

May 9, 2022

Robert Hamlet
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
PH #: 575-748-1283
Robert.Hamlet@state.nm.us

Re: Remediation Workplan and Extension Request Centennial Resource Development, Inc. Cheddar 1H Release (nRM2033536188) GPS: N 32.416606° W 103.704514° Unit Letter "M", Section 5, Township 22 South, Range 32 East Lea County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Centennial Resource Development, Inc. (Centennial), has prepared this Remediation Workplan and Extension Request for the Cheddar 1H Release Site (Release Site). The purpose of this document is to request an extension for remediation activities designed to advance the Cheddar 1H Release Site toward a New Mexico Oil and Conservation District (NMOCD) approved Site Closure Status. The legal description of the Release Site is Unit Letter "M", Section 5, Township 22 South, Range 32 East, in Lea County, New Mexico. The GPS coordinates for the site are N 32.416606° W 103.704514°. A Site Location Map and Site Details and Initial Soil Sample Location Map are provided as Figure 1 and Figure 2, respectively.

INTRODUCTION

On November 2, 2020, a reportable release occurred at the Cheddar 1H. The release was the result of fluid building up within the flare line, which pushed out landing adjacent to the flare, igniting then self-extinguishing. A Release Notification and Corrective Action Form (Form C-141) was subsequently submitted to the NMOCD on November 17, 2020 and assigned incident number nRM2033536188. The release was reported as approximately one (1) barrel of crude oil released with approximately zero (0) barrels of crude oil recovered, resulting in a net loss of approximately one (1) barrel of crude oil. A form NMOCD Release Notification and Corrective Action Form C-141 is attached to this documentation.

NMOCD SITE CLASSIFICATION

A search of the groundwater database maintained by the United States Geological Survey (USGS) did not identify any registered water wells within a quarter (1/4) mile of the Cheddar 1H Release Site. A search of the New Mexico Office of the State Engineer database identified the closest registered water well as POD C 04144 POD1 located approximately one and one third (1.3) of a mile southwest of the Release Site. The average depth to groundwater for POD C 04144 POD1 should be encountered at approximately forty-nine (49) feet below ground surface (bgs). No water wells were observed within one thousand (1,000) feet of the release. Based on the NMOCD site classification system, the following soil remediation levels were assigned to the Cheddar 1H Release Site as a result of this criterion:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

INITIAL DELINEATION WITH REMEDIATION ACTIVITIES AND NMOCD DENIAL

Between February 23 and August 5, 2021, Etech performed delineation and remediation activities concurrently in order to facilitate the remediation of the Release Site. An outline of the release area and initial sampling points are presented as Site Details Map Section A and B on Figures 3 and 4, respectively. According to Table 1 Concentrations of Benzene, BTEX, TPH, and Chloride in Soils, the site appears to be impacted with Total Petroleum Hydrocarbons (TPH) only with depths of impacts ranging from 3" to 1 ½ foot bgs across the site. The benzene, total BTEX and Chlorides were below NMOCD standards for all samples collected and analyzed.

In a report entitled "Closure Request and Remediation Summary Report" dated September 2021, Etech outlined the initial delineation and remediation activities at the site. Etech excavated from 3" to 1½ foot bgs at the site based on field chloride sampling and photoionization detector (PID) readings. Clean like sourced materials were then brought in from an off-site location and mixed and blended with the existing stockpiled soils in order to decrease the TPH levels within the soils. Bottom hole samples were collected and submitted for analysis of BTEX, TPH, and Chlorides. Once stockpiled samples were below NMOCD standards, the site was backfilled. See Table 1 for analytical results. Upon completion of the remediation, Etech requested a closure be granted for the site based on remediation efforts.

In an email dated March 10, 2022, the NMOCD rejected the submittal "Application for administrative approval of a release notification and corrective action" (C-141), for incident ID (n#) nRM2033536188 for the following reasons:

The Closure Report is denied. Etech's mixing and blending technique was not adequately
defined, however, blending soils to obtain desired analytical results is not an OCD approved
remedial method.

See NMOCD email response attached to this report.

SOIL REMEDIATION WORKPLAN AND EXTENSION REQUEST

Etech proposes to complete remediation at the site in accordance with NMOCD rules and regulations which will entail the following:

- Soils initially excavated and blended (approximately 1,100 cubic yards of soil) will be reexcavated to an appropriate depth (proposed 3" bgs along northern overspray area and between 3" and 1 ½ ft bgs in southern section of field and pad area). See Figure 5 for proposed excavation depths based on initial soil sampling results.
- Excavated and blended soils will be stockpiled on plastic onsite awaiting disposal.
- Field screening utilizing chloride test kits and a PID meter will be utilized to screen the soils for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls of the excavated areas. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method 300.0.
- An estimated 1,100 cubic yards of impacted soils will be transported off-site for disposal at an NMOCD approved landfill or landfarm.
- Upon completion of remediation and requisite soil sampling, the site will be backfilled with like-source non-impacted soils from an approved off-site facility and brought back to grade.
- Site will be reseeded with BLM approved seed.
- A closure report with corrected C-141 will be submitted to the NMOCD upon completion of remediation activities.

In order to complete the above tasks, Etech, on behalf of Centennial requests a ninety (90) day extension to complete remediation activities and to submit a "Remediation Summary and Site Closure Request Report" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-653-9697 (cell).

Thank you,

Jeffrey Kindley, P.G.

Huy Kndley

Senior Project Manager/Geologist

Etech Environmental & Safety Solutions, Inc.

Attachments:

Figure 1 - Site Location Map

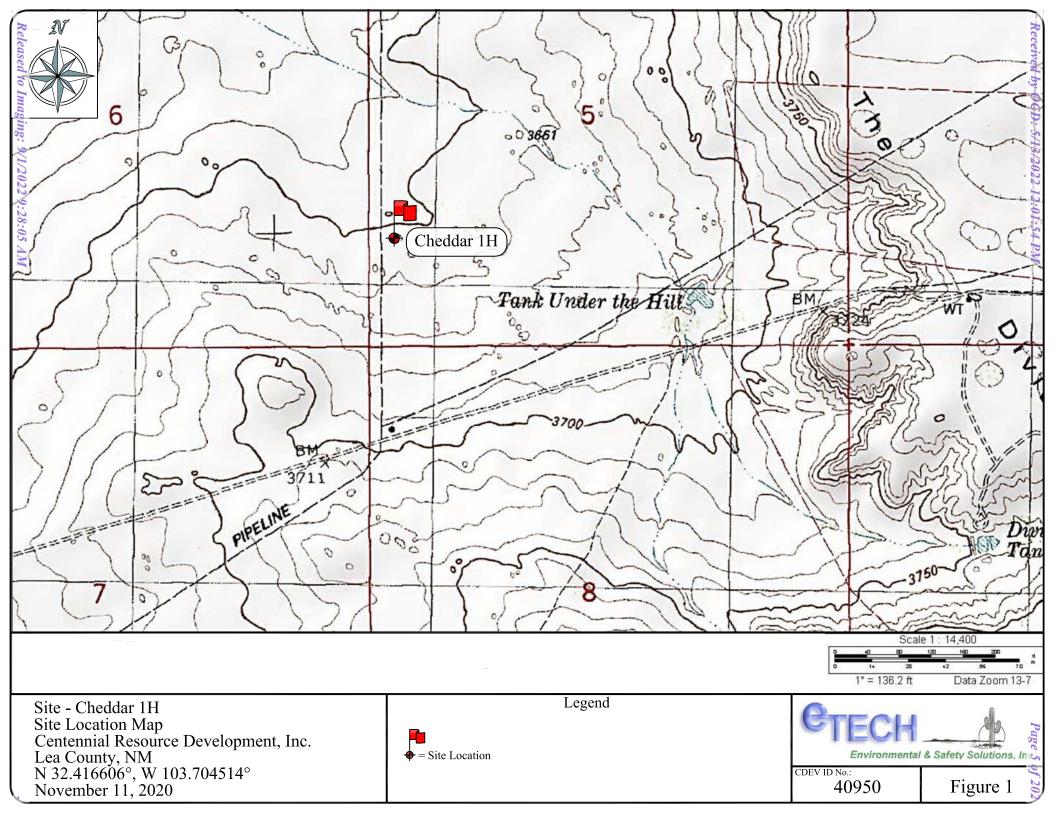
Figure 2 - Soil Details & Initial Soil Sample Map

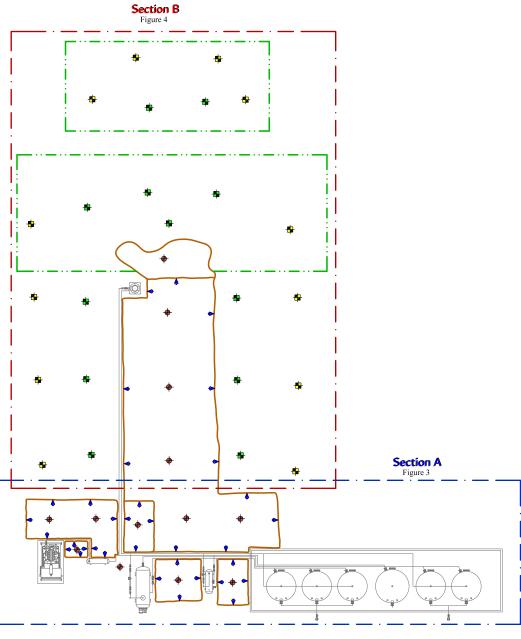
Figure 3 - Site Details Map - Section A

Figure 4 - Site Details Map - Section B

Figure 5 – Proposed Excavation Depths

Table 1 - Concentrations of Benzene, BTEX, TPH and Chloride in Soil


Photographic Documentation


Laboratory Analytical Results

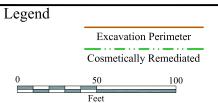
Initial Release Notification and Corrective Action (Form C-141)

NMOCD Email Response to Closure Report Request

cc: File

Note:

See Figure 3 & 4 for sample point sections and details

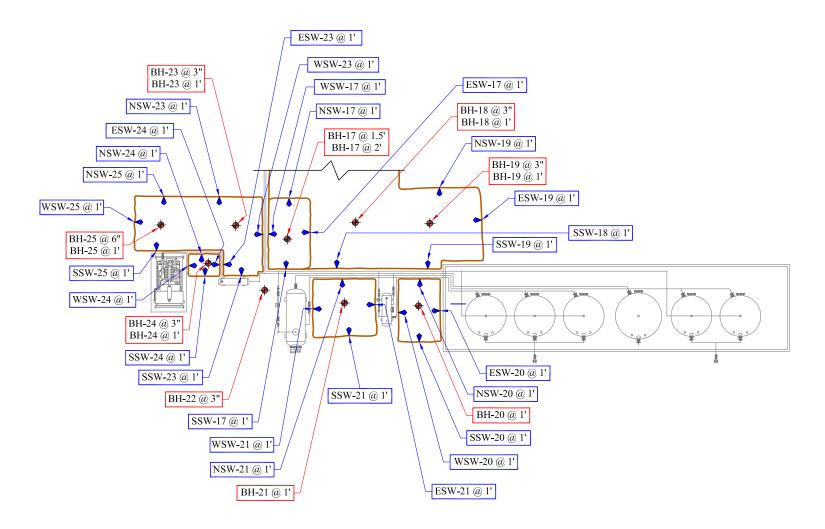

Site - Cheddar 1H Site Details & Confirmation Sample Map Centennial Resource Development, Inc. Lea County, NM N 32.416606°, W 103.704514° November 11, 2020

⇒ = Bottom Hole Sample Point

⇒ = Sample Point

⇒ = Perimeter Sample Point


⇒ = Side Wall Sample Point



CDEV ID No.: 40950

Figure 2

All sample points are approximate

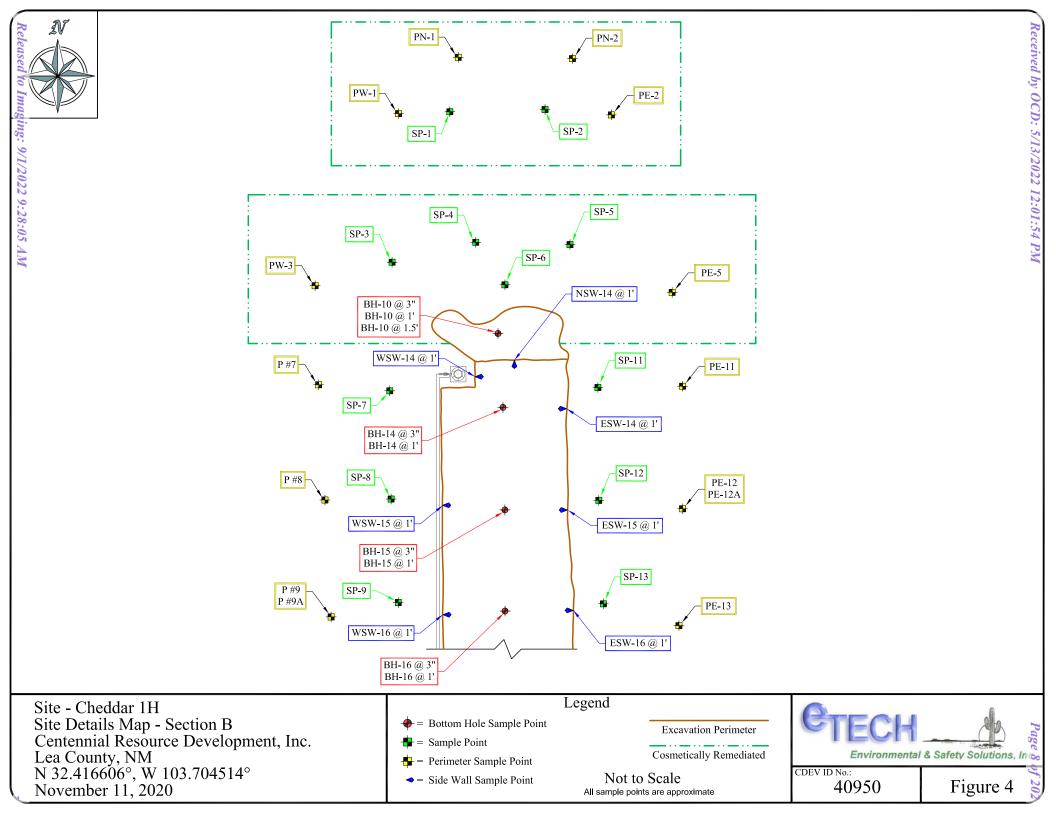
Site - Cheddar 1H Site Details Map - Section A Centennial Resource Development, Inc. Lea County, NM N 32.416606°, W 103.704514° November 11, 2020

= Bottom Hole Sample Point

Legend

Not to Scale

All sample points are approximate


→ = Side Wall Sample Point

Excavation Perimeter

CDEV ID No.: 40950

ECH Safety Solutions, In

Figure 3

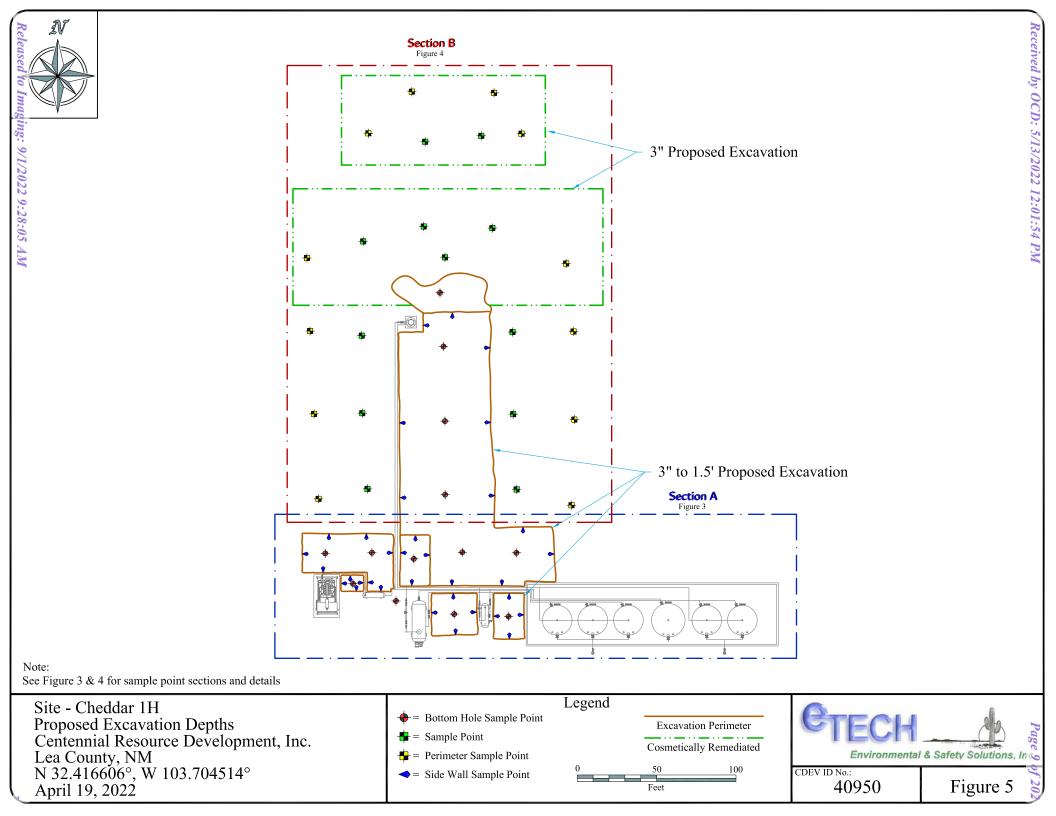


TABLE 1

CHEDDAR 1H LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

All concentrations are reported in mg/Kg METHODS: SW 846-8021B METHOD: SW 8015M E 300.0 SAMPLE SAMPLE TOTAL TOTA													
	SAMPLE			METHODS:	SW 846-80211	3				AETHOD: SW 801	15M		E 300.0
SAMPLE LOCATION	DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORID
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
		<u> </u>			I	Bottom Hole S	ample Results						
Sample Point 1	2/26/2021	< 0.00101	< 0.00101	< 0.00101	0.00336	< 0.00101	0.00336	0.00336	<25.3	<25.3	<25.3	<25.3	<1.01
Sample Point 2	2/26/2021	< 0.00111	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	< 0.00222	<27.8	<27.8	<27.8	<27.8	8.97
Sample Point 3	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	51.2	<25.0	51.2	1.78
Sample Point 4	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	116	33.1	149.1	<1.00
Sample Point 4	4/1/2021	-	-	-	-	-	-	-	<25.0	31.4	29.6	61.0	-
Sample Point 5	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00
Sample Point 6	2/26/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	57.8	<25.5	57.8	5.09
Sample Point 7	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	91.8	<25.0	91.8	3.65
Sample Point 8	2/26/2021	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<25.8	48.0	<25.8	48.0	7.67
Sample Point 9	2/26/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	74.0	<25.5	74.0	5.13
ВН-10 @ 3"	2/26/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	720	121	841	265
BH-10 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.5	130	<25.5	130	-
BH-10 @ 1.5'	5/18/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
Sample Point 11	2/26/2021	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<25.8	108	<25.8	108	3.68
Sample Point 11	4/1/2021	-	-	-	-	-	-	-	<25.0	59.6	<25.0	59.6	-
Sample Point 12	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	2.23
Sample Point 13	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	76.8	<25.0	76.8	6.79
ВН-14 @ 3"	2/26/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	5,220	1,010	6,230	150
BH-14 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.8	<25.8	<25.8	<25.8	-
ВН-15 @ 3"	2/26/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<255	19,900	3,660	23,560	86.6
BH-15 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.0	25.4	<25.0	25.4	-

TABLE 1

CHEDDAR 1H LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

				METHODS:	SW 846-80211	3			N	METHOD: SW 801	15M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
ВН-16 @ 3"	2/26/2021	< 0.00100	0.00120	< 0.00100	< 0.00200	< 0.00100	< 0.00200	0.00120	<250	18,600	2,670	21,270	67.2
BH-16 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
BH-17 @ 1.5'	3/2/2021	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<25.8	364	92.3	456.3	18.0
BH-17 @ 2'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
ВН-18 @ 3"	3/2/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	29.8	829	130	988.8	94.9
BH-18 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
ВН-19 @ 3"	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	395	71.7	466.7	60.5
BH-19 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
BH-20 @ 1'	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	69.0	<25.3	69.0	5.22
BH-21 @ 1'	3/2/2021	< 0.00110	< 0.00110	< 0.00110	< 0.00220	< 0.00110	< 0.00220	< 0.00220	<27.5	70.4	<27.5	70.4	<1.10
ВН-22 @ 3"	3/2/2021	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	9.84
ВН-23 @ 3"	3/2/2021	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	< 0.00208	<130	8,180	1,620	9,800	106
BH-23 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
BH-24 @ 3"	3/2/2021	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	< 0.00208	<26.0	458	153	611	<1.04
BH-24 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
BH-25 @ 6"	3/2/2021	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<25.8	230	54.5	284.5	530
BH-25 @ 1'	4/1/2021	-	-	-	-	-	-	-	<25.3	<25.3	<25.3	<25.3	-
		ı			ı	Side Wall Sa	mple Results	ı			ı	1	ı
NSW-14 @ 1'	4/5/2021	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	< 0.00206	<25.8	<25.8	<25.8	<25.8	27.6
ESW-14 @ 1'	4/1/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	<25.5	<25.5	<25.5	43.5
WSW-14 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	9.11
ESW-15 @ 1'	4/1/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00
WSW-15 @ 1'	4/1/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00

TABLE 1

CHEDDAR 1H LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

				METHODS:	SW 846-8021I	3			N	METHOD: SW 801	15M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
ESW-16 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	5.73
WSW-16 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
NSW-17 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
SSW-17 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
ESW-17 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
WSW-17 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
SSW-18 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	1.77
NSW-19 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	25.6	<25.3	25.6	<1.01
SSW-19 @ 1'	4/5/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
ESW-19 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
NSW-20 @ 1'	3/2/2021	< 0.00106	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00213	< 0.00213	<26.6	27.6	<26.6	27.6	4.67
SSW-20 @ 1'	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
ESW-20 @ 1'	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
WSW-20 @ 1'	3/2/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	93.4	<25.5	93.4	3.39
NSW-21 @ 1'	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
SSW-21 @ 1'	3/2/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	<25.5	<25.5	<25.5	<1.02
ESW-21 @ 1'	3/2/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	78.3	<25.3	78.3	<1.01
WSW-21 @ 1'	3/2/2021	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	< 0.00204	<25.5	<25.5	<25.5	<25.5	<1.02
NSW-23 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
SSW-23 @ 1'	4/1/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	4.13
ESW-23 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
WSW-23 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
NSW-24 @ 1'	4/1/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00
SSW-24 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
ESW-24 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
WSW-24 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	3.87

TABLE 1

CHEDDAR 1H LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

				METHODS:	SW 846-80211	В			N	METHOD: SW 801	15M		E 300.0
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
Limits		10 mg/Kg						50 mg/Kg				100 mg/Kg	600 mg/Kg
NSW-25 @ 1'	4/1/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	3.23
SSW-25 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	9.52
WSW-25 @ 1'	4/1/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	6.02
						Perimeter Sa	mple Results						
Perimeter #7	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00
Perimeter #8	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	28.6	<25.0	28.6	1.33
Perimeter #9	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	1,180	213	1,393	12.6
Perimeter #9A	5/18/2021	-	-	-	-	-	-	-	<25.8	<25.8	<25.8	<25.8	-
Perimeter N-1	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	28.7	<25.0	28.7	8.48
Perimeter N-2	3/8/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	11.5
Perimeter E-2	3/8/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	13.9
Perimeter E-5	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	4.06
Perimeter E-11	3/8/2021	< 0.00100	0.00462	0.00186	< 0.00200	< 0.00100	< 0.00200	0.00648	<25.0	<25.0	<25.0	<25.0	<1.00
Perimeter E-12	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	381	90.3	471.3	4.54
Perimeter E-12A	5/18/2021	-	-	-	-	-	-	-	<25.5	<25.5	<25.5	<25.5	-
Perimeter E-13	3/8/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200	<25.0	<25.0	<25.0	<25.0	<1.00
Perimeter W-1	3/8/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<1.01
Perimeter W-3	3/8/2021	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	< 0.00202	<25.3	78.4	<25.3	78.4	2.11
		1	ı	I	I	Stockpile Sar	-				I		
Stockpile	3/2/2021	< 0.00101	0.00968	0.0142	0.297	0.0868	0.3838	0.40768	614	6,650	1,140	8,404	66.1
Stockpile	4/1/2021	-	-	-	-	-	-	-	35.9	1,190	197	1,422.9	-
Stockpile	5/18/2021	-	-	-	-	-	-	-	28.7	1,120	179	1,327.7	-
Stockpile	6/25/2021	-	-	-	-	-	-	-	<25.3	181	<25.3	181	-
Stockpile	8/5/2021	-	-	-	-	-	-	-	<26.9	<26.9	<26.9	<26.9	-

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

"-" denotes analyte not analyzed.

Project Name: Cheddar 1H **Project No:** 13389

Photo No:

Direction Taken:

Southeast

Description:

View of the release area.

Photo No:

2.

Direction Taken:

Northeast

Description:

View of the release area.

Project Name: Cheddar 1H **Project No:** 13389

Photo No: 3.

Direction Taken:

Northwest

Description:

View of the release area.

Photo No:

4.

Direction Taken:

North

Description:

View of the release area.

Project Name: Cheddar 1H **Project No:** 13389

Photo No: 5.

Direction Taken:

Northwest

Description:

View of excavation activities.

Photo No: 6.

Direction Taken:

Southeast

Description:

View of excavation activities.

Project Name: Cheddar 1H **Project No:** 13389

Photo No: 7.

Direction Taken:

Northeast

Description:

View of excavation activities.

Photo No: 8.

Direction Taken:

West

Description:

View of remediation activities.

Project Name: Cheddar 1H **Project No:** 13389

Photo No: 9.

Direction Taken:

Southwest

Description:

View of the remediated area.

Photo No: 10.

Direction Taken:

Southwest

Description:

View of the remediated area.

Project Name: Cheddar 1H **Project No:** 13389

Photo No: 11.

Direction Taken:

North

Description:

View of the remediated area.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Revised Analytical Report

Prepared for:

Matt Green
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Location: Lea County, NM

Lab Order Number: 1C11006

Current Certification

Report Date: 03/23/21

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

Fax: (432) 563-2213

ANALYTICAL REPORT FOR SAMPLES

Project: Chedder 3BS Fed Com #1H

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample Point 1	1C11006-01	Soil	02/26/21 14:05	03-11-2021 16:22
Sample Point 2	1C11006-02	Soil	02/26/21 14:10	03-11-2021 16:22
Sample Point 3	1C11006-03	Soil	02/26/21 14:15	03-11-2021 16:22
Sample Point 4	1C11006-04	Soil	02/26/21 14:20	03-11-2021 16:22
Sample Point 5	1C11006-05	Soil	02/26/21 14:25	03-11-2021 16:22
Sample Point 6	1C11006-06	Soil	02/26/21 14:30	03-11-2021 16:22
Sample Point 7	1C11006-07	Soil	02/26/21 14:35	03-11-2021 16:22
Sample Point 8	1C11006-08	Soil	02/26/21 14:40	03-11-2021 16:22
Sample Point 9	1C11006-09	Soil	02/26/21 14:45	03-11-2021 16:22
BH-10 @ 3"	1C11006-10	Soil	02/26/21 14:50	03-11-2021 16:22
Sample Point 11	1C11006-11	Soil	02/26/21 14:55	03-11-2021 16:22
Sample Point 12	1C11006-12	Soil	02/26/21 15:00	03-11-2021 16:22
Sample Point 13	1C11006-13	Soil	02/26/21 15:05	03-11-2021 16:22
BH-14 @ 3"	1C11006-14	Soil	02/26/21 15:10	03-11-2021 16:22
BH-15 @ 3"	1C11006-15	Soil	02/26/21 15:15	03-11-2021 16:22
BH-16 @ 3"	1C11006-16	Soil	02/26/21 15:20	03-11-2021 16:22
BH-17 @ 1.5'	1C11006-17	Soil	03/02/21 15:25	03-11-2021 16:22
BH-18 @ 3"	1C11006-18	Soil	03/02/21 15:30	03-11-2021 16:22
BH-19 @ 3"	1C11006-19	Soil	03/02/21 15:35	03-11-2021 16:22
BH-20 @ 1'	1C11006-20	Soil	03/02/21 15:40	03-11-2021 16:22
BH-21 @ 1'	1C11006-21	Soil	03/02/21 15:45	03-11-2021 16:22
BH-22 @ 3"	1C11006-22	Soil	03/02/21 15:50	03-11-2021 16:22
BH-23 @ 3"	1C11006-23	Soil	03/02/21 15:50	03-11-2021 16:22
BH-24 @ 3"	1C11006-24	Soil	03/02/21 15:55	03-11-2021 16:22
BH-25 @ 6"	1C11006-25	Soil	03/02/21 16:00	03-11-2021 16:22
NSW-20 @ 1'	1C11006-26	Soil	03/02/21 16:05	03-11-2021 16:22
NSW-21 @ 1'	1C11006-27	Soil	03/02/21 16:10	03-11-2021 16:22
ESW-20 @ 1'	1C11006-28	Soil	03/02/21 16:15	03-11-2021 16:22
ESW-21 @ 1'	1C11006-29	Soil	03/02/21 16:20	03-11-2021 16:22
SSW-20 @ 1'	1C11006-30	Soil	03/02/21 16:25	03-11-2021 16:22
SSW-21 @ 1'	1C11006-31	Soil	03/02/21 16:30	03-11-2021 16:22
WSW-20 @ 1'	1C11006-32	Soil	03/02/21 16:35	03-11-2021 16:22
WSW-21 @ 1'	1C11006-33	Soil	03/02/21 16:40	03-11-2021 16:22
Stockpile	1C11006-34	Soil	03/02/21 14:00	03-11-2021 16:22

Fax: (432) 563-2213

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H
Project Number: 13389

13000 West County Road 100Project Number: 13389Odessa TX, 79765Project Manager: Matt Green

Fax: (432) 563-2213

Sample Point 1 1C11006-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		1	Permian	Basin Er	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Toluene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Ethylbenzene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Xylene (p/m)	0.00336	0.00202 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Xylene (o)	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.3 %	80-1	20	P1C1110	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.7 %	80-1	20	PICIII0	03/11/21 16:54	03/11/21 21:56	EPA 8021B	
General Chemistry Parameter	s by EPA / Sta	andard Me	thods						
Chloride	ND	1.01 n	ng/kg dry	1	P1C1803	03/18/21 11:56	03/19/21 09:06	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbon	s C6-C35 by I	EPA Metho	d 8015N	1					
C6-C12	ND	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 19:41	TPH 8015M	
>C12-C28	ND	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 19:41	TPH 8015M	
>C28-C35	ND	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 19:41	TPH 8015M	
Surrogate: 1-Chlorooctane		77.6 %	70-1	30	P1C1212	03/12/21 08:00	03/12/21 19:41	TPH 8015M	
Surrogate: o-Terphenyl		86.3 %	70-1	30	P1C1212	03/12/21 08:00	03/12/21 19:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3 n	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 19:41	calc	

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green Fax: (432) 563-2213

Sample Point 2 1C11006-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Er	vironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-	120	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.3 %	80-	120	P1C1110	03/11/21 16:54	03/11/21 22:17	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Mo	ethods						
Chloride	8.97	1.11	mg/kg dry	1	P1C1803	03/18/21 11:56	03/19/21 09:22	EPA 300.0	
% Moisture	10.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015	М					
C6-C12	ND	27.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:04	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:04	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:04	TPH 8015M	
Surrogate: 1-Chlorooctane		84.7 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 20:04	TPH 8015M	-
Surrogate: o-Terphenyl		94.8 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 20:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 20:04	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Sample Point 3 1C11006-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiar	ı Basin Er	ivironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Toluene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Ethylbenzene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Xylene (p/m)	ND	0.00200	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Xylene (o)	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-1	120	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-1	120	P1C1110	03/11/21 16:54	03/11/21 22:38	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	ethods						
Chloride	1.78	1.00	ng/kg dry	1	P1C1803	03/18/21 11:56	03/19/21 09:38	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015N	И					
C6-C12	ND	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:27	TPH 8015M	
>C12-C28	51.2	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:27	TPH 8015M	
>C28-C35	ND	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:27	TPH 8015M	
Surrogate: 1-Chlorooctane		85.8 %	70-1	130	PICI2I2	03/12/21 08:00	03/12/21 20:27	TPH 8015M	
Surrogate: o-Terphenyl		95.8 %	70-1	130	P1C1212	03/12/21 08:00	03/12/21 20:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	51.2	25.0	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 20:27	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Sample Point 4 1C11006-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiar	ı Basin Er	ivironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.1 %	80-1	120	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-1	120	P1C1110	03/11/21 16:54	03/11/21 22:59	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Mo	ethods						
Chloride	ND	1.00	mg/kg dry	1	P1C1803	03/18/21 11:56	03/19/21 09:54	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015N	Л					
C6-C12	ND	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:50	TPH 8015M	
>C12-C28	116	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:50	TPH 8015M	
>C28-C35	33.1	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 20:50	TPH 8015M	
Surrogate: 1-Chlorooctane		86.2 %	70-1	130	PICI2I2	03/12/21 08:00	03/12/21 20:50	TPH 8015M	
Surrogate: o-Terphenyl		96.8 %	70-1	130	P1C1212	03/12/21 08:00	03/12/21 20:50	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	149	25.0	mg/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 20:50	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Sample Point 5 1C11006-05 (Soil)

Analyte	Result	Reporting Limit U	Jnits	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian	Basin E	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100 mg	g/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Toluene	ND	0.00100 mg	g/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Ethylbenzene	ND	0.00100 mg	g/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Xylene (p/m)	ND	0.00200 mg	g/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Xylene (o)	ND	0.00100 mg	g/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-12	20	P1C1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-12	20	PIC1110	03/11/21 16:54	03/11/21 23:19	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard Met	hods						
Chloride	ND	1.00 mg	g/kg dry	1	P1C1803	03/18/21 11:56	03/19/21 10:11	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Method	l 8015M						
C6-C12	ND	25.0 mg	g/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:13	TPH 8015M	
>C12-C28	ND	25.0 mg	g/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:13	TPH 8015M	
>C28-C35	ND	25.0 mg	g/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:13	TPH 8015M	
Surrogate: 1-Chlorooctane		86.9 %	70-13	80	P1C1212	03/12/21 08:00	03/12/21 21:13	TPH 8015M	
Surrogate: o-Terphenyl		98.1 %	70-13	80	P1C1212	03/12/21 08:00	03/12/21 21:13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0 mg	g/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 21:13	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H 13000 West County Road 100 Project Number: 13389

Project Manager: Matt Green

Fax: (432) 563-2213

Sample Point 6 1C11006-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Er	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.9 %	80-	120	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.9 %	80-	120	P1C1110	03/11/21 16:54	03/11/21 23:40	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard M	ethods						
Chloride	5.09	1.02	mg/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 19:22	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015	M					
C6-C12	ND	25.5	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:36	TPH 8015M	
>C12-C28	57.8	25.5	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:36	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:36	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 21:36	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 21:36	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	57.8	25.5	mg/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 21:36	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: 13389
Odessa TX, 79765 Project Manager: Matt Green

Fax: (432) 563-2213

Sample Point 7 1C11006-07 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	Permia	n Basin En	vironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Toluene	ND	0.00100 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Ethylbenzene	ND	0.00100 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Xylene (p/m)	ND	0.00200 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Xylene (o)	ND	0.00100 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-	120	P1C1110	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-	120	PICIII0	03/11/21 16:54	03/12/21 00:01	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard Me	thods						
Chloride	3.65	1.00 n	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 19:42	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015	М					
C6-C12	ND	25.0 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:59	TPH 8015M	
>C12-C28	91.8	25.0 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:59	TPH 8015M	
>C28-C35	ND	25.0 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 21:59	TPH 8015M	
Surrogate: 1-Chlorooctane		97.7 %	70	130	P1C1212	03/12/21 08:00	03/12/21 21:59	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 21:59	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	91.8	25.0 n	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 21:59	calc	

13000 West County Road 100

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H Project Number: 13389

Project Manager: Matt Green

Fax: (432) 563-2213

Sample Point 8 1C11006-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiar	ı Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Toluene	ND	0.00103 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Ethylbenzene	ND	0.00103 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Xylene (p/m)	ND	0.00206 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Xylene (o)	ND	0.00103 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.7 %	80-1	120	PICIII0	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.2 %	80-1	120	P1C1110	03/11/21 16:54	03/12/21 00:22	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	7.67	1.03 1	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 20:01	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015N	И					
C6-C12	ND	25.8 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:22	TPH 8015M	
>C12-C28	48.0	25.8 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:22	TPH 8015M	
>C28-C35	ND	25.8 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:22	TPH 8015M	
Surrogate: 1-Chlorooctane		88.9 %	70-1	130	PIC1212	03/12/21 08:00	03/12/21 22:22	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	130	P1C1212	03/12/21 08:00	03/12/21 22:22	TPH 8015M	
Total Petroleum	48.0	25.8 1	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 22:22	calc	
Hydrocarbon C6-C35									

13000 West County Road 100 Pro Odessa TX, 79765 Proj

Project Number: 13389 Project Manager: Matt Green

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Sample Point 9 1C11006-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Er	ıvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Toluene	ND	0.00102 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Ethylbenzene	ND	0.00102 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Xylene (p/m)	ND	0.00204 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Xylene (o)	ND	0.00102 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.9 %	80-	120	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.7 %	80-	120	P1C1110	03/11/21 16:54	03/12/21 00:43	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	5.13	1.02 1	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 20:21	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015	М					
C6-C12	ND	25.5 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:45	TPH 8015M	
>C12-C28	74.0	25.5 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:45	TPH 8015M	
>C28-C35	ND	25.5 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 22:45	TPH 8015M	
Surrogate: 1-Chlorooctane		87.2 %	70	130	P1C1212	03/12/21 08:00	03/12/21 22:45	TPH 8015M	
Surrogate: o-Terphenyl		98.2 %	70-	130	P1C1212	03/12/21 08:00	03/12/21 22:45	TPH 8015M	
Total Petroleum	74.0	25.5 1	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 22:45	calc	
Hydrocarbon C6-C35									

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Fax: (432) 563-2213

Project Manager: Matt Green

BH-10 @ 3" 1C11006-10 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		j	Permian	Basin En	ıvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Toluene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Ethylbenzene	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Xylene (p/m)	ND	0.00202 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Xylene (o)	ND	0.00101 n	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	80-1	20	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	20	P1C1110	03/11/21 16:54	03/12/21 01:03	EPA 8021B	
General Chemistry Parameters	by EPA / Sta	andard Me	thods						
Chloride	265	1.01 n	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 20:40	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by I	EPA Metho	d 8015M	1	-			-	
C6-C12	ND	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 23:08	TPH 8015M	
>C12-C28	720	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 23:08	TPH 8015M	
>C28-C35	121	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/12/21 23:08	TPH 8015M	
Surrogate: 1-Chlorooctane		96.3 %	70-1	30	P1C1212	03/12/21 08:00	03/12/21 23:08	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P1C1212	03/12/21 08:00	03/12/21 23:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	841	25.3 n	ng/kg dry	1	[CALC]	03/12/21 08:00	03/12/21 23:08	calc	

Project: Chedder 3BS Fed Com #1H Project Number: 13389

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Manager: Matt Green

Sample Point 11 1C11006-11 (Soil)

Analyte	Result	Reporting Limit U	Jnits	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	Permian	Basin E	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103 m	g/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Toluene	ND	0.00103 m	g/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Ethylbenzene	ND	0.00103 m	g/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Xylene (p/m)	ND	0.00206 m	g/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Xylene (o)	ND	0.00103 m	g/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.7 %	80-12	0	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.1 %	80-12	0	P1C1110	03/11/21 16:54	03/12/21 02:06	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard Met	hods						
Chloride	3.68	1.03 m	g/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 21:39	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Method	1 8015M						
C6-C12	ND	25.8 m	g/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:18	TPH 8015M	
>C12-C28	108	25.8 m	g/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:18	TPH 8015M	
>C28-C35	ND	25.8 m	g/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:18	TPH 8015M	
Surrogate: 1-Chlorooctane		93.8 %	70-13	0	P1C1212	03/12/21 08:00	03/13/21 00:18	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-13	0	P1C1212	03/12/21 08:00	03/13/21 00:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	108	25.8 m	g/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 00:18	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Sample Point 12 1C11006-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiai	ı Basin Er	ivironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Toluene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Ethylbenzene	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Xylene (p/m)	ND	0.00200	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Xylene (o)	ND	0.00100	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-1	120	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-1	120	P1C1110	03/11/21 16:54	03/12/21 02:27	EPA 8021B	
General Chemistry Parameters	by EPA / Sta	andard Me	thods						
Chloride	2.23	1.00	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 22:38	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by I	EPA Metho	d 8015N	И					
C6-C12	ND	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:41	TPH 8015M	
>C12-C28	ND	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:41	TPH 8015M	
>C28-C35	ND	25.0	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 00:41	TPH 8015M	
Surrogate: 1-Chlorooctane		91.6 %	70-1	130	P1C1212	03/12/21 08:00	03/13/21 00:41	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1	130	P1C1212	03/12/21 08:00	03/13/21 00:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	ng/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 00:41	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Sample Point 13 1C11006-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permian	Basin Er	ıvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Toluene	ND	0.00100 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Ethylbenzene	ND	0.00100 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Xylene (p/m)	ND	0.00200 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Xylene (o)	ND	0.00100 1	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.9 %	80-1	20	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-1	20	P1C1110	03/11/21 16:54	03/12/21 02:48	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard Me	thods						
Chloride	6.79	1.00 1	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 22:57	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015N	1					
C6-C12	ND	25.0 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:05	TPH 8015M	
>C12-C28	76.8	25.0 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:05	TPH 8015M	
>C28-C35	ND	25.0 1	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:05	TPH 8015M	
Surrogate: 1-Chlorooctane		91.5 %	70-1	30	P1C1212	03/12/21 08:00	03/13/21 01:05	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P1C1212	03/12/21 08:00	03/13/21 01:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	76.8	25.0 1	ng/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 01:05	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

> BH-14 @ 3" 1C11006-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin En	ivironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		103 %	80-	-120	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.9 %	80-	-120	P1C1110	03/11/21 16:54	03/12/21 03:09	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard M	ethods						
Chloride	150	1.00	mg/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 23:17	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Meth	od 8015	M					
C6-C12	ND	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:28	TPH 8015M	
>C12-C28	5220	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:28	TPH 8015M	
>C28-C35	1010	25.0	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 01:28	TPH 8015M	
Surrogate: 1-Chlorooctane		92.4 %	70-	-130	P1C1212	03/12/21 08:00	03/13/21 01:28	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-	-130	P1C1212	03/12/21 08:00	03/13/21 01:28	TPH 8015M	
Total Petroleum	6240	25.0	mg/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 01:28	calc	
Hydrocarbon C6-C35									

Project: Chedder 3BS Fed Com #1H Project Number: 13389 Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389
Project Manager: Matt Green

BH-15 @ 3" 1C11006-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiar	ı Basin En	ıvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102 r	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Toluene	ND	0.00102 r	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Ethylbenzene	ND	0.00102 r	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Xylene (p/m)	ND	0.00204 r	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Xylene (o)	ND	0.00102 r	ng/kg dry	1	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		83.3 %	80-1	'20	P1C1110	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		116 %	80-1	'20	PICIII0	03/11/21 16:54	03/12/21 03:29	EPA 8021B	
General Chemistry Parameters	by EPA / Sta	andard Me	thods						
Chloride	86.6	1.02 r	ng/kg dry	1	P1C1804	03/18/21 11:54	03/18/21 23:36	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by I	EPA Metho	<u>d 8015N</u>	4	-		-	-	
C6-C12	ND	255 r	ng/kg dry	10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
>C12-C28	19900	255 r	ng/kg dry	10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
>C28-C35	3660	255 1	ng/kg dry	10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Surrogate: 1-Chlorooctane		74.2 %	70-1	'30	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Surrogate: o-Terphenyl		83.6 %	70-1	'30	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	23600	255 1	mg/kg dry	10	[CALC]	03/12/21 08:00	03/15/21 09:31	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389
Project Manager: Matt Green

BH-16 @ 3" 1C11006-16 (Soil)

Analyte	Result	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Perm	ian Basin E	nvironmental]	Lab, L.P.			
BTEX by 8021B								
Benzene	ND	0.00100 mg/kg	dry 1	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Toluene	0.00120	0.00100 mg/kg	dry 1	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Ethylbenzene	ND	0.00100 mg/kg	dry 1	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Xylene (p/m)	ND	0.00200 mg/kg	dry 1	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Xylene (o)	ND	0.00100 mg/kg	dry 1	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		110 %	30-120	PICIII0	03/11/21 16:54	03/12/21 03:50	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		79.4 %	30-120	P1C1110	03/11/21 16:54	03/12/21 03:50	EPA 8021B	S-GC
General Chemistry Parameter	rs by EPA / St	andard Method	s					
Chloride	67.2	1.00 mg/kg	dry 1	P1C1804	03/18/21 11:54	03/18/21 23:56	EPA 300.0	
% Moisture	ND	0.1 %	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbon	s C6-C35 by	EPA Method 80	15M					
C6-C12	ND	250 mg/kg	dry 10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
>C12-C28	18600	250 mg/kg	dry 10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
>C28-C35	2670	250 mg/kg	dry 10	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Surrogate: 1-Chlorooctane		95.3 %	70-130	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130	P1C1212	03/12/21 08:00	03/15/21 09:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	21300	250 mg/kg	dry 10	[CALC]	03/12/21 08:00	03/15/21 09:31	calc	

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H Project Number: 13389

Project Manager: Matt Green

BH-17 @ 1.5' 1C11006-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Er	ıvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.4 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		36.8 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 19:58	EPA 8021B	S-GC
General Chemistry Parameters	s by EPA / St	andard M	ethods						
Chloride	18.0	1.03	mg/kg dry	1	P1C1804	03/18/21 11:54	03/19/21 00:15	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 80151	М					
C6-C12	ND	25.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 02:38	TPH 8015M	
>C12-C28	364	25.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 02:38	TPH 8015M	
>C28-C35	92.3	25.8	mg/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 02:38	TPH 8015M	
Surrogate: 1-Chlorooctane		99.4 %	70-	130	P1C1212	03/12/21 08:00	03/13/21 02:38	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-	130	P1C1212	03/12/21 08:00	03/13/21 02:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	456	25.8	mg/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 02:38	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

> BH-18 @ 3" 1C11006-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	Permian	Basin Er	ıvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Toluene	ND	0.00102 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Ethylbenzene	ND	0.00102 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Xylene (p/m)	ND	0.00204 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Xylene (o)	ND	0.00102 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.1 %	80-1.	20	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		37.7 %	80-1.	20	P1C1513	03/15/21 16:08	03/16/21 20:19	EPA 8021B	S-GC
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	94.9	1.02 n	ng/kg dry	1	P1C1804	03/18/21 11:54	03/19/21 00:35	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015M	[
C6-C12	29.8	25.5 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:02	TPH 8015M	
>C12-C28	829	25.5 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:02	TPH 8015M	
>C28-C35	130	25.5 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:02	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-1.	30	P1C1212	03/12/21 08:00	03/13/21 03:02	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-1.	30	P1C1212	03/12/21 08:00	03/13/21 03:02	TPH 8015M	
Total Petroleum	989	25.5 n	ng/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 03:02	calc	
Hydrocarbon C6-C35									

13000 West County Road 100 Project Number: 13389

Odessa TX, 79765 Project Manager: Matt Green Fax: (432) 563-2213

BH-19 @ 3" 1C11006-19 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	Permian	Basin E	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101 n	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
Toluene	ND	0.00101 n	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
Ethylbenzene	ND	0.00101 n	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
Xylene (p/m)	ND	0.00202 n	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
Xylene (o)	ND	0.00101 n	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		56.1 %	80-12	20	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		105 %	80-12	20	P1C1512	03/15/21 16:01	03/16/21 13:17	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard Me	thods						
Chloride	60.5	1.01 n	ng/kg dry	1	P1C1804	03/18/21 11:54	03/19/21 00:54	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015M						
C6-C12	ND	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:25	TPH 8015M	
>C12-C28	395	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:25	TPH 8015M	
>C28-C35	71.7	25.3 n	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:25	TPH 8015M	
Surrogate: 1-Chlorooctane		96.6 %	70-13	30	P1C1212	03/12/21 08:00	03/13/21 03:25	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-13	30	P1C1212	03/12/21 08:00	03/13/21 03:25	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	467	25.3 n	ng/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 03:25	calc	

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

Fax: (432) 563-2213

BH-20 @ 1' 1C11006-20 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permian	Basin Er	ıvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
Toluene	ND	0.00101	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
Ethylbenzene	ND	0.00101	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
Xylene (p/m)	ND	0.00202	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
Xylene (o)	ND	0.00101	ng/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		51.1 %	80-1	20	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		98.5 %	80-1	20	P1C1512	03/15/21 16:01	03/16/21 13:38	EPA 8021B	
General Chemistry Parameters	by EPA / Sta	andard Me	ethods						
Chloride	5.22	1.01	ng/kg dry	1	P1C1804	03/18/21 11:54	03/19/21 01:14	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by I	EPA Metho	od 8015N	1					
C6-C12	ND	25.3	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:48	TPH 8015M	
>C12-C28	69.0	25.3	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:48	TPH 8015M	
>C28-C35	ND	25.3	ng/kg dry	1	P1C1212	03/12/21 08:00	03/13/21 03:48	TPH 8015M	
Surrogate: 1-Chlorooctane		90.3 %	70-1	30	PICI2I2	03/12/21 08:00	03/13/21 03:48	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P1C1212	03/12/21 08:00	03/13/21 03:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	69.0	25.3	mg/kg dry	1	[CALC]	03/12/21 08:00	03/13/21 03:48	calc	

13000 West County Road 100 Project Nodessa TX, 79765 Project N

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389
Project Manager: Matt Green

BH-21 @ 1' 1C11006-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	Permia	n Basin Er	ivironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110 m	ıg/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
Toluene	ND	0.00110 m	ıg/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
Ethylbenzene	ND	0.00110 m	ıg/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
Xylene (p/m)	ND	0.00220 m	ıg/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
Xylene (o)	ND	0.00110 m	ıg/kg dry	1	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		47.4 %	80-	120	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		96.3 %	80-	120	P1C1512	03/15/21 16:01	03/16/21 13:59	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	ND	1.10 m	ıg/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 12:28	EPA 300.0	
% Moisture	9.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015	M					
C6-C12	ND	27.5 m	ıg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 19:38	TPH 8015M	
>C12-C28	70.4	27.5 m	ıg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 19:38	TPH 8015M	
>C28-C35	ND	27.5 m	ıg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 19:38	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-	130	P1C1504	03/15/21 11:54	03/15/21 19:38	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-	130	P1C1504	03/15/21 11:54	03/15/21 19:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	70.4	27.5 m	ıg/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 19:38	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

> BH-22 @ 3" 1C11006-22 (Soil)

Analyte	Result	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Permi	an Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B								
Benzene	ND	0.00104 mg/kg d	ry 1	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
Toluene	ND	0.00104 mg/kg d	ry 1	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
Ethylbenzene	ND	0.00104 mg/kg d	ry 1	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
Xylene (p/m)	ND	0.00208 mg/kg d	ry 1	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
Xylene (o)	ND	0.00104 mg/kg d	ry 1	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		55.4 % 80	0-120	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		103 % 8	0-120	P1C1512	03/15/21 16:01	03/16/21 14:42	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Methods						
Chloride	9.84	1.04 mg/kg d	ry 1	P1C1901	03/19/21 08:35	03/19/21 13:17	EPA 300.0	
% Moisture	4.0	0.1 %	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Method 801	5M					
C6-C12	ND	26.0 mg/kg d	ry 1	P1C1504	03/15/21 11:54	03/15/21 20:01	TPH 8015M	
>C12-C28	ND	26.0 mg/kg d	ry 1	P1C1504	03/15/21 11:54	03/15/21 20:01	TPH 8015M	
>C28-C35	ND	26.0 mg/kg d	ry 1	P1C1504	03/15/21 11:54	03/15/21 20:01	TPH 8015M	
Surrogate: 1-Chlorooctane		110 % 70	0-130	P1C1504	03/15/21 11:54	03/15/21 20:01	TPH 8015M	
Surrogate: o-Terphenyl		118 % 70	0-130	P1C1504	03/15/21 11:54	03/15/21 20:01	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0 mg/kg d	ry 1	[CALC]	03/15/21 11:54	03/15/21 20:01	calc	

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Fax: (432) 563-2213

Project Manager: Matt Green

BH-23 @ 3" 1C11006-23 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Maryte	Result	Limit Cints	Dilution	Batch	Trepared	Tillaryzed	Wichiou	Trotes
		Pern	nian Basin E	nvironmental l	Lab, L.P.			
BTEX by 8021B								
Benzene	ND	0.00104 mg/kg	dry 1	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Toluene	ND	0.00104 mg/kg	dry 1	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Ethylbenzene	ND	0.00104 mg/kg	dry 1	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Xylene (p/m)	ND	0.00208~mg/kg	dry 1	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Xylene (o)	ND	0.00104 mg/kg	dry 1	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.2 %	80-120	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		41.2 %	80-120	P1C1513	03/15/21 16:08	03/16/21 20:40	EPA 8021B	S-GC
General Chemistry Parameters	by EPA / St	andard Method	ls					
Chloride	106	1.04 mg/kg	dry 1	P1C1901	03/19/21 08:35	03/19/21 13:33	EPA 300.0	
% Moisture	4.0	0.1 %	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Method 80	15M					
C6-C12	ND	130 mg/kg	dry 5	P1C1504	03/15/21 11:54	03/16/21 11:07	TPH 8015M	
>C12-C28	8180	130 mg/kg	dry 5	P1C1504	03/15/21 11:54	03/16/21 11:07	TPH 8015M	
>C28-C35	1620	130 mg/kg	dry 5	P1C1504	03/15/21 11:54	03/16/21 11:07	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-130	P1C1504	03/15/21 11:54	03/16/21 11:07	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130	P1C1504	03/15/21 11:54	03/16/21 11:07	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	9800	130 mg/kg	dry 5	[CALC]	03/15/21 11:54	03/16/21 11:07	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Odessa TX, 79765

13000 West County Road 100

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389 Project Manager: Matt Green

BH-24 @ 3" 1C11006-24 (Soil)

Analyte	Result	Reporting Limit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Perm	ian Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B								
Benzene	ND	0.00104 mg/kg d	lry 1	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Toluene	ND	0.00104 mg/kg d	lry 1	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Ethylbenzene	ND	0.00104 mg/kg d	lry 1	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Xylene (p/m)	ND	0.00208 mg/kg d	lry 1	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Xylene (o)	ND	0.00104 mg/kg d	lry 1	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.5 % 8	0-120	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		40.6 % 8	0-120	P1C1513	03/15/21 16:08	03/16/21 21:01	EPA 8021B	S-GC
General Chemistry Parameters	by EPA / St	andard Methods	8					
Chloride	ND	1.04 mg/kg d	lry 1	P1C1901	03/19/21 08:35	03/19/21 13:49	EPA 300.0	
% Moisture	4.0	0.1 %	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by	EPA Method 801	5M					
C6-C12	ND	26.0 mg/kg o	lry 1	P1C1504	03/15/21 11:54	03/15/21 20:46	TPH 8015M	
>C12-C28	458	26.0 mg/kg o	lry 1	P1C1504	03/15/21 11:54	03/15/21 20:46	TPH 8015M	
>C28-C35	153	26.0 mg/kg d	lry 1	P1C1504	03/15/21 11:54	03/15/21 20:46	TPH 8015M	
Surrogate: 1-Chlorooctane		122 % 7	0-130	P1C1504	03/15/21 11:54	03/15/21 20:46	TPH 8015M	
Surrogate: o-Terphenyl		128 % 7	0-130	P1C1504	03/15/21 11:54	03/15/21 20:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	612	26.0 mg/kg c	lry 1	[CALC]	03/15/21 11:54	03/15/21 20:46	calc	

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H Project Number: 13389

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389
Project Manager: Matt Green

BH-25 @ 6" 1C11006-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiai	n Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103 1	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Toluene	ND	0.00103 1	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Ethylbenzene	ND	0.00103 1	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Xylene (p/m)	ND	0.00206 1	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Xylene (o)	ND	0.00103 1	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.7 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		34.2 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 21:21	EPA 8021B	S-GC
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	530	1.03 1	ng/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 14:06	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015N	М					
C6-C12	ND	25.8 1	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:09	TPH 8015M	
>C12-C28	230	25.8 1	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:09	TPH 8015M	
>C28-C35	54.5	25.8 1	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:09	TPH 8015M	
Surrogate: 1-Chlorooctane		115 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:09	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	285	25.8 1	ng/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 21:09	calc	

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Fax: (432) 563-2213

Project Manager: Matt Green

NSW-20 @ 1' 1C11006-26 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	Permiai	ı Basin Eı	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
Toluene	ND	0.00106 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
Ethylbenzene	ND	0.00106 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
Xylene (p/m)	ND	0.00213 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
Xylene (o)	ND	0.00106 n	ng/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		33.2 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		85.0 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 21:42	EPA 8021B	
General Chemistry Parameters	by EPA / Sta	andard Me	thods						
Chloride	4.67	1.06 n	ng/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 14:22	EPA 300.0	
% Moisture	6.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015N	И					
C6-C12	ND	26.6 n	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:33	TPH 8015M	
>C12-C28	27.6	26.6 n	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:33	TPH 8015M	
>C28-C35	ND	26.6 n	ng/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:33	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:33	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	27.6	26.6 n	ng/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 21:33	calc	

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Project Number: 13389

Odessa TX, 79765 Project Manager: Matt Green

> NSW-21 @ 1' 1C11006-27 (Soil)

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiar	ı Basin Er	ivironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		33.2 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		85.8 %	80-1	120	P1C1513	03/15/21 16:08	03/16/21 22:44	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard M	ethods						
Chloride	ND	1.01	mg/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 14:38	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015N	И					
C6-C12	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:56	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:56	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 21:56	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:56	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-1	130	P1C1504	03/15/21 11:54	03/15/21 21:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 21:56	calc	

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

> ESW-20 @ 1' 1C11006-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		31.7 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		87.3 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 23:05	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard M	ethods						
Chloride	ND	1.01	mg/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 14:55	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by	EPA Meth	od 8015	M					
C6-C12	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:19	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:19	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:19	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-	130	P1C1504	03/15/21 11:54	03/15/21 22:19	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-	130	P1C1504	03/15/21 11:54	03/15/21 22:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 22:19	calc	

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

> ESW-21 @ 1' 1C11006-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Eı	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		34.6 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		94.9 %	80-	120	P1C1513	03/15/21 16:08	03/16/21 23:26	EPA 8021B	
General Chemistry Parameters	by EPA / St	andard M	ethods						
Chloride	ND	1.01	mg/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 15:11	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 80151	М					
C6-C12	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:43	TPH 8015M	
>C12-C28	78.3	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:43	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 22:43	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70	130	P1C1504	03/15/21 11:54	03/15/21 22:43	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-	130	P1C1504	03/15/21 11:54	03/15/21 22:43	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	78.3	25.3	mg/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 22:43	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

SSW-20 @ 1' 1C11006-30 (Soil)

Analyte	Result	Reporting Limit U	nits I	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian l	Basin E	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101 mg	/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Toluene	ND	0.00101 mg	/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Ethylbenzene	ND	0.00101 mg	/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Xylene (p/m)	ND	0.00202 mg	/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Xylene (o)	ND	0.00101 mg	/kg dry	1	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.5 %	80-12	0	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		35.1 %	80-12	0	P1C1513	03/15/21 16:08	03/16/21 23:47	EPA 8021B	S-GC
General Chemistry Parameters	by EPA / St	andard Meth	ıods						
Chloride	ND	1.01 mg	/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 15:27	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Method	8015M						
C6-C12	ND	25.3 mg	/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 23:06	TPH 8015M	
>C12-C28	ND	25.3 mg	/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 23:06	TPH 8015M	
>C28-C35	ND	25.3 mg	/kg dry	1	P1C1504	03/15/21 11:54	03/15/21 23:06	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-13	0	P1C1504	03/15/21 11:54	03/15/21 23:06	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-13	0	P1C1504	03/15/21 11:54	03/15/21 23:06	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3 mg	/kg dry	1	[CALC]	03/15/21 11:54	03/15/21 23:06	calc	

Project: Chedder 3BS Fed Com #1H Project Number: 13389 Fax: (432) 563-2213

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

SSW-21 @ 1' 1C11006-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	ın Basin Er	vironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	/ 1	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	/ 1	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	/ 1	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	/ 1	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	/ 1	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.5 %	80-	-120	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		33.9 %	80-	-120	P1C1513	03/15/21 16:08	03/17/21 00:08	EPA 8021B	S-GC
General Chemistry Parameters	by EPA / St	andard Mo	ethods						
Chloride	ND	1.02	mg/kg dry	/ 1	P1C1901	03/19/21 08:35	03/19/21 16:16	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	od 8015	M					
C6-C12	ND	25.5	mg/kg dry	/ 1	P1C1504	03/15/21 11:54	03/16/21 00:16	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	/ 1	P1C1504	03/15/21 11:54	03/16/21 00:16	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	/ 1	P1C1504	03/15/21 11:54	03/16/21 00:16	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-	-130	P1C1504	03/15/21 11:54	03/16/21 00:16	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-	-130	P1C1504	03/15/21 11:54	03/16/21 00:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	/ 1	[CALC]	03/15/21 11:54	03/16/21 00:16	calc	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

WSW-20 @ 1' 1C11006-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permia	n Basin Eı	nvironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
Toluene	ND	0.00102	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
Ethylbenzene	ND	0.00102	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
Xylene (p/m)	ND	0.00204	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
Xylene (o)	ND	0.00102	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		31.3 %	80-	120	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		89.3 %	80-	120	P1C1513	03/15/21 16:08	03/17/21 00:29	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	3.39	1.02	ng/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 17:05	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by	EPA Metho	d 8015	М					
C6-C12	ND	25.5	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 00:40	TPH 8015M	
>C12-C28	93.4	25.5	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 00:40	TPH 8015M	
>C28-C35	ND	25.5	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 00:40	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-	130	P1C1504	03/15/21 11:54	03/16/21 00:40	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-	130	P1C1504	03/15/21 11:54	03/16/21 00:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	93.4	25.5	ng/kg dry	1	[CALC]	03/15/21 11:54	03/16/21 00:40	calc	

Odessa TX, 79765

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H 13000 West County Road 100 Project Number: 13389

Fax: (432) 563-2213

Project Manager: Matt Green

WSW-21 @ 1' 1C11006-33 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permian	Basin E	nvironmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102 r	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
Toluene	ND	0.00102 r	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
Ethylbenzene	ND	0.00102 r	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
Xylene (p/m)	ND	0.00204 r	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
Xylene (o)	ND	0.00102 r	ng/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		32.2 %	80-1	20	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		94.4 %	80-1	20	P1C1513	03/15/21 16:08	03/17/21 00:49	EPA 8021B	
General Chemistry Parameters	s by EPA / St	andard Me	thods						
Chloride	ND	1.02 r	ng/kg dry	1	P1C1901	03/19/21 08:35	03/19/21 17:21	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbons	C6-C35 by 1	EPA Metho	d 8015N	1					
C6-C12	ND	25.5 r	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 01:03	TPH 8015M	
>C12-C28	ND	25.5 r	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 01:03	TPH 8015M	
>C28-C35	ND	25.5 r	ng/kg dry	1	P1C1504	03/15/21 11:54	03/16/21 01:03	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-1	30	P1C1504	03/15/21 11:54	03/16/21 01:03	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-1	30	P1C1504	03/15/21 11:54	03/16/21 01:03	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5 r	ng/kg dry	1	[CALC]	03/15/21 11:54	03/16/21 01:03	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Manager: Matt Green

Stockpile 1C11006-34 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			Permiai	n Basin Eı	ovironmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
Toluene	0.00968	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
Ethylbenzene	0.0142	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
Xylene (p/m)	0.297	0.00202	mg/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
Xylene (o)	0.0868	0.00101	mg/kg dry	1	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		66.4 %	80-1	120	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		95.4 %	80-1	120	P1C1513	03/15/21 16:08	03/17/21 01:10	EPA 8021B	
General Chemistry Parameter	s by EPA / St	andard M	ethods						
Chloride	66.1	10.1	mg/kg dry	10	P1C1901	03/19/21 08:35	03/19/21 17:38	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1214	03/12/21 20:44	03/14/21 09:18	ASTM D2216	
Total Petroleum Hydrocarbon	s C6-C35 by 1	EPA Meth	od 8015N	И					
C6-C12	614	126	mg/kg dry	5	P1C1504	03/15/21 11:54	03/16/21 11:30	TPH 8015M	
>C12-C28	6650	126	mg/kg dry	5	P1C1504	03/15/21 11:54	03/16/21 11:30	TPH 8015M	
>C28-C35	1140	126	mg/kg dry	5	P1C1504	03/15/21 11:54	03/16/21 11:30	TPH 8015M	
Surrogate: 1-Chlorooctane		116 %	70-1	130	P1C1504	03/15/21 11:54	03/16/21 11:30	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-1	130	P1C1504	03/15/21 11:54	03/16/21 11:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	8400	126	mg/kg dry	5	[CALC]	03/15/21 11:54	03/16/21 11:30	calc	

Project: Chedder 3BS Fed Com #1H Project Number: 13389 Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389
Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Диагус	Kesun	Liillit	UIIIIS	Level	Kesun	/0KEC	Lillits	KLD	LIIIII	110168
Batch P1C1110 - *** DEFAULT PREP ***										
Blank (P1C1110-BLK1)				Prepared &	Analyzed:	03/11/21				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
LCS (P1C1110-BS1)				Prepared &	: Analyzed:	03/11/21				
Benzene	0.0807	0.00100	mg/kg wet	0.100		80.7	70-130			
Toluene	0.0948	0.00100	"	0.100		94.8	70-130			
Ethylbenzene	0.107	0.00100	"	0.100		107	70-130			
Xylene (p/m)	0.219	0.00200	"	0.200		109	70-130			
Xylene (o)	0.108	0.00100	"	0.100		108	70-130			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		93.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.9	80-120			
LCS Dup (P1C1110-BSD1)				Prepared &	: Analyzed:	03/11/21				
Benzene	0.0801	0.00100	mg/kg wet	0.100		80.1	70-130	0.833	20	
Toluene	0.0929	0.00100	"	0.100		92.9	70-130	2.09	20	
Ethylbenzene	0.104	0.00100	"	0.100		104	70-130	2.12	20	
Xylene (p/m)	0.220	0.00200	"	0.200		110	70-130	0.820	20	
Xylene (o)	0.109	0.00100	"	0.100		109	70-130	1.26	20	
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		98.8	80-120			
Calibration Check (P1C1110-CCV1)				Prepared &	: Analyzed:	03/11/21				
Benzene	0.0828	0.00100	mg/kg wet	0.100	•	82.8	80-120			
Toluene	0.0948	0.00100	"	0.100		94.8	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.218	0.00200	"	0.200		109	80-120			
Xylene (o)	0.114	0.00100	"	0.100		114	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

96.2

94.6

75-125

75-125

0.120

0.120

0.115

0.113

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Property 1971 197			Reporting		Spike	Source		%REC		RPD	
Property 1971 197	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Benzence	Batch P1C1110 - *** DEFAULT PREP ***										
Foliage 0.0962 0.0010 " 0.100 96.2 80-120 118 80-1	Calibration Check (P1C1110-CCV2)				Prepared:	03/11/21 An	nalyzed: 03	/12/21			
Ethylsenzene 0.118 0.00100 " 0.1000 118 80-120	Benzene	0.0824	0.00100	mg/kg wet	0.100		82.4	80-120			
Section Sec	Toluene	0.0962	0.00100	"	0.100		96.2	80-120			
Variable (a) 0.116 0.0010 " 0.100 116 80-120 116	Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Surrogate: 1,4-Diffuorobenzene	Xylene (p/m)	0.215	0.00200	"	0.200		108	80-120			
Surrogate: 1,4-Digliorobenzene	Xylene (o)	0.116	0.00100	"	0.100		116	80-120			
Prepared: 03/11/21 Analyzed: 03/12/21 Seberace 0.0802 0.00100 mg/kg wt 0.100 80.2 80-120 Seberace 0.0802 0.00100 mg/kg wt 0.100 80.2 80-120 Seberace 0.120 0.00100 " 0.100 96-5 80-120 Seberace 0.120 0.00100 " 0.100 120 80-120 Seberace 0.120 0.00100 " 0.100 110 80-120 Seberace 0.114 0.00100 " 0.100 111 80-120 Seberace 0.117 " 0.120 97.7 75-125 Seberace 0.117 " 0.120 97.6 75-125 Seberace 0.117 " 0.120 97.6 75-125 Seberace 0.00735 0.00101 " 0.1001 0.000859 88.6 80-120 Seberace 0.00735 0.00101 " 0.101 0.000859 88.6 80-120 Seberace 0.00735 0.0101 " 0.101 0.000859 88.6 80-120 Seberace 0.00735 0.00101 " 0.00101 " 0.000859 88.6 80-120 Seberace 0.00735 0.00101 " 0.00101 " 0.000859 88.6 80-120 Seberace 0.00735 0.00101 " 0.00101 0.000857 129 80-120 Seberace 0.00735 0.00101 Seberace 0.	Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.9	75-125			
Benzene 0.0802 0.00100 mg/kg wet 0.100 80.2 80-120	Surrogate: 4-Bromofluorobenzene	0.111		"	0.120		92.9	75-125			
Toluene	Calibration Check (P1C1110-CCV3)				Prepared:	03/11/21 An	nalyzed: 03	/12/21			
Ethylbenzene 0.120 0.00100 " 0.100 120 80-12	Benzene	0.0802	0.00100	mg/kg wet	0.100		80.2	80-120			
Name	Toluene	0.0965	0.00100	"	0.100		96.5	80-120			
Xylene (o) 0.114 0.00100 " 0.100 114 80-120	Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Surrogate: 4-Bromofluorobenzene 0.117 " 0.120 97.7 75-125	Xylene (p/m)	0.219	0.00200	"	0.200		110	80-120			
Matrix Spike (PIC1110-MS1) Source: IC11006-01 Prepared: 03/11/21 Analyzed: 03/12/21	Xylene (o)	0.114	0.00100	"	0.100		114	80-120			
Matrix Spike (P1C1110-MS1) Source: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21	Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.7	75-125			
Benzene 0.0735 0.00101 mg/kg dry 0.101 ND 72.8 80-120 QM-6 Foluene 0.0904 0.00101 " 0.101 0.000859 88.6 80-120 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 Kylene (p/m) 0.197 0.00202 " 0.202 0.00336 95.7 80-120 Kylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 Kylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 Cylene (a) 0.140 " 0.121 115 80-120 Surrogate: 1,4-Difluorobenzene 0.119 " 0.121 115 80-120 Matrix Spike Dup (PIC1110-MSD1) Source: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21 Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-6 Foluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000859 89.3 80-120 0.362 20 Kylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Kylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-6 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.6	75-125			
Toluene 0.0904 0.00101 " 0.101 0.000859 88.6 80-120 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 Xylene (p/m) 0.197 0.00202 " 0.202 0.00336 95.7 80-120 Xylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 Xylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 Xylene (o) 0.140 " 0.121 115 80-120 Xylene (p/m) " 0.121 115 80-120 Xylene (p/m) No rose: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21 Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-1 Toluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-1 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-1 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-1 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-1 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-1 Xylene (o) 0.109 " 0.121 90.1 80-120	Matrix Spike (P1C1110-MS1)	Sou	rce: 1C11006	5-01	Prepared:	03/11/21 An	nalyzed: 03	/12/21			
Solid Control Contro	Benzene	0.0735	0.00101	mg/kg dry	0.101	ND	72.8	80-120			QM-07
Xylene (p/m) 0.197 0.00202 " 0.202 0.00336 95.7 80-120 QM-4 Xylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 QM-4 Surrogate: 4-Bromofluorobenzene 0.140 " 0.121 115 80-120 Surrogate: 1,4-Difluorobenzene 0.119 " 0.121 98.0 80-120 Matrix Spike Dup (P1C1110-MSD1) Source: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21 Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-4 Toluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-4 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Toluene	0.0904	0.00101	"	0.101	0.000859	88.6	80-120			
Xylene (o) 0.131 0.00101 " 0.101 0.000687 129 80-120 QM-0 Surrogate: 4-Bromofluorobenzene 0.140 " 0.121 115 80-120 Surrogate: 1,4-Difluorobenzene 0.119 " 0.121 98.0 80-120 Matrix Spike Dup (P1C1110-MSD1) Source: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21 Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-0 Toluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.0101 " 0.101 0.000687 105 80-120 20.3 20 QM-0	Ethylbenzene	0.115	0.00101	"	0.101	0.000616	113	80-120			
Surrogate: 4-Bromofluorobenzene 0.140 " 0.121 115 80-120	Xylene (p/m)	0.197	0.00202	"	0.202	0.00336	95.7	80-120			
Surrogate: 1,4-Diffuorobenzene 0.140	Xylene (o)	0.131	0.00101	"	0.101	0.000687	129	80-120			QM-07
Matrix Spike Dup (P1C1110-MSD1) Source: 1C11006-01 Prepared: 03/11/21 Analyzed: 03/12/21 Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-00000000000000000000000000000000000	Surrogate: 4-Bromofluorobenzene	0.140		"	0.121		115	80-120			
Benzene 0.0738 0.00101 mg/kg dry 0.101 ND 73.1 80-120 0.370 20 QM-0 Toluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 2.3 20 QM-0 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Surrogate: 1,4-Difluorobenzene	0.119		"	0.121		98.0	80-120			
Toluene 0.0910 0.00101 " 0.101 0.000859 89.3 80-120 0.731 20 Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 2.3 20 QM-0 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Matrix Spike Dup (P1C1110-MSD1)	Sou	rce: 1C11006	5-01	Prepared:	03/11/21 An	nalyzed: 03	/12/21			
Ethylbenzene 0.115 0.00101 " 0.101 0.000616 113 80-120 0.362 20 Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 2.3 20 QM-0 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Benzene	0.0738	0.00101	mg/kg dry	0.101	ND	73.1	80-120	0.370	20	QM-07
Xylene (p/m) 0.192 0.00202 " 0.202 0.00336 93.4 80-120 2.37 20 Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-0 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Toluene	0.0910	0.00101	"	0.101	0.000859	89.3	80-120	0.731	20	
Xylene (o) 0.107 0.00101 " 0.101 0.000687 105 80-120 20.3 20 QM-0 Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120 30-120<	Ethylbenzene	0.115	0.00101	"	0.101	0.000616	113	80-120	0.362	20	
Surrogate: 4-Bromofluorobenzene 0.109 " 0.121 90.1 80-120	Xylene (p/m)	0.192	0.00202	"	0.202	0.00336	93.4	80-120	2.37	20	
utrogue. 4-bromojiuorovenzene 0.109 0.121 90,1 00-120	Xylene (o)	0.107	0.00101	"	0.101	0.000687	105	80-120	20.3	20	QM-07
Surrogate: 1,4-Difluorobenzene 0.119 " 0.121 98.2 80-120	Surrogate: 4-Bromofluorobenzene	0.109		"	0.121		90.1	80-120			
	Surrogate: 1,4-Difluorobenzene	0.119		"	0.121		98.2	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resur	Emin	Cinto	Ecver	resur	701626	Limits	ППБ	Emm	110103
Batch P1C1512 - *** DEFAULT PREP ***										
Blank (P1C1512-BLK1)				Prepared: (03/15/21 At	nalyzed: 03	/16/21			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0610		"	0.120		50.8	80-120			S-GC
LCS (P1C1512-BS1)				Prepared: ()3/15/21 At	nalyzed: 03	/16/21			
Benzene	0.120	0.00100	mg/kg wet	0.100		120	70-130			
Toluene	0.0878	0.00100	"	0.100		87.8	70-130			
Ethylbenzene	0.0809	0.00100	"	0.100		80.9	70-130			
Xylene (p/m)	0.164	0.00200	"	0.200		81.9	70-130			
Xylene (o)	0.0819	0.00100	"	0.100		81.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.0701		"	0.120		58.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.136		"	0.120		113	80-120			
LCS Dup (P1C1512-BSD1)				Prepared: ()3/15/21 Aı	nalyzed: 03	/16/21			
Benzene	0.114	0.00100	mg/kg wet	0.100		114	70-130	5.16	20	
Toluene	0.0826	0.00100	"	0.100		82.6	70-130	6.08	20	
Ethylbenzene	0.0810	0.00100	"	0.100		81.0	70-130	0.161	20	
Xylene (p/m)	0.163	0.00200	"	0.200		81.5	70-130	0.502	20	
Xylene (o)	0.0821	0.00100	"	0.100		82.1	70-130	0.207	20	
Surrogate: 1,4-Difluorobenzene	0.134		"	0.120		112	80-120			
Surrogate: 4-Bromofluorobenzene	0.0692		"	0.120		57.6	80-120			S-GC
Calibration Check (P1C1512-CCV1)				Prepared: ()3/15/21 At	nalyzed: 03	/16/21			
Benzene	0.119	0.00100	mg/kg wet	0.100		119	80-120			
Toluene	0.0858	0.00100	"	0.100		85.8	80-120			
Ethylbenzene	0.0819	0.00100	"	0.100		81.9	80-120			
Xylene (p/m)	0.166	0.00200	"	0.200		83.0	80-120			
Xylene (o)	0.0810	0.00100	"	0.100		81.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 4-Bromofluorobenzene	0.0731		"	0.120		60.9	75-125			S-GC

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1512 - *** DEFAULT PREP ***										
Calibration Check (P1C1512-CCV2)				Prepared: ()3/15/21 A	nalyzed: 03	/16/21			
Benzene	0.109	0.00100	mg/kg wet	0.100		109	80-120			
Toluene	0.0834	0.00100	"	0.100		83.4	80-120			
Ethylbenzene	0.0822	0.00100	"	0.100		82.2	80-120			
Xylene (p/m)	0.166	0.00200	"	0.200		83.1	80-120			
Xylene (o)	0.0849	0.00100	"	0.100		84.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.0560		"	0.120		46.7	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	75-125			
Calibration Check (P1C1512-CCV3)				Prepared: (03/15/21 A	nalyzed: 03	/16/21			
Benzene	0.101	0.00100	mg/kg wet	0.100		101	80-120			
Toluene	0.0899	0.00100	"	0.100		89.9	80-120			
Ethylbenzene	0.0826	0.00100	"	0.100		82.6	80-120			
Xylene (p/m)	0.174	0.00200	"	0.200		87.1	80-120			
Xylene (o)	0.108	0.00100	"	0.100		108	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.1	75-125			
Surrogate: 4-Bromofluorobenzene	0.0418		"	0.120		34.8	75-125			S-GC
Matrix Spike (P1C1512-MS1)	Sou	ırce: 1C09014	-29	Prepared: ()3/15/21 A	nalyzed: 03	/16/21			
Benzene	0.0919	0.00102	mg/kg dry	0.102	ND	90.1	80-120			
Toluene	0.0727	0.00102	"	0.102	ND	71.3	80-120			QM-07
Ethylbenzene	0.0507	0.00102	"	0.102	ND	49.7	80-120			QM-07
Xylene (p/m)	0.0828	0.00204	"	0.204	ND	40.6	80-120			QM-07
Xylene (o)	0.0387	0.00102	"	0.102	ND	37.9	80-120			QM-07
Surrogate: 1,4-Difluorobenzene	0.131		"	0.122		107	80-120			
Surrogate: 4-Bromofluorobenzene	0.0629		"	0.122		51.4	80-120			S-GC
Matrix Spike Dup (P1C1512-MSD1)	Sou	ırce: 1C09014	-29	Prepared: (03/15/21 A	nalyzed: 03	/16/21			
Benzene	0.0929	0.00102	mg/kg dry	0.102	ND	91.1	80-120	1.13	20	
Toluene	0.0752	0.00102	"	0.102	ND	73.7	80-120	3.31	20	QM-07
Ethylbenzene	0.0497	0.00102	"	0.102	ND	48.7	80-120	1.93	20	QM-07
Xylene (p/m)	0.0752	0.00204	"	0.204	ND	36.9	80-120	9.64	20	QM-07
Xylene (o)	0.0348	0.00102	"	0.102	ND	34.1	80-120	10.6	20	QM-07
Surrogate: 4-Bromofluorobenzene	0.0643		"	0.122		52.5	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.133		"	0.122		108	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green Fax: (432) 563-2213

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-		Liiiit	Oillis	Level	Result	/UKEC	Lillito	MD	Limit	110103
Batch P1C1513 - *** DEFAULT PREP **	*			_						
Blank (P1C1513-BLK1)				Prepared: (03/15/21 Ar	nalyzed: 03	/16/21			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0338		"	0.120		28.2	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.100		"	0.120		83.7	80-120			
LCS (P1C1513-BS1)				Prepared: ()3/15/21 Ar	nalyzed: 03	/16/21			
Benzene	0.109	0.00100	mg/kg wet	0.100		109	70-130			
Toluene	0.0813	0.00100	"	0.100		81.3	70-130			
Ethylbenzene	0.0804	0.00100	"	0.100		80.4	70-130			
Xylene (p/m)	0.165	0.00200	"	0.200		82.7	70-130			
Xylene (o)	0.0825	0.00100	"	0.100		82.5	70-130			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.0462		"	0.120		38.5	80-120			S-GC
LCS Dup (P1C1513-BSD1)				Prepared: (03/15/21 Ar	nalvzed: 03	/16/21			
Benzene	0.103	0.00100	mg/kg wet	0.100		103	70-130	5.91	20	
Toluene	0.0833	0.00100	"	0.100		83.3	70-130	2.44	20	
Ethylbenzene	0.0811	0.00100	"	0.100		81.1	70-130	0.817	20	
Xylene (p/m)	0.165	0.00200	"	0.200		82.3	70-130	0.497	20	
Xylene (o)	0.0838	0.00100	"	0.100		83.8	70-130	1.60	20	
Surrogate: 4-Bromofluorobenzene	0.0485		"	0.120		40.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
Calibration Check (P1C1513-CCV1)				Prepared: ()3/15/21 Ar	nalyzed: 03	/16/21			
Benzene	0.112	0.00100	mg/kg wet	0.100		112	80-120			
Toluene	0.0827	0.00100	"	0.100		82.7	80-120			
Ethylbenzene	0.0924	0.00100	"	0.100		92.4	80-120			
Xylene (p/m)	0.166	0.00200	"	0.200		83.1	80-120			
Xylene (o)	0.103	0.00100	"	0.100		103	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	75-125			
- "										

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

38.6

75-125

0.120

0.0463

S-GC

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1513 - *** DEFAULT PREP ***										
Calibration Check (P1C1513-CCV2)				Prepared: ()3/15/21 A	nalyzed: 03	/16/21			
Benzene	0.107	0.00100	mg/kg wet	0.100		107	80-120			
Toluene	0.0820	0.00100	"	0.100		82.0	80-120			
Ethylbenzene	0.0864	0.00100	"	0.100		86.4	80-120			
Xylene (p/m)	0.163	0.00200	"	0.200		81.4	80-120			
Xylene (o)	0.0881	0.00100	"	0.100		88.1	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.0412		"	0.120		34.4	75-125			S-GC
Calibration Check (P1C1513-CCV3)				Prepared: (03/15/21 A	nalyzed: 03	/17/21			
Benzene	0.0963	0.00100	mg/kg wet	0.100		96.3	80-120			
Toluene	0.0811	0.00100	"	0.100		81.1	80-120			
Ethylbenzene	0.0828	0.00100	"	0.100		82.8	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		81.1	80-120			
Xylene (o)	0.0817	0.00100	"	0.100		81.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.0555		"	0.120		46.3	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.138		"	0.120		115	75-125			
Matrix Spike (P1C1513-MS1)	Sou	ırce: 1C11006	-23	Prepared: (03/15/21 A	nalyzed: 03	/17/21			
Benzene	0.0599	0.00104	mg/kg dry	0.104	ND	57.5	80-120			QM-07
Toluene	0.0228	0.00104	"	0.104	ND	21.9	80-120			QM-07
Ethylbenzene	0.0133	0.00104	"	0.104	ND	12.8	80-120			QM-07
Xylene (p/m)	0.0191	0.00208	"	0.208	ND	9.18	80-120			QM-07
Xylene (o)	0.00882	0.00104	"	0.104	ND	8.47	80-120			QM-07
Surrogate: 1,4-Difluorobenzene	0.122		"	0.125		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.0509		"	0.125		40.7	80-120			S-GC
Matrix Spike Dup (P1C1513-MSD1)	Sou	ırce: 1C11006	-23	Prepared: (03/15/21 A	nalyzed: 03	/17/21			
Benzene	0.0653	0.00104	mg/kg dry	0.104	ND	62.7	80-120	8.67	20	QM-07
Toluene	0.0273	0.00104	"	0.104	ND	26.2	80-120	18.1	20	QM-07
Ethylbenzene	0.0144	0.00104	"	0.104	ND	13.8	80-120	7.66	20	QM-07
Xylene (p/m)	0.0207	0.00208	"	0.208	ND	9.92	80-120	7.75	20	QM-07
Xylene (o)	0.00984	0.00104	"	0.104	ND	9.45	80-120	10.9	20	QM-07
Surrogate: 1,4-Difluorobenzene	0.123		"	0.125		98.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.0501		"	0.125		40.1	80-120			S-GC

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389
Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result		Limits	RPD	Limit	Notes
Batch P1C1214 - *** DEFAULT PREP ***										
Blank (P1C1214-BLK1)				Prepared: (03/12/21	Analyzed: 03	/14/21			
% Moisture	ND	0.1	%							
Batch P1C1803 - *** DEFAULT PREP ***										
Blank (P1C1803-BLK1)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	ND	1.00	mg/kg wet							
LCS (P1C1803-BS1)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	419	1.00	mg/kg wet	400		105	90-110			
LCS Dup (P1C1803-BSD1)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	401	1.00	mg/kg wet	400		100	90-110	4.23	20	
Calibration Check (P1C1803-CCV1)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	18.7		mg/kg	20.0		93.5	90-110			
Calibration Check (P1C1803-CCV2)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	18.8		mg/kg	20.0		94.1	90-110			
Calibration Check (P1C1803-CCV3)				Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	18.8		mg/kg	20.0		93.9	90-110			
Matrix Spike (P1C1803-MS1)	Sou	rce: 1C10013	3-26	Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	1380	1.11	mg/kg dry	556	779	108	80-120			
Matrix Spike (P1C1803-MS2)	Sou	rce: 1C11005	5-05	Prepared: (03/18/21	Analyzed: 03	/19/21			
Chloride	2070	5.56	mg/kg dry	556	1510	100	80-120			

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Fax: (432) 563-2213

Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

		Damant'		Cuiles	Source		0/DEC		RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch P1C1803 - *** DEFAULT PREP ***										
Matrix Spike Dup (P1C1803-MSD1)	Sou	rce: 1C10013	3-26	Prepared: (03/18/21 A	nalyzed: 03	/19/21			
Chloride	1290	1.11	mg/kg dry	556	779	92.2	80-120	6.62	20	
Matrix Spike Dup (P1C1803-MSD2)	Sou	rce: 1C11005	5-05	Prepared: (03/18/21 A	nalyzed: 03	/19/21			
Chloride	2070	5.56	mg/kg dry	556	1510	100	80-120	0.0376	20	
Batch P1C1804 - *** DEFAULT PREP ***										
Blank (P1C1804-BLK1)				Prepared &	Analyzed:	03/18/21				
Chloride	ND	1.00	mg/kg wet							
LCS (P1C1804-BS1)				Prepared &	a Analyzed:	03/18/21				
Chloride	413	1.00	mg/kg wet	400		103	90-110			
LCS Dup (P1C1804-BSD1)				Prepared &	Analyzed:	03/18/21				
Chloride	416	1.00	mg/kg wet	400		104	90-110	0.708	20	
Calibration Check (P1C1804-CCV1)				Prepared &	Analyzed:	03/18/21				
Chloride	20.2		mg/kg	20.0	-	101	90-110			
Calibration Check (P1C1804-CCV2)				Prepared &	Analyzed:	03/18/21				
Chloride	20.2		mg/kg	20.0	•	101	90-110			
Calibration Check (P1C1804-CCV3)				Prepared: (03/18/21 A	nalyzed: 03	/19/21			
Chloride	20.3		mg/kg	20.0		102	90-110			
Matrix Spike (P1C1804-MS1)	Source: 1C18005-01			Prepared & Analyzed: 03/18/21						
Chloride	492	1.00	mg/kg wet	500	7.96	96.9	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: 13389
Odessa TX, 79765 Project Manager: Matt Green

Fax: (432) 563-2213

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1804 - *** DEFAULT PREP ***										
Matrix Spike (P1C1804-MS2)	Sour	rce: 1C11006	-11	Prepared &	& Analyzed:	03/18/21				
Chloride	494	1.03	mg/kg dry	515	3.68	95.0	80-120			
Matrix Spike Dup (P1C1804-MSD1)	Sour	rce: 1C18005	5-01	Prepared &	& Analyzed:	03/18/21				
Chloride	483	1.00	mg/kg wet	500	7.96	95.0	80-120	1.86	20	
Matrix Spike Dup (P1C1804-MSD2)	Sour	rce: 1C11006	5-11	Prepared &	& Analyzed:	03/18/21				
Chloride	501	1.03	mg/kg dry	515	3.68	96.5	80-120	1.47	20	
Batch P1C1901 - *** DEFAULT PREP ***										
Blank (P1C1901-BLK1)				Prepared &	& Analyzed:	03/19/21				
Chloride	ND	1.00	mg/kg wet							
LCS (P1C1901-BS1)				Prepared &	& Analyzed:	03/19/21				
Chloride	388	1.00	mg/kg wet	400		97.0	90-110			
LCS Dup (P1C1901-BSD1)				Prepared &	& Analyzed:	03/19/21				
Chloride	389	1.00	mg/kg wet	400		97.3	90-110	0.371	20	
Calibration Check (P1C1901-CCV1)				Prepared &	& Analyzed:	03/19/21				
Chloride	18.7		mg/kg	20.0	· · ·	93.6	90-110			
Calibration Check (P1C1901-CCV2)				Prepared &	k Analyzed:	03/19/21				
Chloride	18.8		mg/kg	20.0		94.0	90-110			
Calibration Check (P1C1901-CCV3)				Prepared &	& Analyzed:	03/19/21				
Chloride	18.9		mg/kg	20.0		94.6	90-110			

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

Project Number: 13389
Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	Result	Reporting Limit Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Resuit	Limit Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch P1C1901 - *** DEFAULT PREP ***									
Matrix Spike (P1C1901-MS1)	Sour	ce: 1C11006-21	Prepared &	& Analyzed:	03/19/21				
Chloride	490	1.10 mg/kg dr	549	ND	89.2	80-120			
Matrix Spike (P1C1901-MS2)	Sour	rce: 1C11006-31	Prepared &	& Analyzed:	03/19/21				
Chloride	449	1.02 mg/kg dr	510	ND	87.9	80-120			
Matrix Spike Dup (P1C1901-MSD1)	Sour	rce: 1C11006-21	Prepared &	& Analyzed:	03/19/21				
Chloride	519	1.10 mg/kg dr	549	ND	94.5	80-120	5.75	20	
Matrix Spike Dup (P1C1901-MSD2)	Soui	rce: 1C11006-31	Prepared &	& Analyzed:	03/19/21				
Chloride	457	1.02 mg/kg dr	510	ND	89.6	80-120	1.93	20	

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1212 - TX 1005										
Blank (P1C1212-BLK1)				Prepared &	k Analyzed:	03/12/21				
C6-C12	ND	25.0	mg/kg wet	•	•					
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	150		"	160		93.7	70-130			
Surrogate: o-Terphenyl	83.1		"	80.0		104	70-130			
LCS (P1C1212-BS1)				Prepared &	ն Analyzed:	03/12/21				
C6-C12	1220	25.0	mg/kg wet	1100		111	75-125			
>C12-C28	1150	25.0	"	1100		104	75-125			
Surrogate: 1-Chlorooctane	145		"	160		90.8	70-130			
Surrogate: o-Terphenyl	73.2		"	80.0		91.5	70-130			
LCS Dup (P1C1212-BSD1)				Prepared &	ն Analyzed:	03/12/21				
C6-C12	1290	25.0	mg/kg wet	1100		117	75-125	5.40	20	
>C12-C28	1190	25.0	"	1100		109	75-125	3.88	20	
Surrogate: 1-Chlorooctane	148		"	160		92.7	70-130			
Surrogate: o-Terphenyl	82.2		"	80.0		103	70-130			
Calibration Check (P1C1212-CCV1)				Prepared &	ն Analyzed:	03/12/21				
C6-C12	561	25.0	mg/kg wet	600		93.6	85-115			
>C12-C28	673	25.0	"	600		112	85-115			
Surrogate: 1-Chlorooctane	145		"	160		90.8	70-130			
Surrogate: o-Terphenyl	79.8		"	80.0		99.8	70-130			
Calibration Check (P1C1212-CCV2)				Prepared &	ե Analyzed:	03/12/21				
C6-C12	630	25.0	mg/kg wet	600		105	85-115			
>C12-C28	666	25.0	"	600		111	85-115			
Surrogate: 1-Chlorooctane	146		"	160		91.2	70-130			
Surrogate: o-Terphenyl	82.2		"	80.0		103	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H Project Number: 13389

13000 West County Road 100 Odessa TX, 79765

Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1212 - TX 1005										
Duplicate (P1C1212-DUP1)	Sour	ce: 1C11006	-20	Prepared: (03/12/21 At	nalyzed: 03	/13/21			
C6-C12	10.8	25.3	mg/kg dry		ND				20	
>C12-C28	51.2	25.3	"		69.0			29.7	20	
Surrogate: 1-Chlorooctane	148		"	162		91.8	70-130			
Surrogate: o-Terphenyl	84.4		"	80.8		104	70-130			
Batch P1C1504 - TX 1005										
Blank (P1C1504-BLK1)				Prepared &	Analyzed:	03/15/21				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	59.0		"	50.0		118	70-130			
LCS (P1C1504-BS1)				Prepared &	Analyzed:	03/15/21				
C6-C12	1100	25.0	mg/kg wet	1000		110	75-125			
>C12-C28	1070	25.0	"	1000		107	75-125			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	63.8		"	50.0		128	70-130			
LCS Dup (P1C1504-BSD1)				Prepared &	Analyzed:	03/15/21				
C6-C12	1100	25.0	mg/kg wet	1000		110	75-125	0.174	20	
>C12-C28	1060	25.0	"	1000		106	75-125	0.564	20	
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	60.8		"	50.0		122	70-130			
Calibration Check (P1C1504-CCV1)				Prepared &	Analyzed:	03/15/21				
C6-C12	503	25.0	mg/kg wet	500		101	85-115			
>C12-C28	549	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	57.2		"	50.0		114	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H

Fax: (432) 563-2213

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389
Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	D 1	Reporting	***	Spike	Source	A/DEC	%REC	DDD	RPD	N T .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1504 - TX 1005										
Calibration Check (P1C1504-CCV2)				Prepared &	k Analyzed	: 03/15/21				
C6-C12	500	25.0	mg/kg wet	500		100	85-115			
>C12-C28	556	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	128		"	100		128	70-130			
Surrogate: o-Terphenyl	57.0		"	50.0		114	70-130			
Calibration Check (P1C1504-CCV3)				Prepared: (03/15/21 A	nalyzed: 03	/16/21			
C6-C12	482	25.0	mg/kg wet	500		96.5	85-115			
>C12-C28	541	25.0	"	500		108	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	55.0		"	50.0		110	70-130			
Matrix Spike (P1C1504-MS1)	Sou	rce: 1C12001	-06	Prepared: (03/15/21 A	nalyzed: 03	/16/21			
C6-C12	1100	26.3	mg/kg dry	1050	ND	104	75-125			
>C12-C28	1070	26.3	"	1050	ND	102	75-125			
Surrogate: 1-Chlorooctane	113		"	105		108	70-130			
Surrogate: o-Terphenyl	64.5		"	52.6		122	70-130			
Matrix Spike Dup (P1C1504-MSD1)	Sou	rce: 1C12001	-06	Prepared: (03/15/21 A	nalyzed: 03	/16/21			
C6-C12	1040	26.3	mg/kg dry	1050	ND	98.9	75-125	5.17	20	
>C12-C28	993	26.3	"	1050	ND	94.4	75-125	7.75	20	
Surrogate: 1-Chlorooctane	105		"	105		99.5	70-130			
Surrogate: o-Terphenyl	60.4		"	52.6		115	70-130			

E Tech Environmental & Safety Solutions, Inc. [1]

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389 Project Manager: Matt Green

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS QM-07

recovery.

BULK Samples received in Bulk soil containers

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

LCS Laboratory Control Spike

MS Matrix Spike Duplicate

Dup

	Kyen Sarron		
Report Approved By:		Date:	3/23/2021

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

	4.4
. '	
- 1	
. "	
	W .
	(P) to (I)
٠	
	And Annual Control
	3

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Relino	Relino	Relina	opec	<u> </u>	29	2%	7	26	ζ_j	77	2	7	4	LAB# (lab use only)	ORI	(lab u							
Relinquished by:	Relinquished by	Relinquished by:	Special Instructions. Bill		22	8		9	ν ,		3	2			ORDER #	(lab use only)	S	· -	C	0	C	T	
by	d by:	No A	- struct												#F	্র	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager	
			Bill												ਨ		ler S	one	tate/	any ,	any i	± Ma	
		The same	Bill to Centennial									-			900112		igna	N _O	Zip:	Addr	Nam	nag	
			ente	SSW-20 @ 1'	ESW-21 @ 1'	ESW-20 @ 1"	NSW-21 @ 1	NSW-20 @ 1'	뫄	BH	ВH	ВH	모	FIE	18		ture			ess:	ō	er.	
	,	0)nnic	V-20	V-21	V-20	21	V-20	BH-25 @ 6"	BH-24 @ 3"	BH-23 @ 3"	BH-22 @ 3"	BH-21 @ 1'	FIELD CODE	É			<u>£</u>	18		ļΨ	Ma	
		M	> <u>*</u>	(8)	(9)	(9)	(9)	(9)	@	@ 3	@3	@ 3	® 	Ö				(432)230	Odessa, Texas 79765	13000 W CR 100	ļš.	Matt Green	
		2		=	1-	-	-	-] =	=	-	=	-					037	, Te	<u>Ω</u>	nvir	een	
		2					İ										2	3	as 7	100) Mm(
Date	Date	Date					ļ										2		976		ntal		
0	0	_ e					-										5		5		and		
		16												Beginning Depth] .		Ž				Safety		
Time	Time	Time (6:23												Ending Depth			ter				Etech Environmental and Safety Solutions, Inc.		
Q Z	고			-	+-	\vdash	+	-			-	-	-		1						ions,		
	ceive	ceive		3/2/	3/2/	3/2/	3/2/	3/2/	3/2/	3/2/	3/2/	3/2/	3/2/	Data Camulad				}:			inc.		
∂ §	Received by:	Received by:		3/2/2021	3/2/202	3/2/2021	3/2/2021	3/2/2021	3/2/2021	3/2/2021	3/2/2021	3/2/2021	3/2/2021	Date Sampled									
HUDO BULLOS					1	<u> </u>	<u> </u>		<u> </u>		<u> </u>	\sqsubseteq	Ē		4			1					
18				6	T.	16	_		-		_				1								
8				623	120	15	610	504	600	555	250	1550	545	Time Sampled			φ	Fax					
\$						`	-	()	0	14	0	0	5				e-mail:	Fax No:					
\ \														Field Filtered		≨							3 5
				1		-	<u> </u>	_		_	_	_	_	Total #. of Containers	-	SIE	Matt@etechenv.c	1: "				Midland, Texas	10014 S County Boad 1913
				×	×	×	<u> ~</u>	×	×	×	×	×	×	Ice HNO ₃	- g	0	i <u>S</u>					I, Te	, [
			:	-		┢		H	-		-	<u> </u>		HCI	- serva	elec	6					Xas	•
					+			\vdash						H ₂ SO ₄	Preservation & #	cne	ete					79706	9
														NaOH	***	nv.	Che					6 6	7
														Na ₂ S ₂ O ₃	of Containers	con	nenv.com					1 2	3
12/2								_	$ldsymbol{f eta}$	_		_		None	iners	1	100 100 100 100 100 100 100 100 100 100						5
A_{ij}^{Datte}	Date	Date		-	+-		-			<u>. </u>				Other (Specify) DW=Drinking Water SL=Sludge	H		ı⊃		.	1	1 :	1	!
7				S	S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid	Matrix			₽					
16							<u> </u>							NP=Non-Potable Specify Other	×		•	port		₽		Proj	
	ime	me		×	_ <u> ×</u> _	×	×	×	×	×	×	×	×		015B			Report Format:		ojec	Pro	ect -	
2,7,800	l o	00 C	 ≤ ທ r		-	+	-	-	-	-	_	-		TPH: TX 1005 Ext TX 1 Cations (Ca, Mg, Na, K)	006			at	PO #	Project Loc:	Project #:	Project Name:	
Received Adjusted:	Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	abels ustor		ğ	+	+	\vdash	\vdash	f	-	 	\vdash	\vdash	Anions (CI, SO4, Alkalinity)	\dashv_{\exists}			⊠		"	.** 		
ed:	nple Hand I by Sampler/ by Courier?	y se y se	Free Free	3 -	+	<u> </u>	T							SAR / ESP / CEC	TOTAL:	TCLP:		Sta					
	pler/ ier/	als c	약	<u>}</u>										Metals: As Ag Ba Cd Cr Pb Ho		\Box		⊠ Standard		1		ਨ	;
3 99	Clien		ners lead:											Volatiles		Analyze		ā				Ted C	
Received: 5,1 °C F	nple Hand Delivered by Sampler/Client Rep.? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?	i	_	_		_	Ļ.	_	_	_	,	Semivolatiles	200	H _e E				Lea		Cheddar 3BS Fed Com #1H	10000 1000 1000
°C Factor	. ່ ບ	ner(s s)	e, 5	<u>×</u>	<u> ×</u>	×	×	×	×	×	×	×	×	BTEX 80219/5030 or BTEX 82	260	∐"		☐ TRRP		Lea County, NM	13389)BS	-
₫ ¼	DHL			_	╁╌	\vdash	\vdash	-	+	\vdash	\vdash		-	N.O.R.M.		\dashv		RR P		Inty,	ő	Fed	;
$\mathcal{E}_{\mathcal{I}}$	FedE			×	 ×	×	×	×	×	×	×	×	×	Chlorides E 300	· ·	\dashv				N N		င္လ	
	<u> </u>	\prec																				m #	
	Lone _	222	22				L											NPDES				岸	
	Lone Star	222	Z Z	Ŀ	+		_			L				RUSH TAT (Pre-Schedule) 24	48, 72	hrs	I	ŒS					
- K35544		34		$] \times$		× 8:0	×	×	×	×	×	×	×	Standard TAT	_ ل				1.	1	F	Page 55	0

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389

Location: Lea County, New Mexico

Lab Order Number: 1G01017

Current Certification

Report Date: 07/08/21

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Stockpile	1G01017-01	Soil	06/25/21 12:00	07-01-2021 16:24

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

Stockpile 1G01017-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
% Moisture	1.0	0.1	%	1	P1G0603	07/06/21 09:56	07/06/21 10:11	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C25 by FD	Mathad	001 <i>EM</i>						
, , , , , , , , , , , , , , , , , , , ,									
C6-C12	ND	25.3	mg/kg dry	1	P1G0203	07/02/21 08:40	07/02/21 23:12	TPH 8015M	
>C12-C28	181	25.3	mg/kg dry	1	P1G0203	07/02/21 08:40	07/02/21 23:12	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1G0203	07/02/21 08:40	07/02/21 23:12	TPH 8015M	
Surrogate: 1-Chlorooctane		112 %	70-130		P1G0203	07/02/21 08:40	07/02/21 23:12	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P1G0203	07/02/21 08:40	07/02/21 23:12	TPH 8015M	
Total Petroleum Hydrocarbon	181	25.3	mg/kg dry	1	[CALC]	07/02/21 08:40	07/02/21 23:12	calc	
C6-C35									

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

	D 1:	Reporting	**	Spike	Source	A/DEG	%REC	DDD	RPD	37.4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1G0603 - *** DEFAULT PREP ***										
Blank (P1G0603-BLK1)				Prepared &	Analyzed:	07/06/21				
% Moisture	ND	0.1	%							
Blank (P1G0603-BLK2)				Prepared &	Analyzed:	07/06/21				
% Moisture	ND	0.1	%							
Blank (P1G0603-BLK3)				Prepared &	: Analyzed:	07/06/21				
% Moisture	ND	0.1	%							
Duplicate (P1G0603-DUP1)	Sour	ce: 1G01015-	03	Prepared &	: Analyzed:	07/06/21				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P1G0603-DUP2)	Sour	ce: 1G01018-	08	Prepared &	: Analyzed:	07/06/21				
% Moisture	10.0	0.1	%		11.0			9.52	20	
Duplicate (P1G0603-DUP3)	Sour	ce: 1G02003-	04	Prepared &	: Analyzed:	07/06/21				
% Moisture	6.0	0.1	%		8.0			28.6	20	
Duplicate (P1G0603-DUP4)	Sour	ce: 1G02002-	01	Prepared &	: Analyzed:	07/06/21				
% Moisture	6.0	0.1	%		6.0			0.00	20	

Project Number: 13389

13000 West County Road 100 Odessa TX, 79765

Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1G0203 - TX 1005										
Calibration Check (P1G0203-CCV2)				Prepared &	k Analyzed:	07/02/21				
C6-C12	518	25.0	mg/kg wet	500		104	85-115			
>C12-C28	563	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	50.9		"	50.0		102	70-130			
Calibration Check (P1G0203-CCV3)				Prepared: (07/02/21 A	nalyzed: 07	7/03/21			
C6-C12	520	25.0	mg/kg wet	500		104	85-115			
>C12-C28	549	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			
Matrix Spike (P1G0203-MS1)	Sou	rce: 1G01018	3-01	Prepared &	k Analyzed:	07/02/21				
C6-C12	1200	26.9	mg/kg dry	1080	14.3	110	75-125			
>C12-C28	1110	26.9	"	1080	16.8	102	75-125			
Surrogate: 1-Chlorooctane	117		"	108		109	70-130			
Surrogate: o-Terphenyl	61.6		"	53.8		114	70-130			
Matrix Spike Dup (P1G0203-MSD1)	Sou	rce: 1G01018	3-01	Prepared: (07/02/21 A	nalyzed: 07	7/03/21			
C6-C12	1210	26.9	mg/kg dry	1080	14.3	111	75-125	1.24	20	
>C12-C28	1140	26.9	"	1080	16.8	104	75-125	2.65	20	
Surrogate: 1-Chlorooctane	116		"	108		108	70-130			
Surrogate: o-Terphenyl	57.9		"	53.8		108	70-130			

13000 West County Road 100

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

Notes and Definitions

ROI Received on Ice

BULK Samples received in Bulk soil containers

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor			
Report Approved By:			Date:	7/8/2021	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Receiv		OCD:	5/13/2(豆豆 <u></u>	122	12:6	77:5	4 P	<i>M</i>	Cast		484				0	<u></u>						Pagi	2 82 0	£202
Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions: Bill to Centennial Resource										믜	LAB # (lab use only)	ORDER #:	(lab use only)							+	
Jishe	ishe	\$ /\ \bar{8}{8}	— წ <u>შ</u>								34.5				2	e on	. co		0		0	т .		
d by	by	$v_{ m g}$	stru												***	₹	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	3ML	
	•	()	l-ai ctio														ple	pho	Stat	par	par	ect f		
		AI	Res									٠. ا	\cdot		1		Sig	ne l	le/Z	y A	Z Z	Vlan		
		1/4	2 2										70		\boxtimes		ynat	6	<u>ā</u>	ddr	am	lage	Ĭ,	
	• . • . •	K	Ö									}*	CK		0		ure			SS:	Φ	Ä	÷	
1 1		la)	 									1	Stockpile	FIELD CODE	1			Æ	18		THE STATE OF	l _s i	U	
1													E	ğ	M		119	(432)230-3763	ess	8	Š	Tim McMinn		
			. :											m			11	۱ ۵	a, Te	8	NVI.	Š		
-			-						•								W	763	Odessa, Texas 79765	13000 W CR 100	nno] _	0	
		ME	,]												1/2		797	lg .	ent		HA	
Date	Date	- a													<u> </u>	- -	A		65		an		Ž	
				_	_	<u> </u>	<u> </u>	_							7		1				Sp		Ä	
		16:24												Beginning Depth			6	۱,			Etech Environmental and Safety Solutions, Inc		CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi	
Time	Time	1/2 mg	-		 	\vdash	1		 	-		-			┪		M		. }		Sol		70	
	<u> </u>	1					<u> </u>							Ending Depth							ĮĘ.		Ş	
Reg	Rec	Rec	1										-		7				1		is =		R	
Received	Received by:	Received by:			١		١						6/25	Date Sampled			1				ñ		- Ş	- ' -
3	by:	by:			1								5/21		1.				1				6	
			1	-	—	-	-	<u> </u>	<u> </u>				=		4		1	. 1				}	Ã.	
(=	1 .												=		1						1	. :	Ą	
L													1200	Time Sampled	1		φ	Fax			1		Á	
X																	e-mail:	Fax No:					S	
					1	T	\vdash	\vdash		 	 		\vdash	Field Filtered	1			l				_ ₹ 5	P Z),
19					1	1							 -	Total #. of Containers	1		na	1				diar		
A													×	Ice	П		Matt@eteche	1				Midland, Texas 79706	IN BO	
														HNO ₃	asal,		Ch att					exa	asin T	ĺ.,
111														HCI	Preservation &		env env			1	ŀ	s 72	NE N	
				<u> </u>	_	_	_			<u> </u>				H₂SO₄			COC					79706	iron	
				<u> </u>	╁	┼-	-	_	-	┼—		<u> </u>	<u> </u>	NaOH	# of Containers		Bel						men	
1.1			1	-	╁	-	-	\vdash	-	-	-	ļ	├	Na ₂ S ₂ O ₃	- Intain		V.C				1	ة ا	<u> </u>	
] .		-	一	╁╌	1		-	├			-	Other (Specify)	- 8		henv.com	1					REQUEST Permian Basin Environmental Lab, LP	
13 and 14 and 14 and 15	Date	Date			1	T	1			1			H	DW=Drinking Water SL=Sludge	廿			1	1	1	1		<u>_</u>	
3877.00			1							1			4	GW = Groundwater S=Soil/Solid	Matrix			Rep				_ %		
12	_		1		_		_	_	_				_	NP=Non-Potable Specify Other	┸╇	-	_	on t		- P		Proj.		
10:24	Time	ime		<u> </u>	-	<u> </u>	<u> </u>		<u> </u>	 	$\vdash \vdash$		\succeq		015B			Report Format:		ojec	Pro	2 2	,	•
	တ်	၈၈ <u>୮</u>	_ < 00 F	\vdash	-	-	 	-	_	-	$\vdash \vdash$: ;	<u> </u>	TPH: TX 1005 Ext TX 1 Cations (Ca, Mg, Na, K)	UUB			<u> </u>	PO #:	Project Loc:	Project#:	Project Name:	-	
Temperature Received Adjusted:	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on codler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?			 		<u> </u>	_	-	$\vdash\vdash$	<u> </u>	<u> </u>	Anions (CI, SO4, Alkalinity)	_			IÇSI	**] ::	;# 			
ved ted	nple Hand I by Sampler/ by Courier?	dys dys	Fe co	-	╁─	\vdash	-		_	-			 -	SAR / ESP / CEC		TCLP:		X Standard		1		0.5	<u>.</u>	\sim
	in para	eals eals	다 다 다 다 다 다 다	-	\vdash	\vdash			_	 		-	-	Metals: As Ag Ba Cd Cr Pb Hg		۲		E nd	12	Lea	13	2	P	12
		999	Hea Onn	 					<u> </u>					Volatiles		T	naly	a.	2	1 .	88	d	one	17
on Receipt:	nt Rep UPS		s inte		1		Π		-					Semivolatiles		Ħ	Analyze For:		40950	County	-6	Cheddar	Phone: 432-661-4184	にはては
Receipt:	ᇄᇕᇜ	r(s)	हि. इ.											BTEX 8021B/5030 or BTEX 82	260	П	음		~	7		}	2-66	R
acto	₽	<u> </u>												RCI				TRRP		1		385	4	,
				L										N.O.R.M.				ᅯ		NN			2	4
0	g		*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			\square		<u> </u>	Chlorides E 300						-5		Fed		ے۔ دا:
17.71	× "<	\mathbb{C}^{3}	``?)	<u> </u>	 	<u> </u>				<u> </u>	\sqcup		<u> </u>		<u>. </u>							2		K
12	9 • z z	z z z	ZZ	-	-	-		-					-	RUSH TAT (Pre-Schedule) 24	40 70	h	4	NPDES				Com		`
	e Star Z			 	-	-		 		-		_		Standard TAT	, 40, 72	nrs .		S				3		
						Щ	اـــا	L		بسا	1		\sim	Diamada IA1	J				1	1	'_	Page 7	7 of 7	1

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Tim McMinn
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389

Location: Lea County, New Mexico

Lab Order Number: 1H06012

Current Certification

Report Date: 08/11/21

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Stockpile	1H06012-01	Soil	08/05/21 12:00	08-06-2021 11:22

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

Stockpile 1H06012-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by E	EPA / Stand	ard Metl	nods						
% Moisture	7.0	0.1	%	1	P1H0903	08/09/21 15:00	08/09/21 15:05	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	C35 by EPA	Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P1H0704	08/07/21 11:30	08/09/21 21:23	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P1H0704	08/07/21 11:30	08/09/21 21:23	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P1H0704	08/07/21 11:30	08/09/21 21:23	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P1H0704	08/07/21 11:30	08/09/21 21:23	TPH 8015M	_
Surrogate: o-Terphenyl		113 %	70-130		P1H0704	08/07/21 11:30	08/09/21 21:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	08/07/21 11:30	08/09/21 21:23	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1H0903 - *** DEFAULT PREP ***										
Blank (P1H0903-BLK1)				Prepared &	Analyzed:	08/09/21				
% Moisture	ND	0.1	%	-			-		-	
Blank (P1H0903-BLK2)				Prepared &	Analyzed:	08/09/21				
% Moisture	ND	0.1	%							
Duplicate (P1H0903-DUP1)	Sour	се: 1Н04008-	-02	Prepared &	Analyzed:	08/09/21				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P1H0903-DUP2)	Sour	се: 1Н05003-	-01	Prepared &	Analyzed:	08/09/21				
% Moisture	5.0	0.1	%		4.0			22.2	20	R
Duplicate (P1H0903-DUP3)	Sour	rce: 1H06010-	-04	Prepared &	Analyzed:	08/09/21				
% Moisture	4.0	0.1	%		5.0			22.2	20	R
Duplicate (P1H0903-DUP4)	Sour	ce: 1H06019-	-02	Prepared &	Analyzed:	08/09/21				
% Moisture	ND	0.1	%		ND				20	

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389
Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	-	Reporting		Spike	Source	0/275	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1H0704 - TX 1005										
Blank (P1H0704-BLK1)				Prepared: (08/07/21 Aı	nalyzed: 08	/09/21			
C6-C12	ND	25.0	mg/kg wet	·	·	·	·	·	·	·
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	95.1		"	100		95.1	70-130			
Surrogate: o-Terphenyl	51.5		"	50.0		103	70-130			
LCS (P1H0704-BS1)				Prepared: (08/07/21 Ar	nalyzed: 08	/09/21			
C6-C12	927	25.0	mg/kg wet	1000		92.7	75-125			
>C12-C28	889	25.0	"	1000		88.9	75-125			
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	54.2		"	50.0		108	70-130			
LCS Dup (P1H0704-BSD1)				Prepared: (08/07/21 Aı	nalyzed: 08	3/09/21			
C6-C12	941	25.0	mg/kg wet	1000		94.1	75-125	1.43	20	
>C12-C28	906	25.0	"	1000		90.6	75-125	1.98	20	
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	52.8		"	50.0		106	70-130			
Calibration Check (P1H0704-CCV1)				Prepared: (08/07/21 Aı	nalyzed: 08	3/09/21			
C6-C12	463	25.0	mg/kg wet	500		92.6	85-115			
>C12-C28	467	25.0	"	500		93.3	85-115			
Surrogate: 1-Chlorooctane	99.0		"	100		99.0	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			
Calibration Check (P1H0704-CCV2)				Prepared: (08/07/21 Aı	nalyzed: 08	/09/21			
C6-C12	491	25.0	mg/kg wet	500		98.3	85-115			
>C12-C28	490	25.0	"	500		98.0	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	55.3		,,	50.0		111	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765 Project Manager: Tim McMinn

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

Analyta	Dogult	Reporting Limit	Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lillit	Units	Level	Result	70KEC	Lillits	KrD	LIIIII	Notes
Batch P1H0704 - TX 1005										
Matrix Spike (P1H0704-MS1)	Sourc	e: 1H06013	3-01	Prepared: (08/07/21 A	nalyzed: 08	/10/21			
C6-C12	1070	25.8	mg/kg dry	1030	13.4	103	75-125			
>C12-C28	1040	25.8	"	1030	64.6	94.9	75-125			
Surrogate: 1-Chlorooctane	110		"	103		106	70-130			
Surrogate: o-Terphenyl	58.3		"	51.5		113	70-130			
Matrix Spike Dup (P1H0704-MSD1)	Sourc	e: 1H06013	3-01	Prepared: (08/07/21 A	nalyzed: 08	/10/21			
C6-C12	1070	25.8	mg/kg dry	1030	13.4	103	75-125	0.0790	20	
>C12-C28	1040	25.8	"	1030	64.6	95.1	75-125	0.155	20	
Surrogate: 1-Chlorooctane	109		"	103		106	70-130			
Surrogate: o-Terphenyl	58.2		"	51.5		113	70-130			

13000 West County Road 100

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Tim McMinn

Notes and Definitions

ROI Received on Ice

R2 The RPD exceeded the acceptance limit.

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Devicor C		
Report Approved By:			Date:	8/11/2021

0 0

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

P	age	90 of 202
		7
D	:	3
č K	ł	
Project Manager:	:	
Sa		V 3

Received Relinquished by:	d by Relinquished by	Relinquished by:	5/13/20 pecial li	22-1	2.0	:54	P					377	_	LAB # (lab use only)	ORDER	(lab use only)						Pa	age 90 of
ed by:	ed by:	led by: Until W	Special Instructions: Bill to Centennial	170,900									Sto	FIE	ORDER #: 11406012	inly)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	BIBLEA
		~ 8	nnial										Stockpile	FIELD CODE			Matt.	(432)239-3763	Odessa, Texas 79765	13000 W CR 100	Etech Environmental and Safety Solutions, Inc.	Matt Green	5
Date	Date	# Date																>	9765		ntal and S	-	AIN OF
	I	<u>)</u> ;	<u> </u>								i			Beginning Depth							afety	İ	COS
Time	Time	1):22a												Ending Depth							Solution		זעטז
Received by PBEI	Received by:	Received by:											8/5/2021	Date Sampled							ns, Inc.		CHAIN OF COSTODY RECORD AND ANALYSIS REQUEST Permian Bas 10014 S. Co Midland. Te
od by PBEL. Junu Blidse	i	:										!	1200	Time Sampled			e-mail:	Fax No:					ANAL YSIS
				-									_	Field Filtered Total #. of Containers			Matt@etechenv.com						Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland. Texas 79706
			ļ	ļ —		-							×	Ice			<u></u>						nd.
														HNO₃	Prese		E				ļ		S/ lasin Cour
				<u> </u>	ļ									HCI	Preservation &		Ωet env						s ity R
				ļ										H ₂ SO ₄	n & #		3 <u>5</u>						wironn Road 79706
					\vdash			\dashv					_	NaOH Na ₂ S ₂ O ₃	# of Containers	Į:							nent 121
0/]		\vdash			\vdash						None	ntaine		0.00						ω <u>ω</u> [
Shel 21	Date	Date	,										_	Other (Specify)	8		ΙΞ						, j
19	ë	ŧ												DW=Drinking Water SL=Sludge	Z				•	•	•	•	Ū
													S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix			Report Format:		_		P	
:22 :22	Time	Time)										×		015B	T	7	t Fo		Project Loc:	7	Project Name:	•
			1											TPH: TX 1005 Ext TX 1	006		1	rmat	P	čť	Project #:	t Nar	
Temperat Received Adjusted:	Sam L	Cust Cust	Sam VOC						_}					Cations (Ca, Mg, Na, K)		1	ł	••	PO #	,	,#	ье:	
perat sived sted:	nple Hand Delivered by Sampler/Client Rep.? by Courier? UPS	ody s	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	<u> </u>	\vdash							_		Anions (CI, SO4, Alkalinity) SAR / ESP / CEC	TOTAL	TCLP:		⊠ S					
7 Z E	npler Trier	con eals	ny C onta e of	 	-			\dashv	\dashv	_				Metals: As Ag Ba Cd Cr Pb Hg		П.	1	Standard					큠
등 por	``ADell Head	on c	omn liner: Hea								╗			Volatiles			Analyza	ard				he	one
Rec	vered nt Rep UPS	ants)	s Inte	\Box							$\neg \neg$			Semivolatiles						<u>-</u>		dar	: 43
Temperature Upon Receipt. Received: Rejusted: C.F.	ያትር የትር	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?										7	BTEX 8021P/5030 or BTEX 82	260]	TI 27			ea C	13:	3B	Phone: 432-661-4184
ag C	물	. (S												RCI				TRRP		ount	13389	SF	≟ 4 2
ceipt. °C CTT (°C Factor	711													N.O.R.M.	1.	_		Ť		ea County, NM		o pe	84
5		4			$\vdash \vdash$					_				Chlorides E 300		4		_		<u> </u>		Š	
		- T. T.	36.5	<u> </u>	\vdash				-		\dashv	\dashv			1	\dashv		NPDES			1	Cheddar 3BS Fed Com #1H	
	N N Lone Star	2 2 2	zz	<u> </u>				\dashv	-		_	\neg		RUSH TAT (Pre-Schedule) 24	, 48, 72 h	rs	1	PDE					
	ar i	N H											×	Standard TAT				S				<u> </u>	- 0 -1 0
						_	-	_	_						1						1	rane	e 8 of 8

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 1

Prepared for:

Matt Green
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Location: Lea County, NM

Lab Order Number: 1C16008

Current Certification

Report Date: 09/02/21

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

ANALYTICAL REPORT FOR SAMPLES

Project: Chedder 3BS Fed Com #1H

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Perimeter #7	1C16008-01	Soil	03/08/21 13:30	03-16-2021 11:45
Perimeter #8	1C16008-02	Soil	03/08/21 13:15	03-16-2021 11:45
Perimeter #9	1C16008-03	Soil	03/08/21 14:00	03-16-2021 11:45
Perimeter N-1	1C16008-04	Soil	03/08/21 13:45	03-16-2021 11:45
Perimeter N-2	1C16008-05	Soil	03/08/21 14:05	03-16-2021 11:45
Perimeter E-2	1C16008-06	Soil	03/08/21 13:00	03-16-2021 11:45
Perimeter W-1	1C16008-07	Soil	03/08/21 14:15	03-16-2021 11:45
Perimeter W-3	1C16008-08	Soil	03/08/21 14:10	03-16-2021 11:45
Perimeter E-5	1C16008-09	Soil	03/08/21 14:25	03-16-2021 11:45
Perimeter E-11	1C16008-10	Soil	03/08/21 14:20	03-16-2021 11:45
Perimeter E-12	1C16008-11	Soil	03/08/21 14:40	03-16-2021 11:45
Perimeter E-13	1C16008-12	Soil	03/08/21 14:30	03-16-2021 11:45

On 09/01/21 PBELAB was advised by the client to make the following changes to sample IDs

Sample ID 1C16008-09: Please rename to Perimeter E-5

1C16008-10: Please rename to Perimeter E-11 1C16008-11: Please rename to Perimeter E-12 1C16008-12: Please rename to Perimeter E-13

This revised report reflects the requested changes.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter #7 1C16008-01 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	,	97.0 %	80-120		P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	80-120		P1C1912	03/19/21 12:51	03/19/21 22:39	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	nods						
Chloride	ND	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/23/21 23:01	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:09	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:09	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:09	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:09	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 16:09	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter #8 1C16008-02 (Soil)

	Lim	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	onmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.7 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.3 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:00	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	1.33	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/23/21 23:17	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:31	TPH 8015M	
>C12-C28	28.6	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:31	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:31	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:31	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:31	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	28.6	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 16:31	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter #9 1C16008-03 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Pe	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.7 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:21	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	12.6	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/23/21 23:34	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:54	TPH 8015M	
>C12-C28	1180	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:54	TPH 8015M	
>C28-C35	213	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 16:54	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:54	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-130		P1C1807	03/18/21 13:36	03/19/21 16:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	1390	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 16:54	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter N-1 1C16008-04 (Soil)

	Limi	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envir	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	97.5 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	99.4 %	80-120		P1C1912	03/19/21 12:51	03/19/21 23:42	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	ıods						
Chloride	8.48	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/23/21 23:50	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 17:16	TPH 8015M	
>C12-C28	28.7	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 17:16	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 17:16	TPH 8015M	
Surrogate: 1-Chlorooctane		108 %	70-130		P1C1807	03/18/21 13:36	03/19/21 17:16	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P1C1807	03/18/21 13:36	03/19/21 17:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	28.7	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 17:16	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter N-2 1C16008-05 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:03	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	11.5	1.01	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 00:06	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:21	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:21	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:21	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P1C1807	03/18/21 13:36	03/19/21 18:21	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P1C1807	03/18/21 13:36	03/19/21 18:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 18:21	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-2 1C16008-06 (Soil)

	Limi	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	ç	93.3 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ģ	93.0 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:24	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	ıods						
Chloride	13.9	1.01	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 00:22	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:43	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:43	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 18:43	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P1C1807	03/18/21 13:36	03/19/21 18:43	TPH 8015M	
Surrogate: o-Terphenyl		126 %	70-130		P1C1807	03/18/21 13:36	03/19/21 18:43	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 18:43	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter W-1 1C16008-07 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.1 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.1 %	80-120		P1C1912	03/19/21 12:51	03/20/21 00:44	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 00:39	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:05	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:05	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:05	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:05	TPH 8015M	
Surrogate: o-Terphenyl		126 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 19:05	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter W-3 1C16008-08 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.6 %	80-120		P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.3 %	80-120		P1C1912	03/19/21 12:51	03/20/21 01:05	EPA 8021B	
General Chemistry Parameters by	EPA / Stanc	lard Metl	hods						
Chloride	2.11	1.01	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 00:55	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:27	TPH 8015M	
>C12-C28	78.4	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:27	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:27	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:27	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	78.4	25.3	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 19:27	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-5 1C16008-09 (Soil)

	Limi	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Pe	ermian Ba	asin Envir	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.2 %	80-120		P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	95.0 %	80-120		P1C1912	03/19/21 12:51	03/20/21 01:26	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Meth	10ds_						
Chloride	4.06	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 01:11	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:48	TPH 8015M	_
>C12-C28	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:48	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 19:48	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:48	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P1C1807	03/18/21 13:36	03/19/21 19:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 19:48	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-11 1C16008-10 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Toluene	0.00462	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Ethylbenzene	0.00186	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	·	97.9 %	80-120		P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-120		P1C1912	03/19/21 12:51	03/21/21 12:01	EPA 8021B	
General Chemistry Parameters b	ov EPA / Stand	lard Metl	hods						
Chloride	ND	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 02:00	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C	C6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:10	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:10	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:10	TPH 8015M	
Surrogate: 1-Chlorooctane		111 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:10	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 20:10	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-12 1C16008-11 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P1C1914	03/19/21 12:57	03/21/21 14:46	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	10ds						
Chloride	4.54	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 02:49	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:32	TPH 8015M	
>C12-C28	381	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:32	TPH 8015M	
>C28-C35	90.3	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:32	TPH 8015M	
Surrogate: 1-Chlorooctane		115 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:32	TPH 8015M	
Surrogate: o-Terphenyl		126 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	472	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 20:32	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-13 1C16008-12 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.2 %	80-120		P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.2 %	80-120		P1C1914	03/19/21 12:57	03/21/21 15:06	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	10ds						
Chloride	ND	1.00	mg/kg dry	1	P1C2303	03/23/21 09:56	03/24/21 03:05	EPA 300.0	
% Moisture	ND	0.1	%	1	P1C1707	03/17/21 10:38	03/17/21 10:42	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:54	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:54	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1C1807	03/18/21 13:36	03/19/21 20:54	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:54	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P1C1807	03/18/21 13:36	03/19/21 20:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	03/18/21 13:36	03/19/21 20:54	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1912 - *** DEFAULT PREP ***										
Blank (P1C1912-BLK1)				Prepared &	k Analyzed:	03/19/21				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.109		"	0.120		91.0	80-120			
LCS (P1C1912-BS1)				Prepared &	k Analyzed:	03/19/21				
Benzene	0.0992	0.00100	mg/kg wet	0.100		99.2	70-130			
Toluene	0.116	0.00100	"	0.100		116	70-130			
Ethylbenzene	0.111	0.00100	"	0.100		111	70-130			
Xylene (p/m)	0.228	0.00200	"	0.200		114	70-130			
Xylene (o)	0.0993	0.00100	"	0.100		99.3	70-130			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.0	80-120			
LCS Dup (P1C1912-BSD1)				Prepared &	ն Analyzed:	03/19/21				
Benzene	0.0955	0.00100	mg/kg wet	0.100		95.5	70-130	3.76	20	
Toluene	0.111	0.00100	"	0.100		111	70-130	4.12	20	
Ethylbenzene	0.112	0.00100	"	0.100		112	70-130	0.913	20	
Xylene (p/m)	0.228	0.00200	"	0.200		114	70-130	0.202	20	
Xylene (o)	0.0982	0.00100	"	0.100		98.2	70-130	1.10	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.7	80-120			
Calibration Blank (P1C1912-CCB1)				Prepared &	k Analyzed:	03/19/21				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.111		"	0.120		92.8	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

92.1

80-120

0.120

0.111

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Asslate	D14	Reporting	I I '	Spike	Source	0/DEC	%REC	DDD	RPD	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1912 - *** DEFAULT PREP ***										
Calibration Blank (P1C1912-CCB2)				Prepared &	Analyzed:	03/19/21				
Benzene	0.00		mg/kg wet			·				
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.7	80-120			
Calibration Check (P1C1912-CCV1)				Prepared &	: Analyzed:	03/19/21				
Benzene	0.0829	0.00100	mg/kg wet	0.100		82.9	80-120			
Toluene	0.100	0.00100	"	0.100		100	80-120			
Ethylbenzene	0.0934	0.00100	"	0.100		93.4	80-120			
Xylene (p/m)	0.197	0.00200	"	0.200		98.5	80-120			
Xylene (o)	0.0829	0.00100	"	0.100		82.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		96.0	75-125			
Calibration Check (P1C1912-CCV2)				Prepared &	Analyzed:	03/19/21				
Benzene	0.0895	0.00100	mg/kg wet	0.100		89.5	80-120			
Toluene	0.111	0.00100	"	0.100		111	80-120			
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120			
Xylene (p/m)	0.215	0.00200	"	0.200		108	80-120			
Xylene (o)	0.0953	0.00100	"	0.100		95.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	75-125			
Calibration Check (P1C1912-CCV3)				Prepared: 0)3/19/21 At	nalyzed: 03	/21/21			
Benzene	0.109	0.00100	mg/kg wet	0.100		109	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.0929	0.00100	"	0.100		92.9	80-120			
Xylene (p/m)	0.165	0.00200	"	0.200		82.5	80-120			
Xylene (o)	0.0864	0.00100	"	0.100		86.4	80-120			

Permian Basin Environmental Lab, L.P.

 $Surrogate: \ 1,4-Difluor obenzene$

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

75-125

88.1

113

0.120

0.120

0.106

0.135

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P1C1912 - *** DEFAULT PREP ***

Matrix Spike (P1C1912-MS1)	Sour	ce: 1C18012	-01	Prepared:	03/19/21 An	alyzed: 03	3/21/21	
Benzene	0.0535	0.00101	mg/kg dry	0.101	ND	53.0	80-120	QM-07
Toluene	0.0319	0.00101	"	0.101	0.00109	30.5	80-120	QM-07
Ethylbenzene	0.0300	0.00101	"	0.101	0.00108	28.6	80-120	QM-07
Xylene (p/m)	0.0164	0.00202	"	0.202	ND	8.10	80-120	QM-07
Xylene (o)	0.0162	0.00101	"	0.101	ND	16.0	80-120	QM-07
Surrogate: 4-Bromofluorobenzene	0.0793		"	0.121		65.4	80-120	S-GC
Surrogate: 1,4-Difluorobenzene	0.105		"	0.121		86.4	80-120	

Matrix Spike Dup (P1C1912-MSD1)	Sour	rce: 1C18012	-01	Prepared:	03/19/21 An	alyzed: 03	3/21/21			
Benzene	0.0520	0.00101	mg/kg dry	0.101	ND	51.5	80-120	2.91	20	QM-07
Toluene	0.0325	0.00101	"	0.101	0.00109	31.1	80-120	2.05	20	QM-07
Ethylbenzene	0.0247	0.00101	"	0.101	0.00108	23.4	80-120	20.1	20	QM-07
Xylene (p/m)	0.0202	0.00202	"	0.202	ND	10.0	80-120	21.1	20	QM-07
Xylene (o)	0.0153	0.00101	"	0.101	ND	15.1	80-120	5.77	20	QM-07
Surrogate: 1,4-Difluorobenzene	0.101		"	0.121		83.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.0710		"	0.121		58.6	80-120			S-GC

Batch P1C1914 - *** DEFAULT PREP ***

Blank (P1C1914-BLK1)				Prepared: 03/19/	21 Analyzed: 03/	21/21	
Benzene	ND	0.00100	mg/kg wet				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120	107	80-120	
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120	89.9	80-120	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1914 - *** DEFAULT PREP ***	·									
LCS (P1C1914-BS1)				Prepared: (03/19/21 Ar	nalyzed: 03	/21/21			
Benzene	0.110	0.00100	mg/kg wet	0.100		110	70-130			
Toluene	0.109	0.00100	"	0.100		109	70-130			
Ethylbenzene	0.101	0.00100	"	0.100		101	70-130			
Xylene (p/m)	0.174	0.00200	"	0.200		87.2	70-130			
Xylene (o)	0.0883	0.00100	"	0.100		88.3	70-130			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	80-120			
LCS Dup (P1C1914-BSD1)				Prepared: (03/19/21 Ar	nalyzed: 03	/21/21			
Benzene	0.106	0.00100	mg/kg wet	0.100		106	70-130	3.97	20	
Toluene	0.115	0.00100	"	0.100		115	70-130	5.71	20	
Ethylbenzene	0.100	0.00100	"	0.100		100	70-130	0.815	20	
Xylene (p/m)	0.195	0.00200	"	0.200		97.6	70-130	11.3	20	
Xylene (o)	0.0877	0.00100	"	0.100		87.7	70-130	0.705	20	
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Calibration Check (P1C1914-CCV1)				Prepared: (03/19/21 Ar	nalyzed: 03	/21/21			
Benzene	0.109	0.00100	mg/kg wet	0.100		109	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.0929	0.00100	"	0.100		92.9	80-120			
Xylene (p/m)	0.165	0.00200	"	0.200		82.5	80-120			
Xylene (o)	0.0864	0.00100	"	0.100		86.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.135		"	0.120		113	75-125			
Surrogate: 1,4-Difluorobenzene	0.106		"	0.120		88.1	75-125			
Calibration Check (P1C1914-CCV2)				Prepared: ()3/19/21 Ar	nalyzed: 03	/21/21			
Benzene	0.104	0.00100	mg/kg wet	0.100		104	80-120			
Toluene	0.0911	0.00100	"	0.100		91.1	80-120			
Ethylbenzene	0.0835	0.00100	"	0.100		83.5	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		80.9	80-120			
Xylene (o)	0.0844	0.00100	"	0.100		84.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.120		94.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.7	75-125			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1914 - *** DEFAULT PREP ***										
Calibration Check (P1C1914-CCV3)				Prepared: (03/19/21 A	nalyzed: 03	/21/21			
Benzene	0.103	0.00100	mg/kg wet	0.100		103	80-120			
Toluene	0.107	0.00100	"	0.100		107	80-120			
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120			
Xylene (p/m)	0.210	0.00200	"	0.200		105	80-120			
Xylene (o)	0.101	0.00100	"	0.100		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.1	75-125			
Matrix Spike (P1C1914-MS1)	Sou	rce: 1C15002	2-01	Prepared: (03/19/21 A	nalyzed: 03	/21/21			
Benzene	0.0810	0.00102	mg/kg dry	0.102	ND	79.4	80-120			QM-0
Toluene	0.0839	0.00102	"	0.102	ND	82.2	80-120			
Ethylbenzene	0.0974	0.00102	"	0.102	ND	95.4	80-120			
Xylene (p/m)	0.154	0.00204	"	0.204	ND	75.5	80-120			QM-0
Xylene (o)	0.0741	0.00102	"	0.102	ND	72.6	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.139		"	0.122		114	80-120			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.122		102	80-120			
Matrix Spike Dup (P1C1914-MSD1)	Sou	rce: 1C15002	2-01	Prepared: (03/19/21 A	nalyzed: 03	/21/21			
Benzene	0.0821	0.00102	mg/kg dry	0.102	ND	80.4	80-120	1.31	20	
Toluene	0.0847	0.00102	"	0.102	ND	83.0	80-120	0.908	20	
Ethylbenzene	0.102	0.00102	"	0.102	ND	100	80-120	4.96	20	
Xylene (p/m)	0.173	0.00204	"	0.204	ND	84.6	80-120	11.3	20	
Xylene (o)	0.0765	0.00102	"	0.102	ND	75.0	80-120	3.21	20	QM-0
Surrogate: 4-Bromofluorobenzene	0.144		"	0.122		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.122		93.0	80-120			

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C1707 - *** DEFAULT PREP ***										
Blank (P1C1707-BLK1)				Prepared &	Analyzed:	03/17/21				
% Moisture	ND	0.1	%							
Blank (P1C1707-BLK2)				Prepared &	Analyzed:	03/17/21				
% Moisture	ND	0.1	%							
Blank (P1C1707-BLK3)				Prepared &	z Analyzed:	03/17/21				
% Moisture	ND	0.1	%							
Duplicate (P1C1707-DUP1)	Sou	rce: 1C16003-	02	Prepared &	Analyzed:	03/17/21				
% Moisture	10.0	0.1	%		12.0			18.2	20	
Duplicate (P1C1707-DUP2)	Sou	rce: 1C16005-	01	Prepared &	Analyzed:	03/17/21				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P1C1707-DUP3)	Sou	rce: 1C16006-	11	Prepared &	Analyzed:	03/17/21				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P1C1707-DUP4)	Sou	rce: 1C16007-	10	Prepared &	Analyzed:	03/17/21				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P1C1707-DUP5)	Sou	rce: 1C16008-	12	Prepared &	. Analyzed:	03/17/21				
% Moisture	ND	0.1	%		ND				20	
Batch P1C2303 - *** DEFAULT PREP ***										
Blank (P1C2303-BLK1)				Prepared &	Analyzed:	03/23/21				
Chloride	ND	1.00	mg/kg we	į						

13000 West County Road 100Project Number: 13389Odessa TX, 79765Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1C2303 - *** DEFAULT PREP ***										
LCS (P1C2303-BS1)				Prepared &	& Analyzed:	03/23/21				
Chloride	395	1.00	mg/kg wet	400		98.7	90-110			
LCS Dup (P1C2303-BSD1)				Prepared &	& Analyzed:	03/23/21				
Chloride	395	1.00	mg/kg wet	400		98.8	90-110	0.0962	20	
Calibration Check (P1C2303-CCV1)				Prepared &	& Analyzed:	03/23/21				
Chloride	19.2		mg/kg	20.0		95.8	90-110			
Calibration Check (P1C2303-CCV2)				Prepared: (03/23/21 A	nalyzed: 03	/24/21			
Chloride	19.2		mg/kg	20.0		96.2	90-110			
Calibration Check (P1C2303-CCV3)				Prepared: (03/23/21 A	nalyzed: 03	/24/21			
Chloride	18.4		mg/kg	20.0		91.9	90-110			
Matrix Spike (P1C2303-MS1)	Sour	ce: 1C16007	7-13	Prepared &	& Analyzed:	03/23/21				
Chloride	927	1.04	mg/kg dry	521	428	95.8	80-120			
Matrix Spike (P1C2303-MS2)	Sour	ce: 1C16008	3-10	Prepared: (03/23/21 At	nalyzed: 03	/24/21			
Chloride	447	1.00	mg/kg dry	500	ND	89.4	80-120			
Matrix Spike Dup (P1C2303-MSD1)	Sour	ce: 1C16007	7-13	Prepared &	& Analyzed:	03/23/21				
Chloride	891	1.04	mg/kg dry	521	428	88.8	80-120	4.01	20	
Matrix Spike Dup (P1C2303-MSD2)	Sour	ce: 1C16008	3-10	Prepared: (03/23/21 Aı	nalyzed: 03	/24/21			
Chloride	477	1.00	mg/kg dry	500	ND	95.4	80-120	6.46	20	

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1807 - TX 1005										
Blank (P1C1807-BLK1)				Prepared: (03/18/21 Aı	nalyzed: 03	/19/21			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
LCS (P1C1807-BS1)				Prepared: (03/18/21 Aı	nalyzed: 03	/19/21			
C6-C12	1030	25.0	mg/kg wet	1000		103	75-125			
>C12-C28	1030	25.0	"	1000		103	75-125			
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenyl	56.9		"	50.0		114	70-130			
LCS Dup (P1C1807-BSD1)				Prepared: (03/18/21 Aı	nalyzed: 03	/19/21			
C6-C12	1030	25.0	mg/kg wet	1000		103	75-125	0.230	20	
>C12-C28	1030	25.0	"	1000		103	75-125	0.218	20	
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	56.8		"	50.0		114	70-130			
Calibration Check (P1C1807-CCV1)				Prepared: (03/18/21 Aı	nalyzed: 03	/19/21			
C6-C12	484	25.0	mg/kg wet	500		96.9	85-115			
>C12-C28	546	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	54.0		"	50.0		108	70-130			
Calibration Check (P1C1807-CCV2)				Prepared: (03/18/21 Aı	nalyzed: 03	/19/21			
C6-C12	487	25.0	mg/kg wet	500		97.4	85-115			
>C12-C28	561	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	54.1		"	50.0		108	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Project Number: 13389

Odessa TX, 79765 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1C1807 - TX 1005										
Matrix Spike (P1C1807-MS1)	Source	e: 1C16008	-12	Prepared: ()3/18/21 A	nalyzed: 03	/19/21			
C6-C12	953	25.0	mg/kg dry	1000	11.0	94.2	75-125			
>C12-C28	1080	25.0	"	1000	23.2	105	75-125			
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	60.9		"	50.0		122	70-130			
Matrix Spike Dup (P1C1807-MSD1)	Source	e: 1C16008	-12	Prepared: (03/18/21 A	nalyzed: 03	/21/21			
C6-C12	909	25.0	mg/kg dry	1000	11.0	89.8	75-125	4.81	20	
>C12-C28	997	25.0	"	1000	23.2	97.4	75-125	7.72	20	
Surrogate: 1-Chlorooctane	96.9		"	100		96.9	70-130			
Surrogate: o-Terphenyl	52.9		"	50.0		106	70-130			

13000 West County Road 100 Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS QM-07

recovery.

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

LCS Laboratory Control Spike

MS Matrix Spike Duplicate

Dup

	Bren	Sarron			
Report Approved By:			Date:	9/2/2021	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Chedder 3BS Fed Com #1H

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

R	<u>eceive</u>	<u>l by C</u>	OCD: 5		2 12	<u>2:01</u>	:54	<u>PM</u>	JORFF P	de salas II	85.857	ENGRES	Section	45045		35 - V.	i.	1						Pa _c	ge 11	7 of	<i>20</i>
-	Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions: Bill									12	=	LAB#(lab use only)	ORDER #:	(lab use only)					•					
	quist	quisi	quisi	iai									•) FR	ISe (8									
	ned t	<u> </u>	<u>g</u>	nstı		1.	1 1									#:	Ĭ		Sa	Te	유	ပ္ပ	ဂ္ဂ	Pro		BBLA	
	y	Š	/ 🕺	uct							•								<u>평</u> :	<u>e</u>	y/S	큥	콩	ojec		M	
. "			m						4.1					1:-					Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:		3	i.
			Chi	;;		-										(:			Sigr	e Z	Žį	A	Z	ane			
			11	င္ပ	:								Pe	P		6	•		at .	0	Ÿ	dre	me	ger		1	
		- : -		ons: Bill to Centennial						:			Perimeter W-13	Perimeter W-12	FIELD CODE	80001 D	•		ē.					• •			
			11/1	黃									etei	ete	0	Ø	2	3		(43	8	13	떕	Ma		5	
-			} `) = 1									≶	≶	<u> </u>			9		2)2;	ess	8	음	<u>⊕</u>		نخت	
			C								٠.		13		"				1	(432)230-3763	,, ,,	≷	Į <u>ä</u>	Matt Green			
		-	ω,	1			!											1.		763	Odessa, Texas 79765	13000 W CR 100	n n			C	.
٠.	_	_	31621							٠.									18/	1	797	l _S	lent			HA	
	Date	ā	2 Page													نا			19]	65		a ar			Ž	•
					<u> </u>						•								19	7			SP			<u> </u>	1
			=					ŀ						1	Beginning Depth				3				Etech Environmental and Safety Solutions, Inc.			CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi)
	Time	1	15 I				_	-	-				-			┨.			٠,				/ So				1
	L "									* .					Ending Depth		٠.						lutio			בַ	Ź
. (() 20	2	7		1.					٠,						1							ns,			ž	ì
~	3	Neceived by.	Received by:		-:								3/8/2021	3/8/2021									Inc.			5	\
	\ <u>\</u>	9											202	202	Date Sampled											ž	ຸ່
	PB PB	•	~										=	-3												A	
. '	eived by PBELL NUMA DU d NEC										• •			1		1			•	•	1	1	1	1 .		٤	5
	8												1430	1440	Time Sampled				•	Til.						₹	•
	R				ļ.,								8	6	Time Sampled				e-mail:	Fax No:						, j	
	\				<u> </u>	L													<u>≅</u> .	. 6		1				Sis	<u>)</u>
						_									Field Filtered					1					10014 S. County Road 1213 Midland, Texas 79706	Per	į
													_	_	Total #. of Containers	L,		00	Matt@etechenv.com			1			10014 S. Count Midland, Texas	「 REQUES I Permian Basin Environmental Lab, LP	<u> </u>
													×	×	Ice	,		eie	l <u>≤</u>						1 C	1 Ba	j
					<u> </u>						· .				HNO₃	Preservation &			To the		1		1		oun	sin	1
٠.					-1	<u> </u>	-				·		<u> </u>		HCI	vatio			<u>)et</u>						Z Z	EV	
															H ₂ SO ₄			S	ect						/ Road 79706	ğ	
												_			NaOH	# of Containers			len en						112	mer	
	(A)				<u> </u>		-		-	-		<u> </u>	<u>-</u>		Na ₂ S ₂ O ₃	ontair			₹						သိ	<u> </u>	
7	3/m2	_			-		-		-					<u> </u>	None	ers			ļģ.							ab	
•	ate	Date	Date							-	-		-		Other (Specify) DW=Drinking Water SL=Sludge	Н			'-	l.	L	l .	ı	1		F	
. 1													S	S	GW = Groundwater S=Soil/Solid	Matrix				₽ Z	4						
٠.					L	L			-						NP=Non-Potable Specify Other	Ž	: :			pon				P			
	94711) Shar	i iii e	Time										×	×	TPH: 418,1 8015M 801	15B		П		t Fo		γοjέ	ַדַ .	၁jeင			
	Control Control				٠.										TPH: TX 1005 Ext TX 100	06				Report Format:	P	Project Loc:	Project #:	Project Name:			
	Ten Rec Adju	san	Sing Single	Lab San VO											Cations (Ca, Mg, Na, K)			ı	1	π	P0 #:	8	#	me:			
	Temperature Received: 6	npie Hand t by Sampler/ by Courier?	tody tody	oral 양문											Anions (Cl, SO4, Alkalinity)		ᇗ			\boxtimes							
*	atun d J:	amp ourie	n g sea sea			1							-		SAR / ESP / CEC		TOTAL:			X Standard				١.		_	
. 1		ers to	onta ils o	도를 C			27.					*.			Metals: As Ag Ba Cd Cr Pb Hg S	Se		⋛		ndar			1	ļδ		ਨੁੱ	
	lpon Receipt: °C °C F	npie Hand Delivered by Sampler/Client Rep.? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?			-							<u> </u>	Volatiles			⁴nalyze		□				Cheddar 3BS Fed Com #1H		Phone: 432-661-4184	
	ે ે	L Rep	(S) ntail olen	ints mac	<u> </u>									_	Semivolatiles	_		e For:				ڳ ا		혈		432	
- 1		ຼິ່ນ D	ner(s	6. 42	<u> </u>								×	×	BTEX 8021B/8030 or BTEX 826	30		, ĭ≍∣				a Cc	13389	186		-661	
	Q	물			<u> </u>				111	\dashv			· ·	-	RCI		11			☐ TRRP		ğ	89	뚮		<u> </u>	
	$\mathcal{I}_{\mathcal{G}}$	-V-						<u> </u>							N.O.R.M.					יס		ea County, NM		lg.		20	
	1.	∰ <-	(*< ≺.≺	~D		\vdash	1 1			\dashv			×	×	Chlorides E 300	-		1		_		-		la E			
. *		^ F			\vdash		 -	ļ <u>.</u>			<u> </u>			<u> </u>				1	*. *	Z				###			
		Lone Star	. z z z	zz	_			Н		-				_	RUSH TAT (Pre-Schedule) 24,	Λo	72 h	_		NPDES				1-		1	V
) Sar	222		\vdash								×	×	Standard TAT	-,0,	. 4 (IIS		١,	S		1					3
	402000000		person (C.)	1300	L	لــــا								<u> </u>	TOTAL OF TAXA	ı					1	1	Р	age	27 o		\neg

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 2

Prepared for:

Matt Green
E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Location: Lea County, NM

Lab Order Number: 1D06003

Current Certification

Report Date: 09/02/21

13000 West County Road 100Project Number: 13389Odessa TX, 79765Project Manager: Matt Green

ANALYTICAL REPORT FOR SAMPLES

Project: Chedder 3BS Fed Com #1H

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample Point 4	1D06003-01	Soil	04/01/21 10:25	04-06-2021 11:13
Sample Point 11	1D06003-02	Soil	04/01/21 11:05	04-06-2021 11:13
BH-10 @ 1'	1D06003-03	Soil	04/01/21 10:30	04-06-2021 11:13
BH-14 @ 1'	1D06003-04	Soil	04/01/21 11:15	04-06-2021 11:13
NSW-14 @ 1'	1D06003-05	Soil	04/05/21 07:50	04-06-2021 11:13
ESW-14 @ 1'	1D06003-06	Soil	04/01/21 11:25	04-06-2021 11:13
WSW-14 @ 1'	1D06003-07	Soil	04/01/21 11:35	04-06-2021 11:13
BH-15 @ 1'	1D06003-08	Soil	04/01/21 11:48	04-06-2021 11:13
ESW-15 @ 1'	1D06003-09	Soil	04/01/21 12:00	04-06-2021 11:13
WSW-15 @ 1'	1D06003-10	Soil	04/01/21 14:15	04-06-2021 11:13
BH-16 @ 1'	1D06003-11	Soil	04/01/21 14:00	04-06-2021 11:13
ESW-16 @ 1'	1D06003-12	Soil	04/01/21 13:45	04-06-2021 11:13
WSW-16 @ 1'	1D06003-13	Soil	04/01/21 13:30	04-06-2021 11:13
BH-17 @ 2'	1D06003-14	Soil	04/01/21 09:20	04-06-2021 11:13
NSW-17 @ 1'	1D06003-15	Soil	04/05/21 08:40	04-06-2021 11:13
SSW-17 @ 1'	1D06003-16	Soil	04/05/21 08:55	04-06-2021 11:13
ESW-17 @ 1'	1D06003-17	Soil	04/05/21 08:00	04-06-2021 11:13
WSW-17 @ 1'	1D06003-18	Soil	04/05/21 09:10	04-06-2021 11:13
BH-18 @ 1'	1D06003-19	Soil	04/01/21 10:45	04-06-2021 11:13
SSW-18 @ 1'	1D06003-20	Soil	04/05/21 08:30	04-06-2021 11:13
BH-19 @ 1'	1D06003-21	Soil	04/01/21 14:45	04-06-2021 11:13
NSW-19 @ 1'	1D06003-22	Soil	04/01/21 15:00	04-06-2021 11:13
ESW-19 @ 1'	1D06003-23	Soil	04/01/21 14:35	04-06-2021 11:13
SSW-19 @ 1'	1D06003-24	Soil	04/05/21 08:15	04-06-2021 11:13
BH-23 @ 1'	1D06003-25	Soil	04/01/21 16:00	04-06-2021 11:13
NSW-23 @ 1'	1D06003-26	Soil	04/01/21 15:45	04-06-2021 11:13
SSW-23 @ 1'	1D06003-27	Soil	04/01/21 15:05	04-06-2021 11:13
ESW-23 @ 1'	1D06003-28	Soil	04/01/21 15:25	04-06-2021 11:13
WSW-23 @ 1'	1D06003-29	Soil	04/01/21 16:10	04-06-2021 11:13
BH-24 @ 1'	1D06003-30	Soil	04/01/21 14:25	04-06-2021 11:13
NSW-24 @ 1'	1D06003-31	Soil	04/01/21 10:55	04-06-2021 11:13
SSW-24 @ 1'	1D06003-32	Soil	04/01/21 15:35	04-06-2021 11:13
ESW-24 @ 1'	1D06003-33	Soil	04/01/21 15:15	04-06-2021 11:13
WSW-24 @ 1'	1D06003-34	Soil	04/01/21 16:05	04-06-2021 11:13

13000 West County Road 100 Project Number: 13389 Odessa TX, 79765

Project Manager: Matt Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-25 @ 1'	1D06003-35	Soil	04/01/21 09:45	04-06-2021 11:13
NSW-25 @ 1'	1D06003-36	Soil	04/01/21 09:35	04-06-2021 11:13
SSW-25 @ 1'	1D06003-37	Soil	04/01/21 10:00	04-06-2021 11:13
WSW-25 @ 1'	1D06003-38	Soil	04/01/21 10:10	04-06-2021 11:13
Stockpile	1D06003-39	Soil	04/01/21 00:00	04-06-2021 11:13

Project: Chedder 3BS Fed Com #1H

On April 15, 2021, PBELAB staff was advised that sample 1D06003-20 (SSW-8 @ 1') should have been written on the COC as SSW-18 @ 20'. This revised report reflects that correction.

On 09/01/2021 The client advised PBELAB staff to make the following changes to:

On report 1D06003: Sample id 1D06003-14: Please rename to: BH-17 @ 2'

This revised report reflects that change.

Project Number: 13389

13000 West County Road 100 Odessa TX, 79765

Project Manager: Matt Green

Project: Chedder 3BS Fed Com #1H

Sample Point 4 1D06003-01 (Soil)

	Limit	Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asın Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	rd Met	hods						
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C25 by FDA	Mothad	001 <i>EM</i>						
Total Fetroleum Hydrocarbons Co-	C33 Dy EFA	Methou	0013N1						
C6-C12	ND	25.0	mg/kg dry	1	P1D0707	04/07/21 13:34	04/09/21 04:40	TPH 8015M	
>C12-C28	31.4	25.0	mg/kg dry	1	P1D0707	04/07/21 13:34	04/09/21 04:40	TPH 8015M	
>C28-C35	29.6	25.0	mg/kg dry	1	P1D0707	04/07/21 13:34	04/09/21 04:40	TPH 8015M	
Surrogate: 1-Chlorooctane	90	6.5 %	70-130		P1D0707	04/07/21 13:34	04/09/21 04:40	TPH 8015M	
Surrogate: o-Terphenyl	90	8.2 %	70-130		P1D0707	04/07/21 13:34	04/09/21 04:40	TPH 8015M	
Total Petroleum Hydrocarbon	60.9	25.0	mg/kg dry	1	[CALC]	04/07/21 13:34	04/09/21 04:40	calc	
C6-C35									

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Sample Point 11 1D06003-02 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by EPA / Standard Methods												
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216				
Total Petroleum Hydrocarbons C6-C3	35 by EPA	Method	8015M									
C6-C12	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:10	TPH 8015M				
>C12-C28	59.6	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:10	TPH 8015M				
>C28-C35	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:10	TPH 8015M				
Surrogate: 1-Chlorooctane		87.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:10	TPH 8015M				
Surrogate: o-Terphenyl		88.4 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:10	TPH 8015M				
Total Petroleum Hydrocarbon C6-C35	59.6	25.0	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 15:10	calc				

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

BH-10 @ 1' 1D06003-03 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

D 25.	od 8015M mg/kg dry	1	P1D0708	04/07/01 12 27		
	mg/kg dry	1	P1D0708	04/07/01 12 27		
			1120/00	04/07/21 13:37	04/09/21 15:33	TPH 8015M
30 25.	5 mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:33	TPH 8015M
D 25.	5 mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:33	TPH 8015M
86.9 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:33	TPH 8015M
82.7 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:33	TPH 8015M
30 25.	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 15:33	calc
				02.770 70 130	02.770 70 130	02.770 70 130

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389 Project Manager: Matt Green

BH-14 @ 1' 1D06003-04 (Soil)

Project: Chedder 3BS Fed Com #1H

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	3.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:55	TPH 8015M
>C12-C28	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:55	TPH 8015M
>C28-C35	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 15:55	TPH 8015M
Surrogate: 1-Chlorooctane	8	6.9 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:55	TPH 8015M
Surrogate: o-Terphenyl	8	3.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 15:55	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 15:55	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-14 @ 1' 1D06003-05 (Soil)

	Lim	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0811	04/08/21 15:58	04/09/21 09:45	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	27.6	1.03	mg/kg dry	1	P1D0807	04/08/21 12:43	04/09/21 07:35	EPA 300.0	
% Moisture	3.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:18	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:18	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:18	TPH 8015M	
Surrogate: 1-Chlorooctane		83.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 16:18	TPH 8015M	
Surrogate: o-Terphenyl		82.8 %	70-130		P1D0708	04/07/21 13:37	04/09/21 16:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 16:18	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-14 @ 1' 1D06003-06 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		109 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:06	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	nods						
Chloride	43.5	1.02	mg/kg dry	1	P1D0807	04/08/21 12:43	04/09/21 07:51	EPA 300.0	
% Moisture	2.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:41	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:41	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 16:41	TPH 8015M	
Surrogate: 1-Chlorooctane		79.4 %	70-130		P1D0708	04/07/21 13:37	04/09/21 16:41	TPH 8015M	
Surrogate: o-Terphenyl		72.9 %	70-130		P1D0708	04/07/21 13:37	04/09/21 16:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 16:41	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-14 @ 1' 1D06003-07 (Soil)

	Lim	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:26	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	9.11	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 10:18	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:04	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:04	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:04	TPH 8015M	
Surrogate: 1-Chlorooctane		87.8 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:04	TPH 8015M	
Surrogate: o-Terphenyl		92.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 17:04	calc	

13000 West County Road 100 Odessa TX, 79765

C6-C35

Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

BH-15 @ 1' 1D06003-08 (Soil)

	Limit	Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by EP	A / Standaı	rd Metl	nods						
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
TAIDA I HA I GCC	#1 ED43	<i>5</i> 41 1	001534						
Total Petroleum Hydrocarbons C6-C3	5 by EPA I	viethod	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:26	TPH 8015M	
>C12-C28	25.4	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:26	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:26	TPH 8015M	
Surrogate: 1-Chlorooctane	84	.9 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:26	TPH 8015M	
Surrogate: o-Terphenyl	89	.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:26	TPH 8015M	
Total Petroleum Hydrocarbon	25.4	25.0	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 17:26	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-15 @ 1' 1D06003-09 (Soil)

	Limi	t Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 10:47	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Meth	nods						
Chloride	ND	1.00	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 11:07	EPA 300.0	
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:49	TPH 8015M	•
>C12-C28	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:49	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 17:49	TPH 8015M	
Surrogate: 1-Chlorooctane		88.6 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:49	TPH 8015M	
Surrogate: o-Terphenyl	g	92.5 %	70-130		P1D0708	04/07/21 13:37	04/09/21 17:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 17:49	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-15 @ 1' 1D06003-10 (Soil)

A	Lim	it Repo	•						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	80-120		P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 11:07	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.00	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 11:23	EPA 300.0	
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	\ Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:12	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:12	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:12	TPH 8015M	
Surrogate: 1-Chlorooctane		91.3 %	70-130		P1D0708	04/07/21 13:37	04/09/21 18:12	TPH 8015M	
Surrogate: o-Terphenyl		95.2 %	70-130		P1D0708	04/07/21 13:37	04/09/21 18:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 18:12	calc	

13000 West County Road 100

Project Number: 13389 Odessa TX, 79765 Project Manager: Matt Green

BH-16 @ 1' 1D06003-11 (Soil)

Project: Chedder 3BS Fed Com #1H

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by 	EPA / Stand	ard Metl	ods					
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:34	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:34	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 18:34	TPH 8015M
Surrogate: 1-Chlorooctane	9	95.8 %	70-130		P1D0708	04/07/21 13:37	04/09/21 18:34	TPH 8015M
Surrogate: o-Terphenyl		100 %	70-130		P1D0708	04/07/21 13:37	04/09/21 18:34	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 18:34	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-16 @ 1' 1D06003-12 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:09	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	5.73	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 11:40	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 19:42	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 19:42	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 19:42	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P1D0708	04/07/21 13:37	04/09/21 19:42	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P1D0708	04/07/21 13:37	04/09/21 19:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 19:42	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-16 @ 1' 1D06003-13 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		105 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:29	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 11:56	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:04	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:04	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:04	TPH 8015M	
Surrogate: 1-Chlorooctane		97.1 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:04	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 20:04	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

BH-17 @ 2' 1D06003-14 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by 1	EPA / Standa	rd Metl	ods					
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:27	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:27	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:27	TPH 8015M
Surrogate: 1-Chlorooctane	9	1.6 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:27	TPH 8015M
Surrogate: o-Terphenyl	9	6.7 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:27	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 20:27	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-17 @ 1' 1D06003-15 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian Ba	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 12:50	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 12:12	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:49	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:49	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 20:49	TPH 8015M	
Surrogate: 1-Chlorooctane		98.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:49	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P1D0708	04/07/21 13:37	04/09/21 20:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 20:49	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-17 @ 1' 1D06003-16 (Soil)

	Lin	nit Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:10	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 12:29	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:11	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:11	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:11	TPH 8015M	
Surrogate: 1-Chlorooctane		95.5 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:11	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 21:11	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-17 @ 1' 1D06003-17 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:31	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	ıods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 12:45	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:33	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:33	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:33	TPH 8015M	
Surrogate: 1-Chlorooctane		93.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:33	TPH 8015M	
Surrogate: o-Terphenyl		98.1 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 21:33	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-17 @ 1' 1D06003-18 (Soil)

	Lim	nit Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0811	04/08/21 15:58	04/09/21 13:51	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 13:01	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons Co	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:55	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:55	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 21:55	TPH 8015M	
Surrogate: 1-Chlorooctane		95.3 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:55	TPH 8015M	
Surrogate: o-Terphenyl		99.0 %	70-130		P1D0708	04/07/21 13:37	04/09/21 21:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 21:55	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BH-18 @ 1' 1D06003-19 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:17	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:17	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:17	TPH 8015M
Surrogate: 1-Chlorooctane		100 %	70-130		P1D0708	04/07/21 13:37	04/09/21 22:17	TPH 8015M
Surrogate: o-Terphenyl		104 %	70-130		P1D0708	04/07/21 13:37	04/09/21 22:17	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 22:17	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-18 @ 1' 1D06003-20 (Soil)

	Lin	nit Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		109 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:12	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	1.77	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 13:18	EPA 300.0	•
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:40	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:40	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 22:40	TPH 8015M	
Surrogate: 1-Chlorooctane		97.5 %	70-130		P1D0708	04/07/21 13:37	04/09/21 22:40	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-130		P1D0708	04/07/21 13:37	04/09/21 22:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 22:40	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

BH-19 @ 1' 1D06003-21 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by EPA / Standard Methods									
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 23:02	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 23:02	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0708	04/07/21 13:37	04/09/21 23:02	TPH 8015M	
Surrogate: 1-Chlorooctane	!	95.9 %	70-130		P1D0708	04/07/21 13:37	04/09/21 23:02	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P1D0708	04/07/21 13:37	04/09/21 23:02	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 13:37	04/09/21 23:02	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-19 @ 1' 1D06003-22 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:32	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 14:07	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 10:32	TPH 8015M	
>C12-C28	25.6	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 10:32	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 10:32	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P1D0712	04/07/21 16:09	04/08/21 10:32	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P1D0712	04/07/21 16:09	04/08/21 10:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	25.6	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 10:32	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-19 @ 1' 1D06003-23 (Soil)

	Limit Reporting								
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	•
Surrogate: 4-Bromofluorobenzene		111 %	80-120		P1D0811	04/08/21 15:58	04/09/21 14:52	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 14:56	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:34	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:34	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:34	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P1D0712	04/07/21 16:09	04/07/21 22:34	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P1D0712	04/07/21 16:09	04/07/21 22:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/07/21 22:34	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-19 @ 1' 1D06003-24 (Soil)

	Limit Reporting								
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P1D0811	04/08/21 15:58	04/09/21 15:13	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 15:12	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:56	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:56	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 22:56	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P1D0712	04/07/21 16:09	04/07/21 22:56	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P1D0712	04/07/21 16:09	04/07/21 22:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/07/21 22:56	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BH-23 @ 1' 1D06003-25 (Soil)

Analyte Result							
Analyte Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:18	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:18	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:18	TPH 8015M
Surrogate: 1-Chlorooctane		105 %	70-130		P1D0712	04/07/21 16:09	04/07/21 23:18	TPH 8015M
Surrogate: o-Terphenyl		109 %	70-130		P1D0712	04/07/21 16:09	04/07/21 23:18	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/07/21 23:18	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-23 @ 1' 1D06003-26 (Soil)

	Lim	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 15:28	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:41	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:41	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/07/21 23:41	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P1D0712	04/07/21 16:09	04/07/21 23:41	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-130		P1D0712	04/07/21 16:09	04/07/21 23:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/07/21 23:41	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-23 @ 1' 1D06003-27 (Soil)

	Lin	nit Repo	rting							
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		P	ermian B	asin Envi	ronmental L	ab, L.P.				
BTEX by 8021B										
Benzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Toluene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Xylene (o)	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		105 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:35	EPA 8021B		
General Chemistry Parameters by	EPA / Stand	dard Metl	hods							
Chloride	4.13	1.00	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 15:44	EPA 300.0		
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216		
otal Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M							
C6-C12	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:03	TPH 8015M		
>C12-C28	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:03	TPH 8015M		
>C28-C35	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:03	TPH 8015M		
Surrogate: 1-Chlorooctane		106 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:03	TPH 8015M		
Surrogate: o-Terphenyl		108 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:03	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 00:03	calc		

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-23 @ 1' 1D06003-28 (Soil)

	Lim	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	-
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0909	04/09/21 13:23	04/10/21 00:55	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	<u>10ds</u>						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 16:01	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	4 Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:25	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:25	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:25	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:25	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:25	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 00:25	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-23 @ 1' 1D06003-29 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		111 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:16	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 16:17	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:48	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:48	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 00:48	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:48	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-130		P1D0712	04/07/21 16:09	04/08/21 00:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 00:48	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BH-24 @ 1' 1D06003-30 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

		lard Meth	%		D1D0705	04/07/01 10 06	04/07/21 12 40	4 CTM 1 D221 (
% Moisture	1.0	0.1	70	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 01:10	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 01:10	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 01:10	TPH 8015M
Surrogate: 1-Chlorooctane		103 %	70-130		P1D0712	04/07/21 16:09	04/08/21 01:10	TPH 8015M
Surrogate: o-Terphenyl		107 %	70-130		P1D0712	04/07/21 16:09	04/08/21 01:10	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 01:10	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-24 @ 1' 1D06003-31 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		110 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:36	EPA 8021B	
General Chemistry Parameters by	y EPA / Stand	lard Metl	nods						
Chloride	ND	1.00	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 16:33	EPA 300.0	
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:18	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:18	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:18	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-130		P1D0712	04/07/21 16:09	04/08/21 02:18	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P1D0712	04/07/21 16:09	04/08/21 02:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 02:18	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-24 @ 1' 1D06003-32 (Soil)

	Limi	t Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0909	04/09/21 13:23	04/10/21 01:57	EPA 8021B	
General Chemistry Parameters by	EPA / Standa	ard Metl	nods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 16:49	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:41	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:41	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 02:41	TPH 8015M	
Surrogate: 1-Chlorooctane	9	93.7 %	70-130		P1D0712	04/07/21 16:09	04/08/21 02:41	TPH 8015M	
Surrogate: o-Terphenyl	9	07.4 %	70-130		P1D0712	04/07/21 16:09	04/08/21 02:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 02:41	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

ESW-24 @ 1' 1D06003-33 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:17	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	ND	1.01	mg/kg dry	1	P1D0808	04/08/21 12:46	04/09/21 17:06	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:04	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:04	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:04	TPH 8015M	
Surrogate: 1-Chlorooctane		96.6 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:04	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:04	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 03:04	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-24 @ 1' 1D06003-34 (Soil)

	Lim	it Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		110 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:38	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	nods						
Chloride	3.87	1.01	mg/kg dry	1	P1D0802	04/08/21 08:35	04/08/21 15:30	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:27	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:27	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:27	TPH 8015M	
Surrogate: 1-Chlorooctane		97.9 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:27	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 03:27	cale	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BH-25 @ 1' 1D06003-35 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by	EPA / Standa	ard Metl	nods					
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:49	TPH 8015M
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:49	TPH 8015M
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 03:49	TPH 8015M
Surrogate: 1-Chlorooctane	9	9.7 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:49	TPH 8015M
Surrogate: o-Terphenyl		103 %	70-130		P1D0712	04/07/21 16:09	04/08/21 03:49	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 03:49	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

NSW-25 @ 1' 1D06003-36 (Soil)

	Lim	it Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Po	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Toluene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-120		P1D0909	04/09/21 13:23	04/10/21 02:58	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Meth	nods						
Chloride	3.23	1.00	mg/kg dry	1	P1D0802	04/08/21 08:35	04/08/21 15:50	EPA 300.0	
% Moisture	ND	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:12	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:12	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:12	TPH 8015M	
Surrogate: 1-Chlorooctane		98.0 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:12	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.0	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 04:12	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

SSW-25 @ 1' 1D06003-37 (Soil)

	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		107 %	80-120		P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	80-120		P1D0909	04/09/21 13:23	04/10/21 03:19	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Metl	hods						
Chloride	9.52	1.01	mg/kg dry	1	P1D0802	04/08/21 08:35	04/08/21 16:48	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:34	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:34	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:34	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:34	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 04:34	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

WSW-25 @ 1' 1D06003-38 (Soil)

	Lim	nit Repor	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	80-120		P1D0909	04/09/21 13:23	04/10/21 04:21	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	6.02	1.01	mg/kg dry	1	P1D0802	04/08/21 08:35	04/08/21 17:08	EPA 300.0	
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:57	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:57	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 04:57	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:57	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P1D0712	04/07/21 16:09	04/08/21 04:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 04:57	calc	

C6-C35

13000 West County Road 100 Project Number: 13389

Odessa TX, 79765 Project Manager: Matt Green

Stockpile 1D06003-39 (Soil)

									1
	Limit	Repor	ting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Pe	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	rd Meth	ods						
% Moisture	1.0	0.1	%	1	P1D0705	04/07/21 12:06	04/07/21 12:49	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	35.9	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 05:20	TPH 8015M	
>C12-C28	1190	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 05:20	TPH 8015M	
>C28-C35	197	25.3	mg/kg dry	1	P1D0712	04/07/21 16:09	04/08/21 05:20	TPH 8015M	
Surrogate: 1-Chlorooctane	98	2.0 %	70-130		P1D0712	04/07/21 16:09	04/08/21 05:20	TPH 8015M	
Surrogate: o-Terphenyl	96	.6%	70-130		P1D0712	04/07/21 16:09	04/08/21 05:20	TPH 8015M	
Total Petroleum Hydrocarbon	1420	25.3	mg/kg dry	1	[CALC]	04/07/21 16:09	04/08/21 05:20	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1D0811 - *** DEFAULT PREP ***	k									
Blank (P1D0811-BLK1)				Prepared: ()4/08/21 Aı	nalyzed: 04	/09/21			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.131		"	0.120		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.139		"	0.120		116	80-120			
LCS (P1D0811-BS1)				Prepared: (04/08/21 Aı	nalyzed: 04	/09/21			
Benzene	0.102	0.00100	mg/kg wet	0.100		102	70-130			
Toluene	0.0948	0.00100	"	0.100		94.8	70-130			
Ethylbenzene	0.0813	0.00100	"	0.100		81.3	70-130			
Xylene (p/m)	0.175	0.00200	"	0.200		87.7	70-130			
Xylene (o)	0.0860	0.00100	"	0.100		86.0	70-130			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS Dup (P1D0811-BSD1)				Prepared: (04/08/21 Aı	nalyzed: 04	/09/21			
Benzene	0.0932	0.00100	mg/kg wet	0.100		93.2	70-130	8.90	20	
Toluene	0.0886	0.00100	"	0.100		88.6	70-130	6.85	20	
Ethylbenzene	0.0803	0.00100	"	0.100		80.3	70-130	1.27	20	
Xylene (p/m)	0.168	0.00200	"	0.200		84.2	70-130	4.04	20	
Xylene (o)	0.0804	0.00100	"	0.100		80.4	70-130	6.63	20	
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Calibration Blank (P1D0811-CCB1)				Prepared: (04/08/21 Aı	nalyzed: 04	/09/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	80-120			
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

	D. Iv	Reporting	TT '	Spike	Source	0/DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0811 - *** DEFAULT PREP ***										
Calibration Blank (P1D0811-CCB2)				Prepared: 0	04/08/21 At	nalyzed: 04/	/09/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Calibration Check (P1D0811-CCV1)				Prepared: 0	04/08/21 At	nalyzed: 04/	/09/21			
Benzene	0.0927	0.00100	mg/kg wet	0.100		92.7	80-120			
Toluene	0.0876	0.00100	"	0.100		87.6	80-120			
Ethylbenzene	0.0830	0.00100	"	0.100		83.0	80-120			
Xylene (p/m)	0.176	0.00200	"	0.200		87.9	80-120			
Xylene (o)	0.0822	0.00100	"	0.100		82.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Calibration Check (P1D0811-CCV2)				Prepared: 0)4/08/21 Aı	nalyzed: 04/	/09/21			
Benzene	0.0941	0.00100	mg/kg wet	0.100		94.1	80-120			
Toluene	0.0910	0.00100	"	0.100		91.0	80-120			
Ethylbenzene	0.0900	0.00100	"	0.100		90.0	80-120			
Xylene (p/m)	0.179	0.00200	"	0.200		89.7	80-120			
Xylene (o)	0.0856	0.00100	"	0.100		85.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.4	75-125			
Calibration Check (P1D0811-CCV3)				Prepared: 0)4/08/21 Aı	nalyzed: 04	/09/21			
Benzene	0.0969	0.00100	mg/kg wet	0.100		96.9	80-120			
Toluene	0.0925	0.00100	"	0.100		92.5	80-120			
Ethylbenzene	0.0878	0.00100	"	0.100		87.8	80-120			
Xylene (p/m)	0.177	0.00200	"	0.200		88.7	80-120			

0.0812

0.120

0.117

0.00100

Permian Basin Environmental Lab, L.P.

Xylene (o)

Surrogate: 1, 4-Difluor obenzene

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

81.2

100

97.7

80-120

75-125

75-125

0.100

0.120

0.120

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch P1D0811 - *** DEFAULT PREP ***

Benzene 0.0749 0.00114 mg/kg dry 0.114 0.00148 64.6 80-120 Toluene 0.0550 0.00114 " 0.114 0.00364 45.2 80-120 Ethylbenzene 0.0470 0.00114 " 0.114 0.00810 34.2 80-120 Xylene (p/m) 0.0678 0.00227 " 0.227 0.0160 22.8 80-120 Xylene (o) 0.0493 0.00114 " 0.114 0.00818 36.2 80-120 Surrogate: 4-Bromofluorobenzene 0.141 " 0.136 103 80-120 Surrogate: 1,4-Difluorobenzene 0.147 " 0.136 108 80-120	Matrix Spike (P1D0811-MS1)	Sour	ce: 1D01010-	03	Prepared: (04/08/21 An	alyzed: 04	1/09/21	
Ethylbenzene 0.0470 0.00114 " 0.114 0.00810 34.2 80-120 Xylene (p/m) 0.0678 0.00227 " 0.227 0.0160 22.8 80-120 Xylene (o) 0.0493 0.00114 " 0.114 0.00818 36.2 80-120 Surrogate: 4-Bromofluorobenzene 0.141 " 0.136 103 80-120	Benzene	0.0749	0.00114	mg/kg dry	0.114	0.00148	64.6	80-120	QM-07
Ethyloenzelle 0.0470 0.00114 0.114 0.00810 34.2 80-120 Xylene (p/m) 0.0678 0.00227 " 0.227 0.0160 22.8 80-120 Xylene (o) 0.0493 0.00114 " 0.114 0.00818 36.2 80-120 Surrogate: 4-Bromofluorobenzene 0.141 " 0.136 103 80-120	Toluene	0.0550	0.00114	"	0.114	0.00364	45.2	80-120	QM-07
Xylene (o) 0.0493 0.00114 " 0.114 0.00818 36.2 80-120 Surrogate: 4-Bromofluorobenzene 0.141 " 0.136 103 80-120	Ethylbenzene	0.0470	0.00114	"	0.114	0.00810	34.2	80-120	QM-07
Surrogate: 4-Bromofluorobenzene 0.141 " 0.136 103 80-120	Xylene (p/m)	0.0678	0.00227	"	0.227	0.0160	22.8	80-120	QM-07
Surrogate: 4-Bromojiuorobenzene 0.141 0.130 103 80-120	Xylene (o)	0.0493	0.00114	"	0.114	0.00818	36.2	80-120	QM-07
Surrogate: 1.4-Diffuorobenzene 0.147 " 0.136 108 80-120	Surrogate: 4-Bromofluorobenzene	0.141		"	0.136		103	80-120	
	Surrogate: 1,4-Difluorobenzene	0.147		"	0.136		108	80-120	

Matrix Spike Dup (P1D0811-MSD1)	Sour	ce: 1D01010	0-03	Prepared:	04/08/21 An	alyzed: 04	1/09/21			
Benzene	0.0839	0.00114	mg/kg dry	0.114	0.00148	72.5	80-120	11.6	20	QM-07
Toluene	0.0650	0.00114	"	0.114	0.00364	54.0	80-120	17.6	20	QM-07
Ethylbenzene	0.0545	0.00114	"	0.114	0.00810	40.9	80-120	17.7	20	QM-07
Xylene (p/m)	0.0879	0.00227	"	0.227	0.0160	31.6	80-120	32.4	20	QM-07
Xylene (o)	0.0529	0.00114	"	0.114	0.00818	39.3	80-120	8.28	20	QM-07
Surrogate: 1,4-Difluorobenzene	0.148		"	0.136		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.159		"	0.136		116	80-120			

Batch P1D0909 - *** DEFAULT PREP ***

Blank (P1D0909-BLK1)		Prepared & Analyzed: 04/09/21						
Benzene	ND	0.00100	mg/kg wet					
Toluene	ND	0.00100	"					
Ethylbenzene	ND	0.00100	"					
Xylene (p/m)	ND	0.00200	"					
Xylene (o)	ND	0.00100	"					
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120	107	80-120		
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120	103	80-120		

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0909 - *** DEFAULT PREP ***										
LCS (P1D0909-BS1)				Prepared &	Analyzed:	04/09/21				
Benzene	0.0976	0.00100	mg/kg wet	0.100		97.6	70-130			
Toluene	0.0909	0.00100	"	0.100		90.9	70-130			
Ethylbenzene	0.0815	0.00100	"	0.100		81.5	70-130			
Xylene (p/m)	0.171	0.00200	"	0.200		85.7	70-130			
Xylene (o)	0.0817	0.00100	"	0.100		81.7	70-130			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	80-120			
LCS Dup (P1D0909-BSD1)				Prepared &	Analyzed:	04/09/21				
Benzene	0.0913	0.00100	mg/kg wet	0.100		91.3	70-130	6.67	20	
Toluene	0.0852	0.00100	"	0.100		85.2	70-130	6.58	20	
Ethylbenzene	0.0812	0.00100	"	0.100		81.2	70-130	0.467	20	
Xylene (p/m)	0.172	0.00200	"	0.200		86.0	70-130	0.390	20	
Xylene (o)	0.0804	0.00100	"	0.100		80.4	70-130	1.53	20	
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Calibration Blank (P1D0909-CCB1)				Prepared &	Analyzed:	04/09/21				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		108	80-120			
Calibration Blank (P1D0909-CCB2)				Prepared: 0	04/09/21_At	nalyzed: 04	/10/21			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Andre	D14	Reporting	T.I!4-	Spike	Source	0/DEC	%REC	DDD	RPD	N-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0909 - *** DEFAULT PREP ***										
Calibration Check (P1D0909-CCV1)				Prepared &	Analyzed:	04/09/21				
Benzene	0.0985	0.00100	mg/kg wet	0.100		98.5	80-120			
Toluene	0.0910	0.00100	"	0.100		91.0	80-120			
Ethylbenzene	0.0876	0.00100	"	0.100		87.6	80-120			
Xylene (p/m)	0.193	0.00200	"	0.200		96.7	80-120			
Xylene (o)	0.0872	0.00100	"	0.100		87.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		104	75-125			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Calibration Check (P1D0909-CCV2)				Prepared: (04/09/21 A	nalyzed: 04	/10/21			
Benzene	0.0978	0.00100	mg/kg wet	0.100		97.8	80-120			
Toluene	0.0901	0.00100	"	0.100		90.1	80-120			
Ethylbenzene	0.0872	0.00100	"	0.100		87.2	80-120			
Xylene (p/m)	0.185	0.00200	"	0.200		92.6	80-120			
Xylene (o)	0.0858	0.00100	"	0.100		85.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P1D0909-CCV3)				Prepared: (04/09/21 A	nalyzed: 04	/10/21			
Benzene	0.0945	0.00100	mg/kg wet	0.100		94.5	80-120			
Toluene	0.0892	0.00100	"	0.100		89.2	80-120			
Ethylbenzene	0.0873	0.00100	"	0.100		87.3	80-120			
Xylene (p/m)	0.182	0.00200	"	0.200		91.2	80-120			
Xylene (o)	0.0843	0.00100	"	0.100		84.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.5	75-125			
Matrix Spike (P1D0909-MS1)	Sou	ırce: 1D06003	-26	Prepared: (04/09/21 A	nalyzed: 04	/10/21			
Benzene	0.0863	0.00101	mg/kg dry	0.101	ND	85.4	80-120			
Toluene	0.0808	0.00101	"	0.101	ND	80.0	80-120			
Ethylbenzene	0.0702	0.00101	"	0.101	ND	69.5	80-120			QM-0
Xylene (p/m)	0.155	0.00202	"	0.202	ND	76.5	80-120			QM-0
Xylene (o)	0.0722	0.00101	"	0.101	ND	71.5	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.126		"	0.121		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.132		"	0.121		109	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P1D0909 - *** DEFAULT PREP ***

Matrix Spike Dup (P1D0909-MSD1)	Sour	rce: 1D06003	3-26	Prepared: 0	04/09/21 A	nalyzed: 04	4/10/21			
Benzene	0.0808	0.00101	mg/kg dry	0.101	ND	80.0	80-120	6.50	20	
Toluene	0.0734	0.00101	"	0.101	ND	72.6	80-120	9.67	20	QM-07
Ethylbenzene	0.0646	0.00101	"	0.101	ND	64.0	80-120	8.26	20	QM-07
Xylene (p/m)	0.143	0.00202	"	0.202	ND	70.8	80-120	7.76	20	QM-07
Xylene (o)	0.0672	0.00101	"	0.101	ND	66.5	80-120	7.22	20	QM-07
Surrogate: 4-Bromofluorobenzene	0.127		"	0.121		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.121		102	80-120			

13000 West County Road 100Project Number: 13389Odessa TX, 79765Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
rmaryee	resuit	Liiiit	Omis	Level	Kesuit	70KEC	Lillits	KI D	Liiiit	TNOICS
Batch P1D0705 - *** DEFAULT PREP ***										
Blank (P1D0705-BLK1)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%							
Blank (P1D0705-BLK2)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%							
Blank (P1D0705-BLK3)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%	·	·	·	·		·	·
Blank (P1D0705-BLK4)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%							
Blank (P1D0705-BLK5)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%							
Blank (P1D0705-BLK6)				Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%							
Duplicate (P1D0705-DUP1)	Sour	rce: 1D06001-	10	Prepared &	Analyzed:	04/07/21				
% Moisture	15.0	0.1	%	·	16.0			6.45	20	
Duplicate (P1D0705-DUP2)	Soui	rce: 1D06001-	20	Prepared &	Analyzed:	04/07/21				
% Moisture	11.0	0.1	%		10.0			9.52	20	
Duplicate (P1D0705-DUP3)	Sour	rce: 1D06002-	05	Prepared &	Analyzed:	04/07/21				
% Moisture	13.0	0.1	%	•	13.0			0.00	20	
Duplicate (P1D0705-DUP4)	Soui	rce: 1D06002-	15	Prepared &	Analyzed:	04/07/21				
% Moisture	13.0	0.1	%	1	13.0			0.00	20	

13000 West County Road 100 Project Number: 13389 Project Manager: Matt Green

Odessa TX, 79765

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1D0705 - *** DEFAULT PREP ***		Ziiiit		20.01	100011	,,,,,,,	2111110		Ziiiiv	1,000
Baten PIDU/05 - *** DEFAULT PREP ***										
Duplicate (P1D0705-DUP5)	Sour	ce: 1D06002-	-30	Prepared &	Analyzed:	04/07/21				
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P1D0705-DUP6)	Sour	ce: 1D06002-	-40	Prepared &	Analyzed:	04/07/21				
% Moisture	13.0	0.1	%		13.0			0.00	20	
Duplicate (P1D0705-DUP7)	Sour	ce: 1D06003-	-13	Prepared &	Analyzed:	04/07/21				
% Moisture	ND	0.1	%		1.0			200	20	
Duplicate (P1D0705-DUP8)	Sour	ce: 1D06003-	-23	Prepared &	Analyzed:	04/07/21				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P1D0705-DUP9)	Sour	ce: 1D06003-	-38	Prepared &	Analyzed:	04/07/21				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P1D0705-DUPA)	Sour	ce: 1D06005-	-06	Prepared &	Analyzed:	04/07/21				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Batch P1D0802 - *** DEFAULT PREP ***										
Blank (P1D0802-BLK1)				Prepared &	Analyzed:	04/08/21				
Chloride	ND	1.00	mg/kg wet	*						
LCS (P1D0802-BS1)				Prepared &	Analyzed:	04/08/21				
Chloride	398	1.00	mg/kg wet	400	<u> </u>	99.5	90-110			
LCS Dup (P1D0802-BSD1)				Prepared &	Analyzed:	04/08/21				
Chloride	402	1.00	mg/kg wet	400		100	90-110	0.913	20	

13000 West County Road 100 Project Number: 13389

Odessa TX, 79765 Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0802 - *** DEFAULT PREP ***										
Calibration Check (P1D0802-CCV1)				Prepared &	k Analyzed:	04/08/21				
Chloride	20.1		mg/kg	20.0		101	90-110			
Calibration Check (P1D0802-CCV2)				Prepared: (04/08/21 Ar	nalyzed: 04	/09/21			
Chloride	20.4		mg/kg	20.0		102	90-110			
Calibration Check (P1D0802-CCV3)				Prepared &	k Analyzed:	04/08/21				
Chloride	20.2		mg/kg	20.0		101	90-110			
Matrix Spike (P1D0802-MS1)	Sour	ce: 1D07006	-01	Prepared &	ե Analyzed:	04/08/21				
Chloride	608	1.06	mg/kg dry	532	41.3	107	80-120			
Matrix Spike (P1D0802-MS2)	Sour	ce: 1D06003	-36	Prepared &	k Analyzed:	04/08/21				
Chloride	475	1.00	mg/kg dry	500	3.23	94.4	80-120			
Matrix Spike Dup (P1D0802-MSD1)	Sour	ce: 1D07006	-01	Prepared &	k Analyzed:	04/08/21				
Chloride	609	1.06	mg/kg dry	532	41.3	107	80-120	0.222	20	
Matrix Spike Dup (P1D0802-MSD2)	Sour	ce: 1D06003	-36	Prepared &	ե Analyzed:	04/08/21				
Chloride	486	1.00	mg/kg dry	500	3.23	96.6	80-120	2.35	20	
Batch P1D0807 - *** DEFAULT PREP ***										
Blank (P1D0807-BLK1)				Prepared: (04/08/21 Ar	nalyzed: 04	/09/21			
Chloride	ND	1.00	mg/kg wet							
LCS (P1D0807-BS1)				Prepared: (04/08/21 Ar	nalyzed: 04	/09/21			
Chloride	387	1.00	mg/kg wet	400		96.7	90-110			

13000 West County Road 100 Project Number: 13389
Odessa TX, 79765 Project Manager: Matt Green

ND

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

		Reporting		Spike	Source	;	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result		Limits	RPD	Limit	Notes
Batch P1D0807 - *** DEFAULT PREP ***										
LCS Dup (P1D0807-BSD1)				Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	386	1.00	mg/kg wet	400		96.5	90-110	0.189	20	
Calibration Check (P1D0807-CCV1)				Prepared &	t Analyze	ed: 04/08/21				
Chloride	19.0		mg/kg	20.0		95.1	90-110			
Calibration Check (P1D0807-CCV2)				Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	19.1		mg/kg	20.0		95.6	90-110			
Calibration Check (P1D0807-CCV3)				Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	18.8		mg/kg	20.0		94.2	90-110			
Matrix Spike (P1D0807-MS1)	Sou	rce: 1D05009	0-05	Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	8880	25.0	mg/kg dry	2500	6420	98.0	80-120			
Matrix Spike (P1D0807-MS2)	Sou	rce: 1D06001	-25	Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	531	1.14	mg/kg dry	568	5.16	92.5	80-120			
Matrix Spike Dup (P1D0807-MSD1)	Sou	rce: 1D05009	0-05	Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	8790	25.0	mg/kg dry	2500	6420	94.5	80-120	1.02	20	
Matrix Spike Dup (P1D0807-MSD2)	Sou	rce: 1D06001	-25	Prepared: (04/08/21	Analyzed: 04	/09/21			
Chloride	568	1.14	mg/kg dry	568	5.16	99.1	80-120	6.85	20	
Batch P1D0808 - *** DEFAULT PREP ***										
Blank (P1D0808-BLK1)				Prepared: (04/08/21	Analyzed: 04	1/09/21			
				1		,				

1.00 mg/kg wet

Chloride

13000 West County Road 100Project Number: 13389Odessa TX, 79765Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0808 - *** DEFAULT PREP ***										
LCS (P1D0808-BS1)				Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	391	1.00	mg/kg wet	400		97.9	90-110			
LCS Dup (P1D0808-BSD1)				Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	388	1.00	mg/kg wet	400		97.1	90-110	0.805	20	
Calibration Check (P1D0808-CCV1)				Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	18.8	·	mg/kg	20.0	·	94.2	90-110	·	·	
Calibration Check (P1D0808-CCV2)				Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	19.1		mg/kg	20.0		95.3	90-110			
Calibration Check (P1D0808-CCV3)				Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	19.3		mg/kg	20.0		96.7	90-110			
Matrix Spike (P1D0808-MS1)	Sour	ee: 1D06003	3-07	Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	463	1.01	mg/kg dry	505	9.11	89.9	80-120			
Matrix Spike (P1D0808-MS2)	Sour	e: 1D06003	3-22	Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	472	1.01	mg/kg dry	505	ND	93.4	80-120			
Matrix Spike Dup (P1D0808-MSD1)	Sour	e: 1D06003	3-07	Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	483	1.01	mg/kg dry	505	9.11	93.8	80-120	4.06	20	
Matrix Spike Dup (P1D0808-MSD2)	Sour	e: 1D06003	3-22	Prepared:	04/08/21 A	nalyzed: 04	/09/21			
Chloride	471	1.01	mg/kg dry	505	ND	93.3	80-120	0.148	20	

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389
Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Batch PID0707 - TX 1005 Prepared: 04/07/21 Analyzed: 04/08/21 Surgate: 04/07/21 Analyzed: 04/08/21 Surgate: 04/07/21 Analyzed: 04/08/21 Surgate: 04/07/21 Analyzed: 04/08/21 Surgate: 04/0			Reporting		Spike	Source	0/775	%REC	222	RPD	27.
Prepared: 04/07/21 Analyzed: 04/08/21	Analyte	Result	Lımit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
ND 25.0 mg/kg wet Secure Batch P1D0707 - TX 1005											
ND 25.0 " Surrogate: I-Chlorooctane 91.4 " 100 91.4 70-130 Surrogate: o-Terphenyl 49.0 " 50.0 mg/kg wet 1000 98.0 75-125 Surrogate: o-Terphenyl 50.7 " 100 104 75-125 Surrogate: o-Terphenyl 50.7 " 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 Surrogate: I-Chlorooctane 100 100 70-130 CC12-C28 1040 25.0 mg/kg wet 1000 96.9 75-125 1.08 20 CC12-C28 1040 25.0 mg/kg wet 1000 96.9 75-125 0.617 20 Surrogate: I-Chlorooctane 99.8 " 1000 104 75-125 0.617 20 Surrogate: I-Chlorooctane 99.8 " 1000 104 75-125 0.617 20 Calibration Check (PID0707-CCV1)	Blank (P1D0707-BLK1)				Prepared: (04/07/21 Aı	nalyzed: 04	-/08/21			
ND 25.0 "	C6-C12	ND	25.0	mg/kg wet							
Surrogate: I-Chlorooctane	>C12-C28	ND	25.0	"							
Surrogate: o-Terphenyl 49.0 " 50.0 98.0 70-130	>C28-C35	ND	25.0	"							
Prepared: 04/07/21 Analyzed: 04/08/21	Surrogate: 1-Chlorooctane	91.4		"	100		91.4	70-130			
C6-C12	Surrogate: o-Terphenyl	49.0		"	50.0		98.0	70-130			
C12-C28	LCS (P1D0707-BS1)				Prepared: (04/07/21 Aı	nalyzed: 04	-/08/21			
Surrogate: 1-Chlorooctane 100 " 100 100 70-130	C6-C12	980	25.0	mg/kg wet	1000		98.0	75-125			
Surrogate: o-Terphenyl Surrogate: o-Terphe	>C12-C28	1040	25.0	"	1000		104	75-125			
Prepared: 04/07/21 Analyzed: 04/08/21	Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
C6-C12	Surrogate: o-Terphenyl	50.7		"	50.0		101	70-130			
Surrogate: 1-Chlorooctane	LCS Dup (P1D0707-BSD1)				Prepared: (04/07/21 Aı	nalyzed: 04	-/08/21			
Surrogate: 1-Chlorooctane 99.8 " 100 99.8 70-130 Surrogate: o-Terphenyl 53.4 " 50.0 107 70-130 Calibration Check (P1D0707-CCV1) Prepared: 04/07/21 Analyzed: 04/08/21 C6-C12 467 25.0 mg/kg wet 500 93.5 85-115 >C12-C28 512 25.0 " 500 102 85-115 Surrogate: 1-Chlorooctane 114 " 100 114 70-130 Surrogate: o-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: 1-Chlorooctane 116 " 100 116 70-130	C6-C12	969	25.0	mg/kg wet	1000		96.9	75-125	1.08	20	
Surrogate: o-Terphenyl 53.4	>C12-C28	1040	25.0	"	1000		104	75-125	0.617	20	
Calibration Check (P1D0707-CCV1) Prepared: 04/07/21 Analyzed: 04/08/21 C6-C12 467 25.0 mg/kg wet 500 93.5 85-115 >C12-C28 512 25.0 " 500 102 85-115 Surrogate: I-Chlorooctane 114 " 100 114 70-130 Surrogate: o-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: I-Chlorooctane 116 " 100 116 70-130	Surrogate: 1-Chlorooctane	99.8		"	100		99.8	70-130			
C6-C12 467 25.0 mg/kg wet 500 93.5 85-115 >C12-C28 512 25.0 " 500 102 85-115 Surrogate: I-Chlorooctane 114 " 100 114 70-130 Surrogate: o-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: I-Chlorooctane 116 " 100 116 70-130	Surrogate: o-Terphenyl	53.4		"	50.0		107	70-130			
>C12-C28 512 25.0 " 500 102 85-115 Surrogate: I-Chlorooctane 114 " 100 114 70-130 Surrogate: o-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: I-Chlorooctane 116 " 100 116 70-130	Calibration Check (P1D0707-CCV1)				Prepared: (04/07/21 Aı	nalyzed: 04	-/08/21			
Surrogate: 1-Chlorooctane 114 " 100 114 70-130 Surrogate: o-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: 1-Chlorooctane 116 " 100 116 70-130	C6-C12	467	25.0	mg/kg wet	500		93.5	85-115			
Surrogate: 0-Terphenyl 50.4 " 50.0 101 70-130 Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: 1-Chlorooctane 116 " 100 116 70-130	>C12-C28	512	25.0	"	500		102	85-115			
Calibration Check (P1D0707-CCV2) Prepared: 04/07/21 Analyzed: 04/09/21 C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: I-Chlorooctane 116 " 100 116 70-130	Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
C6-C12 476 25.0 mg/kg wet 500 95.2 85-115 >C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: 1-Chlorooctane 116 " 100 116 70-130	Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130			
>C12-C28 494 25.0 " 500 98.8 85-115 Surrogate: I-Chlorooctane 116 " 100 116 70-130	Calibration Check (P1D0707-CCV2)				Prepared: (04/07/21 Aı	nalyzed: 04	-/09/21			
Surrogate: 1-Chlorooctane 116 " 100 116 70-130	C6-C12	476	25.0	mg/kg wet	500		95.2	85-115			
Surrogate. 1-Chioroociane 110 100 110 /0-150	>C12-C28	494	25.0	"	500		98.8	85-115			
Surrogate: o-Terphenyl 50.5 " 50.0 101 70-130	Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
	Surrogate: o-Terphenyl	50.5		"	50.0		101	70-130			

Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0707 - TX 1005										
Calibration Check (P1D0707-CCV3)				Prepared: (04/07/21 A	nalyzed: 04	/09/21			
C6-C12	447	25.0	mg/kg wet	500		89.5	85-115			
>C12-C28	501	25.0	"	500		100	85-115			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	47.5		"	50.0		95.1	70-130			
Matrix Spike (P1D0707-MS1)	Sou	rce: 1D06003	3-01	Prepared: (04/07/21 A	nalyzed: 04	/09/21			
C6-C12	843	25.0	mg/kg dry	1000	ND	84.3	75-125			
>C12-C28	940	25.0	"	1000	31.4	90.9	75-125			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	49.5		"	50.0		99.0	70-130			
Matrix Spike Dup (P1D0707-MSD1)	Sou	rce: 1D06003	3-01	Prepared: (04/07/21 A	nalyzed: 04	/09/21			
C6-C12	831	25.0	mg/kg dry	1000	ND	83.1	75-125	1.46	20	
>C12-C28	928	25.0	"	1000	31.4	89.6	75-125	1.38	20	
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	42.6		"	50.0		85.3	70-130			
Batch P1D0708 - TX 1005										
Blank (P1D0708-BLK1)				Prepared: (04/07/21 A	nalyzed: 04	/09/21			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	85.1		"	100		85.1	70-130			
Surrogate: o-Terphenyl	44.7		"	50.0		89.5	70-130			
LCS (P1D0708-BS1)				Prepared: (04/07/21 A	nalyzed: 04	/09/21			
C6-C12	859	25.0	mg/kg wet	1000		85.9	75-125			<u> </u>
>C12-C28	889	25.0	"	1000		88.9	75-125			
Surrogate: 1-Chlorooctane	118		"	100		118	70-130			
Surrogate: o-Terphenyl	47.5		"	50.0		95.1	70-130			

Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0708 - TX 1005										
LCS Dup (P1D0708-BSD1)				Prepared: (04/07/21 At	nalyzed: 04	/09/21			
C6-C12	859	25.0	mg/kg wet	1000		85.9	75-125	0.0535	20	
>C12-C28	921	25.0	"	1000		92.1	75-125	3.49	20	
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	49.2		"	50.0		98.3	70-130			
Calibration Check (P1D0708-CCV1)				Prepared: (04/07/21 At	nalyzed: 04	/09/21			
C6-C12	445	25.0	mg/kg wet	500		89.0	85-115	·		·
>C12-C28	452	25.0	"	500		90.3	85-115			
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenyl	45.5		"	50.0		90.9	70-130			
Calibration Check (P1D0708-CCV2)				Prepared: (04/07/21 Aı	nalyzed: 04	/09/21			
C6-C12	431	25.0	mg/kg wet	500		86.2	85-115			
>C12-C28	449	25.0	"	500		89.9	85-115			
Surrogate: 1-Chlorooctane	96.1		"	100		96.1	70-130			
Surrogate: o-Terphenyl	42.7		"	50.0		85.4	70-130			
Matrix Spike (P1D0708-MS1)	Sou	rce: 1D06003	3-21	Prepared: (04/07/21 Aı	nalyzed: 04	/09/21			
C6-C12	890	25.3	mg/kg dry	1010	ND	88.1	75-125			
>C12-C28	988	25.3	"	1010	ND	97.8	75-125			
Surrogate: 1-Chlorooctane	121		"	101		119	70-130			
Surrogate: o-Terphenyl	46.9		"	50.5		92.9	70-130			
Matrix Spike Dup (P1D0708-MSD1)	Sou	rce: 1D06003	3-21	Prepared: (04/07/21 Aı	nalyzed: 04	/09/21			
C6-C12	918	25.3	mg/kg dry	1010	ND	90.9	75-125	3.10	20	
>C12-C28	1000	25.3	"	1010	ND	99.2	75-125	1.50	20	
Surrogate: 1-Chlorooctane	123		"	101		122	70-130			
Surrogate: o-Terphenyl	47.5		"	50.5		94.1	70-130			

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0712 - TX 1005										
Blank (P1D0712-BLK1)				Prepared &	Analyzed:	04/07/21				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	96.4		"	100		96.4	70-130			
Surrogate: o-Terphenyl	49.2		"	50.0		98.5	70-130			
LCS (P1D0712-BS1)				Prepared &	Analyzed:	04/07/21				
C6-C12	963	25.0	mg/kg wet	1000		96.3	75-125			
>C12-C28	1010	25.0	"	1000		101	75-125			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	50.0		"	50.0		100	70-130			
LCS Dup (P1D0712-BSD1)				Prepared &	Analyzed:	04/07/21				
C6-C12	1010	25.0	mg/kg wet	1000		101	75-125	4.51	20	
>C12-C28	1020	25.0	"	1000		102	75-125	0.953	20	
Surrogate: 1-Chlorooctane	98.9		"	100		98.9	70-130			
Surrogate: o-Terphenyl	54.8		"	50.0		110	70-130			
Calibration Check (P1D0712-CCV1)				Prepared &	Analyzed:	04/07/21				
C6-C12	478	25.0	mg/kg wet	500		95.6	85-115			
>C12-C28	479	25.0	"	500		95.7	85-115			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	47.3		"	50.0		94.5	70-130			
Calibration Check (P1D0712-CCV2)				Prepared: (04/07/21 A	nalyzed: 04	/08/21			
C6-C12	434	25.0	mg/kg wet	500		86.8	85-115			
>C12-C28	438	25.0	"	500		87.7	85-115			
Surrogate: 1-Chlorooctane	97.3		"	100		97.3	70-130			
Surrogate: o-Terphenyl	42.2		,,	50.0		84.5	70-130			

Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H Project Number: 13389

13000 West County Road 100 Odessa TX, 79765

Project Number: 13389
Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1D0712 - TX 1005										
Calibration Check (P1D0712-CCV3)				Prepared: (04/07/21 A	nalyzed: 04	/08/21			
C6-C12	505	25.0	mg/kg wet	500		101	85-115			
>C12-C28	540	25.0	"	500		108	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	50.3		"	50.0		101	70-130			
Matrix Spike (P1D0712-MS1)	Sour	rce: 1D06003	3-38	Prepared: (04/07/21 A	nalyzed: 04	/08/21			
C6-C12	927	25.3	mg/kg dry	1010	ND	91.8	75-125			
>C12-C28	973	25.3	"	1010	19.8	94.3	75-125			
Surrogate: 1-Chlorooctane	122		"	101		121	70-130			
Surrogate: o-Terphenyl	52.5		"	50.5		104	70-130			
Matrix Spike Dup (P1D0712-MSD1)	Sour	rce: 1D06003	3-38	Prepared: (04/07/21 A	nalyzed: 04	/08/21			
C6-C12	1120	25.3	mg/kg dry	1010	ND	111	75-125	18.9	20	
>C12-C28	1190	25.3	"	1010	19.8	116	75-125	20.6	20	
Surrogate: 1-Chlorooctane	106		"	101		104	70-130			
Surrogate: o-Terphenyl	56.0		"	50.5		111	70-130			

13000 West County Road 100

Project Number: 13389

Project: Chedder 3BS Fed Com #1H

Odessa TX, 79765

Project Manager: Matt Green

Notes and Definitions

ROI Received on Ice

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Laboratory Control Spike LCS

MS Matrix Spike

Duplicate Dup

	Drew	Darron		
Report Approved By:			Date:	0/2/2021

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Page

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

					Per 100	mia 114 Ilan	Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706	asin our	nty nty	invironn y Road 79706	o ad n	121	დ <u>ა</u>	ab b	Ţ	·								ס	Ď	ne:	4.	Phone: 432-661-4184	61	4	1 84	-					
Project Manager: Matt Green							1			1		İ	ı					3	Project Name:	Na	me	1	i		₽	ğ	da	Cheddar 3BS Fed Com #1H	SS	٦	اچ ا	JΣ	ĮĬ	土	エ		
Company Name Etech Environmental and Safety Solutions, Inc.	tal and Safety	Soluti	ons, Inc.				Ì				1	İ	l		1				Pr	Project #:	# #	ı"	1	1	1		1	<u> </u>	13389	88		1	1	1		1	1
Company Address: 13000 W CR 100								ŀ			1							Ͳ	Project Loc:	얁	6	ı¨	i		j	1	 _	Lea County, NM	ပ္ပြ	Ē	<u> </u>	lξ	1	1	l	ļ	
City/State/Zip: Odessa, Texas 79765	765					İ	1	.[1	1					1					ק	PO #:	Ι	1		1		1		1	.	1]		1			1
Telephone No: (432)230-3763				Fax No:	}	1			1					1			е́р	윢	Report Format:	ma	TT .		S	tan	Standard	<u>α</u>			<u></u>] TRRP	õ			Ш	R	NPDES	S
Sampler Signature: FS				e-mail:	≨	<u>8</u>	Matt@etechenv.com weslev@etechenv.com	ğ E	(<u>Q</u>)		윈	ည္က	ĭI.	음	دا			_	Ì		ì	1	1	1	≱	Analyze	ĕ	F S	-		1	1	1			7	
_ [٠.		1	_ [1			ĺ	1	i			<u> </u>				TCLP:	F	<u> </u>				Щ,					}	[72 hrs	
DER#: 1006003	7	1]		\prod	Preservation & # of Co	Tă	ion &	#	ਹੁੰ	ntainers	- Sign	Ш	z	Matrix	Ľ	015B	006		\neg	\dashv	_	Se			260							_	, 48,	$\dot{m{ au}}$
ise only)	Depth	oth	bled	oled		tainers				· ·					ry)	ater SL=Sludge	ater S=Soil/Solid	Specify Other	8015M 80	D5 Ext TX 1	/lg, Na, K)	04. Alkalinity)			Ba Cd Cr Pb Hg			5030 or BTEX 82	J. W. L/1 04			300				Pre-Schedule) 24,	T
IBD U	Beginning I	Ending Dep	Date Samp	Time Samp	Field Filtered	Total #. of Con	Ice	HNO ₃	HCI	H₂SO₄	NaOH	Na ₂ S ₂ O ₃	None		Other (Speci	DW=Drinking Wa	GW = Groundwa	NP=Non-Potable	TPH: 418.1	TPH: TX 100	Cations (Ca, N	Anions (CI, SC	SAR / ESP / C		Metals: As Ag	Volatiles	Semivolatiles	BTEX 8021P		RCI	N.O.R.M.	Chlorides E				RUSH TAT	Ctandord TA
Sample Point 4			4/1/2021	1025			×				1	 	┼	-		1	လ	L.,	×			1	-	-				1	\vdash	1			1-	1]		
Sample Point 11			4/1/2021	1105		_	×					+-	+		<u> </u>	İ	လ	<u> </u>	×	1		╅	┼-	↓_				+-	+	<u> </u>		1	┼	1	1	П	1
BH-10 @ 1'			4/1/2021	1030			×	L			1	+	┢	┼	<u> </u>		S		×			†	\vdash	┼			Π	1	+-	$oldsymbol{\perp}$			+-	 	Ĺ		1
BH-14 @ 1'			4/1/2021	1115			×					+-	 	╀			S		×			T	┢						+-	<u> </u>	1	1	+	<u> </u>	L		
NSW-14 @ 1'			4/5/2021	750			×				T	+	┿		<u> </u>		S		×			\top	╆	┿	_			X	1	L		X	₽		L		1
ESW-14 @ 1'			4/1/2021	1125			×				 	\vdash	+-	┼	<u> </u>		S		×			T	+-	╀	<u> </u>		1	×	₽	<u> </u>		X	+-	1_	<u>L</u> _		1
7. ₩SW-14 @ 1'			4/1/2021	1135			×					\vdash	-	<u> </u>	<u> </u>	l	S		×	İ		†		<u> </u>				$\overline{\times}$	\leftarrow	<u> </u>		×	\vdash	<u> </u>	L	[<u> </u>	.
BH-15 @ 1'			4/1/2021	1148			×					\vdash	┼	<u> </u>	ऻ_		S	Ц,	×			1	├-	├		_	Г	1	-	_			1	!	L		1
ESW-15 @ 1'			4/1/2021	1200			×				1	 	├─	├	ļ.,		S		×				┢╾	├	_			一	1	<u> </u>		×		<u> </u>	L		1.
⊘			4/1/2021	1415		_	×				\vdash	<u> </u>	┢	-			S		×			_	-	<u> </u>			\int	×	尸	<u></u>		V	(``	<u> </u>	L		
cial Instructions: Bill to Centennial																					Sa ∟a	ў ≅, 5	F e c	5 g 2	Laboratory Comments: Sample Containers Intac VOCs Free of Headsnac		S E S	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	v ev ((関)	(關)		zz	
rquished by:	Date	ime	Received by:		}			ı	Ì		l			ŀ	Date	۱۳			Time	۱"	င္မရ	sto e	₹6,	ea G	Sola		ng.	Labels on confainer(s) Custody seals on container(s)	ž i				ى _			ZZ	
5	6-21	W				i	1			1		İ	╫┈	i		1					0	sto	9	ea	. S	. D	00	Custody seals on cooler(s)					M.	W	*	N:	
Aquished by:		Time	Received by:	ļ :											Date	0			Time		Sa	함함	nple Hand I by Sampler by Courier?		ッミニ	景	/ered ⊤Rep UPS	nple Hand Delivered by Sampler/Client Rep.? by Courier? UPS	ୃ∖ା	물		T .	FedEx		ا لَا	Lone Star	፬
rquished by:	Date T	Time	Received by PBEL			N IV	\mathbb{M}		10					O(I)	C) at	() ()	564M	ᆂ.	- B	\mathcal{O}	Ad Re	Temperature I Received: 4 Adjusted:	era ved ed:	الأعداد		ØY §	/ ⊂ ??	pon Receipt: °C °C Factor	E P	Č.		\circ	`		\mathcal{C}	Y 2	

Released to Imaging: 9/1/2022 9:28:05 AM

Page 60 of 63

eccivea	l by Q	CD:	/13/20	22 1	2:0	<u>1:54</u>	(P)	1	1000	Algeberr	i gaga	las co	1 SOUTH	Figure appropriate signs may be also write and also reformed to			ı					Page	178 of
cecivelinquished by:	Relinqui		pecial instructions: Bill	8	型	, 20	口	5	5	7	$\overline{\omega}$	7	F	LAB # (lab use only)	ORDER #:	(lab use only)							
uishe	Jishe					-			7		•	\$332 \$350			ER	se on	(0		_	0		_	
by:	र्ब		Sund					l				l				₹	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	W
	'	K "\	B 6												 		ple	pho	Sta	par	ıpar	ect_	102
		1/	Bill to Centennia	!	1								l		DOG OCO		<u>Si</u>	ňe	te/Z	Ŋ A	7	Mar	
	1	10	င္ထိ	1	1	_	_		_	١	_	_	1		ĕ		gnat	<u>0</u>	<u>ö</u>	dd	lam	nage	
			ente	SSW-8@	모	WSW-17	ESW-17 @ 1'	SSW-17 @ 1	NSW-17 @ 1'	모	WSW-16@	ESW-16 @ 1'	모		8		ture			SSe	Ф	9.	
		ļ	ng.	}-8	BH-18 @	1	<u> </u>	<u>-1</u>	<u>~</u>	BH-17 @	~	12	BH-16 @ 1'	FIELD CODE	없		1 1	4	lo	_	ļπ	I≊	
			<u> </u>	(8)	(8)	7 @	@	@	@	(8)	0	®	(8)	lg	100 (K)		15	32)2	dess	8	ech	att o	
				-	1	@ - <u>-</u>	<u> </u>	<u> </u>	<u>-</u>	<u>-</u>	<u>-</u> -	<u> </u>	-	m				(432)230-3763	jäi ⊣	≶	M _M	Matt Green	
				1		1							Ì					3763	Odessa, Texas 79765	13000 W CR 100	Fon		
ا ا	0	ا "											İ						797	8	nen		3
Date	Date		1		1	1	1		1	ł	1	١.	1		1.785.47532	***************************************	1	1	65	-	<u>a</u>		3
				L		ļ	_	<u> </u>	<u> </u>		_		<u> </u>		7						nd S		9
	=	11/1	<u> </u>											Beginning Depth	-						afety		
Time	a				T	T								Ending Depth							Etech Environmental and Safety Solutions, Inc		Permian Basi
고	ل م	<u></u>	}	-	+-	+	1	+	\vdash	-	\vdash	┼	\vdash		1						ions,	-	
	Received by:	Received by:		4/5/2021	4/1/2021	4/5/2021	4/5/2021	4/5/2021	4/5/2021	4/1/2021	14/1/2	4/1	4/1/2021								ਰ		•
// 8	Ď.	8		202	1202	202	202	202	202	202	4/1/2021	4/1/2021	202	Date Sampled									
Received by PBE	Υ.		1	ٽا ا	=]=	-~	1,3	13	۲	۲	'-	۲						-				
					Π	7									7		•	•					į
[]]				830	1045	910	88	855	840	920	1330	1345	1400	Time Sampled			o di	Ĭ.			1		
				O	5	°	Ŏ	Öi	0	Ö	8	5	8	- Time Sampida			e-mail:	Fax No:			-		į
NM			ļ	-	╀	 	\vdash	┝	-		+	_	_	Field Filtered	4			ı <u>≅</u>	-			=	_ ¬ ₽ 2
					+_	<u> </u>	<u> </u>	_	-			_	╁╌	Total #. of Containers	1		<u>Matt@et</u> wesley@etecr					Midland, Texas	Permian Basin Environmenta 10014 S. County Road 1213
				×	×	×	×	×	×	×	X	×	×	Ice	\Box		le .	1	l		ı	nd,	ian i
						-		┢	†		$\dagger \dagger$	<u> </u>	-	HNO ₃	Preg		@att					Tex	Sasi Col
	•				1								<u> </u>	HCI	reservati			1					m Er
1					1				Г			T .		H₂SO₄	tion & #					•	1	79706	Ro ¥ir
												r		NaOH	# g		echeny.c			İ		6	ad 1
]											Na ₂ S ₂ O ₃	ဋ္ဌ		<u>\$</u> 3	1	l	-	ļ		enta 213
(Z)														None	Containers		techeny.com neny.com						Permian Basin Environmental Lab, LP 10014 S. County Road 1213
	Date	⊃ate												Other (Specify)			IB						ь, L
اتدلا		6												DW=Drinking Water SL=Sludge	≲		•	20					U
				S	S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid	Matrix			epo				70	
云』	를	=		×	×	×	×	×	×	×	×	×	×	NP=Non-Potable Specify Other TPH: 418.1 8015M 80	015B	Τ	П	Report Format:		Pro	70	Project Name:	
$\mathcal{O}_{\mathbb{S}}$	Time	lime			+^	⇈	1	⇈	 ^		 	Ĥ	1	TPH: TX 1005 Ext TX 10	—∤			orm	77	Project Loc:	Project #:	핥	
AZR⊟	- &	ර් ටම් r	≤ % £	3	+	T	 	\vdash	\vdash	\vdash	-		-	Cations (Ca, Mg, Na, K)	\dashv			at:	PO #:	Loc	čť#	ame	
Temperati Received: Adjusted:	₹\$₹	istoc Istoc	S B	[+-	†	\vdash	1	†-		 		\vdash	Anions (CI, SO4, Alkalinity)	$\dashv_{\bar{z}}$	ا_ ا ر		\boxtimes	"	"	"	٦	
Temperature Received: Adjusted:	nple Hand Delivered by Sampler/Client Rep.? by Courier? LIPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?		\vdash	1	T	I^-	1	<u> </u>		-		SAR / ESP / CEC	O A	TCLP:							
	ie plez Plez Brad L	cont Sals	of all S	3		T								Metals: As Ag Ba Cd Cr Pb Hg		T	≥	Standard				C	Pho
りる		on c	ners leac		T		Τ		1		Γ	Π		Volatiles	$\neg \uparrow$	T	Analyze	ď				hed)ne:
/ 공 연	nt Rep	onta onta	inte Spa											Semivolatiles			ze F			<u>_</u>		dar	43
င္ဘဂ ္ဂ	″ອ້ີ ່ ຈ	iner (s)	(e) (g)	\bigvee		×	X	X	X		X	×	4	BTEX 8021P/5030 or BTEX 82	260	\prod	For			Lea County, NI	3	Cheddar 3BS Fed C	Phone: 432-661-4184
acto :	፤	S											2	RCI				TRRP		n n	13389	ĮΤ.	<u></u>
≒													7	N.O.R.M.				귀	1	₹	1	18	2
${}^{\sim}$			基础	8 L		Д	L		L		L.	L.	Ι.,				1 1	_		17	4	17	4

NPDES

Page 61 of 63

RUSH TAT (Pre-Schedule) 24, 48, 72 hrs

Standard TAT

Page	179 of 202
	Hi.
Project Manager	
anager:	
Matt 0	Image: Control of the control of the

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Receive elinquished by:	d by Relinquished by	Relinquished by	/13/20	2 <i>1</i> る 〇	18 B	28	127	26	25	42	8	22	12	LAB#(lab use only)	ORDER #:	(lab use only)						Page	179 of
led by:	ned by:	ed by:	Special Instructions: Bill to Centennial		W	Ш	Ş	Z		S	m	z			# D06003	only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	18301672
			ntennial	BH-24 @ 1'	WSW-23 @ 1'	ESW-23 @ 1'	SSW-23 @ 1'	NSW-23 @ 1'	BH-23 @ 1'	SSW-19 @ 1'	ESW-19 @ 1'	NSW-19 @ 1'	BH-19 @ 1'	FIELD CODE	83		Ire: FS	(432)230-3763	Odessa, Texas 79765	ss: 13000 W CR 100	Etech Environmental and Safety Solutions, Inc.	r: Matt Green	7
Date	Date	Date 562/								:									s 79765	100	mental and s		
	⊒	/) /												Beginning Depth							afety		
Time	Time													Ending Depth							Solutio		Ç
Received by PBE	Received by:	Received by:		4/1/2021	4/1/2021	4/1/2021	4/1/2021	4/1/2021	4/1/2021	4/5/2021	4/1/2021	4/1/2021	4/1/2021	Date Sampled							ns, Inc.		Permian Bas 10014 S. Col
				1425	1610	1525	1505	1545	1600	815	1435	1500	1445	Time Sampled			e-mail:	Fax No:					
				F	Į.	_	_	-	_				_	Field Filtered]	VC.	Matt@etechenv.com					Midland, Texas	Permian Basin Environmental Lab, LP 10014 S. County Road 1213
V			ļ	×	×	×	× ~	×	×	× -,	×	×	<u>~</u>	Total #. of Containers	+	Sic V						and,	hian I
				-										HNO ₃	Pres	900	latt					Tex	Basin
														HCI	Preservation	<u>c</u>	@e					as 7	age in the second
						_		ļ	<u> </u>		<u> </u>		<u> </u>	H ₂ SO ₄	ЭЛ & #	<u> </u>	ec.					79706	/iron ₹oac
				-	├-	-	_		├-		_		<u> </u>	NaOH Na ₂ S ₂ O ₃	of CC	<u> </u>	<u>len</u>		'			"	men 1 121
10			Ì	<u> </u>	╁╌	}	-	┢	├─		-		-	None	of Containers					1		1	3 12 1
	p	: 💆		<u> </u>	\vdash	<u> </u>	_		\vdash				 	Other (Specify)	- %		B						ab, I
Date Date	Date	Date												DW=Drinking Water SL=Sludge	\leq			1 .	'	•	•	ı	ט'
			1	S	S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix			Report Format:		•			
馬劃	Time	Time		×	×	×	×	×	×	×	×	×	×		015B	Т	1	rt Fo		Project Loc:	פ	Project Name:	
\mathcal{V}^{\bullet}														TPH: TX 1005 Ext TX 1	006	ı	į	rmat	P	ect L	Project #:	t Na	
Tem Reα Adju	Sam 1	Cust	Sam F											Cations (Ca, Mg, Na, K)		1		17	PO #:	Š	,# ,#	me:	
Temperat Received Adjusted:	nple Hand I by Sampler by Courier?	edy ody	ple (-	<u> </u>		<u> </u>		<u> </u>	_	_		<u> </u>	Anions (CI, SO4, Alkalinity)	TOTAL:	TCLP:		\boxtimes		1			
ZT =	fand mple urier) cor seals seals	e of the c	-	ļ	_		ļ	<u> </u>	_	-		ļ.	SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg		٦.		Standard		İ			팔
Temperature Upon Received: ロル Adjusted: アン	Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	ntain on	Laboratory Comments— Sample Containers Imact? VOCs Free of Headspace?	-	 	<u> </u>		-	-	 	 		-	Volatiles	, 58	⊢Anal	1	tard			1	Che Che	one
[78	ivered ent Rep UPS	er(s) conta	neni s Int	\vdash	<u> </u>				<u> </u>	\vdash		-	\vdash	Semivolatiles	- -	Analyze For:	1			_		dda	:: 4 3
೧೧ಕ್ಷ	3	Labels on container(s) Custody seals on container(s) Gustody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?		×	X	X	X		X	×	X	7	BTEX 80219/5030 or BTEX 82	260	-	Ί			Lea County, NM	ည်	Cheddar 3BS Fed Com #1H	Phone: 432-661-4184
acto	P	(8)												RCI				TRRP		oun.	13389	S F	31-4.
				L										N.O.R.M.			1	쉬		Ž Z		ed C	184
13	֪֪֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֓֓֓֓֞֝֡֡֓֓֓֡	لکو از (<u> </u>	껃	M	X	X	_	X	X	X		Chlorides E 300	1	_				3		Moc	
''	×٧٢	ڰڮ		<u> </u>		_	-	1	-	<u> </u>	<u> </u>	_	_			4	1				1	#	
N	one SZZ	z z z	zz	<u> </u>	┢		_	\vdash		<u> </u>	<u> </u>			RUSH TAT (Pre-Schedule) 24,	. 48. 72 h	rs	ł	NPDES					
1,0	ស៊ី			×	×	×	×	×	×	×	×	×	×	Standard TAT	1	-	ı	S	}				
	and the second of	CHOMPY PRODUC	ASSESSED AND ADDRESS OF THE PARTY OF THE PAR	<u> </u>					<u> </u>					<u> </u>	_				1	1	P	age 62	2 of 63

Daga	190 of 20	12
Page	100 0j 20	2
		1
777		,
Project Manager:	\square	9
e <u>c</u>		
Ma		
nac		
jer:	\mathcal{F}	
I		
Matt G		
15		

Matt Green

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706

Project Name:

Cheddar 3BS Fed Com #1H

Company Address: 1000 W CR 100 East County, MAT Telephone No. Mattiget County, Matt	ဂ္	Company Name	Etech Environmental and Safety Solutions, Inc.	ental and S	afety s	Solution	ns, Inc.						1	-					ı			Pr	Project #:	#	İ				1		13389	9		1			1	\vdash
Docotion No. Coloration Total Transport Total Transport Total Transport Total Transport Total Transport Total Transport Total Transport Total Transport Transport Total Transport Total Transport Total Transport Total Transport Total Transport Total Transport Transport Total Transport Total Transport Total Transport Transpor	Ω Q		13000 W CR 10	ŏ		1			ŀ		1	1	ļ		1	1		}	1		₽	<u>o</u>	유	္မ်ိဳ			1		_	ea	5	<u>/</u> y	Σ		1		1	
DOCO Port	Ω		Odessa, Texas	79765						İ	1		1					i	1				P	<u>,</u> #	İ]	İ	ļ .		[1				1	
DOGCOCO	<u>,</u>		(432)230-3763					Fax No:			}			İ		}	1	İ	f	Rep	육	For	mat	••	\boxtimes	Sta	nda a	<u>d</u>			 	弁	•	_		PD	ΈS	
	တ္တ	ampler Signature:	75					e-mail:			≥	att	<u>@</u>	हें	읓	13	Ω.	Ħ						ĺ				İ	į	l		ļ						
Doctor Preservation & et al Contents Preservation & et a			A SOLO SOLO SOLO SOLO SOLO SOLO SOLO SOL	42. Taxofe		İ			≨	Sign	K	υe	le e	lie Be	N	8	lΞ						Ιſ	ΙI] []	ا≰ا	aly.	Ze	윽	11	11	ł I	{		Ц		
Preserved of Second Continues Preserved of Second Continue	ıb use onıy)										ļ												ᆲ	<u>₽</u> 5			$\neg \neg$	\top							/2 hrs	
NSW-24 @ 1" Beginning Depth	RDER#		W)]		П	Pres	erva	ion ~	**		ntain	Š	Н	Matri	Ľ	15B	06		_];		Se		\dashv	30							48, 7	
Bill to Centennial	nly)				h					rs								<u> </u>	.≃Siudae	_	cify Other	15M 80	TX 10	ı, K)	(alinity)	. <u>.</u>	Cr Pb Hg			r BTEX 826	 -						hedule) 24,	
FIELD CODE By LET Code	B # (lab use or				eginning Deptl	ding Depth	ate Sampled	ime Sampled	ld Filtered	al #. of Container	e	NO ₃	CI	SO ₄	aOH	a ₂ S ₂ O ₃					=Non-Potable Spec	H: 418.1 801	H: TX 1005 Ext	tions (Ca, Mg, Na	ons (Cl, SO4, Alk	R / ESP / CEC	tals: As Ag Ba Cd	atiles	nivolatiles	EX 8021P/5030 or				IONGES E 300				indard TAT
SSW-24@1" 4/1/2021 1515 1 x S X X X X X X X X	311	NSW-	24 @ 1'		I	E	4/1/2021	1055	F	<u>~</u>	×						_		_		1	\times	Τ	C	/	8		\	S	X	-\-	-+		4	_	_		×S
ESW-24 @ 1'	32	SSW-:	24 @ 1'				4/1/2021	1535		_	×									S		×								X		-	\bigcup					×
WSW-24 @ 1'	\mathcal{B}	ESW-	24 @ 1'				4/1/2021	1515		_	×					 		_	_	S		×								X	H	-	\forall	\triangle		Щ		×
BH-25 @ 1'	₹ 87	-WSW	.24 @ 1'	\			4/1/2021	1605		_	×					1-			\vdash	S		×			L.					\overline{x}		-	7	\sim		<u></u>		×
NSW-25 @ 1" 4/1/2021 1000 1 x S X X X X X X X X X	8	BH-2	5@1'				4/1/2021	945			×				<u> </u>	ì	-		\vdash	S		×				<u> </u>						\vdash	-		_	L		×
SSW-25@1' 4/1/2021 1000 1 x	364	-WSN	25 @ 1'				4/1/2021	935			×		Γ		十一		一		一	S		×				L_				X		_	一	K		<u> </u>		\times
WSW-25 @ 1'	37	-WSS	25 @ 1'				4/1/2021	1000			×							 		S		×		<u> </u>						X			1		_	<u> </u>	L_	×
Stockpile Stockpile Stockpile A1/2021 A1 x S X Laboratory Comments Sample Containers Intact? NOCs Free of Headspace? NOCs Free of Headspac	381	-WSW	25 @ 1'			i 	4/1/2021	1010			×				_					S	<u> </u>	×		L.,						X				ightharpoons				\times
Sample Containers Inflact? Bill to Centennial Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received: Date Time Received: Date Time Received: Date Time Received: Date Time Received: Date Time Received: Custody seals on container(s) Custody seals on container(s) Custody seals on container(s) Custody seals on container(s) Date Time Sample Fland Delivered by Sample-/Client Rep. ? Date Time Received: Custody seals on container(s)	8	Stoc	ckpile				4/1/2021				×		1		1	1		+		S	<u> </u>	×	<u> </u>		<u> </u>			<u>.</u>				1	-	+	-	_	_	×
Bill to Centennial Date Time Received by: Date Time Labels on containers intact?	Social Inst	Tiotions:										Г			┢	1	H	\vdash	-		L	L		<u> </u>	_		<u> </u>				1	1	-		<u> </u>	L	L	i e
Date Time Received by: Custody seals on container(s) Custody seals on container(s)	becial inst	Bill to Centenr	nial			:																		San Fa	ple SF	6 6 3 6 6 9	급률증	eac	ds in en	8 8 9				√ (26)	٧/	_		
Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by: Date Time Received by PBEL: Date Time Received by PBEL: Date Time Received: Upon Receipt: C Factor:	linquished	// // //	<u>ر</u>	Date / -) /	<u>'</u> '∃	∂ 8	Received by:											0	ate		_	Ξe		Cus	ody ody	sez Sez	is o	⊃ E	26	ije	(S)			. < e	لإل			
Date Time Received by PBEL: Date Time Received by PBEL: C C Factor (1) Date Time Received: Upon Receipt: 0.00 c. C. Factor (1) Adjusted: C Factor (1)	linquished	à.		Date	III	<u>a</u>	Received by:		1							1			ate			mil i		San	S S S S S S S S S S S S S S S S S S S	amp Har		ier ein	nt ee S	၇မွ ဝ	7	- 8	ŗ 🖁	1 7 ~ ~ [4	`()圆		o ~ ~ [· [8
	linquished	by:		Date	1	9	Received by PBE			1 1 1 1								<i> \</i>	ate	2	3			Tem Rec Adju	pera eive	a Cal	U 1/2	$\phi_{\mathbb{A}}$	/ Re	ဂံဂံမှို	Fac:	₫ (- 2	1)		6	7	

Phone: 432-661-4184

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 1

Prepared for:

Matt Green
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Location: Lea County, NM

Lab Order Number: 1E21012

Current Certification

Report Date: 09/02/21

13000 West County Road 100Project Number:13389Odessa TX, 79765Project Manager:Matt Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-10 @ 1.5'	1E21012-01	Soil	05/18/21 13:30	05-21-2021 11:25
Perimeter #9A	1E21012-02	Soil	05/18/21 13:00	05-21-2021 11:25
Perimeter E-12A	1E21012-03	Soil	05/18/21 13:15	05-21-2021 11:25
Stockpile	1E21012-04	Soil	05/18/21 16:00	05-21-2021 11:25

Project: Chedder 3BS Fed Com #1H

On 09/01/21 PBELAB Staff was advised to make the following changes to sample ID: 1E21012-03: Please rename to: Perimeter E-12A

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

BH-10 @ 1.5' 1E21012-01 (Soil)

Analyte	Limit Result	Repo	rting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by	EPA / Standa	rd Metl	hods						
% Moisture	1.0	0.1	%	1	P1E2408	05/24/21 11:25	05/24/21 11:33	ASTM D2216	<u>.</u>
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:26	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:26	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:26	TPH 8015M	
Surrogate: 1-Chlorooctane	8	5.7 %	70-130		P1E2406	05/24/21 10:20	05/25/21 04:26	TPH 8015M	
Surrogate: o-Terphenyl	9	8.2 %	70-130		P1E2406	05/24/21 10:20	05/25/21 04:26	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.3	mg/kg dry	1	[CALC]	05/24/21 10:20	05/25/21 04:26	calc	

13000 West County Road 100

Project Number: 13389 Odessa TX, 79765 Project Manager: Matt Green

Perimeter #9A 1E21012-02 (Soil)

Project: Chedder 3BS Fed Com #1H

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by	EPA / Standa	ard Metl	ıods					
% Moisture	3.0	0.1	%	1	P1E2409	05/24/21 11:59	05/24/21 12:00	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.8	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:50	TPH 8015M
>C12-C28	ND	25.8	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:50	TPH 8015M
>C28-C35	ND	25.8	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 04:50	TPH 8015M
Surrogate: 1-Chlorooctane	8	0.5 %	70-130		P1E2406	05/24/21 10:20	05/25/21 04:50	TPH 8015M
Surrogate: o-Terphenyl	9	2.4 %	70-130		P1E2406	05/24/21 10:20	05/25/21 04:50	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	05/24/21 10:20	05/25/21 04:50	calc

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Perimeter E-12A 1E21012-03 (Soil)

	Limit	Reporting						
Analyte	Result	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

% Moisture	2.0	0.1	%	1	P1E2408	05/24/21 11:25	05/24/21 11:33	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:13	TPH 8015M
>C12-C28	ND	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:13	TPH 8015M
>C28-C35	ND	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:13	TPH 8015M
Surrogate: 1-Chlorooctane	8	86.7 %	70-130		P1E2406	05/24/21 10:20	05/25/21 05:13	TPH 8015M
Surrogate: o-Terphenyl	9	08.2 %	70-130		P1E2406	05/24/21 10:20	05/25/21 05:13	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	05/24/21 10:20	05/25/21 05:13	calc

13000 West County Road 100 Odessa TX, 79765

C6-C35

Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

Stockpile 1E21012-04 (Soil)

	Limit	Repor	ting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	N / G/ 1			asin Envi	ronmental L	ab, L.P.			
General Chemistry Parameters by EI			nods %	1	D1E2400	05/04/01 11 05	05/24/21 11 22	4 CTM D2216	
% Moisture	2.0	0.1	/0	1	P1E2408	05/24/21 11:25	05/24/21 11:33	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA I	Method	8015M						
C6-C12	28.7	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:36	TPH 8015M	
>C12-C28	1120	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:36	TPH 8015M	
>C28-C35	179	25.5	mg/kg dry	1	P1E2406	05/24/21 10:20	05/25/21 05:36	TPH 8015M	
Surrogate: 1-Chlorooctane	81	.6%	70-130		P1E2406	05/24/21 10:20	05/25/21 05:36	TPH 8015M	
Surrogate: o-Terphenyl	97	7.4 %	70-130		P1E2406	05/24/21 10:20	05/25/21 05:36	TPH 8015M	
Total Petroleum Hydrocarbon	1330	25.5	mg/kg dry	1	[CALC]	05/24/21 10:20	05/25/21 05:36	calc	

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1E2408 - *** DEFAULT PREP ***										
Blank (P1E2408-BLK1)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK2)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK3)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK4)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK5)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK6)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK7)				Prepared &	: Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK8)				Prepared &	: Analyzed:	05/24/21				
% Moisture	ND	0.1	%							
Blank (P1E2408-BLK9)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%		•					
Duplicate (P1E2408-DUP1)	Sou	rce: 1E21004-	01	Prepared &	: Analyzed:	05/24/21				
% Moisture	4.0	0.1	%	-	4.0			0.00	20	

13000 West County Road 100 Project Number: 13389 Project Manager: Matt Green

Odessa TX, 79765

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Chedder 3BS Fed Com #1H

D14	T ::4	T.T., 14	T1	Source	0/DEC	%REC	DDD	RPD	NI-4
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Sour	rce: 1E21006-	01	Prepared &	Analyzed:	05/24/21				
1.0	0.1	%		1.0			0.00	20	
Sour	rce: 1E21007-	10	Prepared &	Analyzed:	05/24/21				
7.0	0.1	%		7.0			0.00	20	
Sour	rce: 1E21007-2	20	Prepared &	Analyzed:	05/24/21				
13.0	0.1	%		13.0	·		0.00	20	
Sour	rce: 1E21010-0	08	Prepared &	Analyzed:	05/24/21				
5.0	0.1	%		5.0			0.00	20	
Sour	rce: 1E21010-	18	Prepared &	Analyzed:	05/24/21				
3.0	0.1	%		3.0			0.00	20	
Sour	rce: 1E21011-0)4	Prepared & Analyzed: 05/24/21						
3.0	0.1	%		4.0			28.6	20	
Sour	rce: 1E21014-	02	Prepared &	Analyzed:	05/24/21				
6.0	0.1	%		6.0			0.00	20	
Sour	rce: 1E21016-	10	Prepared &	Analyzed:	05/24/21				
6.0	0.1	%		7.0			15.4	20	
Sour	rce: 1E21019-	03	Prepared &	Analyzed:	05/24/21				
11.0	0.1	%		10.0			9.52	20	
Som	rce: 1E21019-	18	Prepared &	Analyzed:	05/24/21				
	Sour 1.0 Sour 7.0 Sour 13.0 Sour 3.0 Sour 6.0 Sour 6.0 Sour 11.0	Source: 1E21006-6 1.0 0.1 Source: 1E21007-7 7.0 0.1 Source: 1E21007-7 13.0 0.1 Source: 1E21010-6 5.0 0.1 Source: 1E21010-6 3.0 0.1 Source: 1E21011-6 6.0 0.1 Source: 1E21016-6 6.0 0.1 Source: 1E21019-6 11.0 0.1	Source: 1E21006-01 1.0	Source: 1E21006-01 Prepared & 1.0 0.1 % Source: 1E21007-10 Prepared & 7.0 0.1 % Source: 1E21007-20 Prepared & 13.0 0.1 % Source: 1E21010-08 Prepared & 5.0 0.1 % Source: 1E21010-18 Prepared & 3.0 0.1 % Source: 1E21011-04 Prepared & 6.0 0.1 % Source: 1E21014-02 Prepared & 6.0 0.1 % Source: 1E21016-10 Prepared & 6.0 0.1 % Source: 1E21019-03 Prepared & 11.0 0.1 %	Source: 1E21006-01 Prepared & Analyzed: 1.0 0.1 % 1.0 Source: 1E21007-10 Prepared & Analyzed: 7.0 7.0 0.1 % 7.0 Source: 1E21007-20 Prepared & Analyzed: 13.0 13.0 0.1 % 13.0 Source: 1E21010-08 Prepared & Analyzed: 5.0 Source: 1E21010-18 Prepared & Analyzed: 3.0 3.0 0.1 % 3.0 Source: 1E21011-04 Prepared & Analyzed: 4.0 Source: 1E21014-02 Prepared & Analyzed: 6.0 6.0 0.1 % 6.0 Source: 1E21016-10 Prepared & Analyzed: 6.0 6.0 0.1 % 7.0 Source: 1E21019-03 Prepared & Analyzed: 10.0	Source: 1E21006-01 Prepared & Analyzed: 05/24/21 1.0 0.1 % 1.0 1.0 Source: 1E21007-10 Prepared & Analyzed: 05/24/21 7.0 0.1 % 7.0 Prepared & Analyzed: 05/24/21 13.0 0.1 % 13.0 13.0 Source: 1E21010-08 Prepared & Analyzed: 05/24/21 5.0 5.0 Source: 1E21010-18 Prepared & Analyzed: 05/24/21 3.0 0.1 % 3.0 0.1 % 4.0 Prepared & Analyzed: 05/24/21 5.0 0.1 % 4.0 Prepared & Analyzed: 05/24/21 5.0 0.1 % 6.0 0.1 % 7.0 Prepared & Analyzed: 05/24/21 6.0 0.1 % 7.0 Prepared & Analyzed: 05/24/21 11.0 0.1 % 7.0 Prepared & Analyzed: 05/24/21 11.0 0.1 %	Source: 1E21006-01 Prepared & Analyzed: 05/24/21 1.0 0.1 % 1.0 Source: 1E21007-10 Prepared & Analyzed: 05/24/21 7.0 0.1 % 7.0 Source: 1E21007-20 Prepared & Analyzed: 05/24/21 13.0 0.1 % 13.0 Source: 1E21010-08 Prepared & Analyzed: 05/24/21 5.0 0.1 % 5.0 Source: 1E21010-18 Prepared & Analyzed: 05/24/21 3.0 0.1 % 3.0 Source: 1E21011-04 Prepared & Analyzed: 05/24/21 6.0 0.1 % 6.0 Source: 1E21016-10 Prepared & Analyzed: 05/24/21 6.0 0.1 % 7.0 Source: 1E21019-03 Prepared & Analyzed: 05/24/21 11.0 0.1 % 10.0	Source: IE21006-01 Prepared & Analyzed: 05/24/21 1.0 0.1 % 1.0 0.00 Source: IE21007-10 Prepared & Analyzed: 05/24/21 0.00 0.00 7.0 0.1 % 7.0 0.00 Source: IE21007-20 Prepared & Analyzed: 05/24/21 0.00 0.00 Source: IE21010-08 Prepared & Analyzed: 05/24/21 0.00 Source: IE21010-18 Prepared & Analyzed: 05/24/21 0.00 Source: IE21011-04 Prepared & Analyzed: 05/24/21 0.00 Source: IE21014-02 Prepared & Analyzed: 05/24/21 0.00 Source: IE21016-10 Prepared & Analyzed: 05/24/21 0.00 Source: IE21019-03 Prepared & Analyzed: 05/24/21 15.4 Source: IE21019-03 Prepared & Analyzed: 05/24/21 11.0 0.1 %	Source: IE21006-01 Prepared & Analyzed: 05/24/21 1.0 0.1 % 1.0 0.00 20 Source: IE21007-10 Prepared & Analyzed: 05/24/21 7.0 0.1 % 7.0 0.00 20 Source: IE21007-20 Prepared & Analyzed: 05/24/21 13.0 0.1 % 13.0 0.00 20 Source: IE21010-08 Prepared & Analyzed: 05/24/21 5.0 0.1 % 5.0 0.00 20 Source: IE21010-18 Prepared & Analyzed: 05/24/21 3.0 0.1 % 3.0 0.00 20 Source: IE21011-04 Prepared & Analyzed: 05/24/21 6.0 0.1 % 6.0 0.00 20 Source: IE21016-10 Prepared & Analyzed: 05/24/21 6.0 0.1 % 7.0 15.4 20 Source: IE21019-03 Prepared & Analyzed: 05/24/21 11.0 0.1 % 7.0 15.4 20

13000 West County Road 100 Odessa TX, 79765 Project: Chedder 3BS Fed Com #1H

Project Number: 13389
Project Manager: Matt Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1E2408 - *** DEFAULT PREP ***										
Duplicate (P1E2408-DUPC)	Sour	ce: 1E21019-2	28	Prepared &	Analyzed:	05/24/21				
% Moisture	15.0	0.1	%		15.0			0.00	20	
Duplicate (P1E2408-DUPD)	Sour	ce: 1E21020-0)1	Prepared &	Analyzed:	05/24/21				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P1E2408-DUPE)	Sour	ce: 1E21020-1	11	Prepared &	Analyzed:	05/24/21				
% Moisture	4.0	0.1	%		3.0			28.6	20	
Duplicate (P1E2408-DUPF)	Sour	ce: 1E21021-0)2	Prepared &	Analyzed:	05/24/21				
% Moisture	9.0	0.1	%		9.0			0.00	20	
Duplicate (P1E2408-DUPG)	Sour	ce: 1E21021-1	12	Prepared &	Analyzed:	05/24/21				
% Moisture	13.0	0.1	%		11.0			16.7	20	
Batch P1E2409 - *** DEFAULT PREP ***										
Blank (P1E2409-BLK1)				Prepared &	Analyzed:	05/24/21				
% Moisture	ND	0.1	%							

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389 Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P1E2406 - TX 1005										
Blank (P1E2406-BLK1)				Prepared: (05/24/21 Aı	nalvzed: 05	//25/21			
C6-C12	ND	25.0	mg/kg wet	1		<u> </u>				
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	82.6		"	100		82.6	70-130			
Surrogate: o-Terphenyl	48.7		"	50.0		97.3	70-130			
LCS (P1E2406-BS1)				Prepared: (05/24/21 A	nalyzed: 05	/25/21			
C6-C12	837	25.0	mg/kg wet	1000		83.7	75-125			
>C12-C28	829	25.0	"	1000		82.9	75-125			
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	50.3		"	50.0		101	70-130			
LCS Dup (P1E2406-BSD1)				Prepared: (05/24/21 Aı	nalyzed: 05	/25/21			
C6-C12	817	25.0	mg/kg wet	1000		81.7	75-125	2.33	20	
>C12-C28	798	25.0	"	1000		79.8	75-125	3.82	20	
Surrogate: 1-Chlorooctane	118		"	100		118	70-130			
Surrogate: o-Terphenyl	47.9		"	50.0		95.8	70-130			
Calibration Check (P1E2406-CCV1)				Prepared: (05/24/21 Aı	nalyzed: 05	/25/21			
C6-C12	438	25.0	mg/kg wet	500		87.6	85-115			
>C12-C28	451	25.0	"	500		90.1	85-115			
Surrogate: 1-Chlorooctane	99.3		"	100		99.3	70-130			
Surrogate: o-Terphenyl	47.3		"	50.0		94.6	70-130			
Calibration Check (P1E2406-CCV2)				Prepared: (05/24/21 At	nalyzed: 05	/25/21			
C6-C12	490	25.0	mg/kg wet	500		98.1	85-115			
>C12-C28	458	25.0	"	500		91.6	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	52.3		"	50.0		105	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Chedder 3BS Fed Com #1H

13000 West County Road 100 Odessa TX, 79765 Project Number: 13389
Project Manager: Matt Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P1E2406 - TX 1005										
Calibration Check (P1E2406-CCV3)				Prepared: (05/24/21 A	nalyzed: 05	/25/21			
C6-C12	487	25.0	mg/kg wet	500		97.4	85-115			
>C12-C28	485	25.0	"	500		96.9	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	52.3		"	50.0		105	70-130			
Matrix Spike (P1E2406-MS1)	Sou	rce: 1E21013	-01	Prepared: (05/24/21 Aı	nalyzed: 05	/25/21			
C6-C12	1190	28.7	mg/kg dry	1150	ND	103	75-125			
>C12-C28	1020	28.7	"	1150	38.7	85.2	75-125			
Surrogate: 1-Chlorooctane	142		"	115		123	70-130			
Surrogate: o-Terphenyl	65.3		"	57.5		114	70-130			
Matrix Spike Dup (P1E2406-MSD1)	Sou	rce: 1E21013	-01	Prepared: (05/24/21 Aı	nalyzed: 05	/25/21			
C6-C12	1210	28.7	mg/kg dry	1150	ND	105	75-125	1.59	20	
>C12-C28	1110	28.7	"	1150	38.7	93.3	75-125	9.07	20	
Surrogate: 1-Chlorooctane	107		"	115		92.8	70-130			

13000 West County Road 100

Odessa TX, 79765

Project: Chedder 3BS Fed Com #1H

Project Number: 13389 Project Manager: Matt Green

Notes and Definitions

ROI Received on Ice

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor			
Report Approved By:			Date:	9/2/2021	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

7.5

CHAIN OF CLISTODY RECORD AND ANALYSIS REQUEST

elin	1		Relin		Spec			6-2- 3				4	w	2		LAB # (lab use only)	OR!	(lab								I
Relinquished by:		Relinguished F	Relinquished by	L	Special Instructions: Bill to Centennial Resource						27,7 %ed	r.					ORDER #:	(lab use only)			اس					
id by:	, i	<u> </u>	À		struc												#	. \$		Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	ı
		A	V	-	tion: ial R						1.						m			<u>per</u>	phor	State	pany	pany	St.	
		1			esot s:						4.	u	Pel	Pe	81		F21012			Sigr	ō Z	e/Zip	Ad	/ Na	fana	
		13	h		ırce							Stockpite	Perimuter	Perimeter #9A	BH-	a	2			atu	0	<u>.</u>	dres	me	iger:	
			/}	Ŀ	_		. · .					KP	ete	ote	100	FIELD CODE	"		١,	Ø.	ام ما			lm.		
			X									.Te		٠ *	0	COI				14	(432)230-3763	Odessa, Texas 79765	13000 W CR 100	tech	Tim McMinn	
													W-12	191	1.5	DE				11	230-	sa, T	×	E	/cMi	
		-	1	_									12 A	-20	-					Ŋ	3763	exas	CR 1	iron	3	
D		2 0	Date			ŀ							-							1.		797	8	nenta		
Date		Date	Date (). 21																•	M		S.		al an		
		_			_	<u> </u>		 						_			1			1/2				d Sa		
=		; [Beginning Depth				M				fety		
Time			S I		٠.											Ending Depth	1			1				Solut		
<u>,</u> z		_		\vdash	_	_	-	-		+		1.0	<u>ار</u>	10	1.		-							Etech Environmental and Safety Solutions, Inc.		
		<u>8</u>	eceiv									2	31/18	7/18	5/18/2									Inc.		
- 8 } B		Received by	Received by:									5/18/21	5/18/21	5/18/21	12/	Date Sampled										
Received by PBEL			,							Щ	<u> </u>	L	L] .						1			
$\mathcal{S}_{}$												_	2	7.	-											
6												600	1315	1300	1330	Time Sampled				φ	Fax		ļ.			
5												"								e-mail:	Fax No:					
Bledsoe				ŀ					7							Field Filtered				,	1	1			ı≤	2
												1	1	1	1	Total #. of Containers	L		tim@etechenv.com						Midland, Texas	10014 S. County Road 1213
								_	ļ		<u> </u>	×	X	×	×	Ice	P		厦	Ma					₫,	ו כ
								-				-				HNO₃ HCI	Preservation &		je	Matt@etecl					xas	June
												 		 	 	H ₂ SO ₄	ation		2	ete					79706	7
						<u> </u>		 								NaOH	#	• .	on	읈					06	, a
													,			Na ₂ S ₂ O ₃	of Containers		1-	henv.com		1.5				213
9																None	ainers			<u>0</u>		1			.	
Date Date		Date	Date								14			-		Other (Specify)	Ц			ı≾						
<i>9</i>		"	Ü								1	5	S	5	4	DW=Drinking Water St =Sludge GW = Groundwater S=Soil/Solid	Matrix				공					
	٠,	T														NP=Non-Potable Specify Other	lrix	i.			pon		. To		Pro	
Time			Time			-						×	X	X	×		15B		П		Report Format:		Project Loc:	Pro	Project Name:	
			:		en e			<u> </u>		\perp						TPH: TX 1005 Ext TX 10	006				mat:	PO #	다	Project #:	Nam	
emt	by Sampler/Client Rep by Couner? UPS	Custody seals on cooler(s) Sample Hand Delivered	Labels on container(s) Custody seals on container(s)	VOCs Free of Headspace?	Laboratory Comments: Sample Containers Intact?				H	\vdash	-					Cations (CL SO4 Alkalinity)	\dashv	_				# 	ក្ត I	#	<u>ह</u>	
wed:	YSar Sar	T OVE	y dy s	ş Fre	rato.				Н						-	Anions (Cl, SO4, Alkalinity) SAR / ESP / CEC	\dashv	101A 101A 101A			<u>Σ</u>		-		0	
<u>"</u>	by Sampler/Client Rep. ? by Couner? UPS	and S	eals	e of	S C					\vdash	-					Metals: As Ag Ba Cd Cr Pb Hg		<u>- 7</u> 9	LI		Standard	7	15	_	Chidden 3	
<u>.</u> \		Jen on o	on c	Heac	omm											Volatiles	\dashv	+	maly		ard .	101	C	33	بالم	, . ·
Rec			ontal	İspa	ents											Semivolatiles			Analyze For:		 	40950	1	13389	ا ۶	
ိုင္ပိမ္း (၁)	≝'.p. _`∿	S	iner(œ?	9 " 3											BTEX 8021B/5030 or BTEX 82	60		S			3	7 2		W	
Temperature Upon Receipt:	ا THD ئ		S)				_		_							RCI		::		-	☐ TRRP		County, NM		BS	
	"			L						\perp		_				N.O.R.M.					Ū		2			
4	₽ (< *	\prec	\prec	\geqslant			_	\vdash	+						Chlorides E 300					_				E	
	1.0		100					\vdash									- 1	:			니 루				Com	
	N Lone Star	ZZ	zz	z	Ż											RUSH TAT (Pre-Schedule) 24,	48, 7	2 hrs	۲		NPDES				3	
		1500											$\overline{\mathbf{Z}}$	₹ d	_	Standard TAT	_				(I)	1.	1			3

Received by OCD: 5/13/2022 12:01:54 PM

Responsible Party: Centennial Resource Production, Inc

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 194 of 202
Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	38564
Application ID	

Release Notification

Responsible Party

OGRID: 372165

Contact Nam	e: Jamon Ho	ohensee		Contact Telephone: 432-241-4283						
Contact emai	l: jamon.hol	hensee@cdevinc.c	com	Incident # (assigned by OCD)						
	Contact mailing address: 500 W. Illinois Ave, Suite 500, Midland Texas 79705									
			Location	of R	delease So	ource				
Latitude 32.4	Latitude 32.41402 Longitude -103.70418									
Site Name: C	heddar 1H				Site Type:	Production Facility				
Date Release	Discovered	: 11/2/2020			API# 30-025	5-44692				
	G. diam	Township	Range		Coun	tv				
Unit Letter M	Section 5	22S	32E	Lea		<u>, </u>				
Surface Owne	Surface Owner: State Federal Tribal Private (Name: Nature and Volume of Release									
	Materia	ıl(s) Released (Select a	Il that apply and attacl	h calculat	tions or specific	justification for the volumes provided below)				
Crude Oi		Volume Release	ed (bbls)1		Volume Recovered (bbls)0					
Produced	Water	Volume Release	- 11			Volume Recovered (bbls)				
		Is the concentra produced water	tion of dissolved o	chloride	e in the Yes No					
Condensa	ite	Volume Release				Volume Recovered (bbls)				
☐ Natural C	ias	Volume Release	ed (Mcf)			Volume Recovered (Mcf)				
Other (de	Other (describe) Volume/Weight Released (provide units				s) Volume/Weight Recovered (provide units)					
Cause of Release The release was a result of fluid building up in the flare line and being pushed out. The material then ignited and landed adjacent to the flare. The fire self-extinguished.										

Page 2 Oil Conservation Division

Incident ID	Page 195 of 20
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? There was a small fire as the result of the material being pushed out the flare.
⊠ Yes □ No	
If YES, was immediate n Notice was given to Jim	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Griswold by email on 11/3/20
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the rel	ease has been stopped.
☐ The impacted area ha	as been secured to protect human health and the environment.
	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
	recoverable materials have been removed and managed appropriately.
	ed above have not been undertaken, explain why:
Dec 10 15 20 9 D (4) NA	MAC the responsible party may commence remediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred ant area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environ failed to adequately investig	permation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ament. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have gate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Jamon Ho	ohensee Title: Sr. Environmental Analyst
Signature:	Date: //-17-20
email: jamon.hohensee@	Ocdevinc.com Telephone: 432-241-4283
OCD Only	
Received by:	Date:

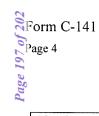
State of New Mexico Oil Conservation Division

Incident ID	nRM2033536188
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<50 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a communicative remort (electronic publicitals in 1915 format and 1914 1914 1914 1914 1914 1914	


Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

	·
\boxtimes	Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
	Field data
	Data table of soil contaminant concentration data
	Depth to water determination
	Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
	Boring or excavation logs
	Photographs including date and GIS information
	Topographic/Aerial maps
\boxtimes	Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 9.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Released to Imaging: 9/1/2022 9:28:05 AM

State of New Mexico Oil Conservation Division

Incident ID	nRM2033536188
District RP	
Facility ID	
Application ID	

regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have the groundwater, surface water, human health or the environment. In
Printed Name: Nikk. Mishler	Title: Sr. Environmental Representative
Signature: Muli Mulin	Date: 5/13/22
email: <u>Nikki, Mishlere Calevine.</u> com	Telephone: 432-634-8722
OCD Only	
Received by:	Date:

District RP	
Facility ID	
Application ID	

Incident ID

NRM2033536188

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

	g items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29	9.11 NMAC
Photographs of the remediated site prior to backfill or photomust be notified 2 days prior to liner inspection)	os of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OI	DC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file cert may endanger public health or the environment. The acceptance should their operations have failed to adequately investigate and a human health or the environment. In addition, OCD acceptance compliance with any other federal, state, or local laws and/or regu	plete to the best of my knowledge and understand that pursuant to OCD rules tain release notifications and perform corrective actions for releases which of a C-141 report by the OCD does not relieve the operator of liability remediate contamination that pose a threat to groundwater, surface water, of a C-141 report does not relieve the operator of responsibility for ulations. The responsible party acknowledges they must substantially conditions that existed prior to the release or their final land use in e OCD when reclamation and re-vegetation are complete.
Printed Name: MONTGOMERY FLOYD	
Signature:	Date: 10-8-21
email:	Telephone:
OCD Only	
	Date: _3/10/2022
OCD Only Received by: Robert Hamlet Closure approval by the OCD does not relieve the responsible par	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by: Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by: Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by:Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws an Closure Approved by:Denied	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by:Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws an Closure Approved by:Denied	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by: Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws an Closure Approved by: Denied	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by:Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws an Closure Approved by:Denied	Date: 3/10/2022 Try of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ad/or regulations.
OCD Only Received by: Robert Hamlet Closure approval by the OCD does not relieve the responsible par remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws an Closure Approved by: Denied	Date: _3/10/2022 rty of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible ind/or regulations. Date: _3/10/2022

Received by OCD: 5/13/2022 12:01:54 PM

State of New Mexico Oil Conservation Division

nRM2033536188

Released to Imaging: 9/1/2022 9:28:05 AM

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.			
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Fach of the following items must be com-	Sirmed as part of any request for deferral of remediation		
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
Printed Name: Nikki Mishler	Title: Senior Environmental Representative		
Signature: Milli Mshur	Date: <u>5/13/2022</u>		
email: Nikki.Mishler@cdevinc.com	Telephone: 432-634-8722		
OCD Only			
Received by:	Date:		
Approved Approved with Attached Conditions of A	pproval		
Signature: I	Date:		

Wesley Desilets

From: Nikki Mishler < Nikki.Mishler@cdevinc.com>

Sent: Tuesday, April 26, 2022 10:43 AM

To: Wesley Desilets

Subject: FW: -EXTERNAL- The Oil Conservation Division (OCD) has rejected the application, Application ID:

54902

From: Montgomery Floyd < Montgomery. Floyd@cdevinc.com>

Sent: Thursday, March 10, 2022 10:08 AM **To:** Nikki Mishler < Nikki.Mishler@cdevinc.com>

Subject: FW: -EXTERNAL- The Oil Conservation Division (OCD) has rejected the application, Application ID: 54902

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us>

Sent: Thursday, March 10, 2022 10:03 AM

To: Montgomery Floyd < Montgomery. Floyd@cdevinc.com >

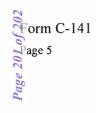
Subject: -EXTERNAL- The Oil Conservation Division (OCD) has rejected the application, Application ID: 54902

WARNING: The sender of this email could not be validated and may not match the person in the "From" field.

To whom it may concern (c/o Montgomery Floyd for CENTENNIAL RESOURCE PRODUCTION, LLC),

The OCD has rejected the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nRM2033536188, for the following reasons:

• The Closure Report is denied. ETech's mixing and blending technique was not adequately defined, however, blending soils to obtain desired analytical results is not an OCD approved remedial method. ETech will have 30 days to resubmit a Closure Report to the payment portal.


The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 54902. Please review and make the required correction(s) prior to resubmitting.

If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

Thank you,
Robert Hamlet
575-748-1283
Robert.Hamlet@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

CAUTION: This email originated from outside of the organization. If it appears to be internal, check directly with assumed source

State of New Mexico Oil Conservation Division

Incident ID	nRM2033536188
District RP	
Facility ID	
Application ID	

Released to Imaging: 9/1/2022 9:28:05 AM

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.			
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation points ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C ☑ Proposed schedule for remediation (note if remediation plan timeline) 			
Deferral Requests Only: Each of the following items must be confirm	ned as part of any request for deferral of remediation.		
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
	ele: Senior Environmental Representative		
Signature: Milli Mshur D	rate: <u>5/13/2022</u>		
email: Nikki.Mishler@cdevinc.com	Telephone: 432-634-8722		
OCD Only			
Received by: Robert Hamlet Da	ate: 9/1/2022		
Approved	roval Denied Deferral Approved		
Signature: Robert Hamlet Date	9/1/2022		

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 106732

CONDITIONS

Operator:	OGRID:
CENTENNIAL RESOURCE PRODUCTION, LLC	372165
1001 17th Street, Suite 1800	Action Number:
Denver, CO 80202	106732
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Cr	reated By	Condition	Condition Date
r	hamlet	The Remediation Plan is Approved. Your request for a 90-day extension to December 1st, 2022 is approved. Please include this e-mail correspondence in the closure report.	9/1/2022