

SITE INFORMATION

Closure Report
Screech Owl Federal 004H (03.07.22)
Incident ID NAPP2207739235
Eddy County, New Mexico
Unit N Sec 18 T26S R27E
32.036791°, -104.231092°

Crude Oil/Produced Water Release Point of Release: Flowline Release Date: 03/07/2022

Volume Released: 2.781 barrels of Crude Oil, 2.781 barrels of Produced Water Volume Recovered: 0 barrels of Crude Oil, 0 barrels of Produced Water

CARMONA RESOURCES

Prepared for: Concho Operating, LLC 15 West London Road, Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 415 Midland, Texas 79701

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1 OVERVIEW FIGURE 2 TOPOGRAPHIC

FIGURE 3 SAMPLE LOCATION FIGURE 4 EXCAVATION

APPENDICES

APPENDIX A TABLES

APPENDIX B PHOTOS

APPENDIX C INITIAL C-141 AND FINAL AND NMOCD CORRESPONDCE

APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER

APPENDIX E LABORATORY REPORTS

April 19, 2022

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report

Screech Owl Federal 004H (03.07.22)

Concho Operating, LLC Incident ID NAPP2207739235

Site Location: Unit N, S18, T26S, R27E (Lat 32.036791°, Long -104.231092°)

Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site activities for Screech Owl Federal 004H (03.07.22). The site is located at 32.036791°, -104.231092° within Unit N, S18, T26S, R27E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on March 7, 2022, due to a hole in a surface flowline. It resulted in approximately two point seven-eight-one (2.781) barrels of crude oil and two-point seven-eight-one (2.781) barrels of produced water. Zero (0) barrels of crude oil and zero (0) barrels of produced water were recovered. See figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water source is located within a 0.50-mile radius of the location. The closest well is approximately 1.52 miles North of the site in S12, T26S, R26E and was drilled in 2018. The well has a reported depth to groundwater of 12.60' feet below ground surface (ft bgs). A copy of the associated Point of Diversion Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg

4.0 Site Assessment Activities

On March 8, 2022, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of nine (9) sample points were advanced to depths ranging from the surface – 3.5' bgs inside and surrounding the release area to evaluate the vertical and horizontal extent. See Figure 3 for the soil sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Refer to Table 1.

5.0 Remediation Activities

Carmona Resources personnel were onsite from April 4, 2022, through April 11, 2022, to supervise the remediation activities and collect confirmation samples. The areas were excavated to 2.5'-3.0' to remove all impacted soils. A total of five (5) confirmation samples were collected (CS-1 through CS-5), and six (6) sidewall samples (SW-1 through SW-6) were collected every 200 square feet to ensure proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The results of the sampling are summarized in Table 2. The excavation depths and confirmation sample locations are shown in Figure 4.

The areas of CS-4 and SW-2 showed high chloride concentrations of 608 mg/kg and 1,020 mg/kg and were extended and an additional 0.5' to ensure the proper removal of impacted soils. All the final confirmation samples were below the 19.15.29.12 NMAC criteria. Refer to Table 2.

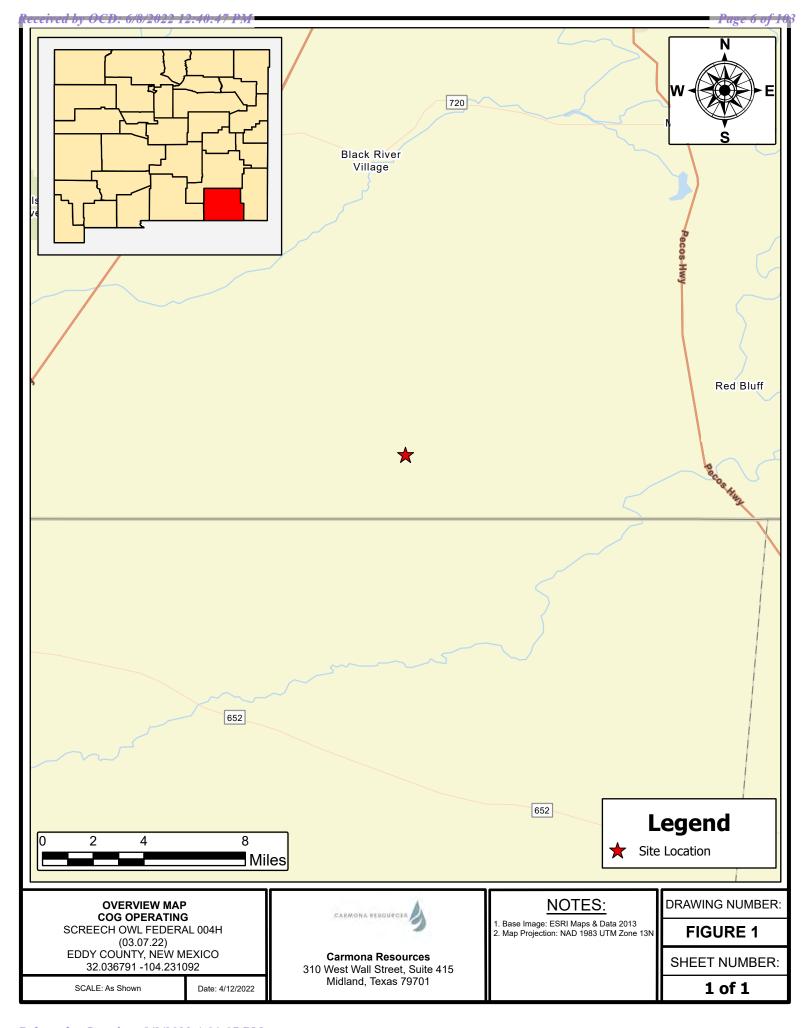
Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 70 cubic yards of material were excavated and transported offsite for proper disposal.

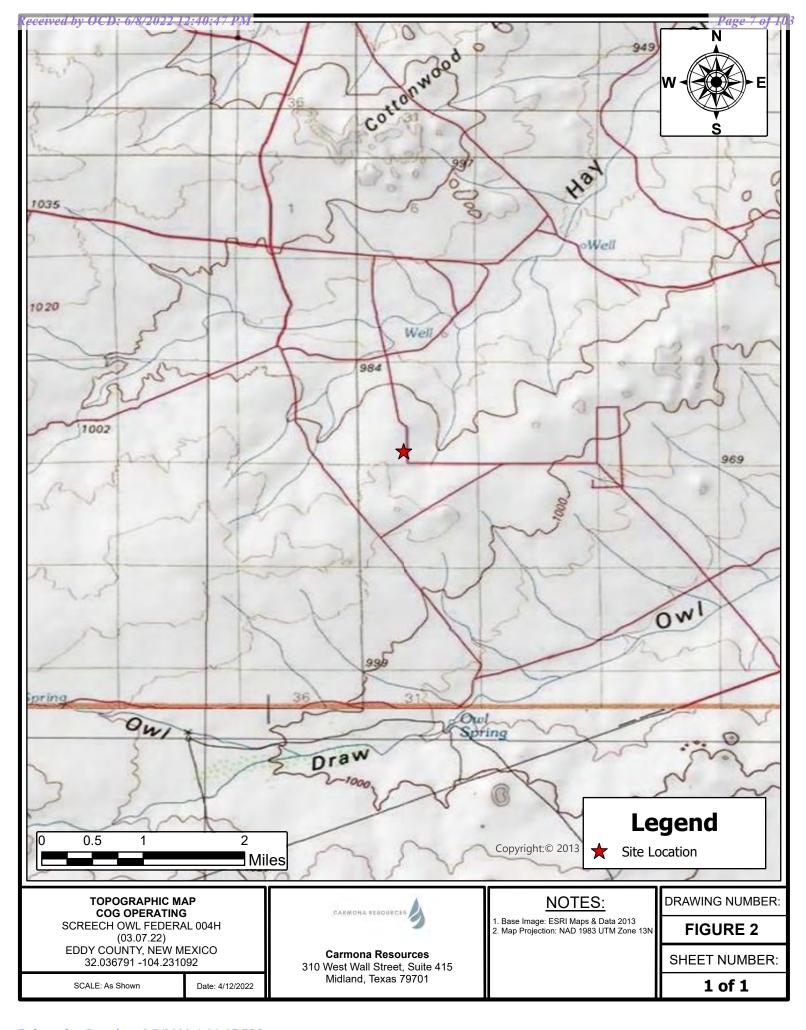
6.0 Conclusions

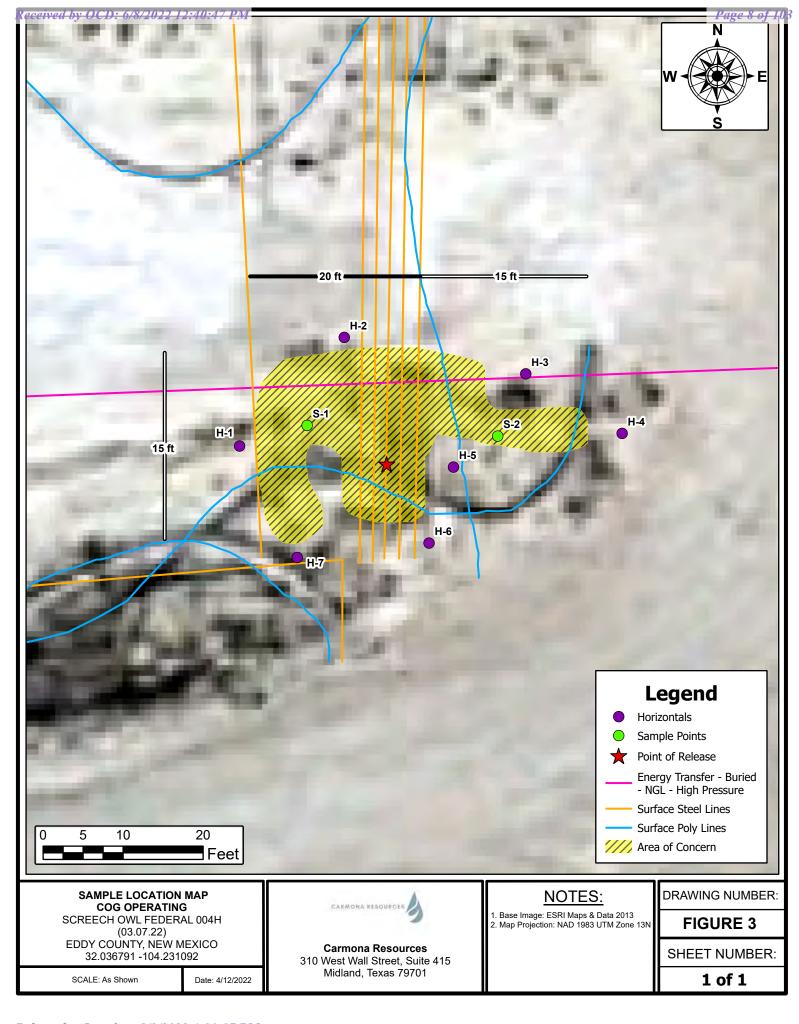
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

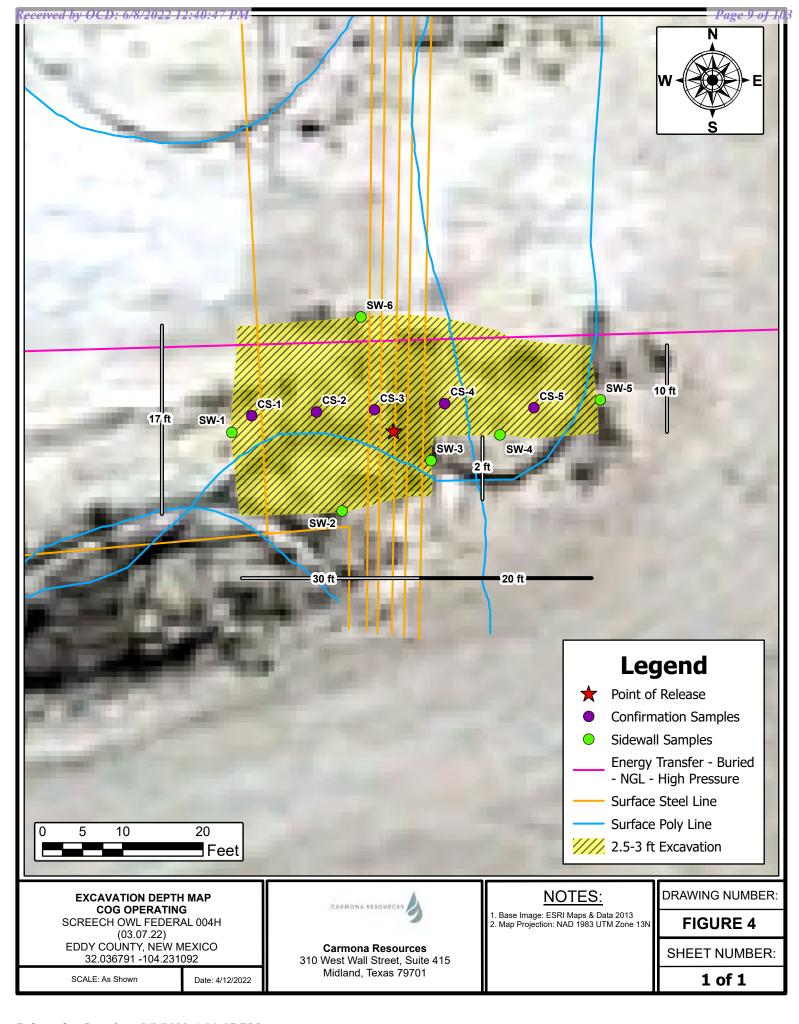
Sincerely,

Carmona Resources, LLC


Mike Carmona


Environmental Manager


Clinton Merritt Sr Project Manager


FIGURES

CARMONA RESOURCES

APPENDIX A

CARMONA RESOURCES

Table 1 COG Screech Owl Federal (03.07.22) Eddy County, New Mexico

0		Data Danth (ft)		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride	
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	3/8/2022	0-0.5	7,490	7,810	1,360	16,700	15.2	79.3	28.0	203	326	6,040
	"	1.0	1,390	2,190	310	3,890	1.72	23.5	10.5	66.5	102	6,960
S-1	"	1.5	560	1,260	197	2,020	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3,050
	"	2.5	<50.0	<50.0	<50.0	<50.0	<0.00200	0.01560	0.02490	0.24000	0.280	409
	"	3.5	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	128
S-2	3/8/2022	0-0.5	330	1,610	279	2,220	0.00235	0.0235	0.0337	0.317	0.377	8,990
3-2	"	1.0	305	3,020	<49.8	3,330	0.00499	0.102	0.202	11.0	11.3	14,700
H-1	3/8/2022	0-0.5	<50.0	86.0	<50.0	86.0	<0.00201	<0.00201	<0.00201	0.0104	0.0104	2,290
H-2	3/8/2022	0-0.5	<49.9	54.4	<49.9	54.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	47.9
H-3	3/8/2022	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	40.8
H-4	3/8/2022	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	59.3
H-5	3/8/2022	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	58.9
H-6	3/8/2022	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	86.6
H-7	3/8/2022	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	62.9
	ory Criteria A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(S) Sample Point

(H) Horizontal

Removed

Table 2
COG
Screech Owl Federal (03.07.22)
Eddy County, New Mexico

0 D	Bill	D 4 (0)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	4/7/2022	2.5	<10.0	28.8	<10.0	28.8	<0.050	<0.050	<0.050	<0.150	<0.300	240
CS-2	4/7/2022	2.5	<10.0	36.1	<10.0	36.1	<0.050	<0.050	<0.050	<0.150	<0.300	224
CS-3	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	544
CS-4	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	608
	4/11/2022	3.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-5	4/7/2022	2.5	<10.0	26.5	<10.0	26.5	<0.050	<0.050	<0.050	<0.150	<0.300	240
SW-1	4/7/2022	2.5	<10.0	46.8	<10.0	46.8	<0.050	<0.050	<0.050	<0.150	<0.300	160
SW-2	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,020
011-2	4/11/2022	3.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-3	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	528
SW-4	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	544
SW-5	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	512
SW-6	4/7/2022	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	544
	ory Criteria A					100 mg/kg	10 mg/kg	-	-	-	50 mg/kg	600 mg/kg

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(CS) Confirmation Sample

(SW) Sidewall

Removed

APPENDIX B

CARMONA RESOURCES

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility: Screech Owl Federal 004H

(03.07.22)

County: Eddy County, New Mexico

Description:

View Southwest of remediation activities.

Photograph No. 2

Facility: Screech Owl Federal 004H

(03.07.22)

County: Eddy County, New Mexico

Description:

View West of remediation activities.

Photograph No. 3

Facility: Screech Owl Federal 004H

(03.07.22)

County: Eddy County, New Mexico

Description:

View East of remediation activities.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 4

Facility: Screech Owl Federal 004H

(03.07.22)

County: Eddy County, New Mexico

Description:

View Southeast of remediation activities.

Photograph No. 5

Facility: Screech Owl Federal 004H

(03.07.22)

County: Eddy County, New Mexico

Description:

View Southwest of remediation activities.

APPENDIX C

CARMONA RESOURCES

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party				OGRID	OGRID				
Contact Nam	ie			Contact	Contact Telephone				
Contact emai	Contact email				Incident # (assigned by OCD)				
Contact mailing address									
			Location	of Release	Source				
Latitude				Longitud	e				
			(NAD 83 in dec	cimal degrees to 5 de	ecimal places)				
Site Name				Site Typ	e				
Date Release	Discovered			API# (if	applicable)				
Unit Letter	Section	Township	Range	Co	ounty				
Onit Detter	Section	Township	Runge		, diffy	+			
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Private (I	Name:)			
			Nature and	d Volume of	f Release				
Crude Oil		l(s) Released (Select al Volume Release		calculations or speci	Volume Reco	e volumes provided below) overed (bbls)			
Produced	Water	Volume Release	` ,		Volume Recovered (bbls)				
			ion of dissolved c	hloride in the	☐ Yes ☐ N	, ,			
		produced water							
Condensa	te	Volume Release	d (bbls)		Volume Reco	overed (bbls)			
Natural G	as	Volume Release	d (Mcf)		Volume Reco	Volume Recovered (Mcf)			
Other (des	scribe)	Volume/Weight	Released (provide	e units)	Volume/Weight Recovered (provide units)				
Cause of Rele	ease								

Received by OCD: 6/8/2022/12:40:47 PM1 Form C-141 State of New Mexico Oil Conservation Division Page 2

	Page 18cof 10) å
ID		

Incident ID			
District RP			
Facility ID			
Application ID			

Was this a major release as defined by	If YES, for what reason(s) does the respon-	sible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ☐ No		
ICAEC ' 1' '	di di de	0 W/ 11 1 () ()
If YES, was immediate no	otice given to the OCD? By whom? To who	om? When and by what means (phone, email, etc)?
	Initial Re	sponse
The responsible p	party must undertake the following actions immediately	unless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.	
☐ The impacted area ha	as been secured to protect human health and t	he environment.
Released materials ha	ave been contained via the use of berms or di	kes, absorbent pads, or other containment devices.
☐ All free liquids and re	ecoverable materials have been removed and	managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain w	hy:
Per 19.15.29.8 B. (4) NM	1AC the responsible party may commence re	mediation immediately after discovery of a release. If remediation
		fforts have been successfully completed or if the release occurred ease attach all information needed for closure evaluation.
I hereby certify that the infor	ormation given above is true and complete to the b	est of my knowledge and understand that pursuant to OCD rules and
		ications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have
failed to adequately investigated	gate and remediate contamination that pose a threa	t to groundwater, surface water, human health or the environment. In
and/or regulations.	a C-141 report does not reneve the operator of r	esponsibility for compliance with any other federal, state, or local laws
Printed Name		Title:
Signature: _	taniseparge _	
Signature.		Date:
email:		Telephone:
OCD Only		
OCD Only Jocelyn I	Harimon	03/18/2022
Received by:	Harimon ————————————————————————————————————	Date:

L48 Spill Volume Estimate Form NAPP220773923519 of 103 Received by OCD: 6/8/2022/12:40:47 PM me & Number | Screech Owl Fed 4H Well Asset Area: Carlsbad 2 South Release Discovery Date & Time: 3/7/2022-7:00 A.M. Release Type: Oil Mixture Provide any known details about the event. Internal Corrosion caused pinhole leak on fluid line from well to battery Spill Calculation - Subsurface Spill - Rectangle Was the release on pad or off-pad? See reference table below See reference table below Total Estimated Total Estimated Percentage of Oil if Total Estimated Estimated volume of each area Volume of Spilled Soil Spilled-Fluid Saturation Volume of Spill Spilled Fluid is a Volume of Spilled Oil (bbl.) Liquid other than Oil (bbl.) Mixture (bbl.) (bbl.) Rectangle A 170.0 2.00 15.12% 20.173 4.0 3.050 50.00% 1.525 1.525 Rectangle B 140.0 4.0 2.00 15.12% 16 613 1.256 2 512 50.00% 1.256 Rectangle C 0.000 0.000 0.000 0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total Volume Release:

0.000

0.000

0.000

0.000

0.000

0.000

0.000

5.562

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2.781

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2.781

Width	Dept (in.)
	Width (ft.)

Released to Imaging: 8/2/2022 4:01:07 PM M

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Rectangle H

Rectangle I

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 91294

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	91294
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Cre	eated By	Condition	Condition Date
jh	arimon	None	3/18/2022

Received by OCD: 6/8/2022 12:40:47 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 21 of 103
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)			
Did this release impact groundwater or surface water?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No			
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No			
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No			
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No			
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No			
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.				
Characterization Report Checklist: Each of the following items must be included in the report.				
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.			

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/8/2022 12:40:47 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 22 of 10	03
Incident ID		
District RP		
Facility ID		
Application ID		

regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	oCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	
Signature: Jaqui Trois	6/8/2022 Date:
email:	Telephone:
	-
OCD Only	
Received by:	Date:

Received by OCD:	6/8/2022 12:40:47 PM
Form C-141	State of New Mexico
Page 6	Oil Conservation Division

	Page 23 of 103
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification to the O	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially notitions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.
Printed Name:	Title:
Signature: Pacqui Harris	Date: 6/8/2022
email:	Telephone:
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

From: Hamlet, Robert, EMNRD

Sent: Tuesday, April 5, 2022 11:08 AM

To: Clint Merritt

Cc: Harris, Jacqui; Mike Carmona; Bratcher, Mike, EMNRD; Hensley, Chad, EMNRD; Velez, Nelson,

EMNRD; Nobui, Jennifer, EMNRD

Subject: RE: [EXTERNAL] COG Screech Owl Fed 004H (03.07.22) 48 Hour Notification

Clint,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau
EMNRD - Oil Conservation Division
811 S. First Street | Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Enviro, OCD, EMNRD < OCD.Enviro@state.nm.us>

Sent: Tuesday, April 5, 2022 8:05 AM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@state.nm.us>

Subject: Fw: [EXTERNAL] COG Screech Owl Fed 004H (03.07.22) 48 Hour Notification

From: Clint Merritt < <u>MerrittC@carmonaresources.com</u>>

Sent: Monday, April 4, 2022 8:34 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@state.nm.us>

Cc: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>; Mike Carmona

<Mcarmona@carmonaresources.com>

Subject: [EXTERNAL] COG Screech Owl Fed 004H (03.07.22) 48 Hour Notification

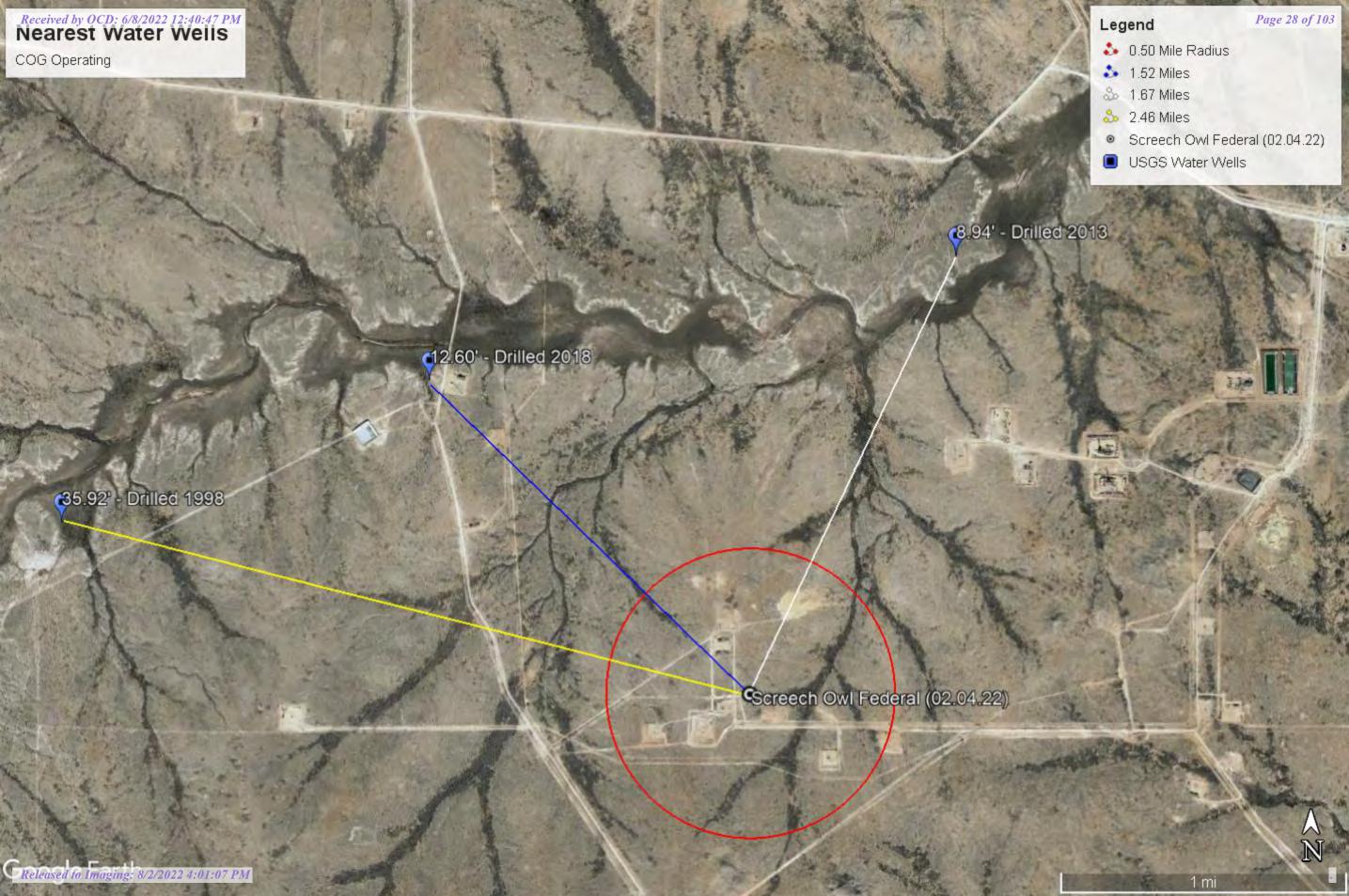
CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good evening,

On behalf of COG, Carmona Resources will be collecting confirmation samples at the below-referenced site for the at-risk remediation on <u>Thursday 04/07/2022 at 9:00</u> a.m Mountain Time. Please let me know if you have any questions.

Screech Owl Fed 004H (03.07.22) Eddy County, New Mexico Sec 18 T26S R27E Unit N Incident #: NAPP2207739235 32.036806, -104.231088

Clinton Merritt 310 West Wall Street, Suite 415 Midland TX, 79701 M: 432-813-9044


MerrittC@carmonaresources.com

APPENDIX D

CARMONA RESOURCES

Received by OCD: 6/8/2022 12:40:47 PM Page 27 of 103 Legend ✓ MEDIUM COG Operating Screech Owl Federal (02.04.22) Screech Owl Federal (02.04.22) Greleased to Imaging: 8/2/2022 4:01:07 PM 1 mi

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

	POD Sub-		-	Q	-	_			.,	•	Depth	
POD Number	Code basin CUB	County ED	4		4 Se 1 07		27E	573039	Y 3546725*	Well 35	Water	Column
<u>C 02218</u>	COB	ED	4	1 4	+ 07	203	216	373039	3340723	33		
<u>C 02219</u>	CUB	ED	4	4 4	1 05	5 26S	27E	575033	3547948* 🌑	35		
C 02474	CUB	ED		4 3	3 02	2 26S	27E	578964	3548029*	100		
C 02475	CUB	ED		2 4	1 13	3 26S	27E	581450	3545252* 🌍	100		
C 02476	CUB	ED		4 ′	l 24	4 26S	27E	580653	3544032*	150		
<u>C 02930</u>	С	ED	2	3 4	1 22	2 26S	27E	577938	3543284* 🌍	100	50	50
C 04269 POD1	CUB	ED	4	2 3	3 18	3 26S	27E	572620	3545176 🎒	105		
C 04573 POD1	CUB	ED	3	1 ′	l 11	1 26S	27E	578524	3547472 🌍	104	35	69
C 04573 POD2	CUB	ED	3	1 1	l 11	1 26S	27E	578565	3547561 🎒	104	35	69
C 04573 POD3	CUB	ED	4	1 1	l 11	1 26S	27E	578584	3547602 🌕	100	36	64

Average Depth to Water: 39 feet

Minimum Depth: 35 feet

Maximum Depth: 50 feet

Record Count: 10

PLSS Search:

Township: 26S Range: 27E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs

site_no list =

320320104145101

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320320104145101 26S.26E.12.34120

Eddy County, New Mexico

Table of data

Latitude 32°03'09.7", Longitude 104°14'56.7" NAD83

Land-surface elevation 3,230.90 feet above NGVD29

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

ab-separat	<u>ed data</u>									
Graph of da	t <u>a</u>									
Reselect per	iod									
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source meas
1978-01-25	5	D	62610		3217.55	NGVD29	1	Z		
1978-01-25	5	D	62611		3219.22	NAVD88	1	Z		
1978-01-25	5	D	72019	13.35			1	Z		
1992-11-18	3	D	62610		3218.87	NGVD29	1	S		
1992-11-18	3	D	62611		3220.54	NAVD88	1	S		
1992-11-18	3	D	72019	12.03			1	S		
1998-01-13	3	D	62610		3215.24	NGVD29	1	S		
1998-01-13	3	D	62611		3216.91	NAVD88	1	S		
1998-01-13	3	D	72019	15.66			1	S		
2003-01-28	3	D	62610		3214.44	NGVD29	1	S	USGS	5
2003-01-28	3	D	62611		3216.11	NAVD88	1	S	USGS	3
2003-01-28	3	D	72019	16.46			1	S	USGS	3
2013-01-09	22:10 UTC	m	62610		3213.80	NGVD29	1	S	USGS	6
2013-01-09	22:10 UTC	m	62611		3215.47	NAVD88	1	S	USGS	6
2013-01-09	9 22:10 UTC	m	72019	17.10			1	S	USGS	5

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
2018-02-15	22:14 UTC	m	62610		3218.30	NGVD29	1	S	USGS	
2018-02-15	22:14 UTC	m	62611		3219.97	NAVD88	1	S	USGS	
2018-02-15	22:14 UTC	m	72019	12.60			1	S	USGS	

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	Α	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> **Data Tips** Explanation of terms Subscribe for system changes <u>News</u>

Privacy Accessibility FOIA Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: New Mexico Water Data Maintainer
Page Last Modified: 2022-03-07 21:50:17 EST

0.37 0.33 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320343104110201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320343104110201 26S.27E.08.13230

Eddy County, New Mexico

Table of data

Latitude 32°03'32.4", Longitude 104°13'03.9" NAD83

Land-surface elevation 3,182.10 feet above NGVD29

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Castile Formation (312CSTL) local aquifer.

Output formats

Tab-separa	ted data									
<u>Graph of da</u>	<u>ata</u>									
Reselect pe	eriod									
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source meason
1978-01-0)3	D	62610		3164.52	NGVD29	1	Z		
1978-01-0	13	D	62611		3166.18	NAVD88	1	Z		
1978-01-0)3	D	72019	17.58			1	Z		
1983-01-0)5	D	62610		3166.54	NGVD29	1	Z		
1983-01-0)5	D	62611		3168.20	NAVD88	1	Z		
1983-01-0)5	D	72019	15.56			1	Z		
1987-10-0	18	D	62610		3167.72	NGVD29	1	Z		
1987-10-0	18	D	62611		3169.38	NAVD88	1	Z		
1987-10-0	18	D	72019	14.38			1	Z		
1992-11-0)4	D	62610		3165.85	NGVD29	1	S		
1992-11-0)4	D	62611		3167.51	NAVD88	1	S		
1992-11-0)4	D	72019	16.25			1	S		
1998-01-1	.3	D	62610		3165.45	NGVD29	1	S		
1998-01-1	.3	D	62611		3167.11	NAVD88	1	S		
1998-01-1	.3	D	72019	16.65			1	S		

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
2003-01-28		D	62610		3164.88	NGVD29	1	S	USGS	
2003-01-28		D	62611		3166.54	NAVD88	1	S	USGS	
2003-01-28		D	72019	17.22			1	S	USGS	
2013-01-09	21:45 UTC	m	62610		3173.16	NGVD29	1	S	USGS	
2013-01-09	21:45 UTC	m	62611		3174.82	NAVD88	1	S	USGS	
2013-01-09	21:45 UTC	m	72019	8.94			1	S	USGS	

Ex	กเว	na	tic	n
	310	iiia	CIC	

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	Α	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site **Automated retrievals** <u>Help</u> Data Tips Explanation of terms Subscribe for system changes **News**

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: New Mexico Water Data Maintainer
Page Last Modified: 2022-03-07 21:43:34 EST
0.36 0.33 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs site_no list =

320244104161501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320244104161501 26S.26E.15.24444

Eddy County, New Mexico

Latitude 32°02'44", Longitude 104°16'15" NAD27

Land-surface elevation 3,280 feet above NAVD88

The depth of the well is 53 feet below land surface.

This well is completed in the Other aguifers (N9999OTHER) national aguifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

<u>Tab-separated data</u>	Tab	-separate	d data		
---------------------------	-----	-----------	--------	--	--

Table of data

<u>Graph of da</u>	aph of data									
eselect period										
Date	Time	? Water-level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1983-08-2	4	D	62610		3246.37	NGVD29	1	Z		
1983-08-2	4	D	62611		3248.04	NAVD88	1	Z		
1983-08-2	4	D	72019	31.96			1	Z		
1987-10-0	8	D	62610		3248.64	NGVD29	1	Z		
1987-10-0	8	D	62611		3250.31	NAVD88	1	Z		
1987-10-0	8	D	72019	29.69			1	Z		
1992-11-1	8	D	62610		3246.72	NGVD29	1	S		
1992-11-1	8	D	62611		3248.39	NAVD88	1	S		
1992-11-1	8	D	72019	31.61			1	S		
1998-01-0	8	D	62610		3242.41	NGVD29	1	S		
1998-01-0	8	D	62611		3244.08	NAVD88	1	S		
1998-01-0	8	D	72019	35.92			1	S		

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms Subscribe for system changes **News**

Accessibility FOIA Privacy Policies and Notices


U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for New Mexico: Water Levels
URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-03-07 21:48:48 EST

0.33 0.3 nadww01

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

0.4

8.0

1.6 km

APPENDIX E

CARMONA RESOURCES

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-12273-1

Laboratory Sample Delivery Group: Eddy Co, NM Client Project/Site: Screech Owl Fed (02.04.22)

For:

Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Attn: Conner Moehring

RAMER

Authorized for release by: 3/16/2022 6:57:33 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 8/2/2022 4:01:07 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Carmona Resources Project/Site: Screech Owl Fed (02.04.22) Laboratory Job ID: 880-12273-1 SDG: Eddy Co, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	16
QC Sample Results	18
QC Association Summary	29
Lab Chronicle	35
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

2

3

4

6

8

9

11

13

14

Definitions/Glossary

Client: Carmona Resources Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Qualifiers

GC VOA	
Qualifier	

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC Ouglifier

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

Glossary

LOD

Cioosary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD	Elitilit of Detection (Dob/DOL)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

ND Not De	etected at the reporting limit (o	r MDL or EDL if shown)
-----------	-----------------------------------	------------------------

Limit of Detection (DoD/DOE)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
DDEC	Drogumativo

PRES	Presumptive	
QC	Quality Control	
DED	Polativo Error E	

RER	Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Job ID: 880-12273-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-12273-1

Receipt

The samples were received on 3/10/2022 10:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21289 and analytical batch 880-21441 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21146 and analytical batch 880-21440 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: S-2 (1') (880-12273-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21215 and analytical batch 880-21615 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: S-1 (0-0.5') (880-12273-1) at 200.0. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-21371 and analytical batch 880-21357 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-0.5') (880-12273-1), S-1 (1') (880-12273-2) and (LCSD 880-21371/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-21325 and analytical batch 880-21446 recovered outside control limits for the following analytes: Diesel Range Organics (Over

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Carmona Resources

Client Sample ID: S-1 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Lab Sample ID: 880-12273-1

Matrix: Solid

Job ID: 880-12273-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	15.2		0.201		mg/Kg		03/10/22 11:12	03/12/22 21:48	10
Toluene	79.3		0.403		mg/Kg		03/14/22 16:00	03/15/22 15:31	20
Ethylbenzene	28.0		0.403		mg/Kg		03/14/22 16:00	03/15/22 15:31	20
m-Xylene & p-Xylene	155		0.806		mg/Kg		03/14/22 16:00	03/15/22 15:31	20
o-Xylene	48.3		0.403		mg/Kg		03/14/22 16:00	03/15/22 15:31	20
Xylenes, Total	203		0.806		mg/Kg		03/14/22 16:00	03/15/22 15:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	220	S1+	70 - 130				03/10/22 11:12	03/12/22 21:48	10
1,4-Difluorobenzene (Surr)	133	S1+	70 - 130				03/10/22 11:12	03/12/22 21:48	10
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	326		0.806		mg/Kg			03/14/22 14:30	
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	16700		50.0		mg/Kg			03/11/22 10:24	
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	7490		50.0		mg/Kg		03/11/22 09:52	03/12/22 07:16	
Diesel Range Organics (Over C10-C28)	7810		50.0		mg/Kg		03/11/22 09:52	03/12/22 07:16	
OII Range Organics (Over C28-C36)	1360		50.0		mg/Kg		03/11/22 09:52	03/12/22 07:16	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	174	S1+	70 - 130				03/11/22 09:52	03/12/22 07:16	
o-Terphenyl	140	S1+	70 - 130				03/11/22 09:52	03/12/22 07:16	
Method: 300.0 - Anions, Ion Chr	romatography -	Soluble							

Client Sample ID: S-1 (1') Lab Sample ID: 880-12273-2 Date Collected: 03/08/22 00:00 Matrix: Solid

24.8

mg/Kg

6040

Date Received: 03/10/22 10:15

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.72		0.200		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
Toluene	23.5		0.200		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
Ethylbenzene	10.5		0.200		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
m-Xylene & p-Xylene	51.3		0.401		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
o-Xylene	15.2		0.200		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
Xylenes, Total	66.5		0.401		mg/Kg		03/10/22 11:12	03/12/22 22:08	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	233	S1+	70 - 130				03/10/22 11:12	03/12/22 22:08	100
1,4-Difluorobenzene (Surr)	111		70 - 130				03/10/22 11:12	03/12/22 22:08	100

Eurofins Midland

03/16/22 08:22

Client: Carmona Resources

Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22) SDG: Eddy Co, NM

Lab Sample ID: 880-12273-2

Client Sample ID: S-1 (1')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	102		0.401		mg/Kg			03/14/22 14:30	1
Method: 8015 NM - Diesel Rang	je Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	3890		49.9		mg/Kg			03/11/22 10:24	1
Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	1390		49.9		mg/Kg		03/11/22 09:52	03/12/22 07:37	1
(GRO)-C6-C10	2400		49.9		mg/Kg		03/11/22 09:52	03/12/22 07:37	1
Diesel Range Organics (Over C10-C28)	2190		49.9		IIIg/Kg		03/11/22 09.52	03/12/22 07.37	'
Oll Range Organics (Over	310		49.9		mg/Kg		03/11/22 09:52	03/12/22 07:37	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	132	S1+	70 - 130				03/11/22 09:52	03/12/22 07:37	1
o-Terphenyl	117		70 - 130				03/11/22 09:52	03/12/22 07:37	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6960		99.0		mg/Kg			03/16/22 16:30	20

Client Sample ID: S-1 (1.5') Lab Sample ID: 880-12273-3 Date Collected: 03/08/22 00:00 Matrix: Solid

Date Received: 03/10/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
Toluene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/12/22 21:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				03/10/22 11:12	03/12/22 21:07	1
1,4-Difluorobenzene (Surr)	112		70 - 130				03/10/22 11:12	03/12/22 21:07	1
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BTAnalyte Total BTEX			RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/14/22 14:30	Dil Fac
Analyte Total BTEX	Result < 0.00398	U		MDL		<u>D</u>	Prepared		Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Rar	Result <0.00398	U				<u>D</u>	Prepared Prepared		1
Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte	Result <0.00398	U (GC)	0.00398		mg/Kg			03/14/22 14:30	1
Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH	Result 20.00398 Organics (DR) Result 2020	O) (GC) Qualifier	0.00398		mg/Kg			03/14/22 14:30 Analyzed	Dil Fac
Analyte	nge Organics (DR) Result 2020 ange Organics (DI)	O) (GC) Qualifier	0.00398	MDL	mg/Kg			03/14/22 14:30 Analyzed	1

Eurofins Midland

Released to Imaging: 8/2/2022 4:01:07 PM

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (1.5') Date Collected: 03/08/22 00:00

3050

Lab Sample ID: 880-12273-3

Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	1260		49.8		mg/Kg		03/11/22 09:52	03/12/22 08:01	1
Oll Range Organics (Over C28-C36)	197		49.8		mg/Kg		03/11/22 09:52	03/12/22 08:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				03/11/22 09:52	03/12/22 08:01	1
o-Terphenyl	99		70 - 130				03/11/22 09:52	03/12/22 08:01	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

24.8 Client Sample ID: S-1 (2.5') Lab Sample ID: 880-12273-4

mg/Kg

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Chloride

Matrix: Solid

03/16/22 08:31

- Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/12/22 21:27	
Toluene	0.0156		0.00200		mg/Kg		03/10/22 11:12	03/12/22 21:27	
Ethylbenzene	0.0249		0.00200		mg/Kg		03/10/22 11:12	03/12/22 21:27	
m-Xylene & p-Xylene	0.172		0.00399		mg/Kg		03/10/22 11:12	03/12/22 21:27	
o-Xylene	0.0678		0.00200		mg/Kg		03/10/22 11:12	03/12/22 21:27	
Xylenes, Total	0.240		0.00399		mg/Kg		03/10/22 11:12	03/12/22 21:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	128		70 - 130				03/10/22 11:12	03/12/22 21:27	
1,4-Difluorobenzene (Surr)	102		70 - 130				03/10/22 11:12	03/12/22 21:27	

Method: Total BTEX - Total BTEX Ca	alculation						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.280	0.00399	mg/Kg			03/14/22 14:30	1

Method: 8015 NM - Diesel Range O	Organics (DRO)	(GC)							
Analyte	Result Q	(ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	1	50.0		mg/Kg			03/11/22 10:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		03/11/22 08:28	03/11/22 17:58	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		03/11/22 08:28	03/11/22 17:58	•
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		03/11/22 08:28	03/11/22 17:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	106		70 - 130				03/11/22 08:28	03/11/22 17:58	
o-Terphenyl	102		70 - 130				03/11/22 08:28	03/11/22 17:58	

Eurofins Midland

Analyzed

03/15/22 18:53

RL

4.98

MDL Unit

mg/Kg

Prepared

Result Qualifier

409

Dil Fac

Analyte

Chloride

Client: Carmona Resources

Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22) SDG: Eddy Co, NM

Lab Sample ID: 880-12273-5

Client Sample ID: S-1 (3.5')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
Toluene	<0.00202	U	0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		03/10/22 11:12	03/12/22 23:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				03/10/22 11:12	03/12/22 23:31	1
1,4-Difluorobenzene (Surr)	113		70 - 130				03/10/22 11:12	03/12/22 23:31	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			03/14/22 14:30	1
- Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH									
-	<50.0	U	50.0		mg/Kg			03/11/22 10:24	
- ¹¹¹ -			50.0		mg/Kg			03/11/22 10:24	
Method: 8015B NM - Diesel Rang Analyte	ge Organics (D		50.0	MDL		D	Prepared	03/11/22 10:24 Analyzed	1
Method: 8015B NM - Diesel Rang Analyte	ge Organics (D	RO) (GC) Qualifier		MDL		<u>D</u>	Prepared 03/11/22 08:28		1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	<u>·</u>	Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL	MDL	Unit mg/Kg	<u>D</u>	03/11/22 08:28	Analyzed 03/11/22 18:19	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D Result <50.0	RO) (GC) Qualifier U	RL 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	03/11/22 08:28	Analyzed 03/11/22 18:19 03/11/22 18:19	1 Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	RO) (GC) Qualifier U	RL 50.0 50.0 50.0	MDL	Unit mg/Kg mg/Kg	<u>D</u>	03/11/22 08:28 03/11/22 08:28 03/11/22 08:28	Analyzed 03/11/22 18:19 03/11/22 18:19 03/11/22 18:19	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0 %Recovery	RO) (GC) Qualifier U	RL 50.0 50.0 50.0 <i>Limits</i>	MDL	Unit mg/Kg mg/Kg	<u>D</u>	03/11/22 08:28 03/11/22 08:28 03/11/22 08:28 Prepared	Analyzed 03/11/22 18:19 03/11/22 18:19 03/11/22 18:19 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <80.0 %Recovery 106 101	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	03/11/22 08:28 03/11/22 08:28 03/11/22 08:28 Prepared 03/11/22 08:28	Analyzed 03/11/22 18:19 03/11/22 18:19 03/11/22 18:19 Analyzed 03/11/22 18:19	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D Result <50.0 <50.0 <50.0 **Recovery 106 101 omatography -	RO) (GC) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/11/22 08:28 03/11/22 08:28 03/11/22 08:28 Prepared 03/11/22 08:28	Analyzed 03/11/22 18:19 03/11/22 18:19 03/11/22 18:19 Analyzed 03/11/22 18:19	Dil Fac

Client Sample ID: S-2 (0-0.5') Lab Sample ID: 880-12273-6 Date Collected: 03/08/22 00:00 **Matrix: Solid**

Date Received: 03/10/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00235		0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
Toluene	0.0235		0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
Ethylbenzene	0.0337		0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
m-Xylene & p-Xylene	0.222		0.00403		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
o-Xylene	0.0952		0.00202		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
Xylenes, Total	0.317		0.00403		mg/Kg		03/10/22 11:12	03/12/22 23:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				03/10/22 11:12	03/12/22 23:52	1
1,4-Difluorobenzene (Surr)	101		70 - 130				03/10/22 11:12	03/12/22 23:52	1

Client: Carmona Resources

Date Received: 03/10/22 10:15

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: S-2 (0-0.5') Lab Sample ID: 880-12273-6 Date Collected: 03/08/22 00:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.377		0.00403		mg/Kg			03/14/22 14:30	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2220		49.8		mg/Kg			03/11/22 10:24	1
Method: 8015B NM - Diesel Ran	ge Organics (DI	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	330		49.8		mg/Kg		03/11/22 08:28	03/11/22 18:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	1610		49.8		mg/Kg		03/11/22 08:28	03/11/22 18:41	1
C10-C28)									
Oll Range Organics (Over	279		49.8		mg/Kg		03/11/22 08:28	03/11/22 18:41	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				03/11/22 08:28	03/11/22 18:41	1
o-Terphenyl	103		70 - 130				03/11/22 08:28	03/11/22 18:41	1
Method: 300.0 - Anions, Ion Chi	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8990		99.4		mg/Kg			03/16/22 16:38	20

Client Sample ID: S-2 (1') Lab Sample ID: 880-12273-7 Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00499		0.00200		mg/Kg		03/10/22 11:12	03/13/22 00:12	1
Toluene	0.102		0.00200		mg/Kg		03/10/22 11:12	03/13/22 00:12	1
Ethylbenzene	0.202		0.00200		mg/Kg		03/10/22 11:12	03/13/22 00:12	1
m-Xylene & p-Xylene	7.51		0.0803		mg/Kg		03/13/22 12:58	03/14/22 01:46	20
o-Xylene	3.47		0.0402		mg/Kg		03/13/22 12:58	03/14/22 01:46	20
Xylenes, Total	11.0		0.0803		mg/Kg		03/13/22 12:58	03/14/22 01:46	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	264	S1+	70 - 130				03/10/22 11:12	03/13/22 00:12	1
							00//0/00 // /0	00/40/00 00 40	
1,4-Difluorobenzene (Surr)	94		70 - 130				03/10/22 11:12	03/13/22 00:12	7
Method: Total BTEX - Total B	TEX Calculation	Qualifier		MDI	llnit	В			Dil Ess
Method: Total BTEX - Total BT	TEX Calculation Result	Qualifier	RL	MDL	Unit	<u>D</u>	03/10/22 11:12 Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BT	TEX Calculation	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX	FEX Calculation Result 11.3		RL	MDL		<u>D</u>		Analyzed	Dil Fac
- '	FEX Calculation Result 11.3 nge Organics (DR		RL			<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar	FEX Calculation Result 11.3 nge Organics (DR	O) (GC)	RL		mg/Kg		Prepared	Analyzed 03/14/22 14:30	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte	TEX Calculation Result 11.3 nge Organics (DR) Result 3330	O) (GC) Qualifier			mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Rar Analyte Total TPH	TEX Calculation Result 11.3 nge Organics (DR) Result 3330 ange Organics (D	O) (GC) Qualifier		MDL	mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	1

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Lab Sample ID: 880-12273-7

Matrix: Solid

Client Sample ID: S-2 (1')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	3020		49.8		mg/Kg		03/10/22 14:00	03/11/22 02:43	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		03/10/22 14:00	03/11/22 02:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	138	S1+	70 - 130				03/10/22 14:00	03/11/22 02:43	1
o-Terphenyl	116		70 - 130				03/10/22 14:00	03/11/22 02:43	1

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14700		99.2		mg/Kg			03/16/22 08:57	20

Client Sample ID: H-1 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample	ID:	880-1	2273-8
------------	-----	-------	--------

Matrix: Solid

Method: 8021B - Volatile Orga	nic Compounds ((GC)	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
Toluene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
m-Xylene & p-Xylene	0.00728		0.00402		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
o-Xylene	0.00311		0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
Xylenes, Total	0.0104		0.00402		mg/Kg		03/10/22 11:12	03/13/22 00:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				03/10/22 11:12	03/13/22 00:32	1
1 4-Difluorobenzene (Surr)	103		70 - 130				03/10/22 11:12	03/13/22 00:32	1

Method: Total BTEX - Total BTEX Calculation											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total BTEX	0.0104		0.00402		mg/Kg			03/14/22 14:30	1		

Method: 8015 NM - Diesel Range C	Organics (DRO) (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	86.0	50.0		mg/Kg			03/11/22 10:24	1
Method: 8015B NM - Diesel Range Analyte	Organics (DRO) (GC) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Michiga. 00 10D Min - Dieser Rang	c Organics (Di	110) (00)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		03/10/22 14:00	03/11/22 03:05	1
Diesel Range Organics (Over C10-C28)	86.0		50.0		mg/Kg		03/10/22 14:00	03/11/22 03:05	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		03/10/22 14:00	03/11/22 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				03/10/22 14:00	03/11/22 03:05	1

Method: 300.0 - Anions, Ion Chromatogr Analyte	aphy - Soluble Result Qualifier	RL	MDL Unit	n	Prepared	Analyzed	Dil Fac
Г							
o-Terphenyl	99	70 - 130		(03/10/22 14:00	03/11/22 03:05	1

2290

Eurofins Midland

03/16/22 16:47

2

<u>ی</u>

6

0

9

11

13

3/·

mg/Kg

Chloride

Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22) SDG: Eddy Co, NM

Lab Sample ID: 880-12273-9

Client Sample ID: H-2 (0-0.5') Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
Toluene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		03/10/22 11:12	03/13/22 00:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				03/10/22 11:12	03/13/22 00:53	1
1,4-Difluorobenzene (Surr)	108		70 - 130				03/10/22 11:12	03/13/22 00:53	1
- Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			03/14/22 14:30	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	54.4		49.9		mg/Kg			03/11/22 10:24	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		03/10/22 14:00	03/11/22 03:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	54.4		49.9		mg/Kg		03/10/22 14:00	03/11/22 03:27	1
C10-C28)	.40.0		40.0				00/40/00 44 00	00/44/00 00 07	
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		03/10/22 14:00	03/11/22 03:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				03/10/22 14:00	03/11/22 03:27	1
o-Terphenyl	111		70 - 130				03/10/22 14:00	03/11/22 03:27	1
_									
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							

Client Sample ID: H-3 (0-0.5') Lab Sample ID: 880-12273-10

47.9

4.95

mg/Kg

Date Collected: 03/08/22 00:00 **Matrix: Solid**

Date Received: 03/10/22 10:15

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/13/22 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				03/10/22 11:12	03/13/22 01:13	1
1,4-Difluorobenzene (Surr)	109		70 - 130				03/10/22 11:12	03/13/22 01:13	1

Eurofins Midland

03/16/22 12:04

Client: Carmona Resources

Date Received: 03/10/22 10:15

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: H-3 (0-0.5') Lab Sample ID: 880-12273-10 Date Collected: 03/08/22 00:00

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			03/14/22 14:30	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			03/11/22 10:24	1
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		03/10/22 14:00	03/11/22 03:48	1
Method: 8015B NM - Diesel Rang Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
(GRO)-C6-C10	<49.9	Ш	49.9		ma/Ka		03/10/22 14:00	03/11/22 03:48	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		03/10/22 14:00	03/11/22 03:48	1
(GRO)-C6-C10	<49.9 <49.9		49.9 49.9		mg/Kg		03/10/22 14:00 03/10/22 14:00	03/11/22 03:48 03/11/22 03:48	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)		U							1 1 <i>Dil Fac</i>
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9	U	49.9				03/10/22 14:00	03/11/22 03:48	1 1 <u>Dil Fac</u> 1

Client Sample ID: H-4 (0-0.5') Lab Sample ID: 880-12273-11

RL

4.97

MDL Unit

mg/Kg

D

Prepared

Date Collected: 03/08/22 00:00

Analyte

Chloride

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

40.8

Date Received: 03/10/22 10:15

Analyzed

03/16/22 12:31

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		03/10/22 11:12	03/13/22 01:34	
Toluene	<0.00198	U	0.00198		mg/Kg		03/10/22 11:12	03/13/22 01:34	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		03/10/22 11:12	03/13/22 01:34	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		03/10/22 11:12	03/13/22 01:34	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		03/10/22 11:12	03/13/22 01:34	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		03/10/22 11:12	03/13/22 01:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				03/10/22 11:12	03/13/22 01:34	1
			70 - 130				03/10/22 11:12	03/13/22 01:34	
Method: Total BTEX - Total BT Analyte	EX Calculation	Qualifier	70 - 130 RL 0.00397	MDL	Unit mg/Kg	<u>D</u>	03/10/22 11:12 Prepared	03/13/22 01:34 Analyzed 03/14/22 14:30	·
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran	EX Calculation Result <0.00397 ge Organics (DR	U (GC)	RL 0.00397		mg/Kg		Prepared	Analyzed 03/14/22 14:30	Dil Fac
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	EX Calculation Result <0.00397 ge Organics (DR	U	RL	MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran	EX Calculation Result <0.00397 ge Organics (DR	O) (GC) Qualifier	RL 0.00397		mg/Kg		Prepared	Analyzed 03/14/22 14:30	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH	EX Calculation Result <0.00397 ge Organics (DR) Result <50.0	U O) (GC) Qualifier U	RL		mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte Total TPH Method: 8015B NM - Diesel Ra	EX Calculation Result <0.00397 ge Organics (DR) Result <50.0 inge Organics (D	U O) (GC) Qualifier U	RL		mg/Kg Unit mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	Dil Fac Dil Fac Dil Fac Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 8015 NM - Diesel Ran Analyte	EX Calculation Result <0.00397 ge Organics (DR) Result <50.0 inge Organics (D	O) (GC) Qualifier U RO) (GC) Qualifier	RL 0.00397 RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 03/14/22 14:30 Analyzed 03/11/22 10:24	Dil Fac

Client Sample ID: H-4 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Client: Carmona Resources Project/Site: Screech Owl Fed (02.04.22) Job ID: 880-12273-1

SDG: Eddy Co, NM

Lab Sample ID: 880-12273-11

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	m	ng/Kg		03/10/22 14:00	03/11/22 04:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				03/10/22 14:00	03/11/22 04:10	1
o-Terphenvl	107		70 - 130				03/10/22 14:00	03/11/22 04:10	1

Method: 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	59.3		4.98		mg/Kg			03/16/22 12:39	1

Client Sample ID: H-5 (0-0.5')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15 Lab Sample ID: 880-12273-12

Matrix: Solid

Method: 8021B - Volatile Orga	inic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		03/10/22 11:12	03/13/22 01:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				03/10/22 11:12	03/13/22 01:54	1
1 4-Diffuorohenzene (Surr)	105		70 130				03/10/22 11:12	03/13/22 01:54	1

ì	-					
	1,4-Difluorobenzene (Surr)	105	70 - 130	03/10/22 11:12	03/13/22 01:54	1
	4-bromonuorobenzene (Surr)	107	70 - 130	03/10/22 11.12	03/13/22 01.54	1

Method:	lotal B I EX	- Iotal BIEX	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			03/14/22 14:30	1

Method: 8015	NM - Diesel	Range Organics	(DRO) (GC)
--------------	-------------	----------------	-----------	---

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8 U	49.8	mg/Kg			03/11/22 10:24	1

9.8 U	49.8					
	49.0	mg/Kg		03/10/22 14:00	03/11/22 04:31	1
9.8 U	49.8	mg/Kg		03/10/22 14:00	03/11/22 04:31	1
9.8 U	49.8	mg/Kg		03/10/22 14:00	03/11/22 04:31	1
	49.8 U 49.8 U		3 3	3 3	, , , , , , , , , , , , , , , , , , ,	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130	03/10/22 14:00	03/11/22 04:31	1
o-Terphenyl	107		70 - 130	03/10/22 14:00	03/11/22 04:31	1

Method: 300.0 - Anions, Ion Chromatography - Soluble
Method. 300.0 - Amons, for Chromatography - Soluble

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	58.9		4.99		mg/Kg			03/16/22 12:48	1

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

Lab Sample ID: 880-12273-13

Client Sample ID: H-6 (0-0.5') Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		03/10/22 11:12	03/13/22 03:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				03/10/22 11:12	03/13/22 03:15	
1 1 Diffusion bonzono (Cum)	110		70 - 130				03/10/22 11:12	03/13/22 03:15	1
: Method: Total BTEX - Total B	TEX Calculation	Qualifier		MDL	Unit	D			
1,4-Difluorobenzene (Surr) Method: Total BTEX - Total B Analyte Total BTEX	TEX Calculation Result <0.00400		RL 0.00400	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/14/22 14:30	
Method: Total BTEX - Total B Analyte Total BTEX Method: 8015 NM - Diesel Ra	TEX Calculation Result <0.00400 nge Organics (DR0	U (GC)	RL		mg/Kg		Prepared	Analyzed 03/14/22 14:30	Dil Fac
Method: Total BTEX - Total B Analyte Total BTEX	TEX Calculation Result <0.00400 nge Organics (DR0	U	RL	MDL		<u>D</u>		Analyzed	
Method: Total BTEX - Total B Analyte Total BTEX Method: 8015 NM - Diesel Ra	TEX Calculation Result <0.00400 nge Organics (DR0	O) (GC) Qualifier	RL		mg/Kg		Prepared	Analyzed 03/14/22 14:30	Dil Fac
Method: Total BTEX - Total B' Analyte Total BTEX Method: 8015 NM - Diesel Rai Analyte	TEX Calculation Result <0.00400 nge Organics (DRO Result <49.8	O) (GC) Qualifier			mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	Dil Fac
Method: Total BTEX - Total B Analyte Total BTEX Method: 8015 NM - Diesel Rai Analyte Total TPH Method: 8015B NM - Diesel R	TEX Calculation Result <0.00400 nge Organics (DRO Result <49.8 ange Organics (DI	O) (GC) Qualifier			mg/Kg		Prepared	Analyzed 03/14/22 14:30 Analyzed	Dil Fac
Method: Total BTEX - Total B Analyte Total BTEX Method: 8015 NM - Diesel Ral Analyte Total TPH	TEX Calculation Result <0.00400 nge Organics (DRO Result <49.8 ange Organics (DI	O) (GC) Qualifier U RO) (GC) Qualifier	RL 0.00400 RL 49.8	MDL	mg/Kg Unit mg/Kg		Prepared Prepared	Analyzed 03/14/22 14:30 Analyzed 03/11/22 10:24	Dil Fac

o-Terpnenyi	97		70 - 130				03/10/22 14:09	03/14/22 06:09	7
	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	86.6		5.04		mg/Kg			03/16/22 12:57	1

49.8

Limits

70 - 130

mg/Kg

mg/Kg

<49.8 U

%Recovery Qualifier

107

Client Sample ID: H-7 (0-0.5')

Lab Sample ID: 880-12273-14

03/14/22 06:09

Analyzed

03/10/22 14:09

Prepared

03/10/22 14:09 03/14/22 06:09

Matrix: Solid

Dil Fac

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Oll Range Organics (Over C28-C36)

Surrogate

Chloride

1-Chlorooctane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
Toluene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		03/10/22 11:12	03/13/22 03:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				03/10/22 11:12	03/13/22 03:35	1
1,4-Difluorobenzene (Surr)	100		70 - 130				03/10/22 11:12	03/13/22 03:35	1

Client: Carmona Resources

Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22) SDG: Eddy Co, NM

Lab Sample ID: 880-12273-14

Client Sample ID: H-7 (0-0.5') Date Collected: 03/08/22 00:00

Matrix: Solid

Date Received: 03/10/22 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			03/14/22 14:30	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			03/11/22 10:24	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		03/10/22 14:09	03/14/22 06:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U *1	50.0		mg/Kg		03/10/22 14:09	03/14/22 06:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		03/10/22 14:09	03/14/22 06:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				03/10/22 14:09	03/14/22 06:30	1
o-Terphenyl	105		70 - 130				03/10/22 14:09	03/14/22 06:30	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62.9	-	4.98		mg/Kg			03/16/22 13:24	

Surrogate Summary

Client: Carmona Resources Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits
		BFB1	DFBZ1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
0-12263-A-1-H MS	Matrix Spike	112	95	
0-12263-A-1-I MSD	Matrix Spike Duplicate	2911 S1+	176 S1+	
0-12273-1	S-1 (0-0.5')	220 S1+	133 S1+	
0-12273-2	S-1 (1')	233 S1+	111	
0-12273-3	S-1 (1.5')	110	112	
0-12273-4	S-1 (2.5')	128	102	
0-12273-5	S-1 (3.5')	109	113	
0-12273-6	S-2 (0-0.5')	134 S1+	101	
0-12273-7	S-2 (1')	264 S1+	94	
0-12273-8	H-1 (0-0.5')	104	103	
0-12273-9	H-2 (0-0.5')	102	108	
0-12273-10	H-3 (0-0.5')	103	109	
0-12273-11	H-4 (0-0.5')	102	101	
0-12273-12	H-5 (0-0.5')	107	105	
0-12273-13	H-6 (0-0.5')	105	110	
0-12273-14	H-7 (0-0.5')	106	100	
0-12274-A-21-A MS	Matrix Spike	101	112	
0-12274-A-21-B MSD	Matrix Spike Duplicate	106	106	
0-2055-A-1-H MS	Matrix Spike	144 S1+	93	
0-2055-A-1-I MSD	Matrix Spike Duplicate	121	93	
S 880-21146/1-A	Lab Control Sample	94	98	
S 880-21215/1-A	Lab Control Sample	96	95	
S 880-21289/1-A	Lab Control Sample	101	112	
SD 880-21146/2-A	Lab Control Sample Dup	97	101	
SD 880-21215/2-A	Lab Control Sample Dup	95	103	
SD 880-21289/2-A	Lab Control Sample Dup	101	112	
3 880-21012/5-A	Method Blank	95	100	
3 880-21146/5-A	Method Blank	97	99	
3 880-21215/5-B	Method Blank	97	102	
3 880-21289/5-A	Method Blank	102	104	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-12272-A-1-B MS	Matrix Spike	91	78
880-12272-A-1-C MSD	Matrix Spike Duplicate	97	80
880-12273-1	S-1 (0-0.5')	174 S1+	140 S1+
880-12273-2	S-1 (1')	132 S1+	117
880-12273-3	S-1 (1.5')	106	99
880-12273-4	S-1 (2.5')	106	102
880-12273-5	S-1 (3.5')	106	101
880-12273-6	S-2 (0-0.5')	111	103
880-12273-7	S-2 (1')	138 S1+	116

Surrogate Summary

Client: Carmona Resources

Job ID: 880-12273-1

Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-12273-8	H-1 (0-0.5')	103	99	
880-12273-9	H-2 (0-0.5')	111	111	
880-12273-10	H-3 (0-0.5')	103	109	
880-12273-11	H-4 (0-0.5')	110	107	
880-12273-12	H-5 (0-0.5')	112	107	
880-12273-13	H-6 (0-0.5')	107	97	
880-12273-14	H-7 (0-0.5')	111	105	
880-12301-A-1-A MS	Matrix Spike	83	66 S1-	
880-12301-A-1-A MSD	Matrix Spike Duplicate	81	65 S1-	
880-12309-A-1-B MS	Matrix Spike	106	91	
880-12309-A-1-C MSD	Matrix Spike Duplicate	103	89	
LCS 880-21325/2-A	Lab Control Sample	101	94	
LCS 880-21362/2-A	Lab Control Sample	97	90	
LCS 880-21371/2-A	Lab Control Sample	110	97	
LCSD 880-21325/3-A	Lab Control Sample Dup	120	125	
LCSD 880-21362/3-A	Lab Control Sample Dup	102	95	
LCSD 880-21371/3-A	Lab Control Sample Dup	132 S1+	120	
MB 880-21325/1-A	Method Blank	109	109	
MB 880-21362/1-A	Method Blank	111	113	
MB 880-21371/1-A	Method Blank	125	126	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-21012/5-A

Matrix: Solid

Analysis Batch: 21440

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21012

MB	MB
Result	Qualifie

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/11/22 16:00	03/13/22 07:08	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/11/22 16:00	03/13/22 07:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/11/22 16:00	03/13/22 07:08	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		03/11/22 16:00	03/13/22 07:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/11/22 16:00	03/13/22 07:08	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		03/11/22 16:00	03/13/22 07:08	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	d Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	95	70 - 130	03/11/22 16	5:00 03/13/22 07:08	
1,4-Difluorobenzene (Surr)	100	70 - 130	03/11/22 16	5:00 03/13/22 07:08	

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21146

Matrix: Solid

Analysis Batch: 21440

Lab Sample ID: MB 880-21146/5-A

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/13/22 12:58	03/13/22 19:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/13/22 12:58	03/13/22 19:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/13/22 12:58	03/13/22 19:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		03/13/22 12:58	03/13/22 19:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/13/22 12:58	03/13/22 19:01	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		03/13/22 12:58	03/13/22 19:01	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prep	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	03/13/2	22 12:58	03/13/22 19:01	1
1,4-Difluorobenzene (Surr)	99		70 - 130	03/13/2	22 12:58	03/13/22 19:01	1

Lab Sample ID: LCS 880-21146/1-A

Matrix: Solid

o-Xylene

Analysis Batch: 21440

Client Sample ID: Lab Control Sample

70 - 130

Prep Type: Total/NA Prep Batch: 21146

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09993		mg/Kg		100	70 - 130	
Toluene	0.100	0.09490		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09416		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	0.200	0.2203		mg/Kg		110	70 - 130	

0.1080

mg/Kg

0.100

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1,4-Difluorobenzene (Surr)	98	70 - 130

Lab Sample ID: LCSD 880-21146/2-A

Matrix: Solid

Analysis Batch: 21440

Client Sample	ID: Lab Control	Sample Dup
	Danie To	T-4-1/NIA

108

Prep Type: Total/NA

Prep Batch: 21146

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1051		mg/Kg		105	70 - 130	5	35

Eurofins Midland

Released to Imaging: 8/2/2022 4:01:07 PM

_

<u>ی</u>

5

-

10

12

1 1

١

QC Sample Results

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-21146/2-A **Matrix: Solid**

Analysis Batch: 21440

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 21146

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1004		mg/Kg		100	70 - 130	6	35
Ethylbenzene	0.100	0.09886		mg/Kg		99	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.2316		mg/Kg		116	70 - 130	5	35
o-Xylene	0.100	0.1131		mg/Kg		113	70 - 130	5	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-12263-A-1-H MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 21440

Prep Type: Total/NA

Prep Batch: 21146

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1	0.100	0.04828	F1	mg/Kg		48	70 - 130	
Toluene	<0.00199	U F2 F1	0.100	0.05479	F1	mg/Kg		54	70 - 130	
Ethylbenzene	<0.00199	U F2 F1	0.100	0.06147	F1	mg/Kg		61	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.200	0.1430		mg/Kg		71	70 - 130	
o-Xylene	< 0.00199	U F2 F1	0.100	0.07492		mg/Kg		75	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	95	70 - 130

Lab Sample ID: 880-12263-A-1-I MSD

Matrix: Solid

Analysis Batch: 21440

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 21146

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00199	U F1	0.0996	0.04152	F1	mg/Kg		42	70 - 130	15	35	
Toluene	< 0.00199	U F2 F1	0.0996	0.002562	F2 F1	mg/Kg		2	70 - 130	182	35	

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	2911	S1+	70 - 130
1 4-Difluorobenzene (Surr)	176	S1+	70 130

Lab Sample ID: MB 880-21215/5-B

Matrix: Solid

Analysis Batch: 21615

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21215

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/14/22 16:00	03/15/22 11:59	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/14/22 16:00	03/15/22 11:59	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/14/22 16:00	03/15/22 11:59	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		03/14/22 16:00	03/15/22 11:59	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/14/22 16:00	03/15/22 11:59	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		03/14/22 16:00	03/15/22 11:59	1

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-21215/5-B

Matrix: Solid

Analysis Batch: 21615

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21215

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	70 - 130	03/14/22 16:0	0 03/15/22 11:59	1
1,4-Difluorobenzene (Surr)	102	70 - 130	03/14/22 16:0	0 03/15/22 11:59	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 21215

Lab Sample ID: LCS 880-21215/1-A **Matrix: Solid** Analysis Batch: 21615

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.100 0.1087 109 70 - 130Benzene mg/Kg Toluene 0.100 0.1042 mg/Kg 104 70 - 130 0.100 0.1029 mg/Kg 103 70 - 130 Ethylbenzene m-Xylene & p-Xylene 0.200 0.2416 mg/Kg 121 70 - 130 o-Xylene 0.100 0.1165 mg/Kg 116 70 - 130

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 96 70 - 130 1,4-Difluorobenzene (Surr) 95 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 21215

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1091 mg/Kg 109 70 - 130 35 0 Toluene 0.100 0.1004 mg/Kg 100 70 - 130 35 0.100 0.09825 Ethylbenzene mg/Kg 98 70 - 130 35 5 m-Xylene & p-Xylene 0.200 0.2297 mg/Kg 115 70 - 130 5 35 0.100 o-Xylene 0.1116 mg/Kg 112 70 - 13035

LCSD LCSD Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 95 70 - 130 103 70 - 130 1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-2055-A-1-H MS

Lab Sample ID: LCSD 880-21215/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 21615

Analysis Batch: 21615

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 21215

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.05294 F1 <0.00199 U F2 F1 Benzene 0.101 mg/Kg 53 70 - 130Toluene <0.00199 U F2 F1 0.101 0.03908 F1 mg/Kg 38 70 - 130 <0.00199 U F2 F1 0.101 0.02601 F1 24 70 - 130 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.00398 U F2 F1 0.202 0.04236 F1 mg/Kg 20 70 - 130 0.101 0.03425 F1 22 0.0123 F2 F1 70 - 130 o-Xylene mg/Kg

MS MS %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 144 S1+ 70 - 130 1,4-Difluorobenzene (Surr) 93 70 - 130

QC Sample Results

Client: Carmona Resources Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2055-A-1-I MSD

Analysis Batch: 21615

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate

Prep Batch: 21215

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U F2 F1	0.100	0.07937	F2	mg/Kg		79	70 - 130	40	35
Toluene	<0.00199	U F2 F1	0.100	0.08386	F2	mg/Kg		83	70 - 130	73	35
Ethylbenzene	<0.00199	U F2 F1	0.100	0.07686	F2	mg/Kg		75	70 - 130	99	35
m-Xylene & p-Xylene	<0.00398	U F2 F1	0.200	0.1540	F2	mg/Kg		76	70 - 130	114	35
o-Xylene	0.0123	F2 F1	0.100	0.1052	F2	mg/Kg		93	70 - 130	102	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	121		70 - 130
1.4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: MB 880-21289/5-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 21441

Prep Type: Total/NA

Prep Batch: 21289

Result Qualifier MDL Unit Prepared Analyzed Dil Fac Analyte RL 03/10/22 11:12 Benzene <0.00200 U 0.00200 mg/Kg 03/12/22 18:42 Toluene <0.00200 U 0.00200 mg/Kg 03/10/22 11:12 03/12/22 18:42 Ethylbenzene <0.00200 U 0.00200 mg/Kg 03/10/22 11:12 03/12/22 18:42 03/10/22 11:12 03/12/22 18:42 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg <0.00200 U 0.00200 03/10/22 11:12 03/12/22 18:42 o-Xylene mg/Kg <0.00400 U 0.00400 03/10/22 11:12 03/12/22 18:42 Xylenes, Total mg/Kg

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130	03/10/22 11:12	03/12/22 18:42	1
1,4-Difluorobenzene (Surr)	104		70 - 130	03/10/22 11:12	03/12/22 18:42	1

Lab Sample ID: LCS 880-21289/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 21441

Prep Type: Total/NA Prep Batch: 21289

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1099		mg/Kg		110	70 - 130	
Toluene	0.100	0.1067		mg/Kg		107	70 - 130	
Ethylbenzene	0.100	0.1052		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2193		mg/Kg		110	70 - 130	
o-Xylene	0.100	0.1082		mg/Kg		108	70 - 130	

LCS LCS

Surrogate	%Recovery Qu	alifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1 4-Difluorobenzene (Surr)	112		70 - 130

Lab Sample ID: LCSD 880-21289/2-A

Matrix: Solid

Analysis Batch: 21441

Client Sample ID: L	ab Control	Sample Dup

Prep Type: Total/NA

Prep Batch: 21289

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1130		mg/Kg	_	113	70 - 130	3	35
Toluene	0.100	0.1096		mg/Kg		110	70 - 130	3	35

QC Sample Results

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-21289/2-A

Lab Sample ID: 880-12274-A-21-A MS

Matrix: Solid

Analysis Batch: 21441

Prep Type: Total/NA

Prep Batch: 21289

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Ethylbenzene	0.100	0.1078		mg/Kg		108	70 - 130	2	35	
m-Xylene & p-Xylene	0.200	0.2253		mg/Kg		113	70 - 130	3	35	
o-Xylene	0.100	0.1103		mg/Kg		110	70 - 130	2	35	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	112	70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 21289

Matrix: Solid

Analysis Batch: 21441

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 0.100 Benzene <0.00202 UF1 0.06597 F1 mg/Kg 66 70 - 130 Toluene <0.00202 UF1 0.100 0.06194 F1 mg/Kg 61 70 - 130 Ethylbenzene <0.00202 UF1 0.100 0.06077 F1 mg/Kg 60 70 - 130 0.201 0.1254 F1 70 - 130 m-Xylene & p-Xylene <0.00403 U F1 mq/Kq 62 0.100 <0.00202 U F1 0.06701 F1 66 70 - 130 o-Xylene mg/Kg

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
1,4-Difluorobenzene (Surr)	112	70 - 130

Lab Sample ID: 880-12274-A-21-B MSD

Matrix: Solid

Analysis Batch: 21441

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 21289

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Limit Analyte Result Qualifier %Rec Limits RPD Unit D Benzene <0.00202 UF1 0.100 0.05849 F1 mg/Kg 58 70 - 130 12 35 Toluene <0.00202 UF1 0.100 0.05722 F1 mg/Kg 57 70 - 130 8 35 Ethylbenzene <0.00202 UF1 0.100 0.05832 F1 mg/Kg 57 70 - 130 4 35 m-Xylene & p-Xylene <0.00403 UF1 0.200 0.1205 F1 mg/Kg 59 70 - 130 35 0.100 0.06550 F1 <0.00202 UF1 65 70 - 130 35 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	106	70 - 130
1,4-Difluorobenzene (Surr)	106	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-21325/1-A

Matrix: Solid

Analysis Batch: 21446

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 21325

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		03/10/22 14:09	03/13/22 21:50	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		03/10/22 14:09	03/13/22 21:50	1

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-21325/1-A

Matrix: Solid

Analysis Batch: 21446

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 21325

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		03/10/22 14:09	03/13/22 21:50	1

мв мв

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130	03/10/22 14:09	03/13/22 21:50	1
o-Terphenyl	109		70 - 130	03/10/22 14:09	03/13/22 21:50	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-21325/2-A **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 21446 Prep Batch: 21325

Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 826.9 mg/Kg 83 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 872.1 mg/Kg 70 - 130 87

C10-C28) LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	94		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 880-21325/3-A

Analysis Batch: 21446

Prep Type: Total/NA Prep Batch: 21325

Spike LCSD LCSD %Rec. RPD Result Qualifier Analyte Added Unit %Rec Limits **RPD** Limit 1000 959.8 96 70 - 130 20 Gasoline Range Organics mg/Kg 15 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1163 *1 mg/Kg 116 70 - 130 29 20 C10-C28)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	120		70 - 130
o-Terphenyl	125		70 - 130

Lab Sample ID: 880-12272-A-1-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 21446

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	998	1206		mg/Kg		119	70 - 130	
Diesel Range Organics (Over C10-C28)	1020	*1	998	1990		mg/Kg		97	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	91		70 - 130
o-Terphenyl	78		70 - 130

Eurofins Midland

Prep Batch: 21325

QC Sample Results

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

Client Sample ID: Matrix Spike Duplicate

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-12272-A-1-C MSD

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 21446 Prep Batch: 21325

Sample Sample Spike MSD MSD RPD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.8 U 998 1256 mg/Kg 124 70 - 130 4 20 (GRO)-C6-C10 998 Diesel Range Organics (Over 1020 *1 2087 mg/Kg 107 70 - 130 5 20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	97		70 - 130
o-Terphenyl	80		70 - 130

Lab Sample ID: MB 880-21362/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 21357

Prep Type: Total/NA

Prep Batch: 21362

мв мв MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 50.0 03/11/22 08:28 03/11/22 09:39 Gasoline Range Organics <50.0 U mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 03/11/22 08:28 03/11/22 09:39

C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 03/11/22 08:28 03/11/22 09:39

мв мв

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130	03/11/22 08:28	03/11/22 09:39	1
o-Terphenyl	113		70 - 130	03/11/22 08:28	03/11/22 09:39	1

Lab Sample ID: LCS 880-21362/2-A

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 21362

LCS LCS Spike %Rec. Analyte Added Result Qualifier %Rec Unit Limits Gasoline Range Organics 1000 891.1 mg/Kg 89 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 929.2 mg/Kg 93 70 - 130

C10-C28)

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	97	70 - 130
o-Terphenvl	90	70 - 130

Lab Sample ID: LCSD 880-21362/3-A

Matrix: Solid

Analysis Batch: 21357

Client	Samnla	ו יחו	l ah	Control	Sample	Dun

Prep Type: Total/NA

Prep Batch: 21362

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	833.5	-	mg/Kg		83	70 - 130	7	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	926.9		mg/Kg		93	70 - 130	0	20	
C10-C28)										

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-21362/3-A

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 21362

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 880-12301-A-1-A MS Client Sample ID: Matrix Spike

Limits

70 - 130

70 - 130

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 21357

Prep Type: Total/NA

Prep Batch: 21362

Lab Sample ID: 880-12301-A-1-A MSD

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 21362

MSD MSD

MS MS %Recovery Qualifier

66 S1-

83

Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 81 o-Terphenyl 65 S1-70 - 130

Lab Sample ID: MB 880-21371/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 21357

Prep Type: Total/NA

Prep Batch: 21371

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		03/11/22 09:52	03/12/22 05:08	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		03/11/22 09:52	03/12/22 05:08	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		03/11/22 09:52	03/12/22 05:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130	03/11/22 09:52	03/12/22 05:08	1
o-Terphenyl	126		70 - 130	03/11/22 09:52	03/12/22 05:08	1

Lab Sample ID: LCS 880-21371/2-A

Released to Imaging: 8/2/2022 4:01:07 PM

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21371

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	848.4		mg/Kg	_	85	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1009		mg/Kg		101	70 - 130	
C10 C20\								

C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	97		70 - 130

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-21371/3-A

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 21371

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	955.3		mg/Kg		96	70 - 130	12	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	1220		mg/Kg		122	70 - 130	19	20	

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	132	S1+	70 - 130
o-Terphenyl	120		70 - 130

Lab Sample ID: 880-12309-A-1-B MS

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 21371

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.8	U F1	998	1444	F1	mg/Kg		141	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.8	U F1	998	1460	F1	mg/Kg		146	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 106 70 - 130 o-Terphenyl 91 70 - 130

Lab Sample ID: 880-12309-A-1-C MSD

Matrix: Solid

Analysis Batch: 21357

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 21371

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	<49.8	U F1	998	1422	F1	mg/Kg		139	70 - 130	2	20	
(GRO)-C6-C10						0 0						
Diesel Range Organics (Over	<49.8	U F1	998	1426	F1	mg/Kg		143	70 - 130	2	20	
C10-C28)												

MSD MSD Qualifier Limits Surrogate %Recovery 1-Chlorooctane 103 70 - 130 89 70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-21305/1-A

Matrix: Solid

Analysis Batch: 21618

Client Sample ID: Method Blank

Prep Type: Soluble

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac D Chloride <5.00 U 5.00 03/15/22 02:07 mg/Kg

Spike

Added

250

Spike

Added

Spike

Added

Spike

Added

Spike

Added

250

Spike

Added

250

Spike

252

RL

5.00

252

Sample Sample

Sample Sample

Result

22.7

Qualifier

Qualifier

MR MR

<5.00 U

Result Qualifier

Result

22 7

250

LCS LCS

LCSD LCSD

MS MS

MSD MSD

Qualifier

Qualifier

Qualifier

Qualifier

MDL Unit

LCS LCS

LCSD LCSD

Result Qualifier

Qualifier

Result

244.3

244.2

mg/Kg

Unit

Unit

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Result

248.8

Result

242.7

Result

261.0

Result

257.3

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

%Rec.

Limits

90 - 110

%Rec.

Limits

90 - 110

Client Sample ID: Matrix Spike Duplicate

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample Dup

%Rec

%Rec

%Rec

%Rec

Prepared

%Rec

%Rec

98

97

100

D

D

SDG: Eddy Co, NM

Prep Type: Soluble

Prep Type: Soluble

RPD

Prep Type: Soluble

Prep Type: Soluble

RPD

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-21305/2-A

Matrix: Solid

Analysis Batch: 21618

Chloride Lab Sample ID: LCSD 880-21305/3-A

Matrix: Solid

Analyte

Analysis Batch: 21618

Analyte

Lab Sample ID: 880-12272-A-10-C MS

Chloride

Chloride

Chloride

Matrix: Solid

Analysis Batch: 21618

Analyte

Lab Sample ID: 880-12272-A-10-D MSD

Matrix: Solid

Analysis Batch: 21618

Analyte

Lab Sample ID: MB 880-21306/1-A

Matrix: Solid

Lab Sample ID: LCS 880-21306/2-A

Analysis Batch: 21619

Analyte

Chloride

Matrix: Solid

Analysis Batch: 21619

Analyte

Lab Sample ID: LCSD 880-21306/3-A **Matrix: Solid**

Chloride

Analyte

Analysis Batch: 21619

Chloride Lab Sample ID: 880-12273-9 MS

Matrix: Solid

Analysis Batch: 21619

Sample Sample Analyte Result

Chloride 47.9

Qualifier

Added 248 Result 292.9

MS MS

Qualifier

Unit mg/Kg

D

%Rec 99

Limits 90 - 110

Eurofins Midland

RPD

Limit

20

RPD

Limit

Prep Type: Soluble

Analyzed Dil Fac 03/16/22 10:17

Client Sample ID: Lab Control Sample

Limits

90 - 110

Limits

90 - 110

%Rec.

Client Sample ID: H-2 (0-0.5')

Prep Type: Soluble

%Rec.

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

RPD %Rec.

RPD

Prep Type: Soluble

Limit

20

QC Sample Results

Client: Carmona Resources Job ID: 880-12273-1 Project/Site: Screech Owl Fed (02.04.22)

SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-12273-9 MSD Client Sample ID: H-2 (0-0.5')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 21619 RPD Sample Sample Spike MSD MSD %Rec.

Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Chloride 47.9 248 292.3 mg/Kg 99 90 - 110 0 20

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

GC VOA

Prep Batch: 21012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-21012/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 21146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-7	S-2 (1')	Total/NA	Solid	5035	
MB 880-21146/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-21146/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-21146/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-12263-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
880-12263-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 21215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	5035	
MB 880-21215/5-B	Method Blank	Total/NA	Solid	5035	
LCS 880-21215/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-21215/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2055-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
890-2055-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 21289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	5035	
880-12273-2	S-1 (1')	Total/NA	Solid	5035	
880-12273-3	S-1 (1.5')	Total/NA	Solid	5035	
880-12273-4	S-1 (2.5')	Total/NA	Solid	5035	
880-12273-5	S-1 (3.5')	Total/NA	Solid	5035	
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	5035	
880-12273-7	S-2 (1')	Total/NA	Solid	5035	
880-12273-8	H-1 (0-0.5')	Total/NA	Solid	5035	
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	5035	
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	5035	
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	5035	
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	5035	
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	5035	
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	5035	
MB 880-21289/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-21289/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-21289/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-12274-A-21-A MS	Matrix Spike	Total/NA	Solid	5035	
880-12274-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 21440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-7	S-2 (1')	Total/NA	Solid	8021B	21146
MB 880-21012/5-A	Method Blank	Total/NA	Solid	8021B	21012
MB 880-21146/5-A	Method Blank	Total/NA	Solid	8021B	21146
LCS 880-21146/1-A	Lab Control Sample	Total/NA	Solid	8021B	21146
LCSD 880-21146/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	21146
880-12263-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	21146
880-12263-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	21146

Eurofins Midland

2

3

4

6

8

9

11

13

14

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

GC VOA

Analysis Batch: 21441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-2	S-1 (1')	Total/NA	Solid	8021B	21289
880-12273-3	S-1 (1.5')	Total/NA	Solid	8021B	21289
880-12273-4	S-1 (2.5')	Total/NA	Solid	8021B	21289
880-12273-5	S-1 (3.5')	Total/NA	Solid	8021B	21289
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-7	S-2 (1')	Total/NA	Solid	8021B	21289
880-12273-8	H-1 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	8021B	21289
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	8021B	21289
MB 880-21289/5-A	Method Blank	Total/NA	Solid	8021B	21289
LCS 880-21289/1-A	Lab Control Sample	Total/NA	Solid	8021B	21289
LCSD 880-21289/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	21289
880-12274-A-21-A MS	Matrix Spike	Total/NA	Solid	8021B	21289
880-12274-A-21-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	21289

Analysis Batch: 21549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-2	S-1 (1')	Total/NA	Solid	Total BTEX	
880-12273-3	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-12273-4	S-1 (2.5')	Total/NA	Solid	Total BTEX	
880-12273-5	S-1 (3.5')	Total/NA	Solid	Total BTEX	
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-7	S-2 (1')	Total/NA	Solid	Total BTEX	
880-12273-8	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 21615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	8021B	21215
MB 880-21215/5-B	Method Blank	Total/NA	Solid	8021B	21215
LCS 880-21215/1-A	Lab Control Sample	Total/NA	Solid	8021B	21215
LCSD 880-21215/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	21215
890-2055-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	21215
890-2055-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	21215

GC Semi VOA

Prep Batch: 21230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-7	S-2 (1')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

2

1

1

9

10

12

. .

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

Co, NIVI

GC Semi VOA (Continued)

Prep Batch: 21230 (Continued)

Lab Sample ID 880-12273-8	Client Sample ID H-1 (0-0.5')	Total/NA	Solid	Method Prep Bat 8015NM Prep	<u>ch</u>
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 21302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-7	S-2 (1')	Total/NA	Solid	8015B NM	21230
880-12273-8	H-1 (0-0.5')	Total/NA	Solid	8015B NM	21230
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	8015B NM	21230
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	8015B NM	21230
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	8015B NM	21230
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	8015B NM	21230

Prep Batch: 21325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-21325/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-21325/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-21325/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-12272-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-12272-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 21357

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	8015B NM	21371
880-12273-2	S-1 (1')	Total/NA	Solid	8015B NM	21371
880-12273-3	S-1 (1.5')	Total/NA	Solid	8015B NM	21371
880-12273-4	S-1 (2.5')	Total/NA	Solid	8015B NM	21362
880-12273-5	S-1 (3.5')	Total/NA	Solid	8015B NM	21362
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	8015B NM	21362
MB 880-21362/1-A	Method Blank	Total/NA	Solid	8015B NM	21362
MB 880-21371/1-A	Method Blank	Total/NA	Solid	8015B NM	21371
LCS 880-21362/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	21362
LCS 880-21371/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	21371
LCSD 880-21362/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	21362
LCSD 880-21371/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	21371
880-12301-A-1-A MS	Matrix Spike	Total/NA	Solid	8015B NM	21362
880-12301-A-1-A MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	21362
880-12309-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	21371
880-12309-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	21371

Prep Batch: 21362

Released to Imaging: 8/2/2022 4:01:07 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-12273-4	S-1 (2.5')	Total/NA	Solid	8015NM Prep
880-12273-5	S-1 (3.5')	Total/NA	Solid	8015NM Prep
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	8015NM Prep
MB 880-21362/1-A	Method Blank	Total/NA	Solid	8015NM Prep
LCS 880-21362/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep

Eurofins Midland

2

4

6

8

3

11

12

14

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

3

GC Semi VOA (Continued)

Prep Batch: 21362 (Continued)

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS	SD 880-21362/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880)-12301-A-1-A MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880)-12301-A-1-A MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 21371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-12273-2	S-1 (1')	Total/NA	Solid	8015NM Prep	
880-12273-3	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
MB 880-21371/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-21371/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-21371/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-12309-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-12309-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 21386

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-2	S-1 (1')	Total/NA	Solid	8015 NM	
880-12273-3	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-12273-4	S-1 (2.5')	Total/NA	Solid	8015 NM	
880-12273-5	S-1 (3.5')	Total/NA	Solid	8015 NM	
880-12273-6	S-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-7	S-2 (1')	Total/NA	Solid	8015 NM	
880-12273-8	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-9	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-10	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-11	H-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-12	H-5 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	8015 NM	
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 21446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-13	H-6 (0-0.5')	Total/NA	Solid	8015B NM	21325
880-12273-14	H-7 (0-0.5')	Total/NA	Solid	8015B NM	21325
MB 880-21325/1-A	Method Blank	Total/NA	Solid	8015B NM	21325
LCS 880-21325/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	21325
LCSD 880-21325/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	21325
880-12272-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	21325
880-12272-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	21325

HPLC/IC

Leach Batch: 21305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-2	S-1 (1')	Soluble	Solid	DI Leach	
880-12273-3	S-1 (1.5')	Soluble	Solid	DI Leach	
880-12273-4	S-1 (2.5')	Soluble	Solid	DI Leach	
880-12273-5	S-1 (3.5')	Soluble	Solid	DI Leach	

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

HPLC/IC (Continued)

Leach Batch: 21305 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-6	S-2 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-7	S-2 (1')	Soluble	Solid	DI Leach	
880-12273-8	H-1 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-21305/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-21305/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-21305/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-12272-A-10-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-12272-A-10-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 21306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-9	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-10	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-11	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-12	H-5 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-13	H-6 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-14	H-7 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-21306/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-21306/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-21306/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-12273-9 MS	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-12273-9 MSD	H-2 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 21618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-1	S-1 (0-0.5')	Soluble	Solid	300.0	21305
880-12273-2	S-1 (1')	Soluble	Solid	300.0	21305
880-12273-3	S-1 (1.5')	Soluble	Solid	300.0	21305
880-12273-4	S-1 (2.5')	Soluble	Solid	300.0	21305
880-12273-5	S-1 (3.5')	Soluble	Solid	300.0	21305
880-12273-6	S-2 (0-0.5')	Soluble	Solid	300.0	21305
880-12273-7	S-2 (1')	Soluble	Solid	300.0	21305
880-12273-8	H-1 (0-0.5')	Soluble	Solid	300.0	21305
MB 880-21305/1-A	Method Blank	Soluble	Solid	300.0	21305
LCS 880-21305/2-A	Lab Control Sample	Soluble	Solid	300.0	21305
LCSD 880-21305/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	21305
880-12272-A-10-C MS	Matrix Spike	Soluble	Solid	300.0	21305
880-12272-A-10-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	21305

Analysis Batch: 21619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-9	H-2 (0-0.5')	Soluble	Solid	300.0	21306
880-12273-10	H-3 (0-0.5')	Soluble	Solid	300.0	21306
880-12273-11	H-4 (0-0.5')	Soluble	Solid	300.0	21306
880-12273-12	H-5 (0-0.5')	Soluble	Solid	300.0	21306
880-12273-13	H-6 (0-0.5')	Soluble	Solid	300.0	21306
880-12273-14	H-7 (0-0.5')	Soluble	Solid	300.0	21306
MB 880-21306/1-A	Method Blank	Soluble	Solid	300.0	21306
LCS 880-21306/2-A	Lab Control Sample	Soluble	Solid	300.0	21306
LCSD 880-21306/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	21306
880-12273-9 MS	H-2 (0-0.5')	Soluble	Solid	300.0	21306

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

HPLC/IC (Continued)

Analysis Batch: 21619 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-12273-9 MSD	H-2 (0-0.5')	Soluble	Solid	300.0	21306

Lab Chronicle

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (0-0.5')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15 Lab Sample ID: 880-12273-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	21215	03/14/22 16:00	KL	XEN MID
Total/NA	Analysis	8021B		200	5 mL	5 mL	21615	03/15/22 15:31	AJ	XEN MID
Total/NA	Prep	5035			4.97 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	21441	03/12/22 21:48	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	21371	03/11/22 09:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21357	03/12/22 07:16	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		5			21618	03/16/22 08:22	CH	XEN MID

Lab Sample ID: 880-12273-2

Client Sample ID: S-1 (1') Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		100	5 mL	5 mL	21441	03/12/22 22:08	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	21371	03/11/22 09:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21357	03/12/22 07:37	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		20			21618	03/16/22 16:30	CH	XEN MID

Client Sample ID: S-1 (1.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample ID:	880-12273-3
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/12/22 21:07	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	21371	03/11/22 09:52	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21357	03/12/22 08:01	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		5			21618	03/16/22 08:31	CH	XEN MID

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (2.5')

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Lab Sample ID: 880-12273-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/12/22 21:27	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	21362	03/11/22 08:28	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21357	03/11/22 17:58	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		1			21618	03/15/22 18:53	CH	XEN MID

Client Sample ID: S-1 (3.5') Lab Sample ID: 880-12273-5

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Matrix: Solid

Dil Final Batch Batch Initial Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 21289 Total/NA Prep 4.95 g 5 mL 03/10/22 11:12 KL XEN MID Total/NA 8021B 5 mL 03/12/22 23:31 XEN MID Analysis 1 5 mL 21441 MR Total/NA Total BTEX 21549 03/14/22 14:30 XEN MID Analysis A.I 1 Total/NA Analysis 8015 NM 21386 03/11/22 10:24 XEN MID Total/NA 21362 03/11/22 08:28 Prep 8015NM Prep 10.01 g DM XEN MID 10 mL Total/NA Analysis 8015B NM 21357 03/11/22 18:19 ΑJ XEN MID Soluble Leach DI Leach 5.01 g 50 mL 21305 03/10/22 11:57 CH **XEN MID** Soluble Analysis 300.0 1 21618 03/15/22 19:02 CH XEN MID

Client Sample ID: S-2 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample ID: 880-12273-6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/12/22 23:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	21362	03/11/22 08:28	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21357	03/11/22 18:41	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		20			21618	03/16/22 16:38	CH	XEN MID

Client Sample ID: S-2 (1') Lab Sample ID: 880-12273-7

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 21146 Total/NA 4.98 g 03/13/22 12:58 ΚI XEN MID 5 mL Total/NA Analysis 8021B 20 5 mL 5 mL 21440 03/14/22 01:46 MR XEN MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Released to Imaging: 8/2/2022 4:01:07 PM

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

Lab Sample ID: 880-12273-7

Client Sample ID: S-2 (1')

Date Collected: 03/08/22 00:00

Lab Sa

Matrix: Solid

Date Received: 03/10/22 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 00:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 02:43	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	21305	03/10/22 11:57	CH	XEN MID
Soluble	Analysis	300.0		20			21618	03/16/22 08:57	CH	XEN MID

Client Sample ID: H-1 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample ID: 880-12273-8

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 00:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 03:05	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	21305	03/10/22 11:57	СН	XEN MID
Soluble	Analysis	300.0		5			21618	03/16/22 16:47	CH	XEN MID

Client Sample ID: H-2 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample ID: 880-12273-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 00:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 03:27	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 12:04	CH	XEN MID

Client Sample ID: H-3 (0-0.5')

Date Collected: 03/08/22 00:00

Date Received: 03/10/22 10:15

Lab Sample	ID: 880-12273-10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 01:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID

Eurofins Midland

2

<u>ی</u>

5

7

9

11

13

14

/4.0/0000

Client: Carmona Resources

Date Received: 03/10/22 10:15

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: H-3 (0-0.5') Lab Sample ID: 880-12273-10 Date Collected: 03/08/22 00:00

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 03:48	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 12:31	CH	XEN MID

Client Sample ID: H-4 (0-0.5') Lab Sample ID: 880-12273-11

Date Collected: 03/08/22 00:00 **Matrix: Solid**

Date Received: 03/10/22 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 01:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 04:10	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 12:39	CH	XEN MID

Client Sample ID: H-5 (0-0.5') Lab Sample ID: 880-12273-12

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 01:54	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	21230	03/10/22 14:00	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21302	03/11/22 04:31	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 12:48	CH	XEN MID

Client Sample ID: H-6 (0-0.5') Lab Sample ID: 880-12273-13

Date Collected: 03/08/22 00:00 Date Received: 03/10/22 10:15

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 03:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.04 g	10 mL	21325 21446	03/10/22 14:09 03/14/22 06:09	DM AJ	XEN MID XEN MID

Eurofins Midland

Page 38 of 45

Client: Carmona Resources

Date Received: 03/10/22 10:15

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Client Sample ID: H-6 (0-0.5') Lab Sample ID: 880-12273-13 Date Collected: 03/08/22 00:00

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 12:57	CH	XEN MID

Client Sample ID: H-7 (0-0.5') Lab Sample ID: 880-12273-14

Date Collected: 03/08/22 00:00 **Matrix: Solid**

Date Received: 03/10/22 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	21289	03/10/22 11:12	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	21441	03/13/22 03:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			21549	03/14/22 14:30	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			21386	03/11/22 10:24	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	21325	03/10/22 14:09	DM	XEN MID
Total/NA	Analysis	8015B NM		1			21446	03/14/22 06:30	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	21306	03/10/22 11:59	CH	XEN MID
Soluble	Analysis	300.0		1			21619	03/16/22 13:24	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority		Program	Identification Number	Expiration Date
xas		NELAP	T104704400-21-22	06-30-22
The following analytes the agency does not of	•	t, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
300.0		Solid	Chloride	
8015 NM		Solid	Total TPH	
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GF	RO)-C6-C10
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C2)	8-C36)
8021B	5035	Solid	Benzene	
8021B	5035	Solid	Ethylbenzene	
8021B	5035	Solid	m-Xylene & p-Xylene	
8021B	5035	Solid	o-Xylene	
8021B	5035	Solid	Toluene	
8021B	5035	Solid	Xylenes, Total	
Total BTEX		Solid	Total BTEX	

4

6

9

10

11

13

14

Method Summary

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1

SDG: Eddy Co, NM

Laboratory	
XEN MID	
XEN MID	
VENIAND	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

Released to Imaging: 8/2/2022 4:01:07 PM

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Sample Summary

Client: Carmona Resources

Project/Site: Screech Owl Fed (02.04.22)

Job ID: 880-12273-1 SDG: Eddy Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-12273-1	S-1 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
880-12273-2	S-1 (1')	Solid	03/08/22 00:00	03/10/22 10:15
880-12273-3	S-1 (1.5')	Solid	03/08/22 00:00	03/10/22 10:15
80-12273-4	S-1 (2.5')	Solid	03/08/22 00:00	03/10/22 10:15
880-12273-5	S-1 (3.5')	Solid	03/08/22 00:00	03/10/22 10:15
380-12273-6	S-2 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
380-12273-7	S-2 (1')	Solid	03/08/22 00:00	03/10/22 10:15
80-12273-8	H-1 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
30-12273-9	H-2 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
80-12273-10	H-3 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
80-12273-11	H-4 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
880-12273-12	H-5 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
380-12273-13	H-6 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15
880-12273-14	H-7 (0-0.5')	Solid	03/08/22 00:00	03/10/22 10:15

7

8

10

12

13

114

55	January Charles	Relinquished by (Signature)	of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$65.00 will be applied to each project and a charge of \$6 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated	Notice Signature of this	Additoi	H-3 (0-0 5')	H-2 (0-0 5')	H-1 (0-0 5')	S-2 (1')	S-2 (0-0 5")	S-1 (3 5')	S-1 (2 5')	S-1 (1 5')	S-1 (1')	S-1 (0-0 5')	Sample Identification	Total Containers.	Sample Custody Seals	Cooler Custody Seals.	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name	Project Location	Project Number	Project Name	Phone	City, State ZIP	Address	Company Name	Project Manager	
		(Signature)	liable only for the coarge of \$85.00 will b	document and reline	Additoinal Comments:	0.5')	0 5')	0 5')	1')	0 5")	5')	5')	5')	1)	0 5')	tification		ls Yes	Yes	(Xe	 			Ed		Screech O	432-813-6823	Midland, TX 79701	310 West Wall Ste 415	Carmona Resources	Conner Moehring	
			st of samples and applied to each	uishment of sami	<i>:</i> :	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	3/8/2022	Date		No CNIA	No No	No	Tepan Blank	A CONTRACTOR OF THE CONTRACTOR	CRM	Eddy Co, NM	1021	Screech Owl Fed (02 04 22)		9701	Ste 415	ources	ing	
		Received	d shall not as project and a	oles constitut												Time	Corrected 1	Temperature Reading	Correction Factor	Thermometer ID	Yes (No))				. 22)	 					
	10	Received by (Signature	es a valid purch sume any respo charge of \$5 for	Pe a valid burch		×	×	×	×	×	×	×	×	×	×	Soil	Corrected Temperature.	e Reading	actor	er ID	Wet Ice	lab if rece	TAT starts the	Due Date	Routine	Turr	Email:					
	7 Ka	ure)	ase order from nsibility for any each sample s	aco order from												Water	Ċ			カナ	Yes No	lab if received by 4 30pm	TAT starts the day received by the	72Hrs	✓ Rush	Turn Around	lacquiharris@conocophillips com	City, State ZIP	Address	Company Name	Bill to: (if different)	
	1	1	client comp losses or e ubmitted to			G	ଜ	<u>ଜ</u>	ြ	ဝ	G	G	G	ဝ	G	Grab/ #		<u></u>				L	y the		0.5	_	s@conoc	N N		ame	rent)	
	22/01	Date	xpenses in Xenco, but			1 ×	×	^ ×	×	^ ×	^ ×	×	×	1 ×	×	# of Cont			Pa		nete	rs			Code	ļ	sqillingo	[o	15	cog	Jac	
	0	Date/Time	co, its affil curred by not analy			×	×	×	×	×	×	×	×	×	×	ТРН	801		,		DRO) + M	RO)		_		com	Loving, NM 88256	15 W Loving Rd	Ğ	Jacqui Harris	
o	15		the client zed. These			×	×	×	×	×	×	×	×	×	×			Ch	lorid	le 3	0.0							88256	g Rd		ß	
	-	Relinq	subcontrac f such loss terms will			H		\dashv	1	1	-	-		-																		
		Relinquished by	tors It as ses are du be enforc	11 11																						ANAL						
		y (Sig	signs star e to circur ed unless	***************************************					-	_	_	_	4							 ,						YSIS R						
		(Signature)	It assigns standard terms and conditions adue to circumstances beyond the contro forced unless previously negotiated			$\left \cdot \right $	\dashv	+	+	-		\dashv	1	1		-										ALYSIS REQUEST	Deli	Rep	Stat	Pro	· · · · · · · · · · · · · · · · · · ·]
			ns and con beyond the proportiate						- ∫g	- : =		 -	 =	1												7	Deliverables	orting Le	State of Project:	gram: US		
		Received by	ditions control				1	\dashv	800-12213					1				,									EDD [Reporting Level II Level III	ect:	Program: UST/PST _PRP		
							\dashv		Clight					+	-													Level III			Work C	
		(Signature)								Chain of Custody				1					но								ADaPT 🗆	□ST/UST		Brown)rder C	
		(e)								ydv						Sa	NaOH+A	Zn Aceta	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO, NABIS	H³bo' Hb	H ₂ S0, H ₂	HCL HC	Cool Cool	None NO	Pre				Brownfields ⊟RRC	Work Order Comments	Page
		0								•						mple Co	scorbic /	Zn Acetate+NaOH Zn	NaSO ₃	NABIS	₹ '	N)	!	<u>5</u>	۱ ا	servati	Other	RRP		RRC	र्छ	e
***************************************		Date/Time						-							***************************************	Sample Comments	NaOH+Ascorbic Acid SAPC	H Zn				NaOH Na	HNO, HN	MeOH Me	DI Water: H ₂ O	Preservative Codes		Level IV		_uperfund [of Z

Work Order No: 12273

Page 43 of 45

Revised Date 05012020 Rev 2020 1

Work Order No:	
ler No:	
1227	
3	

Project Manager Co Company Name Ca Address. 311 City, State ZIP Mic Phone 433 Project Name. Project Location Sampler's Name PO #: SAMPLE RECEIPT Received Intact. Cooler Custody Seals. Sample Custody Seals. Total Containers	Conner Moehring Carmona Resources 310 West Wall Ste 415 Midland, TX 79701 432-813-6823 Screech Owl Fed (02 04 22) 1021 Eddy Co, NM CRM CRM Temp Blank Yes No (NA) Com S. Yes No (NA) Tem S. Yes No (NA) Tem	115 NM (02 04	Monet Library Period I	Email Turn utine arts the arts the c, if rece loe	Bill to: (if different) Company Name Company Name Cog Address Address City, State ZIP Loving N Email acquiharris@conocophillips com Turn Around Pres. Parameters Wet loe Fendor Routine Pres. Code Parameters Parameters BIEX 8021B BIEX 8021B BIEX 8021B BIEX 8021B	the Connoc	Parameters Control Contr	BTEX 8021B H 8015M (GRO + DRO + MRO) Chloride 300 0	Chloride 300 0		ANA	Progr State Repor Delive		Program: US State of Pro, Reporting Le Deliverables JEST	Work Order Comm Program: UST/PST PRP Brownfields State of Project: Reporting Level II Level III PST/UST Deliverables EDD ADaPT None Cool H2S0, Na2S, An Aason An Aa		Vel III	Brownfiel Brownfiel Brownfiel PST/US' ADAPT □ Non Coo HCI H ₂ S H ₃ P H0 Na ₂ Zn / NaC	Work Order Comments Work Order Comments Program: UST/PST PRP Brownfields RRC	Page of Z ments Is RRC uperfun Is RRP Level IV Other Preservative Codes P. NO DI Water I I Cool MeOH Me HNO3. HN O4 HP O4 HP SO4 NABIS	[충 ᆼ ᆢ o [호] [년	Level IV Lev	wind V
	-	floor	The Cook of the	iliperature		Praby	1	PH 80					,			<u>upma</u>			NaOH+	Ascort	bic Acı	d SAF	ဂိ
H_A (0_0 R)	-	+			0	-	╀	┼┈		-	-		ļ	-	-	-			U	Sample Comments	Con	ment	। छ
H-F (0-0 5)	-	3/8/2022	-	< ×		-	+	╁┈	×	ļ	-		ļ	-	-								
H-6 (0-0 5')		3/8/2022	_	× ;		G (×	××		-		_			\top							
H-7 (0-0 5')		3/8/2022		×		ြ	<u> </u>	×	×					\dashv									
Additoinal	Additoinal Comments:										***************************************												
Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are of Xenco. A minimum charge of \$86.00 will be applied to each project and a charge of \$6 for each sample submitted to Xenco, but not analyzed. These terms will be enf	ment and relinquishm s only for the cost of a of \$85.00 will be appli	ent of samples amples and sl ed to each pro	s constitutes hall not assu ject and a ci	a valid purcha me any respon sarge of \$5 for	ise order from c isibility for any each sample su	ilent compa losses or ea abmitted to	any to Xer xpenses i Xenco, bu	nco, its aff ncurred by it not anal	filiates an y the clier yzed The	d subconto t if such ic se terms v		t assigns standard terms and conditions due to circumstances beyond the control forced unless previously negotiated.	andard t umstance ss previo	erms and as beyond as y nego	condition the condition the condition	ins trol							
Relinquished by (Signature)	ignature)		Received by	y (Signature	re)	3/	Date 10/22	Date/Time	51.0	Relin	Relinquished	d by (Si	(Signature)		Rec	Received by	1 1	(Signature)	(e)	+	Date	Date/Time	0
5 0										4 0													
																				Revise	d Date 05	Revised Date 05012020 Rev 2020 1	lev 2020

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-12273-1

SDG Number: Eddy Co, NM

Login Number: 12273 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	N/A	No time on COC, logged in per container labels.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

April 08, 2022

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: SCREECH OWL FEDERAL

Enclosed are the results of analyses for samples received by the laboratory on 04/07/22 14:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Project Name: SCREECH OWL FEDERAL
Project Number: 1021 (02.04.22)
Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Shalyn Rodriguez

Sample ID: CS - 1 (2.5') (H221418-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	28.8	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	107	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	115	% 59.5-14	2						

Applyand By MC/

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

04/07/2022

Soil

Sampling Date:

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Sampling Type: Project Name: SCREECH OWL FEDERAL Sampling Condition: ** (See Notes) Shalyn Rodriguez Project Number: 1021 (02.04.22) Sample Received By:

Project Location: COG - EDDY CO NM

Sample ID: CS - 2 (2.5') (H221418-02)

RTFY 8021R

Result < 0.050	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<0.050					,	rrae value qe	IN D	Qualifiei
	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
<0.300	0.300	04/07/2022	ND					
102 %	69.9-14	0						
mg/	kg	Analyze	d By: AC					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
224	16.0	04/08/2022	ND	416	104	400	3.77	
mg/	kg	Analyze	d By: MS					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
36.1	10.0	04/08/2022	ND	185	92.5	200	5.33	
<10.0	10.0	04/08/2022	ND					
112 %	66.9-13	6						
	Result 224 mg/ Result <10.0 36.1 <10.0	Result Reporting Limit 224 16.0 mg/kg Result Reporting Limit <10.0 10.0 36.1 10.0 <10.0 10.0	Result Reporting Limit Analyzed 224 16.0 04/08/2022 mg/kg Analyze Result Reporting Limit Analyzed <10.0	Result Reporting Limit Analyzed Method Blank 224 16.0 04/08/2022 ND mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank <10.0	Result Reporting Limit Analyzed Method Blank BS 224 16.0 04/08/2022 ND 416 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS <10.0	Result Reporting Limit Analyzed Method Blank BS % Recovery 224 16.0 04/08/2022 ND 416 104 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery <10.0	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC 224 16.0 04/08/2022 ND 416 104 400 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC <10.0	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD 224 16.0 04/08/2022 ND 416 104 400 3.77 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD <10.0

Applyzod By: MC/

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Sampling Date: 04/07/2022

Reported: 04/08/2022 Sampling Type: Soil

Project Name: SCREECH OWL FEDERAL Sampling Condition: ** (See Notes) Shalyn Rodriguez Project Number: 1021 (02.04.22) Sample Received By:

Applyzod By: MC/

Project Location: COG - EDDY CO NM

Sample ID: CS - 3 (2.5') (H221418-03)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	107	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	112	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

SCREECH OWL FEDERAL

Project Number: 1021 (02.04.22)
Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Shalyn Rodriguez

Sample ID: CS - 4 (2.5') (H221418-04)

Project Name:

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	114	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	122	% 59.5-14	2						

Applyzod By: MC/

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Project Name: SCREECH OWL FEDERAL
Project Number: 1021 (02.04.22)
Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes)
Sample Received By: Shalyn Rodriguez

Sample ID: CS - 5 (2.5') (H221418-05)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	a By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	26.5	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	115	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	124	% 59.5-14.	2						

Applyzod By: MC/

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported:

04/08/2022 SCREECH OWL FEDERAL

Project Name: Project Number: 1021 (02.04.22) Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes) Shalyn Rodriguez Sample Received By:

Sample ID: SW - 1 (2.5') (H221418-06)

RTFY 8021R

BIEX 8021B	mg,	<u>9</u>	7	ea By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	< 0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	< 0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	'kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	46.8	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	108	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	116	% 59.5-14.	2						

Applyzod By: MC/

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Project Name: SCREECH OWL FEDERAL Project Number: 1021 (02.04.22)

Project Location: COG - EDDY CO NM Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes) Shalyn Rodriguez Sample Received By:

Sample ID: SW - 2 (2.5') (H221418-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	107 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	112 9	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

 Received:
 04/07/2022
 Sampling Date:
 04/07/2022

 Reported:
 04/08/2022
 Sampling Type:
 Soil

Project Name: SCREECH OWL FEDERAL Sampling Condition: ** (See Notes)
Project Number: 1021 (02.04.22) Sample Received By: Shalyn Rodriguez

Analyzed By: MS/

Project Location: COG - EDDY CO NM

mg/kg

Sample ID: SW - 3 (2.5') (H221418-08)

BTEX 8021B

DILX GOZID	11197	ng .	Allulyzo	a by. 1-15/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	96.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Project Name: SCREECH OWL FEDERAL Project Number: 1021 (02.04.22) Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Shalyn Rodriguez

Sample ID: SW - 4 (2.5') (H221418-09)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	< 0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	87.8	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	91.3	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

SCREECH OWL FEDERAL 1021 (02.04.22)

Project Location: COG - EDDY CO NM Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Shalyn Rodriguez

Sample ID: SW - 5 (2.5') (H221418-10)

Project Name:

Project Number:

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	97.4	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	102 9	6 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/07/2022 Reported: 04/08/2022

Project Name: SCREECH OWL FEDERAL Project Number: 1021 (02.04.22) Project Location: COG - EDDY CO NM

Sampling Date: 04/07/2022

Sampling Type: Soil

Sampling Condition: ** (See Notes) Sample Received By: Shalyn Rodriguez

Sample ID: SW - 6 (2.5') (H221418-11)

BTEX 8021B	mg/	kg	Analyze	d By: MS/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/07/2022	ND	2.19	109	2.00	3.36	
Toluene*	<0.050	0.050	04/07/2022	ND	2.17	108	2.00	3.09	
Ethylbenzene*	<0.050	0.050	04/07/2022	ND	2.07	103	2.00	3.88	
Total Xylenes*	<0.150	0.150	04/07/2022	ND	6.39	106	6.00	3.30	
Total BTEX	<0.300	0.300	04/07/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	04/08/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/08/2022	ND	197	98.3	200	0.664	
DRO >C10-C28*	<10.0	10.0	04/08/2022	ND	185	92.5	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	04/08/2022	ND					
Surrogate: 1-Chlorooctane	102 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	109 9	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Chain of Custody

Work Order No: 1881418-1-1

	1	A MARIE	Relinquished by: (Signature)	Polinguished by 19			SW-5 (2.5')	SW-4 (2.5")	SW-3 (2.5")	SW-2 (2.5")	SW-1 (2.5")	CS-5 (2.5')	CS-4 (2.5")	CS-3 (2.5')	CS-2 (2.5')	CS-1 (2.5')	Sample Identification	Committee.	Total Containers	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone: 4	ate ZIP:	Address: 3	Name:	rioject wanager.
			signature)														ication		ONI GOLI	- 1			Temp Blank:		0	Eddy	11	Screech Owl Federal (02.04.22)	432-813-6823	Midland, TX 79701	310 W Wall St Ste 415	Carmona Resources	Conner Moenring
		DR BD	Z	,			4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	4/7/2022	Date	2	(WA)						CCM	Eddy Co, NM	1021	ederal (02.0		1	e 415	ces	
		Rich	eceived by														Time	Corrected Lemperature	remperature Keading:	Tomporature Do	Comption Fort	hermometer	Yes No	1	7	Du	0	14.22)					
		2	Received by: (Signature				×	×	×	×	×	×	×	×	×	×	Soil	nperature:	Keading:	CIOI.		5	Wet Ice	lab, if received by 4:30pm	AT starts the d	Due Date:	Routine	Turn	Email:				
	C	Y	е)					-		_	-						Water Cc	10.00	0.00	0000	11	112	Van N	lab, if received by 4:30pm		24 Hrs	☑ Rush	Turn Around	Email: jacquiharris@conocophillips.com	City, State ZIP	Address:	Company Name	Bill to: (if different)
		47:33					C 1	C 1	C 1	C 1	C 1	0	C 1	C 1	C 1	C 1	Comp Cont		L	F	Para	_	ters				Code		@conocop	IP:		ame:	rent)
			Date/Time				×	×	×	×	×	×	×	×	×	×				BTE	K 80)21B							hillips.co	Loving	15 W	cog	Jacqu
		1440	me				×	×	×	×	+	+	×	×	×	×	Т	PH 80	-	l (G	_	-		MR	0)	-			m	Loving, NM 88256	15 W London Rd		Jacqui Harris
•	4	2	Reli																											96	d		
			nquished I						+		+	+	+	+	+				_	_	_				_	+		ANA					
			Relinquished by: (Signature)					-	7	1	+	+	-	-	1	-										+		LYSIS REQUEST					
-			ture)						1		1	1	1	1	1	1										1		QUEST	Deliver	Report	State o	Progra	
			Rec					+	+	+	+	+	+	+	+	+			_		_	_		_	_	+	-		Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP	
			eived by:					1	1	1	1	1	1	1	1	1										1				Level		ST PR	Wo
			Received by: (Signature)					+	+	+	+	+	+	+	+	+	_			н	DLD		_	_		+	+		ADaPT 🗆	III ST/UST		Pownfields	Work Order Comments
			re)								T	Ī					Sa	NaOH+A	Zn Aceta	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H3PO4: HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	Nolle, NO	Nono. N	Pro	1 0			nfields	Comme
			Dar														Sample Comments	scorbic A	Zn Acetate+NaOH: Zn	: NaSO3	NABIS	늄						servativ	Other:	RRP		ຕິ	its
			Date/Time														mments	NaOH+Ascarbic Acid: SAPC	Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI VValer, n ₂ O	DI Motor L	Preservative Codes		Level IV	[perfund	

Page 14 of 15

Chain of Custody

Work Order No: 13214 8-1-11

	" left of the	Relinquished by: (Signature)											210.00	SWLS () STWS	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager.
		Signature)											.0)	71	ification		s: Yes	Ye					Е		Screech O	432-813-6823	Midland, TX 79701	310 W Wall St Ste 415	Carmona Resources	Conner Moehring
	Solod												4///2022		Date	(No MA	No NA	Yes No	Temp Blank:		CCM	Eddy Co, NM	1021	Screech Owl Federal (02.04.22)	3	79701	St Ste 415	sources	hring
	deign	Received b													Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No					2.04.22)					
	Smar	Received by: (Signature)											×		Soil	emperature:	e Reading:	actor:	er ID:	Wet Ice:	lab, if rece	TAT starts the	Due Date:	Routine	Turn	Email:				
		e)							-	+		H	-	-	Water Gr	10.30	28.01	VŊ,		Yes No	lab, if received by 4:30pm	day received by	24 Hrs	S Rush	Around	Email: jacquiharris@conocophillips.com	City, State ZIP	Address:	Company Name	Bill to: (if different)
1	464	28	4-7-28						+	+			0	Comp Cont	Grab/ # of	Ш		Pai	_	eters		7		Pres.		@conocop	P		ime;	rent)
	1-22	Date/Time	2						1	-			×			8046	_	_	0211	_				-		hillips.com	Loving, N	15 W Lc	cog	Jacqui Harris
	14402								+				×		TPH	_	Chic	_		_	MR	0)	+				Loving,NM 88256	15 W London Rd		Harris
		Relinquished by: (Signature)																						ANALYSIS						
		iture)						1	+											_				YSIS REQUEST		Delive	Repo	State	Prog	
		Received by: (Signature)			-																					Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP rounfield	Worl
	- Brown C	Signature)				+	+	+	+		+	+			100	Zn.		OLC Na		H ₂ S	НС	Coc	Nor				I □ST/UST	Ciominen	PRP Pownfields P	Order Con
		ָרָ .												Sample Comments	NaCht Asolpic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Preservat	Ш		RRP	- NC	12	monte
	Date/Tille	oto/Time												omments	ACID: SAPC	H: Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes			Level IV	perrund		

Page 15 of 15

April 12, 2022

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: SCREECH OWL FEDERAL

Enclosed are the results of analyses for samples received by the laboratory on 04/11/22 9:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/11/2022 Reported: 04/12/2022

04/12/2022 SCREECH OWL FEDERAL

Project Number: 1021 (02.04.22)
Project Location: COG - EDDY CO NM

Sampling Date: 04/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 4 (3') (H221461-01)

Project Name:

BTEX 8021B	mg,	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/11/2022	ND	2.08	104	2.00	10.8	
Toluene*	<0.050	0.050	04/11/2022	ND	2.10	105	2.00	11.8	
Ethylbenzene*	<0.050	0.050	04/11/2022	ND	2.08	104	2.00	11.5	
Total Xylenes*	<0.150	0.150	04/11/2022	ND	6.42	107	6.00	11.0	
Total BTEX	<0.300	0.300	04/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	04/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/11/2022	ND	169	84.7	200	9.63	
DRO >C10-C28*	<10.0	10.0	04/11/2022	ND	152	76.2	200	9.59	
EXT DRO >C28-C36	<10.0	10.0	04/11/2022	ND					
Surrogate: 1-Chlorooctane	84.1	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	83.7	% 59.5-14	2						

A ... - I. ... - - I D. .. MC\

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 04/11/2022 Reported: 04/12/2022

Project Name: SCREECH OWL FEDERAL
Project Number: 1021 (02.04.22)
Project Location: COG - EDDY CO NM

Sampling Date: 04/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 2 (3') (H221461-02)

BTEX 8021B	mg	/kg	Analyze	d By: MS\					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/11/2022	ND	2.08	104	2.00	10.8	
Toluene*	<0.050	0.050	04/11/2022	ND	2.10	105	2.00	11.8	
Ethylbenzene*	<0.050	0.050	04/11/2022	ND	2.08	104	2.00	11.5	
Total Xylenes*	<0.150	0.150	04/11/2022	ND	6.42	107	6.00	11.0	
Total BTEX	<0.300	0.300	04/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	mg/kg Analyzed By: GM		d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	04/11/2022	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/11/2022	ND	169	84.7	200	9.63	
DRO >C10-C28*	<10.0	10.0	04/11/2022	ND	152	76.2	200	9.59	
EXT DRO >C28-C36	<10.0	10.0	04/11/2022	ND					
Surrogate: 1-Chlorooctane	91.0	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	89.7	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Notes and Definitions

BS-3 Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

				6 4							(2 2000
				2	55	09	4-11-2	8	Man D	BHB C	Tour	0	7
ture) Date/Time	Received by: (Signature)		ished by: (Signature)			Date/Time	Da		Received by: (Signature)	Received		(Signature)	Relinquished by: (Signature)
		s and conditions syond the control negotiated.	. It assigns standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated.	ubcontractors. It as such losses are du terms will be enforc	ates and s he client if red. These	nco, its affili ncurred by I t not analyz	npany to Xen r expenses in to Xenco, but	rder from client co ity for any losses o sample submitted	es a vaild purchase o sume any responsibil charge of \$5 for each	nples constitut nd shall not ass n project and a	quishment of sar ost of samples a e applied to eacl	ocument and reling iable only for the co	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses a of Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be
											9.	Additoinal Comments:	Additoi
						-							
						H							
					1	+							
						H							
	+					+							
					×	+	_	Comp	×		4/11/2022	(31)	C-MS
					×	×	1	Comp	×		4/11/2022	3')	CS-4 (3')
Sample Comments						TPI	# of	Water Comp	Soil	Time	Date	ification	Sample Identification
NaOH+Ascorbic Acid: SAPC						1 801		1.9	Corrected Temperature:	Corrected T	1		Total Containers:
Zn Acetate+NaOH: Zn	_				CI	_		カング	0	Temperature Reading:	No (N/A)	Yes	Sample Custody Seals:
	н				hlori	(GF		C-0.56	-(Correction Factor:	No (N/A)	Yes	Cooler Custody Seals:
_	OLD				de 4	_		113	er ID:	Thermometer ID:	No S	Yes	Received Intact
)				500		nete	Yes No	Wet ice:	Yes Mo	Temp Blank:		SAMPLE RECEIPT
H ₂ SO ₄ : H ₂ NaOH: Na						O + N	ers	by 4:30pm	lab, if received by 4:30pm				PO#
HCL: HC HNO3: HN	_					MRO		eceived by the	TAT starts the day received by the		CCM		Sampler's Name:
Cool: Cool MeOH: Me)		24 Hrs	Due Date:		Eddy Co, NM	Edo	Project Location
None: NO DI Water: H ₂ O							Code	Rush	□ Routine ☑		1021		Project Number:
Preservative Codes		ST	ANALYSIS REQUEST	AN				ound	Turn Around	.04.22)	Federal (02	Screech Owl Federal (02.04.22)	Project Name:
ADaPT L1 Other:	☐ ADal	Deliverables: EDD				s.com	ocophillip	Email: jacquiharris@conocophillips.com	Email: jac			432-813-6823	Phone:
		Reporting:Level II Level III	Re		88256	Loving,NM 88256	Lo	City, State ZIP:	City		9701	Midland, TX 79701	e ZIP:
		State of Project:	St		on Rd	15 W London Rd	15	Address:	Ado		Ste 415	310 W Wall St Ste 415	
□rownfields □RC □perfund	□PRP □row	ST	Pr			cog	CO	Company Name:	Cor		ources	Carmona Resources	
Comments	Work Order Comments				is	Jacqui Harris	Ja	Bill to: (if different)	Bill		ing	Conner Moehring	Project Manager:
Page1_ of1_Page													
H221461	Work Order No:	Wo											ge 102
				ouy	nen/	9	Chain of custody						

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 115062

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	115062
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	8/2/2022