Received by OCD: 5/5/2021 12:59:51 PM



1920 W. Villa Maria, Ste. 205 Bryan, Texas 77807 970.516.8419 www.teamtimberwolf.com

May 5, 2021

Mr. Cory Smith, Environmental Specialist New Mexico Oil Conservation Division – District 3 1000 Rio Brazos Road Aztec, New Mexico 87410

Accepted for Record CS

Re: Status Report – 1<sup>st</sup> Quarter 2021 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico OCD Incident No. NCS1901627746

Dear Mr. Smith:

On behalf of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this report to document remedial activities conducted during the first quarter of 2021 (1Q21) at the San Juan 28-7 Unit 183M (Site).

#### **Environmental Setting and Site Geology**

The Site is situated on federal land managed by the Bureau of Land Management (BLM) in western Rio Arriba County, New Mexico (Figure 1). The area consists of sparse vegetative cover comprised primarily of scrub brush and native grasses. Area terrain is comprised of plateaus divided by canyons. The primary canyon in the area is Carrizo Canyon, which drains to the northwest into the San Juan River, approximately 19 miles from the Site (Figures 2 and 3).

The Site is situated along the rimrock of an unnamed side canyon to Carrizo Canyon. Average elevation at the Site is approximately 6,523 feet (ft) above mean sea level. The closest surface water is a first order tributary of Carrizo Creek, situated 1,500 ft southeast of the Site and 330 ft lower in elevation.

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of the Vessilla-Menefee-Orlie complex, 2 to 30 percent slopes. The surface horizon is comprised of a sandy loam, underlain by bedrock encountered between 15 to 19 inches below ground surface (bgs). Native salinity of the soil is nonsaline to very slightly saline (0.0 to 2.0 millimhos per centimeter (mmhos/cm)).

Timberwolf Project No. HEC-190007

#### Site History

#### Release Event

Corrosion near the base of the former oil tank resulted in the release of approximately 150 barrels (bbls) of oil and 7 bbls of produced water. All released fluid was contained by the berm. Standing fluid was recovered; the tank was removed from service and disposed off-site. The initial investigation identified the area of the former tank battery as the primary area of concern (AOC).

Hilcorp constructed a new tank battery northeast of the original tank battery. Tanks and interconnective piping were removed from the original tank battery.

#### Investigation and Site Characterization

A soil investigation, conducted during March 2019, revealed the constituents of concern (COC) were: total BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) and total petroleum hydrocarbons (TPH). Impacted soil was horizontally and vertically delineated; the vertical extent of impacted soil was approximately 27 ft bgs. Additionally, the soil investigation revealed that subsurface soil is unconsolidated to a depth of 10 ft below ground surface (bgs) which is underlain by sandstone. Findings of the investigation are documented in Timberwolf's report entitled: *Site Characterization Report and Remedial Action Plan*, dated May 21, 2019.

#### Remediation – SVE System

To remediate hydrocarbon impacted soil, a soil vapor extraction (SVE) system was designed, constructed, and installed at the Site. System start-up date was 12/18/19. The SVE system is comprised of 11 SVE wells, four vent wells, and a SVE trailer. The SVE trailer is comprised of a regenerative blower (i.e., vacuum pump), hour meter, moisture separator and filter, sampling port, and a manifold with three independent legs. Additionally, the SVE trailer is equipped with a programmable automation panel to control valves for each manifold leg.

The SVE system creates a treatment field of approximately 0.15 acres and treats soil to a depth of approximately 30 ft bgs for a total volume of approximately 7,021 cubic yards of soil. The SVE wells, measured radius of influence of 25 ft, and leg configurations are shown in Figure 4.

The work conducted is documented in the following reports:

- Site Characterization Plan, dated 03/05/19
- Site Characterization and Remedial Action Plan, dated 05/21/19
- Status Report 4<sup>th</sup> Quarter, dated 01/31/20
- *Status Report 1st Quarter 2020,* dated 04/30/20
- *Status Report 2<sup>nd</sup> Quarter 2020*, dated 09/03/20
- *Status Report 3<sup>rd</sup> Quarter 2020,* dated 11/25/20
- *Status Report 4<sup>th</sup> Quarter 2020*, dated 01/28/21



#### **SVE System Operations**

The SVE system was designed with three independent legs (i.e., Leg 1, Leg 2, and Leg 3). Legs 1 and 3 provide vacuum extraction to the deep SVE wells; Leg 2 is piped to the shallow wells. The automation panel was programmed to oscillate between Legs 1, 2, and 3 every four hours for continuous 24-hr operations. Programmed runtimes are presented in Table 1 below.

| Leg   | SVE Wells and Location                                                                | Scheduled Runtime |
|-------|---------------------------------------------------------------------------------------|-------------------|
| Leg 1 | Deep Wells SVE7, SVE8, and SVE9<br>Eastern side of treatment zone                     | 4 hours           |
| Leg 2 | Shallow Wells SVE1, SVE2, SVE3, and SVE4                                              | 4 hours           |
| Leg 3 | Deep Wells SVE5, SVE6, SVE10, and SVE11<br>Central and Western side of treatment zone | 4 hours           |
| Leg 1 | Deep Wells SVE7, SVE8, and SVE9<br>Eastern side of treatment zone                     | 4 hours           |
| Leg 2 | Shallow Wells SVE1, SVE2, SVE3, and SVE4                                              | 4 hours           |
| Leg 3 | Deep Wells SVE5, SVE6, SVE10, and SVE11<br>Central and Western side of treatment zone | 4 hours           |

| Table 1. Programmed Runtimes and Leg Configu | urations |
|----------------------------------------------|----------|
|----------------------------------------------|----------|

SVE – soil vapor extraction well

Water and condensate collected in the moisture separator was drained through a 1-inch PVC pipe and transferred to an open-top tank fitted with bird netting. Approximately 30 gallons of water/condensate was recovered during 1Q21.

Runtime, flow rates, and percentage of runtime for 1Q21 are documented in Table 2 below.

| Measurement        | Leg 1  | Leg 2  | Leg 3  | Total   |
|--------------------|--------|--------|--------|---------|
| Runtime (hours)    | 480.6  | 480    | 480    | 1,440.6 |
| Runtime (min)      | 28,836 | 28,800 | 28,800 | 86,436  |
| Average CFM        | 11.2   | 9      | 20.6   |         |
| Runtime Percentage | 33.4%  | 33.3%  | 33.3%  | 100%    |

#### Table 2. System Runtime and Flow Rates – 1Q21

min – minutes

CFM – cubic feet per minute

The 1Q21 had 2,160 hours in the quarter; the SVE system ran for 1,440.6 hours. Therefore, runtime percentage (%) in 1Q21 was 66.7%. The limited runtime was directly related to generator malfunctions and replacement of repaired SVE system vacuum pump. On 01/12/21 the vacuum pump was reinstalled by Hilcorp and Timberwolf personnel. Hilcorp personnel conducted nine (9) operation and maintenance (O&M) events during 1Q21; a field log of O&M events and maintenance performed is provided in the attached Table A-1.



#### Mass Removal

Timberwolf used the results from the SVE gas analysis (collected on 02/12/20), flow rates, and runtimes to calculate constituent mass removal. Mass removal of GRO and BTEX and associated recovered volume for 1Q21 are presented in Table 3 below; cumulative totals are provided in the attached Table A–2.

| Constituent  | Ma     | iss Removal by Leg ( | Total Mass | Recovered                                              |                              |
|--------------|--------|----------------------|------------|--------------------------------------------------------|------------------------------|
| Constituent  | Leg 1  | Leg 2                | Leg 3      | <ul> <li>Removed<sup>2</sup></li> <li>(lbs)</li> </ul> | Volume <sup>3</sup><br>(bbl) |
| GRO          | 220.47 | 176.15               | 440.38     | 1,841.41                                               | 6.83                         |
| Benzene      | 2.74   | 2.19                 | 5.46       | 22.85                                                  | NC                           |
| Toluene      | 9.84   | 7.86                 | 19.65      | 82.18                                                  | NC                           |
| Ethylbenzene | 0.26   | 0.21                 | 0.53       | 2.20                                                   | NC                           |
| Xylenes      | 1.99   | 1.59                 | 3.98       | 16.65                                                  | NC                           |

bbl -barrel

NC - not calculated

<sup>1</sup>Calculation = minutes ran \* CFM \* Concentration (mg/m<sup>3</sup>) \* 1 M<sup>3</sup>/35.3147 ft<sup>3</sup> \*1g/1000 mg \* 1 kg/1000 g <sup>2</sup>Calculation = [Leg 1 + Leg 2 + Leg 3] \* 2.2 lbs/kg

<sup>2</sup>Calculation = [Leg 1 + Leg 2 + Leg 3] <sup>2</sup> 2.2 I <sup>3</sup>Calculation = lbs (6.42 lb/racl / 42 racl/bbl)

<sup>3</sup>Calculation = lbs / 6.42 lb/gal / 42 gal/bbl

GRO = from TPH (GC/MS) Low Fraction (i.e., gasoline range organics)

kg – kilograms

lbs – pounds Assumptions:

API Gravity = 52

• Concentrations of VOCs in soil gas vapor have remained static since the collection of SVE gas sample

#### **Collection and Analysis of Gas Sample**

On 03/23/21, Hilcorp personnel collected an annual gas sample utilizing a vacuum pump and Tedlar<sup>®</sup> bag. The vacuum pump was connected to the SVE systems sampling port while all three (3) legs were open. The valve on the sampling port was then opened and pump was activated to purge ambient air. After purging, the Tedlar<sup>®</sup> bag was connected to the vacuum pump outlet using dedicated tubing, the valve on the Tedlar<sup>®</sup> bag was opened and the vacuum pump was activated to collect the SVE gas sample. Once the Tedlar<sup>®</sup> bag was filled, the valve on the bag was closed and disconnected from the tubing. The sampling port was then closed, and vacuum pump disconnected from sampling port.

The gas sample (i.e., SVE) was shipped to Pace National in Mt. Juliet, Tennessee for chemical analysis under proper chain-of-custody protocol. The sample was analyzed for volatile organic compounds (VOCs) using EPA Method Toxic Organics 15 (i.e., TO–15) and Organic Compounds (GC) by ASTM Method D1946. Laboratory report and chain-of-custody documents are attached.



Constituents which exceed laboratory detection limits are presented in Table 4; laboratory results of all constituents are documented in the Attached Table A-3.

| Constituents                            | SVE<br>(mg/m³) |
|-----------------------------------------|----------------|
| Volatile Organic Carbons                | ·              |
| Benzene                                 | 25.4           |
| Cyclohexane                             | 154            |
| Ethanol                                 | 5.11           |
| Ethylbenzene                            | 14             |
| 4-Ethyltoluene                          | 4.83           |
| Heptane                                 | 257            |
| N-Hexane                                | 123            |
| lsopropylbenzene                        | 1.98           |
| Toluene                                 | 180            |
| 1,2,4-Trimethylbenzene                  | 2.04           |
| 1,3,5-Trimethylbenzene                  | 3.52           |
| Total Xylenes                           | 150.6          |
| TPH (GC/MS) Low<br>Fraction (i.e., GRO) | 661            |
| Organic Compounds                       |                |
| Oxygen                                  | 279,522        |
| Carbon Dioxide                          | < 5,000        |

Table 4. Gas Analysis – 03/23/21

mg/m<sup>3</sup> – milligrams per cubic meter TPH – total petroleum hydrocarbons GRO – gasoline range organics

#### Summary

System runtime during 1Q21 was 66.7% of total available hours in 1Q21. The limited runtime was directly related to: 1) generator malfunctions and 2) installation of repaired SVE system vacuum pump. Mass removal calculations indicated 6.83 bbls of GRO recovered during 1Q21.

#### Further Actions - Second Quarter 2021

During 2Q21, the following activities are planned for the Site:

- Conduct regular Site O&M to ensure proper system function and drain any water/condensate accumulation in the moisture separator
- Prepare a 2Q21 status report



If you have any questions regarding this report or need further assistance, please call us at 979-324-2139.

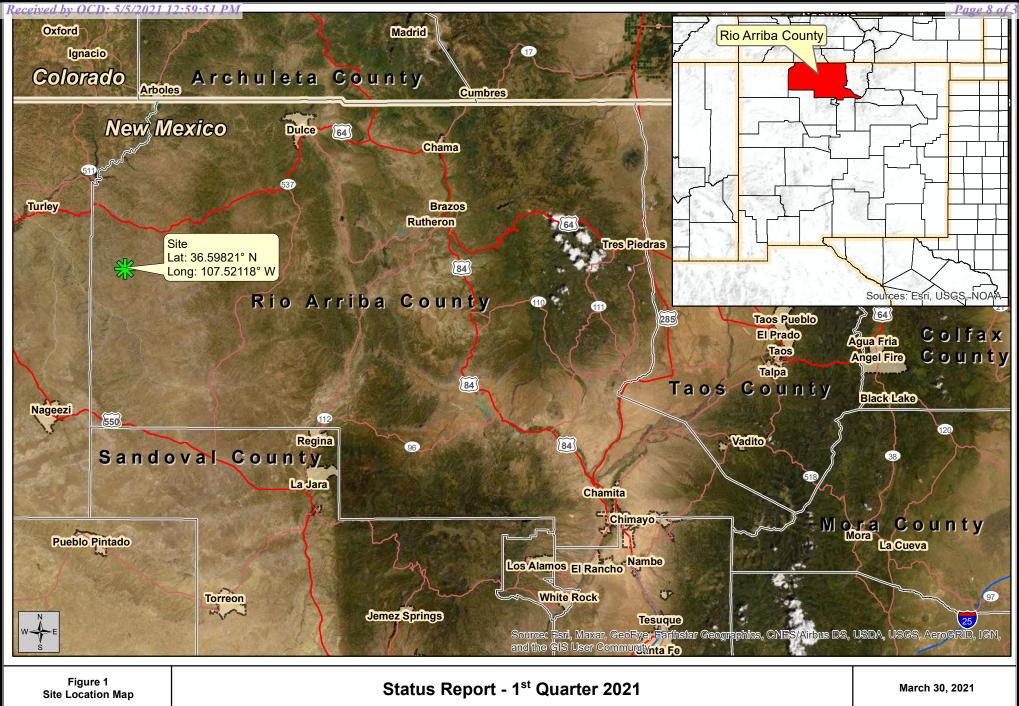
Sincerely, Timberwolf Environmental, LLC

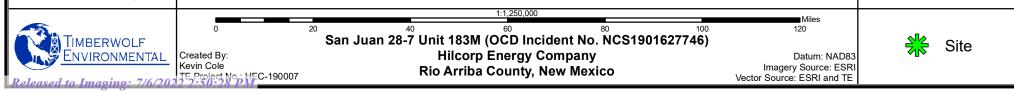
Michael Morse Project Scientist

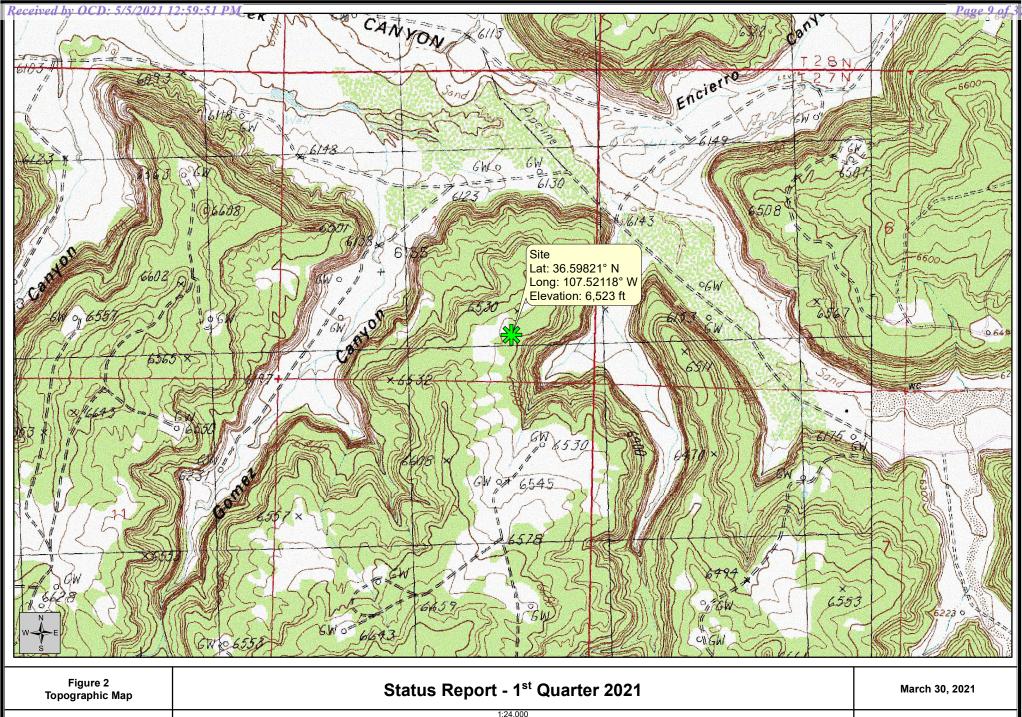
h Jim Foster

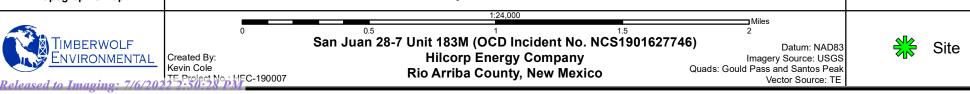
Jim Foster President

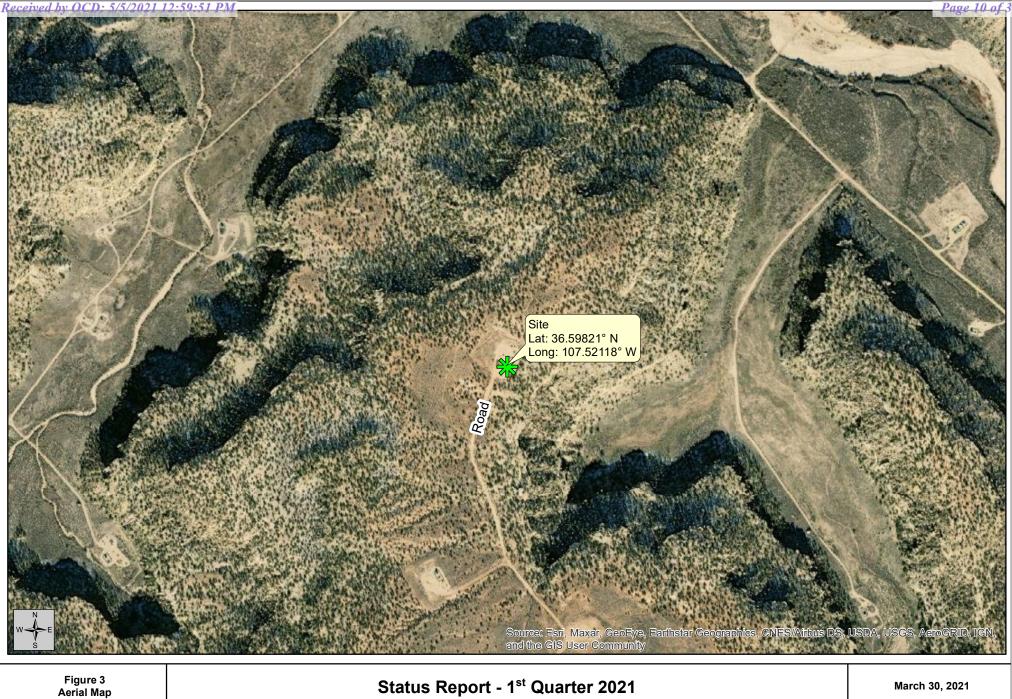
Attachments: Figures Attached Table Laboratory Report and Chain-of-Custody Documents

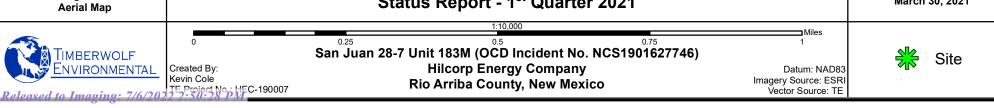

Cc: Clara Cardoza, Hilcorp Energy Company

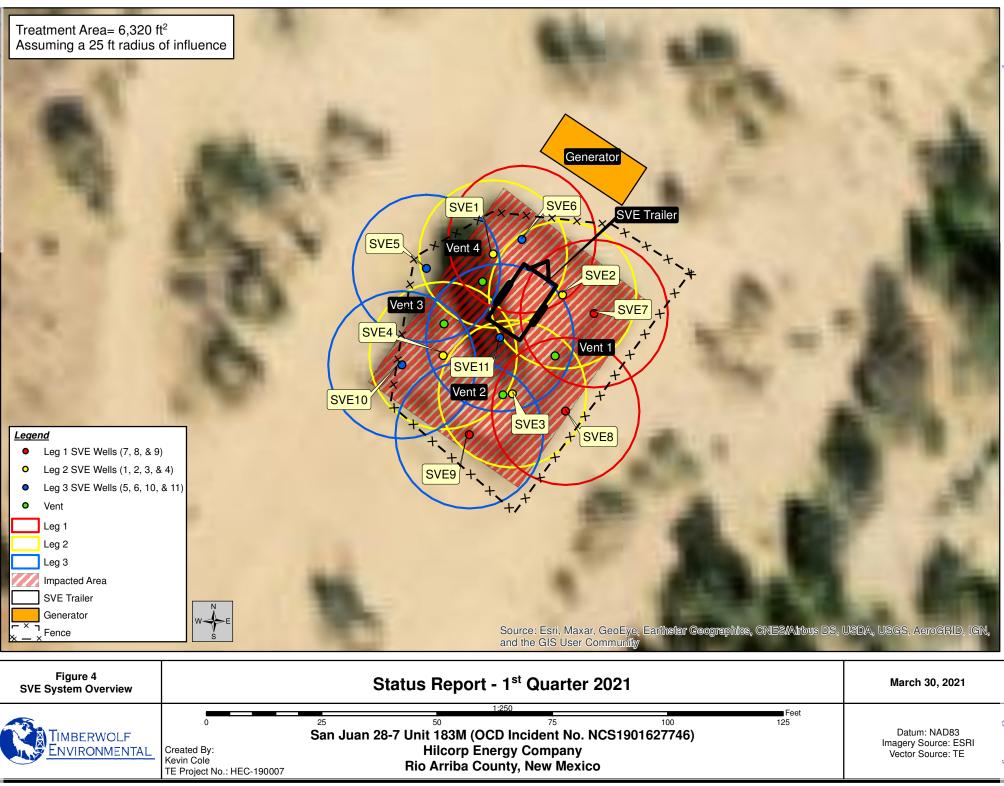




•


Figures


Timberwolf Project No. HEC-190007














•

**Attached Table** 

Timberwolf Project No. HEC-190007

# Table A-1. Operation and Maintenance EventsStatus Report 1st Quarter 2021San Juan 28-7 183M

| Date     | Hour<br>Meter<br>(hrs) | Water/Condenstate<br>Recovered<br>(gal) | Maintenance                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/12/21 | 2064.0                 | 0                                       | <ul> <li>Hilcorp and Timberwolf personnel on Site to install replacement vacuum pump</li> <li>SVE system restarted without incident</li> </ul>                                                                                                                                                                                                                                                                            |
| 01/27/21 | 2419.9                 | 0                                       | <ul> <li>Kurt Hoekstra with Hilcorp performed SVE system O&amp;M</li> <li>All systems functioning properly</li> <li>Timberwolf personnel not on site</li> </ul>                                                                                                                                                                                                                                                           |
| 02/03/21 | 2592.6                 | 0                                       | <ul> <li>Insulation installed on Leg 1, Leg 2, and Leg 3 valves and flow meters</li> <li>Heat tape installed on flow lines running to water / condensate separator</li> <li>All systems functioning properly</li> <li>Hour meter reading taken at 3:30pm</li> <li>Kurt Hoekstra with Hilcorp conducted all O&amp;M</li> </ul>                                                                                             |
| 02/10/21 | 2728.8                 | 25                                      | <ul> <li>SVE system down upon arrival at Site. Generator still running. SVE system was down due to the moisture separator high level shut-off switch.</li> <li>25 gallons of fluid was removed from the moisture separator and the SVE system started back up</li> <li>All systems functioning properly</li> <li>Hour meter reading taken at 12:30pm</li> <li>Kurt Hoekstra with Hilcorp conducted all O&amp;M</li> </ul> |
| 03/01/21 | N/A                    | 0                                       | •SVE system and generator shut down. Cause: Generator alternator failure.<br>Hilcorp personnel replaced alternator on generator and restarted the generator<br>and SVE sytstem<br>• Timberwolf personnel not on site                                                                                                                                                                                                      |
| 03/08/21 | N/A                    | 4.5                                     | <ul> <li>Kurt Hoekstra with Hilcorp performed SVE system O&amp;M</li> <li>Timberwofl personnel not on site</li> </ul>                                                                                                                                                                                                                                                                                                     |
| 03/23/21 | N/A                    | 0                                       | <ul> <li>Kurt Hoekstra with Hilcorp collected the required annual air sample from the SVE system. Sample was collected utilizing a vacuum pump and the dedicated sample port. Sample collected into a Tedlar bag.</li> <li>Timberwofl personnel not on site to witness or collect the air sample</li> </ul>                                                                                                               |
| 03/26/21 | N/A                    | 0                                       | <ul> <li>SVE system and generator down upon arrival. Cause: Generator low on oil.<br/>Hilcorp personnel added oil and restarted generator and SVE system</li> <li>Hilcorp personnel installed an oil makeup controller to maintain generator oil<br/>levels</li> <li>Timberwofl personnel not on site</li> </ul>                                                                                                          |
| 03/31/21 | 3504.6                 | 0                                       | <ul> <li>Kurt Hoekstra with Hilcorp performed SVE system O&amp;M. Hour meter reading taken at 11:00am</li> <li>Timberwofl personnel not on site</li> </ul>                                                                                                                                                                                                                                                                |

N/A = not available

gal - gallons

hrs - hours

\* - Timberwolf personnel not on site



.

| Sali Juali 20-7 Tosivi |         |                           |              |        |          |       |
|------------------------|---------|---------------------------|--------------|--------|----------|-------|
| Quarter                |         | Recovered<br>Volume (bbl) |              |        |          |       |
|                        | Benzene | Toluene                   | Ethylbenzene | Xylene | GRO      | GRO   |
| 4Q19                   | 18.5    | 32.4                      | 0.73         | 6.27   | 1,017    | 3.77  |
| 1Q20                   | 5.01    | 18.01                     | 0.48         | 3.65   | 403.47   | 1.50  |
| 2Q20                   | 6.66    | 23.95                     | 0.64         | 4.85   | 536.65   | 1.99  |
| 3Q20                   | 14.82   | 53.32                     | 1.43         | 10.80  | 1,194.72 | 4.43  |
| 4Q20                   | 1.71    | 6.16                      | 0.16         | 1.25   | 138.07   | 0.51  |
| 1Q21                   | 22.85   | 82.18                     | 2.20         | 16.65  | 1,841.41 | 6.83  |
| Total                  | 69.55   | 216.02                    | 5.64         | 43.47  | 5,131.32 | 19.03 |

#### Table A-2. Cumulative Mass Removal Status Report 1st Quarter 2021 San Juan 28-7 183M

mass (mg) removed equation = ((CFM\*volatile\*runtime in minutes)/(35.3147))

lbs - pounds

bbl - barrels



.

.

#### Table A-3. Annual Gas Analysis - 03/23/21 Status Report - 1st Quarter 2021 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico

|                                | SVE                  |
|--------------------------------|----------------------|
| Volatiles                      | (mg/m <sup>3</sup> ) |
| Acetone                        | < 2.38               |
| Allyl Chloride                 | < 0.501              |
| Benzene                        | 25.4                 |
| Benzyl Chloride                | < 0.831              |
| Bromodichloromethane           | < 1.070              |
| Bromoform                      | < 4.970              |
| Bromomethane                   | < 0.621              |
| 1,3-Butadiene                  | < 3.540              |
| Carbon Disulfide               | < 0.498              |
| Carbon Tetrachloride           | < 1.010              |
| Chlorobenzene                  | < 0.739              |
| Chloroethane                   | < 0.422              |
| Chloroform                     | < 0.779              |
| Chloromethane                  | < 0.330              |
| 2-Chlorotoluene                | < 0.825              |
| Cyclohexane                    | 154                  |
| Dibromochloromethane           | < 1.36               |
| 1,2-Dibromoethane              | < 1.23               |
| 1,2-Dichlorobenzene            | < 0.962              |
| 1,3-Dichlorobenzene            | < 0.962              |
| 1,4-Dichlorobenzene            | < 0.962              |
| 1,2-Dichloroethane             | < 0.648              |
| 1,1-Dichloroethane             | < 0.641              |
| 1,1-Dichloroethene             | < 0.634              |
| Cis-1,2-Dichloroethene         | < 0.634              |
| Trans-1,2-Dichloroethene       | < 0.634              |
| 1,2-Dichloropropane            | < 0.739              |
| Cis-1,3-Dichloropropene        | < 0.726              |
| Trans-1,3-Dichloropropene      | < 0.726              |
| 1,4-Dioxane                    | < 0.577              |
| Ethanol                        | 5.11                 |
| Ethylbenzene                   | 14                   |
| 4-Ethyltoluene                 | 4.83                 |
| Trichlorofluoromethane         | < 0.899              |
| Dichlorodifluoromethane        | < 0.791              |
| 1,1,2-Trichlorotrifluoroethane | < 1.230              |
| 1,2-Dichlorotetrafluoroethane  | < 1.120              |
| Heptane                        | 257                  |
| Hexachloro-1,3-Butadiene       | < 5.380              |
| N-Hexane                       | 123                  |
|                                |                      |

.

#### Table A-3. Annual Gas Analysis - 03/23/21 Status Report - 1st Quarter 2021 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico

|                             | SVE                  |  |
|-----------------------------|----------------------|--|
| Volatiles                   | (mg/m <sup>3</sup> ) |  |
| Isopropylbenzene            | 1.98                 |  |
| Methylene Chloride          | < 0.556              |  |
| Methyl Butyl Ketone         | < 4.09               |  |
| 2-Butanone (Mek)            | < 2.95               |  |
| 4-Methyl-2-Pentanone (Mibk) | < 4.09               |  |
| Methyl Methacrylate         | < 0.655              |  |
| Methyl Tert-Butyl Ether     | < 0.577              |  |
| Naphthalene                 | < 2.640              |  |
| 2-Propanol                  | < 2.460              |  |
| Propene                     | < 0.551              |  |
| Styrene                     | < 0.681              |  |
| 1,1,2,2-Tetrachloroethane   | < 1.100              |  |
| Tetrachloroethene           | < 1.090              |  |
| Tetrahydrofuran             | < 0.472              |  |
| Toluene                     | 180                  |  |
| 1,2,4-Trichlorobenzene      | < 3.730              |  |
| 1,1,1-Trichloroethane       | < 0.870              |  |
| 1,1,2-Trichloroethane       | < 0.870              |  |
| Trichloroethene             | < 0.857              |  |
| 1,2,4-Trimethylbenzene      | 2.04                 |  |
| 1,3,5-Trimethylbenzene      | 3.52                 |  |
| 2,2,4-Trimethylpentane      | < 0.747              |  |
| Vinyl Chloride              | < 0.409              |  |
| Vinyl Bromide               | < 0.700              |  |
| Vinyl Acetate               | < 0.563              |  |
| Total Xylene                | 150.6                |  |
| TPH (GC/MS) low fraction    | 661                  |  |
| Oxygen                      | 279,522              |  |
| Carbon Dioxide              | < 5,000              |  |
| Carbon Monoxide             | < 20,000             |  |
| Methane                     | < 4,000              |  |

•

Laboratory Report and Chain-of-Custody Documents

Timberwolf Project No. HEC-190007

Received by OCD: 5/5/2021 12:59:51 PM

Pace Analytical® ANALYTICAL REPORT April 14, 2021

**Revised Report** 

### HilCorp-Farmington, NM

| Sample Delivery Group: | L1330502                |
|------------------------|-------------------------|
| Samples Received:      | 03/25/2021              |
| Project Number:        |                         |
| Description:           | San Juan 28-7 Unit 183M |
| Site:                  | SAN JUAN 28-7 #183M     |
| Report To:             | Clara Cardoza           |
|                        | 382 Road 3100           |
|                        | Aztec, NM 87410         |

Entire Report Reviewed By:

Olivia Studebaker Project Manager

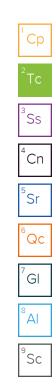
Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## Pace Analytical National

Mount Juliet, TN 37122 12065 Lebanon Rd 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 7/6/2022 2:50:28 PM HilCorp-Farmington, NM

SDG: L1330502


DATE/TIME: 04/14/21 15:12 PAGE: 1 of 14

Page 18 of 32

Ср Тс Ss Cn Śr <sup>′</sup>Qc Gl ΆI Sc

### TABLE OF CONTENTS

| Cp: Cover Page                                  | 1  |
|-------------------------------------------------|----|
| Tc: Table of Contents                           | 2  |
| Ss: Sample Summary                              | 3  |
| Cn: Case Narrative                              | 4  |
| Sr: Sample Results                              | 5  |
| SVE L1330502-01                                 | 5  |
| Qc: Quality Control Summary                     | 7  |
| Volatile Organic Compounds (MS) by Method TO-15 | 7  |
| Organic Compounds (GC) by Method D1946          | 11 |
| GI: Glossary of Terms                           | 12 |
| Al: Accreditations & Locations                  | 13 |
| Sc: Sample Chain of Custody                     | 14 |
|                                                 |    |



SDG: L1330502

DATE/TIME: 04/14/21 15:12 PAGE: 2 of 14 Received by OCD: 5/5/2021 12:59:51 PM

### SAMPLE SUMMARY

Page 20 of 32

|                                                 |           |          | Collected by   | Collected date/time | Received da | ite/time       |
|-------------------------------------------------|-----------|----------|----------------|---------------------|-------------|----------------|
| SVE L1330502-01 Air                             |           |          | K Hoekstra     | 03/23/21 10:35      | 03/25/21 09 | :00            |
| Method                                          | Batch     | Dilution | Preparation    | Analysis            | Analyst     | Location       |
|                                                 |           |          | date/time      | date/time           |             |                |
| Volatile Organic Compounds (MS) by Method TO-15 | WG1640301 | 800      | 03/25/21 19:14 | 03/25/21 19:14      | GLN         | Mt. Juliet, TN |
| Organic Compounds (GC) by Method D1946          | WG1641976 | 1        | 03/30/21 11:39 | 03/30/21 11:39      | DAH         | Mt. Juliet, TN |



Ср

SDG: L1330502

DATE/TIME: 04/14/21 15:12 PAGE: 3 of 14

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

#### Report Revision History

Level II Report - Version 1: 04/01/21 14:31

#### Sample Delivery Group (SDG) Narrative

Sample received in tedlar bag.

Lab Sample ID

Project Sample ID SVE Method TO-15 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

DATE/TIME: 04/14/21 15:12

Collected date/time: 03/23/21 10:35

## SAMPLE RESULTS - 01

#### Volatile Organic Compounds (MS) by Method TO-15

|                              | CAS #      | Mol. Wt. | RDL1 | RDL2  | Result | Result | Qualifier | Dilution | Batch     | L      |
|------------------------------|------------|----------|------|-------|--------|--------|-----------|----------|-----------|--------|
| Analyte                      |            |          | ppbv | ug/m3 | ppbv   | ug/m3  |           |          |           | . []   |
| Acetone                      | 67-64-1    | 58.10    | 1000 | 2380  | ND     | ND     |           | 800      | WG1640301 |        |
| Allyl chloride               | 107-05-1   | 76.53    | 160  | 501   | ND     | ND     |           | 800      | WG1640301 | 1      |
| Benzene                      | 71-43-2    | 78.10    | 160  | 511   | 7960   | 25400  |           | 800      | WG1640301 |        |
| Benzyl Chloride              | 100-44-7   | 127      | 160  | 831   | ND     | ND     |           | 800      | WG1640301 |        |
| Bromodichloromethane         | 75-27-4    | 164      | 160  | 1070  | ND     | ND     |           | 800      | WG1640301 | . [    |
| Bromoform                    | 75-25-2    | 253      | 480  | 4970  | ND     | ND     |           | 800      | WG1640301 |        |
| Bromomethane                 | 74-83-9    | 94.90    | 160  | 621   | ND     | ND     |           | 800      | WG1640301 |        |
| ,3-Butadiene                 | 106-99-0   | 54.10    | 1600 | 3540  | ND     | ND     |           | 800      | WG1640301 |        |
| Carbon disulfide             | 75-15-0    | 76.10    | 160  | 498   | ND     | ND     |           | 800      | WG1640301 |        |
| Carbon tetrachloride         | 56-23-5    | 154      | 160  | 1010  | ND     | ND     |           | 800      | WG1640301 |        |
| Chlorobenzene                | 108-90-7   | 113      | 160  | 739   | ND     | ND     |           | 800      | WG1640301 |        |
| hloroethane                  | 75-00-3    | 64.50    | 160  | 422   | ND     | ND     |           | 800      | WG1640301 |        |
| Chloroform                   | 67-66-3    | 119      | 160  | 779   | ND     | ND     |           | 800      | WG1640301 |        |
| hloromethane                 | 74-87-3    | 50.50    | 160  | 330   | ND     | ND     |           | 800      | WG1640301 |        |
| -Chlorotoluene               | 95-49-8    | 126      | 160  | 825   | ND     | ND     |           | 800      | WG1640301 | . [    |
| yclohexane                   | 110-82-7   | 84.20    | 160  | 551   | 44800  | 154000 |           | 800      | WG1640301 |        |
| ibromochloromethane          | 124-48-1   | 208      | 160  | 1360  | ND     | ND     |           | 800      | WG1640301 | L<br>L |
| 2-Dibromoethane              | 106-93-4   | 188      | 160  | 1230  | ND     | ND     |           | 800      | WG1640301 |        |
| 2-Dichlorobenzene            | 95-50-1    | 147      | 160  | 962   | ND     | ND     |           | 800      | WG1640301 | , L    |
| 3-Dichlorobenzene            | 541-73-1   | 147      | 160  | 962   | ND     | ND     |           | 800      | WG1640301 |        |
| 4-Dichlorobenzene            | 106-46-7   | 147      | 160  | 962   | ND     | ND     |           | 800      | WG1640301 |        |
| 2-Dichloroethane             | 107-06-2   | 99       | 160  | 648   | ND     | ND     |           | 800      | WG1640301 |        |
| 1-Dichloroethane             | 75-34-3    | 98       | 160  | 641   | ND     | ND     |           | 800      | WG1640301 |        |
| 1-Dichloroethene             | 75-35-4    | 96.90    | 160  | 634   | ND     | ND     |           | 800      | WG1640301 |        |
| s-1,2-Dichloroethene         | 156-59-2   | 96.90    | 160  | 634   | ND     | ND     |           | 800      | WG1640301 |        |
| ans-1,2-Dichloroethene       | 156-60-5   | 96.90    | 160  | 634   | ND     | ND     |           | 800      | WG1640301 |        |
| 2-Dichloropropane            | 78-87-5    | 113      | 160  | 739   | ND     | ND     |           | 800      | WG1640301 |        |
| s-1,3-Dichloropropene        | 10061-01-5 | 111      | 160  | 726   | ND     | ND     |           | 800      | WG1640301 |        |
| ans-1,3-Dichloropropene      | 10061-02-6 | 111      | 160  | 726   | ND     | ND     |           | 800      | WG1640301 |        |
| 4-Dioxane                    | 123-91-1   | 88.10    | 160  | 577   | ND     | ND     |           | 800      | WG1640301 |        |
| thanol                       | 64-17-5    | 46.10    | 504  | 950   | 2710   | 5110   |           | 800      | WG1640301 |        |
| thylbenzene                  | 100-41-4   | 106      | 160  | 694   | 3220   | 14000  |           | 800      | WG1640301 |        |
| -Ethyltoluene                | 622-96-8   | 120      | 160  | 785   | 984    | 4830   |           | 800      | WG1640301 |        |
| richlorofluoromethane        | 75-69-4    | 137.40   | 160  | 899   | ND     | ND     |           | 800      | WG1640301 |        |
| ichlorodifluoromethane       | 75-71-8    | 120.92   | 160  | 791   | ND     | ND     |           | 800      | WG1640301 |        |
| 1,2-Trichlorotrifluoroethane | 76-13-1    | 187.40   | 160  | 1230  | ND     | ND     |           | 800      | WG1640301 |        |
| 2-Dichlorotetrafluoroethane  | 76-14-2    | 171      | 160  | 1120  | ND     | ND     |           | 800      | WG1640301 |        |
| eptane                       | 142-82-5   | 100      | 160  | 654   | 62800  | 257000 |           | 800      | WG1640301 |        |
| lexachloro-1,3-butadiene     | 87-68-3    | 261      | 504  | 5380  | ND     | ND     |           | 800      | WG1640301 |        |
| -Hexane                      | 110-54-3   | 86.20    | 504  | 1780  | 35000  | 123000 |           | 800      | WG1640301 |        |
| opropylbenzene               | 98-82-8    | 120.20   | 160  | 787   | 402    | 1980   |           | 800      | WG1640301 |        |
| ethylene Chloride            | 75-09-2    | 84.90    | 160  | 556   | ND     | ND     |           | 800      | WG1640301 |        |
| lethyl Butyl Ketone          | 591-78-6   | 100      | 1000 | 4090  | ND     | ND     |           | 800      | WG1640301 |        |
| -Butanone (MEK)              | 78-93-3    | 72.10    | 1000 | 2950  | ND     | ND     |           | 800      | WG1640301 |        |
| Methyl-2-pentanone (MIBK)    | 108-10-1   | 100.10   | 1000 | 4090  | ND     | ND     |           | 800      | WG1640301 |        |
| lethyl methacrylate          | 80-62-6    | 100.12   | 160  | 655   | ND     | ND     |           | 800      | WG1640301 |        |
| TBE                          | 1634-04-4  | 88.10    | 160  | 577   | ND     | ND     |           | 800      | WG1640301 |        |
| aphthalene                   | 91-20-3    | 128      | 504  | 2640  | ND     | ND     |           | 800      | WG1640301 |        |
| Propanol                     | 67-63-0    | 60.10    | 1000 | 2460  | ND     | ND     |           | 800      | WG1640301 |        |
| opene                        | 115-07-1   | 42.10    | 320  | 551   | ND     | ND     |           | 800      | WG1640301 |        |
| yrene                        | 100-42-5   | 104      | 160  | 681   | ND     | ND     |           | 800      | WG1640301 |        |
| I,2,2-Tetrachloroethane      | 79-34-5    | 168      | 160  | 1100  | ND     | ND     |           | 800      | WG1640301 |        |
| etrachloroethylene           | 127-18-4   | 166      | 160  | 1090  | ND     | ND     |           | 800      | WG1640301 |        |
| etrahydrofuran               | 109-99-9   | 72.10    | 160  | 472   | ND     | ND     |           | 800      | WG1640301 |        |
| oluene                       | 108-88-3   | 92.10    | 400  | 1510  | 47800  | 180000 |           | 800      | WG1640301 |        |
| ,2,4-Trichlorobenzene        | 120-82-1   | 181      | 504  | 3730  | ND     | ND     |           | 800      | WG1640301 |        |

#### Released to Imaging: 00/06/2022 2:50:28 PM HilCorp-Farmington, NM

PROJECT:

SDG: L1330502 DATE/TIME: 04/14/21 15:12

Page 22 of 32

Collected date/time: 03/23/21 10:35

## SAMPLE RESULTS - 01

Page 23 of 32

Volatile Organic Compounds (MS) by Method TO-15

|                            | CAS #     | Mol. Wt. | RDL1     | RDL2   | Result  | Result  | Qualifier | Dilution | Batch     |  |
|----------------------------|-----------|----------|----------|--------|---------|---------|-----------|----------|-----------|--|
| Analyte                    |           |          | ppbv     | ug/m3  | ppbv    | ug/m3   |           |          |           |  |
| 1,1,1-Trichloroethane      | 71-55-6   | 133      | 160      | 870    | ND      | ND      |           | 800      | WG1640301 |  |
| 1,1,2-Trichloroethane      | 79-00-5   | 133      | 160      | 870    | ND      | ND      |           | 800      | WG1640301 |  |
| Trichloroethylene          | 79-01-6   | 131      | 160      | 857    | ND      | ND      |           | 800      | WG1640301 |  |
| 1,2,4-Trimethylbenzene     | 95-63-6   | 120      | 160      | 785    | 416     | 2040    |           | 800      | WG1640301 |  |
| 1,3,5-Trimethylbenzene     | 108-67-8  | 120      | 160      | 785    | 718     | 3520    |           | 800      | WG1640301 |  |
| 2,2,4-Trimethylpentane     | 540-84-1  | 114.22   | 160      | 747    | ND      | ND      |           | 800      | WG1640301 |  |
| Vinyl chloride             | 75-01-4   | 62.50    | 160      | 409    | ND      | ND      |           | 800      | WG1640301 |  |
| Vinyl Bromide              | 593-60-2  | 106.95   | 160      | 700    | ND      | ND      |           | 800      | WG1640301 |  |
| Vinyl acetate              | 108-05-4  | 86.10    | 160      | 563    | ND      | ND      |           | 800      | WG1640301 |  |
| m&p-Xylene                 | 1330-20-7 | 106      | 320      | 1390   | 29500   | 128000  |           | 800      | WG1640301 |  |
| o-Xylene                   | 95-47-6   | 106      | 160      | 694    | 5210    | 22600   |           | 800      | WG1640301 |  |
| TPH (GC/MS) Low Fraction   | 8006-61-9 | 101      | 160000   | 661000 | 1390000 | 5740000 |           | 800      | WG1640301 |  |
| (S) 1,4-Bromofluorobenzene | 460-00-4  | 175      | 60.0-140 |        | 107     |         |           |          | WG1640301 |  |

#### Organic Compounds (GC) by Method D1946

|                 | CAS #     | Mol. Wt. | RDL   | Result | Qualifier | Dilution | Batch     |  |
|-----------------|-----------|----------|-------|--------|-----------|----------|-----------|--|
| Analyte         |           |          | %     | %      |           |          |           |  |
| Oxygen          | 7782-44-7 | 32       | 5.00  | 21.0   |           | 1        | WG1641976 |  |
| Carbon Monoxide | 630-08-0  | 28       | 2.00  | ND     |           | 1        | WG1641976 |  |
| Carbon Dioxide  | 124-38-9  | 44.01    | 0.500 | ND     |           | 1        | WG1641976 |  |
| Methane         | 74-82-8   | 16       | 0.400 | ND     |           | 1        | WG1641976 |  |

SDG: L1330502 DATE/TIME: 04/14/21 15:12

## QUALITY CONTROL SUMMARY

Method Blank (MB)

| (MB) R3635137-3 03/25/21       | MB Result | MB Qualifier | MB MDL | MB RDL |
|--------------------------------|-----------|--------------|--------|--------|
| Analyte                        | ppbv      |              | ppbv   | ppbv   |
| Acetone                        | U         |              | 0.584  | 1.25   |
| Allyl Chloride                 | U         |              | 0.114  | 0.200  |
| Benzene                        | U         |              | 0.0715 | 0.200  |
|                                | 0.0737    |              | 0.0715 | 0.200  |
| Benzyl Chloride                |           | <u>_</u>     |        |        |
| Bromodichloromethane           | U         |              | 0.0702 | 0.200  |
| Bromoform                      | U         |              | 0.0732 | 0.600  |
| Bromomethane                   | U         |              | 0.0982 | 0.200  |
| 1,3-Butadiene                  | U         |              | 0.104  | 2.00   |
| Carbon disulfide               | U         |              | 0.102  | 0.200  |
| Carbon tetrachloride           | U         |              | 0.0732 | 0.200  |
| Chlorobenzene                  | U         |              | 0.0832 | 0.200  |
| Chloroethane                   | U         |              | 0.0996 | 0.200  |
| Chloroform                     | U         |              | 0.0717 | 0.200  |
| Chloromethane                  | U         |              | 0.103  | 0.200  |
| 2-Chlorotoluene                | U         |              | 0.0828 | 0.200  |
| Cyclohexane                    | U         |              | 0.0753 | 0.200  |
| Dibromochloromethane           | U         |              | 0.0727 | 0.200  |
| 1,2-Dibromoethane              | U         |              | 0.0721 | 0.200  |
| 1,2-Dichlorobenzene            | U         |              | 0.128  | 0.200  |
| 1,3-Dichlorobenzene            | U         |              | 0.182  | 0.200  |
| 1,4-Dichlorobenzene            | U         |              | 0.0557 | 0.200  |
| 1,2-Dichloroethane             | U         |              | 0.0700 | 0.200  |
| 1,1-Dichloroethane             | U         |              | 0.0723 | 0.200  |
| 1,1-Dichloroethene             | U         |              | 0.0762 | 0.200  |
| cis-1,2-Dichloroethene         | U         |              | 0.0784 | 0.200  |
| trans-1,2-Dichloroethene       | U         |              | 0.0673 | 0.200  |
| 1,2-Dichloropropane            | U         |              | 0.0760 | 0.200  |
| cis-1,3-Dichloropropene        | U         |              | 0.0689 | 0.200  |
| trans-1,3-Dichloropropene      | U         |              | 0.0728 | 0.200  |
| 1,4-Dioxane                    | U         |              | 0.0833 | 0.200  |
| Ethylbenzene                   | U         |              | 0.0835 | 0.200  |
| 4-Ethyltoluene                 | U         |              | 0.0783 | 0.200  |
| Trichlorofluoromethane         | U         |              | 0.0819 | 0.200  |
| Dichlorodifluoromethane        | U         |              | 0.137  | 0.200  |
| 1,1,2-Trichlorotrifluoroethane | U         |              | 0.0793 | 0.200  |
| 1,2-Dichlorotetrafluoroethane  | U         |              | 0.0890 | 0.200  |
| Heptane                        | U         |              | 0.104  | 0.200  |
| Hexachloro-1,3-butadiene       | U         |              | 0.105  | 0.630  |
| n-Hexane                       | U         |              | 0.206  | 0.630  |
| Isopropylbenzene               | U         |              | 0.200  | 0.200  |
| зоргорушениене                 | 0         |              | 0.0777 | 0.200  |

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

SDG: L1330502 DATE/TIME: 04/14/21 15:12 PAGE: 7 of 14

## QUALITY CONTROL SUMMARY

Method Blank (MB)

| (MB) R3635137-3 | 03/25/21 09:55 |
|-----------------|----------------|

|                             | MB Result | MB Qualifier | MB MDL | MB RDL   |  |
|-----------------------------|-----------|--------------|--------|----------|--|
| Analyte                     | ppbv      |              | ppbv   | ppbv     |  |
| Methylene Chloride          | U         |              | 0.0979 | 0.200    |  |
| Methyl Butyl Ketone         | U         |              | 0.133  | 1.25     |  |
| 2-Butanone (MEK)            | U         |              | 0.0814 | 1.25     |  |
| 4-Methyl-2-pentanone (MIBK) | U         |              | 0.0765 | 1.25     |  |
| Methyl Methacrylate         | U         |              | 0.0876 | 0.200    |  |
| MTBE                        | U         |              | 0.0647 | 0.200    |  |
| Naphthalene                 | U         |              | 0.350  | 0.630    |  |
| 2-Propanol                  | U         |              | 0.264  | 1.25     |  |
| Propene                     | 0.162     | Ţ            | 0.0932 | 0.400    |  |
| Styrene                     | U         |              | 0.0788 | 0.200    |  |
| 1,1,2,2-Tetrachloroethane   | U         |              | 0.0743 | 0.200    |  |
| Tetrachloroethylene         | U         |              | 0.0814 | 0.200    |  |
| Tetrahydrofuran             | U         |              | 0.0734 | 0.200    |  |
| Toluene                     | U         |              | 0.0870 | 0.500    |  |
| 1,2,4-Trichlorobenzene      | U         |              | 0.148  | 0.630    |  |
| 1,1,1-Trichloroethane       | U         |              | 0.0736 | 0.200    |  |
| 1,1,2-Trichloroethane       | U         |              | 0.0775 | 0.200    |  |
| Trichloroethylene           | U         |              | 0.0680 | 0.200    |  |
| 1,2,4-Trimethylbenzene      | U         |              | 0.0764 | 0.200    |  |
| 1,3,5-Trimethylbenzene      | U         |              | 0.0779 | 0.200    |  |
| 2,2,4-Trimethylpentane      | U         |              | 0.133  | 0.200    |  |
| Vinyl chloride              | U         |              | 0.0949 | 0.200    |  |
| Vinyl Bromide               | U         |              | 0.0852 | 0.200    |  |
| Vinyl acetate               | U         |              | 0.116  | 0.200    |  |
| m&p-Xylene                  | U         |              | 0.135  | 0.400    |  |
| o-Xylene                    | U         |              | 0.0828 | 0.200    |  |
| Ethanol                     | U         |              | 0.265  | 0.630    |  |
| TPH (GC/MS) Low Fraction    | U         |              | 39.7   | 200      |  |
| (S) 1,4-Bromofluorobenzene  | 97.3      |              |        | 60.0-140 |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

|                               | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|-------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
| Analyte                       | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %     | %          |
| Ethanol                       | 3.75         | 4.24       | 4.31        | 113      | 115       | 55.0-148    |               |                | 1.64  | 25         |
| Propene                       | 3.75         | 4.19       | 4.37        | 112      | 117       | 64.0-144    |               |                | 4.21  | 25         |
| Dichlorodifluoromethane       | 3.75         | 3.82       | 3.86        | 102      | 103       | 64.0-139    |               |                | 1.04  | 25         |
| 1,2-Dichlorotetrafluoroethane | 3.75         | 3.90       | 3.87        | 104      | 103       | 70.0-130    |               |                | 0.772 | 25         |

#### Released to Imaging A 2022 2:50:28 PM HilCorp-Farmington, NM

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

## QUALITY CONTROL SUMMARY

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

|                                | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|--------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
| Analyte                        | ppbv         | ppbv       | ppbv        | %        | %         | %           |               |                | %     | %          |
| Chloromethane                  | 3.75         | 4.15       | 4.15        | 111      | 111       | 70.0-130    |               |                | 0.000 | 25         |
| Vinyl chloride                 | 3.75         | 4.21       | 4.20        | 112      | 112       | 70.0-130    |               |                | 0.238 | 25         |
| 1,3-Butadiene                  | 3.75         | 4.28       | 4.12        | 114      | 110       | 70.0-130    |               |                | 3.81  | 25         |
| Bromomethane                   | 3.75         | 3.99       | 3.92        | 106      | 105       | 70.0-130    |               |                | 1.77  | 25         |
| Chloroethane                   | 3.75         | 4.06       | 4.15        | 108      | 111       | 70.0-130    |               |                | 2.19  | 25         |
| Trichlorofluoromethane         | 3.75         | 3.68       | 3.63        | 98.1     | 96.8      | 70.0-130    |               |                | 1.37  | 25         |
| 1,1,2-Trichlorotrifluoroethane | 3.75         | 3.81       | 3.83        | 102      | 102       | 70.0-130    |               |                | 0.524 | 25         |
| 1,1-Dichloroethene             | 3.75         | 3.92       | 3.87        | 105      | 103       | 70.0-130    |               |                | 1.28  | 25         |
| 1,1-Dichloroethane             | 3.75         | 3.95       | 3.77        | 105      | 101       | 70.0-130    |               |                | 4.66  | 25         |
| Acetone                        | 3.75         | 4.04       | 4.10        | 108      | 109       | 70.0-130    |               |                | 1.47  | 25         |
| 2-Propanol                     | 3.75         | 4.05       | 4.02        | 108      | 107       | 70.0-139    |               |                | 0.743 | 25         |
| Carbon disulfide               | 3.75         | 3.73       | 3.83        | 99.5     | 102       | 70.0-130    |               |                | 2.65  | 25         |
| Methylene Chloride             | 3.75         | 4.07       | 3.93        | 109      | 105       | 70.0-130    |               |                | 3.50  | 25         |
| MTBE                           | 3.75         | 3.77       | 3.84        | 101      | 102       | 70.0-130    |               |                | 1.84  | 25         |
| trans-1,2-Dichloroethene       | 3.75         | 3.98       | 3.86        | 106      | 103       | 70.0-130    |               |                | 3.06  | 25         |
| n-Hexane                       | 3.75         | 3.96       | 3.77        | 106      | 101       | 70.0-130    |               |                | 4.92  | 25         |
| Vinyl acetate                  | 3.75         | 3.95       | 3.86        | 105      | 103       | 70.0-130    |               |                | 2.30  | 25         |
| Methyl Ethyl Ketone            | 3.75         | 3.92       | 3.88        | 105      | 103       | 70.0-130    |               |                | 1.03  | 25         |
| cis-1,2-Dichloroethene         | 3.75         | 3.96       | 3.93        | 106      | 105       | 70.0-130    |               |                | 0.760 | 25         |
| Chloroform                     | 3.75         | 3.75       | 3.73        | 100      | 99.5      | 70.0-130    |               |                | 0.535 | 25         |
| Cyclohexane                    | 3.75         | 3.83       | 3.86        | 102      | 103       | 70.0-130    |               |                | 0.780 | 25         |
| 1,1,1-Trichloroethane          | 3.75         | 3.76       | 3.63        | 100      | 96.8      | 70.0-130    |               |                | 3.52  | 25         |
| Carbon tetrachloride           | 3.75         | 3.67       | 3.64        | 97.9     | 97.1      | 70.0-130    |               |                | 0.821 | 25         |
| Benzene                        | 3.75         | 3.82       | 3.77        | 102      | 101       | 70.0-130    |               |                | 1.32  | 25         |
| 1,2-Dichloroethane             | 3.75         | 3.87       | 3.88        | 103      | 103       | 70.0-130    |               |                | 0.258 | 25         |
| Heptane                        | 3.75         | 3.93       | 4.12        | 105      | 110       | 70.0-130    |               |                | 4.72  | 25         |
| Trichloroethylene              | 3.75         | 3.69       | 3.84        | 98.4     | 102       | 70.0-130    |               |                | 3.98  | 25         |
| 1,2-Dichloropropane            | 3.75         | 4.02       | 3.91        | 107      | 104       | 70.0-130    |               |                | 2.77  | 25         |
| 1,4-Dioxane                    | 3.75         | 3.62       | 3.60        | 96.5     | 96.0      | 70.0-140    |               |                | 0.554 | 25         |
| Bromodichloromethane           | 3.75         | 3.73       | 3.86        | 99.5     | 103       | 70.0-130    |               |                | 3.43  | 25         |
| cis-1,3-Dichloropropene        | 3.75         | 3.86       | 3.88        | 103      | 103       | 70.0-130    |               |                | 0.517 | 25         |
| 4-Methyl-2-pentanone (MIBK)    | 3.75         | 4.18       | 4.15        | 111      | 111       | 70.0-139    |               |                | 0.720 | 25         |
| Toluene                        | 3.75         | 3.85       | 3.82        | 103      | 102       | 70.0-130    |               |                | 0.782 | 25         |
| trans-1,3-Dichloropropene      | 3.75         | 3.88       | 3.94        | 103      | 105       | 70.0-130    |               |                | 1.53  | 25         |
| 1,1,2-Trichloroethane          | 3.75         | 3.74       | 3.78        | 99.7     | 101       | 70.0-130    |               |                | 1.06  | 25         |
| Tetrachloroethylene            | 3.75         | 3.62       | 3.67        | 96.5     | 97.9      | 70.0-130    |               |                | 1.37  | 25         |
| Methyl Butyl Ketone            | 3.75         | 4.03       | 4.10        | 107      | 109       | 70.0-149    |               |                | 1.72  | 25         |
| . ,                            |              |            |             |          |           |             |               |                |       |            |

Sr

<sup>°</sup>Qc

Released to Imaging: %%%2022 2:50:28 PM HilCorp-Farmington, NM

3.75

3.75

3.75

3.72

3.71

3.78

3.74

3.77

3.83

Dibromochloromethane

1,2-Dibromoethane

Chlorobenzene

PROJECT:

99.2

98.9

101

99.7

101

102

70.0-130

70.0-130

70.0-130

SDG: L1330502 DATE/TIME: 04/14/21 15:12

25

25

25

0.536

1.60

1.31

**PAGE**: 9 of 14

## QUALITY CONTROL SUMMARY

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3635137-1 03/25    | 5/21 08:35 • (LCS | D) R3635137- | 2 03/25/21 09: |          |           |             |               |                |       |            |  |
|---------------------------|-------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
|                           | Spike Amount      | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
| Analyte                   | ppbv              | ppbv         | ppbv           | %        | %         | %           |               |                | %     | %          |  |
| Ethylbenzene              | 3.75              | 3.70         | 3.75           | 98.7     | 100       | 70.0-130    |               |                | 1.34  | 25         |  |
| m&p-Xylene                | 7.50              | 7.44         | 7.43           | 99.2     | 99.1      | 70.0-130    |               |                | 0.135 | 25         |  |
| o-Xylene                  | 3.75              | 3.70         | 3.67           | 98.7     | 97.9      | 70.0-130    |               |                | 0.814 | 25         |  |
| Styrene                   | 3.75              | 3.70         | 3.74           | 98.7     | 99.7      | 70.0-130    |               |                | 1.08  | 25         |  |
| Bromoform                 | 3.75              | 3.63         | 3.66           | 96.8     | 97.6      | 70.0-130    |               |                | 0.823 | 25         |  |
| 1,1,2,2-Tetrachloroethane | 3.75              | 3.75         | 3.78           | 100      | 101       | 70.0-130    |               |                | 0.797 | 25         |  |
| 4-Ethyltoluene            | 3.75              | 3.75         | 3.66           | 100      | 97.6      | 70.0-130    |               |                | 2.43  | 25         |  |
| 1,3,5-Trimethylbenzene    | 3.75              | 3.83         | 3.76           | 102      | 100       | 70.0-130    |               |                | 1.84  | 25         |  |
| 1,2,4-Trimethylbenzene    | 3.75              | 3.77         | 3.79           | 101      | 101       | 70.0-130    |               |                | 0.529 | 25         |  |
| 1,3-Dichlorobenzene       | 3.75              | 3.70         | 3.75           | 98.7     | 100       | 70.0-130    |               |                | 1.34  | 25         |  |
| 1,4-Dichlorobenzene       | 3.75              | 3.73         | 3.73           | 99.5     | 99.5      | 70.0-130    |               |                | 0.000 | 25         |  |
| Benzyl Chloride           | 3.75              | 3.76         | 3.78           | 100      | 101       | 70.0-152    |               |                | 0.531 | 25         |  |
| 1,2-Dichlorobenzene       | 3.75              | 3.68         | 3.69           | 98.1     | 98.4      | 70.0-130    |               |                | 0.271 | 25         |  |
| 1,2,4-Trichlorobenzene    | 3.75              | 3.92         | 3.95           | 105      | 105       | 70.0-160    |               |                | 0.762 | 25         |  |
| Hexachloro-1,3-butadiene  | 3.75              | 3.66         | 3.64           | 97.6     | 97.1      | 70.0-151    |               |                | 0.548 | 25         |  |
| Naphthalene               | 3.75              | 3.80         | 3.81           | 101      | 102       | 70.0-159    |               |                | 0.263 | 25         |  |
| TPH (GC/MS) Low Fraction  | 203               | 234          | 232            | 115      | 114       | 70.0-130    |               |                | 0.858 | 25         |  |
| Allyl Chloride            | 3.75              | 4.42         | 3.89           | 118      | 104       | 70.0-130    |               |                | 12.8  | 25         |  |
| 2-Chlorotoluene           | 3.75              | 3.66         | 3.66           | 97.6     | 97.6      | 70.0-130    |               |                | 0.000 | 25         |  |
| Methyl Methacrylate       | 3.75              | 3.65         | 3.73           | 97.3     | 99.5      | 70.0-130    |               |                | 2.17  | 25         |  |
| Tetrahydrofuran           | 3.75              | 4.00         | 4.04           | 107      | 108       | 70.0-137    |               |                | 0.995 | 25         |  |
| 2,2,4-Trimethylpentane    | 3.75              | 3.93         | 3.90           | 105      | 104       | 70.0-130    |               |                | 0.766 | 25         |  |
| Vinyl Bromide             | 3.75              | 3.76         | 3.77           | 100      | 101       | 70.0-130    |               |                | 0.266 | 25         |  |
| Isopropylbenzene          | 3.75              | 3.71         | 3.72           | 98.9     | 99.2      | 70.0-130    |               |                | 0.269 | 25         |  |
| (S) 1,4-Bromofluorobenzen | e                 |              |                | 98.6     | 98.9      | 60.0-140    |               |                |       |            |  |
|                           |                   |              |                |          |           |             |               |                |       |            |  |

SDG: L1330502 DATE/TIME: 04/14/21 15:12

PAGE: 10 of 14

Page 27 of 32

Organic Compounds (GC) by Method D1946

## QUALITY CONTROL SUMMARY

### Page 28 of 32

#### Method Blank (MB)

(MB) R3636275-3 03/30/21 11:25

| (IVIB) R3636275-3 ( | 3/30/2111:25 |              |        |        |
|---------------------|--------------|--------------|--------|--------|
|                     | MB Result    | MB Qualifier | MB MDL | MB RDL |
| Analyte             | %            |              | %      | %      |
| Oxygen              | U            |              | 0.225  | 5.00   |
| Carbon Monoxide     | U            |              | 0.665  | 2.00   |
| Carbon Dioxide      | U            |              | 0.121  | 0.500  |
| Methane             | U            |              | 0.0584 | 0.400  |
|                     |              |              |        |        |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3636275-1 03/30 | (LCS) R3636275-1 03/30/21 11:07 • (LCSD) R3636275-2 03/30/21 11:18 |            |             |          |           |             |               |                |      |            |  |  |  |  |
|------------------------|--------------------------------------------------------------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|--|--|--|--|
|                        | Spike Amount                                                       | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |  |  |  |  |
| Analyte                | %                                                                  | %          | %           | %        | %         | %           |               |                | %    | %          |  |  |  |  |
| Oxygen                 | 20.0                                                               | 22.8       | 21.8        | 114      | 109       | 70.0-130    |               |                | 4.48 | 20         |  |  |  |  |
| Carbon Monoxide        | 2.50                                                               | 2.83       | 2.69        | 113      | 108       | 70.0-130    |               |                | 5.07 | 20         |  |  |  |  |
| Carbon Dioxide         | 2.50                                                               | 2.43       | 2.33        | 97.2     | 93.2      | 70.0-130    |               |                | 4.20 | 20         |  |  |  |  |
| Methane                | 2.00                                                               | 2.13       | 2.08        | 107      | 104       | 70.0-130    |               |                | 2.38 | 20         |  |  |  |  |

<sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

DATE/TIME: 04/14/21 15:12 PAGE: 11 of 14

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and<br>Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be<br>detected in all environmental media.                                                                                                                                                                                                                                         |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1330502 DATE/TIME: 04/14/21 15:12

## Received by OCD: 5/5/2021 12:59:51 PM CCREDITATIONS & LOCATIONS

| Page | 30 | of 32 |
|------|----|-------|
|      |    |       |

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| labama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------------|-------------|-----------------------------|------------------|
| llaska                       | 17-026      | Nevada                      | TN000032021-1    |
| rizona                       | AZ0612      | New Hampshire               | 2975             |
| ırkansas                     | 88-0469     | New Jersey–NELAP            | TN002            |
| California                   | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| colorado                     | TN00003     | New York                    | 11742            |
| Connecticut                  | PH-0197     | North Carolina              | Env375           |
| lorida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| ieorgia                      | NELAP       | North Carolina <sup>3</sup> | 41               |
| ieorgia <sup>1</sup>         | 923         | North Dakota                | R-140            |
| laho                         | TN00003     | Ohio-VAP                    | CL0069           |
| linois                       | 200008      | Oklahoma                    | 9915             |
| ndiana                       | C-TN-01     | Oregon                      | TN200002         |
| owa                          | 364         | Pennsylvania                | 68-02979         |
| Cansas                       | E-10277     | Rhode Island                | LAO00356         |
| Centucky <sup>16</sup>       | KY90010     | South Carolina              | 84004002         |
| entucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| ouisiana                     | Al30792     | Tennessee <sup>14</sup>     | 2006             |
| ouisiana                     | LA018       | Texas                       | T104704245-20-18 |
| aine                         | TN00003     | Texas ⁵                     | LAB0152          |
| laryland                     | 324         | Utah                        | TN000032021-11   |
| lassachusetts                | M-TN003     | Vermont                     | VT2006           |
| lichigan                     | 9958        | Virginia                    | 110033           |
| linnesota                    | 047-999-395 | Washington                  | C847             |
| lississippi                  | TN00003     | West Virginia               | 233              |
| lissouri                     | 340         | Wisconsin                   | 998093910        |
| lontana                      | CERT0086    | Wyoming                     | A2LA             |
| 2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| 2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                       | 1461.01     | USDA                        | P330-15-00234    |
| PA–Crypto                    | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1330502

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    | Billing Info        | rmation:                                                |                     |             |             | $(0, \mathbb{R}^{n})$ | Anal | ysis / Conta | ainer / Pres  | ervative         |                |                                   | Chain of Custo                                         | Page of                   | _       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|---------------------|---------------------------------------------------------|---------------------|-------------|-------------|-----------------------|------|--------------|---------------|------------------|----------------|-----------------------------------|--------------------------------------------------------|---------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    | ATTN: Clara Cardoza |                                                         |                     |             |             |                       |      |              |               |                  |                |                                   | Pac                                                    | e Analytical <sup>®</sup> | ovation |
| Report to:<br>Clara Cardoza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                    | Email To:           | a@hilcorp.c                                             | abile               |             |             |                       |      |              |               |                  |                | 12065 Lebanon<br>Mount Juliet, TN |                                                        |                           |         |
| Project<br>Description: San Juan 28-7 Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nit 183M                                   |                                    | ccaraoz             | City/State<br>Collected: Az                             |                     |             |             |                       |      | -            |               |                  |                |                                   | Phone: 615-758<br>Phone: 800-767<br>Fax: 615-758-58    | 5858<br>5859              | 日期      |
| Phone: <b>5055640733</b><br>Fax: Client Project #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                    | Lab Project #       |                                                         |                     |             | Tedlar      |                       |      |              |               |                  |                |                                   | L#                                                     | H217                      | 2       |
| ollected by (print):<br>Hoekstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site/Facility ID # P.O. # S.J. 28-7 # 183M |                                    |                     |                                                         |                     |             |             |                       |      |              |               |                  | <u> </u>       | ILCORANM                          |                                                        |                           |         |
| Collected by (signature)  Collected by (sign |                                            | bay Five I<br>ay 5 Day<br>ay 10 Da | Day<br>(Rad Only)   | Quote #                                                 | te Results Needed   |             | 1000 m 1000 |                       |      |              |               |                  |                |                                   | Template:<br>Prelogin:<br>TSR:<br>PB:                  |                           |         |
| Packed on Ice N Y<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comp/Grab                                  | T                                  | Depth               | Date                                                    | Time                | of<br>Cntrs | -           |                       |      |              |               |                  |                |                                   | Shipped Via:<br>Remarks                                | Sample # (lab or          | nly)    |
| VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | Air                                |                     | 3-23                                                    | 10:35               | 1           | ×           |                       |      |              |               |                  |                |                                   |                                                        | -0                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    | 1. 1. 2. 1          | and with the                                            | ALL ASA             |             |             |                       |      |              |               |                  |                |                                   |                                                        |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    |                     |                                                         |                     |             |             |                       |      |              |               | The second       |                |                                   |                                                        |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    |                     |                                                         |                     |             |             |                       |      |              |               |                  |                |                                   |                                                        |                           |         |
| -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                    |                     |                                                         |                     |             |             |                       |      |              |               |                  |                |                                   | 27.5                                                   |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    |                     |                                                         |                     | -1          |             |                       |      |              |               |                  |                |                                   |                                                        |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    |                     | 4.<br>                                                  |                     |             |             |                       | -    |              |               |                  |                |                                   |                                                        |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    | <u> </u>            |                                                         | -                   |             |             |                       |      | -            |               |                  |                |                                   |                                                        |                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                    |                     | a line - ao na paosina ao 1 - ao amin'ny faritr'i Angle |                     |             |             |                       |      |              |               |                  |                | N 8 9                             |                                                        |                           |         |
| Motelu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Damada                                     | -                                  |                     |                                                         |                     |             |             |                       |      |              |               |                  |                |                                   |                                                        |                           |         |
| Matrix:<br>S - Soil AIR - Air F - Filter<br>W - Groundwater B - Bioassay<br>/W - WasteWater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks:                                   |                                    |                     |                                                         |                     |             |             |                       |      | pH           | Temp<br>Other |                  | COC S<br>Bottl | eal Pr<br>igned/<br>es arr        | le Receipt<br>resent/Intac<br>Accurate:<br>rive intact | ct: NP Y                  | N<br>N  |
| W - Drinking Water<br>T - Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samples retu                               | rned via:<br>edEx Cou              | rier                |                                                         | Tracking #          |             | 929         | 1 5                   | 743  | na           | 77            |                  |                |                                   | tles used:<br>volume sent                              | t: I                      |         |
| elinguighed by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Date:                              |                     |                                                         | Received by: (Signa |             | ya 1        | 6)                    | LT)  | D Blank Roc  | eived: Yes    | ING              | VOA Z          | ero He<br>rvatio                  | adspace:                                               | Y                         | _N      |
| Kust II. Lita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 3-24                               |                     | 6:35                                                    | Lesence of loight   |             |             |                       |      | , blank net  | Н             | CL / MeoH        |                |                                   |                                                        |                           | _       |
| efinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                   | Date:                              |                     |                                                         | Received by: (Signa | ature)      |             |                       | -Ten | np:B         | °C Bottle     | SR<br>SReceived: | If prese       | ervation                          | n required by                                          | Login: Date/Time          |         |
| elinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Date:                              | т                   | ime:                                                    | Received for lab by | : (Signa    | ture)       | ,                     | Dat  |              | -/ Time       | gar              | Hold:          |                                   |                                                        | Condition<br>NCF / O      |         |

.

Released to Imaging: 7/6/2022 2:50:28 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 27022

| CONDITIONS             |                                                                          |  |  |  |  |  |  |
|------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|
| Operator:              | OGRID:                                                                   |  |  |  |  |  |  |
| HILCORP ENERGY COMPANY | 372171                                                                   |  |  |  |  |  |  |
| 1111 Travis Street     | Action Number:                                                           |  |  |  |  |  |  |
| Houston, TX 77002      | 27022                                                                    |  |  |  |  |  |  |
|                        | Action Type:<br>[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT) |  |  |  |  |  |  |

#### CONDITIONS

| Created | Condition                              | Condition |
|---------|----------------------------------------|-----------|
| Ву      |                                        | Date      |
| csmith  | Q1 2021 SVE Report Accepted for Record | 7/6/2022  |