District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2214759497
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party A	Armstrong Energy	Corporation	OGRID	1092				
Contact Nan		Jeffery Tew		Contact To	Contact Telephone 575-623-2999				
Contact ema	••	aecnm.com		Incident #	(assigned by OCD) nAPP2214759497				
Contact mail		-	Roswell, NM 88						
			Location	of Release S	OHPOA				
			Location	UI KEICASE S					
Latitude	33.85189		(NAD 83 in dec	Longitude cimal degrees to 5 decir	103.41567				
			(17112) 03 111 400		nui piucco)				
Site Name	Mustang S	-		Site Type	Production Facility				
Date Release	Discovered	5/26/2022		API# (if app	olicable) 30-041-20943				
Unit Letter	Section	Township	Range	Cour	nty				
N	19	5S	34E	Roosevelt	n.y				
11	17		312	Rooseveit					
Surface Owne	r: State	☐ Federal ☐ Tı	ribal X Private (/	Name: Roy Lee	Criswell)				
			NT 4	1771 61	D 1				
			Nature and	l Volume of	Release				
		7 '		calculations or specific	justification for the volumes provided below)				
Crude Oi	1	Volume Release	ed (bbls)		Volume Recovered (bbls)				
x Produced	Water	Volume Release	ed (bbls) 77		Volume Recovered (bbls) 0				
		Is the concentrate produced water	tion of dissolved c >10,000 mg/l?	hloride in the	☐ Yes ☐ No				
Condensa	ate	Volume Release			Volume Recovered (bbls)				
Natural C	ias	Volume Release	ed (Mcf)		Volume Recovered (Mcf)				
Other (de	escribe)	Volume/Weight	Released (provide	e units)	Volume/Weight Recovered (provide units)				
Cause of Rel	ease								
					due to cattle licking the soil. While the exact cause of the				
release is no wellhead.	ot known it is	s suspected that it	was a stuffing box	that leaked and car	used the fluid to be distributed on the ground near the				
weililead.									

Received by OCD: 8/6/2022 12:00:20 AM State of New Mexico
Page 2 Oil Conservation Division

Incident ID	nAPP2214759497
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the respor A release greater than 25 barrels.	sible party consider this a major release?
	otice given to the OCD? By whom? To who NMOCD via OCD portal on 5/27/2022.	om? When and by what means (phone, email, etc)?
	Initial Re	esponse
The responsible p	party must undertake the following actions immediately	unless they could create a safety hazard that would result in injury
x The source of the rele	ease has been stopped.	
x The impacted area ha	s been secured to protect human health and	the environment.
X Released materials ha	we been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
X All free liquids and re	ecoverable materials have been removed and	l managed appropriately.
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence re	emediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain release notified. The acceptance of a C-141 report by the Oate and remediate contamination that pose a three	pest of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name:Jeffery		Title: Operations Engineer
Signature:	ry Tew	Date: <u>5/27/2022</u>
email: <u>jtew@aecni</u>	m.com	Telephone:575-420-7600
OCD Only		
Received by:Jocelyn	Harimon	Date:05/31/2022

Page 3 of 93

Incident ID	nAPP2214759497
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	51-100 (ft bgs)
Did this release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	Yes X No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver	tical extents of soil

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- X Data table of soil contaminant concentration data
- X Depth to water determination
- x Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/6/2022 12:00:20 AM State of New Mexico Oil Conservation Division Page 4

Jocelyn Harimon

Received by:

Page 4 of 93

Incident ID	nAPP2214759497
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: _Jeffery Tew Title: Operations Engineer Date: ____ <u>7/29/2</u>022__ Signature: 575-420-7600 Telephone: itew@acenm.com email: **OCD Only**

08/08/2022

Date:

Page 5 of 93

Incident ID NAPP2214759497
District RP
Facility ID
Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.
☐ Detailed description of proposed remediation technique ☐ Scaled sitemap with GPS coordinates showing delineation point ☐ Estimated volume of material to be remediated ☐ Closure criteria is to Table 1 specifications subject to 19.15.29.1 ☐ Proposed schedule for remediation (note if remediation plan times)	s 2(C)(4) NMAC
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.
	oduction equipment where remediation could cause a major facility
X Extents of contamination must be fully delineated.	
X Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
I hereby certify that the information given above is true and complet rules and regulations all operators are required to report and/or file complete which may endanger public health or the environment. The acceptant liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal, state, or local limits of the compliance with any other federal with the compliance wi	ertain release notifications and perform corrective actions for releases nce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name: Jeffery Tew	Title: Operations Engineer
Signature: Jeffery Tew	Date:
email:jtew@acenm.com	Telephone:575-420-7600
OCD O. I	
OCD Only	
Received by:	Date: _08/08/2022
☐ Approved ☐ Approved with Attached Conditions of	Approval Denied Deferral Approved
Signature: Jennifer Nobui	Date: 08/11/2022

June 29, 2022

District I - Hobbs New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

Re: Deferral Request

Mustang Sally #1

Incident Number nAPP2214759497 Roosevelt County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Armstrong Energy Corporation (AEC), has prepared this Deferral Request to document site assessment, excavation, and soil sampling activities performed at the Mustang Sally #1 (Site), located in Unit N, Section 19, Township 5 South, Range 34 East, in Roosevelt County, New Mexico (**Figure 1 in Appendix A**). The purpose of the site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil resulting from observations made by an inspector with the New Mexico Oil Conservation Division (NMOCD). Based on field observations and screening activities, excavation activities to-date, delineation activities, and laboratory analytical results, AEC is submitting this Deferral Request and requesting deferral for Incident Number nAPP2214759497, specifically deferring remediation of residual chloride-impacted soil in the vicinity of the wellhead until the well is plugged and abandoned (P&Ad) and the Site is reclaimed.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Roosevelt County, New Mexico (33.85189° N, 103.41567° W) and is associated with oil and gas exploration and production operations on private land owned by Mr. Roy Lee Criswell. **Figure 2 in Appendix A** depicts the Site.

AEC contracted with Ensolum to assess discolored soil identified east of the Site's temporarily abandoned (TA'd) wellhead. Based on delineation activities described below, AEC estimated a release of approximately 77 barrels (bbls) of produced water that likely emanated from a leaking stuffing box. The volume of fluids lost was estimated by calculated the volume of potentially contaminated soil and not based on known fluid loss or visual estimated on saturate soils. No fluids were recovered since no standing fluids or saturated soils was present when assessing the potential release. Following receipt of laboratory analytical results from the assessment activities, AEC notified the NMOCD via email and reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on May 27, 2022. The release was assigned Incident Number nAPP2214759497.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized according to Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC).

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 705 W. Wadley, Suite 210 | Midland, TX 78209 | ensolum.com Texas PG Firm No. 50588 | Texas PE Firm No. F-21843

Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on **Figure 1 in Appendix A**.

Depth to water beneath the Site is estimated to be greater than 100 feet below ground surface (bgs) based on a data collected from New Mexico Office of the Stae Engineer (NMOSE) point of diversion (POD) boring POD 1 (C-00398), which was drilled on September 9, 2021. The total depth of the boring was 268 feet bgs and did not encounter a water bearing unit. The borehole is located approximately 4,357 feet north-northwest of the Site and therefore does not meet the NMOD guidance for reasonably estimating the depth to water beneath the Site. The Well Record and Log for POD 1 is included in **Appendix B**.

The closest continuously flowing or significant watercourse to the Site is greater than 300 feet away. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area).

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On May 13, 2022, site assessment activities were conducted to evaluate the suspected release based on visual observations provided by NMOCD. Ensolum personnel advanced two boreholes (BH01 and BH02) via hand-auger within the discolored caliched area east of the TA'd wellhead to assess the vertical extent of soil conditions as they relate to potential contaminants and four boreholes (BH03 through BH06) outside of the discolored area for laterial delineation of potential contaminants. Discrete delineation soil samples were collected from the borehole and field screened for volatile aromatic hydrocarbons utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips, respectively. Field screening results and observations from the borehole were documented on lithologic/soil sampling logs, which which are included as **Appendix C**. The boreholes were backfilled with soil removed following sampling activities. The borehole and soil sample locations are depicted on **Figure 3 in Appendix A**. Photographic documentation was conducted during the Site visit. A photographic log is included in **Appendix D**.

The soil samples were collected from the highest field screened depths and the borehole terminuses and placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for the delineation soil samples from borehole BH01, BH02, and BH06 indicated chloride concentrations exceeded the Site Closure Criteria. Benzene, BTEX, and TPH

concentrations in all soil samples were compliant with the Closure Criteria. Laboratory analytical results depicted on **Figure 3 in Appendix A** and are summarized in **Table 1 in Appendix E**. The complete laboratory analytical report is included as **Appendix F**.

EXCAVATION ACTIVITIES

Based on soil analytical results from delineation activities, remediation of chloride-impacted soil appeared warranted. As such, Ensolum oversaw the excavation and proper disposal of impacted soil on June 10, 2022. Excavation activities were directed by previously failed soil sample and field screening results for volatile aromatic hydrocarbons and chloride. Upon identifying field screening results indicating impacted soils were adequately remediated, Ensolum proceeded to collect confirmation soil samples from the floor and sidewalls of the excavation. The total aerial extent of the excavation was approximately 2,509 square feet in size and an average depth of approximately 2.5 feet bgs with the excavation extending to approximately 4.5 feet bgs in the northern portion of the excavation, totaling approximately 2,509 cubic yards of impacted material removed from the Site.

Ensolum collected 5-point composite soil samples every 200 square feet from the sidewalls and floor of the excavations. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS13 were collected from the floor of the excavations at depths ranging from 2.5 feet to 4.5 feet bgs. Composite soil samples SW01 through SW05 was collected from the sidewalls at the ground surface to approximately 2.5 feet bgs. The excavation soil samples were collected, handled, and analyzed as described above. The excavation extents and excavation soil sample locations are presented on Figure 4. Photographic documentation of the excavation is presented in **Appendix D**.

Analytical results from confirmation soil samples collected on June 10, 2022 indicated chloride exceeded the Closure Criteria in soil samples FS08 at approximately 2.5 feet bgs, SW02 at approximately the ground surface to 2.5 feet bgs, and SW04 at approximately the ground surface to 2.5 feet bgs. Analytical results for the rest of the confirmation soil samples indicated concentrations of benzene, BTEX, TPH, and chloride were in compliance with the Closure Criteria. **Table 1 in Appendix E** summarizes confirmation soil analytical results.

Based on the June 10, 2022 analytical results, additional excavation of residual chloride-impacted soil appeared warranted. As such, Ensolum was onsite June 15, 2022 to complete excavation activities. Following field screening results indicating residual impacts were excavated from the Site, confirmation samples were collected in the comparable manner described above. With the expansion of the excavation, another confirmation floor sample (FS14) was collected at approximately 2.5 feet bgs in order to comply with NMOCD's confirmation sampling frequency requirement. Confirmation floor soil sample FS08 was resampled at approximately 4.5 feet bgs. Confirmation sidewall soil samples SW06 and SW07 were collected at the ground surface to approximately 2.5 feet bgs in along the western excavation extent.

The total excavation size extended to approximately 2,543 square feet with approximately 280 cubic yards excavated and properly disposed of at a New Mexico-permitted landfarm, specifically to the Gandy Marley, Inc. Commercial Landfill (NM-01-0019) located in Roswell, New Mexico.

Analytical results of all floor and sidewall confirmation soil samples indicated concentrations of benzene, BTEX, TPH, and chloride were in compliance with the Closure Criteria with the exception of sidewall confirmation soil sample SW06. **Table 1 in Appendix E** summarizes confirmation soil analytical results.

DEFERRAL ACTIVITIES

Due to the location of the western sidewall in proximity of the wellhead, it was deemed unsafe to excavate closer to the wellhead to remove soil containing 630 mg/kg of chloride at this time. As a result, Ensolum completed follow-up delineation activities to define the area to be deferred for remediation until the well is P&Ad and the pad is reclaimed. Ensolum oversaw delineation activities on July 11, 2022 utilizing mechanical equipment via backhoe to collect delineation soil samples west and north of the wellhead. Two pothole locations, PH01 and PH02, were advanced north and west of the wellhead, respectively, to a total depth of approximately 2.5 feet bgs. In addition, three surficial soil samples, SS01 through SS03, were collected to aid in delineating residual impacted soil. Field screening and sample handling was completed as described above.

Analytical results indicated concentrations of benzene, BTEX, TPH, and chloride in soil from pothole PH02 were in compliance with the Closure Criteria. Analytical results for pothole PH01 indicated chloride exceeded the Closure Criteria for chloride; however, analytical results from surficial soil samples SS01 through SS03, collected at 0.5 feet bgs on the north, west, and south sides of PH02, indicated concentrations of benzene, BTEX, TPH, and chloride were in compliance with the Closure Criteria. **Table 1 in Appendix E** summarizes confirmation soil analytical results.

Based on field activities, including soil samples that were analyzed, approximately 80 cubic yards of chloride impacted soil have been left in place due to the proximity to the wellhead. Due to the proximity of residual chloride-containing soil to the wellhead, safety concerns prohibit removal of all impacted soil. The area to be deferred will be fenced off to protect from cattle encountering the soil until the well is P&Ad and the pad is reclaimed. AEC is tentatively scheduled to P&A the well by the end of 2022.

DEFERRAL REQUEST

In total, 280 cubic yards of chloride-impacted soil were excavated and properly disposed of at a New Mexico permitted landfill. Approximately 80 cubic yards of soil to a total depth of approximately 3 feet bgs is present at the Site near the wellhead. Remaining impacted soil has been delineated to the strictest Closure Criteria both laterally and vertically. It has been determined that the proximity of residual chloride-impacted soil to the wellhead presents a safety concern and based on AEC's plans to P&A the well by the end of the year, deferring the remaining remediation until that time. The residual impacted area will be fenced off until the well is P&Ad and the soil is remediated to limit potential exposure to nearby grazing cattle. At that time, residual chloride impacted soil will be excavated and disposed of at an approved New Mexico permitted landfill. Non-waste containing caliche has been stockpiled next to the excavation in preparation of backfilling the excavation.

Groundwater beneath the Site is estimated to be greater than 100 feet bgs, but the strictest Closure Criteria are being applied since there is no nearby water well data and reclamation is imminent. Remaining chloride concentrations range from 630 mg/kg to 2,610 mg/kg. The gross impacts have been removed from the Site via excavation and the limited residual impacts are in close proximity to the wellhead, preventing full excavation due to safety concerns. Based on excavation activities and existing delineation data, AEC respectfully requests deferral of final remedial actions for Incident Number nAPP2214759497 until the well is P&Ad and the pad is reclaimed.

If you have any questions or comments, please contact Mr. Daniel Moir at (303) 887-2946 or dmoir@ensolum.com.

Sincerely,

Ensolum, LLC

Daniel R. Moir, P.G.

Senior Managing Geologist

cc: Jeff Tew, Armstrong Energy Corporation

Roy Lee Criswell, private landowner

Appendices:

Appendix A Figures

Figure 1 Site Receptor Map

Figure 2 Site Map

Figure 3 Delineation Soil Sample Locations

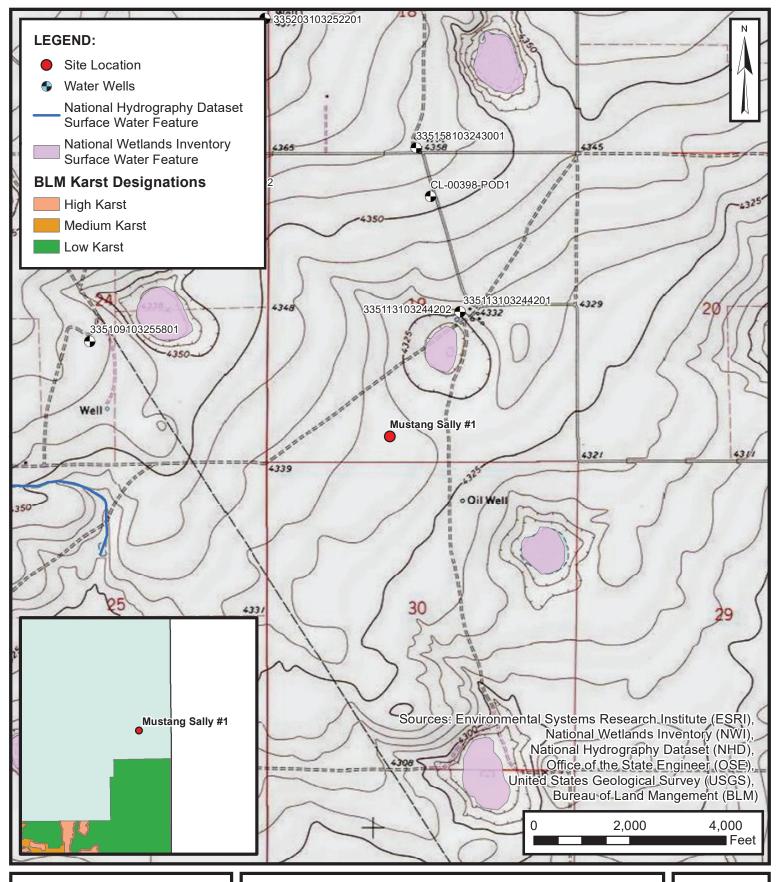
Figure 4 Excavation Confirmation Soil Sample Locations

Appendix B Well Record and Log

Appendix C Lithologic Soil Sampling Logs

Appendix D Photographic Log

Appendix E Table


Table 1 Soil Sample Analytical Results

Appendix F Laboratory Analytical Reports & Chain-of-Custody Documentation

APPENDIX A

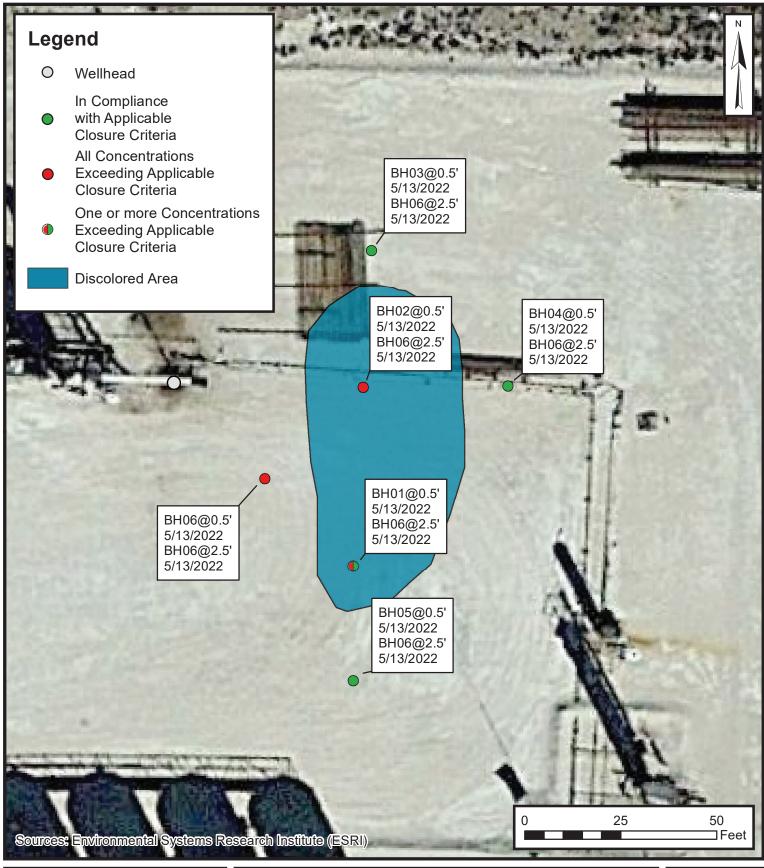
Figures



Site Receptor Map

Mustang Sally #1 Armstrong Energy Corporation 33.85189, -103.41567 Roosevelt County, NM FIGURE

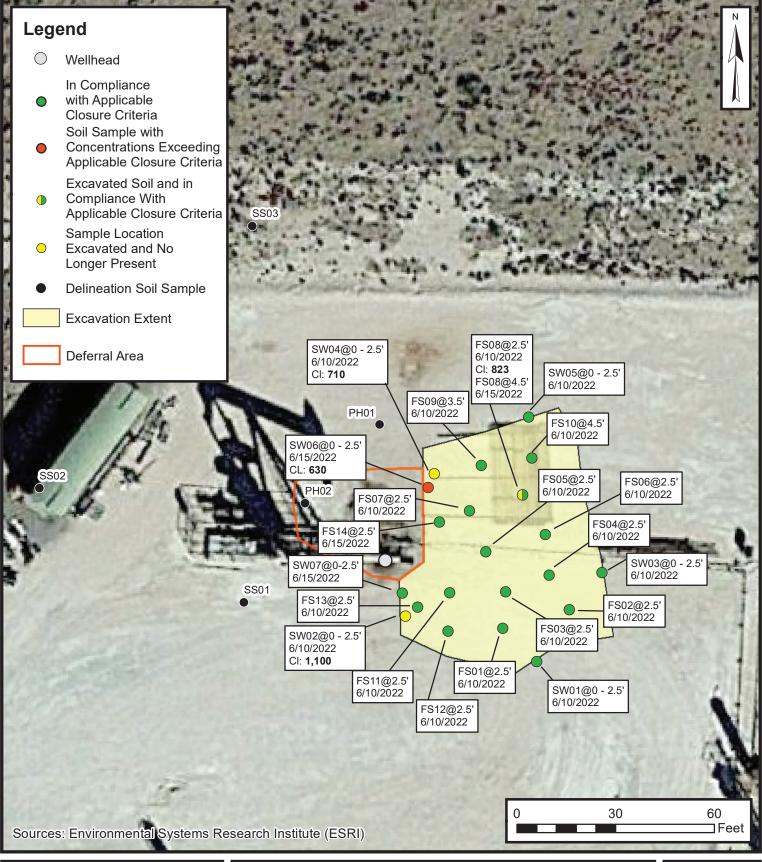
#1



Site Map

Mustang Sally #1 Armstrong Energy Corporation 33.85189, -103.41567 Roosevelt County, NM FIGURE

#2



Delineation Soil Sample Location Map

Mustang Sally #1 Armstrong Energy Company 33.85189, -103.41567 Roosevelt County, NM FIGURE

#3

Excavation Confirmation Soil Sample Locations

Mustang Sally #1 Armstrong Energy Company 33.85189, -103.41567 Roosevelt County, NM FIGURE #4

APPENDIX B

Well Record and Log

NO	OSE POD NO. POD 1	(WELL NO.	.)		WELL TAG ID NO. 20F82			OSE FILE NO CL - 00398	S).			
OCATI	WELL OWNE ROY LEE	R NAME(S) CRISWE	ELL					PHONE (OPTIONAL) 575-914-5755				
AND WELL LOCATION	WELL OWNE 2750 S. RO	R MAILING OOSEVE	ADDRESS LT ROAD V					CITY PEP		STATE NM	88126	ZIP
I. GENERAL AND	WELL LOCATION (FROM GP:	S) E/()	TITUDE	GREES 33 -103	MINUTES 51 24	SECONDS 48.000000 49.900000	N W	+ DATE ADECUMED WOODA				
1. GE	DESCRIPTION NW 1/4 of	N RELATIN SW 1/4 o	IG WELL LOCATION TO of NW 1/4 of NE 1/	STREET ADDRE 4 of Section 1	ss and common 9, Township 05	LANDMARKS 5S, Range 34	– PLS IE	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVA	ILABLE	
	LICENSE NO. WD-1	737	NAME OF LICENSED	DRILLER JUS	TIN MULLIN	S			NAME OF WELL DRI SHAD	LLING CO E TREE	OMPANY DRILLING	
	DRILLING ST 9-19-	TARTED -21	DRILLING ENDED 9-21-21	DEPTH OF COM	PLETED WELL (FI	Г) ВОГ	RE HOI	LE DEPTH (FT) 268	DEPTH WATER FIRS	ST ENCOU N/A	UNTERED (FT)	
Z	COMPLETED	WELL IS:	ARTESIAN	ARTESIAN PRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL (FT) N/A						LL (FT)		
TIO	DRILLING FL	LUID:	AIR	✓ MUD	ADDITIV	ES – SPECIFY:		DRI	LLED WITH FRE	SH WA	TER ONLY	
RMA	DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE T	OOL [ОТНЕ	R – SPECIFY:				
CASING INFORMATION	DEPTH (feet bgl) FROM TO		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)		and	CONN T	ASING NECTION YPE	CASING CASING WALL INSIDE DIAM. THICKNESS (inches)		SLOT SIZE (inches)	
CA	0	268	10.5		ING INSTALLE	(each	coupl	ling diameter)				
NG &								-				
									OSE DILOCT O	1 0001	DMOTO	
DRILLING	v. 01			,					the second secon	the think the to		
7.												
											1 0	

	DEPTH ((feet bgl)	BORE HOLE	LIST	Γ ANNULAR SE	EAL MATER	IAL A	AND	AMOUNT		МЕТНО	
IAL	FROM	ТО	DIAM. (inches)	GRAV	EL PACK SIZE-			RVAL	(cubic feet)		PLACEN	
TER	0	20	10.50		BENTONIT		G		13		TOP POUR	
ANNULAR MATERIAL	20	268	10.50		CLEAN	CUTTINGS			150		TOP POUR	/ HAND
TOP.												
AN												M
3.												
FOR	OSE INTER	NAL USE						WR-2	0 WELL RECORD	& LOG (Version 04/3	0/19)

POD NO.

TRN NO.

WELL TAG ID NO.

PAGE 1 OF 2

FILE NO.

LOCATION

	Action of the beauty									
	DEPTH (feet bgl)		COLOR AN	ID TYPE OF MATERIAL E	NCOUNTERED -		WA	TER	ESTIMATED YIELD FOR
	FROM	ТО	THICKNESS (feet)	INCLUDE WATE	ER-BEARING CAVITIES Coplemental sheets to fully d	R FRACTURE ZO	ONES	BEAR (YES	UNG?	WATER- BEARING ZONES (gpm)
	0	2	2		Topsoil			Y	✓ N	ZOTES (gpiii)
	2	35	33		Caliche			Y	✓ N	
	35	58	23	1	Sand & Gravel			Y	✓ N	
	58	77	19		Sandstone & Gravel			Y	✓ N	
	77	120	43		Grey Clay			Y	✓ N	
T	120	143	23		Red Clay			Y	✓ N	
WEL	143	195	52		Blue Clay			Y	✓ N	
OF	195	218	23		Red Clay & Gravel			Y	✓ N	
90	218	258	40		Blue Clay & Gravel			Y	✓ N	
4. HYDROGEOLOGIC LOG OF WELL	258	268	10		Red Clay			Y	✓ N	
507								Y	N	
EO								Y	N	
ROC								Y	N	
HXD								Y	N	
4.								Y	N	
								Y	N	
								Y	N	
								Y	N	
			,					Y	N	
								Y	N	
								Y	N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARING	G STRATA:		TOT	AL ESTIN	AATED	0
	₽ PUMI	РПА	IR LIFT	BAILER OT	THER - SPECIFY:		WE	LL YIELD) (gpm):	0
ON	WELL TES	TEST STAR	RESULTS - ATT. T TIME, END TIME	ACH A COPY OF DAT ME, AND A TABLE SH	TA COLLECTED DURING HOWING DISCHARGE AN	WELL TESTING, ID DRAWDOWN	INCLUDI OVER TH	ING DISC IE TESTIN	HARGE I	METHOD, DD.
5. TEST; RIG SUPERVISION	MISCELLANEOUS INFORMATION: NO WATER WAS ENCOUNTERED AT ALL. ALL FORMATIONS THAT SHOULD HAVE HELD WATER WERE DRY. TEST PUMPED WITH 0 GPM YIELD. NO CASING IS INSTALLED AND THE WELL IS PROPERLY PLUGGED AND SEALED. OSE OF OTHER THAN LICENSEE: BENJAMIN LOEWEN								ED AND THE 2:52	
6. SIGNATURE	RECORD O	THE ABOUTED WILL	OVE DESCRIBED ALSO BE FILED	WELL. I ALSO CERT WITH THE PERMIT I	F MY KNOWLEDGE AN IFY THAT THE WELL TA HOLDER WITHIN 30 DAYS TIN MULLINS NAME	G, IF REQUIRED	HAS BEI	EN INSTA N OF WE	LLED A	ND THAT THIS
EOF	OCE INTERN	MAI LICE				WD 35	WELLET	CORP	LOCAL	
	R OSE INTERI E NO.	NAL USE			POD NO.	WR-20		CORD &	LOG (Ve	rsion 04/30/2019)
	CATION					WELL TAG ID	10			PAGE 2 OF 2

LOCATION
Released to Imaging: 8/11/2022 11:58:47 AM

APPENDIX C

Lithologic Soil Sampling Logs

								Sample Name: BH01	Date: 5/13/2022		
	-8		N	S	OL	U	M	Site Name: Mustang Sally #1 Incident Number: NAPP213503253	24		
	70							Job Number: 09C2041001			
		LITHO	OGI	C / SOIL 9	ΔMDI ING	ille		Logged By: DRM	Method: hand auger		
LITHOLOGIC / SOIL SAMPLING LOG Coordinates:								Hole Diameter: 2.5"	Total Depth:		
Comm	ents: Fie		_					PID for chloride and vapor, respect factors included.			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions			
					1	<u> </u>	CCHE	caliche, fine-grained to coas	o-arained cand cilt		
М	7,095	0.0	V	DUO4 C	0940	0.25		and gravel, grayish-brown, I	_		
			У	BH01@ 0.25'	0340 _	_		discoloraion in top few inch			
М	3,461	0.0	n	0.23	_	0.5					
					_	0.75					
М	1,624	0.5	n		_	_ 1	SM	Silty sand, fine-grained to co	oarse-grained, dark		
					_	1.25		brown, moist, organics pres	ent, no staining		
М	241	0.8	n	BH01@	0945	1.5					
				1.5'	_	1.75		TD = 1.5 fee	et bgs		
					_	2					
					_ _	2.25					
					_	_					
					-	2.5					
					-	2.75					
					-	3					
					_	- -					
					_	- -					
					_	_					
					_	- -					
					-	- -					
					_	- -					
					-	-					
					-	-					
					-	-					
					_	<u>-</u> -					
					_	_					
]					-	<u>-</u>					
					-	_					

									/+o /oooo			
	100							Sample Name: BH02	Date: 5/13/2022			
			N	S	OL	U		Site Name: Mustang Sally #1	F24			
	10		110					Incident Number: NAPP2135032	551			
-		LITUO	001	C / SOUL G	SAMPLING	106		Job Number: 09C2041001				
Coord	inates:	LITHOL	Odi	C/3OIL3	AIVIPLING	Logged By: DRM Hole Diameter: 2.5"	Method: hand auger Total Depth:					
		ld screen	ing co	anducted w	ith HACH Ch	Iloride Test 9	Strins and	PID for chloride and vapor, respe	· ·			
			_					factors included.	ctively. Cilionae test			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions				
					Ш	L 0	CCHE	caliche, fine-grained to coa	ase-grained sand, silt			
					_	0.25		and gravel, grayish-brown,	_			
								discoloraion in top few inc				
М	6,076	0.3	У	<u>BH02A</u>	0947	0.5	SM	Silty sand, fine-grained to				
				<u>@0.5'</u>	_	0.75		brown, moist, organics present, no staining				
М	4,430	0.8	n		_	- 1						
	., .50	0.0			-							
					-	1.25						
М	4,430	0.7	n		_	1.5						
					_	1.75						
					_	2						
					-							
					-	2.25						
М	572	1.0	n	BH02B	0952	2.5						
				<u>@2.5'</u>	_	2.75						
								TD - 2 F fa	ot has			
					_	3		TD = 2.5 fe	eet bgs			
					-	-						
					_	-						
					-	_						
					_	-						
					_	-						
					_	-						
					-	_						
					_	-						
						-						
					7	-						
					-	- -						
					-	-						
						<u>-</u>						
					-	-						

								Sample Name: BH03	Date: 5/13/2022			
	7				0	Site Name: Mustang Sally #1						
ш	- C-1		N	3	OL	Incident Number: NAPP2135032531						
	70							Job Number: 09C2041001				
		LITHOL	OGI	C / SOIL S	SAMPLING	Logged By: DRM	Method: hand auger					
Coord	inates:			,		Hole Diameter: 2.5"	Total Depth:					
			_			PID for chloride and vapor, respect factors included.	ively. Chloride test					
							~					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions			
					1	. 0	CCHE	caliche, fine-grained to coas	e-grained sand, silt			
					-	0.25		and gravel, grayish-brown, I	_			
					Ĺ	<u>-</u>		staining	•			
	М	241	1	n	<u>BH03A</u>	0.5						
					<u>@0.5'</u>	0.75	SM	Silty sand, fine-grained to co	parse-grained, dark			
					-	1		brown, moist, organics pres				
						_						
					-	1.25						
М	202	1.4	n			1.5						
					+	1.75						
					4	<u>-</u> '						
						2						
					7	2.25						
М	<168	0.1	n	внозв	1045	2.5						
				@2.5'	-	2.75						
						<u>-</u>		TD = 2.5 fee	et bgs			
					-	3						
					1	-						
					-	_						
					t l	_						
					7	•						
					-	_						
					1	-						
						•						
						-						
						_						
						-						
						_						
					7	- ·						
						-						
						_						
						•						

10-								Sample Name: BH04	Date: 5/13/2022			
	-1	-		C	0 1	Site Name: Mustang Sally #1						
		-	N	3	OL	Incident Number: NAPP2135032531						
	90							Job Number: 09C2041001				
		LITHOI	OGI	c / soll s	SAMPLING	Logged By: DRM	Method: hand auger					
Coord	inates:		-	.,	,	Hole Diameter: 2.5"	Total Depth:					
		ld screen	ing co	nducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	·			
			_					factors included.	,			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions			
М	<168	1.8	n	BH04A @0.5'	1050 _	0 0.25 0.5 0.75	CCHE	caliche, fine-grained to coas and gravel, grayish-brown, l staining Silty sand, fine-grained to co	little moist, no odor or			
М	<168	0.0	n		- - - - - - - -	1 1.25 1.75 1.75 2 2.25	3141	brown, moist, organics pres				
M	<168	0.7	n	BH04B @2.5"	1055 -	- 2.5 - 2.75 - 3 - 3 		TD = 2.5 fee	et bgs			

								Sample Name: BH05	Date: 5/13/2022			
		_			0 1	Site Name: Mustang Sally #1						
			N	3	OL	Incident Number: NAPP2135032531						
	10							Job Number: 09C2041001				
		LITHOI	OGI	c / soil s	SAMPLING	Logged By: DRM	Method: hand auger					
Coord	inates:			, , , ,		Hole Diameter: 2.5"	Total Depth:					
II———		ld screen	ing co	nducted w	ith HACH Ch	PID for chloride and vapor, respect	·					
			_					factors included.	,			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De:	scriptions			
М	<168	1.0	n	BH05A @0.5'	1115 _ - - - - - -	. 0 - 0.25 - 0.5 - 0.75	CCHE	caliche, fine-grained to coase-grained sand, and gravel, grayish-brown, little moist, no or staining Silty sand, fine-grained to coarse-grained, dabrown, moist, organics present, no staining				
М	<168	0.5	n		- - - - - - -	1 1.25 1.5 1.75 2 2.25						
M	<168	0.6	n	<u>@</u> 2.5'	1120	2.5 - 2.75 - 3 - 3 		TD = 2.5 feet bgs				

Ŀ				34.00	O L	Sample Name: BH06 Site Name: Mustang Sally #1 Incident Number: NAPP213503 Job Number: 09C2041001 Logged By: DRM	Method: hand auger		
Comm			_			Hole Diameter: 2.5" PID for chloride and vapor, resp factors included.	Total Depth: ectively. Chloride test		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Time	Depth (ft bgs)	USCS/Rock Symbol	Lithologic D	Descriptions
M M	572 476	0.4	n n	BH06A @0.5'	1155 -	0 0.25 0.5 0.75 1 1.25 1.75 2 2.25 2.75 3 3	SM	caliche, fine-grained to co and gravel, grayish-brown staining Silty sand, fine-grained to brown, moist, organics pr	coarse-grained, dark resent, no staining
					- - - - - -	- - - - -			

APPENDIX D

Photographic Log

Photographic Log

Armstrong Energy Corporation
Mustang Sally #1
Incident Number nAPP2214759497
Ensolum Job Number: 09C2041001

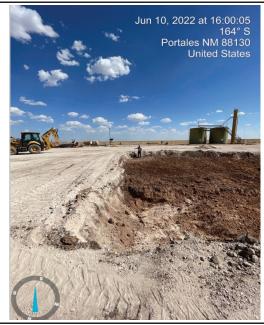
Photograph 1
Date: 5/10/2022 - wellhead (left), discolored soil (center), view north)

Photograph 2
Date: 5/10/2022 - wellhead and discolored soil in front, view west

Photograph 3
Date: 6/10/2022 - pre-excavation preparation, view northwest

Photograph 4
Date: 6/10/2022 - excavation progress, view north

Photographic Log


Armstrong Energy Corporation
Mustang Sally #1
Incident Number nAPP2214759497
Ensolum Job Number: 09C2041001

Photograph 5
Date: 6/10/202 - final excavation, southeastern excavation extent - first view, view south

Photograph 6
Date: 6/10/2022 - final excavation, southeastern excavation extent - second view, view south

Photograph 7
Date: 6/10/2022 - final excavation, southeastern excavation extent - third view, view south

Photograph 8
Date: 6/10/2022 - final excavation, northeastern excavation extent - first view, view northeast

Photographic Log

Armstrong Energy Corporation
Mustang Sally #1
Incident Number nAPP2214759497
Ensolum Job Number: 09C2041001

Photograph 9

Date: 6/10/2022 - final excavation, northeast excavation extent - second view, view northeast

Photograph 10

Date: 6/10/2022 - final excavation, northeastern excavation extent - third view, northwestern excavation extent - first view, view north

Photograph 11

Date: 6/10/2022 - final excavation, northwestern excavation extent - second view, view northeast

Photograph 12

Date: 6/10/2022 - final excavation, northwestern excavation extent - third view, view east

Photographic Log

Armstrong Energy Corporation
Mustang Sally #1
Incident Number nAPP2214759497
Ensolum Job Number: 09C2041001

Photograph 1
Date: 6/10/2022 - final excavation, southwestern excavation extent - first view, view north

Photograph 2
Date: 6/10/2022 - final excavation, southwestern excavation extent, second view, view north

Photograph 3
Date: 6/10/2022 - final excavation, southwestern excavation extent, third view, view west

Photograph 4
Date: 6/10/2022 - final excavation fenced off, view west-northwest

APPENDIX E

Table

■ ENSOLUM

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Armstrong Energy Corporation - Mustang Sally #001 Roosevelt County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (GRO+DRO+MRO) (mg/kg)	Chloride (mg/kg)
NMOCD Closure Criteria for Soils Impacted by a Release (Groundwater <50 feet)		10	NE	NE	NE	50	NE	NE	NE	100	600	
					Delineation	Soil Sample Analy	tical Results				,	
BH01	5/13/2022	0.25	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<49.9	<49.9	<49.9	<49.9	2,910
BH01	5/13/2022	1.5	<0.00200	<0.00200	<0.00200	<0.00401	< 0.00401	<49.8	<49.8	<49.8	<49.8	252
BH02	5/13/2022	0.5	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<50.0	<50.0	<50.0	<50.0	7,200
BH02	5/13/2022	2.5	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	<49.9	<49.9	<49.9	<49.9	960
BH03	5/13/2022	0.5	<0.00201	< 0.00201	< 0.00201	<0.00402	< 0.00402	<50.0	<50.0	<50.0	<50.0	368
BH03	5/13/2022	2.5	<0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	265
BH04	5/13/2022	0.5	<0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	71.1
BH04	5/13/2022	2.5	<0.00201	<0.00201	< 0.00201	<0.00402	< 0.00402	<49.9	<49.9	<49.9	<49.9	72.4
BH05	5/13/2022	0.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	108
BH05	5/13/2022	2.5	<0.00198	<0.00198	<0.00198	< 0.00396	< 0.00396	<50.0	<50.0	<50.0	<50.0	26.5
BH06	5/13/2022	0.5	< 0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	1,310
BH06	5/13/2022	2.5	<0.00200	<0.00200	<0.00200	<0.00399	< 0.00399	<50.0	<50.0	<50.0	<50.0	740
PH01	7/11/2022	0.5	< 0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	<50.0	<50.1	<50.2	<50.3	427
PH01A	7/11/2022	3	<0.00200	<0.00200	<0.00200	<0.00401	< 0.00401	<49.9	<49.9	<49.9	<49.9	216
PH02	7/11/2022	0.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.8	<49.8	<49.8	<49.8	2,610
PH02A	7/11/2022	3	<0.00200	<0.00200	<0.00200	<0.00399	< 0.00399	<49.9	<49.9	<49.9	<49.9	867
SS01	7/11/2022	0.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	395
SS02	7/11/2022	0.5	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<50.0	<50.0	<50.0	<50.0	268
SS03	7/11/2022	0.5	<0.00199	< 0.00199	< 0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	407
0000	TTTTLOEE	0.0	10.00100		Excavation Confirm				100.0	100.0	-00.0	101
FS01	6/10/2022	2.5	<0.00200	<0.00200	<0.00200	0.0102	0.0102	<49.9	<49.9	<49.9	<49.9	93.4
FS02	6/10/2022	2.5	<0.00199	<0.00199	<0.00199	0.0172	0.0172	<49.9	<49.9	<49.9	<49.9	49.2
FS03	6/10/2022	2.5	<0.00133	<0.00193	<0.00133	0.0172	0.0121	<50.0	<50.0	<50.0	<50.0	126
FS04	6/10/2022	2.5	<0.00200	<0.00200	<0.00200	0.0121	0.0121	<49.9	<49.9	<49.9	<49.9	88.7
FS05	6/10/2022	2.5	<0.00201	<0.00201	<0.00201	0.0111	0.0111	<50.0	<50.0	<50.0	<50.0	248
FS06	6/10/2022	2.5	<0.00202	<0.00202	<0.00202	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	169
FS07						0.00399					<50.0	217
	6/10/2022	2.5 2.5	<0.00199	<0.00199	<0.00199		0.0041	<50.0	<50.0	<50.0		
FS08	6/10/2022		<0.00200	<0.00200	<0.00200	0.00506	0.00506	<50.0	<50.0	<50.0	<50.0	823
FS08	6/15/2022	4	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<49.8	<49.8	<49.8	<49.8	275
FS09	6/10/2022	3.5	<0.00199	<0.00199	<0.00199	0.00532	0.00532	<50.0	<50.0	<50.0	<50.0	250
FS10	6/10/2022	4.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	121
FS11	6/10/2022	2.5	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<49.9	<49.9	<49.9	<49.9	208
FS12	6/10/2022	2.5	<0.00201	<0.00201	<0.00201	0.00449	0.00449	<49.9	<49.9	<49.9	<49.9	158
FS13	6/10/2022	2.5	<0.00202	<0.00202	<0.00202	0.0124	0.0124	<50.0	<50.0	<50.0	<50.0	92.6
FS14	6/15/2022	2.5	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	128
SW01	6/10/2022	0 - 2.5	<0.00200	<0.00200	<0.00200	0.0106	0.0106	<50.0	<50.0	<50.0	<50.0	127
SW02	6/10/2022	0 - 2.5	<0.00199	<0.00199	<0.00199	0.00708	0.00708	<50.0	53.4	<50.0	53.4	1,100
SW03	6/10/2022	0 - 2.5	<0.00199	<0.00199	<0.00199	0.0135	0.0135	<50.0	<50.0	<50.0	<50.0	199
SW04	6/10/2022	0 - 2.5	<0.00199	< 0.00199	<0.00199	0.0147	0.0147	<50.0	<50.0	<50.0	<50.0	710
SW05	6/10/2022	0 - 2.5	<0.00202	<0.00202	<0.00202	0.0116	0.0116	<50.0	<50.0	<50.0	<50.0	384
SW06	6/15/2022	0 - 2.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<49.9	<49.9	<49.9	<49.9	630
SW07	06/15/2022	0 - 2.5	< 0.00199	< 0.00199	< 0.00199	< 0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	453

Notes:

bgs: below ground surface

J: The target analyte was positively identified below the quantitation limit and above the detection limit.

mg/kg: milligrams per kilogram NA: Not Applicable

NE: Not Established

NS: Not Sampled

NMOCD: New Mexico Oil Conservation Division

PID: Photoionization Detector

ppm: parts per million

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

<49.9: Indicates result less than the stated laboratory reporting limit (RL)

Concentrations in bold and shaded exceed the New Mexico Oil Conservation Division Table 1 Closure Criteria for Soils Impacted by a Release

gray text indicates soil has been excavated and is not present in the location

APPENDIX F

Laboratory Analytical Reports & Chain-of-Custody Documentation

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2311-1

Laboratory Sample Delivery Group: Roosevelt County NM

Client Project/Site: Mustang Sally #1

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

JURAMER

Authorized for release by: 5/19/2022 11:18:35 AM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

results through
EOL

Have a Question?

····· Links ······

Review your project

Expert

Visit us at: www.eurofinsus.com/Env

Released to Imaging: 8/11/2022 11:58:47 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

1

_

3

5

7

8

10

11

13

14

Client: Ensolum

Laboratory Job ID: 890-2311-1

Project/Site: Mustang Sally #1

SDG: Roosevelt County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	15
QC Sample Results	17
QC Association Summary	23
Lab Chronicle	27
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	36

2

3

4

6

8

10

12

13

14

Definitions/Glossary

Job ID: 890-2311-1 Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Qualifiers

3

GC VOA Qualifier

F1 MS and/or MSD recovery exceeds control limits. F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA Qualifier

HPLC/IC

Qualifier Description

Qualifier Description

Qualifier

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

LCS and/or LCSD is outside acceptance limits, low biased.

Indicates the analyte was analyzed for but not detected.

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive

QC Quality Control RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Client: Ensolum

Project/Site: Mustang Sally #1

Job ID: 890-2311-1

SDG: Roosevelt County NM

Job ID: 890-2311-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2311-1

Receipt

The samples were received on 5/13/2022 2:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.6°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-25650 and analytical batch 880-25671 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-25651 and analytical batch 880-25672 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-2311-1

Client Sample Results

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH01A

Date Collected: 05/13/22 09:40 Date Received: 05/13/22 14:50

Sample Depth: 0.25

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
o-Xylene	<0.00200	U *-	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/16/22 15:49	05/18/22 05:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			05/16/22 15:49	05/18/22 05:15	1
1,4-Difluorobenzene (Surr)	91		70 - 130			05/16/22 15:49	05/18/22 05:15	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			05/18/22 09:14	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared		
				Onit		riepaieu	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg		- герагец	05/18/22 08:44	Dil Fac
Total TPH Method: 8015B NM - Diesel Ran								
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)	49.9	mg/Kg	<u> </u>	<u> </u>	05/18/22 08:44	1
Method: 8015B NM - Diesel Ran Analyte	ge Organics (D	RO) (GC) Qualifier	49.9	mg/Kg	<u>D</u>	Prepared	05/18/22 08:44 Analyzed	Dil Fac
- -	ge Organics (D	RO) (GC) Qualifier	49.9	mg/Kg	<u> </u>	<u> </u>	05/18/22 08:44	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D	RO) (GC) Qualifier	49.9	mg/Kg	<u> </u>	Prepared	05/18/22 08:44 Analyzed	Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (Di Result <49.9	RO) (GC) Qualifier U	49.9 RL 49.9	mg/Kg Unit mg/Kg	<u> </u>	Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 18:16	Dil Fac
Method: 8015B NM - Diesel Rand Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result < 49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 05/17/22 09:20 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 18:16 05/17/22 18:16	1 Dil Fac
Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI Result <49.9 <49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20	Analyzed 05/17/22 18:16 05/17/22 18:16	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (DI Result <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared	Analyzed 05/17/22 18:16 05/17/22 18:16 05/17/22 18:16 Analyzed	Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery 117 120	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	Analyzed 05/17/22 18:16 05/17/22 18:16 Analyzed 05/17/22 18:16	Dil Fac
Method: 8015B NM - Diesel Rank Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery 117 120 romatography -	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	mg/Kg Unit mg/Kg mg/Kg	<u> </u>	Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	Analyzed 05/17/22 18:16 05/17/22 18:16 Analyzed 05/17/22 18:16	

Client Sample ID: BH01B

Date Collected: 05/13/22 09:45 Date Received: 05/13/22 14:50

Sample Depth: 1.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
o-Xylene	<0.00200	U *-	0.00200	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		05/16/22 15:49	05/18/22 05:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			05/16/22 15:49	05/18/22 05:35	

Eurofins Carlsbad

Lab Sample ID: 890-2311-2

Matrix: Solid

2

3

7

9

10

12

13

Client Sample Results

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH01B Lab Sample ID: 890-2311-2

Date Collected: 05/13/22 09:45 Matrix: Solid Date Received: 05/13/22 14:50

Sample Depth: 1.5

Method: 8021B - Volatile Organic	Compounds ((GC) (Conti	nued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130			05/16/22 15:49	05/18/22 05:35	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg		 -	05/18/22 09:14	1
Method: 8015 NM - Diesel Range Analyte	•	O) (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			05/18/22 08:44	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		05/17/22 09:20	05/17/22 18:39	1
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		05/17/22 09:20	05/17/22 18:39	1

Oll Range Organics (Over C28-C36)	<49.8 U	J	49.8	mg/Kg	05/17/22 09:20	05/17/22 18:39	1
Surrogate	%Recovery Q	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130		05/17/22 09:20	05/17/22 18:39	1
o-Terphenyl	109		70 - 130		05/17/22 09:20	05/17/22 18:39	1
_							

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride 252 4.98 mg/Kg 05/18/22 15:20

Client Sample ID: BH02A Date Collected: 05/13/22 09:47

Date Received: 05/13/22 14:50 Sample Depth: 0.5

C10-C28)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		05/16/22 15:49	05/18/22 05:56	1
Toluene	<0.00202	U	0.00202	mg/Kg		05/16/22 15:49	05/18/22 05:56	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		05/16/22 15:49	05/18/22 05:56	
n-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		05/16/22 15:49	05/18/22 05:56	
o-Xylene	<0.00202	U *-	0.00202	mg/Kg		05/16/22 15:49	05/18/22 05:56	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		05/16/22 15:49	05/18/22 05:56	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130			05/16/22 15:49	05/18/22 05:56	
1,4-Difluorobenzene (Surr)	92		70 - 130			05/16/22 15:49	05/18/22 05:56	1
Method: Total BTEX - Total B	ΓEX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			05/18/22 09:14	,
Mathada 0045 NM Discal Day	nge Organics (DR)	O) (GC)						
wethod: 8015 NW - Diesei Rai	igo Organios (Bit	-/ (/						
Method: 8015 NM - Diesel Rar Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Lab Sample ID: 890-2311-3

Matrix: Solid

Lab Sample ID: 890-2311-3

Client Sample Results

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH02A

Date Collected: 05/13/22 09:47 Date Received: 05/13/22 14:50

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 19:01	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 19:01	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 19:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			05/17/22 09:20	05/17/22 19:01	1
o-Terphenyl	111		70 - 130			05/17/22 09:20	05/17/22 19:01	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			50.5	mg/Kg			05/18/22 15:29	10

Client Sample ID: BH02B Lab Sample ID: 890-2311-4 Date Collected: 05/13/22 09:52 **Matrix: Solid**

Date Received: 05/13/22 14:50

Sample Depth: 2.5

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 0.00202 05/16/22 15:49 05/18/22 06:16 mg/Kg Toluene <0.00202 U 0.00202 05/16/22 15:49 05/18/22 06:16 mg/Kg Ethylbenzene <0.00202 U 0.00202 05/16/22 15:49 05/18/22 06:16 mg/Kg m-Xylene & p-Xylene <0.00403 U 0.00403 mg/Kg 05/16/22 15:49 05/18/22 06:16 <0.00202 U *-0.00202 05/16/22 15:49 05/18/22 06:16 o-Xylene mg/Kg Xylenes, Total <0.00403 U 0.00403 mg/Kg 05/16/22 15:49 05/18/22 06:16 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 108 70 - 130 05/16/22 15:49 05/18/22 06:16 05/16/22 15:49 1,4-Difluorobenzene (Surr) 96 70 - 130 05/18/22 06:16 **Method: Total BTEX - Total BTEX Calculation** Dil Fac Analyte Result Qualifier Unit D Analyzed Prepared Total BTEX <0.00403 U 0.00403 mg/Kg 05/18/22 09:14 Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 mg/Kg 05/18/22 08:44

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 19:26	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 19:26	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 19:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130			05/17/22 09:20	05/17/22 19:26	1

95 100

Eurofins Carlsbad

05/17/22 19:26

05/17/22 09:20

70 - 130

o-Terphenyl

Client Sample Results

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH02B Lab Sample ID: 890-2311-4

Date Collected: 05/13/22 09:52

Date Received: 05/13/22 14:50

Matrix: Solid

Sample Depth: 2.5

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	960		25.0	mg/Kg			05/18/22 15:38	5

Client Sample ID: BH03A Lab Sample ID: 890-2311-5

Date Collected: 05/13/22 10:40 Date Received: 05/13/22 14:50

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		05/16/22 15:49	05/18/22 06:37	-
Toluene	< 0.00201	U	0.00201	mg/Kg		05/16/22 15:49	05/18/22 06:37	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/16/22 15:49	05/18/22 06:37	,
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/16/22 15:49	05/18/22 06:37	
o-Xylene	<0.00201	U *-	0.00201	mg/Kg		05/16/22 15:49	05/18/22 06:37	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/16/22 15:49	05/18/22 06:37	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			05/16/22 15:49	05/18/22 06:37	1
1,4-Difluorobenzene (Surr)	97		70 - 130			05/16/22 15:49	05/18/22 06:37	1
Method: Total BTEX - Total BTEX	Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			05/18/22 09:14	1
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/18/22 08:44	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
							Allalyzeu	Dil Fac
5 5	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 19:51	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0 <50.0					<u> </u>		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U	50.0	mg/Kg		05/17/22 09:20	05/17/22 19:51	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U U	50.0	mg/Kg		05/17/22 09:20 05/17/22 09:20	05/17/22 19:51 05/17/22 19:51	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 <50.0	U U	50.0 50.0 50.0	mg/Kg		05/17/22 09:20 05/17/22 09:20 05/17/22 09:20	05/17/22 19:51 05/17/22 19:51 05/17/22 19:51	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 %Recovery	U U	50.0 50.0 50.0 <i>Limits</i>	mg/Kg		05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared	05/17/22 19:51 05/17/22 19:51 05/17/22 19:51 Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chro	<50.0 <50.0 	U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	mg/Kg		05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	05/17/22 19:51 05/17/22 19:51 05/17/22 19:51 Analyzed 05/17/22 19:51	1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 **Recovery 106 113	U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	mg/Kg	D	05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	05/17/22 19:51 05/17/22 19:51 05/17/22 19:51 Analyzed 05/17/22 19:51	1 1 1 Dil Fac

Lab Sample ID: 890-2311-6

Client Sample Results

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH03B

Date Collected: 05/13/22 10:45 Date Received: 05/13/22 14:50

Sample Depth: 2.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
o-Xylene	< 0.00199	U *-	0.00199	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/22 15:49	05/18/22 06:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			05/16/22 15:49	05/18/22 06:57	1
1,4-Difluorobenzene (Surr)	97		70 - 130			05/16/22 15:49	05/18/22 06:57	1
- Method: Total BTEX - Total BTEX	K Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/18/22 09:14	1
Method: 8015 NM - Diesel Range Analyte Total TPH	•	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/18/22 08:44	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/18/22 08:44	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:17	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:17	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			05/17/22 09:20	05/17/22 20:17	1
			70 - 130			05/17/22 09:20	05/17/22 20:17	1
o-Terphenyl	117							
o-Terphenyl Method: 300.0 - Anions, Ion Chro		Soluble						
	omatography -	Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BH04A

Date Collected: 05/13/22 10:50 Date Received: 05/13/22 14:50

Sample Depth: 1.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
o-Xylene	<0.00199	U *-	0.00199	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/22 15:49	05/18/22 07:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			05/16/22 15:49	05/18/22 07:18	1

Eurofins Carlsbad

Lab Sample ID: 890-2311-7

Matrix: Solid

Client Sample Results

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH04A Lab Sample ID: 890-2311-7

Date Collected: 05/13/22 10:50

Date Received: 05/13/22 14:50

Matrix: Solid

Sample Depth: 1.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	95		70 - 130			05/16/22 15:49	05/18/22 07:18	1
Method: Total BTEX - Total BTE	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/18/22 09:14	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/18/22 08:44	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)						
Analyte	,	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:43	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:43	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 20:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130			05/17/22 09:20	05/17/22 20:43	1
o-Terphenyl	105		70 - 130			05/17/22 09:20	05/17/22 20:43	

Method: 300.0 - Anions, Ion Chromatography - SolubleAnalyteResultQualifierRLUnitDPreparedAnalyzedDil FacChloride71.15.00mg/Kg05/18/22 16:241

Client Sample ID: BH05A
Date Collected: 05/13/22 11:20

Date Received: 05/13/22 14:50

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
o-Xylene	<0.00200	U *-	0.00200	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/16/22 15:49	05/18/22 07:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130			05/16/22 15:49	05/18/22 07:38	1
1,4-Difluorobenzene (Surr)	95		70 - 130			05/16/22 15:49	05/18/22 07:38	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/18/22 09:14	1
Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	11	49.9	mg/Kg			05/18/22 08:44	

Eurofins Carlsbad

Lab Sample ID: 890-2311-8

Matrix: Solid

2

2

4

0

8

10

12

10

Client Sample Results

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Lab Sample ID: 890-2311-8 Client Sample ID: BH05A

Date Collected: 05/13/22 11:20 Matrix: Solid Date Received: 05/13/22 14:50

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 21:08	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 21:08	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/17/22 09:20	05/17/22 21:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130			05/17/22 09:20	05/17/22 21:08	1
o-Terphenyl	118		70 - 130			05/17/22 09:20	05/17/22 21:08	1
Mathada 200 0 Aniana Ian Chu	omatography -	Soluble						
wethod: 300.0 - Anions, ion Chro								
Method: 300.0 - Anions, Ion Chro Analyte	0 . ,	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-2311-9 **Client Sample ID: BH05B** Date Collected: 05/13/22 12:00 Matrix: Solid

Date Received: 05/13/22 14:50

Sample Depth: 2.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/16/22 15:49	05/18/22 07:58	
Toluene	<0.00198	U	0.00198	mg/Kg		05/16/22 15:49	05/18/22 07:58	
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/16/22 15:49	05/18/22 07:58	
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		05/16/22 15:49	05/18/22 07:58	
o-Xylene	<0.00198	U *-	0.00198	mg/Kg		05/16/22 15:49	05/18/22 07:58	,
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		05/16/22 15:49	05/18/22 07:58	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			05/16/22 15:49	05/18/22 07:58	
1,4-Difluorobenzene (Surr)	97		70 - 130			05/16/22 15:49	05/18/22 07:58	1
Method: Total BTEX - Total BTEX	(Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	H	0.00396	"/			05/18/22 09:14	
IUIAI DI EX	<0.00390	U	0.00396	mg/Kg			03/16/22 09.14	
Total BTEX : Method: 8015 NM - Diesel Range			0.00396	mg/Kg			05/16/22 09.14	1
- -	Organics (DR		0.00396 RL	mg/Kg Unit	D	Prepared	Analyzed	
: Method: 8015 NM - Diesel Range	Organics (DR	O) (GC) Qualifier			<u>D</u>	Prepared		Dil Fac
Method: 8015 NM - Diesel Range Analyte	Organics (DR Result <50.0	O) (GC) Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH	Organics (DR Result <50.0	O) (GC) Qualifier	RL	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Rang	Organics (DR Result <50.0	Qualifier U RO) (GC) Qualifier	RL 50.0	Unit mg/Kg			Analyzed 05/18/22 08:44	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	e Organics (DR Result <50.0 ge Organics (D Result	Qualifier U RO) (GC) Qualifier U		Unit mg/Kg		Prepared	Analyzed 05/18/22 08:44 Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	e Organics (DR Result <50.0 ge Organics (D Result <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0	Unit mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20	Analyzed 05/18/22 08:44 Analyzed 05/17/22 21:56	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	e Organics (DR Result <50.0 ge Organics (D Result <50.0 <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20	Analyzed 05/18/22 08:44 Analyzed 05/17/22 21:56 05/17/22 21:56	Dil Fac
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	e Organics (DR Result <50.0 ge Organics (D Result <50.0 <50.0 <50.0	Qualifier U RO) (GC) Qualifier U U U U	RL 50.0 RL 50.0 50.0 50.0	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20	Analyzed 05/18/22 08:44 Analyzed 05/17/22 21:56 05/17/22 21:56	Dil Fac

Job ID: 890-2311-1

Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH05B Lab Sample ID: 890-2311-9 Matrix: Solid

Date Collected: 05/13/22 12:00 Date Received: 05/13/22 14:50

Sample Depth: 2.5

Meth	od: 300.0 - Anions, Ion Chromatogra	phy -	Soluble						
Analy	te	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chlor	ide	26.5		5.04	mg/K	g		05/18/22 16:43	1

Client Sample ID: BH04B Lab Sample ID: 890-2311-10 Matrix: Solid

Date Collected: 05/13/22 10:55 Date Received: 05/13/22 14:50

Sample Depth: 2.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U F1 F2	0.00201	mg/Kg		05/16/22 15:47	05/17/22 23:35	
Toluene	<0.00201	U F1 F2	0.00201	mg/Kg		05/16/22 15:47	05/17/22 23:35	
Ethylbenzene	<0.00201	U F1 F2	0.00201	mg/Kg		05/16/22 15:47	05/17/22 23:35	
m-Xylene & p-Xylene	<0.00402	U F1 F2	0.00402	mg/Kg		05/16/22 15:47	05/17/22 23:35	
o-Xylene	<0.00201	U F1 F2	0.00201	mg/Kg		05/16/22 15:47	05/17/22 23:35	
Xylenes, Total	<0.00402	U F1 F2	0.00402	mg/Kg		05/16/22 15:47	05/17/22 23:35	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130			05/16/22 15:47	05/17/22 23:35	
1,4-Difluorobenzene (Surr)	95		70 - 130			05/16/22 15:47	05/17/22 23:35	
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			05/18/22 09:14	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
•	•	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/18/22 08:44	
Analyte Total TPH Method: 8015B NM - Diesel Ranç	Result <49.9 ge Organics (Di	Qualifier U RO) (GC)	49.9	mg/Kg			05/18/22 08:44	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier	49.9	mg/Kg	<u>D</u>	Prepared	05/18/22 08:44 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9 ge Organics (Di	Qualifier U RO) (GC) Qualifier	49.9	mg/Kg			05/18/22 08:44	
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier U	49.9	mg/Kg		Prepared	05/18/22 08:44 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (D) Result <49.9 49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:21	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:21 05/17/22 22:21	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:21 05/17/22 22:21	Dil Fa
Analyte	Result	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared	05/18/22 08:44 Analyzed 05/17/22 22:21 05/17/22 22:21 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:21 05/17/22 22:21 Analyzed 05/17/22 22:21	Dil Fa

05/18/22 16:52

4.99

mg/Kg

72.4

Chloride

Lab Sample ID: 890-2311-11

Client Sample Results

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH06A

Date Collected: 05/13/22 11:55 Date Received: 05/13/22 14:50

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/22 15:47	05/17/22 23:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			05/16/22 15:47	05/17/22 23:56	1
1,4-Difluorobenzene (Surr)	97		70 - 130			05/16/22 15:47	05/17/22 23:56	1
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/18/22 09:14	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared		
				Oilit	U	riepaieu	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/18/22 08:44	Dil Fac
• -								
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)	49.9	mg/Kg			05/18/22 08:44	1
Method: 8015B NM - Diesel Ran Analyte	ge Organics (Di	RO) (GC) Qualifier	49.9	mg/Kg	<u>D</u>	Prepared	05/18/22 08:44 Analyzed	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics	ge Organics (D	RO) (GC) Qualifier	49.9	mg/Kg			05/18/22 08:44	1 Dil Fac
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (Di	RO) (GC) Qualifier	49.9	mg/Kg		Prepared	05/18/22 08:44 Analyzed	
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (Di Result <49.9	RO) (GC) Qualifier	49.9 RL 49.9	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45	Dil Fac
Method: 8015B NM - Diesel Ran	ge Organics (Di Result <49.9	RO) (GC) Qualifier U	49.9 RL 49.9	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45	Dil Fac
Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (DI Result < 49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45 05/17/22 22:45	1 Dil Fac
Method: 8015B NM - Diesel Rand Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (DI Result <49.9 <49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45 05/17/22 22:45	Dil Face 1 1 1 Dil Face
Method: 8015B NM - Diesel Randanalyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (DI Result < 49.9 < 49.9 < 49.9 < 49.9 < 49.9	RO) (GC) Qualifier U	49.9 RL 49.9 49.9 49.9 Limits	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared	Analyzed 05/17/22 22:45 05/17/22 22:45 Analyzed	Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery 99 102	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45 05/17/22 22:45 Analyzed 05/17/22 22:45	Dil Fac
Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <49.9 <49.9 <49.9 **Recovery 99 102 **Comatography -	RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130	mg/Kg Unit mg/Kg		Prepared 05/17/22 09:20 05/17/22 09:20 05/17/22 09:20 Prepared 05/17/22 09:20	05/18/22 08:44 Analyzed 05/17/22 22:45 05/17/22 22:45 Analyzed 05/17/22 22:45	Dil Fac

Client Sample ID: BH06B

Date Collected: 05/13/22 12:00

Date Received: 05/13/22 14:50

Sample Depth: 2.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/16/22 15:47	05/18/22 00:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			05/16/22 15:47	05/18/22 00:16	1

Eurofins Carlsbad

Lab Sample ID: 890-2311-12

Matrix: Solid

2

2

4

7

9

40

13

14

:/40/2022

Client Sample Results

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH06B Lab Sample ID: 890-2311-12

Date Collected: 05/13/22 12:00

Date Received: 05/13/22 14:50

Matrix: Solid

Sample Depth: 2.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130			05/16/22 15:47	05/18/22 00:16	1
Method: Total BTEX - Total BTEX	K Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/18/22 09:14	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/18/22 08:44	1
Gasoline Range Organics (GRO)-C6-C10	<50.0		50.0	mg/Kg		05/17/22 09:20	05/17/22 23:08	Dil Fai
Method: 8015B NM - Diesel Rang Analyte	Result	Qualifier	RL	Unit	D	Prepared 05/47/22 00:20	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 23:08	,
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/17/22 09:20	05/17/22 23:08	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	108		70 - 130			05/17/22 09:20	05/17/22 23:08	
o-Terphenyl	115		70 - 130			05/17/22 09:20	05/17/22 23:08	
o-reipnenyi								
	omatography -	Soluble						
Method: 300.0 - Anions, Ion Chro Analyte		Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14744-A-21-C MS	Matrix Spike	101	102	
880-14744-A-21-D MSD	Matrix Spike Duplicate	105	102	
890-2311-1	BH01A	105	91	
890-2311-2	BH01B	103	98	
890-2311-3	BH02A	109	92	
890-2311-4	BH02B	108	96	
890-2311-5	ВН03А	109	97	
890-2311-6	внозв	105	97	
890-2311-7	BH04A	117	95	
890-2311-8	BH05A	113	95	
890-2311-9	BH05B	102	97	
890-2311-10	BH04B	109	95	
890-2311-10 MS	BH04B	102	92	
890-2311-10 MSD	BH04B	107	97	
890-2311-11	BH06A	108	97	
890-2311-12	BH06B	110	98	
LCS 880-25650/1-A	Lab Control Sample	101	98	
LCS 880-25651/1-A	Lab Control Sample	99	103	
LCSD 880-25650/2-A	Lab Control Sample Dup	100	97	
LCSD 880-25651/2-A	Lab Control Sample Dup	95	101	
MB 880-25638/5-A	Method Blank	102	92	
MB 880-25650/5-A	Method Blank	103	92	
IVID 000-23030/3-A	Method Blank	97	99	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

latrix: Solid				Prep Type: Total/N
				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14811-A-1-B MS	Matrix Spike	91	82	
880-14811-A-1-C MSD	Matrix Spike Duplicate	91	83	
890-2311-1	BH01A	117	120	
890-2311-2	BH01B	105	109	
890-2311-3	BH02A	108	111	
890-2311-4	BH02B	95	100	
890-2311-5	BH03A	106	113	
890-2311-6	внозв	110	117	
890-2311-7	BH04A	99	105	
890-2311-8	BH05A	112	118	
890-2311-9	BH05B	109	118	
890-2311-10	BH04B	89	93	
890-2311-11	BH06A	99	102	
890-2311-12	вноев	108	115	
LCS 880-25676/2-A	Lab Control Sample	127	115	
LCSD 880-25676/3-A	Lab Control Sample Dup	127	116	

Eurofins Carlsbad

2

3

_

7

9

11

13

1.5

Surrogate Summary

Client: Ensolum

Project/Site: Mustang Sally #1

Job ID: 890-2311-1 SDG: Roosevelt County NM

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Ensolum Project/Site: Mustang Sally #1

Job ID: 890-2311-1 SDG: Roosevelt County NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-25638/5-A

Matrix: Solid

Analysis Batch: 25671

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25638

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 13:46	05/17/22 12:34	
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 13:46	05/17/22 12:34	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 13:46	05/17/22 12:34	
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/16/22 13:46	05/17/22 12:34	
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/22 13:46	05/17/22 12:34	,
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/16/22 13:46	05/17/22 12:34	
	MD	MD						

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	0/61:6	£55 1324:	0/617655 15234	1
184-, Buorobenzene (Surr)	95		70 - 130	0/81:6	5 55 1324:	0/617655 15234	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25650

Analysis Batch: 25671

Matrix: Solid

Lab Sample ID: MB 880-25650/5-A

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/17/22 23:14	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/17/22 23:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/17/22 23:14	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/16/22 15:47	05/17/22 23:14	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:47	05/17/22 23:14	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/16/22 15:47	05/17/22 23:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130	_	0/61:655 1/247	0/617655 53214	1
184-, Eluorobenzene (Surr)	95		70 - 130		0/61:655 1/247	0/617655 53214	1

Lab Sample ID: LCS 880-25650/1-A

Matrix: Solid

Analysis Batch: 25671

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 25650

		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	0.100	0.09107		mg/Kg		91	70 - 130	
	Toluene	0.100	0.09370		mg/Kg		94	70 - 130	
	Ethylbenzene	0.100	0.09393		mg/Kg		94	70 - 130	
ı	m-Xylene & p-Xylene	0.200	0.1875		mg/Kg		94	70 - 130	
	o-Xylene	0.100	0.09558		mg/Kg		96	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	101	70 - 130
184 Bluorobenzene (Surr)	9 <i>i</i>	70 - 130

Ma

An

ab Sample ID: LCSD 880-25650/2-A	Client Sample ID: Lab Control Sample Dup
Matrix: Solid	Prep Type: Total/NA
analysis Batch: 25671	Prep Batch: 25650

Spike LCSD LCSD %Rec RPD Result Qualifier Analyte Added Unit %Rec Limits RPD Limit Benzene 0.100 0.08989 mg/Kg 90 70 - 130 35

Eurofins Carlsbad

5/19/2022

QC Sample Results

Job ID: 890-2311-1 Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-25650/2-A

Analysis Batch: 25671

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 25650

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D Toluene 0.100 0.09176 92 70 - 130 2 35 mg/Kg Ethylbenzene 0.100 0.09217 mg/Kg 92 70 - 130 2 35 0.200 m-Xylene & p-Xylene 0.1838 mg/Kg 92 70 130 2 35 o-Xylene 0.100 0.09342 mg/Kg 93 70 - 130 2 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 _ 130
184-, @uorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-2311-10 MS

Matrix: Solid

Client Sample ID: BH04B Prep Type: Total/NA

Analysis Batch: 25671 Prep Batch: 25650 Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits U F1 F2 0.101 0.03338 F1 33 70 - 130 <0.00201 mg/Kg

Benzene 70 - 130 Toluene <0.00201 UF1F2 0.101 0.03913 F1 39 mg/Kg Ethylbenzene 0.101 42 70 - 130 < 0.00201 U F1 F2 0.04233 F1 mg/Kg 0.202 m-Xylene & p-Xylene <0.00402 U F1 F2 0.08890 F1 44 70 - 130 mg/Kg o-Xylene <0.00201 UF1F2 0.101 0.04765 F1 mg/Kg 47 70 - 130

MS MS

Surrogate	%Recovery Qualifier	' Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
184-, Bluorobenzene (Surr)	95	70 - 130

Lab Sample ID: 890-2311-10 MSD

Matrix: Solid

Analysis Batch: 25671

Client Sample ID: BH04B

Prep Type: Total/NA

Prep Batch: 25650

%Rec Spike MSD MSD RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Benzene <0.00201 U F1 F2 0.0998 0.06906 F1 F2 mg/Kg 69 70 - 130 70 35 Toluene <0.00201 U F1 F2 0.0998 0.07275 F2 mg/Kg 73 70 - 130 60 35 Ethylbenzene < 0.00201 U F1 F2 0.0998 0.07396 F2 mg/Kg 74 70 - 130 54 35 0.200 m-Xylene & p-Xylene <0.00402 U F1 F2 0.1482 F2 74 70 - 130 50 35 mg/Kg 0.0998 o-Xylene <0.00201 UF1F2 0.07416 F2 mg/Kg 70 - 130 35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
184-, Eluorobenzene (Surr)	97	70 - 130

Lab Sample ID: MB 880-25651/5-A

Matrix: Solid

Analysis Batch: 25672

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25651

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/17/22 23:30	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/17/22 23:30	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/17/22 23:30	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/16/22 15:49	05/17/22 23:30	1

QC Sample Results

Job ID: 890-2311-1 Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-25651/5-A

Matrix: Solid

Analysis Batch: 25672

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 25651

Prep Batch: 25651

Prep Type: Total/NA

Prep Batch: 25651

70 - 130

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/22 15:49	05/17/22 23:30	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/16/22 15:49	05/17/22 23:30	1

MD MD

MB MB

	INID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	0/61:655 1/249	0/617655 53230	1
184-, Bluorobenzene (Surr)	99		70 - 130	0/61:655 1/249	0/617655 53230	1

Lab Sample ID: LCS 880-25651/1-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 25672

	Spike	LCS LCS			%Rec
Analyte A	dded	Result Qualifier	Unit D	%Rec	Limits
Benzene	0.100	0.08852	mg/Kg	89	70 - 130
Toluene (0.100	0.08022	mg/Kg	80	70 - 130
Ethylbenzene (0.100	0.09027	mg/Kg	90	70 - 130
m-Xylene & p-Xylene	0.200	0.1609	mg/Kg	80	70 - 130

0.100

LCS LCS

Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene (Surr)	99	70 - 130
184 Buorobenzene (Surr)	103	70 - 130

Lab Sample ID: LCSD 880-25651/2-A Client Sample ID: Lab Control Sample Dup

0.07864

mg/Kg

Matrix: Solid

o-Xylene

Analysis Batch: 25672

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07903		mg/Kg		79	70 - 130	11	35
Toluene	0.100	0.07166		mg/Kg		72	70 - 130	11	35
Ethylbenzene	0.100	0.07996		mg/Kg		80	70 - 130	12	35
m-Xylene & p-Xylene	0.200	0.1426		mg/Kg		71	70 - 130	12	35
o-Xylene	0.100	0.06940	*_	mg/Kg		69	70 - 130	12	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	9/	70 _ 130
184-, Eluorobenzene (Surr)	101	70 - 130

Lab Sample ID: 880-14744-A-21-C MS

Matrix: Solid

Analysis Batch: 25672

Client Sample	ID:	Matrix	Spike
Pre	р Ту	pe: To	tal/NA

Prep Batch: 25651

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.101	0.09729		mg/Kg		97	70 - 130	
Toluene	<0.00201	U	0.101	0.08762		mg/Kg		87	70 - 130	
Ethylbenzene	<0.00201	U	0.101	0.09883		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.201	0.1736		mg/Kg		86	70 - 130	
o-Xylene	<0.00201	U *-	0.101	0.08291		mg/Kg		82	70 - 130	

Job ID: 890-2311-1 Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MS MS

Lab Sample ID: 880-14744-A-21-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 25672

Prep Type: Total/NA

Prep Batch: 25651

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 101 70 - 130 184-, Eluorobenzene (Surr) 105 70 - 130

Lab Sample ID: 880-14744-A-21-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 25672

Prep Type: Total/NA

Prep Batch: 25651

,											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.09933		mg/Kg		99	70 - 130	2	35
Toluene	<0.00201	U	0.100	0.09045		mg/Kg		90	70 - 130	3	35
Ethylbenzene	<0.00201	U	0.100	0.1007		mg/Kg		101	70 - 130	2	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1779		mg/Kg		89	70 - 130	2	35
o-Xylene	<0.00201	U *-	0.100	0.08464		mg/Kg		84	70 - 130	2	35

MSD MSD

Qualifier Surrogate %Recovery Limits 4-Bromofluorobenzene (Surr) 10/ 70 - 130 184-, Muorobenzene (Surr) 105 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: LCS 880-25676/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 25684

Prep Type: Total/NA Prep Batch: 25676

LCS LCS %Rec Spike Qualifier Analyte Added Result Unit %Rec Limits Gasoline Range Organics 1000 1246 mg/Kg 125 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1072 mg/Kg 107 70 - 130

C10-C28)

LCS LCS

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 157 70 - 130 70 - 130 o-Terphenyl 11/

Lab Sample ID: LCSD 880-25676/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 25684

Prep Type: Total/NA

Prep Batch: 25676

Spike LCSD LCSD %Rec RPD Added Analyte Result Qualifier Unit Limits RPD Limit D %Rec 1000 Gasoline Range Organics 1186 mg/Kg 119 70 - 130 5 20 (GRO)-C6-C10 1000 1079 mg/Kg 108 70 - 130 Diesel Range Organics (Over 20

C10-C28)

LCSD LCSD %Recovery Qualifier Limits 157

Surrogate 70 - 130 1-Chlorooctane o-Terphenyl 11: 70 - 130

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-14811-A-1-B MS

Matrix: Solid

Analysis Batch: 25684

Client Sample ID: Matrix Spike
Prep Type: Total/NA

Prep Batch: 25676 Limits

Sample Sample Spike MS MS Result Qualifier Analyte babbA Result Qualifier Unit %Rec Gasoline Range Organics <50.0 U 1000 1206 mg/Kg 118 70 - 130 (GRO)-C6-C10 1000 Diesel Range Organics (Over <50.0 U 951.8 70 - 130 mg/Kg 95 C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	91		70 - 130
o-Terphenyl	i 5		70 - 130

Analysis Batch: 25684

Lab Sample ID: 880-14811-A-1-C MSD	Client Sample ID: Matrix Spike Duplicate
Matrix: Solid	Prep Type: Total/NA
Analysis Botch, 25004	Draw Batch: 25676

Prep Batch: 25676 RPD

Spike MSD MSD Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 999 Gasoline Range Organics <50.0 U 1167 mg/Kg 114 70 - 130 3 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 951.2 mg/Kg 95 70 - 130 0 20 C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 91 70 - 130 o-Terphenyl i 3 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-25613/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25823

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			05/18/22 13:38	1

Lab Sample ID: LCS 880-25613/2-A Client Sample ID: Lab Control Sample Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 25823

	Бріке	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	253.2		mg/Kg		101	90 - 110	

Lab Sample ID: LCSD 880-25613/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 25823

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	253.3		mg/Kg	_	101	90 - 110	0	20

QC Sample Results

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2311-1 MS Client Sample ID: BH01A **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 25823

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Chloride 2910 1250 4260 mg/Kg 108 90 - 110

Client Sample ID: BH01A Lab Sample ID: 890-2311-1 MSD Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 25823

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Qualifier Limits RPD Limit Analyte Result Unit D %Rec Chloride 2910 1250 4271 mg/Kg 109 90 - 110 0

Lab Sample ID: 890-2311-11 MS Client Sample ID: BH06A Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 25823

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 1310 1240 2502 90 - 110 mg/Kg

Lab Sample ID: 890-2311-11 MSD Client Sample ID: BH06A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 25823

Spike Sample Sample MSD MSD RPD %Rec Analyte Result Qualifier Added Qualifier Unit %Rec Limits RPD Limit Result Chloride 1240 1310 2501 97 90 - 110 0 20 mg/Kg

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

GC VOA

Prep Batch: 25638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-25638/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 25650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-10	BH04B	Total/NA	Solid	5035	
890-2311-11	BH06A	Total/NA	Solid	5035	
890-2311-12	BH06B	Total/NA	Solid	5035	
MB 880-25650/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25650/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25650/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2311-10 MS	BH04B	Total/NA	Solid	5035	
890-2311-10 MSD	BH04B	Total/NA	Solid	5035	

Prep Batch: 25651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	5035	
890-2311-2	BH01B	Total/NA	Solid	5035	
890-2311-3	BH02A	Total/NA	Solid	5035	
890-2311-4	BH02B	Total/NA	Solid	5035	
890-2311-5	BH03A	Total/NA	Solid	5035	
890-2311-6	ВН03В	Total/NA	Solid	5035	
890-2311-7	BH04A	Total/NA	Solid	5035	
890-2311-8	BH05A	Total/NA	Solid	5035	
890-2311-9	ВН05В	Total/NA	Solid	5035	
MB 880-25651/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25651/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25651/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-14744-A-21-C MS	Matrix Spike	Total/NA	Solid	5035	
880-14744-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 25671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-10	ВН04В	Total/NA	Solid	8021B	25650
890-2311-11	BH06A	Total/NA	Solid	8021B	25650
890-2311-12	BH06B	Total/NA	Solid	8021B	25650
MB 880-25638/5-A	Method Blank	Total/NA	Solid	8021B	25638
MB 880-25650/5-A	Method Blank	Total/NA	Solid	8021B	25650
LCS 880-25650/1-A	Lab Control Sample	Total/NA	Solid	8021B	25650
LCSD 880-25650/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25650
890-2311-10 MS	BH04B	Total/NA	Solid	8021B	25650
890-2311-10 MSD	BH04B	Total/NA	Solid	8021B	25650

Analysis Batch: 25672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	8021B	25651
890-2311-2	BH01B	Total/NA	Solid	8021B	25651
890-2311-3	BH02A	Total/NA	Solid	8021B	25651
890-2311-4	BH02B	Total/NA	Solid	8021B	25651
890-2311-5	BH03A	Total/NA	Solid	8021B	25651
890-2311-6	BH03B	Total/NA	Solid	8021B	25651
890-2311-7	BH04A	Total/NA	Solid	8021B	25651

Eurofins Carlsbad

2

3

4

6

8

11

13

14

М

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

GC VOA (Continued)

Analysis Batch: 25672 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-8	BH05A	Total/NA	Solid	8021B	25651
890-2311-9	BH05B	Total/NA	Solid	8021B	25651
MB 880-25651/5-A	Method Blank	Total/NA	Solid	8021B	25651
LCS 880-25651/1-A	Lab Control Sample	Total/NA	Solid	8021B	25651
LCSD 880-25651/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25651
880-14744-A-21-C MS	Matrix Spike	Total/NA	Solid	8021B	25651
880-14744-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	25651

Analysis Batch: 25799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	Total BTEX	
890-2311-2	BH01B	Total/NA	Solid	Total BTEX	
890-2311-3	BH02A	Total/NA	Solid	Total BTEX	
890-2311-4	BH02B	Total/NA	Solid	Total BTEX	
890-2311-5	BH03A	Total/NA	Solid	Total BTEX	
890-2311-6	ВН03В	Total/NA	Solid	Total BTEX	
890-2311-7	BH04A	Total/NA	Solid	Total BTEX	
890-2311-8	BH05A	Total/NA	Solid	Total BTEX	
890-2311-9	BH05B	Total/NA	Solid	Total BTEX	
890-2311-10	BH04B	Total/NA	Solid	Total BTEX	
890-2311-11	BH06A	Total/NA	Solid	Total BTEX	
890-2311-12	ВН06В	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 25676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	8015NM Prep	
890-2311-2	BH01B	Total/NA	Solid	8015NM Prep	
890-2311-3	BH02A	Total/NA	Solid	8015NM Prep	
890-2311-4	BH02B	Total/NA	Solid	8015NM Prep	
890-2311-5	BH03A	Total/NA	Solid	8015NM Prep	
890-2311-6	BH03B	Total/NA	Solid	8015NM Prep	
890-2311-7	BH04A	Total/NA	Solid	8015NM Prep	
890-2311-8	BH05A	Total/NA	Solid	8015NM Prep	
890-2311-9	BH05B	Total/NA	Solid	8015NM Prep	
890-2311-10	BH04B	Total/NA	Solid	8015NM Prep	
890-2311-11	BH06A	Total/NA	Solid	8015NM Prep	
890-2311-12	BH06B	Total/NA	Solid	8015NM Prep	
LCS 880-25676/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-25676/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14811-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-14811-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 25684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	8015B NM	25676
890-2311-2	BH01B	Total/NA	Solid	8015B NM	25676
890-2311-3	BH02A	Total/NA	Solid	8015B NM	25676
890-2311-4	BH02B	Total/NA	Solid	8015B NM	25676
890-2311-5	BH03A	Total/NA	Solid	8015B NM	25676

Eurofins Carlsbad

-

3

4

6

8

11

13

14

Client: Ensolum Job ID: 890-2311-1 Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

GC Semi VOA (Continued)

Analysis Batch: 25684 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-6	ВН03В	Total/NA	Solid	8015B NM	25676
890-2311-7	BH04A	Total/NA	Solid	8015B NM	25676
890-2311-8	BH05A	Total/NA	Solid	8015B NM	25676
890-2311-9	BH05B	Total/NA	Solid	8015B NM	25676
890-2311-10	BH04B	Total/NA	Solid	8015B NM	25676
890-2311-11	BH06A	Total/NA	Solid	8015B NM	25676
890-2311-12	BH06B	Total/NA	Solid	8015B NM	25676
LCS 880-25676/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	25676
LCSD 880-25676/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	25676
880-14811-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	25676
880-14811-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	25676

Analysis Batch: 25784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Total/NA	Solid	8015 NM	
890-2311-2	BH01B	Total/NA	Solid	8015 NM	
890-2311-3	BH02A	Total/NA	Solid	8015 NM	
890-2311-4	BH02B	Total/NA	Solid	8015 NM	
890-2311-5	BH03A	Total/NA	Solid	8015 NM	
890-2311-6	ВН03В	Total/NA	Solid	8015 NM	
890-2311-7	BH04A	Total/NA	Solid	8015 NM	
890-2311-8	BH05A	Total/NA	Solid	8015 NM	
890-2311-9	ВН05В	Total/NA	Solid	8015 NM	
890-2311-10	BH04B	Total/NA	Solid	8015 NM	
890-2311-11	BH06A	Total/NA	Solid	8015 NM	
890-2311-12	BH06B	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 25613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-2311-1	BH01A	Soluble	Solid	DI Leach	_
890-2311-2	BH01B	Soluble	Solid	DI Leach	
890-2311-3	BH02A	Soluble	Solid	DI Leach	
890-2311-4	BH02B	Soluble	Solid	DI Leach	
390-2311-5	BH03A	Soluble	Solid	DI Leach	
890-2311-6	ВН03В	Soluble	Solid	DI Leach	
890-2311-7	BH04A	Soluble	Solid	DI Leach	
390-2311-8	BH05A	Soluble	Solid	DI Leach	
890-2311-9	BH05B	Soluble	Solid	DI Leach	
890-2311-10	BH04B	Soluble	Solid	DI Leach	
890-2311-11	BH06A	Soluble	Solid	DI Leach	
890-2311-12	BH06B	Soluble	Solid	DI Leach	
MB 880-25613/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-25613/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-25613/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2311-1 MS	BH01A	Soluble	Solid	DI Leach	
390-2311-1 MSD	BH01A	Soluble	Solid	DI Leach	
390-2311-11 MS	BH06A	Soluble	Solid	DI Leach	
890-2311-11 MSD	BH06A	Soluble	Solid	DI Leach	

Client: Ensolum

Project/Site: Mustang Sally #1

SDG: Roosevelt County NM

HPLC/IC

Analysis Batch: 25823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2311-1	BH01A	Soluble	Solid	300.0	25613
890-2311-2	BH01B	Soluble	Solid	300.0	25613
890-2311-3	BH02A	Soluble	Solid	300.0	25613
890-2311-4	BH02B	Soluble	Solid	300.0	25613
890-2311-5	BH03A	Soluble	Solid	300.0	25613
890-2311-6	ВН03В	Soluble	Solid	300.0	25613
890-2311-7	BH04A	Soluble	Solid	300.0	25613
890-2311-8	BH05A	Soluble	Solid	300.0	25613
890-2311-9	BH05B	Soluble	Solid	300.0	25613
890-2311-10	BH04B	Soluble	Solid	300.0	25613
890-2311-11	BH06A	Soluble	Solid	300.0	25613
890-2311-12	BH06B	Soluble	Solid	300.0	25613
MB 880-25613/1-A	Method Blank	Soluble	Solid	300.0	25613
LCS 880-25613/2-A	Lab Control Sample	Soluble	Solid	300.0	25613
LCSD 880-25613/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	25613
890-2311-1 MS	BH01A	Soluble	Solid	300.0	25613
890-2311-1 MSD	BH01A	Soluble	Solid	300.0	25613
890-2311-11 MS	BH06A	Soluble	Solid	300.0	25613
890-2311-11 MSD	BH06A	Soluble	Solid	300.0	25613

Lab Chronicle

Job ID: 890-2311-1 Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH01A Lab Sample ID: 890-2311-1 Date Collected: 05/13/22 09:40

Matrix: Solid Date Received: 05/13/22 14:50

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.00 g 5 mL 25651 05/16/22 15:49 MR XEN MID Analysis 8021B 1 5 mL 5 mL 25672 05/18/22 05:15 MR XEN MID

Total/NA Total/NA Analysis Total BTEX 25799 05/18/22 09:14 AJ XEN MID Total/NA Analysis 8015 NM 1 25784 05/18/22 08:44 AJ XEN MID 10 mL 25676 XEN MID Total/NA Prep 8015NM Prep 10.02 g 05/17/22 09:20 DM Total/NA Analysis 8015B NM 25684 05/17/22 18:16 AJ XEN MID Soluble 50 mL 25613 05/16/22 10:51 СН XEN MID DI Leach 4.99 g Leach Soluble Analysis 300.0 5 25823 05/18/22 14:52 СН XEN MID

Client Sample ID: BH01B Lab Sample ID: 890-2311-2

Date Collected: 05/13/22 09:45 Matrix: Solid Date Received: 05/13/22 14:50

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Lab **Analyst** Total/NA Prep 5035 4.99 g 5 mL 25651 05/16/22 15:49 MR XEN MID 8021B 05/18/22 05:35 Total/NA Analysis 1 5 mL 5 mL 25672 MR XEN MID Total/NA Total BTEX 25799 05/18/22 09:14 Analysis XEN MID 1 A.I Total/NA Analysis 8015 NM 25784 05/18/22 08:44 XEN MID 25676 Total/NA 8015NM Prep 10.04 g 05/17/22 09:20 DM XEN MID Prep 10 mL Total/NA Analysis 8015B NM 25684 05/17/22 18:39 AJ XEN MID Soluble DI Leach 5.02 g 50 mL 25613 05/16/22 10:51 CH **XEN MID** Leach Soluble Analysis 300.0 25823 05/18/22 15:20 СН XEN MID

Client Sample ID: BH02A Lab Sample ID: 890-2311-3

Date Collected: 05/13/22 09:47 **Matrix: Solid** Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 05:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 19:01	AJ	XEN MID
Soluble	Leach	DI Leach			4.95 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		10			25823	05/18/22 15:29	CH	XEN MID

Lab Sample ID: 890-2311-4 Client Sample ID: BH02B Date Collected: 05/13/22 09:52 **Matrix: Solid**

Date Received: 05/13/22 14:50

Released to Imaging: 8/11/2022 11:58:47 AM

_	D-4-b	Detek		D.II	1141-1	Final	D-4-b	Dunnand		
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 06:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID

Job ID: 890-2311-1

Client: Ensolum Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Client Sample ID: BH02B Lab Sample ID: 890-2311-4 Date Collected: 05/13/22 09:52

Matrix: Solid

Date Received: 05/13/22 14:50 Ratch

	Batch	Batch		DII	initiai	Finai	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 19:26	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		5			25823	05/18/22 15:38	CH	XEN MID

Client Sample ID: BH03A Lab Sample ID: 890-2311-5

Date Collected: 05/13/22 10:40 **Matrix: Solid**

Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 06:37	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 19:51	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 15:47	CH	XEN MID

Client Sample ID: BH03B Lab Sample ID: 890-2311-6

Date Collected: 05/13/22 10:45 **Matrix: Solid** Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 06:57	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 20:17	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 16:15	CH	XEN MID

Client Sample ID: BH04A Lab Sample ID: 890-2311-7

Date Collected: 05/13/22 10:50 **Matrix: Solid** Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 07:18	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 20:43	AJ	XEN MID

Lab Chronicle

Client: Ensolum

Job ID: 890-2311-1

Project/Site: Mustang Sally #1

SDG: Roosevelt County NM

Client Sample ID: BH04A Lab Sample ID: 890-2311-7

Date Collected: 05/13/22 10:50

Date Received: 05/13/22 14:50

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	25613	05/16/22 10:51	СН	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 16:24	CH	XEN MID

Client Sample ID: BH05A Lab Sample ID: 890-2311-8

Date Collected: 05/13/22 11:20 Matrix: Solid

Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 07:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 21:08	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 16:33	CH	XEN MID

Client Sample ID: BH05B Lab Sample ID: 890-2311-9

Date Collected: 05/13/22 12:00
Date Received: 05/13/22 14:50
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	25651	05/16/22 15:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25672	05/18/22 07:58	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 21:56	AJ	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 16:43	CH	XEN MID

Client Sample ID: BH04B Lab Sample ID: 890-2311-10

Date Collected: 05/13/22 10:55 Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	25650	05/16/22 15:47	MR	XEN MID
Total/NA	Analysis	8021B		1			25671	05/17/22 23:35	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 22:21	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 16:52	CH	XEN MID

Eurofins Carlsbad

2

3

4

_

7

9

10

13

Matrix: Solid

Client Sample ID: BH06A

Lab Sample ID: 890-2311-11

Matrix: Solid

Date Collected: 05/13/22 11:55 Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	25650	05/16/22 15:47	MR	XEN MID
Total/NA	Analysis	8021B		1			25671	05/17/22 23:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 22:45	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		5			25823	05/18/22 17:01	CH	XEN MID

Client Sample ID: BH06B

Date Collected: 05/13/22 12:00

Lab Sample ID: 890-2311-12

Matrix: Solid

Date Received: 05/13/22 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25650	05/16/22 15:47	MR	XEN MID
Total/NA	Analysis	8021B		1			25671	05/18/22 00:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25799	05/18/22 09:14	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			25784	05/18/22 08:44	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	25676	05/17/22 09:20	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25684	05/17/22 23:08	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	25613	05/16/22 10:51	CH	XEN MID
Soluble	Analysis	300.0		1			25823	05/18/22 17:29	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-2311-1
Project/Site: Mustang Sally #1 SDG: Roosevelt County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	rogram	Identification Number	Expiration Date
Texas	NF	ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not of		at the laboratory is not certific	ed by the governing authority. This list ma	y include analytes for wh
Analysis Method	Prep Method	Matrix		
, and join mound	i iop monioa	IVIAUIX	Analyte	
8015 NM		Solid	Analyte Total TPH	

3

4

5

7

9

11

12

14

Method Description

Total BTEX Calculation

Microextraction

Volatile Organic Compounds (GC)

Diesel Range Organics (DRO) (GC)

Diesel Range Organics (DRO) (GC)

Deionized Water Leaching Procedure

Anions, Ion Chromatography

Closed System Purge and Trap

Method Summary

Client: Ensolum

Method

8021B

Total BTEX 8015 NM

8015B NM

8015NM Prep

DI Leach

300.0

5035

Project/Site: Mustang Sally #1

Job ID: 890-2311-1

SDG: Roosevelt County NM

Protocol	Laboratory
SW846	XEN MID
TAL SOP	XEN MID
SW846	XEN MID
SW846	XEN MID
MCAWW	XEN MID
C1/10/16	VENIMID

XEN MID

XEN MID

SW846

ASTM

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Mustang Sally #1

Job ID: 890-2311-1

SDG: Roosevelt County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-2311-1	BH01A	Solid	05/13/22 09:40	05/13/22 14:50	0.25
890-2311-2	BH01B	Solid	05/13/22 09:45	05/13/22 14:50	1.5
890-2311-3	BH02A	Solid	05/13/22 09:47	05/13/22 14:50	0.5
890-2311-4	BH02B	Solid	05/13/22 09:52	05/13/22 14:50	2.5
890-2311-5	ВН03А	Solid	05/13/22 10:40	05/13/22 14:50	0.5
890-2311-6	внозв	Solid	05/13/22 10:45	05/13/22 14:50	2.5
890-2311-7	BH04A	Solid	05/13/22 10:50	05/13/22 14:50	1.5
890-2311-8	BH05A	Solid	05/13/22 11:20	05/13/22 14:50	0.5
890-2311-9	BH05B	Solid	05/13/22 12:00	05/13/22 14:50	2.5
890-2311-10	BH04B	Solid	05/13/22 10:55	05/13/22 14:50	2.5
890-2311-11	BH06A	Solid	05/13/22 11:55	05/13/22 14:50	0.5
890-2311-12	BH06B	Solid	05/13/22 12:00	05/13/22 14:50	2.5

Work Order No:

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Environment Testing Xenco

🛟 eurofins

EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

Houston, TX (281) 240-4200. Dallas, TX (214) 902-0300

Chain of Custody

1

2

3

4

6

8

11

13

1

Project Journal Part of the Control Pa			Hobb	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	(575) 988-3199	www.xenco.com	Page of 2
Address	1 Jania	Moil	Bill to: (if differen	t)		Work Order Co	omments
100 100	Ensalum	, LLC	Company Name		Progra	UST/PST PRP	RRC
1962 1964 1964 1965			Address:		State		
363 - 687 - 294 Ending the first through through the first through through the first through through through the first through	City, State ZIP:		City, State ZIP:		Report		
Preservative None: NO Cool: Cool H.20 4: H.2 H.3P0 4: HP NaHSO 3: NABIS NA25,203: NASO 3 Zn Acetate+NaOH: NaOH+Ascorbic Ac Sample Corr Samp	Phone: 303-887	27-1346		@ ensolom.		EDD	
None: NO Cool: Cool H_250 4: H_2 H_3P0 4: HP NaH50 4: NBIS Na 2 2 0 3: NaS0 3 Zn Acetate-NaOH: NaOH+Ascorbic Ac Sample Corr Sam	Mustans	14-11	Turn Around		ANALYSIS REQUEST		Preservative Codes
(Cooi: CC HCL: HCL: HCL: HCL: HCL: HCL: HCL:	Joer:			Pres.			
HCL: HC H ₂ SO ₄ : NaHSO Na ₂ S ₂ C Zn Acet NaOH+ NaOH	120SPV0.17	Courty, Nave	Date:				
H ₃ PO ₄ : NaHSO Na ₂ S ₂ C Zn Acet NaOH+	er's Name: Daniel Mol	-	tarts the day received by ab, if received by 4:30pm	(25		-	
Na450 Zn Acet NaOH+ Na S 5 C S 5 S S 5 S Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470	LE RECEIPT	92					
Na ₂ 5,5 Zn Acet NaOH+, NaOH+, Sc Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Received by: (Signature)		Thermometer ID:	15/1/) 8,			NaHSO ,: NABIS
Zn Acet NaOH+ NaOH+ 1/2 V K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Received by: (Signature)	Yes No	Correction Factor:	\sim	P1:	800-2341 Chain of Custon		Na ₂ S ₂ O ₃ : NaSO ₃
Ni K Se Ag SiO ₂ Na Sr TI Sn Hg: 1631/245.1/7470 Received by: (Signature)	Yes No	Temperature Read	1	19 H	ACIENO LO LIBILO LLOS-OGO	Á	Zn Acetate+NaOH: Zn
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Received by: (Signature)	Containers:	Corrected Temper	-	4			NaOH+Ascorbic Acid: SAPC
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Hg: 1631/245.1/7470 Received by: (Signature)		Date Sampled	Depth				Sample Comments
4) K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Hg: 1631/245.1/7470 Received by: (Signature)	152'0	5 13	0	ર			
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Received by: (Signature)	1,51	-	345/15				
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Hg: 1631/245.1/7470 Received by: (Signature)	0,51		5'00				
1 K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Received by: (Signature)	15/1		777.5				
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Hg: 1631/245.1/7470 Received by: (Signature)	46 0,51		٥٠٪	,			
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Hg: 1631/245.1/7470 Received by: (Signature)	12 2,5'		12,5				
Vi K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470	AB 1,51		ファル				
Ni K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 https://winted.	A 0 0151	7.4.7	7.70				711
Vi K Se Ag SiO ₂ Na Sr Tl Sn Hg: 1631/245.1/7470 Mated. Received by: (Signature)	786 2.5	7	111	7			
Hg: 1631 / 245.1 / 7470 stated. Received by: (Signature)		BRCRA	Texas 11	Sb As Ba Be B Cd	O J	K Se	>
Received by: (Signature)	le Method(s) and Metal(s) to be an		CLP / SPLP 6010 : 8RC		To Cu Pb Mn Mo Ni Se Ag Tl		
eceived by: (Signature)	Signature of this document and relinquishment of sam ite. Eurofins Xenco will be liable only for the cost of san ofns Xenco. A minimum charge of \$85.00 will be applie	mples constitutes a valid pur amples and shall not assume led to each project and a cha	chase order from client companany responsibility for any losses urge of \$5 for each sample submi	y to Eurofins Xenco, its affiliates and subcortexpenses incurred by the client if such tted to Eurofins Xenco, but not analyzed.	ontractors. It assigns standard terms and condit losses are due to circumstances beyond the con These terms will be enforced unless previously in	tions trol negotiated.	
4 4 22	elinguished by-(Signature)	Received by: (Sig	gnature)	Date/Time /	Relinquished by: (Signature)	Received by: (Signature	
		1000		17	77		
				4			
				9			

1

Revised Date 08/25/2020 Rev. 2020 2

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Date/Time 13/22

Received by: (Signature)

Relinquished Dyckignature

1250

3

of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Environment Testing

seurofins **

Xenco

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No:

			www.xenco.com Page C of
Project Manager:	nel Moir	Bill to: (if different)	Work Order Comments
	٧.	Company Name:	Program: UST/PST PRP Brownfields RRC Superfund
		Address:	
City, State ZIP:		City, State ZIP:	Reporting: Level Level PST/UST TRRP Level V
Phone: 203	303-887-2946 Em	Email: dmost @ ensolum, com	Deliverables: EDD ADaPT Other:
Project Name: MyStalue	7#1178	Turn Around ANA	ANALYSIS REQUEST Preservative Codes
er:		ne Rush Code	None: NO DI Water: H ₂ O
Project Location:	12 1 Due Date:	(Cool: Cool MeOH: Me
	Mai	TAT starts the day received by the lab, if received by 4:30pm	HCL: HC HNO 3: HN H,550 4: H,2 NaOH: Na
PLE RECEIPT	Temp Blank: Yes No Wet Ice:	S S S S S S S S S S S S S S S S S S S	H₃PO 4: HP
act:		3) median	NaHSO 4: NABIS
Ì	Yes No NYA Correction Factor:		Na ₂ S ₂ O ₃ : NaSO 3
		3.00	Zn Acetate+NaOH: Zn
Total Containers:	Corrected Temperature:		NaOH+Ascorbic Acid: 5APC
Sample Identification	Matrix Sampled Sampled	d Depth Grab/ # of M	Sample Comments
BHOLOR @ DIS	5 5/13 (153	50561XXX	
13 HOLE (3 2.5	5 5/13	2,56 1 x x x	
Total 200.7 / 6010 200	8RCR	Texas 11 Al Sb As Ba Be B Cd Ca Cr	Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn
Circle Method(s) and Metal(s) to be analyzed		ICLP/SPLP 6010 : SKCKA SD AS Ba be Cd Cr Co Cu PD MILL MO IN SE AG II O	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2311-1

SDG Number: Roosevelt County NM

Login Number: 2311 List Source: Eurofins Carlsbad List Number: 1

Creator: Olivas, Nathaniel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2311-1

SDG Number: Roosevelt County NM

Login Number: 2311 List Source: Eurofins Midland List Number: 2

List Creation: 05/17/22 10:54 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad

<6mm (1/4").

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2408-1

Laboratory Sample Delivery Group: 09C2041002 Client Project/Site: Touch of Grey State COM 1

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Daniel Moir

JURAMER

Authorized for release by: 6/14/2022 1:48:04 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 8/11/2022 11:58:47 AM

signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

This report has been electronically signed and authorized by the signatory. Electronic

Results relate only to the items tested and the sample(s) as received by the laboratory.

•

2

3

6

<u>۾</u>

11

14

Н

Project/Site: Touch of Grey State COM 1

Client: Ensolum

Laboratory Job ID: 890-2408-1 SDG: 09C2041002

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

2

3

4

6

8

40

11

16

4

Definitions/Glossary

Job ID: 890-2408-1 Client: Ensolum Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

*+ LCS and/or LCSD is outside acceptance limits, high biased. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF**

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1 SDG: 09C2041002

Job ID: 890-2408-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2408-1

Receipt

The samples were received on 6/13/2022 9:28 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8° C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-27449 and analytical batch 880-27351 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-27449/2-A), (LCSD 880-27449/3-A) and (890-2404-A-57-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

6

9

12

13

12

Client Sample Results

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS01 Lab Sample ID: 890-2408-1

Date Collected: 06/10/22 17:30 Matrix: Solid Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Toluene	0.00423	F1	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Ethylbenzene	0.00571	F1	0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
m-Xylene & p-Xylene	0.0540	F1	0.00402	mg/Kg		06/13/22 13:48	06/13/22 18:33	
o-Xylene	0.0123		0.00201	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Xylenes, Total	0.0663	F1	0.00402	mg/Kg		06/13/22 13:48	06/13/22 18:33	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			05 - 175			53/17/66 1724:	53/17/66 1: 2/7	
194-8 ,fluorobenzene (Surr)	Di		05 - 175			53/17/66 1724:	53/17/66 1: 277	
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0762		0.00402	mg/Kg			06/14/22 09:13	-
Method: 8015 NM - Diesel Ran	ge Organics (DR)	O) (GC)						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	254		49.9	mg/Kg			06/14/22 09:33	
Method: 8015B NM - Diesel Ra	nge Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Diesel Range Organics (Over C10-C28)	194	*+	49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Oll Range Organics (Over C28-C36)	60.1		49.9	mg/Kg		06/13/22 16:14	06/14/22 00:51	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	D:		05 - 175			53/17/66 13214	53/14/66 552 1	
o-Terphenyl	11 <i>i</i>		05 - 175			53/17/66 13214	53/14/66 552 1	
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	11800		99.6	mg/Kg			06/14/22 12:57	2

Client Sample ID: SS02 Lab Sample ID: 890-2408-2 Date Collected: 06/10/22 17:35 Matrix: Solid

Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Toluene	0.00223		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Ethylbenzene	0.00483		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
m-Xylene & p-Xylene	0.0466		0.00404	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
o-Xylene	0.0125		0.00202	mg/Kg		06/13/22 13:48	06/13/22 18:54	1
Xylenes, Total	0.0591		0.00404	mg/Kg		06/13/22 13:48	06/13/22 18:54	1

Client Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS02 Lab Sample ID: 890-2408-2

Date Collected: 06/10/22 17:35

Date Received: 06/13/22 09:28

Matrix: Solid

Sample Depth: 0.5

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	161		05 - 175			53/17/66 1724:	53/17/66 1: 2 4	1
194-8 ,fluorobenzene (Surr)	D6		05 - 175			53/17/66 1724:	53/17/66 1: 2 4	
Method: Total BTEX - Total BTE	X Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0662		0.00404	mg/Kg			06/14/22 09:13	
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/14/22 09:33	
Analyte		Qualifier	RL	Unit mg/Kg	<u>D</u>	Prepared 06/13/22 16:14	Analyzed 06/14/22 01:11	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result	Qualifier U U *+		mg/Kg mg/Kg	<u>D</u>			Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U U *+	50.0	mg/Kg	<u> </u>	06/13/22 16:14 06/13/22 16:14	06/14/22 01:11 06/14/22 01:11	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	Result	Qualifier U U *+	50.0 50.0 50.0	mg/Kg	<u>D</u>	06/13/22 16:14 06/13/22 16:14 06/13/22 16:14	06/14/22 01:11 06/14/22 01:11 06/14/22 01:11	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U U *+	50.0 50.0 50.0 <i>Limits</i>	mg/Kg	<u>D</u>	06/13/22 16:14 06/13/22 16:14 06/13/22 16:14 Prepared	06/14/22 01:11 06/14/22 01:11 06/14/22 01:11 Analyzed	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U U *+ U Qualifier	50.0 50.0 50.0 Limits 05 - 175	mg/Kg	<u> </u>	06/13/22 16:14 06/13/22 16:14 06/13/22 16:14 Prepared 53/17/66 132/14	06/14/22 01:11 06/14/22 01:11 06/14/22 01:11 Manalyzed 53/14/66 512/1	
Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, Ion Chranlyte	Result	Qualifier U U *+ U Qualifier	50.0 50.0 50.0 Limits 05 - 175	mg/Kg	<u>D</u>	06/13/22 16:14 06/13/22 16:14 06/13/22 16:14 Prepared 53/17/66 132/14	06/14/22 01:11 06/14/22 01:11 06/14/22 01:11 Manalyzed 53/14/66 512/1	

Client Sample ID: SS03

Date Collected: 06/10/22 17:40

Lab Sample ID: 890-2408-3

Matrix: Solid

Date Collected: 06/10/22 17:40 Date Received: 06/13/22 09:28

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Toluene	0.0236		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Ethylbenzene	0.0131		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
m-Xylene & p-Xylene	0.151		0.00403	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
o-Xylene	0.0316		0.00202	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Xylenes, Total	0.183		0.00403	mg/Kg		06/13/22 13:48	06/13/22 19:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	15:		05 - 175			53/17/66 1724:	53/17/66 1D214	1
194-8 ,fluorobenzene (Surr)	::		05 - 175			53/17/66 1724:	53/17/66 1D214	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.219		0.00403	mg/Kg			06/14/22 09:13	1
Method: 8015 NM - Diesel Rar	ige Organics (DR	O) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9	mg/Kg		-	06/14/22 09:33	

Eurofins Carlsbad

2

2

7

b

8

10

12

13

Н

Client Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Client Sample ID: SS03 Lab Sample ID: 890-2408-3

Date Collected: 06/10/22 17:40

Date Received: 06/13/22 09:28

Matrix: Solid

Sample Depth: 0.5

Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
Diesel Range Organics (Over C10-C28)	<49.9	U *+	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/13/22 16:14	06/14/22 01:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	DD		05 - 175			53/17/66 13214	53/14/66 512/6	1
o-Terphenyl	116		05 - 175			53/17/66 13214	53/14/66 512/6	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	34.3		5.00	mg/Kg			06/14/22 06:02	1

Eurofins Carlsbad

3

4

ວ ດ

7

9

10

12

13

14

Surrogate Summary

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2408-1	SS01	111	95	
890-2408-1 MS	SS01	115	99	
890-2408-1 MSD	SS01	113	95	
890-2408-2	SS02	121	92	
890-2408-3	SS03	108	88	
LCS 880-27445/1-A	Lab Control Sample	104	99	
LCSD 880-27445/2-A	Lab Control Sample Dup	103	100	
MB 880-27445/5-A	Method Blank	101	90	
Surrogate Legend BFB = 4-Bromofluorober				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-2404-A-57-B MS	Matrix Spike	108	113	
890-2404-A-57-C MSD	Matrix Spike Duplicate	97	105	
890-2408-1	SS01	98	115	
890-2408-2	SS02	97	114	
890-2408-3	SS03	99	112	
LCS 880-27449/2-A	Lab Control Sample	125	137 S1+	
LCSD 880-27449/3-A	Lab Control Sample Dup	123	132 S1+	
MB 880-27449/1-A	Method Blank	104	125	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-27445/5-A

Lab Sample ID: LCS 880-27445/1-A

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27445

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/13/22 13:48	06/13/22 18:12	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/13/22 13:48	06/13/22 18:12	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130	06/13/22 13	3:48 06/13/22 18:12	1
1,4-Difluorobenzene (Surr)	90		70 - 130	06/13/22 13	3:48 06/13/22 18:12	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27445

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09888 mg/Kg 99 70 - 130 Toluene 0.100 0.09736 mg/Kg 97 70 - 130 0.100 Ethylbenzene 0.1022 mg/Kg 102 70 - 130 0.200 0.2087 104 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1050 70 - 130 o-Xylene mg/Kg 105

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LCSD 880-27445/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Matrix: Solid

Analysis Batch: 27442

Analysis Batch: 27442

Prep Type: Total/NA
Prep Batch: 27445

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.08909 mg/Kg 89 70 - 130 10 35 Toluene 0.100 0.08588 mg/Kg 86 70 - 130 13 35 Ethylbenzene 0.100 0.09250 mg/Kg 93 70 - 130 10 35 0.200 0.1885 m-Xylene & p-Xylene mg/Kg 94 70 - 130 10 35 0.100 0.09464 o-Xylene mg/Kg 70 - 130 10 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1.4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-2408-1 MS

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: SS01
Prep Type: Total/NA

Prep Batch: 27445

· ····· , · · · · · · · · · · · · · · · · · · ·										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.09215		mg/Kg		92	70 - 130	
Toluene	0.00423	F1	0.100	0.09015		mg/Kg		86	70 - 130	

Eurofins Carlsbad

3

4

0

1

8

10

12

10

QC Sample Results

Client: Ensolum Job ID: 890-2408-1
Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2408-1 MS Matrix: Solid

Analysis Batch: 27442

Client Sample ID: SS01 Prep Type: Total/NA Prep Batch: 27445

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	0.00571	F1	0.100	0.09119		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	0.0540	F1	0.200	0.2202		mg/Kg		83	70 - 130	
o-Xylene	0.0123		0.100	0.1007		mg/Kg		88	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 890-2408-1 MSD

Matrix: Solid

Analysis Batch: 27442

Client Sample ID: SS01
Prep Type: Total/NA
Prep Batch: 27445

Sample Sample Spike MSD MSD %Rec Result Qualifier Result Qualifier %Rec RPD Limit Analyte babbA Unit Limits Benzene <0.00201 U 0.0996 0.07166 mg/Kg 72 70 - 130 25 35 Toluene 0.00423 F1 0.0996 0.07254 F1 mg/Kg 69 70 - 130 22 35 Ethylbenzene 0.00571 F1 0.0996 0.07476 F1 69 70 - 130 20 35 mg/Kg 0.199 70 - 130 m-Xylene & p-Xylene 0.0540 F1 0.1825 F1 mg/Kg 64 19 35 0.0996 0.08388 72 70 - 130 o-Xylene 0.0123 mg/Kg 18

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-27449/1-A

Matrix: Solid

Analysis Batch: 27351

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27449

Result Qualifier RL Unit D Prepared Analyzed Dil Fac Analyte 50.0 06/13/22 16:14 06/13/22 22:06 <50.0 U Gasoline Range Organics mg/Kg (GRO)-C6-C10 06/13/22 22:06 Diesel Range Organics (Over <50.0 U 50.0 06/13/22 16:14 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 06/13/22 16:14 06/13/22 22:06 mg/Kg

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130	06/13/22 16:14	06/13/22 22:06	1
o-Terphenyl	125		70 - 130	06/13/22 16:14	06/13/22 22:06	1

Lab Sample ID: LCS 880-27449/2-A

Matrix: Solid

Analysis Batch: 27351

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27449

	Si	oike	LCS	LCS				%Rec	
Analyte	Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1	000	1174		mg/Kg		117	70 - 130	
(GRO)-C6-C10									
Diesel Range Organics (Over	1	000	1455	*+	mg/Kg		145	70 - 130	
C10-C28)									

Job ID: 890-2408-1

Client: Ensolum Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-27449/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 27351

Prep Type: Total/NA

Prep Batch: 27449

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 125 70 - 130 o-Terphenyl 137 S1+ 70 - 130

Lab Sample ID: LCSD 880-27449/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 27351

Prep Type: Total/NA

Prep Batch: 27449

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 1160 116 70 - 13020 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1434 *+ mg/Kg 143 70 - 13020 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	123		70 - 130
o-Terphenyl	132	S1+	70 - 130

Lab Sample ID: 890-2404-A-57-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 27351

Prep Type: Total/NA

Prep Batch: 27449

Sample Sample Spike MS MS Analyte Result Qualifier habba Result Qualifier Unit %Rec Limits D Gasoline Range Organics <49.9 U 998 1066 mg/Kg 107 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U*+ 998 1010 mg/Kg 101 70 - 130 C10-C28)

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 108 70 - 130 o-Terphenyl 113

Lab Sample ID: 890-2404-A-57-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 27351

Prep Type: Total/NA

Prep Batch: 27449

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics U 999 905.7 mg/Kg <49.9 91 70 - 130 16 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U*+ 999 941.1 mg/Kg 94 70 - 130 7 20 C10-C28)

MSD MSD Qualifier Surrogate %Recovery Limits 1-Chlorooctane 97 70 - 130 105 70 - 130 o-Terphenyl

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Client Sample ID: Matrix Spike

Job ID: 890-2408-1

Client: Ensolum Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-27302/1-A

Matrix: Solid

Analysis Batch: 27457

MB MB

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 06/14/22 01:35

Lab Sample ID: LCS 880-27302/2-A

Matrix: Solid

Analysis Batch: 27457

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 252.9 mg/Kg 101 90 - 110

Lab Sample ID: LCSD 880-27302/3-A

Matrix: Solid

Analysis Batch: 27457

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 260.6 mg/Kg 104 90 - 110

Lab Sample ID: 880-15727-A-11-B MS

Matrix: Solid

Analysis Batch: 27457

MS MS Sample Sample Spike %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 2330 1240 3749 F1 90 - 110 mg/Kg

Lab Sample ID: 880-15727-A-11-C MSD

Matrix: Solid

Analysis Batch: 27457

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 2330 F1 1240 3661 mg/Kg 107 90 - 110

Lab Sample ID: MB 880-27446/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 27482

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 06/14/22 08:38

Lab Sample ID: LCS 880-27446/2-A

Analysis Batch: 27482

LCS LCS %Rec Spike Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 233.7 mg/Kg 93 90 - 110

Lab Sample ID: LCSD 880-27446/3-A

Released to Imaging: 8/11/2022 11:58:47 AM

Matrix: Solid

Analysis Batch: 27482

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 236.6 mg/Kg 95 90 - 110 20

Lab Sample ID: 890-2407-A-11-D MSD

QC Sample Results

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1

SDG: 09C2041002

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 890-2407-A-11-C MS Client Sample ID: Matrix Spike **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 27482

Analysis Batch: 27482

Matrix: Solid

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 208 249 448.4 mg/Kg 96 90 - 110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 208 249 447.1 mg/Kg 96 90 - 110 0 20

QC Association Summary

Client: Ensolum Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

GC VOA

Analysis Batch: 27442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8021B	27445
890-2408-2	SS02	Total/NA	Solid	8021B	27445
890-2408-3	SS03	Total/NA	Solid	8021B	27445
MB 880-27445/5-A	Method Blank	Total/NA	Solid	8021B	27445
LCS 880-27445/1-A	Lab Control Sample	Total/NA	Solid	8021B	27445
LCSD 880-27445/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	27445
890-2408-1 MS	SS01	Total/NA	Solid	8021B	27445
890-2408-1 MSD	SS01	Total/NA	Solid	8021B	27445

Prep Batch: 27445

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	5035	
890-2408-2	SS02	Total/NA	Solid	5035	
890-2408-3	SS03	Total/NA	Solid	5035	
MB 880-27445/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-27445/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-27445/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2408-1 MS	SS01	Total/NA	Solid	5035	
890-2408-1 MSD	SS01	Total/NA	Solid	5035	

Analysis Batch: 27472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	Total BTEX	
890-2408-2	SS02	Total/NA	Solid	Total BTEX	
890-2408-3	SS03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 27351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015B NM	27449
890-2408-2	SS02	Total/NA	Solid	8015B NM	27449
890-2408-3	SS03	Total/NA	Solid	8015B NM	27449
MB 880-27449/1-A	Method Blank	Total/NA	Solid	8015B NM	27449
LCS 880-27449/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	27449
LCSD 880-27449/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	27449
890-2404-A-57-B MS	Matrix Spike	Total/NA	Solid	8015B NM	27449
890-2404-A-57-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	27449

Prep Batch: 27449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015NM Prep	
890-2408-2	SS02	Total/NA	Solid	8015NM Prep	
890-2408-3	SS03	Total/NA	Solid	8015NM Prep	
MB 880-27449/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-27449/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-27449/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2404-A-57-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2404-A-57-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1 SDG: 09C2041002

GC Semi VOA

Analysis Batch: 27480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Total/NA	Solid	8015 NM	
890-2408-2	SS02	Total/NA	Solid	8015 NM	
890-2408-3	SS03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 27302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-3	SS03	Soluble	Solid	DI Leach	
MB 880-27302/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27302/2-A			Solid	DI Leach	
LCSD 880-27302/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-15727-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-15727-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 27446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2408-1	SS01	Soluble	Solid	DI Leach	
890-2408-2	SS02	Soluble	Solid	DI Leach	
MB 880-27446/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-27446/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-27446/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2407-A-11-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2407-A-11-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 27457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-2408-3	SS03	Soluble	Solid	300.0	27302	
MB 880-27302/1-A			Solid	300.0	27302	
LCS 880-27302/2-A			Solid	300.0	27302	
LCSD 880-27302/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	27302	
880-15727-A-11-B MS)-15727-A-11-B MS Matrix Spike		Solid	300.0	27302	
880-15727-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	27302	

Analysis Batch: 27482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-2408-1	SS01	Soluble	Solid	300.0	27446	
90-2408-2 SS02 IB 880-27446/1-A Method Blank		Soluble	Solid	300.0	27446	
		Soluble	Solid	300.0	27446	
LCS 880-27446/2-A	Lab Control Sample	Soluble	Solid	300.0	27446	
LCSD 880-27446/3-A	SD 880-27446/3-A Lab Control Sample Dup		Solid	300.0	27446	
890-2407-A-11-C MS Matrix Spike		Soluble	Solid	300.0	27446	
890-2407-A-11-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	27446	

Date Received: 06/13/22 09:28

Job ID: 890-2408-1

Client: Ensolum Project/Site: Touch of Grey State COM 1 SDG: 09C2041002

Lab Sample ID: 890-2408-1

Client Sample ID: SS01 Date Collected: 06/10/22 17:30

Matrix: Solid

Batch		Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method Run		Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			4.98 g	5 mL	27445	06/13/22 13:48	MR	XEN MID	
Total/NA	Analysis	8021B		1	5 g	5 mL	27442	06/13/22 18:33	AJ	XEN MID	
Total/NA	Analysis	Total BTEX		1			27472	06/14/22 09:13	AJ	XEN MID	
Total/NA	Analysis	8015 NM		1			27480	06/14/22 09:33	AJ	XEN MID	
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27449	06/13/22 16:14	DM	XEN MID	
Total/NA	Analysis	8015B NM		1			27351	06/14/22 00:51	AJ	XEN MID	
Soluble	Leach	DI Leach			5.02 g	50 mL	27446	06/13/22 14:08	CH	XEN MID	
Soluble	Analysis	300.0		20			27482	06/14/22 12:57	CH	XEN MID	

Lab Sample ID: 890-2408-2 **Client Sample ID: SS02**

Date Collected: 06/10/22 17:35 **Matrix: Solid**

Date Received: 06/13/22 09:28

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 4.95 g 27445 Total/NA Prep 5 mL 06/13/22 13:48 MR XEN MID Total/NA 8021B 06/13/22 18:54 XEN MID Analysis 1 5 g 5 mL 27442 AJTotal/NA Total BTEX 27472 06/14/22 09:13 Analysis 1 XEN MID A.I Total/NA Analysis 8015 NM 27480 06/14/22 09:33 XEN MID Total/NA 8015NM Prep 27449 XEN MID Prep 10.01 g 10 mL 06/13/22 16:14 DM Total/NA Analysis 8015B NM 27351 06/14/22 01:11 AJ XEN MID Soluble Leach DI Leach 4.97 g 50 mL 27446 06/13/22 14:08 CH XEN MID Soluble Analysis 300.0 10 27482 06/14/22 13:05 CH XEN MID

Lab Sample ID: 890-2408-3 **Client Sample ID: SS03**

Date Collected: 06/10/22 17:40 Date Received: 06/13/22 09:28

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Run Factor		Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			4.96 g	5 mL	27445	06/13/22 13:48	MR	XEN MID	
Total/NA	Analysis	8021B		1	5 g	5 mL	27442	06/13/22 19:14	AJ	XEN MID	
Total/NA	Analysis	Total BTEX		1			27472	06/14/22 09:13	AJ	XEN MID	
Total/NA	Analysis	8015 NM		1			27480	06/14/22 09:33	AJ	XEN MID	
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	27449	06/13/22 16:14	DM	XEN MID	
Total/NA	Analysis	8015B NM		1			27351	06/14/22 01:32	AJ	XEN MID	
Soluble	Leach	DI Leach			5 g	50 mL	27302	06/13/22 10:31	SC	XEN MID	
Soluble	Analysis	300.0		1			27457	06/14/22 06:02	CH	XEN MID	

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-2408-1 Project/Site: Touch of Grey State COM 1

SDG: 09C2041002

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date
exas		ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not of		ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes fo
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

Method	Method Description	Protocol	Laboratory		
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID		
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID		
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID		
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID		
300.0	Anions, Ion Chromatography	MCAWW	XEN MID		
5035	Closed System Purge and Trap	SW846	XEN MID		
8015NM Prep	Microextraction	SW846	XEN MID		
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID		

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

1

3

4

5

7

8

46

11

12

14

Sample Summary

Client: Ensolum

Project/Site: Touch of Grey State COM 1

Job ID: 890-2408-1

SDG: 09C2041002

C204 1002	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	De
890-2408-1	SS01	Solid	06/10/22 17:30	06/13/22 09:28	0.5
890-2408-2	SS02	Solid	06/10/22 17:35	06/13/22 09:28	0.5
890-2408-3	SS03	Solid	06/10/22 17:40	06/13/22 09:28	0.5

Project Manager:

Bill to: (if different) Company Name:

Company Name:

Nati.

13

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (21) EL Paso, TX (915) 585-3443, Lubbock, TX (806) Hobbs, NM (575) 392-7550, Carlsbad, NM (575 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Xenco

Environment Testing

Work Order Comments

I we !	Relinquished by: (Signature)	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of survices. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negon	Total 200.7 / 6010 200.8 / 6020: 8 Circle Method(s) and Metal(s) to be analyzed		SSO3 W W	5502	2501 5 6110/22	Sample Identification Matrix Sampled	Total Containers: Corrected	Yes No NIA	Cooler Custody Seals: Yes No (N/A) Correction Factor:	Samples Received Intact: (Yes) No Thermometer ID:	SAMPLE RECEIPT Temp Blank: (Yes) No		Lin Chell	Project Location: ROCKUELL CUMPY, NM	Project Number: 09C2041002	Project Name: TOUGH OF CARM STATE COM		City, State ZIP: Cay Wald, NM 7872	15
A Comment	Received by: (Signature)	a valld purchase order from client company ot assume any responsibility for any losses or and a charge of \$5 for each sample submitt	8RCRA 13PPM Texas 11 A TCLP / SPLP 6010 : 8RCI		1740	1735	1730 0.5' 6	Time Depth Grab/	Corrected Temperature: 5	Temperature Reading: (q , C)	1	ter ID: (IVIM 00'7	Wet ice: Yes No	the lab, if received by 4:30pm	TAT starts the day received by	Due Date: 6/14/22	Routine	Turn Ar	Email: CIMOW	O City, State ZIP:	TV CC
Jeeg e 8:81 9	Date/Time Relinquished by: (Signature)	to Eurofins Xenco, its affiliates and subcontractors. It assigns s r expenses incurred by the client if such losses are due to circu ted to Eurofins Xenco, but not analyzed. These terms will be er	A 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pt TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo		* * * * * * * * * * * * * * * * * * *			cont TPH BTF	5X	E () () () () () () () () () (_	8	80°	(S)	300	2)	Pres.	ANALYSIS R	@ ensamm. Cam		
	r. (Signature) Received by: (Signature)	tandard terms and conditions mstances beyond the control nforced unless previously negotiated.	Ni Se Ag TI ∪							2408 Chain of Custody				-				/SIS REQUEST	Deliverables: EDD	Reporting: Level III Level III PST/UST TRRP	
	nature) Date/Time		Ag SiO ₂ Na Sr Tl Sn U V Zn Hg: 1631 / 245.1 / 7470 / 7471					Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO 4: NABIS	H ₃ PO ₄ : HP	H ₂ SO ₄ : H ₂ NaOH: Na	HCL: HC HNO 3: HN	Cool: Cool MeOH: Me	None: NO DI Water: H ₂ O	Preservative Codes	ADaPT Other:	☐ PST/UST ☐ TRRP ☐ Level IV ☐	i I

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2408-1 SDG Number: 09C2041002

Login Number: 2408 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-2408-1 SDG Number: 09C2041002

List Source: Eurofins Midland

Login Number: 2408 List Number: 2 List Creation: 06/14/22 09:07 AM

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 131895

CONDITIONS

Operator:	OGRID:
ARMSTRONG ENERGY CORP	1092
P.O. Box 1973	Action Number:
Roswell, NM 88202	131895
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Deferral Approved.	8/11/2022