By Nelson Velez at 1:59 pm, Sep 06, 2022

- 1. Continue with O & M schedule.
 - 2. Submit next quarterly report by October 31, 2022.

July 8, 2022

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: Second Quarter 2022 – SVE System Update

OH Randel #5
San Juan County, New Mexico
Hilcorp Energy Company
NMOCD Incident Number: NVF1602039091
Ensolum Project No. 07A1988025

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Second Quarter* 2022 – *SVE System Update* report summarizing the soil vapor extraction (SVE) system performance at the OH Randel #5 natural gas production well (Site), located in Unit D of Section 10, Township 26 North, and Range 11 West in San Juan County, New Mexico (Figure 1). Specifically, this report summarizes Site activities performed in April, May, and June of 2022 to the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

The current operation at the Site consists of two SVE systems, each with a dedicated blower, knockout tank, and control panel. The original SVE system ("SVE Skid 1") was installed at the Site in 2016 by XTO Energy (the previous owner and operator of the Site) and subsequently upgraded by Hilcorp in 2019. The first SVE system consists of a 2 horsepower Atlantic Blower AB-301 blower capable of producing 110 standard cubic feet per minute (scfm) of flow and 72 inches of water column (IWC) vacuum. A second SVE system ("SVE Skid 2") was installed at the Site and became operational on March 11, 2022 in order to more efficiently address residual soil impacts at the Site. Specifically, the new system was built with a 3.4 horsepower Republic Manufacturing HRC501 blower capable of producing 221 scfm of flow and 72 IWC vacuum. When operated concurrently, the two SVE systems are able to induce the necessary flow and vacuum on all SVE wells at the Site simultaneously with no need to rotate operating wells.

SVE wells are located and screened in the "Secondary" and "Tertiary" Source Zones, as identified in the WSP *Site Summary Report* (dated October 1, 2021). Once the new SVE system, Skid 2, was installed at the Site, new manifolds were constructed so that Skid 1 operated wells located in the Secondary Source Zone and Skid 2 operated wells located in the Tertiary Source Zone. Specifically, the SVE systems are connected to the following SVE wells:

Hilcorp Energy Company OH Randel #5 July 8, 2022

SVE Skid 1: Secondary Source Zone

SVE-5 and SVE-8

SVE Skid 2: Tertiary Source Zone

• SVE-6, SVE-7, SVE-10, SVE-12, SVE-13, SVE-14, SVE-15, SVE-16, SVE-17, SVE-18, SVE-19, SVE-20, SVE-21, and SVE-22.

The SVE well locations are shown on Figure 2.

SECOND QUARTER 2022 ACTIVITIES

During the second quarter of 2022, Ensolum and Hilcorp personnel performed bi-weekly operation and maintenance (O&M) visits to verify the system was operating as designed and to perform any required maintenance. Field notes taken during O&M visits are presented in Appendix A. During the second quarter of 2022, all SVE wells were operated in order to induce flow in areas with remaining soil impacts.

Between April 5 and June 17, 2022, SVE Skid 1 operated for 1,751 hours for a runtime efficiency of 100 percent (%). Between April 5 and June 17, 2022, SVE Skid 2 operated for 1,754 hours for a runtime efficiency of 100%. Table 1 presents the SVE system operational hours and percent runtime. Appendix B presents photographs of the runtime meters taken during the first and last field visits of the quarter.

A second quarter 2022 emissions sample was collected from both SVE systems on June 17, 2022 from sample ports located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission samples were field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). The emission samples were collected directly into two 1-Liter Tedlar® bags and submitted to Hall Environmental Analysis Laboratory (Hall), located in Albuquerque, New Mexico, for analysis of total volatile petroleum hydrocarbons (TVPH, also referred to as total petroleum hydrocarbons – gasoline range organics (TPH-GRO)) following United States Environmental Protection Agency (EPA) Method 8015D, volatile organic compounds (VOCs) following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processor Association (GPS) Method 2261. Table 2 presents a summary of analytical data collected during this sampling event and previous sampling events, with the full laboratory analytical report included in Appendix C.

Emission sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE systems (Tables 3 and 4). Based on these estimates, a total of 688,778 pounds (344 tons) of TVPH have been removed by the systems to date.

RECOMMENDATIONS

Bi-weekly O&M visits will continue to be performed by Ensolum and/or Hilcorp personnel to verify the SVE systems are operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue operating the SVE systems until asymptotic emissions are observed. At that time, an evaluation of residual petroluem hydrocarbons will be assessed and further recommendations for remedial actions, if any, will be provided to NMOCD.

Hilcorp Energy Company OH Randel #5 July 8, 2022

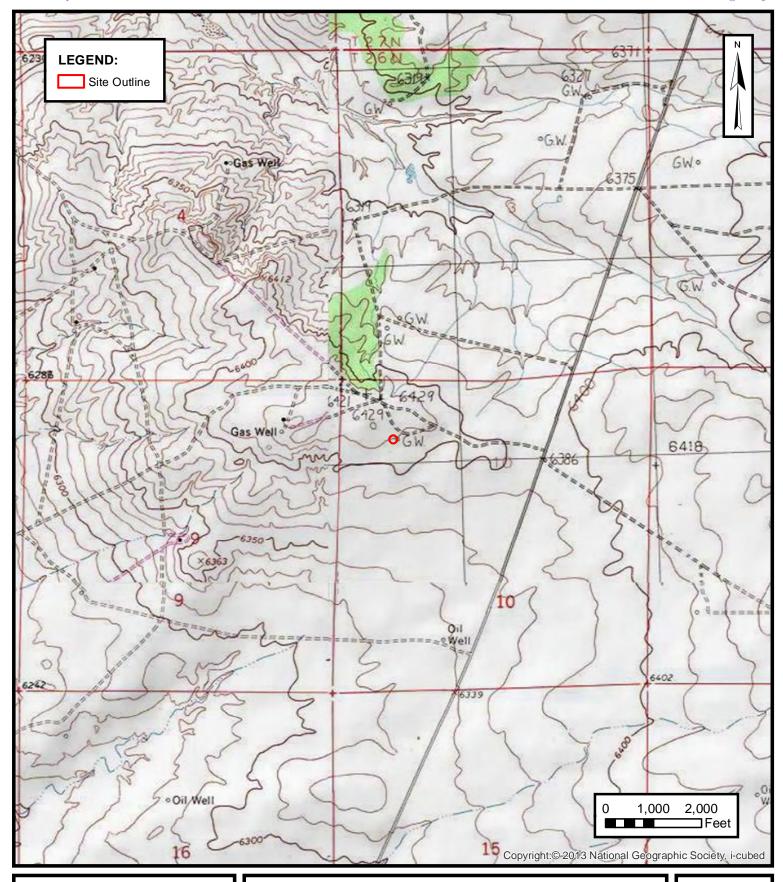
We appreciate the opportunity to provide this report to the New Mexico Oil Conservation Division. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum**, **LLC**

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Figure 1	Site Location Map
Figure 2	SVE System Layout
Table 1	Soil Vapor Extraction System Runtime Calculations
Table 2	Soil Vapor Extraction System Emissions Analytical Results
Table 3	Soil Vapor Extraction System Mass Removal and Emissions – Skid 1
Table 4	Soil Vapor Extraction System Mass Removal and Emissions – Skid 2

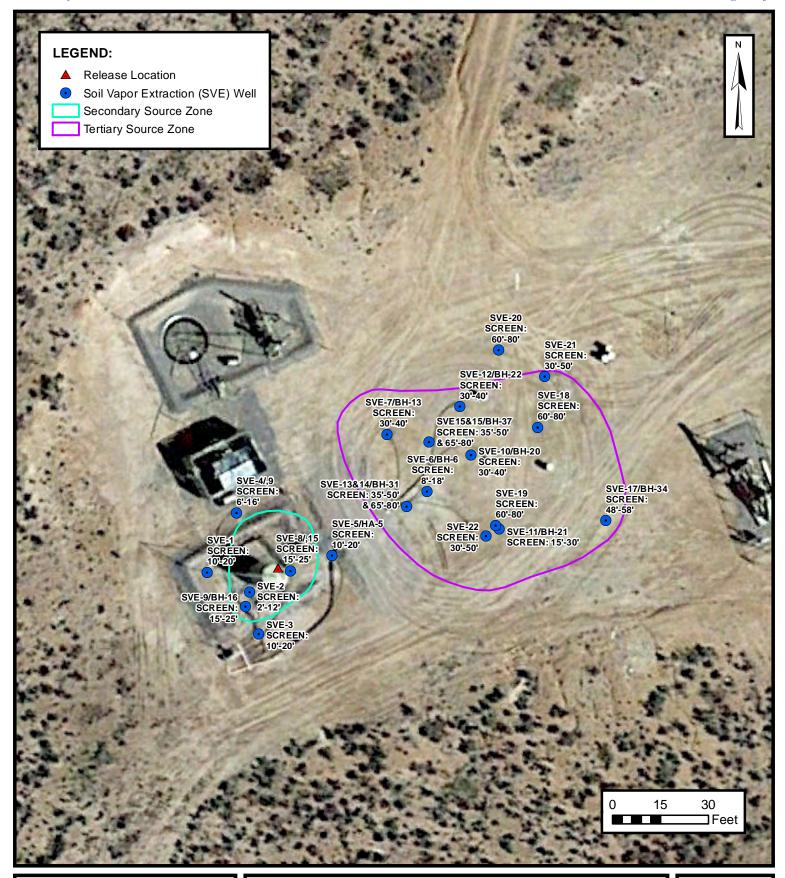

Appendix A Field Notes

Appendix B Project Photographs

Appendix C Laboratory Analytical Reports

FIGURES

SITE LOCATION MAP


HILCORP ENERGY COMPANY OH RANDEL #5

NWNW SEC 10 T26N R11W, San Juan County, New Mexico 36.506504° N, 107.996993° W

PROJECT NUMBER: 07A1988025

FIGURE

1

SVE SYSTEM LAYOUT

HILCORP ENERGY COMPANY OH RANDEL #5

NWNW SEC 10 T26N R11W, San Juan County, New Mexico 36.506504° N, 107.996993° W

PROJECT NUMBER: 07A1988025

FIGURE

2

TABLES

TABLE 1

SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

Hilcorp Energy Company - OH Randel #5
San Juan County, New Mexico

Ensolum Project No. 07A1988025

SVE Skid 1 - Original System Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	Percent Runtime
4/5/2022	32,706	1	-	
6/17/2022	34,457	1,751	73	100%

SVE Skid 2 - New System Runtime Operation

Date	Total Operational Hours	i l l)elta Hours l		Percent Runtime	
4/5/2022	597	-	-		
6/17/2022	2,351	1,754	73	100%	

Ensolum 1 of 1

TABLE 2

SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS
Hilcorp Energy Company - OH Randel #5
San Juan County, New Mexico

Ensolum Project No. 07A1988025

SVE Skid 1 - Original System Analytical Results

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH/GRO (μg/L)	Oxygen (%)	Carbon Dioxide (%)
8/11/2016	4,072	160	1,700	61	500	46,000		
8/17/2018	719	130	230	10	110	8,900		
6/28/2019	1,257	7,200	15,000	360	3,000	460,000		
12/16/2019	1,685	1,800	4,400	83	660	170,000		
3/10/2020	897	1,700	3,300	89	700	130,000		
4/30/2020	1,853	2,440	4,737	128	1,005	186,592		
6/24/2020 (1)								
11/10/2020	1,385	320	1,100	43	380	43,000	21.5%	0.350%
2/10/2021	865	360	950	35	250	32,000		
6/11/2021	400	170	390	11	110	18,000	22.1%	0.151%
9/29/2021	505	99	190	7.0	55	8,200		
12/15/2021	1,163	130	290	6.9	62	37,137	22.2%	0.0920%
3/21/2022	274	6.5	23	0.98	11	550	22.4%	0.0410%
6/17/2022		5.5	19	0.69	7.0	650	21.8%	0.06%

SVE Skid 2 - Original System Analytical Results

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)	Oxygen (%)	Carbon Dioxide (%)
3/21/2022	1,354	310	510	13	120	35,000	21.8%	0.310%
6/17/2022		200	410	<10	66	33,000	21.3%	0.39%

Notes:

(1) - blower not operational for sampling in May and June 2020

GRO: gasoline range organics

 μ g/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

--: not sampled

Ensolum 1 of 1

TABLE 3
SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS - SKID 1 Hilcorp Energy Company - OH Randel #5 San Juan County, New Mexico

Ensolum Project No. 07A1988025

Flow and Laboratory Analysis

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
8/11/2016	4,072	160	1,700	61	500	46,000
8/17/2018	719	130	230	10	110	8,900
12/16/2019	1,902	1,800	4,400	83	660	170,000
3/10/2020	897	1,700	3,300	89	700	130,000
4/30/2020	1,853	2,440	4,737	128	1,005	186,592
6/24/2020		•	Blower Not O	perational (1)		
11/10/2021	1,385	320	1,100	43	380	43,000
2/10/2021	865	360	950	35	250	32,000
6/11/2021	400	170	390	11	110	18,000
9/29/2021	505	99	190	7.0	55	8,200
12/15/2021	1,163	130	290	6.9	62	37,137
3/21/2022	274	6.5	23	1.0	11	550
6/17/2022	88	6	19	0.7	7	650
Average	1,177	610	1,444	40	321	56,752

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
8/11/2016	105	31,500	31,500	0.063	0.67	0.024	0.20	18
8/17/2018	100	59,647,500	59,616,000	0.054	0.36	0.013	0.11	10
12/16/2019	110	109,635,900	49,988,400	0.40	0.95	0.019	0.16	37
3/10/2020	110	121,707,300	12,071,400	0.72	1.6	0.035	0.28	62
4/30/2020 (1)	105	130,917,900	9,210,600	0.81	1.6	0.043	0.33	62
6/24/2020 (1)				Blower Not	Operational			
11/10/2021	105	130,917,900	0	0	0	0	0	0
2/10/2021	92	143,580,780	12,662,880	0.12	0.35	0.013	0.11	13
6/11/2021	90	158,657,580	15,076,800	0.089	0.23	0.0077	0.061	8.4
9/29/2021	69	168,249,960	9,592,380	0.035	0.075	0.0023	0.021	3.4
12/15/2021	90	178,207,560	9,957,600	0.039	0.081	0.0023	0.020	7.6
3/16/2022	70	187,343,904	9,136,344	0.018	0.041	0.0010	0.010	4.9
6/17/2022	70	196,703,520	9,359,616	0.002	0.005	0.0002	0.002	0.2
			Average	0.23	0.59	0.02	0.13	22

Flow and Laboratory Analysis

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)		
8/11/2016	5	5	0.31	3.3	0.12	1.0	90	0.045		
8/17/2018	9,941	9,936	539	3,586	132	1,133	102,008	51		
12/16/2019	17,515	7,574	3,007	7,214	145	1,200	278,728	139		
3/10/2020	19,344	1,829	1,317	2,897	65	512	112,870	56		
4/30/2020 (1)	20,806	1,462	1,188	2,307	62	489	90,884	45		
6/24/2020 (1)				Blower Not	Operational					
11/10/2021	20,806	0	0	0	0	0	0	0		
2/10/2021	23,100	2,294	268	809	31	249	29,600	15		
6/11/2021	25,892	2,792	249	630	22	169	23,495	12		
9/29/2021	28,209	2,317	80	173	5.4	49	7,833	3.9		
12/15/2021	30,053	1,844	71	149	4.3	36	14,070	7.0		
3/16/2022	32,228	2,175	39	89	2.2	21	10,732	5.4		
6/17/2022	34,457	2,228	4	12	0.5	5	350	0.2		
	Total Ma	ss Recovery to Date	6,763	17,870	469	3,865	670,661	335		

(1) - blower not operational for sampling in May and June 2020

cf: cubic feet

cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

TABLE 4
SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS - SKID 2
Hilcorp Energy Company - OH Randel #5
San Juan County, New Mexico

Ensolum Project No. 07A1988025

Flow and Laboratory Analysis

Date	PID (ppm)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	TVPH (µg/L)
3/21/2022	1,354	310	510	13	120	35,000
6/17/2022	1,058	200	410	10	66	33,000
Average	1,206	255	460	12	93	34,000

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
3/16/2022	70	499,800	499,800	0.081	0.13	0.0034	0.031	9.2
6/17/2022	60	8,533,560	8,033,760	0.057	0.10	0.0026	0.021	7.6
			Average	0.057	0.10	0.0026	0.021	7.6

Flow and Laboratory Analysis

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
3/16/2022	119	119	10	16	0.41	3.7	1,090	0.55
6/17/2022	2,351	2,232	128	230	5.76	46.6	17,027	8.51
Total Mass Recovery to Date		137	246	6	50	18,117	9	

Notes:

cf: cubic feet

cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

Ensolum 1 of 1

APPENDIX A

Field Notes

	/ /	BIWEEKLY O&M FORM		
	4/5/22		~ 11	
DATE:	0-	O&M PERSONNE	EL: Peece Hurson	
TIME ONSITE:	72.	_ TIME OFFSIT	E:	
		SVE SYSTEM - MONTHLY O&M		
SVE ALARMS:		KO TANK HIGH LEVEL		
CVE CVCTEN	#		7 7 7 7 7 .	7:
SVE SYSTEM Blower Hours (take photo)	READING 32 705,96	TIME 931	Transing 1	933
Inlet Vacuum (IWC)	-51	121	3/6/0	
Inlet Thermal Aneniometer Flow		<u> </u>	1 / 2	
Exhaust Thermal Anemometer Flow	72		60	
	2263		1675	
(fpm) Inlet PID	710		1349 1434	
Exhaust PID	283.6		1 14-1-1	
K/O Tank Liquid Level	Emps		Site tale empty	
K/O Liquid Drained (gallons)				
	CVE	CVCTEM OHADTEDIA CAMPUIN	I .	
SAMPLE ID:	SVE	SYSTEM - QUARTERLY SAMPLIN SAMPLE TIM		
	TVPH (8015), VOCs (8260), Fi		f	
OPERATING WELLS	see b	(0.000)		
ZONES				
Г				
Change in Well Operation:				
Zone A - Secondary Impacts	W. C. W. C.			
SVE-5	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
SVE-8			+	
Zone B - Tertiary Impacts				
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
SVE-6 SVE-7		33.83	<u> </u>	
₫ SVE-10		604.4	+	
SVE-11		80-1,1	+	
₫ SVE-12		356.2		
₫ SVE-13		1691		
3 SVE-14 8 SVE-15		1015		
SVE-15 SVE-16		7/1270		
SVE-17		1427		
₫ SVE-18		1730		
& SVE-19		1441		
SVE-20		1443		
SVE-21		147		
1 SVE-5		170 53		
COMMENTS/OTHER MAINTENAN	ICE:	17(8)		
X,SVE-8		PID - 555.2		7
15vE-9		PID - 555.2 669		
<u> </u>		00-1		

DATE: 4-20-22
TIME ONSITE:

O&M PERSONNEL: B. Sinclair
TIME OFFSITE:

	- 5	EVE SYSTEM - MONTHLY O&N	M
SVE ALARMS:	# 1	KO TANK HIGH LEVEL	#2
SVE SYSTEM	READING	TIME	
Blower Hours (take photo)	33071.03	1438	961.9 60 1438
Inlet Vacuum (IWC)	49	Line Carlotte and the second	55
Inlet Thermal Anemometer Flow			
(fpm)			
Exhaust Thermal Anemometer Flow	2026		3159
(fpm)	2936		
Inlet PID	50.9		1201
Exhaust PID	69.8		1411
K/O Tank Liquid Level	0		
K/O Liquid Drained (gallons)	6		

SVE SYSTEM - QUARTERLY SAMPLING

SAMPLE ID: SAMPLE TIME:

Analytes: TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)

OPERATING WELLS A / |

ZONES

Change in Well Operation:

 Zone A - Secondary Impacts

 LOCATION
 VACUUM (IWC)
 PID HEADSPACE (PPM)
 FLOW (CFM)
 ADJUSTMENTS

 SVE-5
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953
 953

B - Tertiary Impacts LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
SVE-6				
SVE-7		1018		
SVE-10		6.6.9	MEDICAL TRANSPORT	
SVE-11				
SVE-12		728		
SVE-13		1643		
SVE-14		754		
SVE-15		1018		
SVE-16		1607		
SVE-17		757		
SVE-18		1820		
SVE-19		2598		
SVE-20		1473		
SVE-21				
SVE-22		623		

COMMENTS/OTHER MAINTENANCE:

rotaneter #1:70 scfm post K/O vac #1:-52 in Heo rotaneter #2:58 scfm post K/O vac #2:-61 in Heo SVE-9:855 ppm SVE-8 well cap worn

SVE-18 well cap work SVE-14 well cap work

SVE ALARMS:		KO TANK HIGH LEVEL	
SVE SYSTEM	READING	TIME	7 # 2
Blower Hours (take photo)	33450.175	95/	1341.1
Inlet Vacuum (IWC)	50	79	55
Inlet Thermal Anemometer Flow			
Exhaust Thermal Anemometer Flow	2405, 130°F		1226, 135°F
(fpm)	~ , ,,		1530
Inlet PID			1650
Exhaust PID K/O Tank Liquid Level		MC.	Enty
K/O Liquid Drained (gallons)	0		0
Inlet FLOW (SCFM)	71	FIE	38
	SVF	SYSTEM - QUARTERLY SAMPLIN	NC .
SAMPLE ID:		SAMPLE TIM	
Analytes:	TVPH (8015), VOCs (8260), Fi	xed Gas (CO/CO2/O2)	
OPERATING WELLS	#2 = SVF 13-22	-, HI= SVE-5,7,9	,10,12,8
- 0.1170		,	
ZONES			
Change in Well Operation:			
Change in Wen Operation.			
Zone A - Secondary Impacts			
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS
LOCATION SVE-5	VACUUM (IWC)	170	ADJUSTMENTS
LOCATION	VACUUM (IWC)		ADJUSTMENTS
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts		(70 725	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION	VACUUM (IWC) VACUUM (IWC)	70 725 PID HEADSPACE (PPM)	ADJUSTMENTS ADJUSTMENTS
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-6		PID HEADSPACE (PPM)	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION		70 725 PID HEADSPACE (PPM)	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10		170 	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-11 SVE-12		170 425 PID HEADSPACE (PPM) 238 1305 194	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-11 SVE-12 SVE-13		PID HEADSPACE (PPM) 238 1305 194 1920	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-11 SVE-12		170	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16		170 \$25 PID HEADSPACE (PPM) 238 130 5 194 1930 1830 1830 1830	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-11 SVE-12 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-16 SVE-17		170 225 PID HEADSPACE (PPM) 238 130 5 194 1920 1830 1830 1830 1810	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-17 SVE-17		170 225 PID HEADSPACE (PPM) 238 130 5 194 1920 1830 1830 1830 1810	
SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10		170	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10		170	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-10 SVE-10 SVE-11 SVE-12 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-18 SVE-18 SVE-19 SVE-19		170	
LOCATION SVE-5 SVE-8 Zone B - Tertiary Impacts LOCATION SVE-0 SVE-7 SVE-10	VACUUM (IWC)	170	

DATE: 5-19-22

TIME ONSITE: 5-19-22

TIME

O&M PERSONNEL: B Sinclair
TIME OFFSITE:

Page 16 of 44

	SVE	SYSTEM - MONTHLY O&	:M	
SVE ALARMS:	KO	TANK HIGH LEVEL		
SVE SYSTEM	READING SKI	TDATE	Skid Z	
Blower Hours (take photo)	227// 47	TIME	Reading	Lung
Inlet Vacuum (IWC)	33/56.7/	1905	165/13	11406
Inlet Thermal Anemometer Flow			54	+ 1 /
(fpm)				
xhaust Thermal Anemometer Flow				+
(fpm)	2835		3075	
Inlet PID	53.7		1183	
Exhaust PID	84.7		1377	
K/O Tank Liquid Level			1-11	-
K/O Liquid Drained (gallons)				

		SVE SYSTEM - QUARTERLY SAMPLING
	SAMPLE ID:	SAMPLE TIME:
NOT COME		TVPH (8015), VOCs (8260), Fixed Gas (CO/CO2/O2)
	OPERATING WELLS	

ZONES

Received by OCD: 7/13/2022 5:33:53 PM

Change in Well Operation:

Zone A - Secondary Impacts

LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
SVE-5		119		TESTOSTIVELVIS
SVE-8		148		
0 110		710		

Zone B - Tertiary Impacts 118 VACUUM (IWC) LOCATION PID HEADSPACE (PPM) FLOW (CFM) **ADJUSTMENTS** SVE-6 SVE-7 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-18 SVE-19 SVE-20 SVE-21 SVE-22

COMMENTS/OTHER MAINTENANCE:

Skid 1 exhaust vacuum (IWC): -52 Skid 1 rotaneter: 70 Skid 2 exhaust vacuum (IWC): -60 Replaced: SVE-8 SvE-18 Skid 2 rotaneter (SCfm): 60 SVE-19 SVE-19 vell caps

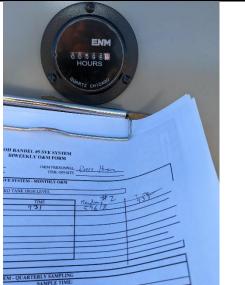
NENSTEIN NEW	SVE ALARMS:		KO TANK HIGH LEVEL			1
Blower Rours (Take photo) 34,456,47 2350.6 1130	_	#1 #2		_		- 1
Inter Vacuum (IWC)				-		- 1
Total Tota		34,456,79 2350.6	1130	-		- 1
DTAMETER (S.C.F.M.) DEFINITION DEFINIT		48 57		-		- 1
SAMPLE ID: SAMPLE ID: SAMPLE ID: SAMPLE TIME: SAMPLE TIM		70 60				- 1
Inter PID 88 1,053 1,034 1,034 1,0	aust Thermal Anemometer Flow			7		- 1
Inter PID 88 1,053 1,033 1,0	(fpm)	@154°F @169°F		_		- 1
SVE SYSTEM - QUARTERLY SAMPLING SAMPLE ID: SAMPLE I	The state of the s	88 11,058		-		- 4
SAMPLE ID: Analytes: TYPH (8015), VOCs (8269), Fixed Gas (COCO2/02) SAMPLE TIME: 145 150 PLO - 8				-		
SVE SYSTEM - QUARTERLY SAMPLING SAMPLE TIME: 145 150 P(D - 8)				-		- 1
SAMPLE ID: Analytes: TVPH (8015). VOCs (8260). Fixed Gas (COCO2/02) TVPH (8015). VOCS (8260). Fixed Gas (COCO2/02). TVPH (8015). TVPH (KO Liquid Drained (gations)	0 0		_		
SAMPLE IID: Analytes: TVPH (8015). VOCs (8260). Fixed Gas (COCO2/02)						
SAMPLE IDE Analytes: TVPH (8015). VOCs (8260). Fixed Gas (COCO202) 1		SVE	SYSTEM - QUARTERLY SAMPLIN	G		
Analytes: IVPH (8015), VOCS (8280), Freed Gas (COCO202) OPERATING WELLS Int Well Operation: None	SAMPLE ID:				50	18-019
Conting None		TVPH (8015), VOCs (8260), F	ixed Gas (CO/CO2/O2)	1142 4110	, ,	(0 01
Change in Well Operation: None	OPERATING WELLS	Influent	SKID # 1 + Intlu	ent SKID #.		
Change in Well Operation: None						
Change in Well Operation: None	ZONES					
LOCATION	1					
LOCATION						
LOCATION	Change in Well Operation:	None				
SVE-5 Y0.8 Y0.8 2.83 A SVE-8 Y0.8 Y0.8 2.83 A SVE-10 Y0.0 Y0	Change in Well Operation:	None			Manifold Le	a Skid
SVE-8 Y0.8 2.83 A A A A A A A A A					Manifold Le	g Skid
SVE-10 SVE-10 SVE-10 SVE-10 SVE-12 SVE-13 SVE-14 SVE-14 SVE-16 SVE-16 SVE-16 SVE-17 SVE-16 SVE-17 SVE-18 SVE-17 SVE-18 SVE-18 SVE-19 SVE-19 SVE-19 SVE-19 SVE-19 SVE-19 SVE-19 SVE-19 SVE-10 S	ne A - Secondary Impacts LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)			g <u>Skid</u>
LOCATION	ne A - Secondary Impacts LOCATION SVE-5	VACUUM (IWC)	485		A	g Skid
LOCATION	ne A - Secondary Impacts LOCATION SVE-5	VACUUM (IWC)	485		A	g <u>Skid</u>
SVE-10 SVE-10 SVE-10 SVE-10 SVE-12 SVE-13 SVE-13 SVE-14 SVE-15 SVE-16 SVE-16 SVE-16 SVE-17 SVE-18 SVE-18 SVE-19 SVE-19 SVE-19 SVE-19 SVE-21 SVE-21 SVE-21 SVE-22 SVE-21 SVE-22 S	ne A - Secondary Impacts LOCATION SVE-5 SVE-8	VACUUM (IWC)	485		A	g <u>Skid</u>
SVE-12 Y1.3 S31 SVE-13 Y0.4 S85 SVE-14 Y1.0 S85 Y2.7 SVE-16 Y1.5 SVE-16 Y1.5 SVE-17 Y1.5 SVE-18 Y2.3 Y1.9 Y1.9 SVE-19 Y1.9 Y1.9 Y1.9 Y1.9 SVE-20 Y1.7 Y1.9	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts	VACUUM (IWC) 41.0	283 485		A	g <u>Skid</u>
SVE-12 YI. 3 S31 SVE-13 YI. 4 SVE-13 YI. 5 SVE-14 YI. 5 SVE-15 YI. 5 SVE-16 YI. 5 SVE-16 YI. 5 SVE-17 YI. 5 SVE-18 YI. 6 YI. 7 YI. 9	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION	VACUUM (IWC) 40.8 VACUUM (IWC)	2 8 3 PID HEADSPACE (PPM)		A	g <u>Skid</u>
SVE-12 YI. 3 S31 SVE-12 SVE-13 YI. 0 SSE SVE-14 YI. 0 SSE SVE-16 YI. 5 SVE-16 YI. 5 SVE-17 YI. 5 SVE-18 YI. 9 YI. 9 YI. 9 SVE-19 YI. 9 Y	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-9	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0	PID HEADSPACE (PPM) 658	ADJUSTMENTS	A	g <u>Skid</u>
SVE-13 40.4 1028 SVE-14 41.0 885 SVE-15 40.7 727 SVE-16 41.5 382 SVE-17 41.5 549 SVE-18 42.3 1020 SVE-19 41.7 939 SVE-20 41.7 921 SVE-21 40.7 687	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-9 SVE-7	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5	PID HEADSPACE (PPM) 658	ADJUSTMENTS	A	g <u>Skid</u>
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 one B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5	PID HEADSPACE (PPM) 058 1130	ADJUSTMENTS	A A A B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10 SVE-11 SVE-12	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3	PID HEADSPACE (PPM) 658 1136 352	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10 SVE-12 SVE-13	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 31.5 41.3	PID HEADSPACE (PPM) 058 1130 352 531	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	INDEX A - Secondary Impacts LOCATION SVE-5 SVE-8 INDEX B - Tertiary Impacts LOCATION SVE-7 SVE-7 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 41.0	PID HEADSPACE (PPM) 058 1130 352 531 885	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10 SVE-12 SVE-13 SVE-14 SVE-15	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 41.0 40.7	PID HEADSPACE (PPM) 058 1130 352 531 885 727	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 Due B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10 SVE-10 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 31.5 41.3 40.4 41.0 40.7	PID HEADSPACE (PPM) 658 1136 352 531 1028 885 727	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-7 SVE-10 SVE-10 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 41.0 41.0 41.5	PID HEADSPACE (PPM) 658 1136 352 531 1028 885 727 882	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687 2	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-6 SVE-7 SVE-10 SVE-10 SVE-14 SVE-12 SVE-14 SVE-15 SVE-16 SVE-17 SVE-18	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 41.0 41.5 41.5 41.5 41.5	PID HEADSPACE (PPM) 058 1130 352 531 1028 885 727 882 549	ADJUSTMENTS	A A A B B B	1
SVE-22 37.7 687	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 one B - Tertiary Impacts LOCATION SVE-7 SVE-10 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-17 SVE-18 SVE-19	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 40.4 41.0 40.7 41.5 41.5 41.7	985 910 HEADSPACE (PPM) 658 1136 352 531 1028 885 727 882 549 1020 939	ADJUSTMENTS	A A A B B B	1
	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-7 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-16 SVE-17 SVE-18 SVE-19 SVE-20	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 40.4 41.5 41.5 41.5 41.5 41.7	985 910 HEADSPACE (PPM) 658 1136 352 531 1028 885 727 882 549 1020 939 921 257	ADJUSTMENTS	AA ABB BUAUAUAAAU	1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
OMMENTS/OTHER MAINTENANCE:	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-7 SVE-10 SVE-11 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-18 SVE-19 SVE-20 SVE-21	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 40.4 41.5 41.5 41.5 41.5 41.7	985 910 HEADSPACE (PPM) 658 1136 352 531 1028 885 727 882 549 1020 939 921 257	ADJUSTMENTS	AA ABB BUAUAUAAAU	1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
VIII. 10 C. III. C. II	ne A - Secondary Impacts LOCATION SVE-5 SVE-8 ne B - Tertiary Impacts LOCATION SVE-7 SVE-10 SVE-12 SVE-12 SVE-13 SVE-14 SVE-15 SVE-16 SVE-17 SVE-18 SVE-19 SVE-20 SVE-21	VACUUM (IWC) 40.8 VACUUM (IWC) 40.0 41.5 41.3 40.4 41.5 41.5 41.5 41.5 41.7	985 910 HEADSPACE (PPM) 958 1130 352 531 1028 885 727 882 549 1020 939 921 257	ADJUSTMENTS	AA ABB BUAUAUAAAU	1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

APPENDIX B

Project Photographs

PROJECT PHOTOGRAPHS

OH Randel #5 San Juan County, New Mexico Hilcorp Energy Company


Photograph 1

Runtime meter taken on April 5, 2022 from SVE Skid 1 (original SVE system) at 9:31 AM Hours = 32705.96

Photograph 2

Runtime meter taken on April 5, 2022 from SVE Skid 2 (new SVE system) at 9:35 AM Hours = 596.8

PROJECT PHOTOGRAPHS

OH Randel #5
San Juan County, New Mexico
Hilcorp Energy Company

Photograph 3

Runtime meter taken on June 17, 2022 from SVE Skid 1 (original SVE system) at 11:30 AM Hours = 34456.79

Photograph 4

Runtime meter taken on June 17, 2022 from SVE Skid 2 (new SVE system) at 11:30 AM Hours = 2350.6

APPENDIX C

Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 30, 2022

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: OH Randel 5 OrderNo.: 2206990

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 2 sample(s) on 6/18/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order **2206990**Date Reported: **6/30/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Influent Skid #1

 Project:
 OH Randel 5
 Collection Date: 6/17/2022 11:45:00 AM

 Lab ID:
 2206990-001
 Matrix: AIR
 Received Date: 6/18/2022 9:50:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	650	25	μg/L	5	6/20/2022 2:30:45 PM
Surr: BFB	121	15-380	%Rec	5	6/20/2022 2:30:45 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	5.5	0.50	μg/L	5	6/21/2022 1:09:00 PM
Toluene	19	0.50	μg/L	5	6/21/2022 1:09:00 PM
Ethylbenzene	0.69	0.50	μg/L	5	6/21/2022 1:09:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,2,4-Trimethylbenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,3,5-Trimethylbenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,2-Dichloroethane (EDC)	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Naphthalene	ND	1.0	μg/L	5	6/21/2022 1:09:00 PM
1-Methylnaphthalene	ND	2.0	μg/L	5	6/21/2022 1:09:00 PM
2-Methylnaphthalene	ND	2.0	μg/L	5	6/21/2022 1:09:00 PM
Acetone	ND	5.0	μg/L	5	6/21/2022 1:09:00 PM
Bromobenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Bromodichloromethane	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Bromoform	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Bromomethane	ND	1.0	μg/L	5	6/21/2022 1:09:00 PM
2-Butanone	ND	5.0	μg/L	5	6/21/2022 1:09:00 PM
Carbon disulfide	ND	5.0	μg/L	5	6/21/2022 1:09:00 PM
Carbon tetrachloride	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Chlorobenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Chloroethane	ND	1.0	μg/L	5	6/21/2022 1:09:00 PM
Chloroform	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Chloromethane	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
2-Chlorotoluene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
4-Chlorotoluene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
cis-1,2-DCE	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
cis-1,3-Dichloropropene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	5	6/21/2022 1:09:00 PM
Dibromochloromethane	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Dibromomethane	ND	1.0	μg/L	5	6/21/2022 1:09:00 PM
1,2-Dichlorobenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,3-Dichlorobenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,4-Dichlorobenzene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
Dichlorodifluoromethane	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,1-Dichloroethane	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM
1,1-Dichloroethene	ND	0.50	μg/L	5	6/21/2022 1:09:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

CLIENT: HILCORP ENERGY

Analytical Report

Lab Order **2206990**Date Reported: 6/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Influent Skid #1

 Project:
 OH Randel 5
 Collection Date: 6/17/2022 11:45:00 AM

 Lab ID:
 2206990-001
 Matrix: AIR
 Received Date: 6/18/2022 9:50:00 AM

Result **RL Qual Units** DF **Date Analyzed** Analyses **EPA METHOD 8260B: VOLATILES** Analyst: CCM μg/L 1,2-Dichloropropane ND 0.50 5 6/21/2022 1:09:00 PM 5 1,3-Dichloropropane ND 0.50 μg/L 6/21/2022 1:09:00 PM ND 0.50 5 2,2-Dichloropropane μg/L 6/21/2022 1:09:00 PM 1,1-Dichloropropene ND 0.50 μg/L 5 6/21/2022 1:09:00 PM ND 0.50 5 Hexachlorobutadiene μg/L 6/21/2022 1:09:00 PM 2-Hexanone ND 5.0 μg/L 5 6/21/2022 1:09:00 PM ND 0.50 5 Isopropylbenzene μg/L 6/21/2022 1:09:00 PM 4-Isopropyltoluene ND 0.50 μg/L 5 6/21/2022 1:09:00 PM ND 5 4-Methyl-2-pentanone 5.0 µg/L 6/21/2022 1:09:00 PM Methylene chloride ND 1.5 μg/L 5 6/21/2022 1:09:00 PM n-Butylbenzene ND 1.5 µg/L 5 6/21/2022 1:09:00 PM n-Propylbenzene ND 0.50 5 6/21/2022 1:09:00 PM μg/L sec-Butylbenzene ND 0.50 µg/L 5 6/21/2022 1:09:00 PM 5 Styrene ND 0.50 μg/L 6/21/2022 1:09:00 PM tert-Butylbenzene ND 0.50 µg/L 5 6/21/2022 1:09:00 PM 1,1,1,2-Tetrachloroethane ND 0.50 5 μg/L 6/21/2022 1:09:00 PM 1,1,2,2-Tetrachloroethane ND 0.50 μg/L 5 6/21/2022 1:09:00 PM 5 Tetrachloroethene (PCE) ND 0.50 μg/L 6/21/2022 1:09:00 PM trans-1,2-DCE ND 0.50 μg/L 5 6/21/2022 1:09:00 PM trans-1,3-Dichloropropene ND 0.50 µg/L 5 6/21/2022 1:09:00 PM 1,2,3-Trichlorobenzene ND 0.50 μg/L 5 6/21/2022 1:09:00 PM 1,2,4-Trichlorobenzene ND 0.50 µg/L 5 6/21/2022 1:09:00 PM 1,1,1-Trichloroethane ND 0.50 μg/L 5 6/21/2022 1:09:00 PM 1,1,2-Trichloroethane ND 0.50 µg/L 5 6/21/2022 1:09:00 PM 5 Trichloroethene (TCE) ND 0.50 μg/L 6/21/2022 1:09:00 PM Trichlorofluoromethane ND 0.50 5 6/21/2022 1:09:00 PM μg/L 1,2,3-Trichloropropane ND 5 1.0 μg/L 6/21/2022 1:09:00 PM Vinyl chloride 5 ND 0.50 μg/L 6/21/2022 1:09:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

7.0

94.5

80.7

110

95.4

0.75

70-130

70-130

70-130

70-130

Qualifiers:

Xylenes, Total

Surr: Toluene-d8

Surr: Dibromofluoromethane

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank

5

5

5

5

5

μg/L

%Rec

%Rec

%Rec

%Rec

- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

6/21/2022 1:09:00 PM

Analytical Report

Lab Order **2206990**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/30/2022

CLIENT: HILCORP ENERGY Client Sample ID: Influent Skid #2

 Project:
 OH Randel 5
 Collection Date: 6/17/2022 11:50:00 AM

 Lab ID:
 2206990-002
 Matrix: AIR
 Received Date: 6/18/2022 9:50:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	33000	500	μg/L	100	6/21/2022 9:42:46 AM
Surr: BFB	135	15-380	%Rec	100	6/21/2022 9:42:46 AM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	200	10	μg/L	100	6/21/2022 2:18:00 PM
Toluene	410	10	μg/L	100	6/21/2022 2:18:00 PM
Ethylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2,4-Trimethylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,3,5-Trimethylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2-Dichloroethane (EDC)	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2-Dibromoethane (EDB)	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Naphthalene	ND	20	μg/L	100	6/21/2022 2:18:00 PM
1-Methylnaphthalene	ND	40	μg/L	100	6/21/2022 2:18:00 PM
2-Methylnaphthalene	ND	40	μg/L	100	6/21/2022 2:18:00 PM
Acetone	ND	100	μg/L	100	6/21/2022 2:18:00 PM
Bromobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Bromodichloromethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Bromoform	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Bromomethane	ND	20	μg/L	100	6/21/2022 2:18:00 PM
2-Butanone	ND	100	μg/L	100	6/21/2022 2:18:00 PM
Carbon disulfide	ND	100	μg/L	100	6/21/2022 2:18:00 PM
Carbon tetrachloride	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Chlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Chloroethane	ND	20	μg/L	100	6/21/2022 2:18:00 PM
Chloroform	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Chloromethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
2-Chlorotoluene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
4-Chlorotoluene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
cis-1,2-DCE	ND	10	μg/L	100	6/21/2022 2:18:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2-Dibromo-3-chloropropane	ND	20	μg/L	100	6/21/2022 2:18:00 PM
Dibromochloromethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Dibromomethane	ND	20	μg/L	100	6/21/2022 2:18:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Dichlorodifluoromethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1-Dichloroethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1-Dichloroethene	ND	10	μg/L	100	6/21/2022 2:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 6

Analytical Report

Lab Order **2206990**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/30/2022

CLIENT: HILCORP ENERGY Client Sample ID: Influent Skid #2

 Project:
 OH Randel 5
 Collection Date: 6/17/2022 11:50:00 AM

 Lab ID:
 2206990-002
 Matrix: AIR
 Received Date: 6/18/2022 9:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,3-Dichloropropane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
2,2-Dichloropropane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1-Dichloropropene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Hexachlorobutadiene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
2-Hexanone	ND	100	μg/L	100	6/21/2022 2:18:00 PM
Isopropylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
4-Isopropyltoluene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	100	6/21/2022 2:18:00 PM
Methylene chloride	ND	30	μg/L	100	6/21/2022 2:18:00 PM
n-Butylbenzene	ND	30	μg/L	100	6/21/2022 2:18:00 PM
n-Propylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
sec-Butylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Styrene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
tert-Butylbenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1,1,2-Tetrachloroethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Tetrachloroethene (PCE)	ND	10	μg/L	100	6/21/2022 2:18:00 PM
trans-1,2-DCE	ND	10	μg/L	100	6/21/2022 2:18:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2,3-Trichlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Trichloroethene (TCE)	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Trichlorofluoromethane	ND	10	μg/L	100	6/21/2022 2:18:00 PM
1,2,3-Trichloropropane	ND	20	μg/L	100	6/21/2022 2:18:00 PM
Vinyl chloride	ND	10	μg/L	100	6/21/2022 2:18:00 PM
Xylenes, Total	66	15	μg/L	100	6/21/2022 2:18:00 PM
Surr: Dibromofluoromethane	90.2	70-130	%Rec	100	6/21/2022 2:18:00 PM
Surr: 1,2-Dichloroethane-d4	79.0	70-130	%Rec	100	6/21/2022 2:18:00 PM
Surr: Toluene-d8	103	70-130	%Rec	100	6/21/2022 2:18:00 PM
Surr: 4-Bromofluorobenzene	99.3	70-130	%Rec	100	6/21/2022 2:18:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

Billings, MT 800.735.4489 • Casper, WY 888.235.0515
Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

June 30, 2022

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: G22060453
Project Name: 2206990

Energy Laboratories Inc. Gillette WY received the following 1 sample for Hall Environmental on 6/27/2022 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	e Matrix	Test
G22060453-001	2206990-001B; Influent Skid #1	06/17/22 11:45 06/27/22	Gas	Air Correction Calculations Analysis Corrections Calculated Properties GPM @ std cond,/1000 cu. ft., moist Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 400 W. Boxelder Rd., Gillette, WY 82718, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these tests results, please contact your Project Manager.

Report Approved By:

Billings, MT **800.735.4489** • Casper, WY **888.235.0515**Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

Report Date: 06/30/22

CLIENT: Hall Environmental

Project: 2206990

Work Order: G22060453 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

This report is associated with the report for G22060375.

Date Received: 06/27/22

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: 2206990 Report Date: 06/30/22 **Client Sample ID:** 2206990-001B; Influent Skid #1 Collection Date: 06/17/22 11:45

Location:

Lab ID: G22060453-001 Sampled By: Not Provided

Analyses	Result Units	Qualifier Method Analysis Date / By
GAS CHROMATOGRAPHIC ANALYSIS REPORT		
Oxygen	21.83 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Nitrogen	77.97 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Carbon Dioxide	0.06 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Hydrogen Sulfide	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Methane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Ethane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Propane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Isobutane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
n-Butane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Isopentane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
n-Pentane	<0.01 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
Hexanes plus	0.14 Mol %	GPA 2261- 06/29/22 10:59 / eli-b
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS		
Propane	< 0.001 gpm	GPA 2261- 06/29/22 10:59 / eli-b
Isobutane	< 0.001 gpm	GPA 2261- 06/29/22 10:59 / eli-b
n-Butane	< 0.001 gpm	GPA 2261- 06/29/22 10:59 / eli-b
Isopentane	< 0.001 gpm	GPA 2261- 06/29/22 10:59 / eli-b
n-Pentane	< 0.001 gpm	GPA 2261- 06/29/22 10:59 / eli-b
Hexanes plus	0.059 gpm	GPA 2261- 06/29/22 10:59 / eli-b
GPM Total	0.059 gpm	GPA 2261- 06/29/22 10:59 / eli-b
GPM Pentanes plus	0.059 gpm	GPA 2261- 06/29/22 10:59 / eli-b
CALCULATED PROPERTIES		
Gross BTU per cu ft @ Std Cond. (HHV	7	GPA 2261- 06/29/22 10:59 / eli-b
Net BTU per cu ft @ std cond. (LHV)	6	GPA 2261- 06/29/22 10:59 / eli-b
Pseudo-critical Pressure, psia	545	GPA 2261- 06/29/22 10:59 / eli-b
Pseudo-critical Temperature, deg R	240	GPA 2261- 06/29/22 10:59 / eli-b
PHYSICAL PROPERTIES-CALCULATED		
Specific Gravity @ 60/60F	1.00	D3588-81 06/29/22 10:59 / eli-b
COMMENTS		

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

06/29/22 10:59 / eli-b

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
- Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: G22060453 Report Date: 06/30/22

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95								Batch:	R383909
Lab ID:	B22062529-001ADUP	Sample Dupli	cate			Run: GCN	GA-B_220629A		06/29)/22 10:29
Oxygen		21.4	Mol %	0.01				0	20	
Nitrogen		78.0	Mol %	0.01				0	20	
Carbon Dio	oxide	0.45	Mol %	0.01				0.0	20	
Hydrogen S	Sulfide	< 0.01	Mol %	0.01					20	
Methane		< 0.01	Mol %	0.01					20	
Ethane		< 0.01	Mol %	0.01					20	
Propane		< 0.01	Mol %	0.01					20	
Isobutane		< 0.01	Mol %	0.01					20	
n-Butane		< 0.01	Mol %	0.01					20	
Isopentane		< 0.01	Mol %	0.01					20	
n-Pentane		< 0.01	Mol %	0.01					20	
Hexanes pl	us	0.22	Mol %	0.01				4.7	20	
Lab ID:	LCS062922	Laboratory Co	ontrol Sample			Run: GCN	GA-B_220629A		06/29)/22 11:29
Oxygen		0.58	Mol %	0.01	116	70	130			
Nitrogen		5.93	Mol %	0.01	99	70	130			
Carbon Dio	oxide	1.00	Mol %	0.01	101	70	130			
Methane		74.6	Mol %	0.01	100	70	130			
Ethane		6.05	Mol %	0.01	101	70	130			
Propane		5.04	Mol %	0.01	102	70	130			
Isobutane		2.00	Mol %	0.01	100	70	130			
n-Butane		2.00	Mol %	0.01	100	70	130			
Isopentane		1.01	Mol %	0.01	101	70	130			
n-Pentane		1.01	Mol %	0.01	101	70	130			
Hexanes pl	us	0.80	Mol %	0.01	100	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Work Order Receipt Checklist

Hall Environmental

Login completed by: Jill S. Jeffress

G22060453

Date Received: 6/27/2022

Login completed by:	O		Date	. 10001100. 0/21/2022	
Reviewed by:	Chantel S. Johnson		Re	ceived by: csj	
Reviewed Date:	6/29/2022		Car	rier name: FedEx	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes ✓	No 🗌		
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌		
Samples in proper container	/bottle?	Yes ✓	No 🗌		
Sample containers intact?		Yes ✓	No 🗌		
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌		
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes √	No 🗌		
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Applicable 🗹	
Container/Temp Blank tempe	erature:	°C			
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	\checkmark
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable ✓	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

None

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By: Relinquished By: Relinquished By:

Date: Date: Date:

6/24/2022

9:20 AM

Time

Received By:

TAT:

RUSH

Next BD

2nd BD

INVIRONMENTAL NALYSIS	LABORATORY	ANALYSIS	ENVIRONMENTAL	

_	ITEM	CITY	ADDRESS	SUB		
1 2206990-001B Influent Skid #1	M SAMPLE	CITY, STATE, ZIP: Gillette, WY 82718		CONTRATOR: Energ		ANALYSIS
Influent Skid #1	CLIENT SAMPLE ID	e, WY 82718	400 W Boxelder Rd	SUB CONTRATOR: Energy Labs-Gillette COMPANY:) ORY
				Energy]		
TEDLAR	BOTTLE TYPE			Energy Laboratories		
Air 6	MATRIX			es		
3/17/2022 11:45:00 AM	COLLECTION DATE		ACCOUNT #:	PHONE:		
6/17/2022 11:45:00 AM	# СОЛТАІИЕВЗ			(866) 686-7175		
5 Day TAT**	ANALYTICAL COMMENTS		EMAIL:	FAX	Website: www.hallenvironmental.com	Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

	ANALYTICAL COMMENTS		DATE DATE	MATRIX	BOTTLE TYPE	PLE ID
	EMAIL:		ACCOUNT #:			
	FAX	(866) 686-7175	PHONE:	es.	Energy Laboratories	COMPANY: Ener
•						
Pa	Website: www.hallenvironmental.com					
age	FAX: 505-345-4107					
6 0	TEL: 505-345-3975					
of 6	Albuquerque, NM 87109					
	4901 Hawkins NE					
	Hall Environmental Analysis Laboratory		ORD	ODY RE	CHAIN OF CUSTODY RECORD	CHAI

☐ HARDCOPY (extra cost)

REPORT TRANSMITTAL DESIRED

☐ EMAIL

ONLINE

FOR LAB USE ONLY

Temp of samples

Attempt to Cool?

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

June 30, 2022

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: G22060375
Project Name: 2206990

Energy Laboratories Inc. Gillette WY received the following 1 sample for Hall Environmental on 6/21/2022 for analysis.

Lab ID	Client Sample ID	Collect Date Red	ceive Date	Matrix	Test
G22060375-002	2206990-002B; Influent Skid #2	06/17/22 11:50	06/21/22	Gas	Air Correction Calculations Analysis Corrections Calculated Properties GPM @ std cond,/1000 cu. ft., moist Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 400 W. Boxelder Rd., Gillette, WY 82718, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these tests results, please contact your Project Manager.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Report Date: 06/30/22

CLIENT: Hall Environmental

Project: 2206990

Work Order: G22060375 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Sample 2206990-001B; Influent Skid #1 was received with low volume and a leaking Tedlar bag. The sample was put on hold until a new Tedlar bag requested. The data from the second Tedlar bag is associated with report G22060453.

Date Received: 06/21/22

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client: Hall Environmental

Project: 2206990 Report Date: 06/30/22 **Client Sample ID:** 2206990-002B; Influent Skid #2 Collection Date: 06/17/22 11:50

Location:

Lab ID: G22060375-002 Sampled By: Not Provided

Analyses	Result Units	Qualifier Method Analysis Date / By
GAS CHROMATOGRAPHIC ANALYSIS REPORT		
Oxygen	21.27 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Nitrogen	77.48 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Carbon Dioxide	0.39 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Hydrogen Sulfide	<0.01 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Methane	<0.01 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Ethane	<0.01 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Propane	<0.01 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Isobutane	0.02 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
n-Butane	0.03 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Isopentane	0.05 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
n-Pentane	0.06 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
Hexanes plus	0.71 Mol %	GPA 2261- 06/27/22 11:11 / eli-b
GPM @ STD COND/1000 CU.FT., MOISTURE FREE GAS		
Propane	< 0.001 gpm	GPA 2261- 06/27/22 11:11 / eli-b
Isobutane	0.007 gpm	GPA 2261- 06/27/22 11:11 / eli-b
n-Butane	0.009 gpm	GPA 2261- 06/27/22 11:11 / eli-b
Isopentane	0.018 gpm	GPA 2261- 06/27/22 11:11 / eli-b
n-Pentane	0.022 gpm	GPA 2261- 06/27/22 11:11 / eli-b
Hexanes plus	0.299 gpm	GPA 2261- 06/27/22 11:11 / eli-b
GPM Total	0.355 gpm	GPA 2261- 06/27/22 11:11 / eli-b
GPM Pentanes plus	0.339 gpm	GPA 2261- 06/27/22 11:11 / eli-b
CALCULATED PROPERTIES		
Gross BTU per cu ft @ Std Cond. (HHV	40	GPA 2261- 06/27/22 11:11 / eli-b
Net BTU per cu ft @ std cond. (LHV)	37	GPA 2261- 06/27/22 11:11 / eli-b
Pseudo-critical Pressure, psia	545	GPA 2261- 06/27/22 11:11 / eli-b
Pseudo-critical Temperature, deg R	245	GPA 2261- 06/27/22 11:11 / eli-b
PHYSICAL PROPERTIES-CALCULATED		
Specific Gravity @ 60/60F	1.02	D3588-81 06/27/22 11:11 / eli-b
COMMENTS		

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

06/27/22 11:11 / eli-b

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
- Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: G22060375 Report Date: 06/28/22

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95								Batch:	R383813
Lab ID:	B22062144-001ADUP	Sample Dupli	cate			Run: GCN	GA-B_220627A		06/27	7/22 09:47
Oxygen		21.1	Mol %	0.01				0.1	20	
Nitrogen		78.2	Mol %	0.01				0	20	
Carbon Dio	xide	0.74	Mol %	0.01				1.4	20	
Hydrogen S	Sulfide	<0.01	Mol %	0.01					20	
Methane		<0.01	Mol %	0.01					20	
Ethane		<0.01	Mol %	0.01					20	
Propane		<0.01	Mol %	0.01					20	
Isobutane		<0.01	Mol %	0.01					20	
n-Butane		<0.01	Mol %	0.01					20	
Isopentane		<0.01	Mol %	0.01					20	
n-Pentane		<0.01	Mol %	0.01					20	
Hexanes pl	us	<0.01	Mol %	0.01					20	
Lab ID:	G22060375-002ADUP	Sample Dupli	cate			Run: GCN	GA-B_220627A		06/27	7/22 11:37
Oxygen		21.2	Mol %	0.01				0.1	20	
Nitrogen		77.5	Mol %	0.01				0	20	
Carbon Dio	xide	0.39	Mol %	0.01				0.0	20	
Hydrogen S	Sulfide	<0.01	Mol %	0.01					20	
Methane		<0.01	Mol %	0.01					20	
Ethane		<0.01	Mol %	0.01					20	
Propane		<0.01	Mol %	0.01					20	
Isobutane		0.01	Mol %	0.01				67	20	R
n-Butane		0.02	Mol %	0.01				40	20	R
Isopentane		0.04	Mol %	0.01				22	20	R
n-Pentane		0.05	Mol %	0.01				18	20	
Hexanes pl	us	0.75	Mol %	0.01				5.5	20	
Lab ID:	LCS062722	Laboratory Co	ontrol Sample			Run: GCN	GA-B_220627A		06/27	7/22 14:44
Oxygen		0.59	Mol %	0.01	118	70	130			
Nitrogen		6.07	Mol %	0.01	101	70	130			
Carbon Dio	xide	1.00	Mol %	0.01	101	70	130			
Methane		74.3	Mol %	0.01	99	70	130			
Ethane		6.09	Mol %	0.01	101	70	130			
Propane		5.08	Mol %	0.01	103	70	130			
Isobutane		2.01	Mol %	0.01	100	70	130			
n-Butane		2.01	Mol %	0.01	100	70	130			
Isopentane		1.02	Mol %	0.01	102	70	130			
n-Pentane		1.01	Mol %	0.01	101	70	130			
Hexanes pl	He	0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Work Order Receipt Checklist

Hall Environmental

G22060375

Login completed by:	Jill S. Jeffress		Date	Received: 6/21/2022	
Reviewed by:	Chantel S. Johnson		Re	ceived by: jsj	
Reviewed Date:	6/27/2022		Car	rier name: FedEx	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed whe	en relinquished and received?	Yes √	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🗹	No 🗌		
Samples in proper container	/bottle?	Yes √	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within h (Exclude analyses that are or such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌		
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes 🗌	No 🗌	Not Applicable 🗸	
Container/Temp Blank tempe	erature:	°C			
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	$\overline{\checkmark}$
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable ✓	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The Hall Environmental labels were switched according to the hand-written client sample labels. The samples were logged in and labeld according the hand-written client IDs.

Influent Skid #1 was labeled 2206990-002B; Influent Skid #2 Influent Skid #2 was labeled 2206990-001B; Influent Skid #1

The sample labeled Influent Skit #1 appeared to have leaked and was nearly empty.

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:

Date: Date: Date:

Time

Received By

Date

Time

Temp of samples

Attempt to Cool :

☐ HARDCOPY (extra cost)

REPORT TRANSMITTAL DESIRED

EMAIL

ONLINE

FOR LAB USE ONLY

6/20/2022

2:01 PM

Time

TAT:

Standard ___

RUSH

Next BD

2nd BD

3rd BD

LABORATORY	ANALYSIS	ENVIRONMENTAL	HALL

CHAIN OF CUSTODY RECORD PAGE: 1 OF: 1

Hall Environmental Analysis Laboratory

Albuquerque, NM 87109

4901 Hawkins NE

ANALYTICAL COMMENTS ! **5 Day TAT**	COLLECTION DATE DATE 6/17/2022 11:45:00 AM 1 Natural Gas 02, CO2 **5 Day TAT**	COLLECTION DATE MANALYTIC MANAL	MATRIX	BOTTLE TYPE TEDLAR	CLIENT SAMPLE ID Influent Skid #1 Influent Skid #2	SAMPLE CLIENT SAI 2206990-001B Influent Skid #1 2206990-002B Influent Skid #2	ITEM 1
					Gillette, WY 82718	CITY, STATE, ZIP: Gillett	CITY, S
EMAIL:		ACCOUNT #:			400 W Boxelder Rd		ADDRESS
FAX:	(866) 686-7175	PHONE:	es	Energy Laboratories	SUB CONTRATOR: Energy Labs-Gillette COMPANY:	ONTRATOR: Energ	SUB CO

6220 60375

Page 6 of 6

FAX: 505-345-4107

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 2206990 30-Jun-22

Client: HILCORP ENERGY

Project: OH Randel 5

Sample ID: 2206990-001adup SampType: **DUP** TestCode: EPA Method 8260B: Volatiles Client ID: Influent Skid #1 Batch ID: R88901 RunNo: 88901

Client ID: Influent Skid #1	Batci	n ID: R8	8901	ŀ	Runno: 88	8901				
Prep Date:	Analysis [Date: 6/ 2	21/2022	;	SeqNo: 31	157909	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	5.4	0.50						1.72	20	
Toluene	17	0.50						7.09	20	
Ethylbenzene	0.66	0.50						5.63	20	
Methyl tert-butyl ether (MTBE)	ND	0.50						0	20	
1,2,4-Trimethylbenzene	ND	0.50						0	20	
1,3,5-Trimethylbenzene	ND	0.50						0	20	
1,2-Dichloroethane (EDC)	ND	0.50						0	20	
1,2-Dibromoethane (EDB)	ND	0.50						0	20	
Naphthalene	ND	1.0						0	20	
1-Methylnaphthalene	ND	2.0						0	20	
2-Methylnaphthalene	ND	2.0						0	20	
Acetone	ND	5.0						0	20	
Bromobenzene	ND	0.50						0	20	
Bromodichloromethane	ND	0.50						0	20	
Bromoform	ND	0.50						0	20	
Bromomethane	ND	1.0						0	20	
2-Butanone	ND	5.0						0	20	
Carbon disulfide	ND	5.0						0	20	
Carbon tetrachloride	ND	0.50						0	20	
Chlorobenzene	ND	0.50						0	20	
Chloroethane	ND	1.0						0	20	
Chloroform	ND	0.50						0	20	
Chloromethane	ND	0.50						0	20	
2-Chlorotoluene	ND	0.50						0	20	
4-Chlorotoluene	ND	0.50						0	20	
cis-1,2-DCE	ND	0.50						0	20	
cis-1,3-Dichloropropene	ND	0.50						0	20	
1,2-Dibromo-3-chloropropane	ND	1.0						0	20	
Dibromochloromethane	ND	0.50						0	20	
Dibromomethane	ND	1.0						0	20	
1,2-Dichlorobenzene	ND	0.50						0	20	
1,3-Dichlorobenzene	ND	0.50						0	20	
1,4-Dichlorobenzene	ND	0.50						0	20	
Dichlorodifluoromethane	ND	0.50						0	20	
1,1-Dichloroethane	ND	0.50						0	20	
1,1-Dichloroethene	ND	0.50						0	20	
1,2-Dichloropropane	ND	0.50						0	20	
1,3-Dichloropropane	ND	0.50						0	20	
2,2-Dichloropropane	ND	0.50						0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 5 of 6

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2206990** *30-Jun-22*

Client: HILCORP ENERGY

Project: OH Randel 5

Sample ID: 2206990-001adu r	SampT	Гуре: DU I	P	Tes	tCode: EF	PA Method	8260B: Volati	les					
Client ID: Influent Skid #1	Batch	h ID: R88	3901	RunNo: 88901									
Prep Date:	Analysis D	Date: 6/2	21/2022	5	SeqNo: 31	157909	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
,1-Dichloropropene	ND	0.50						0	20				
lexachlorobutadiene	ND	0.50						0	20				
-Hexanone	ND	5.0						0	20				
sopropylbenzene	ND	0.50						0	20				
-Isopropyltoluene	ND	0.50						0	20				
-Methyl-2-pentanone	ND	5.0						0	20				
Methylene chloride	ND	1.5						0	20				
-Butylbenzene	ND	1.5						0	20				
-Propylbenzene	ND	0.50						0	20				
ec-Butylbenzene	ND	0.50						0	20				
Styrene	ND	0.50						0	20				
ert-Butylbenzene	ND	0.50						0	20				
,1,1,2-Tetrachloroethane	ND	0.50						0	20				
,1,2,2-Tetrachloroethane	ND	0.50						0	20				
etrachloroethene (PCE)	ND	0.50						0	20				
rans-1,2-DCE	ND	0.50						0	20				
rans-1,3-Dichloropropene	ND	0.50						0	20				
,2,3-Trichlorobenzene	ND	0.50						0	20				
,2,4-Trichlorobenzene	ND	0.50						0	20				
,1,1-Trichloroethane	ND	0.50						0	20				
,1,2-Trichloroethane	ND	0.50						0	20				
richloroethene (TCE)	ND	0.50						0	20				
richlorofluoromethane	ND	0.50						0	20				
,2,3-Trichloropropane	ND	1.0						0	20				
/inyl chloride	ND	0.50						0	20				
Kylenes, Total	6.9	0.75						1.63	20				
Surr: Dibromofluoromethane	4.6		5.000		91.5	70	130	0	0				
Surr: 1,2-Dichloroethane-d4	4.0		5.000		79.8	70	130	0	0				
Surr: Toluene-d8	5.1		5.000		103	70	130	0	0				
Surr: 4-Bromofluorobenzene	4.9		5.000		97.5	70	130	0	0				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	HILCORP ENERGY	Work Order Nu	umber: 220	6990			RcptNo:	1
Received By:	Isaiah Ortiz	6/18/2022 9:50:0	00 AM		into a	< C	1	
Completed By:	Isaiah Ortiz A oce 18/2025	6/18/2022 10:25	:59 AM		granden to	-0	7-4	
Chain of Cust	ody							
1. Is Chain of Cu	stody complete?		Yes	V	No		Not Present	
2. How was the s	sample delivered?		<u>Cou</u>	rier				
Log In 3. Was an attem	pt made to cool the samples?		Yes	V	No		na 🗆	
4. Were all samp	les received at a temperature	of >0° C to 6.0°C	Yes	✓	No		NA 🗆	
5. Sample(s) in p	roper container(s)?		Yes	✓	No			
6. Sufficient samp	ole volume for indicated test(s)	?	Yes	✓	No			
7. Are samples (e	except VOA and ONG) properly	preserved?	Yes	✓	No			
8. Was preservat	ive added to bottles?		Yes		No	✓	NA 🗆	1/10/2
9. Received at lea	ast 1 vial with headspace <1/4	for AQ VOA?	Yes		No		NA 🗹	May
	ple containers received broker		Yes		No	V		0 1
11. Does paperwor	rk match bottle labels? ncies on chain of custody)		Yes		No		# of preserved bottles checked for pH:	12 unless noted)
	orrectly identified on Chain of 0	Custody?	Yes	V	No		Adjusted?	
13. Is it clear what	analyses were requested?		Yes	✓	No			
	g times able to be met? stomer for authorization.)		Yes	✓	No		Checked by:	
Special Handli	ng (if applicable)							
15. Was client not	ified of all discrepancies with t	his order?	Yes		No		NA 🗹	
Person i	3		ate:	lail 🗆	Dhana 🗆	Fav	□ In Descen	
Regardir	NAME AND ADDRESS OF THE PARTY O	Vi	a. L elv	lail 🔲	Phone _	rax	☐ In Person	
	structions:		-	-		-		
16. Additional ren								
17. Cooler Inform	nation							

Page 1 of 1

	eived how would	ite: T	1722 1501 (Manufactured by	Timo:	2022	5:3:	3:53	PM			6-17 1150 Air Influent steel #2	GIF 1145 Air Influent skid #1	Date Time Matrix Sample Name	□ EDD (Type)		Accreditation: Az Compliance	QA/QC Package: ☐ Standard ☐ Level 4 (Full Validation)	email or Fax#:	Phone #:			Kente Kan	age Aclient: Hilcorp Energy Co	Chain-of-Custody Record	14
ontracted to other accredited laboratories. This serves as notice of this	In Cavier 6/18/22 0950	Received by: Via: Date Time	Received by: Via: Date Time				(2-redus NA OUZ	2-Teller NA DOI	Container Preservative HEAL No. Type and # Type 2 2 0 6 90 0	11 07-51	☑ Yes	Sampler: Name Burns	Stuart Hyde	Project Manager:		Project #:	OH Randel #5		⊠ Standard □ Rush	Turn-Around Time:	
If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.		Mancon Oensolum.com	(C: Aburus @ ensolum.com								X		EDB (Meth PAHs by 8 RCRA 8 M CI, F, Br, 8260 (VOA 8270 (Sem Total Colife	O(GFicide nod (3310 letals NO ₃ A) hi-VC	s/80/ ss/80 504. or 8 s , No	DR 82 1) 270 0 ₂ ,	PCB's OSIMS PO ₄ , S	O) O ₄	Anal	01	4901 Hawkins NE - Albuquerque. NM 87109	U.	ANALYSIS LABORATOR		

HALL ENVIRONMENTAL

Released to Imaging: 9/6/2022 2:45:41 PM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 125248

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	125248
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by October 31, 2022.	9/6/2022