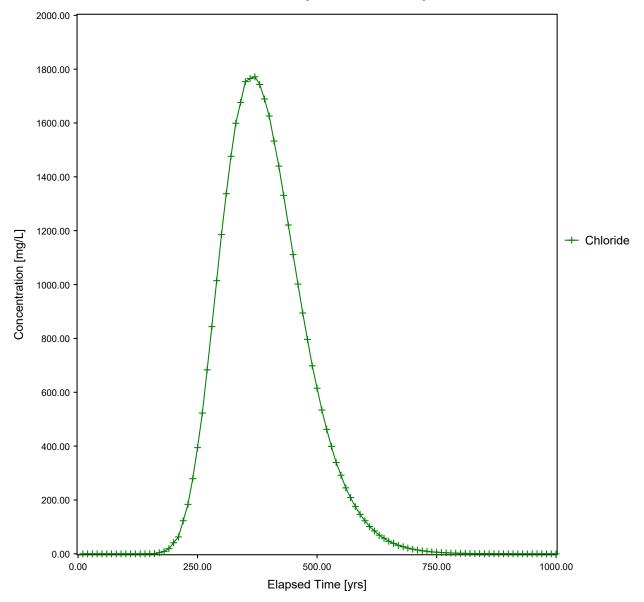
VARIABLE NAME	UNITS DISTRIBUTION		PARA	PARAMETERS		MITS	4 P	
			MEAN	STD DEV	MIN	MAX	PM	
Solid phase decay coefficient	1/yr	DERIVED	-999 .	-999 .	-999 .	-999.		
Dissolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.		
Overall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.		
Acid catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.		
Neutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.		
Base catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.		
Reference temperature	С	CONSTANT	25.0	-999.	-999.	-999.		
Normalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.		
Distribution coefficient		DERIVED	-999.	-999.	-999.	-999.		
Biodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.		
Air diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.		
Reference temperature for air diffusion	С	CONSTANT	-999.	-999.	-999.	-999.		
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.		
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.		
Vapor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.		
Henry`s law constant a	tm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.		
Overall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00		
Not currently used		CONSTANT	0.000	0.000	0.000	0.000		
Not currently used		CONSTANT	0.000	0.000	0.000	0.000		

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION		ARAMETERS		MITS	
			MEAN	STD DEV	MIN	MAX	
Infiltration rate	m/yr	CONSTANT	0.305E-01	-999 .	-999 .	-999 .	
Area of waste disposal unit	m^2	CONSTANT	0.459E+04	-999.	-999.	-999.	
Duration of pulse	yr	DERIVED	0.100E-08	-999.	-999.	-999.	
Spread of contaminant source	m	DERIVED	-999.	-999.	-999.	-999.	
Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.	Page
Source decay constant	1/yr	CONSTANT	0.250E-01	0.000	0.000	0.000	80
Initial concentration at landfill	mg/l	CONSTANT	0.128E+04	-999.	-999.	-999.	58
Length scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	of
Width scale of facility	m	DERIVED	-999.	-999.	-999.	-999.	12
Near field dilution		DERIVED	1.00	0.000	0.000	1.00	206

7	1	
	•	
2		
9		
9		
٠		
	ı	
c	١	
0		
4	s	
	•	
V	•	
2	5	
5		
_	١	

VARIABLE NAME	UNITS DISTRIBUTION		PARAMETERS		LIMITS		d by	
			MEAN	STD DEV	MIN	MAX	0.4	
Particle diameter		CONSTANT	-999 .	-999 .	-999 .	-999 .	<u>.</u>	
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	4	
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	19,	
Aquifer thickness	m	CONSTANT	6.10	-999.	-999.	-999.	9/202	
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.	-999.	122	
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	2	
Gradient (hydraulic)	-	CONSTANT	0.300E-0)2 -999.	-999.	-999.	20	
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	2:20:24	
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.		
Longitudinal dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	PM	
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.		
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.		
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.		
рН		CONSTANT	7.00	-999.	-999.	-999.		
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.		
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.		
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.		
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.		


MAXIMUM WELL CONCENTRATION IS 291.1 AT 258 YEARS

Appendix E Multimedia Exposure Assessment Model (MULTIMED)

Deferral Area

Received by OCD: 4/19/2022 2:20:24 PM

Chloride Concentration at the Receptor Well (Deferred Area) Mewbourne Oil Company Red Hills Recycle Pond Facility

ENVIRONMENTAL PROTECTION AGENCY

EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.50, 2005)

Released to Imaging: Rem options

Mewbourne Oil Company

Rid Hills Recycle Pond Facility

Cremical simulated is Chloride

Option Chosen

Saturated and unsaturated zone models Run was DETERMIN

Infiltration Specified By User: 2.286E-02 m/yr

Run was transient

Well Times: Find Maximium Concentration Reject runs if Y coordinate outside plume

Reject runs if Z coordinate outside plume

Gaussian source used in saturated zone model

UNSATURATED ZONE FLOW MODEL PARAMETERS (input parameter description and value)

NP -	Total number of nodal points	240
NMAT -	Number of different porous materials	3
KPROP -	Van Genuchten or Brooks and Corey	1
IMSHGN -	Spatial discretization option	1
NVFLAYR -	Number of lavers in flow model	3

OPTIONS CHOSEN

Van Genuchten functional coefficients User defined coordinate system

Layer information

LAYER NO.	LAYER THICKNESS	MATERIAL PROPERTY
1	33.00	1
2	2.50	2
3	0.50	3

DATA FOR MATERIAL 1

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS DISTRIBUTION		PARA	METERS	LIMITS		
			MEAN	STD DEV	MIN	MAX	
turated hydraulic conductivity	cm/hr	CONSTANT	3.60	-999 .	-999 .	-999 .	
saturated zone porosity		CONSTANT	0.250	-999.	-999.	-999.	
r entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
pth of the unsaturated zone	m	CONSTANT	36.0	0.000	0.000	0.000	

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		 LI	LIMITS	
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999.	-999 .	-999 .	
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-02	2 -999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

DATA FOR MATERIAL 2

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		LIMITS		
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity	cm/hr	CONSTANT	0.140	-999 .	-999 .	-999 .	
Unsaturated zone porosity		CONSTANT	0.120	-999.	-999.	-999.	
Air entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
Depth of the unsaturated zone	m	CONSTANT	36.0	0.000	0.000	0.000	

DATA FOR MATERIAL 2

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS	e 63
			MEAN	STD DEV	MIN	MAX	of
Residual water content		CONSTANT	0.116	-999 .	-999.	-999 .	206

Brook and Corey exponent, EN __ -999. -999. -999. -999. CONSTANT ALFA coefficient 1/cmCONSTANT 0.500E-02 -999. -999. -999. 0.500E-02 -999. 1.09 -999. Van Genuchten exponent, ENN -999. -999. CONSTANT

ALFA coefficient Van Genuchten exponent, ENN	1/cm 	CONSTANT	1.09	-999. -999.	-999. -999.	-999. -999.	Receive
	DATA FO	OR MATERIAL 3					d by
	VADOSE ZONI	E MATERIAL VARIABL	ES				OCD:
	UNITS	DISTRIBUTION	 PARAM			 MITS	4/19/2
VARIABLE NAME	ONIIS	DISTRIBUTION	MEAN	STD DEV	MIN	MAX	022 :
Saturated hydraulic conductivity Unsaturated zone porosity Air entry pressure head Depth of the unsaturated zone	cm/hr m m	CONSTANT CONSTANT CONSTANT CONSTANT	0.848E-03 0.150 0.700 36.0	-999. -999. -999. 0.000	-999. -999. -999. 0.000	-999. -999. -999. 0.000	:-20:-24 PM

DATA FOR MATERIAL 3

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	VARIABLE NAME UNITS DISTRIBUTION PA		PARAN	PARAMETERS		LIMITS	
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999.	
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-03	3 -999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY -	Number of different layers used	1
NTSTPS -	Number of time values concentration calc	40
DUMMY -	Not presently used	1
ISOL -	Type of scheme used in unsaturated zone	2
N -	Stehfest terms or number of increments	18
NTEL -	Points in Lagrangian interpolation	3
NGPTS -	Number of Gauss points	104
NIT -	Convolution integral segments	2
IBOUND -	Type of boundary condition	3
ITSGEN -	Time values generated or input	1
TMAX -	Max simulation time	0.0
WTFUN -	Weighting factor	1.2

OPTIONS CHOSEN

Convolution integral approach Exponentially decaying continuous source

Computer generated times for computing concentrations

DATA FOR LAYER 1

		OR LAYER 1 TRANSPORT VARIABLE	ES				
VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS MEAN STD DEV		LIMITS MIN MAX		:
Thickness of layer Longitudinal dispersivity of layer Percent organic matter Bulk density of soil for layer Biological decay coefficient	m m g/cc 1/yr	CONSTANT DERIVED CONSTANT CONSTANT CONSTANT	36.0 -999. 0.000 1.99 0.000	-999. -999. -999. -999.	-999. -999. -999. -999.	-999. -999. -999. -999.	

CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS
			MEAN	STD DEV	MIN	MAX
Solid phase decay coefficient	1/yr	DERIVED	-999 .	-999 .	-999 .	-999 .
Dissolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Overall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Acid catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Neutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Base catalyzed hydrolysis rate	l/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Reference temperature	С	CONSTANT	25.0	-999.	-999.	-999.
Jormalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.
Distribution coefficient		DERIVED	-999.	-999.	-999.	-999.
Biodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.
air diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.
Reference temperature for air diffusion	С	CONSTANT	-999.	-999.	-999.	-999.
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.
apor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.
	tm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.
verall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00
Not currently used	-	CONSTANT	0.000	0.000	0.000	0.000
Not currently used		CONSTANT	0.000	0.000	0.000	0.000

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMI	ETERS	LI	IMITS	
			MEAN	STD DEV	MIN	MAX	
Infiltration rate	m/yr	CONSTANT	0.229E-01	-999.	-999 .	-999 .	
Area of waste disposal unit	m^2	CONSTANT	0.241E+04	-999.	-999.	-999.	
Duration of pulse	yr	DERIVED	0.100E-08	-999.	-999.	-999.	
Spread of contaminant source	m	DERIVED	-999.	-999.	-999.	-999.	

Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.
Source decay constant	1/yr	CONSTANT	0.250E-01	0.000	0.000	0.000
Initial concentration at landfill	mg/1	CONSTANT	0.193E+05	-999.	-999.	-999.
Length scale of facility	m	DERIVED	-999.	-999.	-999.	-999.
Width scale of facility	m	DERIVED	-999.	-999.	-999.	-999.
Near field dilution		DERIVED	1.00	0.000	0.000	1.00

AQUIFER SPECIFIC VARIABLES

Source decay constant Initial concentration at landfill Length scale of facility Width scale of facility Near field dilution	1/yr mg/l m m	CONSTANT CONSTANT DERIVED DERIVED DERIVED	0.250E-01 0.193E+05 -999. -999.	-999. -999. -999.	0.000 -999. -999. -999. 0.000	-999.	Received by OCD:
	AQUIFE	R SPECIFIC VARIABLE:	S				OCD: 4/
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM MEAN	 ETERS STD DEV	LI MIN	MITS MAX	19/2022
Particle diameter		CONSTANT	 -999.	 -999.	-999 .		2:20
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	20:24 PM
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	<i>† p</i>
Aquifer thickness	m	CONSTANT	6.10	-999.	-999.	-999.	X
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.	-999.	
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	
Gradient (hydraulic)		CONSTANT	0.300E-02		-999.	-999.	
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.	
Longitudinal dispersivity	m	FUNCTION OF X		-999.	-999.		
Transverse dispersivity	m	FUNCTION OF X		-999.	-999.	-999.	
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.	
рН		CONSTANT	7.00	-999.	-999.	-999.	
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.		
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.	
Angle off center	degree	CONSTANT	0.000	-999.	-999.		
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.	

MAXIMUM WELL CONCENTRATION IS 1774. AT 374 YEARS

ENVIRONMENTAL PROTECTION AGENCY

EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.50, 2005)

Imaging: Rem options

Mewbourne Oil Company

Rid Hills Recycle Pond Facility

Cremical simulated is Chloride

Option Chosen

Saturated and unsaturated zone models Run was DETERMIN

Infiltration Specified By User: 2.286E-02 m/yr

Run was transient

Well Times: Entered Explicitly

Reject runs if Y coordinate outside plume

Reject runs if Z coordinate outside plume

Gaussian source used in saturated zone model

UNSATURATED ZONE FLOW MODEL PARAMETERS (input parameter description and value)

NP	_	Total number of nodal points	240
NMAT	_	Number of different porous materials	3
KPROP	_	Van Genuchten or Brooks and Corey	1
IMSHGN	_	Spatial discretization option	1
NVFT.AYR	? _	Number of layers in flow model	3

OPTIONS CHOSEN

Van Genuchten functional coefficients User defined coordinate system

Layer information

ATERIAL	AYER THICKNESS	LAYER THICKNESS MATERIAL PROPERTY
	33.00	33.00 1
	2.50	2.50 2
	0.50	0.50

DATA FOR MATERIAL 1

VADOSE ZONE MATERIAL VARIABLES

CONSTANT	MEAN	STD DEV	MIN	MAX
СОИСТАИТ	2 60			
COMPILANT	3.60	-999.	-999.	-999.
CONSTANT	0.250	-999.	-999.	-999.
CONSTANT	0.700	-999.	-999.	-999.
CONSTANT	36.0	0.000	0.000	0.000
		ND MADERIAI 1	אס אאיידיסדאד 1	OR MATERIAL 1

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMETERS		RS LIMITS		
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999 .	
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-02	-999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

DATA FOR MATERIAL 2

VADOSE ZONE MATERIAL VARIABLES

VARIABLE NAME	UNITS	UNITS DISTRIBUTION		PARAMETERS		MITS	
			MEAN	STD DEV	MIN	MAX	
Saturated hydraulic conductivity	cm/hr	CONSTANT	0.140	-999 .	-999 .	-999 .	
Unsaturated zone porosity		CONSTANT	0.120	-999.	-999.	-999.	
Air entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
Depth of the unsaturated zone	m	CONSTANT	36.0	0.000	0.000	0.000	

DATA FOR MATERIAL 2

VADOSE ZONE FUNCTION VARIABLES

							00
VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS	e 68
			MEAN	STD DEV	MIN	MAX	g
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999 .	206

ALFA coefficient Van Genuchten exponent, ENN	1/cm 	CONSTANT	1.09	-999. -999.	-999. -999.	-999. -999.	Receive
	DATA F	OR MATERIAL 3					d by
	VADOSE ZON	E MATERIAL VARIABL	ES				ОСТ
							: 4/1
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	 ETERS	LI	 MITS	9/202
			MEAN	STD DEV	MIN	MAX	22 2
Saturated hydraulic conductivity	cm/hr	CONSTANT	0.848E-03		-999.	-999.	.20:
Unsaturated zone porosity Air entry pressure head	—— m	CONSTANT CONSTANT	0.150 0.700	-999. -999.	-999. -999.	-999. -999.	24 1
Depth of the unsaturated zone	m	CONSTANT	36.0	0.000	0.000	0.000	<u> </u>

DATA FOR MATERIAL 3

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	UNITS DISTRIBUTION PARAMETERS LIMITS			MITS		
			MEAN	STD DEV	MIN	MAX	
Residual water content		CONSTANT	0.116	-999 .	-999 .	-999 .	
Brook and Corey exponent, EN		CONSTANT	-999.	-999.	-999.	-999.	
ALFA coefficient	1/cm	CONSTANT	0.500E-03	-999.	-999.	-999.	
Van Genuchten exponent, ENN		CONSTANT	1.09	-999.	-999.	-999.	

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY -	Number of different layers used	1
NTSTPS -	Number of time values concentration calc	40
DUMMY -	Not presently used	1
ISOL -	Type of scheme used in unsaturated zone	2
N -	Stehfest terms or number of increments	18
NTEL -	Points in Lagrangian interpolation	3
NGPTS -	Number of Gauss points	104
NIT -	Convolution integral segments	2
IBOUND -	Type of boundary condition	3
ITSGEN -	Time values generated or input	1
TMAX -	Max simulation time	0.0
WTFUN -	Weighting factor	1.2

OPTIONS CHOSEN

Convolution integral approach Exponentially decaying continuous source Computer generated times for computing concentrations Page 69 of 206

DATA FOR LAYER 1

---- ---

VADOSE TRANSPORT VARIABLES

VARIABLE NAME	UNITS DISTRIBUTION		PARA	METERS	LIMITS		
	011210	21011(1201101)	MEAN	STD DEV	MIN	MAX	
Thickness of layer	m	CONSTANT	36.0	-999 .	-999 .	-999 .	
Longitudinal dispersivity of layer	m	DERIVED	-999.	-999.	-999.	-999.	
Percent organic matter		CONSTANT	0.000	-999.	-999.	-999.	
Bulk density of soil for layer	g/cc	CONSTANT	1.99	-999.	-999.	-999.	
Biological decay coefficient	1/yr	CONSTANT	0.000	-999.	-999.	-999.	

CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS
			MEAN	STD DEV	MIN	MAX
Solid phase decay coefficient	1/yr	DERIVED	-999 .	-999 .	-999 .	-999 .
Dissolved phase decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
Overall chemical decay coefficient	1/yr	DERIVED	-999.	-999.	-999.	-999.
cid catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.
Meutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.
Base catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.
eference temperature	C	CONSTANT	25.0	-999.	-999.	-999.
formalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.
eistribution coefficient		DERIVED	-999.	-999.	-999.	-999.
iodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.
ir diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.
eference temperature for air diffusion	С	CONSTANT	-999.	-999.	-999.	-999.
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.
apor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.
Tenry`s law constant a	tm-m^3/M	CONSTANT	-999.	-999.	-999.	-999.
verall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00
ot currently used	-	CONSTANT	0.000	0.000	0.000	0.000
Not currently used		CONSTANT	0.000	0.000	0.000	0.000

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMI	ETERS	LI	MITS	
			MEAN	STD DEV	MIN	MAX	
Infiltration rate	m/yr	CONSTANT	0.229E-01	-999 .	-999 .	-999 .	
Area of waste disposal unit	m^2	CONSTANT	0.241E+04	-999.	-999.	-999.	
Duration of pulse	yr	DERIVED	0.100E-08		-999.	-999.	
Spread of contaminant source	m	DERIVED	-999.	-999.	-999.	-999.	

Recharge rate	m/yr	CONSTANT	0.000	-999.	-999.	-999.
Source decay constant	1/yr	CONSTANT	0.250E-01	0.000	0.000	0.000
Initial concentration at landfill	mg/l	CONSTANT	0.193E+05	-999.	-999.	-999.
Length scale of facility	m	DERIVED	-999.	-999.	-999.	-999.
Width scale of facility	m	DERIVED	-999.	-999.	-999.	-999.
Near field dilution		DERIVED	1.00	0.000	0.000	1.00

AQUIFER SPECIFIC VARIABLES

Source decay constant Initial concentration at landfill Length scale of facility Width scale of facility Near field dilution	1/yr mg/l m m	CONSTANT CONSTANT DERIVED DERIVED DERIVED	0.250E-01 0.193E+05 -999. -999. 1.00	-999. -999. -999.	0.000 -999. -999. -999. 0.000	-999.	Received by OCD: 4/19
	AQUIFE	R SPECIFIC VARIABLE:	S				OCD: 4
VARIABLE NAME	UNITS	DISTRIBUTION	PARAM MEAN	 ETERS STD DEV		MITS MAX	4/19/2022
Particle diameter		CONSTANT	 -999.	 -999.	-999 .	-999 .	2:20:24
Aquifer porosity		CONSTANT	0.300	-999.	-999.	-999.	1:2
Bulk density	g/cc	CONSTANT	1.86	-999.	-999.	-999.	4 P
Aquifer thickness	m	CONSTANT	6.10	-999.	-999.	-999.	PM
Source thickness (mixing zone depth)	m	DERIVED	-999.	-999.	-999.	-999.	•
Conductivity (hydraulic)	m/yr	CONSTANT	315.	-999.	-999.	-999.	
Gradient (hydraulic)		CONSTANT	0.300E-02	-999.	-999.	-999.	
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.	
Retardation coefficient		DERIVED	-999.	-999.	-999.		
Longitudinal dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.	
Vertical dispersivity	m	FUNCTION OF X		-999.	-999.	-999.	
Temperature of aquifer	С	CONSTANT	20.0	-999.	-999.	-999.	
рН		CONSTANT	7.00	-999.	-999.	-999.	
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.	
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.	
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.	
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.	

TIME	CONCENTRATION
0.100E+0	2 0.00000E+00
0.100E+0 0.200E+0	
0.200E+0 0.300E+0	
0.400E+0	
0.500E+0	
0.600E+0	2 0.00000E+00
0.700E+0	2 0.00000E+00
0.800E+0	2 0.00000E+00
0.900E+0	2 0.00000E+00
0.100E+0	3 0.00000E+00
0.110E+0	3 0.00000E+00
0.120E+0	3 0.00000E+00
0.130E+0	3 0.00000E+00
0.140E+0	3 0.00000E+00
0.150E+0	3 0.49429E+00
0.160E+0	3 0.99038E+00
0.170E+0	3 0.42447E+01
0.180E+0	3 0.89503E+01
0.190E+0	3 0.19049E+02

0.200E+03 0.40927E+02 0.210E+03 0.62804E+02 0.220E+03 0.12270E+03 0.230E+03 0.18365E+03 0.240E+03 0.27895E+03 0.250E+03 0.39428E+03 0.260E+03 0.52274E+03 0.270E+03 0.68325E+03 0.280E+03 0.84376E+03 0.290E+03 0.10144E+04 0.300E+03 0.11855E+04 0.310E+03 0.13373E+04 0.320E+03 0.14766E+04 0.330E+03 0.15993E+04 0.340E+03 0.16764E+04 0.350E+03 0.17536E+04 0.360E+03 0.17652E+04 0.370E+03 0.17716E+04 0.380E+03 0.17429E+04 0.390E+03 0.16892E+04 0.400E+03 0.16259E+04 0.410E+03 0.15329E+04 0.420E+03 0.14399E+04 0.430E+03 0.13314E+04 0.440E+03 0.12212E+04 0.450E+03 0.11113E+04 0.460E+03 0.10016E+04 0.470E+03 0.89443E+03 0.480E+03 0.79637E+03 0.490E+03 0.69832E+03 0.500E+03 0.61514E+03 0.510E+03 0.53401E+03 0.520E+03 0.46247E+03 0.530E+03 0.39916E+03 0.540E+03 0.33905E+03 0.550E+03 0.29188E+03 0.560E+03 0.24473E+03 0.570E+03 0.20900E+03 0.580E+03 0.17520E+03 0.590E+03 0.14657E+03 0.600E+03 0.12282E+03 0.610E+03 0.10145E+03 0.620E+03 0.84947E+02 0.630E+03 0.69230E+02 0.640E+03 0.57967E+02 0.650E+03 0.46731E+02 0.660E+03 0.39066E+02 0.670E+03 0.31551E+02 0.680E+03 0.26024E+02 0.690E+03 0.21076E+02 0.700E+03 0.17150E+02 0.710E+03 0.13936E+02 0.720E+03 0.11187E+02 0.730E+03 0.91249E+01 0.740E+03 0.72280E+01 0.750E+03 0.59184E+01

Received by OCD: 4/19/2022 2:20:24 PM

0.760E+03 0.46511E+01 0.770E+03 0.38025E+01 0.780E+03 0.29791E+01 0.790E+03 0.24192E+01 0.800E+03 0.19059E+01 0.810E+03 0.15227E+01 0.820E+03 0.12051E+01 0.830E+03 0.94623E+00 0.840E+03 0.75106E+00 0.850E+03 0.57829E+00 0.860E+03 0.45909E+00 0.870E+03 0.34557E+00 0.880E+03 0.27262E+00 0.890E+03 0.20022E+00 0.900E+03 0.15430E+00 0.910E+03 0.11054E+00 0.920E+03 0.79675E-01 0.930E+03 0.53342E-01 0.940E+03 0.32863E-01 0.950E+03 0.17080E-01 0.960E+03 0.36497E-02 0.970E+03 0.00000E+00 0.980E+03 0.00000E+00 0.990E+03 0.00000E+00

0.100E+04 0.00000E+00

Appendix F Laboratory Analytical Reports

February 14, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 02/10/22 15:49.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Applyand By MC/

Received: 02/10/2022 Reported: 02/14/2022

Sampling Date: 02/09/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: FS 1 @ 12' (H220537-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	QR-03
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	116	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Applyzod By: MC/

Received: 02/10/2022 Reported: 02/14/2022

02/14/2022 RED HILLS RECYCLE FACILITY

Project Name: RED H: Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/09/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: FS 2 @ 13' (H220537-02)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	127	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	143	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/10/2022 Reported: 02/14/2022 Sampling Date: 02/09/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: FS 4 @ 4' (H220537-03)

BTEX 8021B	mg,	'kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	105	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	119	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Гах

02/10/2022 Sampling Date: 02/09/2022

Reported: 02/14/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NW 1 (H220537-04)

Received:

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	109	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/10/2022 Sampling Date: 02/09/2022

Reported: 02/14/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Project Number: Sample Received By: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: NW 2 (H220537-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	137	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	154	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/10/2022 Sampling Date: 02/09/2022

Reported: 02/14/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NW 3 (H220537-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	122	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	136	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/10/2022 Reported: 02/14/2022 Sampling Date: 02/09/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Project Number: 14966 Sample Received By:

Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: NW 4 (H220537-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	107 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	120 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/10/2022 Reported: 02/14/2022 Sampling Date: 02/09/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Number: 14966

Project Location: MEWBOURNE

Sample ID: EW 1 (H220537-08)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	100	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	113	% 59.5-14	22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/10/2022 Sampling Date: 02/10/2022

Reported: 02/14/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 1 (H220537-09)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	206	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	57.8	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	105	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	125	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/10/2022 Sampling Date: 02/10/2022

Reported: 02/14/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 2 (H220537-10)

BTEX 8021B	mg	/kg	Analyze	ed By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/13/2022	ND	1.84	92.0	2.00	9.98	
Toluene*	<0.050	0.050	02/13/2022	ND	1.85	92.7	2.00	9.19	
Ethylbenzene*	<0.050	0.050	02/13/2022	ND	1.88	94.1	2.00	8.65	
Total Xylenes*	<0.150	0.150	02/13/2022	ND	5.84	97.3	6.00	8.46	
Total BTEX	<0.300	0.300	02/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/11/2022	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/13/2022	ND	201	101	200	1.08	
DRO >C10-C28*	<10.0	10.0	02/13/2022	ND	204	102	200	0.128	
EXT DRO >C28-C36	<10.0	10.0	02/13/2022	ND					
Surrogate: 1-Chlorooctane	98.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	110	% 59.5-14	22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits inclured by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

RDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240

1.+2

Company Name	e: Etech Environmental & Safety Solu	_	. In	Ç.			_				BI		70			-	_	ANAL	YSIS	RE	EQU	EST		-		
	or: Lance Crepshaw						-	P	.0. 1		babh	io ba	and the still it								T	T	T			
Address: P.O								C	omr	anı	. M	1.	pourse													
City: Lovingt		Zip	: 88	260	-88	24	0	A	ttn:	RI		1	Runels													
Phone # (57)	5) 396-2378 Fax #: (575) 3	396-1	429						ddre				1047EL3													
Project #: 14	Project Owner Red Hills Recycle Facility n: Mambourse Oil Company Eric Mojica	r: R	11		R	1.		-	ity:	133.																
Project Name:	P 11-11 P F - 1-1	11	000	C	1 va	46 [J	-	_				Zip				<u>S</u>	18									
Project Location	ned Mills Necycle Jacility								tate		-	ZI	μ.		Chloride	TPH (8015M)	BTEX (8021B)									
Sampler Name:	T. M.		-			-		1	hon		-				Plo	8	×									
FOR LAB USE ONLY	Eric Mojica	_	Т		-	MATE	XIX	IP:	ax #		ERV.		SAMPLIN	iG	0	直	3TE									
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	TEWATER			SLUDGE OTHER:	ACID/BASE:		OTHER:		DATE	TIME												
1	F5 012'	C	li	Г		1		T	T	1		2.	9-22		1	1	V									
2	FS 2013	C	1			1				V		2	9.22		1	1	1									
3	FSYet	C	1			1				1			9.22		V	1	1									
4	NWI	C	1			1				1		2-	9-22		V	V	1									
5	NWA	C	1			1				1		2.	9-22		V	1	1									
4	NW3	C	1			1				1		2.	9.22		1	1	1									
7	NWY	C	1			1				1		2.	9-22		V	1	1								1	
8	EWI	C	1			1				N		2	.9.22		1	1	1									
9	SWI	C	1			1				1		2.	10.12		1	V	1				_					
10	SWA and Damages. Cardinal's liability and client's exclusive remedy for	C	1	L		1				V		2.	10-22		1	V	1									
service in no event shall of affiliates or successors aris Relinquished B	1-9-12 Fine: 49	Re	et led f, rega ecei	ved ved	By:	ther sur	जि द्वी	e, loss im is de	of use Sec up	CH	on of property of the	(ED	noured by clinical reasons and the state of re	ent, in substitutions or otherwise F*hone Re F*ax Resu	se. sult: lt: S:	O Ye	es (No Add'I No Add'I				A				

FORM-006 Revision 1.0

Received by OCD: 4/19/2022 2:20:24 PM

Page 13 of 13

[†] Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476

February 23, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 02/17/22 16:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 3 (H220637-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.159	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	90.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

02/17/2022 02/23/2022

RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/17/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW 4 (H220637-02)

Received:

Reported:

Project Name:

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.144	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	88.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	90.7	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 5 (H220637-03)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.096	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	89.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.2	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 6 (H220637-04)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.075	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	86.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.0	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Soil

Project Name:

Sampling Type: Sampling Condition: Cool & Intact

RED HILLS RECYCLE FACILITY Project Number: 14966

Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: SW 7 (H220637-05)

BTEX 8021B	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	<0.050	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	86.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	89.6	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 8 (H220637-06)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.057	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/21/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	88.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.2	% 59.5-14							

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022

RED HILLS RECYCLE FACILITY

Project Name: RED H Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/17/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW 9 (H220637-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.129	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	89.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.1	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022

MEWBOURNE

Sampling Date: 02/17/2022

Project Name: RED HILLS RECYCLE FACILITY

Sampling Type: Soil
Sampling Condition: Cool & Intact

Project Number: 14966

Sample Received By: Tamara Oldaker

Sample ID: SW 10 (H220637-08)

Project Location:

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.200	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	84.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	87.4	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Applyzod By: MC

Received: 02/17/2022 Reported: 02/23/2022

ma/ka

Sampling Date: 02/17/2022 Soil

Project Name:

Sampling Type: Sampling Condition: Cool & Intact

RED HILLS RECYCLE FACILITY Project Number: 14966

Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: SW 11 (H220637-09)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	<0.050	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	86.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	88.9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Number: 14966

Project Location: MEWBOURNE

Sample ID: SW 12 (H220637-10)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.24	112	2.00	12.9	
Toluene*	0.115	0.050	02/22/2022	ND	2.22	111	2.00	13.5	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.13	107	2.00	13.3	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.62	110	6.00	13.4	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	90.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.1	% 59.5-14	22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022

RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Location: **MEWBOURNE** Sampling Date: 02/17/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: SW 13 (H220637-11)

Project Name:

BTEX 8021B	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.163	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	89.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.5	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022

02/23/2022 Sampling

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/17/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: NW 5 (H220637-12)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.051	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.7	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	91.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.2	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

02/17/2022

Cool & Intact

Tamara Oldaker

Soil

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022

02/17/2022 Sampling Date:
02/23/2022 Sampling Type:
RED HILLS RECYCLE FACILITY Sampling Condition:

Sample Received By:

Project Name: RED H Project Number: 14966

Project Location: MEWBOURNE

Sample ID: NW 6 (H220637-13)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.121	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	81.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	83.5	% 59.5-14	22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: NW 7 (H220637-14)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.140	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	79.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	82.3	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: MEWBOURNE

ma/ka

Sample ID: NW 8 (H220637-15)

RTFY 8021R

BIEX 8021B	тд/кд		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.067	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	84.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	87.7	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NW 9 (H220637-16)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/22/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.070	0.050	02/22/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/22/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/22/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/22/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/22/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/22/2022	ND					
Surrogate: 1-Chlorooctane	88.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	90.8	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Project Number: 14966

Sample Received By:

Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NW 10 (H220637-17)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/23/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.135	0.050	02/23/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/23/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/23/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/22/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/22/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/22/2022	ND					
Surrogate: 1-Chlorooctane	87.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	93.5	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: NW 11 (H220637-18)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/23/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.116	0.050	02/23/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/23/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/23/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/22/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/22/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/22/2022	ND					
Surrogate: 1-Chlorooctane	87.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	89.7	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2022 Reported: 02/23/2022 Sampling Date: 02/17/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Project Number: 14966
Project Location: MEWBOURNE

Sample Received By: Tamara Oldaker

Sample ID: NW 12 (H220637-19)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/23/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.087	0.050	02/23/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/23/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/23/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/22/2022	ND	232	116	200	1.06	
DRO >C10-C28*	<10.0	10.0	02/22/2022	ND	198	99.0	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	02/22/2022	ND					
Surrogate: 1-Chlorooctane	87.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.5	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2022 Sampling Date: 02/17/2022

Reported: 02/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: NW 13 (H220637-20)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/23/2022	ND	2.21	110	2.00	0.242	
Toluene*	0.169	0.050	02/23/2022	ND	2.19	109	2.00	0.128	
Ethylbenzene*	<0.050	0.050	02/23/2022	ND	2.12	106	2.00	0.731	
Total Xylenes*	<0.150	0.150	02/23/2022	ND	6.58	110	6.00	0.649	
Total BTEX	<0.300	0.300	02/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	02/21/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/21/2022	ND	206	103	200	6.49	
DRO >C10-C28*	<10.0	10.0	02/21/2022	ND	193	96.6	200	7.38	
EXT DRO >C28-C36	<10.0	10.0	02/21/2022	ND					
Surrogate: 1-Chlorooctane	84.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	88.2 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Page 23 of 24

No Rush

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

1.12

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Solutions, Inc.	BILL TO		ANALYSIS REQUEST
	P.O. #:		
	Company: Mewborrne		
Zip: 88260 - 88240	Attn: Robbie Runnels		
75) 396-1429	Address:		
wner: Robbie Tynels	City:		
ty	State: Zip:	e Z	218
4	Phone #:	oric 801	BTEX (8021B)
	Fax #:	5 F	<u> </u>
MATRIX	PRESERV. SAMPLING	- =	[B]
(G)RAB OR (C)OMF # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	OTHER: ACID/BASE ICE / 4000tr OTHER.	ME	
C 1 1	1 2.17.22	11	V
CII	1	11	✓
CII	1)	11	1
CII	1	11	1
	1)	1	V
	1 1		1
	1 1	1	✓
		1	√
	/ /	1 1	
	of or lock wheel the limited in the amount main by the o	V V	V
a griffre in short seeins beview bemoon at line	nd received by Cardinal within 30 days after complet	ion of the applicable	
er by Cardinal, regardless of whether such class	rr is based upon any of the above stated reasons or	otherwise	es 🗆 No Add'l Phone #:
Received By:	M / / Fax i	Result:	
Sample Condi Cool intact C #1/3	Plea CHECKED BY: (Initials)	se email results	s to pm@etechenv.com.
	dy for any claim arising whether besed in contra half be deserved welved unifore made in writing a fact by Cardinal respectived whether such claim arising whether such ari	Company: Mewbourse Attn: Robbie Runsels Address: Where: Robbie Runsels Address: City: State: Zip: Phone #: Fax #: MATRIX PRESERV. SAMPLING WMO(0) WWW WALLEY WALL	Attn: Robbie Runnels Attn: Robbie Runnels Address: City: State: Zip: Phone #: Fax #: MATRIX PRESERV SAMPLING MATRIX PRESERV SAMPLING Address: City: State: Zip: Phone #: Fax #: DATE TIME C I J J J J J J J J J J J J J J J J J J

Released to Imaging: 5/18/2022 3:43:51 PM

NoRush

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES	
101 East Marland, Hobbs, NM 88240	

(575) 393-2326 FAX (575) 393-2476 Company Name: Etech Environmental & Safety Solutions, Inc. BILL TO **ANALYSIS REQUEST** Project Manager: Lance Crenshaw P.O. #: Company: Mentourne Address: P.O. Box 301 State: NM Zip: 88260 88 240 Attn: Robbie Rung/s City: Lovington- A.L. Phone #: (575) 396-2378

Project #: 1496

Project Name: Red Hills Recycle Facility

Project Location: Mewbourse Oil Company Address: TPH (8015M) Chloride **STEX (8021)** Phone #: Sampler Name: Eric Mojica MATRIX PRESERV. FOR LAB USE ONLY SAMPLING Sample I.D. Lab I.D. H2701037 DATE TIME SW13 2-17-22 NW 5 C 13 NW6 14 NW7 NW 8 C NW9 C C C Relinquished By: Phone Result: Add'l Phone #: ☐ Yes ☐ No Fax Result: REMARKS: Please email results to pm@etechenv.com. Delivered By: (Circle One) Sample Condition CHECKED BY: Cool Intact
Yes Yes
No No (initials) Sampler - UPS - Bus - Other:

FORM-006 Revision 1.0

February 28, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 02/25/22 13:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

A .. . l. d D. .. MC

02/25/2022 02/28/2022

RED HILLS RECYCLE FACILITY

Project Number: 14966

Received:

Reported:

Project Name:

Project Location: MEWBOURNE

Sampling Date: 02/24/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SP 1 @ SURFACE (H220744-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2000	16.0	02/26/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	100	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	104	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022

Project Name: RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Location: **MEWBOURNE** Sampling Date: 02/24/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact

Sample Received By: Tamara Oldaker

Sample ID: SP 1 @ 2' (H220744-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	464	16.0	02/26/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	94.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	97.3	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Sampling Date: 02/24/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SP 2 @ SURFACE (H220744-03)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1060	16.0	02/26/2022	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	97.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/24/2022

Project Name: RED HILLS RECYCLE FACILITY Sampling Type: Soil

Project Number: 14966 Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: SP 2 @ 20' (H220744-04)

BTEX 8021B	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	98.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	99.6	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/24/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SP 3 @ SURFACE (H220744-05)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1920	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	93.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	97.0	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Tax

Received: 02/25/2022 Sampling Date: 02/24/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SP 3 @ 14' (H220744-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	< 0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	96.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	99.1	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: MS

02/25/2022

Sampling Date:

02/24/2022

Reported: Project Name:

Received:

BTEX 8021B

02/28/2022

Sampling Type:

Soil

Project Name.

RED HILLS RECYCLE FACILITY

Sampling Condition:

Cool & Intact

Project Number: Project Location:

14966

MEWBOURNE

mg/kg

Sample Received By:

Tamara Oldaker

Sample ID: SP 4 @ SURFACE (H220744-07)

	9,	9	7						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1520	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	105	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	110	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported:

Sampling Date: 02/24/2022 02/28/2022 Sampling Type:

Project Name: RED HILLS RECYCLE FACILITY Project Number: 14966

Project Location: **MEWBOURNE**

Soil Sampling Condition: Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SP 4 @ 14' (H220744-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	104 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	108 9	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022

Project Name: RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/24/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SP 6 @ SURFACE (H220744-09)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	832	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	98.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	90.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022

RED HILLS RECYCLE FACILITY

Project Name: RED H.
Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/24/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SP 6 @ 2' (H220744-10)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	13.9	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	93.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Tamara Oldaker

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022

02/25/2022Sampling Date:02/25/202202/28/2022Sampling Type:SoilRED HILLS RECYCLE FACILITYSampling Condition:Cool & Intact

Sample Received By:

Project Name: RED H: Project Number: 14966

Project Location: MEWBOURNE

Sample ID: NH 1 @ SURFACE (H220744-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	103	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	113 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

02/25/2022

Soil

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

rax

Received: 02/25/2022 Sampling Date: Reported: 02/28/2022 Sampling Type:

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NH 1 @ 1' (H220744-12)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	13.7	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	98.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	108	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Гах

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NH 2 @ SURFACE (H220744-13)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	110	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported:

Sampling Date: Sampling Type: 02/25/2022

Project Name:

02/28/2022 RED HILLS RECYCLE FACILITY

Sampling Condition:

Soil Cool & Intact

Project Number:

14966

Sample Received By:

Tamara Oldaker

Project Location:

MEWBOURNE

Sample ID: NH 2 @ 1' (H220744-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	1.71	
Toluene*	<0.050	0.050	02/25/2022	ND	2.09	105	2.00	2.34	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.01	101	2.00	2.04	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.21	103	6.00	2.56	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	177	88.5	200	0.407	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	193	96.7	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	107	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	118 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Ida

02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NH 3 @ SURFACE (H220744-15)

Received:

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/25/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	125	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	127	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/25/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: NH 3 @ 1' (H220744-16)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/25/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/25/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/25/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/25/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/25/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	124	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	127	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported:

Sampling Date:

02/25/2022

Project Name:

02/28/2022

Sampling Type: Sampling Condition: Soil Cool & Intact

Project Number:

RED HILLS RECYCLE FACILITY

Sample Received By:

Tamara Oldaker

Project Location:

14966

MEWBOURNE

Sample ID: EH 1 @ SURFACE (H220744-17)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/25/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/25/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/25/2022	ND					
Surrogate: 1-Chlorooctane	120	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	121	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Applyzod By: MC

Received: 02/25/2022 Reported: 02/28/2022

02/28/2022 RED HILLS RECYCLE FACILITY

Project Name: RED H Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 02/25/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: EH 1 @ 1' (H220744-18)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	123	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	125	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: EH 2 @ SURFACE (H220744-19)

BTEX 8021B	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	108 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	109 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: EH 2 @ 1' (H220744-20)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	118	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	119	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SH 1 @ SURFACE (H220744-21)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	120	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SH 1 @ 1' (H220744-22)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	126	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	127	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/25/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: 14986

Project Location: MEWBOURNE

Sample ID: SH 2 @ SURFACE (H220744-23)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	2.58 2.29 2.69 3.21 RPD Qu 3.77	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	<0.050 0.050		ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	<0.150 0.150		ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	<0.300 0.300		ND					
Surrogate: 4-Bromofluorobenzene (PID 104 %		% 69.9-14	69.9-140						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Analyzed Method Blank		% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0 10.0		02/26/2022	ND					
Surrogate: 1-Chlorooctane	rogate: 1-Chlorooctane 123 % 66.9-1		6						
Surrogate: 1-Chlorooctadecane 125 %		% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/25/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Project Number: 14966
Project Location: MEWBOURNE

Sample Received By: Tamara Oldaker

Sample ID: SH 2 @ 1' (H220744-24)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 % 69.9-14		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Analyzed Method Blank		% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	122	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	125	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: MEWBOURNE

Sample ID: SH 3 @ SURFACE (H220744-25)

RTFY 8021R

BIEX 8021B	mg	/ Kg	Analyze	а ву: мѕ					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	<0.150 0.150		ND	6.39	107	6.00	3.21	
Total BTEX	<0.300 0.300		02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 % 69.9-14		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	125 % 66.9		6						
Surrogate: 1-Chlorooctadecane	131 % 59.5-142		2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/25/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Project Number: Project Location: 14966

MEWBOURNE

Sample Received By: Tamara Oldaker

Sample ID: SH 3 @ 1' (H220744-26)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	uene* <0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	<0.050 0.050		ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	<0.150 0.150		ND	6.39	107	6.00	3.21	
Total BTEX	<0.300 0.300		02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 % 69.9-14		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	121	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	124 % 59.5-142		22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: WH 1 @ SURFACE (H220744-27)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	<0.050 0.050		ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	<0.150 0.150		ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	<0.300 0.300		ND					
Surrogate: 4-Bromofluorobenzene (PID	rrogate: 4-Bromofluorobenzene (PID 106 % 6		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Analyzed Method Blank		% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	02/26/2022	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0 10.0		02/26/2022	ND					
Surrogate: 1-Chlorooctane	ogate: 1-Chlorooctane 118 % 66.9-1		6						
Surrogate: 1-Chlorooctadecane 121 % 59.5-1		2							

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: WH 1 @ 1' (H220744-28)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	<0.150 0.150		ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	<0.300 0.300		ND					
Surrogate: 4-Bromofluorobenzene (PID	105 % 69.9-14		9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Analyzed Method Blank		% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	02/26/2022 ND		416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	113	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	116 % 59.5-142		2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/25/2022 Sampling Date: 02/25/2022

Reported: 02/28/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: WH 2 @ SURFACE (H220744-29)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/26/2022	ND	2.11	106	2.00	2.58	
Toluene*	<0.050 0.050		02/26/2022	ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	0.300	02/26/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 % 69.9-14		0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/26/2022 ND		416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	10.0	02/26/2022	ND					
Surrogate: 1-Chlorooctane	112	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	114	% 59.5-14	22						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/25/2022 Reported: 02/28/2022 Sampling Date: 02/25/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Number: 14966

Project Location: **MEWBOURNE**

Sample ID: WH 2 @ 1' (H220744-30)

BTEX 8021B	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050			ND	2.11	106	2.00	2.58	
Toluene*	<0.050	<0.050 0.050		ND	2.08	104	2.00	2.29	
Ethylbenzene*	<0.050	0.050	02/26/2022	ND	2.08	104	2.00	2.69	
Total Xylenes*	<0.150	0.150	02/26/2022	ND	6.39	107	6.00	3.21	
Total BTEX	<0.300	<0.300 0.300		ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	nalyzed Method Blank		% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/26/2022 ND		416	104	400	3.77	
TPH 8015M	mg,	'kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/26/2022	ND	223	112	200	3.17	
DRO >C10-C28*	<10.0	10.0	02/26/2022	ND	257	129	200	15.7	
EXT DRO >C28-C36	<10.0	<10.0 10.0		ND					
Surrogate: 1-Chlorooctane	111 % 66.9-136		6						
Surrogate: 1-Chlorooctadecane	,		2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

1 of 3

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name	ompany Name: Etech Environmental & Safety Solutions, Inc.						BILL TO							ANA	LYSIS	RE	QUES	T		
Project Manage	r. Lance Crenshaw					P.O. #:														
Addrose: PO	Boy 301				C	ompa	iny:	Mo	- bourg	e										
City: Levingto	Hobbs State: NM	Zip:	882	8824	0 1	ttn: R	obb	ie	Rugge	s										
Phone #: (57	5) 396-2378 Fax #: (575) 3	96-14	29		A	ddres	s:													
Project #: 14	966 Project Owner	: Ra	4	e Russel.	C	ity:		_												
Project Name:	Red Hills Rossele Facility	,,		1 Mine	S	State: Zip:					5M)	9								
Project Location	State: NM 5) 396-2378 Fax #: (575) 3 Project Owner Red Hills Recycle Facility Mew bourse Oil Company Eric Mojica	-			P	Phone #:				Chloride	TPH (8015M)	STEX (8021B)								
Sampler Name:	Esia Maila	7			E	Fax #:			-	Shk	I	X								
FOR LAB USE ONLY	27107101	П	1	MATRIX	(PRE	SER	V.	SAMPLIN	IG		<u>م</u>	E							
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER WASTEWATER SOIL	SLUDGE	ACID/BASE	ICE / 000E	OTHER:	DATE	TIME										
	SPI@Suf.	G	1	1			1	12	-24-22		1	1	1							
2	Sf 102.	G	1	1			1		1		1	1	1							
3	SP2020'	G		1			1		>		1	1	V							
4	SP2020'	G		4			1		<		1	1	1							
5	sf3 es.f.	G	1	1			1	L	>		1	1	/							
4	Sf 3 e S. f. Sf 3 e 14'	G	1	1			1		<		1	/	1							
7	SP4 Suf.	G	Ц	1			1	-	>		1	/	1							
8	594014	G	П	1			1	-	1		1	1	/				-		-	
9	SP b e Suf.	G	Ц	V			1	-)		1	V	/				-		+	-
DI EASE NOTE: Liability on	SP6 • 2' Darmages, Cardinal's liability and client's exclusive remedy for a	G	П	ubalbar bosad in co	alract or b	ort chall t	√ Emile	ad to th	/	by the client for	V		V							
analyses All claims include	ng those for negligence and any other cause whatsoever shall be	deemed v	waived	unless made in writin	ng and rec	ceived by	Cardina	al within	n 30 days after o	orapletion of th	e applicab	de								
affiliates or successors arisi	ardinal be table for incidental or consequental damages, including any out of or related to the performance of services hereunder by o				claim is ba	ased upon	any of	the ab				(1 Ye	- CI No	10-4-09	Dhana					
Relinquished B	Time: Date: Time:	Rec	eive	ed By: AUAT ed By:		£1	de	2/	SUR	Phone Res Fax Result REMARKS	E	O Ye	□ No	Add1						
Delivered By	(Circle One) 3.1 c C-0 - Bus - Other: (2.6 c ‡	,58	00	Sample Con	ndition	1 (CKED	BY:	Please e	mall f	ESURS	to build	elechen	IV.COITI					
Sampler - UPS	- Bus - Other: (2.6° #	#113	5	Yes T	Yes	-	7													

FORM-006

Revision 1.0

Received by OCD: 4/19/2022 2:20:24 PM

† Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476

Page 33 of 35

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

Company Name: Etech Environmental &	Safety Solutions, Inc.	BILL TO		ANALYSIS REQUEST
Project Manager: Lance Creashaw		P.O. #:		
	te: NM Zip: 88260- 88.240 #: (575) 396-1429	Attn: Robbie Runnels Address:		
Project #: 14966 Project Name: Red Hills Rocgele Fa Project Location: Me bourse Oil Ca Sampler Name: Eric Mojica	ject Owner: Robbie Runnal,	City: State: Zip:	Chloride TPH (8015M) BTEX (8021B)	
Project Location: Me whow (A & Di Ca	menay	Phone #:	Chloride PH (8015) EX (8021	
Sampler Name: Eric Mojica	7 - 3	Fax #:	등 분 교	
FOR LAB USE ONLY	Q. MAIRIA	PRESERV. SAMPLING	TE TE	
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	OTHER: ACID/BASE: ICE / 980F OTHER THER		
11 NHIOSuf.	GII	1 2-25-22	111	
12 NH101'	GII	1	111	
13 NH 2es.,f.	GII	1	111	
14 NH 201	GII	1	111	
15 NH3es.,f.	GIIV	1	111	
14 NH301	GIIV		111	
17 EH 105.,f.	GII	1	111	
18 EH 101'	GII		111	
19 EH 20 Juf.	GII	1	111	
20 EH2e1	GII		111	
inityses. All claims including those for negligence and any other cause we rince. In no event shall Cardinal be liable for incidental or consequential litates or successors arising out of or related to the performance of service (elinquished By:	resumpse, including without firefultion, business interruptions is hereunder by Cardinal, regardless of whether such claim Received By: 35-22 315 Lawata	nd received by Cardinel within 30 days after completion of t , loss of use, or loss of profite incurred by client, its subsidis	tio applicable intes, ites. seculit: Yes No.	
Delivered By: (Circle One) 3.12 Sampler - UPS - Bus - Other:	Sample Condition of the	CHECKED BY:	email results to pm@	getechenv.com.

Released to Imaging: 5/18/2022 3:43:51 PM

(E)

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

3.+3

Company Name: Etech Environmental & Safety		BILL TO	ANALYSIS REQUEST
Project Manager: Lance Cranshaw		P.O. #:	
Address: P.O. Box 301 City: Lovington Holls State: N Phone #: (575) 396-2378 Project #: 14966 Project Name: Red Hills Recycle Fa Project Location: Mewborne Oil Com Sampler Name: Eric Mojica FOR LAB USE ONLY	M Zip: 89269 88240 575) 396-1429 Owner: Relate Russels	Attn: Robbie Runnels Address: City:	
Project Name: Red Hills Recycle Fa Project Location: Mewborre Oil Com	cility	State: Zip: Phone #:	Chloride TPH (8015M) BTEX (8021B)
Sampler Name: Eric Mojica		Fax #:] 5 표 현
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	الواشا	
21 SH 1 = Su.f.	a 1 1	1 2.25.72	111
SHIOSU.F.	GII	1 7	111
23 SH 205, f.	all 1	11	111
34 SH2e1"	GII	11	1111
25 SH 3es.f.	GIIV	1	111
26 SH 301'	GIII	1	1111
27 WHIOS.,f.	GIIV		111
28 WHIEL	GIIV	1	1111
27 WH20 Suf.	GIIJ	1	777
30 WH201	GII I	1 / /	
Relinquished By: Car Mark Relinquished By: Date: Relinquished By: Time: Time:	shall be deemed waived unless made in willing ar including without limitation, business interruptions, after by Cardinal, regardless of whether such claim	d received by Cardinal within 30 days after correlation of the loss of use, or loss of profile incurred by client, its substidint is based upon any of the above stated reasons or otherwise. Phone Re Fax Result REMARK:	the applicable infes. wise. esuit:

FORM-006 Revision 1.0

† Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476

Released to Imaging: 5/18/2022 3:43:51 PM

March 02, 2022

LANCE CRENSHAW
Etech Environmental & Safety Solutions
2617 W MARLAND
HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 03/01/22 15:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/01/2022 Sampling Date: 03/01/2022

Reported: 03/02/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SP 2 @ 21' (H220792-01)

(Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
	Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
(Chloride	96.0	16.0	03/02/2022	ND	432	108	400	3.77	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Rush

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name	: Etech Environmental & Safety Sole	utions, Inc.	BILL TO		ANALYSIS REQUEST
Project Manage	r. Lance Creashaw		P.O. #:		
Phone #: (575	en- Hobbs State: NM	396-1429	Company: Mew bourn Attn: Robbie Runnel Address: City:	5	
Project Name:	Red Hills Recycle Pacility		State: Zip:	de 5M)	
Project Location	n: Mewbourne Oil Company		Phone #:	Chloride TPH (8015M) BTEX (8021B)	
Sampler Name:	Eric Mojican		Fax #:	- 등 표 전	
FOR LAB USE ONLY		MAIRIA	PRESERV. SAMPLING		
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	OTHER: ACID/BASE: ICE / COOK OTHER:		
H220792	Sp2021	# COI GROU WAST VASSIL OIL		TIME	
L	Stag al	G	1 3-1-22	- V - -	++++++
-					
analyses. All claims includi	nd Dernages, Cardinal's liability and client's exclusive remedy for ng those for negligence and any other cause whatsoever shall be ardinal be liable for incidental or consequental demages, including	e deemed walved unless made in writing a	nd received by Cardinal within 30 days after co	mpletion of the applicable	
	ng out of or related to the performence of services hereunder by				Add'l Phone #:
Relinquished Br	Date: 3-1-22 Time: Date: Time:	Received By:	allocation !	ax Result: ☐ Yes ☐ No EMARKS:	Add'l Fax #:
	: (Circle One) 3.7 2 C-6	Sample Condi Cool Intact	tion CHECKED BY:	lease email results to pm@	etechenv.com.

FORM-006 Revision 1.0

March 15, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 03/10/22 15:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/10/2022 Sampling Date: 03/09/2022

Reported: 03/15/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Jodi Henson

Project Location: MEWBOURNE

Sample ID: SW 1 - A (H220978-01)

TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	100 %	66.9-13	6						
Surrogate: 1-Chlorooctadecane	115 %	6 59 5-1 <i>4</i>	12						

Sample ID: NW 14 (H220978-02)

BTEX 8021B	mg/	'kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.94	97.2	2.00	9.42	
Toluene*	<0.050	0.050	03/14/2022	ND	1.94	96.9	2.00	9.85	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.94	96.8	2.00	9.98	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	6.01	100	6.00	8.99	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/14/2022	ND	416	104	400	3.77	
TPH 8015M	TPH 8015M mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/10/2022 Sampling Date: 03/09/2022

Reported: 03/15/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Jodi Henson

Project Location: MEWBOURNE

Sample ID: NW 14 (H220978-02)

TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	95.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	111 9	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Applyzod By: MC\

Received: 03/10/2022 Reported: 03/15/2022 Sampling Date: 03/09/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Project Location: MEWBOURNE

ma/ka

Sample ID: NW 15 (H220978-03)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.94	97.2	2.00	9.42	
Toluene*	<0.050	0.050	03/14/2022	ND	1.94	96.9	2.00	9.85	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.94	96.8	2.00	9.98	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	6.01	100	6.00	8.99	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/14/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	95.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	109	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Applyzod By: MC\

Fax To:

Received: 03/10/2022 Sampling Date: 03/09/2022

Reported: 03/15/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Jodi Henson

Project Location: MEWBOURNE

ma/ka

Sample ID: NW 16 (H220978-04)

RTFY 8021R

BIEX 8021B	mg	^и кд	Anaiyze	a By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/14/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	106	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Applyzod By: MC\

Fax To:

Received: 03/10/2022 Sampling Date: 03/09/2022

Reported: 03/15/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Jodi Henson

Project Location: MEWBOURNE

ma/ka

Sample ID: NW 17 (H220978-05)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/14/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	110	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	127	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/10/2022 Reported: 03/15/2022 Sampling Date: 03/09/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Project Number: 14966

Sampling Condition: Cool & Intact Sample Received By: Jodi Henson

Project Location: **MEWBOURNE**

Sample ID: NW 18 (H220978-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	69.9-14	0						
hloride, SM4500Cl-B mg/kg		Analyzed By: AC							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/14/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	99.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	115 9	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/10/2022 Reported: 03/15/2022

03/15/2022 RED HILLS RECYCLE FACILITY

Project Name: RED HI Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 03/09/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Sample ID: SW 14 (H220978-07)

BTEX 8021B	mg	/kg	Analyze	ed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	03/14/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	105	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	124	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/10/2022 Sampling Date: 03/09/2022

Reported: 03/15/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Jodi Henson

Project Location: **MEWBOURNE**

Sample ID: SW 15 (H220978-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	< 0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/14/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	106 %	66.9-13	6						
Surrogate: 1-Chlorooctadecane	123 %	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/10/2022 Reported: 03/15/2022 Sampling Date: 03/10/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

Project Location: MEWBOURNE

Sample ID: SW 16 (H220978-09)

BTEX 8021B	mg	/kg	Analyze	ed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	9.05	
Toluene*	<0.050	0.050	03/14/2022	ND	1.91	95.6	2.00	9.48	
Ethylbenzene*	<0.050	0.050	03/14/2022	ND	1.93	96.5	2.00	8.77	
Total Xylenes*	<0.150	0.150	03/14/2022	ND	5.99	99.8	6.00	8.65	
Total BTEX	<0.300	0.300	03/14/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/14/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2022	ND	201	101	200	4.45	
DRO >C10-C28*	<10.0	10.0	03/15/2022	ND	214	107	200	4.58	
EXT DRO >C28-C36	<10.0	10.0	03/15/2022	ND					
Surrogate: 1-Chlorooctane	87.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	99.7	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

NoRosh

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES

162 of 206

101 East Marland, Hobbs, NM 88240

Company Name: Etech Environmental & Safety Solutions,	. Inc.	BILL TO			Δ	NAI YSIS	REQUEST	
Project Manager: Lance Crenshaw		P.O. #:	T	T	TT			
Address: P.O. Box 301		Company: Mawbourne						
City: Lovington State: NM Zip:	28260-	Attn: Robbie Runels						
Phone #: (575) 396-2378 Fax #: (575) 396-1		Address:						and the same of th
Project #: 14966 Project Owner: Pol	I. P. J.	City:						
Project Name: D Hills Persiste F -1:1.	DOJE NUMBERS	-	1 - 1	W	9			
Project Name: Red Hills Recycle Facility Project Location: Me Sheurae Dil Company			Chloride	FPH (8015M)	BTEX (8021B)			
Sampler Name: E - M	The second secon	Phone #:	일	1 (8	×			
Sampler Name: Eric Mojica	MATRIX	Fax #: PRESERV: SAMPLING	-0	10	37E			
MP.	RS TER		American alternative the material property of the second					
(SWI-A G		1 3.9.22		1				
1 SWI-A 2 NW 14 G	11 1	1	1	1	1			
3 NW 15 G		1	1	/	1			
4 NW 16 5 NW 17 G			V	1	/			
5 NW 17 G	1 1	1	V	V	1			
6 NM 8	1	1	1	1	V			
7 SWIF 6 6	1 1		1	/	/			
8 SW 15 9 SW 16	1	1 /	1	V	V			
9 SW16 G		1 3-10-22	V	V	/			
ASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive revealy for any claim	ariaha saharihar basadin cashard	or had shall be finished to the amount and for the clean	77.00					
pees. All claims. Including those for negligence and any other cause whatsoever shall be deemed. (io In no event shall Cardinal be lighte for incidental or consequential damages, including without in the processors shall no ut of or related to the ordermance of eventual transfer by Cardinal.	trained unless made in writing and firmination, business interruptions, is regardless of whether such claim is getived By: OCL HE CEIVED BY:	d received by Cardinal within 30 days after completion of lose of use, or lose of profils incurred by client, its subsit is based upon any of the above stated reasons at other law of the above stated r	the applicable inries. vice essult: Cult: C	Yes Yes		dd'l Phone #: nd'l Fax #: nenv.com.		

FORM-006 Revision 1.0

March 22, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 03/16/22 15:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

A ... - L ... - - - I D. .. MC

Received: 03/16/2022 Reported: 03/22/2022

Project Name: RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 03/15/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: EW 2 (H221056-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.78	
Toluene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.73	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.01	101	2.00	1.44	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.19	103	6.00	0.540	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2022	ND	202	101	200	5.19	
DRO >C10-C28*	<10.0	10.0	03/19/2022	ND	238	119	200	16.7	
EXT DRO >C28-C36	<10.0	10.0	03/19/2022	ND					
Surrogate: 1-Chlorooctane	120	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	149	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/16/2022 Sampling Date: 03/15/2022

Reported: 03/22/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Analyzed By: MS

Project Location: MEWBOURNE

mg/kg

Sample ID: EW 3 (H221056-02)

BTEX 8021B

	9,	9	7	7: : : :					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.78	
Toluene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.73	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.01	101	2.00	1.44	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.19	103	6.00	0.540	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2022	ND	202	101	200	5.19	
DRO >C10-C28*	<10.0	10.0	03/19/2022	ND	238	119	200	16.7	
EXT DRO >C28-C36	<10.0	10.0	03/19/2022	ND					
Surrogate: 1-Chlorooctane	121	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	150	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported: 03/22/2022

03/22/2022 Sampling Type: RED HILLS RECYCLE FACILITY Sampling Condition:

Analyzed By: MS

Project Name: RED HILLS RECYCLE
Project Number: 14966

mg/kg

Project Location: MEWBOURNE

Sampling Date: 03/15/2022

mpling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: EW 4 (H221056-03)

BTEX 8021B

DIEX GOZID	mg/	- Kg	Andryzo	a by. 1-15					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.78	
Toluene*	<0.050	0.050	03/21/2022	ND	2.10	105	2.00	1.73	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.01	101	2.00	1.44	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.19	103	6.00	0.540	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2022	ND	202	101	200	5.19	
DRO >C10-C28*	<10.0	10.0	03/19/2022	ND	238	119	200	16.7	
EXT DRO >C28-C36	<10.0	10.0	03/19/2022	ND					
Surrogate: 1-Chlorooctane	117 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	146	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported: 03/22/2022

03/22/2022 RED HILLS RECYCLE FACILITY

Project Name: RED H.
Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 03/15/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: EW 5 (H221056-04)

BTEX 8021B	mg	/kg	Analyze	ed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	94.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	106	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported: 03/22/2022

RED HILLS RECYCLE FACILITY

Project Name: RED H Project Number: 14966

Project Location: MEWBOURNE

Sampling Date: 03/16/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: EW 6 (H221056-05)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	103	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/16/2022 Sampling Date: 03/15/2022

Reported: 03/22/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Applyzod By: MC\

Project Location: MEWBOURNE

ma/ka

Sample ID: WW 6 (H221056-06)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	92.5	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

03/15/2022

Tamara Oldaker

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported:

Sampling Date: 03/22/2022 Sampling Type:

Project Name: Project Number: 14966

Project Location: **MEWBOURNE**

Soil RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact

Sample Received By:

Sample ID: WW 7 (H221056-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	97.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	112 %	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

03/15/2022

Cool & Intact

Tamara Oldaker

Soil

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported: 03/22/2022

03/16/2022 Sampling Date:
03/22/2022 Sampling Type:
RED HILLS RECYCLE FACILITY Sampling Condition:

Sample Received By:

Project Name: RED H Project Number: 14966

Project Location: MEWBOURNE

Sample ID: WW 8 (H221056-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	78.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	83.0	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/16/2022 Sampling Date: 03/15/2022

Reported: 03/22/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: SW 17 (H221056-09)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	76.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	81.4	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/16/2022 Reported:

Sampling Date: 03/16/2022 03/22/2022 Sampling Type: RED HILLS RECYCLE FACILITY

Project Name: Project Number: 14966

Project Location: **MEWBOURNE**

Soil Sampling Condition: Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SW 18 (H221056-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/21/2022	ND	2.13	107	2.00	2.29	
Toluene*	<0.050	0.050	03/21/2022	ND	2.12	106	2.00	2.13	
Ethylbenzene*	<0.050	0.050	03/21/2022	ND	2.11	106	2.00	1.64	
Total Xylenes*	<0.150	0.150	03/21/2022	ND	6.49	108	6.00	1.15	
Total BTEX	<0.300	0.300	03/21/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	03/21/2022	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/21/2022	ND	208	104	200	2.41	
DRO >C10-C28*	<10.0	10.0	03/21/2022	ND	199	99.7	200	2.77	
EXT DRO >C28-C36	<10.0	10.0	03/21/2022	ND					
Surrogate: 1-Chlorooctane	76.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	79.2	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

company Name:	Etech Environmental & Safety Solut	tions, Inc.	BILL TO		ANALYSIS REQUEST
roject Manager:	Lance Creashaw		P.O. #:		
ddress: P.O. B	lox 301		Company: Mewbourne		
ity: Lovington	H. 565 State: NM 396-2378 Fax #: (575) 3	Zip: 88260-8824/	Company: Meubourne Attn: Robbie Rumels		
Phone #: (575) 3	Sec-2378 Fax #: (575) 3 Project Owner ed Hills Recycle Facili Mewbourne Oil Campa Eric Mojica	96-1429	Address:		
roject #: \49 /	6 Project Owner	Robbie Russ	City:		
roject Name: R	ed Hills Rossala Facili	+a	State: Zip:	- W W	
roject Location:	Manhause A-1 (3	Phone #:	orld 802	
Sampler Name:	Eric Mojica	19	Fax #:	Chloride TPH (8015M)	
FOR LAB USE ONLY	The Trojeca	MATRIX	PRESERV. SAMPLING	4 F B	
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL	ACID/GE OTHER: ACID/BASE: OTHER: OTHER:		
1)	EW2	C 1 1	1 3.15.22	111	
2/	EW3	CIIV	1	111	
3 7	TAN EN4	CIV	1	VVV	
4 1	WAR EWS	CIV	1	111	
51	WIN EWG	CIV	1 3.16.22	V V V	
9	MMM MM8	CIV	V 3.15.22	VVV	
/ 11/9	WHAT WW7	CIIV	1 1	V V V	
8 1	WW8	CIIV		V V \	4
5	SWII	CIIV	1 2 11 20	V V V	/
EASE NOTE: Liability and Da	amanas Carrinats liability and client's authorius remarks for a	ny claim arising whether head in contr	act or tort, shall be limited to the amount paid by the clien	for the	
alyses. All claims including th	nages, Caramar's eating one consists excessive remark to a rose for negligence and any other cause whatsoever shall be out to be flable for incidental or consequental damages, including	deemed waived unless made in writing	and received by Cardinal within 30 days after completion		
	ut of or related to the performance of services hereunder by C			rwise	□ No Add'l Phone #:
Lie Misjelinguished By.	Date: 3-/6-22 Time: 550 Date:	RECEIVED BY:	Fax Rename	sult:	□ No Add'I Fax #:
Delivered By: (6	5116	0, Sc Sample Cond Cool Intac	fition CHECKED BY:	email results to	pm@etechenv.com.

March 23, 2022

LANCE CRENSHAW
Etech Environmental & Safety Solutions
2617 W MARLAND
HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 03/18/22 15:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/18/2022 Reported: 03/23/2022 Sampling Date: 03/18/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 1 @ SURFACE (H221096-01)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	20800	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	29.8	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	22.6	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	91.3	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	92.9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/18/2022 Reported: 03/23/2022 Sampling Date: 03/18/2022 Sampling Type: Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Number:

14966

Project Location: **MEWBOURNE**

Sample ID: DSP 1 @ 1' (H221096-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	<10.0	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	98.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	100 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: DSP 2 @ SURFACE (H221096-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	26000	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	1040	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	928	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	97.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	129 9	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: DSP 2 @ 1' (H221096-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	18.4	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	18.2	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	107 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	108 9	59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 3 @ SURFACE (H221096-05)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32800	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	4700	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	1260	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	255	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: MS

Received: 03/18/2022 Reported: 03/23/2022 Sampling Date: 03/18/2022 Sampling Type: Soil

Sample Received By:

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition:

Cool & Intact Tamara Oldaker

Project Number:

BTEX 8021B

14966

Project Location: MEWBOURNE

Sample ID: DSP 3 @ 8' (H221096-06)

DILX GOZID	11197	- Kg	Allulyzo	a by. 1-15					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	<10.0	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	93.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.0	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/18/2022

Sampling Date: 03/18/2022 Sampling Type: Soil

Reported: 03/23/2022 Sampling Type:
Project Name: RED HILLS RECYCLE FACILITY Sampling Condition:

Soil Cool & Intact

Project Number: 14966

Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 4 @ SURFACE (H221096-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	54000	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	232	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	104	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	97.9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	121	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: Project Number: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: DSP 4 @ 4' (H221096-08)

BTEX 8021B	mg,	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/22/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/21/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	<10.0	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	90.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.8	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: DSP 5 @ SURFACE (H221096-09)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/23/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/23/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/23/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/23/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1330	16.0	03/21/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	180	90.1	200	3.49	
DRO >C10-C28*	68.4	10.0	03/22/2022	ND	206	103	200	2.70	
EXT DRO >C28-C36	27.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	101 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	111 %	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/18/2022 Sampling Date: 03/18/2022

Reported: 03/23/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: MEWBOURNE

Sample ID: DSP 5 @ 8' (H221096-10)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/23/2022	ND	1.83	91.4	2.00	6.03	
Toluene*	<0.050	0.050	03/23/2022	ND	1.92	96.1	2.00	6.05	
Ethylbenzene*	<0.050	0.050	03/23/2022	ND	1.88	93.8	2.00	5.60	
Total Xylenes*	<0.150	0.150	03/23/2022	ND	5.86	97.6	6.00	5.13	
Total BTEX	<0.300	0.300	03/23/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	03/21/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	197	98.5	200	7.82	
DRO >C10-C28*	<10.0	10.0	03/22/2022	ND	197	98.3	200	8.07	
EXT DRO >C28-C36	<10.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	109	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	111	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

RDINAL LABORATORIES

(575) 393-2326 FAX (575) 393-2476

NoRush

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 5/18/2022 3:43:51 PM

101 East Marland, Hobbs, NM 88240

Company Name	: Etech Environmenta	al & Safety Solution	ons	, Inc						1	BIL	LL TO						ANA	LYS	IS R	EQUI	EST		
Project Manage	: Lance Ciensi	haw						P.	0. #	:											T			
A	D 204							Co	ompa	any	·M	ewbou	rne						1					
City: Lovingte	m Holobs	State: NM	Zip	88	200-8	82	40	Att	tn: J	26	bie	Runne	15											
Phone #: (575	5) 396-2378	Fax #: (575) 39	6-1	429				Ad	Idres	5S:														
Project #: 149	66	Project Owner:	R	16	ie K		15	Cit	ty:					1 1		_								
Project Name:	Red Hills Recycl	e Facilit				WALL -		St	ate:			Zip:			(N)	18								
Project Location	Hobbs 3) 396-2378 166 Red Hills Recycl Mewborne O Eric Mojica	il Canana	7					Ph	one	#:				Chloride	IPH (8015M)	BTEX (8021B)								
Sampler Name:	Eric Maile	Compan	9					Fa	x #:					Ě	I	X								
FOR LAB USE ONLY	71-7101.0.					MATR	X		PRE	ESE	RV.	SAMPL	NG		4	F								
Lab I.D. #221096	Sample I.	D.	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	SOIL	SLUDGE	OTHER:	ACID/BASE:	ICE / COOF	OTHER:	DATE	TIME											
1	DSPIESuf.		G	1		1				J		3-18:22		1	1	1								
2	DSPle1.		G	1		J				1		1		V	V	1								
3	DSP2esif.		G	1		1				1		/		V	1	V								
	DSP201.		G	1		1				J		1		V	1	1								
5	DSP3eSuf.		G	1		1				J		/		V	1	V								
6	DSP3e8		G	1		1				1		-			1	1								
7	DSP4@5,,f.		G	1		1	-			1		1		1	1	1	_	-	1		1			
8	DSP4@4		G	1		1				1		-		V	1	V	-	-	-	-	-			
9	DSP5esuf.		G	1	-	1	-	-		V		-		V	V	V	-	-	-	-	-			
	DSP508 Demeges, Cardinal's liability and clier	of a make in a second for an	(4		n whether	1		or for	l dal	1			d by the object for	V	V									
analyses. All claims including service. In no event shall carefficients or successors arising Relinquished By Relinquished By Relinquished By	g those for negligence and any other or rainel be liable for incidental or conseq g out of or related to the performance of ?	uses wheteover shall be de userful damages, including of of services hereunder by Ca Date: 3 · // 8 · 2 2 Time: Date:	Re	t wale t limits regar ceiv	ed unless o	made in w max intervented hether su	ding an aplions,	d rece loss a	elved by of use, o	Card or loss	inal w	thin 30 days after offic incurred by o	r completion of t	no application, no. suft: lt: S:	☐ Ye	s [□ No □ No	Add*	I Phone I Fax #					
Delivered By: Sampler - UPS	(Circle One) 5.7	€) C-0. 5.2° #			Co	nple C ol In Yes [No [tact			(Initi													

FORM-006 Revision 1.0

† Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476

March 24, 2022

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: RED HILLS RECYCLE FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 03/21/22 14:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/21/2022 Sampling Date: 03/21/2022

Reported: 03/24/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact
Project Number: 14966 Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 6 @ SURFACE (H221108-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	93600	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	197	98.5	200	7.82	
DRO >C10-C28*	71.4	10.0	03/22/2022	ND	197	98.3	200	8.07	
EXT DRO >C28-C36	43.3	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	115	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	123	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022 Sampling Date: 03/21/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 6 @ 10' (H221108-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	197	98.5	200	7.82	
DRO >C10-C28*	<10.0	10.0	03/22/2022	ND	197	98.3	200	8.07	
EXT DRO >C28-C36	<10.0	10.0	03/22/2022	ND					
Surrogate: 1-Chlorooctane	117 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	120	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022 Sampling Date: 03/21/2022 Sampling Type: Soil

Sample Received By:

Project Name: RED HILLS RECYCLE FACILITY

Sampling Condition: Cool & Intact

Tamara Oldaker

Project Number: 14966
Project Location: MEWBOURNE

BTEX 8021B

Sample ID: DSP 7 @ SURFACE (H221108-03)

DIEX GOLLD	9/	9	Analyzo	a 27.113 (
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	26000	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	ed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2022	ND	197	98.5	200	7.82	
DRO >C10-C28*	689	10.0	03/22/2022	ND	197	98.3	200	8.07	
EXT DRO >C28-C36	456	10.0	03/22/2022	ND					

Analyzed By: MS\

Surrogate: 1-Chlorooctane 111 % 66.9-136 Surrogate: 1-Chlorooctadecane 144 % 59.5-142

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

03/21/2022

Soil

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022

Sampling Date: Sampling Type:

Project Name: Project Number:

RED HILLS RECYCLE FACILITY Sampling Condition: Cool & Intact Sample Received By: 14966 Tamara Oldaker

Project Location: **MEWBOURNE**

Sample ID: DSP 7 @ 14' (H221108-04)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2022	ND	202	101	200	5.65	
DRO >C10-C28*	<10.0	10.0	03/23/2022	ND	206	103	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	03/23/2022	ND					
Surrogate: 1-Chlorooctane	113	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	119	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022

RED HILLS RECYCLE FACILITY

Project Number: 14966

Project Name:

Project Location: MEWBOURNE

Sampling Date: 03/21/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: DSP 8 @ SURFACE (H221108-05)

BTEX 8021B	mg	/kg	Analyze	ed By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	78400	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2022	ND	202	101	200	5.65	
DRO >C10-C28*	11.0	10.0	03/23/2022	ND	206	103	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	03/23/2022	ND					
Surrogate: 1-Chlorooctane	121	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	130	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022 Sampling Date: Sampling Type:

03/21/2022 Soil

Project Name:

RED HILLS RECYCLE FACILITY

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Project Number:

14966

Project Location: **MEWBOURNE**

Sample ID: DSP 8 @ 8' (H221108-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 %	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2022	ND	202	101	200	5.65	
DRO >C10-C28*	<10.0	10.0	03/23/2022	ND	206	103	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	03/23/2022	ND					
Surrogate: 1-Chlorooctane	113 %	66.9-13	6						
Surrogate: 1-Chlorooctadecane	120 9	6 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Tamara Oldaker

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022

03/21/2022Sampling Date:03/21/202203/24/2022Sampling Type:SoilRED HILLS RECYCLE FACILITYSampling Condition:Cool & Intact

Sample Received By:

Project Name: RED H: Project Number: 14966

Project Location: MEWBOURNE

Sample ID: DSP 9 @ SURFACE (H221108-07)

BTEX 8021B	mg,	'kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/22/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/22/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/22/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/22/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	49600	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2022	ND	202	101	200	5.65	
DRO >C10-C28*	<10.0	10.0	03/23/2022	ND	206	103	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	03/23/2022	ND					
Surrogate: 1-Chlorooctane	125	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	134	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/21/2022 Reported: 03/24/2022 Sampling Date: 03/21/2022 Sampling Type: Soil

Project Name: RED HILLS RECYCLE FACILITY
Project Number: 14966

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: MEWBOURNE

Sample ID: DSP 9 @ 8' (H221108-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/24/2022	ND	1.88	93.8	2.00	1.85	
Toluene*	<0.050	0.050	03/24/2022	ND	1.97	98.5	2.00	0.489	
Ethylbenzene*	<0.050	0.050	03/24/2022	ND	1.99	99.6	2.00	1.90	
Total Xylenes*	<0.150	0.150	03/24/2022	ND	6.17	103	6.00	1.61	
Total BTEX	<0.300	0.300	03/24/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/22/2022	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2022	ND	202	101	200	5.65	
DRO >C10-C28*	<10.0	10.0	03/23/2022	ND	206	103	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	03/23/2022	ND					
Surrogate: 1-Chlorooctane	111 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	118	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries of successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240

Company Name: Etech Environmental & Safety Solutions, Inc.	BILL TO	ANALYSIS REQUEST				
Project Manager: Lance Creashaw	P.O. #:	ATTAL OID TAXOLOT				
Address: P.O. Box 301	Company: Merbourge					
City: Lovington Hobbs State: NM Zip: 80200 882	Attn: Robbie Rumals					
Phone #: (575) 396-2378	Address:					
Project #: 14966 Project Owner: Robbie Ruane/s	City:					
Project Name: Red Hall & Panala Facility		(B) (W)				
Project Name: Red Hills Recycle Facility Project Location: Mewbourne Oil Company	Phone #:	802				
Sampler Name: Eric Mojica	State: Zip: #Phone #:	TPH (8015M)				
FOR LAB USE ONLY MATI	PRESERV SAMPLING	TE TE				
#CONTAINERS GROUNDWATER WASTEWATER SOIL	OTHER: OTHER: OTHER: OTHER:					
1 DSPGeSuff. GIIV	1 3-21-22 1	J J				
1 DSP6eSuf. G1 1	1 1	11				
3 DSP TeSuit. GII	1) 1	V V				
4 DSP 70 14 GII V	1 1	V V				
5 DSP 8eS.f. GIII	1) 1	V V				
6 DSP8e8 GIIV	V \					
7 DSP90Sof. GIJ	1 1	1 1				
8 DSP9e8' GII V	V / V	1 1				
ASE NOTE: Lisbility and Demages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in vipos. All claims including those for negligence and any other cause whetherever shall be dearmed vasived unless mated in vipos. In no event shall Cardinal be liable for incidental or consequental demages, including without limitation, business inten-	and received by Cardinal within 30 days after completion of the applic	able .				
etes or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether successors are received by:	in is based upon any of the above stated reasons or otherwise Phone Result: Fax Result: REMARKS:	☐ Yes ☐ No Add'l Phone #: ☐ Yes ☐ No Add'l Fax #:				
Delivered By: (Circle One) 3.82 C-0.5c Sample Cool In Sampler - UPS - Bus - Other: 3.3c #113	lition CHECKED BY	results to pm@etechenv.com.				

FORM-006 Revision 1.0

Appendix G Regulatory Correspondence

From: Ben Arguijo

To: "ocd.enviro@state.nm.us"

Cc: "ocd.environmental@state.nm.us"; Lance Crenshaw; "Robbie Runnels"; "Connor Walker"; "Hamlet, Robert,

EMNRD"

Subject: RE: nAPP2124632147 - Red Hills Recycle Pond Facility - Extension Request

Date: Thursday, January 27, 2022 3:15:00 PM

Attachments: <u>image001.png</u>

Dear NMOCD Environmental Bureau.

I am writing to check on the status of the extension request below regarding the work plan for the Red Hills Recycle Pond Facility release (nAPP2124632147). On behalf of Mewbourne Oil Company, I would also like to take this opportunity to request an additional extension until March 31, 2022, to allow Etech time to complete the site assessment, delineation of the release, and to devise an acceptable remediation proposal.

If you have any questions or need any additional information, please do not hesitate to contact me or Lance Crenshaw (lance@etechenv.com).

Thank you for your time and consideration.

Respectfully, Ben J. Arguijo

Ben J. Arguijo

Project Manager

2507 79th St., Unit A Lubbock, TX 79423-2211 (432) 813-1592

From: Ben Arguijo

Sent: Wednesday, December 22, 2021 5:08 PM

To: 'ocd.enviro@state.nm.us' <ocd.enviro@state.nm.us>

Cc: 'ocd.environmental@state.nm.us' <ocd.environmental@state.nm.us>; Lance Crenshaw

<lance@etechenv.com>; 'Robbie Runnels' <rrunnels@mewbourne.com>

Subject: nAPP2124632147 - Red Hills Recycle Pond Facility - Extension Request

Dear NMOCD Environmental Bureau,

Mewbourne Oil Company (Mewbourne) contracted Etech Environmental & Safety Solutions, Inc. (Etech), on November 29, 2021, to assume remediation activities for the release known as the Red Hills Recycle Pond Facility (NMOCD Incident #nAPP2124632147) located in Lea County. Pursuant to NMOCD regulations, a work plan or closure report was due for the release on November 28, 2021.

An initial site assessment was performed by a third-party environmental contractor that is no longer affiliated with the site. Based on a review of the field data from that site assessment, the vertical extent of chloride contamination was adequately defined, but additional delineation is required to determine both the horizontal and vertical extent of TPH, BTEX, and chloride.

Due to our current workload and fluctuations in staffing levels as people have taken leave from work to spend time with loved ones this holiday season, Etech has not yet had an opportunity to conduct a complete delineation event at the site. In consideration of this, Etech, on behalf of Mewbourne, would like to request an extension until January 31, 2022, in order to allow us time to conduct a proper site assessment, fully delineate the release, and devise an appropriate remediation strategy to advance the site to an NMOCD-approved closure.

If you have any questions or need any additional information, please do not hesitate to contact me by phone or email.

Thank you for your time and consideration.

Respectfully, Ben J. Arguijo

Ben J. Arguijo

Project Manager

2507 79th St., Unit A Lubbock, TX 79423-2211 (432) 813-1592 From: Hamlet, Robert, EMNRD

To: Ben Arguijo

Cc: Lance Crenshaw; Robbie Runnels; Connor Walker; Bratcher, Mike, EMNRD; Hensley, Chad, EMNRD; Velez,

Nelson, EMNRD; Nobui, Jennifer, EMNRD

Subject: (Extension Approval) RE: nAPP2124632147 - Red Hills Recycle Pond Facility

Date: Friday, January 28, 2022 10:42:34 AM

Attachments: <u>image003.png</u>

RE: Incident #NAPP2124632147

Ben,

Your request for an extension to **March 31st, 2022** is approved.

Robert Hamlet • Environmental Specialist - Advanced

Environmental Bureau
EMNRD - Oil Conservation Division
811 S. First Street | Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Ben Arguijo <bena@etechenv.com> Sent: Thursday, January 27, 2022 2:17 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Cc: ocd.environmental@state.nm.us; Lance Crenshaw <lance@etechenv.com>; Robbie Runnels <rrunnels@mewbourne.com>; Connor Walker <cwalker@mewbourne.com>; Hamlet, Robert, EMNRD <Robert.Hamlet@state.nm.us>

Subject: [EXTERNAL] RE: nAPP2124632147 - Red Hills Recycle Pond Facility - Extension Request

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Dear NMOCD Environmental Bureau,

I am writing to check on the status of the extension request below regarding the work plan for the Red Hills Recycle Pond Facility release (nAPP2124632147). On behalf of Mewbourne Oil Company, I would also like to take this opportunity to request an additional extension until March 31, 2022, to allow Etech time to complete the site assessment, delineation of the release, and to devise an acceptable remediation proposal.

If you have any questions or need any additional information, please do not hesitate to contact me or Lance Crenshaw (lance@etechenv.com).

Thank you for your time and consideration.

Respectfully, Ben J. Arguijo

Ben J. Arguijo

Project Manager

2507 79th St., Unit A Lubbock, TX 79423-2211 (432) 813-1592

From: Ben Arguijo

Sent: Wednesday, December 22, 2021 5:08 PM

To: 'ocd.enviro@state.nm.us' < <u>ocd.enviro@state.nm.us</u>>

Cc: 'ocd.environmental@state.nm.us' <ocd.environmental@state.nm.us>; Lance Crenshaw

<<u>lance@etechenv.com</u>>; 'Robbie Runnels' <<u>rrunnels@mewbourne.com</u>>

Subject: nAPP2124632147 - Red Hills Recycle Pond Facility - Extension Request

Dear NMOCD Environmental Bureau,

Mewbourne Oil Company (Mewbourne) contracted Etech Environmental & Safety Solutions, Inc. (Etech), on November 29, 2021, to assume remediation activities for the release known as the Red Hills Recycle Pond Facility (NMOCD Incident #nAPP2124632147) located in Lea County. Pursuant to NMOCD regulations, a work plan or closure report was due for the release on November 28, 2021.

An initial site assessment was performed by a third-party environmental contractor that is no longer affiliated with the site. Based on a review of the field data from that site assessment, the vertical extent of chloride contamination was adequately defined, but additional delineation is required to determine both the horizontal and vertical extent of TPH, BTEX, and chloride.

Due to our current workload and fluctuations in staffing levels as people have taken leave from work to spend time with loved ones this holiday season, Etech has not yet had an opportunity to conduct a complete delineation event at the site. In consideration of this, Etech, on behalf of Mewbourne, would like to request an extension until January 31, 2022, in order to allow us time to conduct a proper site assessment, fully delineate the release, and devise an appropriate remediation strategy to advance the site to an NMOCD-approved closure.

If you have any questions or need any additional information, please do not hesitate to contact me by phone or email.

Thank you for your time and consideration.

Respectfully, Ben J. Arguijo

Ben J. Arguijo

Project Manager

2507 79th St., Unit A Lubbock, TX 79423-2211 (432) 813-1592

Total Control Panel Login

To: bena@etechenv.com

From:

robert.hamlet@state.nm.us

Message Score: 50

My Spam Blocking Level: High

High (60): Pass Medium (75): Pass

Low (90): Pass

Block this sender Block state.nm.us

This message was delivered because the content filter score did not exceed your filter level.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 99907

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270 Hobbs. NM 88241	Action Number: 99907
, , , , , , , , , , , , , , , , , , , ,	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Remediation Plan Approved with Conditions; liner installation approved. Deferral Request Approved. Going forward, please collect soil samples between 4 ft and total depth, to determine what is left in place and below the liner.	5/18/2022