# RICE Operating Company

112 West Taylor • Hobbs, New Mexico 88240 Phone: (575) 393-9174 • Fax: (575) 397-1471 REVIEWED

By Nelson Velez at 7:58 am, Oct 06, 2022

1. Continue sampling on a bi-annual schedule at a minimum. April 1, 2022 2. OCD pre-approves sampling termination and gauging only from MW #2, #4, #5, #6, #7, BS-2, and IWW. 3. OCD requires historic and present free phase product thickness data in any of the site wells, but namely, the MW #1 and BS-1. **Bradford Billings** 4. Submit summarized activities completed and their results in a 2022 Annual Report. New Mexico Oil Conservation Division Submittal to OCD expected no later than March 31, 2023. 5. OCD requires an abatement option(s) be submitted no later than March 31,2023 to 1220 So. St. Francis Drive initiate more aggressive removal of free phase product from BS-1 & MW #1. OCD Santa Fe, New Mexico 87505 suggest arranging a meeting to discuss alternative methods in order to mitigate the free phase products.

#### RE: 2021 Annual Groundwater Report Rice Operating Company – Hobbs SWD System Hobbs N-6, West County Road Site (1R-487): UL/N, Sec. 5&6, T19S, R38E

Mr. Billings:

ROC was the service provider (agent) for the Hobbs SWD System and has no ownership of any portion of the pipeline, well or facility. The Hobbs SWD System was owned by a consortium of oil producers, System Parties, who provide operating capital on a percentage ownership/usage basis. The Hobbs SWD System has been abandoned.

#### **Groundwater Sampling**

All wells were sampled regularly in accordance with NMOCD guidelines. The attached tables summarize the analytical results from groundwater samples collected from the monitor wells in 2020 and depth to water, total depth of the well, volume of water in the wellbore and volume of water purged from the well.

#### **Free Product Removal**

In 1994, a leak was discovered in a buried SWD pipeline. An assessment program was completed, and a free product recovery program initiated. The free product has historically been collected from Monitor Well 1 (MW-1), initially in 1996 in conjunction with groundwater recovery, and then beginning in 2000 with product recovery only.

A biosparge well designed to maximize in-situ biodegradation and minimize volatilization of hydrocarbons was installed at the site and became operational in August 2005. Four borings were drilled on November 8 and 9, 2006 in order to evaluate hydrocarbon occurrence in the vadose zone. Based on drilling observations, a second biosparge well was installed approximately 30 feet east of the original biosparge well. The second biosparge well became operational in March 2007. In November of 2007, an additional eight soil borings (piezometers) were drilled and a third biosparge well was installed southeast of the pump house. These soil borings were located in areas between previous sampling points, outside of the previously identified core source area, and as

close as possible to previous (2006) soil borings from which samples had been collected and tested for total petroleum hydrocarbons (TPH) and total organic compounds (TOC).

In November of 2010, the air sparge system at the site was tested by collection of soil gas samples during a cycled shut down. A similar test protocol was previously performed in May/June and September/October 2007, August/September 2008 and November 2009. The soil gas samples from these testing events were analyzed for methane, carbon dioxide, oxygen and benzene, toluene, ethylbenzene and xylenes (BTEX).

A Corrective Action Plan (CAP) was submitted to the NMOCD on April 2, 2012 and an Addendum was submitted April 11, 2012. In accordance with the NMOCD approval of the CAP and subsequent Addendum, pumping of free product from Biosparge Well #1 (BS1) began on April 7, 2012. Free product was pumped from this well on weekly basis from April 7, 2012 through September 19, 2012. Based on reduced product thickness and recovery volumes, the pump was removed from the well and a product recovery absorbent sock was placed in the well. The well is bailed, and sock is changed weekly. A total of 1,974.2 gallons of free product has been removed from the well since April 7, 2012. Monitor Well #1 (MW1) also has had a product recovery absorbent sock in the well to continually remove free product. The sock is changed weekly. A total of 185.3 gallons of product have been removed from this well since April 7, 2012. Removed fluids were properly disposed of at a permitted SWD well.

#### **Monitor Well Plugging**

A Monitoring Well Plugging Request was submitted to the NMOCD on November 30, 2012, and Additional Information was submitted December 3, 2012, which was approved by the NMOCD. According to NMOCD's approval, five monitoring wells (MW-3, MW-3R, PZ-3, PZ-4 and BS-3) were plugged using a cement grout containing 1% - 3% bentonite and a 3-foot cap of cement at the surface. A monitor well plugging report detailing the plugging activities was submitted to the NMOCD on February 22, 2013.

#### **Biosparge Well Operation and Evaluation**

Evaluation of the 2007 through 2010 soil gas samples and the quarterly monitoring well data indicates that the biosparge wells are effective in the remediation of free-phase hydrocarbons at the site. Biochemical results also suggest groundwater chemistry indicative of bioremediation. Pumping the free product from BS1 in 2012 and the product recovery absorbent socks in BS1 and MW-1 and bailing of BS1 has reduced the amount of free product remaining on these wells. Chloride, TDS, BTEX, and sulfate concentrations have remained at or below WQCC standards for the last eight quarters. If product thickness in BS1 increases enough to warrant pumping, a continuous skimmer pump will be placed in BS1.

The wells will be sampled quarterly in 2022.

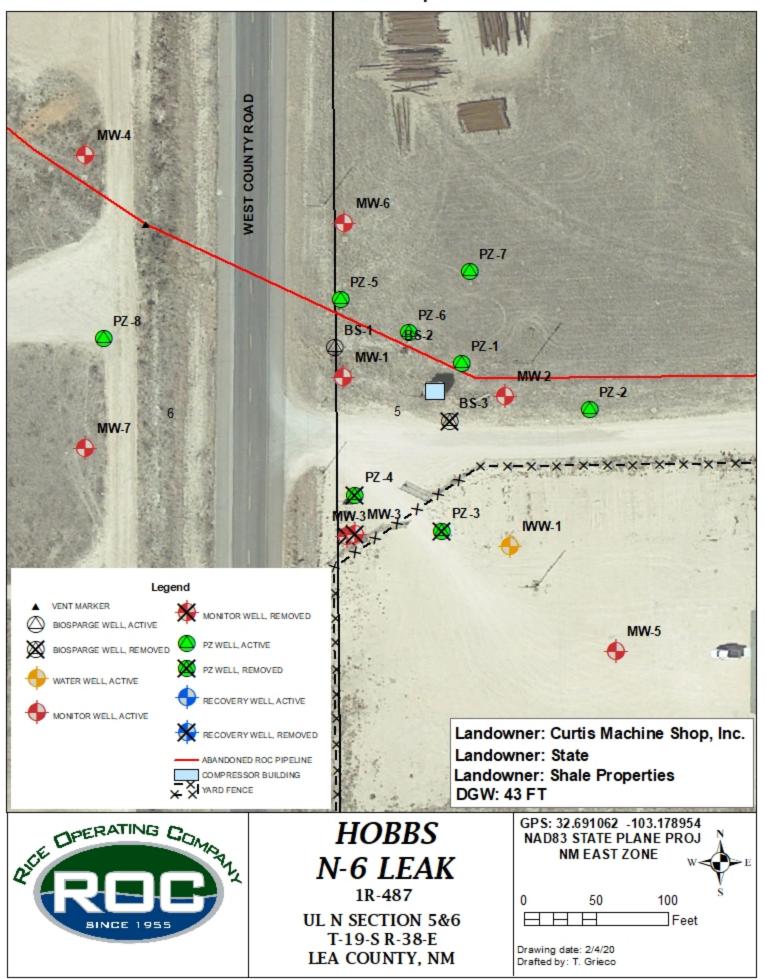
We are currently evaluating alternate remedial options to expedite closure of the site.

Thank you for your consideration concerning this summary of groundwater monitoring information. If you have any questions, please do not hesitate to contact me at (575) 393-9174 or Edward Hansen at (505) 920-4965.

Sincerely,

Katil Davis

Katie Davis Environmental Manager RICE Operating Company (ROC)


Attachments: Geographic Location Map Site Map Data Summary Table and Graph 2021 Laboratory Results Received by OCD: 3/15/2022 2:47:51 PM

## **Geographic Location**

| 11           | 12                                                          | 27         |             | 9 MILLEN                                                            | 10                   | 11                        | 12                                           | 7                            |
|--------------|-------------------------------------------------------------|------------|-------------|---------------------------------------------------------------------|----------------------|---------------------------|----------------------------------------------|------------------------------|
| 14           | <b>18S 37E</b><br>13                                        | 18         | 17          | 16                                                                  | 18S 38E              | 14                        | 13                                           | 18                           |
| 23           | 24                                                          | 19         | - 2         |                                                                     | DWLER STREE          | 23                        | 24                                           | 19                           |
| 26           | 25                                                          | 30         | 29          | 28<br>GRIMES STR                                                    | L H<br>27<br>SANGER  | DBBS<br>26<br>STREET      | 25                                           | 30                           |
| 35           | 36<br>US 62                                                 | 31         | 32          | 33<br>Ber                                                           | BROAD                |                           | 36                                           | 31                           |
| 2            | HOBB                                                        | 5 N-6 LEAK | 5           | 4                                                                   | 1.14                 | 2                         |                                              | 6                            |
| 11           | 12                                                          | 7          | 8<br>WESTCO | 9<br>9<br>UNTY ROAD                                                 | 10                   | 11.                       | 12                                           | 7                            |
| 14           | <b>19S 37E</b><br>13                                        | 18         | 17          | 16                                                                  | <b>19S 38E</b><br>15 | 14                        | 13                                           | 18                           |
| Land<br>Land | downer: Curti<br>lowner: State<br>lowner: Shale<br>V: 43 FT | •          | M           | 21<br>CNUMEN® 0464                                                  | 22                   | 23<br>SeoEye, Earthstar G | Legend                                       | 2                            |
| QUE          |                                                             |            |             | HOBB<br>N-6 LEA<br>1R-487<br>N SECTION<br>T-19-S R-38<br>EA COUNTY, | S<br>AK<br>5&6<br>-E | GPS: 32.69106             | 2 -103.178954<br>PLANE PROJ<br>T ZONE<br>1 2 | N<br>2 <sup>S</sup><br>Miles |

Released to Imaging: 10/6/2022 8:30:46 AM

### Site Map



Released to Imaging: 10/6/2022 8:30:46 AM

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                     |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|--------------------------------------------------------------|
| 1  | 43.99                | 55.21          | 7.3            | 25               | 9/15/2009   | 232 | 840 | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 44.07                | 55.21          | 7.2            | 25               | 11/20/2009  | 200 | 770 | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor Product<br>present                               |
| 1  | 44.85                | 55.21          | 6.7            | XXX              | 3/17/2010   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor Product<br>Present                               |
| 1  | 45.05                | 55.21          | 6.6            | ххх              | 6/7/2010    | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 44.19                | 55.21          | 7.2            | ххх              | 9/7/2010    | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 44.74                | 55.21          | 6.8            | XXX              | 12/8/2010   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 45.39                | 55.21          | 6.4            | XXX              | 3/15/2011   | XXX | xxx | ххх     | ххх     | ххх              | xxx              | ххх     | Strong odor Product<br>present                               |
| 1  | 45.73                | 55.21          | 6.2            | XXX              | 6/23/2011   | XXX | xxx | ххх     | ххх     | ххх              | xxx              | ххх     | Strong odor Product<br>present                               |
| 1  | 45.94                | 55.21          | 6              | XXX              | 9/22/2011   | XXX | xxx | ххх     | ххх     | ххх              | xxx              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.08                | 55.21          | 5.9            | XXX              | 12/12/2011  | XXX | xxx | ххх     | ххх     | ххх              | xxx              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.25                | 55.21          | XXX            | XXX              | 3/21/2012   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.52                | 55.21          | XXX            | ххх              | 6/14/2012   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.12                | 55.21          | XXX            | ххх              | 9/11/2012   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.25                | 55.21          | XXX            | XXX              | 12/13/2012  | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Product<br>present                               |
| 1  | 46.11                | 55.21          | ххх            | ххх              | 3/6/2013    | ххх | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Strong odor Product<br>present/PSH Recovery<br>Sock Replaced |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                          |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------------------------------------------------------|
| 1  | 46.05                | 55.21          | XXX            | ххх              | 6/20/2013   | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 46.24                | 55.21          | XXX            | XXX              | 9/19/2013   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor/Free<br>product present                               |
| 1  | 46.45                | 55.21          | XXX            | ххх              | 12/17/2013  | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor/Free<br>product present                               |
| 1  | 46.57                | 55.21          | XXX            | ххх              | 3/25/2014   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor/Free<br>product present                               |
| 1  | 46.67                | 55.21          | XXX            | ххх              | 6/19/2014   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor/Free<br>product present                               |
| 1  | 46.93                | 55.21          | XXX            | ххх              | 9/12/2014   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 47.02                | 55.21          | ххх            | ххх              | 12/22/2014  | ххх | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 46.64                | 55.21          | ХХХ            | ххх              | 3/20/2015   | ххх | ххх | ххх     | ххх     | ххх              | ххх              | ххх     | Strong odor/Free<br>product present/PSH<br>recovery sock replaced |
| 1  | 46.73                | 55.21          | XXX            | ххх              | 6/18/2015   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 46.79                | 55.21          | XXX            | ххх              | 9/22/2015   | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 46.51                | 55.21          | XXX            | ххх              | 12/3/2015   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Strong odor/Free<br>product present                               |
| 1  | 46.28                | 55.21          | XXX            | ххх              | 3/30/2016   | XXX | xxx | ххх     | ххх     | ХХХ              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 47.00                | 55.21          | ххх            | ххх              | 6/28/2016   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor/Free<br>product present                               |
| 1  | 46.31                | 55.21          | ххх            | ххх              | 9/28/2016   | XXX | XXX | ххх     | ххх     | ххх              | XXX              | xxx     | Strong odor/Free<br>product present                               |
| 1  | 45.72                | 55.21          | XXX            | xxx              | 12/6/2016   | xxx | XXX | XXX     | XXX     | XXX              | XXX              | ххх     | Strong odor/Free<br>product present                               |

#### Page 8 of 8.

| мw | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                            |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------------------------|
| 1  | 45.88                | 55.21          | XXX            | XXX              | 3/21/2017   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.39                | 55.21          | XXX            | XXX              | 6/29/2017   | XXX | ххх | ххх     | ххх     | xxx              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.28                | 55.21          | XXX            | XXX              | 9/26/2017   | XXX | XXX | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 43.1                 | 55.21          | XXX            | XXX              | 3/22/2018   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.4                 | 55.21          | XXX            | xxx              | 6/29/2018   | ххх | xxx | ххх     | ххх     | xxx              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.93                | 55.21          | XXX            | XXX              | 9/19/2018   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.87                | 55.21          | XXX            | XXX              | 12/22/2018  | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.96                | 55.21          | XXX            | XXX              | 3/28/2019   | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | 46.49                | 55.21          | XXX            | XXX              | 6/27/2019   | XXX | xxx | ххх     | ххх     | xxx              | XXX              | XXX     | Strong odor Free<br>product present |
| 1  | 46.52                | 55.21          | XXX            | xxx              | 9/26/2019   | XXX | xxx | ххх     | ххх     | xxx              | XXX              | XXX     | Strong odor Free<br>product present |
| 1  | 46.58                | 55.21          | XXX            | XXX              | 12/12/2019  | XXX | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Strong odor Free<br>product present |
| 1  | XXX                  | XXX            | XXX            | XXX              | 3/26/2020   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |
| 1  | XXX                  | XXX            | XXX            | XXX              | 9/30/2020   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |
| 1  | XXX                  | XXX            | XXX            | XXX              | 3/29/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |
| 1  | XXX                  | XXX            | XXX            | XXX              | 6/29/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |
| 1  | XXX                  | XXX            | XXX            | XXX              | 9/28/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |
| 1  | XXX                  | XXX            | XXX            | XXX              | 12/2/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | ХХХ                                 |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene     | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments          |
|----|----------------------|----------------|----------------|------------------|-------------|------|-----|-------------|---------|------------------|------------------|---------|-------------------|
| 2  | 40.2                 | 52.18          | 7.78           | 23.36            | 8/14/2002   | XXX  | XXX | XXX         | XXX     | XXX              | XXX              | XXX     |                   |
| 2  | 40.34                | 52.11          | 7.65           | 22.75            | 12/6/2002   | XXX  | XXX | XXX         | XXX     | XXX              | XXX              | XXX     |                   |
| 2  | 40.61                | 52.2           | 7.53           | 22.6             | 3/14/2003   | 53.2 | XXX | 0.003       | 0.001   | 0.006            | 0.004            | 109     |                   |
| 2  | 40.29                | 52.13          | 7.69           | 23.08            | 6/27/2003   | 40.8 | 499 | <0.001      | <0.001  | <0.001           | <0.001           | 112     |                   |
| 2  | 40.26                | 52.14          | 7.75           | 23.27            | 9/22/2003   | 31.9 | 504 | <0.001      | <0.001  | <0.001           | <0.001           | 88.8    |                   |
| 2  | 40.39                | 52.13          | 7.66           | 22.99            | 12/18/2003  | 44   | 458 | <0.002      | <0.002  | <0.002           | <0.006           | 37.7    |                   |
| 2  | 41.53                | 52.13          | 6.92           | 20.76            | 3/15/2004   | 39   | 484 | 0.00458     | <0.001  | 0.00236          | 0.00193          | 108     |                   |
| 2  | 40.3                 | 52.12          | 7.71           | 23.15            | 5/27/2004   | 31.9 | 481 | 0.000448    | <0.001  | 0.000482         | <0.001           | 89.4    |                   |
| 2  | 41.69                | 52.24          | 6.86           | 20.57            | 9/8/2004    | 70.9 | 577 | 0.0289      | 0.00219 | 0.0126           | 0.00837          | 91.4    |                   |
| 2  | 39.4                 | 52.24          | 8.35           | 25.04            | 11/22/2004  | 58.1 | XXX | 0.0238      | 0.00269 | 0.0239           | 0.01051          | 90.2    |                   |
| 2  | 38.73                | 52.24          | XXX            | 32               | 3/29/2005   | 39.1 | 444 | 0.00169     | <0.001  | 0.00151          | 0.00101          | 93.6    |                   |
| 2  | 39.12                | 55             | XXX            | 31.4             | 6/28/2005   | 42.4 | 515 | <0.001      | <0.001  | <0.001           | <0.001           | 100     |                   |
| 2  | 39.21                | 55             | XXX            | 31               | 9/6/2005    | 49.5 | 517 | <0.001      | <0.001  | <0.001           | <0.001           | 69.5    |                   |
| 2  | 39.3                 | 52.24          | 8.4            | 30               | 12/6/2005   | 58   | 380 | 0.00325     | <0.001  | <0.001           | <0.001           | 107     |                   |
| 2  | 39.56                | 52.24          | 8.2            | 25               | 2/28/2006   | 29.5 | 538 | <0.001      | <0.001  | <0.001           | <0.001           | 56.3    |                   |
| 2  | 39.97                | 52.24          | 8              | 25               | 6/5/2006    | 38.5 | 552 | <0.001      | <0.001  | <0.001           | <0.001           | 76.6    |                   |
| 2  | 39.44                | 52.24          | 8.3            | 25               | 9/11/2006   | 31.1 | 428 | <0.001      | <0.001  | <0.001           | <0.001           | 92      |                   |
| 2  | 39.47                | 52.24          | 8.3            | 30               | 11/14/2006  | 33.6 | 442 | j[0.000709] | <0.001  | j[0.00609]       | <0.001           | 91.7    | test              |
| 2  | 39.89                | 52.24          | 8              | 30               | 3/13/2007   | 34.5 | 422 | 0.00134     | <0.001  | <0.001           | < 0.001          | 81.5    | Clear No odor     |
| 2  | 40.26                | 52.24          | 7.8            | 30               | 6/12/2007   | 33.3 | 444 | j(0.000649) | 0.0016  | j(0.000792)      | ND               | 77.6    | Clear             |
| 2  | 40.22                | 52.24          | 7.8            | 25               | 9/18/2007   | 36   | 512 | 0.056       | 0.012   | 0.054            | 0.037            | 100     | Clear Slight odor |
| 2  | 40.35                | 52.24          | 7.7            | 25               | 12/6/2007   | 40   | 454 | <0.001      | <0.001  | <0.001           | <0.003           | 92.7    | Clear Slight odor |
| 2  | 40.71                | 52.24          | 7.5            | 25               | 3/3/2008    | 36   | 442 | <0.001      | <0.001  | <0.001           | <0.003           | 98.4    | Clear Slight odor |
| 2  | 40.29                | 52.24          | 7.8            | 25               | 5/28/2008   | 32   | 523 | <0.001      | <0.001  | <0.001           | <0.003           | 83.2    | Clear Slight odor |
| 2  | 40.56                | 52.24          | 7.6            | 25               | 9/8/2008    | 52   | 455 | <0.001      | <0.001  | <0.001           | <0.003           | 131     | Clear Slight odor |
| 2  | 41.43                | 52.24          | 7              | 25               | 12/15/2008  | 40   | 493 | 0.001       | <0.001  | 0.002            | <0.003           | 98      | Clear Slight odor |
| 2  | 41.61                | 52.55          | 7.1            | 25               | 3/16/2009   | 40   | 492 | 0.005       | <0.001  | 0.004            | <0.003           | 91.9    | Clear Slight odor |
| 2  | 41.78                | 52.55          | 7              | 25               | 6/9/2009    | 36   | 516 | 0.003       | 0.001   | <0.001           | <0.003           | 81.5    | Clear Slight odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments          |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------|
| 2  | 41.87                | 52.55          | 6.9            | 25               | 9/14/2009   | 40  | 500 | 0.001   | 0.004   | 0.007            | 0.023            | 85      | Clear Slight odor |
| 2  | 41.96                | 52.55          | 6.9            | 25               | 11/19/2009  | 40  | 425 | <0.001  | <0.001  | <0.001           | <0.003           | 75.8    | Clear Slight odor |
| 2  | 42.08                | 52.55          | 6.8            | 25               | 3/17/2010   | 48  | 669 | <0.001  | <0.001  | <0.001           | <0.003           | 157     | Clear Slight odor |
| 2  | 42.32                | 52.55          | 6.6            | 25               | 6/7/2010    | 40  | 494 | <0.001  | <0.001  | <0.001           | <0.003           | 80.7    | Clear Slight odor |
| 2  | 41.15                | 52.55          | 7.4            | 25               | 9/1/2010    | 40  | 479 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear Slight odor |
| 2  | 41.36                | 52.55          | 7.3            | 25               | 12/9/2010   | 56  | 482 | <0.001  | <0.001  | <0.001           | <0.003           | 87.5    | Clear Slight odor |
| 2  | 42.01                | 52.55          | 6.9            | 25               | 3/16/2011   | 56  | 488 | <0.001  | <0.001  | <0.001           | <0.003           | 92      | Clear Slight odor |
| 2  | 42.4                 | 52.55          | 6.6            | 25               | 6/22/2011   | 44  | 461 | <0.001  | <0.001  | <0.001           | <0.003           | 95.6    | Clear Slight odor |
| 2  | 42.68                | 52.55          | 6.4            | 25               | 9/21/2011   | 48  | 464 | <0.001  | <0.001  | <0.001           | <0.003           | 99.3    | Clear Slight odor |
| 2  | 42.84                | 52.55          | 6.3            | 25               | 12/13/2011  | 52  | 493 | <0.001  | <0.001  | <0.001           | <0.003           | 97.1    | Clear Slight odor |
| 2  | 43.03                | 52.55          | 6.2            | 25               | 3/20/2012   | 52  | 505 | <0.001  | <0.001  | <0.001           | <0.003           | 99.3    | Clear Slight odor |
| 2  | 43.26                | 52.55          | 6              | 25               | 6/15/2012   | 68  | 526 | <0.001  | <0.001  | <0.001           | <0.003           | 95.5    | Clear Slight odor |
| 2  | 43.37                | 52.55          | 6              | 25               | 9/11/2012   | 60  | 512 | <0.001  | <0.001  | <0.001           | <0.003           | 95.7    | Clear Slight odor |
| 2  | 43.57                | 52.55          | 5.8            | 25               | 12/12/2012  | 48  | 473 | <0.001  | <0.001  | <0.001           | <0.003           | 96.4    | Clear Slight odor |
| 2  | 43.67                | 52.55          | 5.8            | 25               | 3/6/2013    | 64  | 454 | <0.001  | <0.001  | <0.001           | <0.003           | 103     | Clear Slight odor |
| 2  | 43.96                | 52.55          | 5.6            | 25               | 6/20/2013   | 60  | 512 | <0.001  | <0.001  | <0.001           | <0.003           | 87      | Clear Slight odor |
| 2  | 44.08                | 52.55          | 5.5            | 25               | 9/19/2013   | 44  | 477 | <0.001  | <0.001  | <0.001           | <0.003           | 76.1    | Clear Slight odor |
| 2  | 44.28                | 52.55          | 5.4            | 25               | 12/16/2013  | 48  | 458 | <0.001  | <0.001  | <0.001           | <0.003           | 95.4    | Clear Slight odor |
| 2  | 44.4                 | 52.55          | 5.3            | 25               | 3/24/2014   | 68  | 532 | <0.001  | <0.001  | <0.001           | <0.003           | 81.4    | Clear Slight odor |
| 2  | 44.61                | 52.55          | 5.2            | 25               | 6/18/2014   | 64  | 512 | 0.001   | <0.001  | <0.001           | <0.003           | 80      | Clear Slight odor |
| 2  | 44.85                | 52.55          | 5              | 25               | 9/11/2014   | 60  | 526 | <0.001  | <0.001  | <0.001           | <0.003           | 91.3    | Clear Slight odor |
| 2  | 44.93                | 52.55          | 5              | 25               | 12/22/2014  | 64  | 432 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear Slight odor |
| 2  | 44.58                | 52.55          | 5.2            | 25               | 3/19/2015   | 52  | 478 | <0.001  | <0.001  | <0.001           | <0.003           | 83.6    | Clear Slight odor |
| 2  | 44.68                | 52.55          | 5.1            | 25               | 6/17/2015   | 100 | 558 | <0.001  | <0.001  | <0.001           | <0.003           | 75      | Clear Slight odor |
| 2  | 44.75                | 52.55          | 5.1            | 25               | 9/22/2015   | 72  | 550 | <0.001  | <0.001  | <0.001           | <0.003           | 79.6    | Clear Slight odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments          |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------|
| 2  | 44.48                | 52.55          | 5.2            | 25               | 12/2/2015   | 68  | 558 | <0.001  | <0.001  | <0.001           | <0.003           | 81      | Clear Slight odor |
| 2  | 44.25                | 52.55          | 5.4            | 25               | 3/29/2016   | 68  | 508 | <0.001  | <0.001  | <0.001           | <0.003           | 84.1    | Clear Slight odor |
| 2  | 44.94                | 52.55          | 4.9            | 25               | 6/27/2016   | 48  | 500 | <0.001  | <0.001  | <0.001           | <0.003           | 112     | Clear Slight odor |
| 2  | 44.29                | 52.55          | 5.4            | 25               | 9/27/2016   | 52  | 500 | <0.001  | <0.001  | <0.001           | <0.003           | 99      | Clear Slight odor |
| 2  | 43.72                | 52.55          | 5.7            | 25               | 12/6/2016   | 72  | 482 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear Slight odor |
| 2  | 43.84                | 52.55          | 5.7            | 25               | 3/21/2017   | 52  | 510 | <0.001  | <0.001  | <0.001           | <0.003           | 92      | Clear Slight odor |
| 2  | 44.27                | 52.55          | 5.4            | 25               | 6/28/2017   | 84  | 558 | <0.001  | <0.001  | <0.001           | <0.003           | 79      | Clear Slight odor |
| 2  | 44.19                | 52.55          | 5.4            | 25               | 9/26/2017   | 60  | 580 | <0.001  | <0.001  | <0.001           | <0.003           | 91      | Clear Slight odor |
| 2  | 44.26                | 52.55          | 5.4            | 25               | 12/22/2017  | 80  | 586 | <0.001  | <0.001  | <0.001           | <0.003           | 98      | Clear Slight odor |
| 2  | 44.09                | 52.55          | 5.5            | 25               | 3/21/2018   | 72  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 94.4    | Clear Slight odor |
| 2  | 44.41                | 52.55          | 5.3            | 25               | 6/28/2018   | 108 | 540 | <0.001  | <0.001  | <0.001           | <0.003           | 71.4    | Clear Slight odor |
| 2  | 45.02                | 52.55          | 4.9            | 25               | 9/19/2018   | 72  | 552 | <0.001  | <0.001  | <0.001           | <0.003           | 93.6    | Clear Slight odor |
| 2  | 44.98                | 52.55          | 4.9            | 25               | 12/22/2018  | 44  | 515 | <0.001  | <0.001  | <0.001           | <0.003           | 115     | Clear Slight odor |
| 2  | 45.03                | 52.55          | 4.9            | 25               | 3/27/2019   | 124 | 427 | <0.001  | <0.001  | <0.001           | <0.003           | 79      | Clear Slight odor |
| 2  | 44.15                | 52.55          | 5.5            | 25               | 6/26/2019   | 144 | 597 | <0.001  | <0.001  | <0.001           | <0.003           | 74      | Clear Slight odor |
| 2  | 46.79                | 52.55          | 5.6            | 25               | 9/26/2019   | 128 | 614 | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Clear Slight odor |
| 2  | 44.88                | 52.55          | 5.6            | 20               | 12/12/2019  | 52  | 521 | <0.001  | <0.001  | <0.001           | <0.003           | 94      | Clear Slight odor |
| 2  | 45.43                | 52.55          | 4.6            | 20               | 3/26/2020   | 52  | 519 | <0.001  | <0.001  | <0.001           | <0.003           | 85.6    | Clear Slight odor |
| 2  | 45.84                | 52.55          | 4.4            | 20               | 9/30/2020   | 76  | 522 | <0.001  | <0.001  | <0.001           | <0.003           | 70.2    | Clear Slight odor |
| 2  | 45.29                | 52.55          | 4.7            | 20               | 3/30/2021   | 72  | 405 | <0.001  | <0.001  | <0.001           | <0.003           | 78.4    | Clear Slight odor |
| 2  | 45.36                | 52.55          | 4.7            | 20               | 6/30/2021   | 72  | 525 | <0.001  | <0.001  | <0.001           | <0.003           | 83.4    | Clear Slight odor |
| 2  | 46.04                | 52.55          | 4.2            | 20               | 9/29/2021   | 80  | 554 | <0.001  | <0.001  | <0.001           | <0.003           | 75.3    | Clear Slight odor |
| 2  | 46.09                | 52.55          | 4.2            | 20               | 12/3/2021   | 96  | 544 | <0.001  | <0.001  | <0.001           | <0.003           | 101     | Clear Slight odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl             | TDS    | Benzene | Toluene     | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                    |
|----|----------------------|----------------|----------------|------------------|-------------|----------------|--------|---------|-------------|------------------|------------------|---------|-----------------------------|
| 3  | 40.76                | 156            | 74.92          | 224.76           | 12/6/2002   | XXX            | XXX    | XXX     | XXX         | XXX              | XXX              | XXX     |                             |
| 3  | 10.95                | 156            | 74.79          | 224.38           | 3/14/2003   | 5 <i>,</i> 850 | XXX    | 0.06    | 0.001       | 0.001            | 0.003            | 888     |                             |
| 3  | 40.69                | 156            | 74.97          | 224.93           | 6/27/2003   | 5,320          | 10,700 | 0.013   | <0.001      | <0.001           | 0.001            | 1120    |                             |
| 3  | 40.68                | 156.1          | 75.34          | 226.02           | 9/22/2003   | 5,320          | 10,900 | 0.008   | <0.001      | <0.001           | 0.001            | 1050    |                             |
| 3  | 40.82                | 156            | 75.23          | 225.69           | 12/18/2003  | 5 <i>,</i> 398 | 10,512 | 0.018   | <0.002      | <0.002           | <0.006           | 399     |                             |
| 3  | 41.82                | 156            | 74.57          | 223.73           | 3/15/2004   | 5,140          | 8,990  | 0.0354  | <0.001      | 0.000821         | 0.00165          | 793     |                             |
| 3  | 40.83                | 156.1          | 75.23          | 225.71           | 5/27/2004   | 5,230          | 8,060  | 0.0131  | 0.000238    | 0.000248         | 0.00098          | 664     |                             |
| 3  | 41.93                | 156.2          | 74.27          | 222.73           | 9/8/2004    | 5,140          | 8,600  | 0.0152  | <0.001      | 0.00184          | 0.00357          | 762     |                             |
| 3  | 39.64                | 156.2          | 75.73          | 227.19           | 11/23/2004  | 3,890          | XXX    | 0.0281  | 0.000202    | 0.000775         | 0.00449          | 683     |                             |
| 3  | 38.73                | 156.2          | XXX            | 235              | 3/29/2005   | 7,300          | 14,700 | 0.0805  | <0.001      | 0.00291          | 0.00422          | 1030    |                             |
| 3  | 39.35                | 156.2          | XXX            | 39.35            | 6/28/2005   | 7,280          | 8,930  | 0.00619 | <0.001      | <0.001           | <0.001           | 2760    |                             |
| 3  | 39.43                | 155.8          | XXX            | 40               | 9/6/2005    | 4,660          | 7,070  | 0.00566 | <0.001      | 0.00219          | 0.00455          | 874     |                             |
| 3  | 39.52                | 156.2          | 75.8           | 230              | 12/6/2005   | 7,130          | 12,100 | 0.0529  | 0.000572    | 0.00312          | <0.001           | 848     |                             |
| 3  | 39.82                | 156.2          | 75.6           | 230              | 2/28/2006   | 7,270          | 15,300 | 0.0315  | 0.00264     | 0.00535          | <0.001           | 829     |                             |
| 3  | 40.19                | 156.2          | 75.4           | 230              | 6/5/2006    | 7,660          | 13,600 | 0.0171  | j[0.000488] | 0.00258          | <0.001           | 914     | Clear Septic odor           |
| 3  | 39.8                 | 156.2          | 75.6           | 225              | 9/12/2006   | 7,390          | 13,100 | 0.0107  | j[0.000587] | <0.001           | <0.001           | 939     |                             |
| 3  | 39.67                | 156.2          | 75.7           | 230              | 11/14/2006  | 6,810          | 12,600 | 0.00697 | j[0.000417] | j[0.000413]      | <0.001           | 901     | Strong septic odor          |
| 3  | 42.15                | 156.7          | 9.4            | 30               | 3/14/2007   | 7,810          | 13,500 | 0.00177 | j[0.000597] | j[0.000405]      | <0.001           | 916     |                             |
| 3  | 40.48                | 156.2          | 75.2           | 230              | 6/11/2007   | 9,390          | 16,100 | 0.0139  | 0.00168     | 0.00485          | 0.01006          | 1100    | Clear                       |
| 3  | 40.43                | 156.2          | 75.2           | 230              | 9/18/2007   | 7,298          | 14,814 | 0.028   | 0.001       | <0.001           | 0.009            | 1010    | Clear Strong septic<br>odor |
| 3  | 40.5                 | 156.2          | 75.2           | 320              | 12/5/2007   | 2,700          | 5,870  | 0.052   | 0.001       | 0.001            | 0.003            | 680     | Clear Strong septic<br>odor |
| 3  | 40.76                | 156.2          | 75             | 250              | 3/4/2008    | 7,600          | 14,100 | 0.014   | <0.001      | <0.001           | <0.003           | 1110    | Clear Strong septic<br>odor |
| 3  | 40.97                | 156.2          | 75             | 250              | 5/29/2008   | 4,100          | 8,170  | 0.007   | 0.004       | 0.003            | <0.003           | 592     | Clear Strong septic<br>odor |
| 3  | 41.26                | 156.2          | 75             | 250              | 9/5/2008    | 7,600          | 15,200 | 0.011   | <0.001      | <0.001           | <0.003           | 978     | Clear Strong septic<br>odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl    | TDS    | Benzene       | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                    |
|----|----------------------|----------------|----------------|------------------|-------------|-------|--------|---------------|---------|------------------|------------------|---------|-----------------------------|
| 3  | 41.42                | 156.2          | 75             | 250              | 12/16/2008  | 4,250 | 8,710  | 0.006         | <0.001  | <0.001           | <0.003           | 600     | Clear Strong septic<br>odor |
| 3  | 41.6                 | 156.2          | 74             | 250              | 3/16/2009   | 3,730 | 7,570  | 0.004         | <0.001  | <0.001           | <0.003           | 527     | Clear Strong septic<br>odor |
| 3  | 41.79                | 156.2          | 74             | 250              | 6/9/2009    | 3,750 | 7,600  | 0.001         | <0.001  | <0.001           | <0.003           | 522     | Clear Strong Septic<br>odor |
| 3  | 41.91                | 156.2          | 74             | 250              | 9/15/2009   | 3,700 | 7,480  | 0.002         | <0.001  | <0.001           | <0.003           | 492     | Clear Strong septic<br>odor |
| 3  | 42.05                | 156.2          | 74             | 250              | 11/20/2009  | 3,250 | 6,560  | <0.001        | <0.001  | <0.001           | <0.003           | 434     | Clear Strong septic<br>odor |
| 3  | 42.17                | 156.2          | 74             | 250              | 3/18/2010   | 7,700 | 14,100 | 0.006         | <0.001  | <0.001           | <0.003           | 1030    | Clear Strong septic<br>odor |
| 3  | 42.26                | 156.2          | 74             | 250              | 6/7/2010    | 7,600 | 13,700 | 0.002         | <0.001  | <0.001           | <0.003           | 894     | Clear Strong septic<br>odor |
| 3  | 41.09                | 156.2          | 75             | 250              | 9/8/2010    | 2,700 | 5,100  | 0.002         | <0.001  | <0.001           | <0.003           | 293     | Clear Strong septic<br>odor |
| 3  | 41.25                | 156.2          | 75             | 250              | 12/8/2010   | 4,150 | 6,650  | 0.001         | <0.001  | 0.001            | <0.003           | 470     | Clear Strong septic<br>odor |
| 3  | 41.9                 | 156.2          | 74             | 250              | 3/16/2011   | 7,800 | 17,100 | 0.005         | <0.001  | <0.001           | <0.003           | 868     | Clear Strong septic<br>odor |
| 3  | 42.39                | 156.2          | 74             | 250              | 6/23/2011   | 3,000 | 4,940  | <0.001        | <0.001  | <0.001           | <0.003           | 343     | Clear Strong septic<br>odor |
| 3  | 42.52                | 156.2          | 74             | 250              | 9/22/2011   | 2,170 | 4,120  | <0.001        | <0.001  | <0.001           | <0.003           | 282     | Clear Strong Septic<br>odor |
| 3  | 42.69                | 156.2          | 74             | 250              | 12/12/2011  | 2,470 | 5,000  | <0.001        | <0.001  | <0.001           | <0.003           | 327     | Clear Strong septic<br>odor |
| 3  | 42.84                | 156.2          | 74             | 250              | 3/21/2012   | 2,930 | 6,170  | <0.001        | <0.001  | <0.001           | <0.003           | 408     | Clear Strong septic<br>odor |
| 3  | 43.14                | 156.2          | 73             | 250              | 6/15/2012   | 2,020 | 4,640  | <0.001        | <0.001  | <0.001           | <0.003           | 249     | Clear Strong septic<br>odor |
| 3  | 43.23                | 156.2          | 73             | 250              | 9/12/2012   | 1,470 | 3,530  | <0.001        | <0.001  | <0.001           | <0.003           | 265     | Clear Strong septic<br>odor |
|    |                      |                |                | -                |             |       | MW-3 p | lugged 12/17, | /2012   |                  |                  | -       |                             |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS     | Benzene      | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|---------|--------------|---------|------------------|------------------|---------|---------------|
| 3R | 41.1                 | 55.9           | 2.4            | 10               | 12/8/2010   | 184 | 744     | <0.001       | <0.001  | <0.001           | <0.003           | 80.9    | Clear No odor |
| 3R | 41.89                | 55.9           | 2.2            | 10               | 3/16/2011   | 204 | 792     | <0.001       | <0.001  | <0.001           | <0.003           | 76.9    | Clear No odor |
| 3R | 42.33                | 55.9           | 2.2            | 10               | 6/23/2011   | 248 | 817     | <0.001       | <0.001  | <0.001           | <0.003           | 67.4    | Clear No odor |
| 3R | 42.59                | 55.9           | 2.1            | 10               | 9/21/2011   | 240 | 795     | <0.001       | <0.001  | <0.001           | <0.003           | 71.2    | Clear No odor |
| 3R | 42.8                 | 55.9           | 2.1            | 10               | 12/12/2011  | 200 | 768     | <0.001       | <0.001  | <0.001           | <0.003           | 82.8    | Clear No odor |
| 3R | 42.97                | 55.9           | 2.1            | 10               | 3/20/2012   | 212 | 904     | <0.001       | <0.001  | <0.001           | <0.003           | 81.1    | Clear No odor |
| 3R | 43.21                | 55.9           | 2              | 10               | 6/15/2012   | 220 | 857     | <0.001       | <0.001  | <0.001           | <0.003           | 72.6    | Clear No odor |
| 3R | 43.28                | 55.9           | 2              | 10               | 9/11/2012   | 252 | 912     | <0.001       | <0.001  | <0.001           | <0.003           | 68.5    | Clear No odor |
|    |                      |                |                |                  |             | ſ   | ۸W-3R p | lugged 12/17 | /2012   |                  |                  |         |               |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|----------|
| 4  | 42.42                | 56.65          | 9.24           | 27.74            | 8/14/2002   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     |          |
| 4  | 42.6                 | 56.66          | 9.14           | 27.42            | 12/6/2002   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     |          |
| 4  | 42.84                | 56.63          | 8.96           | 26.89            | 3/14/2003   | 84  | XXX | <0.001  | <0.001  | <0.001           | <0.001           | 123     |          |
| 4  | 42.58                | 56.65          | 9.14           | 27.43            | 6/27/2003   | 62  | 520 | <0.001  | <0.001  | <0.001           | 0.002            | 138     |          |
| 4  | 42.66                | 56.7           | 9.16           | 27.5             | 9/22/2003   | 65  | 569 | <0.001  | <0.001  | <0.001           | <0.001           | 123     |          |
| 4  | 42.69                | 56.67          | 9.12           | 27.38            | 12/18/2003  | 64  | 547 | <0.002  | <0.002  | <0.002           | <0.006           | 44.8    |          |
| 4  | 43.77                | 56.67          | 8.42           | 25.27            | 3/15/2004   | 124 | 560 | 0.00103 | <0.001  | <0.001           | <0.001           | 127     |          |
| 4  | 42.65                | 56.65          | 9.14           | 27.42            | 5/27/2004   | 50  | 484 | <0.001  | <0.001  | <0.001           | <0.001           | 107     |          |
| 4  | 43.92                | 56.71          | 8.31           | 24.94            | 9/8/2004    | 50  | 492 | 0.00142 | <0.001  | <0.001           | <0.001           | 114     |          |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 4  | 41.26                | 56.71          | 10.04          | 30.13            | 11/23/2004  | 55  | XXX | <0.001  | <0.001  | <0.001           | <0.001           | 99.2    |               |
| 4  | 40.85                | 56.71          | XXX            | 32               | 3/29/2005   | 47  | 424 | <0.001  | <0.001  | <0.001           | <0.001           | 101     |               |
| 4  | 41.32                | 61.65          | XXX            | 40               | 6/28/2005   | 45  | 519 | <0.001  | <0.001  | <0.001           | <0.001           | 102     |               |
| 4  | 41.42                | 61.65          | XXX            | 40               | 9/6/2005    | 70  | 523 | <0.001  | <0.001  | <0.001           | <0.001           | 92.5    |               |
| 4  | 41.58                | 56.71          | 9.8            | 30               | 12/6/2005   | 40  | 370 | <0.001  | <0.001  | <0.001           | <0.001           | 82.2    |               |
| 4  | 41.84                | 56.71          | 9.7            | 30               | 2/28/2006   | 40  | 556 | <0.001  | <0.001  | <0.001           | <0.001           | 71.7    |               |
| 4  | 42.27                | 56.71          | 9.4            | 30               | 6/5/2006    | 59  | 476 | <0.001  | <0.001  | <0.001           | <0.001           | 76.2    |               |
| 4  | 41.66                | 56.71          | 9.8            | 30               | 9/11/2006   | 66  | 588 | <0.001  | <0.001  | <0.001           | <0.001           | 87      |               |
| 4  | 41.63                | 56.71          | 9.8            | 30               | 11/14/2006  | 93  | 498 | <0.001  | <0.001  | <0.001           | <0.001           | 90.8    |               |
| 4  | 42.15                | 56.68          | 9.4            | 30               | 3/13/2007   | 95  | 528 | <0.001  | <0.001  | <0.001           | <0.001           | 82.7    | Clear No odor |
| 4  | 42.59                | 56.68          | 9.2            | 30               | 6/11/2007   | 70  | 516 | <0.001  | <0.001  | <0.001           | <0.001           | 77.6    | Clear         |
| 4  | 42.53                | 56.68          | 9.2            | 30               | 9/18/2007   | 84  | 604 | <0.001  | <0.001  | <0.001           | <0.003           | 93.2    | Clear No odor |
| 4  | 42.65                | 56.68          | 9.1            | 30               | 12/6/2007   | 120 | 588 | <0.001  | <0.001  | <0.001           | <0.003           | 99.7    | Clear No odor |
| 4  | 42.98                | 56.68          | 8.9            | 30               | 3/3/2008    | 128 | 609 | <0.001  | <0.001  | <0.001           | <0.003           | 115     | Clear No odor |
| 4  | 43.19                | 56.68          | 8.8            | 30               | 5/28/2008   | 84  | 639 | <0.001  | <0.001  | <0.001           | <0.003           | 98.7    | Clear No odor |
| 4  | 43.47                | 56.68          | 8.6            | 30               | 9/8/2008    | 192 | 768 | <0.001  | <0.001  | <0.001           | <0.003           | 130     | Clear No odor |
| 4  | 43.67                | 56.68          | 8.5            | 30               | 12/15/2008  | 152 | 683 | <0.001  | <0.001  | <0.001           | <0.003           | 90.6    | Clear No odor |
| 4  | 43.84                | 56.72          | 8.4            | 30               | 3/17/2009   | 152 | 614 | <0.001  | <0.001  | <0.001           | <0.003           | 89.8    | Clear No odor |
| 4  | 44.21                | 56.72          | 8.1            | 30               | 6/10/2009   | 128 | 646 | <0.001  | <0.001  | <0.001           | <0.003           | 71.1    | Clear No odor |
| 4  | 44.33                | 56.72          | 8.1            | 30               | 9/14/2009   | 136 | 594 | <0.001  | <0.001  | <0.001           | <0.003           | 72.9    | Clear No odor |
| 4  | 44.28                | 56.72          | 8.1            | 30               | 11/19/2009  | 132 | 614 | <0.001  | <0.001  | <0.001           | <0.003           | 68.1    | Clear No odor |
| 4  | 44.43                | 56.71          | 8              | 30               | 3/17/2010   | 44  | 637 | <0.001  | <0.001  | <0.001           | <0.003           | 148     | Clear No odor |
| 4  | 44.56                | 56.71          | 7.9            | 30               | 6/8/2010    | 108 | 552 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |
| 4  | 43.12                | 56.71          | 8.8            | 30               | 9/7/2010    | 120 | 587 | <0.001  | <0.001  | <0.001           | <0.003           | 71.3    | Clear No odor |
| 4  | 43.49                | 56.71          | 8.6            | 30               | 12/9/2010   | 100 | 468 | <0.001  | <0.001  | <0.001           | <0.003           | 95.7    | Clear No odor |
| 4  | 44.26                | 56.71          | 8.1            | 30               | 3/15/2011   | 88  | 554 | <0.001  | <0.001  | <0.001           | <0.003           | 79.7    | Clear No odor |
| 4  | 44.69                | 56.71          | 7.8            | 30               | 6/22/2011   | 88  | 544 | <0.001  | <0.001  | <0.001           | <0.003           | 90.2    | Clear No odor |
| 4  | 44.96                | 56.71          | 7.6            | 30               | 9/21/2011   | 80  | 493 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 4  | 45.16                | 56.71          | 7.5            | 30               | 12/13/2011  | 84  | 531 | <0.001  | <0.001  | <0.001           | <0.003           | 96.5    | Clear No odor |
| 4  | 45.33                | 56.71          | 7.4            | 30               | 3/20/2012   | 84  | 562 | <0.001  | <0.001  | <0.001           | <0.003           | 99.8    | Clear No odor |
| 4  | 45.53                | 56.71          | 7.3            | 30               | 6/14/2012   | 76  | 557 | <0.001  | <0.001  | <0.001           | <0.003           | 79.7    | Clear No odor |
| 4  | 45.61                | 56.71          | 7.2            | 30               | 9/11/2012   | 104 | 600 | <0.001  | <0.001  | <0.001           | <0.003           | 99.5    | Clear No odor |
| 4  | 45.78                | 56.71          | 7.1            | 30               | 12/12/2012  | 104 | 605 | <0.001  | <0.001  | <0.001           | <0.003           | 95      | Clear No odor |
| 4  | 45.98                | 56.71          | 7              | 30               | 3/5/2013    | 96  | 522 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 4  | 46.25                | 56.71          | 6.8            | 30               | 6/20/2013   | 36  | 471 | <0.001  | <0.001  | <0.001           | <0.003           | 76      | Clear No odor |
| 4  | 46.44                | 56.71          | 6.7            | 30               | 9/18/2013   | 80  | 527 | <0.001  | <0.001  | <0.001           | <0.003           | 73.5    | Clear No odor |
| 4  | 46.58                | 56.71          | 6.6            | 30               | 12/16/2013  | 84  | 510 | <0.001  | <0.001  | <0.001           | <0.003           | 87.7    | Clear No odor |
| 4  | 46.7                 | 56.71          | 6.5            | 30               | 3/24/2014   | 88  | 554 | <0.001  | <0.001  | <0.001           | <0.003           | 94.8    | Clear No odor |
| 4  | 46.92                | 56.71          | 6.4            | 30               | 6/18/2014   | 67  | 510 | <0.001  | <0.001  | <0.001           | <0.001           | 79      | Clear No odor |
| 4  | 47.16                | 56.71          | 6.2            | 30               | 9/11/2014   | 112 | 532 | <0.001  | <0.001  | <0.001           | <0.003           | 162     | Clear No odor |
| 4  | 47.24                | 56.71          | 6.2            | 30               | 12/22/2014  | 72  | 418 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |
| 4  | 46.85                | 56.71          | 6.4            | 30               | 3/19/2015   | 68  | 488 | <0.001  | <0.001  | <0.001           | <0.003           | 74      | Clear No odor |
| 4  | 46.95                | 56.71          | 6.3            | 30               | 6/18/2015   | 88  | 564 | <0.001  | <0.001  | <0.001           | <0.003           | 75      | Clear No odor |
| 4  | 47.01                | 56.71          | 6.3            | 30               | 9/23/2015   | 76  | 568 | <0.001  | <0.001  | <0.001           | <0.003           | 80.3    | Clear No odor |
| 4  | 46.76                | 56.71          | 6.5            | 25               | 12/3/2015   | 68  | 508 | <0.001  | <0.001  | <0.001           | <0.003           | 73      | Clear No odor |
| 4  | 46.52                | 56.71          | 6.6            | 25               | 3/20/2016   | 72  | 496 | <0.001  | <0.001  | <0.001           | <0.003           | 82.8    | Clear No odor |
| 4  | 47.28                | 56.71          | 6.1            | 20               | 6/28/2016   | 92  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 79.9    | Clear No odor |
| 4  | 46.56                | 56.71          | 6.6            | 25               | 9/28/2016   | 76  | 560 | <0.001  | <0.001  | <0.001           | <0.003           | 94      | Clear No odor |
| 4  | 45.9                 | 56.71          | 7              | 25               | 12/7/2016   | 76  | 494 | <0.001  | <0.001  | <0.001           | <0.003           | 81      | Clear No odor |
| 4  | 46.03                | 56.71          | 6.9            | 25               | 3/22/2017   | 84  | 520 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear No odor |
| 4  | 46.51                | 56.71          | 6.6            | 25               | 6/29/2017   | 96  | 610 | <0.001  | <0.001  | <0.001           | <0.003           | 106     | Clear No odor |
| 4  | 46.46                | 56.71          | 6.7            | 25               | 9/27/2017   | 80  | 590 | <0.001  | <0.001  | <0.001           | <0.003           | 96      | Clear No odor |
| 4  | 46.53                | 56.71          | 6.6            | 25               | 12/26/2017  | 80  | 588 | <0.001  | <0.001  | <0.001           | <0.003           | 195     | Clear No odor |
| 4  | 46.94                | 56.71          | 6.4            | 25               | 3/22/2018   | 96  | 488 | <0.001  | <0.001  | <0.001           | <0.003           | 82.5    | Clear No odor |
| 4  | 47.22                | 56.71          | 6.2            | 20               | 6/29/2018   | 92  | 440 | <0.001  | <0.001  | <0.001           | <0.003           | 77      | Clear No odor |
| 4  | 47.33                | 56.71          | 6.1            | 25               | 9/20/2018   | 100 | 436 | <0.001  | <0.001  | <0.001           | <0.003           | 73.8    | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 4  | 47.24                | 56.71          | 6.2            | 20               | 12/23/2018  | 80  | 396 | <0.001  | <0.001  | <0.001           | <0.003           | 92.3    | Clear No odor |
| 4  | 47.33                | 56.71          | 6.1            | 25               | 3/28/2019   | 132 | 385 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |
| 4  | 47.03                | 56.71          | 6.3            | 25               | 6/27/2019   | 144 | 596 | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Clear No odor |
| 4  | 46.79                | 56.71          | 6.4            | 25               | 9/27/2019   | 132 | 597 | <0.001  | <0.001  | <0.001           | <0.003           | 80      | Clear No odor |
| 4  | 47.28                | 56.71          | 6.1            | 20               | 12/13/2019  | 120 | 573 | <0.001  | <0.001  | <0.001           | <0.003           | 70      | Clear No odor |
| 4  | 47.68                | 56.71          | 5.9            | 20               | 3/25/2020   | 136 | 640 | <0.001  | <0.001  | <0.001           | <0.003           | 74.7    | Clear No odor |
| 4  | 48.08                | 56.71          | 5.6            | 20               | 9/29/2020   | 136 | 579 | <0.001  | <0.001  | <0.001           | <0.003           | 61.5    | Clear No odor |
| 4  | 47.42                | 56.71          | 6              | 20               | 3/29/2021   | 148 | 625 | <0.001  | <0.001  | <0.001           | <0.003           | 79.4    | Clear No odor |
| 4  | 47.54                | 56.71          | 6              | 20               | 6/29/2021   | 196 | 756 | <0.001  | <0.001  | <0.001           | <0.003           | 97.3    | Clear No odor |
| 4  | 48.23                | 56.71          | 6              | 20               | 9/28/2021   | 140 | 656 | <0.001  | <0.001  | <0.001           | <0.003           | 80.6    | Clear No odor |
| 4  | 48.27                | 56.71          | 5.5            | 20               | 12/2/2021   | 148 | 619 | <0.001  | <0.001  | <0.001           | <0.003           | 110     | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS  | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments |
|----|----------------------|----------------|----------------|------------------|-------------|------|------|---------|---------|------------------|------------------|---------|----------|
| 5  | 38.82                | 51.18          | 8.01           | 24.04            | 12/6/2002   | XXX  | XXX  | XXX     | XXX     | XXX              | XXX              | XXX     |          |
| 5  | 39.04                | 51.18          | 7.89           | 23.67            | 3/14/2003   | 39   | XXX  | <0.001  | <0.001  | <0.001           | <0.001           | 105     |          |
| 5  | 38.81                | 51.21          | 8.06           | 24.18            | 6/27/2003   | 35.4 | 513  | <0.001  | <0.001  | <0.001           | 0.002            | 120     |          |
| 5  | 51.2                 | 38.77          | 8.11           | 24.35            | 9/22/2003   | 33.7 | 508  | <0.001  | <0.001  | <0.001           | <0.001           | 88.2    |          |
| 5  | 38.91                | 51.19          | 8.01           | 24.05            | 12/18/2003  | 56   | 474  | <0.002  | <0.002  | <0.002           | <0.006           | 39.4    |          |
| 5  | 40                   | 51.19          | 7.3            | 21.92            | 3/15/2004   | 762  | 1620 | 0.0107  | <0.001  | 0.000543         | 0.00088          | 216     |          |
| 5  | 38.9                 | 51.19          | 8.02           | 24.07            | 5/27/2004   | 33.7 | 473  | <0.001  | <0.001  | <0.001           | <0.001           | 94      |          |
| 5  | 40.18                | 51.31          | 7.23           | 21.7             | 9/8/2004    | 35.4 | 517  | <0.001  | <0.001  | <0.001           | <0.001           | 79.4    |          |
| 5  | 38.12                | 51.31          | 8.57           | 25.72            | 11/23/2004  | 57.3 | XXX  | <0.001  | <0.001  | <0.001           | <0.001           | 85.4    |          |
| 5  | 37.3                 | 51.31          | XXX            | 32               | 3/29/2005   | 35   | 449  | <0.001  | <0.001  | <0.001           | <0.001           | 83.1    |          |
| 5  | XXX                  | XXX            | XXX            | XXX              | 6/28/2005   | 38.1 | 504  | <0.001  | <0.001  | <0.001           | <0.001           | 95.8    |          |
| 5  | 37.74                | 51.07          | XXX            | 26.11            | 9/6/2005    | 66.8 | 488  | <0.001  | <0.001  | <0.001           | <0.001           | 103     |          |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|------|-----|---------|---------|------------------|------------------|---------|---------------|
| 5  | 37.8                 | 51.31          | 8.8            | 30               | 12/6/2005   | 29.6 | 442 | 0.00044 | <0.001  | <0.001           | <0.001           | 67      |               |
| 5  | 38.11                | 51.31          | 8.6            | 30               | 2/28/2006   | 27.9 | 504 | <0.001  | <0.001  | <0.001           | <0.001           | 62.8    |               |
| 5  | 38.48                | 51.31          | 8.3            | 30               | 6/5/2006    | 37.8 | 484 | <0.001  | <0.001  | <0.001           | <0.001           | 69      |               |
| 5  | 38.08                | 51.31          | 8.6            | 30               | 9/11/2006   | 39   | 596 | <0.001  | <0.001  | <0.001           | <0.001           | 81.2    |               |
| 5  | 37.94                | 51.31          | 8.7            | 30               | 11/14/2006  | 30.2 | 430 | <0.001  | <0.001  | <0.001           | <0.001           | 85      |               |
| 5  | 38.33                | 51.3           | 8.4            | 30               | 3/13/2007   | 36.2 | 420 | <0.001  | <0.001  | <0.001           | <0.001           | 78      | Clear No odor |
| 5  | 38.82                | 51.3           | 8.1            | 30               | 6/11/2007   | 35.2 | 454 | <0.001  | <0.001  | <0.001           | <0.001           | 71.8    | Clear         |
| 5  | 38.78                | 51.3           | 8.1            | 30               | 9/18/2007   | 40   | 574 | <0.001  | <0.001  | <0.001           | <0.003           | 89.6    | Clear No odor |
| 5  | 38.85                | 51.3           | 8.1            | 30               | 12/6/2007   | 32   | 484 | <0.001  | <0.001  | <0.001           | <0.003           | 91.4    | Clear No odor |
| 5  | 39.15                | 51.3           | 7.9            | 30               | 3/4/2008    | 40   | 472 | <0.001  | <0.001  | <0.001           | <0.003           | 93.6    | Clear No odor |
| 5  | 39.41                | 51.3           | 7.7            | 30               | 5/28/2008   | 40   | 517 | <0.001  | <0.001  | <0.001           | <0.003           | 90      | Clear No odor |
| 5  | 39.66                | 51.3           | 7.6            | 30               | 9/8/2008    | 60   | 560 | <0.001  | <0.001  | <0.001           | <0.003           | 157     | Clear No odor |
| 5  | 39.86                | 51.3           | 7.4            | 30               | 12/15/2008  | 40   | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 92.8    | Clear No odor |
| 5  | 39.98                | 51.3           | 7.4            | 30               | 3/16/2009   | 40   | 508 | <0.001  | <0.001  | <0.001           | <0.003           | 85      | Clear No odor |
| 5  | 40.34                | 51.3           | 7.1            | 30               | 6/10/2009   | 136  | 607 | <0.001  | <0.001  | <0.001           | <0.003           | 78.3    | Clear No odor |
| 5  | 40.32                | 51.3           | 7.1            | 30               | 9/14/2009   | 40   | 504 | <0.001  | <0.001  | <0.001           | <0.003           | 75.9    | Clear No odor |
| 5  | 40.43                | 51.3           | 7.1            | 30               | 11/19/2009  | 40   | 455 | <0.001  | <0.001  | <0.001           | <0.003           | 65      | Clear No odor |
| 5  | 40.58                | 51.29          | 7              | 30               | 3/17/2010   | 192  | 825 | <0.001  | <0.001  | <0.001           | <0.003           | 111     | Clear No odor |
| 5  | 40.71                | 51.29          | 6.9            | 30               | 6/8/2010    | 40   | 511 | <0.001  | <0.001  | <0.001           | <0.003           | 91      | Clear No odor |
| 5  | 39.73                | 51.29          | 7.5            | 30               | 9/7/2010    | 40   | 436 | <0.001  | <0.001  | <0.001           | <0.003           | 70.9    | Clear No odor |
| 5  | 39.81                | 51.29          | 7.5            | 30               | 12/9/2010   | 36   | 486 | <0.001  | <0.001  | <0.001           | <0.003           | 95.2    | Clear No odor |
| 5  | 40.38                | 51.29          | 7.1            | 30               | 3/15/2011   | 40   | 493 | <0.001  | <0.001  | <0.001           | <0.003           | 81.5    | Clear No odor |
| 5  | 40.83                | 51.29          | 6.8            | 30               | 6/22/2011   | 40   | 439 | <0.001  | <0.001  | <0.001           | <0.003           | 80.6    | Clear No odor |
| 5  | 41.09                | 51.29          | 6.6            | 30               | 9/21/2011   | 40   | 425 | <0.001  | <0.001  | <0.001           | <0.003           | 84.6    | Clear No odor |
| 5  | 41.27                | 51.29          | 6.5            | 30               | 12/13/2011  | 40   | 517 | <0.001  | <0.001  | <0.001           | <0.003           | 96      | Clear No odor |
| 5  | 41.48                | 51.29          | 6.4            | 30               | 3/20/2012   | 36   | 490 | <0.001  | <0.001  | <0.001           | <0.003           | 91.1    | Clear No odor |
| 5  | 41.67                | 51.29          | 6.3            | 30               | 6/14/2012   | 36   | 487 | <0.001  | <0.001  | <0.001           | <0.003           | 90.6    | Clear No odor |
| 5  | 41.87                | 51.29          | 6.1            | 30               | 9/11/2012   | 36   | 485 | <0.001  | <0.001  | <0.001           | <0.003           | 89.8    | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 5  | 41.96                | 51.29          | 6.1            | 30               | 12/12/2012  | 40  | 463 | <0.001  | <0.001  | <0.001           | <0.003           | 85      | Clear No odor |
| 5  | 42.14                | 51.29          | 5.9            | 30               | 3/5/2013    | 44  | 456 | <0.001  | <0.001  | <0.001           | <0.003           | 94      | Clear No odor |
| 5  | 42.41                | 51.29          | 5.8            | 30               | 6/20/2013   | 32  | 472 | <0.001  | <0.001  | <0.001           | <0.003           | 80      | Clear No odor |
| 5  | 42.51                | 51.29          | 5.7            | 30               | 9/18/2013   | 48  | 463 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Clear No odor |
| 5  | 42.68                | 51.29          | 5.6            | 30               | 12/16/2013  | 40  | 449 | <0.001  | <0.001  | <0.001           | <0.003           | 99      | Clear No odor |
| 5  | 42.79                | 51.29          | 5.5            | 30               | 3/25/2014   | 72  | 490 | <0.001  | <0.001  | <0.001           | <0.003           | 84.5    | Clear No odor |
| 5  | 42.41                | 51.29          | 5.8            | 30               | 6/18/2014   | 64  | 540 | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Clear No odor |
| 5  | 42.66                | 51.29          | 5.6            | 30               | 9/12/2014   | 60  | 498 | <0.001  | <0.001  | <0.001           | <0.003           | 155     | Clear No odor |
| 5  | 42.75                | 51.29          | 5.6            | 30               | 12/23/2014  | 64  | 536 | <0.001  | <0.001  | <0.001           | <0.003           | 176     | Clear No odor |
| 5  | 42.38                | 51.29          | 5.8            | 30               | 3/20/2015   | 68  | 512 | <0.001  | <0.001  | <0.001           | <0.003           | 71      | Clear No odor |
| 5  | 42.41                | 51.29          | 5.8            | 30               | 6/17/2015   | 80  | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 76      | Clear No odor |
| 5  | 42.49                | 51.29          | 5.7            | 30               | 9/22/2015   | 68  | 500 | <0.001  | <0.001  | <0.001           | <0.003           | 80.6    | Clear No odor |
| 5  | 42.25                | 51.29          | 5.9            | 30               | 12/2/2015   | 40  | 534 | <0.001  | <0.001  | <0.001           | <0.003           | 198     | Clear No odor |
| 5  | 42.02                | 51.29          | 6              | 30               | 3/29/2016   | 64  | 540 | <0.001  | <0.001  | <0.001           | <0.003           | 87.6    | Clear No odor |
| 5  | 42.7                 | 51.29          | 5.6            | 20               | 6/27/2016   | 72  | 490 | <0.001  | <0.001  | <0.001           | <0.003           | 76.5    | Clear No odor |
| 5  | 42.07                | 51.29          | 6              | 25               | 9/27/2016   | 64  | 306 | <0.001  | <0.001  | <0.001           | <0.003           | 87      | Clear No odor |
| 5  | 41.44                | 51.29          | 6.4            | 25               | 12/6/2016   | 72  | 386 | <0.001  | <0.001  | <0.001           | <0.003           | 92      | Clear No odor |
| 5  | 41.55                | 51.29          | 6.3            | 25               | 3/21/2017   | 60  | 540 | <0.001  | <0.001  | <0.001           | <0.003           | 91      | Clear No odor |
| 5  | 42.01                | 51.29          | 6              | 25               | 6/28/2017   | 72  | 558 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear No odor |
| 5  | 41.93                | 51.29          | 6.1            | 25               | 9/26/2017   | 136 | 688 | <0.001  | <0.001  | <0.001           | <0.003           | 99      | Clear No odor |
| 5  | 42.06                | 51.29          | 6              | 25               | 12/22/2017  | 68  | 532 | <0.001  | <0.001  | <0.001           | <0.003           | 96      | Clear No odor |
| 5  | 42.44                | 51.29          | 5.8            | 25               | 3/21/2018   | 80  | 552 | <0.001  | <0.001  | <0.001           | <0.003           | 92.6    | Clear No odor |
| 5  | 42.65                | 51.29          | 5.6            | 20               | 6/28/2018   | 100 | 516 | <0.001  | <0.001  | <0.001           | <0.003           | 73.5    | Clear No odor |
| 5  | 43.48                | 51.29          | 5.1            | 25               | 9/19/2018   | 48  | 498 | <0.001  | <0.001  | <0.001           | <0.003           | 83.4    | Clear No odor |
| 5  | 43.42                | 51.29          | 5.1            | 20               | 12/22/2018  | 44  | 286 | <0.001  | <0.001  | <0.001           | <0.003           | 109     | Clear No odor |
| 5  | 43.42                | 51.29          | 5.1            | 25               | 12/22/2018  | 44  | 286 | <0.001  | <0.001  | <0.001           | <0.003           | 109     | Clear No odor |
| 5  | 43.49                | 51.29          | 5.1            | 25               | 3/27/2019   | 68  | 420 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear No odor |
| 5  | 42.07                | 51.29          | 6              | 25               | 6/25/2019   | 44  | 514 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|----|-----|---------|---------|------------------|------------------|---------|---------------|
| 5  | 42.24                | 51.29          | 5.9            | 25               | 9/26/2019   | 48 | 499 | <0.001  | <0.001  | <0.001           | <0.003           | 103     | Clear No odor |
| 5  | 43.22                | 51.29          | 5.2            | 20               | 12/12/2019  | 48 | 490 | <0.001  | <0.001  | <0.001           | <0.003           | 84      | Clear No odor |
| 5  | 43.94                | 51.29          | 4.8            | 20               | 3/26/2020   | 48 | 521 | <0.001  | <0.001  | <0.001           | <0.003           | 77.4    | Clear No odor |
| 5  | 44.36                | 51.29          | 4.5            | 20               | 9/30/2020   | 40 | 499 | <0.001  | <0.001  | <0.001           | <0.003           | 75.2    | Clear No odor |
| 5  | 43.78                | 51.29          | 4.9            | 20               | 3/30/2021   | 60 | 404 | <0.001  | <0.001  | <0.001           | <0.003           | 102     | Clear No odor |
| 5  | 44.18                | 51.29          | 4.6            | 20               | 6/30/2021   | 48 | 368 | <0.001  | <0.001  | <0.001           | <0.003           | 83.6    | Clear No odor |
| 5  | 44.18                | 51.29          | 4.6            | 20               | 9/29/2021   | 40 | 363 | <0.001  | <0.001  | <0.001           | <0.003           | 71.7    | Clear No odor |
| 5  | 44.25                | 51.29          | 4.6            | 20               | 12/3/2021   | 40 | 338 | <0.001  | <0.001  | <0.001           | <0.003           | 71.3    | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments |
|----|----------------------|----------------|----------------|------------------|-------------|------|-----|---------|---------|------------------|------------------|---------|----------|
| 6  | 41.1                 | 53             | 1.9            | 5.71             | 3/14/2003   | 42.5 | XXX | <0.001  | <0.001  | <0.001           | <0.001           | 96.6    |          |
| 6  | 40.81                | 53.03          | 1.95           | 5.86             | 6/27/2003   | 35.4 | 743 | <0.001  | <0.001  | <0.001           | <0.001           | 97.5    |          |
| 6  | 40.79                | 52.97          | 1.98           | 5.95             | 9/22/2003   | 39   | 484 | <0.001  | <0.001  | <0.001           | <0.001           | 88.4    |          |
| 6  | 40.93                | 53             | 1.96           | 5.9              | 12/18/2003  | 44   | 452 | <0.002  | <0.002  | <0.002           | <0.006           | 36.8    |          |
| 6  | 42.02                | 53             | 1.78           | 5.36             | 3/15/2004   | 222  | 692 | 0.0026  | <0.001  | <0.001           | <0.001           | 94.2    |          |
| 6  | 40.91                | 53.01          | 1.97           | 5.91             | 5/27/2004   | 31.9 | 443 | <0.001  | <0.001  | <0.001           | <0.001           | 86.6    |          |
| 6  | 42.16                | 53.1           | 1.75           | 5.25             | 9/8/2004    | 53.2 | 488 | <0.001  | <0.001  | <0.001           | <0.001           | 85      |          |
| 6  | 39.62                | 53.1           | 2.16           | 6.47             | 11/23/2004  | 76.1 | XXX | <0.001  | <0.001  | <0.001           | <0.001           | 84      |          |
| 6  | 39.14                | 53.1           | XXX            | 8                | 3/29/2005   | 97.8 | 473 | <0.001  | <0.001  | <0.001           | <0.001           | 81.1    |          |
| 6  | 39.6                 | 54.49          | XXX            | 7.6              | 6/28/2005   | 122  | 541 | <0.001  | <0.001  | 0.000812         | 0.00285          | 103     |          |
| 6  | 39.61                | 61.65          | XXX            | 10.78            | 9/6/2005    | 40.4 | 442 | <0.001  | <0.001  | <0.001           | <0.001           | 23.4    |          |
| 6  | 39.75                | 53.1           | 2.1            | 7                | 12/6/2005   | 52.7 | 458 | <0.001  | <0.001  | <0.001           | <0.001           | 58.2    |          |
| 6  | 40.06                | 53.1           | 2.1            | 7                | 2/28/2006   | 59.2 | 552 | <0.001  | <0.001  | <0.001           | <0.001           | 67.6    |          |
| 6  | 40.53                | 53.1           | 2              | 10               | 6/5/2006    | 67.2 | 512 | <0.001  | <0.001  | <0.001           | <0.001           | 72.2    |          |
| 6  | 40.05                | 53.1           | 2.1            | 10               | 9/11/2006   | 67.6 | 552 | <0.001  | <0.001  | <0.001           | <0.001           | 101     |          |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                           |
|----|----------------------|----------------|----------------|------------------|-------------|------|-----|---------|---------|------------------|------------------|---------|------------------------------------|
| 6  | 39.88                | 53.1           | 2.1            | 8                | 11/14/2006  | 53.9 | 464 | <0.001  | <0.001  | <0.001           | <0.001           | 95.4    |                                    |
| 6  | 40.34                | 53.1           | 2              | 8                | 3/13/2007   | 57.7 | 466 | <0.001  | <0.001  | <0.001           | <0.001           | 90.3    | Clear No odor                      |
| 6  | 40.78                | 53.1           | 2              | 8                | 6/11/2007   | 61.8 | 528 | <0.001  | <0.001  | <0.001           | <0.001           | 85.4    | Clear                              |
| 6  | 40.64                | 53.1           | 2              | 8                | 9/18/2007   | 72   | 566 | <0.001  | <0.001  | <0.001           | <0.002           | 105     | Clear No odor                      |
| 6  | 40.85                | 53.1           | 2              | 8                | 12/6/2007   | 76   | 525 | <0.001  | <0.001  | <0.001           | <0.003           | 111     | Clear No odor                      |
| 6  | 41.22                | 53.1           | 1.9            | 8                | 3/3/2008    | 76   | 536 | <0.001  | <0.001  | <0.001           | <0.003           | 110     | Clear No odor                      |
| 6  | 41.47                | 53.1           | 1.9            | 8                | 5/28/2008   | 72   | 559 | <0.001  | <0.001  | <0.001           | <0.003           | 87.3    | Clear No odor                      |
| 6  | 41.73                | 53.1           | 1.8            | 8                | 9/8/2008    | 124  | 668 | <0.001  | <0.001  | <0.001           | <0.003           | 128     | Clear No odor                      |
| 6  | 41.91                | 53.1           | 1.8            | 8                | 12/15/2008  | 84   | 568 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Clear No odor                      |
| 6  | 42.06                | 53.1           | 1.8            | 8                | 3/16/2009   | 76   | 550 | <0.001  | <0.001  | <0.001           | <0.003           | 98      | Clear No odor                      |
| 6  | 42.26                | 53.1           | 1.7            | 8                | 6/9/2009    | 84   | 566 | <0.001  | <0.001  | <0.001           | <0.003           | 94.1    | Clear No odor                      |
| 6  | 42.36                | 53.1           | 1.7            | 8                | 9/14/2009   | 72   | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 81.5    | Clear No odor                      |
| 6  | 42.49                | 53.1           | 1.7            | 8                | 11/19/2009  | 76   | 535 | <0.001  | <0.001  | <0.001           | <0.003           | 178     | Clear No odor                      |
| 6  | 42.65                | 53.1           | 1.7            | 8                | 3/17/2010   | 48   | 693 | <0.001  | <0.001  | <0.001           | <0.003           | 160     | Clear No odor                      |
| 6  | 42.93                | 55.21          | 2              | ХХХ              | 6/8/2010    | ххх  | xxx | ххх     | ххх     | ххх              | XXX              | ххх     | Product present No<br>sample taken |
| 6  | 41.56                | 55.21          | 2.2            | XXX              | 9/7/2010    | XXX  | xxx | ххх     | ххх     | ххх              | XXX              | XXX     | Product present No<br>sample taken |
| 6  | 41.82                | 53.1           | 1.8            | 6                | 12/9/2010   | 100  | 549 | <0.001  | <0.001  | <0.001           | <0.003           | 95.2    | Slight odor                        |
| 6  | 42.49                | 53.1           | 1.7            | 6                | 3/15/2011   | 100  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 89.2    | Heavy sheen Slight<br>odor         |
| 6  | 42.93                | 53.1           | 1.6            | 6                | 6/22/2011   | 104  | 585 | <0.001  | <0.001  | <0.001           | <0.003           | 86.5    | Heavy sheen Slight<br>odor         |
| 6  | 43.19                | 53.1           | 1.6            | 6                | 9/22/2011   | 108  | 474 | <0.001  | <0.001  | <0.001           | <0.003           | 96.6    | Slight odor                        |
| 6  | 43.38                | 53.1           | 1.6            | 6                | 12/13/2011  | 80   | 528 | <0.001  | <0.001  | <0.001           | <0.003           | 97.1    | Slight odor                        |
| 6  | 43.55                | 53.1           | 1.5            | 6                | 3/20/2012   | 76   | 520 | <0.001  | <0.001  | <0.001           | <0.003           | 96.8    | Slight odor                        |
| 6  | 43.74                | 53.1           | 1.5            | 6                | 6/14/2012   | 84   | 529 | <0.001  | <0.001  | <0.001           | <0.003           | 106     | Slight odor                        |
| 6  | 43.91                | 53.1           | 1.5            | 6                | 9/11/2012   | 96   | 614 | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Slight odor                        |
| 6  | 44.07                | 53.1           | 1.4            | 6                | 12/12/2012  | 88   | 592 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Slight odor                        |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments          |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------|
| 6  | 44.23                | 53.1           | 1.4            | 6                | 3/6/2013    | 100 | 562 | <0.001  | <0.001  | <0.001           | <0.003           | 114     | Slight odor       |
| 6  | 44.52                | 53.1           | 1.4            | 6                | 6/20/2013   | 92  | 564 | <0.001  | <0.001  | <0.001           | <0.003           | 108     | Slight odor       |
| 6  | 44.59                | 53.1           | 1.4            | 6                | 9/19/2013   | 76  | 533 | <0.001  | <0.001  | <0.001           | <0.003           | 87      | Slight odor       |
| 6  | 44.78                | 53.1           | 1.3            | 6                | 12/16/2013  | 80  | 516 | <0.001  | <0.001  | <0.001           | <0.003           | 89.3    | Slight odor       |
| 6  | 44.9                 | 53.1           | 1.3            | 6                | 3/24/2014   | 60  | 504 | <0.001  | <0.001  | <0.001           | <0.003           | 85.9    | Slight odor       |
| 6  | 45.12                | 53.1           | 1.3            | 6                | 6/19/2014   | 84  | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 95.2    | Slight odor       |
| 6  | 45.35                | 53.1           | 1.2            | 6                | 9/11/2014   | 84  | 524 | <0.001  | <0.001  | <0.001           | <0.003           | 90.7    | Slight odor       |
| 6  | 45.44                | 53.1           | 1.2            | 6                | 12/22/2014  | 64  | 470 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Slight odor       |
| 6  | 45.06                | 53.1           | 1.3            | 6                | 3/19/2015   | 76  | 520 | <0.001  | <0.001  | <0.001           | <0.003           | 74.4    | Slight odor       |
| 6  | 45.15                | 53.1           | 1.3            | 6                | 6/18/2015   | 100 | 468 | <0.001  | <0.001  | <0.001           | <0.003           | 98      | Slight odor       |
| 6  | 45.22                | 53.1           | 1.3            | 6                | 9/22/2015   | 68  | 562 | <0.001  | <0.001  | <0.001           | <0.003           | 84      | Slight odor       |
| 6  | 44.98                | 53.1           | 1.3            | 6                | 12/2/2015   | 64  | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 71      | Slight odor       |
| 6  | 44.75                | 53.1           | 1.3            | 6                | 3/29/2016   | 68  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 82.7    | Clear Slight odor |
| 6  | 45.43                | 53.1           | 1.2            | 6                | 6/27/2016   | 68  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 79.7    | Clear Slight odor |
| 6  | 44.8                 | 53.1           | 1.3            | 6                | 9/27/2016   | 72  | 560 | <0.001  | <0.001  | <0.001           | <0.003           | 93      | Clear Slight odor |
| 6  | 44.19                | 53.1           | 1.4            | 6                | 12/6/2016   | 68  | 568 | <0.001  | <0.001  | <0.001           | <0.003           | 22      | Clear Slight odor |
| 6  | 44.33                | 53.1           | 1.4            | 6                | 3/21/2017   | 84  | 532 | <0.001  | <0.001  | <0.001           | <0.003           | 84      | Slight odor       |
| 6  | 44.84                | 53.1           | 1.3            | 6                | 6/28/2017   | 76  | 540 | <0.001  | <0.001  | <0.001           | <0.003           | 88      | Slight odor       |
| 6  | 44.72                | 53.1           | 1.3            | 6                | 9/26/2017   | 96  | 620 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Slight odor       |
| 6  | 44.83                | 53.1           | 1.3            | 6                | 12/22/2017  | 68  | 562 | <0.001  | <0.001  | <0.001           | <0.003           | 99      | Slight odor       |
| 6  | 45.2                 | 53.1           | 1.3            | 6                | 3/21/2018   | 76  | 552 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Slight odor       |
| 6  | 45.4                 | 53.1           | 1.2            | 6                | 6/28/2018   | 100 | 406 | <0.001  | <0.001  | <0.001           | <0.003           | 75.2    | Slight odor       |
| 6  | 45.49                | 53.1           | 1.2            | 6                | 9/19/2018   | 76  | 568 | <0.001  | <0.001  | <0.001           | <0.003           | 89.4    | Slight odor       |
| 6  | 45.44                | 53.1           | 1.2            | 6                | 12/22/2018  | 64  | 486 | <0.001  | <0.001  | <0.001           | <0.003           | 119     | Slight odor       |
| 6  | 4548                 | 53.1           | 1.2            | 6                | 3/27/2019   | 64  | 360 | <0.001  | <0.001  | <0.001           | <0.003           | 93      | Slight odor       |
| 6  | 45.16                | 53.1           | 1.3            | 6                | 6/27/2019   | 72  | 556 | <0.001  | <0.001  | <0.001           | <0.003           | 90      | Slight odor       |
| 6  | 46.21                | 53.1           | 1.1            | 6                | 9/27/2019   | 48  | 500 | <0.001  | <0.001  | <0.001           | <0.003           | 96      | Slight odor       |
| 6  | 45.38                | 53.1           | 1.2            | 6                | 12/13/2019  | 48  | 484 | <0.001  | <0.001  | <0.001           | <0.003           | 85      | Slight odor       |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl    | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                         |
|----|----------------------|----------------|----------------|------------------|-------------|-------|-------|---------|---------|------------------|------------------|---------|----------------------------------|
| 6  | 45.91                | 53.1           | 1.2            | 6                | 3/25/2020   | 48    | 555   | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Slight odor                      |
| 6  | 46.3                 | 53.1           | 1.1            | 6                | 9/29/2020   | 48    | 499   | <0.001  | <0.001  | <0.001           | <0.003           | 76.5    | Slight odor                      |
| 6  | 45.73                | 53.1           | 1.2            | 6                | 3/29/2021   | 224   | 754   | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Slight odor                      |
| 6  | 45.9                 | 53.1           | 1.2            | 6                | 6/29/2021   | 76    | 545   | <0.001  | <0.001  | <0.001           | <0.003           | 92.8    | Slight odor                      |
| 6  | 46.22                | 53.1           | 1.1            | 6                | 9/28/2021   | 76    | 550   | <0.001  | <0.001  | <0.001           | <0.003           | 75.9    | Slight odor                      |
| 6  | 46.27                | 53.1           | 1.1            | 6                | 12/2/2021   | 76    | 524   | <0.001  | <0.001  | <0.001           | <0.003           | 107     | Slight odor                      |
| MW | Depth<br>to          | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | CI    | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                         |
|    | Water                |                |                |                  |             |       |       |         |         |                  | •                |         |                                  |
| 7  | 40.94                | 47.17          | 0.99           | 2.98             | 12/6/2002   | XXX   | XXX   | XXX     | XXX     | XXX              | XXX              | XXX     |                                  |
| 7  | 41.22                | 47.18          | 0.95           | 2.86             | 3/14/2003   | 266   | XXX   | 0.001   | <0.001  | <0.001           | <0.001           | XXX     |                                  |
| 7  | 40.88                | 47.15          | 1              | 3                | 6/27/2003   | 222   | 802   | <0.001  | <0.001  | <0.001           | <0.001           | 122     |                                  |
| 7  | 40.86                | 47.11          | 1.01           | 3.05             | 9/22/2003   | 222   | 861   | <0.001  | <0.001  | <0.001           | <0.001           | 133     |                                  |
| 7  | 41.03                | 47.18          | 1              | 3                | 12/18/2003  | 208   | 827   | <0.002  | <0.002  | <0.002           | <0.006           | 110     |                                  |
| 7  | 42.17                | 47.18          | 0.81           | 2.44             | 3/15/2004   | 1,080 | 2,220 | 0.0131  | <0.001  | <0.001           | <0.001           | 44.4    |                                  |
| 7  | 41                   | 47.15          | 1              | 3                | 5/27/2004   | 213   | 986   | <0.001  | <0.001  | <0.001           | <0.001           | 220     |                                  |
| 7  | 42.34                | 47.25          | 0.79           | 2.36             | 9/8/2004    | 230   | 731   | <0.001  | <0.001  | <0.001           | <0.001           | 105     |                                  |
| 7  | 39.82                | 47.25          | 1.19           | 178.98           | 11/23/2004  | 188   | ххх   | <0.001  | <0.001  | <0.001           | <0.001           | 111     | purge vol was likely an<br>error |
| 7  | 39.33                | 47.25          | XXX            | 4                | 3/29/2005   | 234   | 791   | <0.001  | <0.001  | <0.001           | <0.001           | 96.1    |                                  |
| 7  | 39.6                 | 47             | XXX            | 3.7              | 6/28/2005   | 216   | 783   | <0.001  | <0.001  | 0.00114          | 0.0038           | 96.9    |                                  |
| 7  | 39.86                | 47             | XXX            | 3.5              | 9/6/2005    | 187   | 802   | <0.001  | <0.001  | <0.001           | <0.001           | 76.9    |                                  |
| 7  | 39.93                | 47.25          | 1.2            | 4                | 12/6/2005   | 201   | 670   | <0.001  | <0.001  | <0.001           | <0.0001          | 85.2    |                                  |
| 7  | 40.27                | 47.25          | 1.1            | 4                | 2/28/2006   | 202   | 876   | <0.001  | <0.001  | <0.001           | <0.001           | 72.4    |                                  |
| 7  | 40.63                | 47.25          | 1.1            | 10               | 6/5/2006    | 225   | 794   | <0.001  | <0.001  | <0.001           | <0.001           | 74      |                                  |
| 7  | 40.17                | 47.25          | 1.1            | 10               | 9/11/2006   | 202   | 710   | <0.001  | <0.001  | <0.001           | <0.001           | 77.9    |                                  |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 7  | 40.01                | 47.25          | 1.2            | 7                | 11/14/2006  | 223 | 764 | <0.001  | <0.001  | <0.001           | <0.001           | 86.5    | Clear No odor |
| 7  | 40.53                | 47.31          | 1.1            | 5                | 3/13/2007   | 206 | 724 | <0.001  | <0.001  | <0.001           | <0.001           | 79.9    | Clear No odor |
| 7  | 40.92                | 47.31          | 1              | 5                | 6/11/2007   | 228 | 846 | <0.001  | <0.001  | <0.001           | <0.001           | 75.9    | Clear         |
| 7  | 40.92                | 47.31          | 1              | 5                | 9/18/2007   | 252 | 868 | <0.001  | <0.001  | <0.001           | <0.003           | 97.7    | Clear No odor |
| 7  | 41.03                | 47.31          | 1              | 5                | 12/6/2007   | 256 | 882 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Clear No odor |
| 7  | 41.3                 | 47.31          | 1              | 5                | 3/3/2008    | 260 | 876 | <0.001  | <0.001  | <0.001           | <0.003           | 111     | Clear No odor |
| 7  | 41.56                | 47.31          | 0.9            | 5                | 5/28/2008   | 268 | 962 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 7  | 41.85                | 47.31          | 0.9            | 5                | 9/8/2008    | 260 | 894 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 7  | 41.99                | 47.31          | 0.9            | 5                | 12/15/2008  | 260 | 921 | <0.001  | <0.001  | <0.001           | <0.003           | 96.3    | Clear No odor |
| 7  | 42.18                | 47.35          | 0.8            | 5                | 3/17/2009   | 256 | 886 | <0.001  | <0.001  | <0.001           | <0.003           | 87.2    | Clear No odor |
| 7  | 42.35                | 47.35          | 0.8            | 5                | 6/10/2009   | 260 | 885 | <0.001  | <0.001  | <0.001           | <0.003           | 81.1    | Clear No odor |
| 7  | 42.49                | 47.35          | 0.8            | 5                | 9/14/2009   | 260 | 908 | <0.001  | <0.001  | <0.001           | <0.003           | 73.7    | Clear No odor |
| 7  | 42.61                | 47.35          | 0.8            | 5                | 11/19/2009  | 252 | 842 | <0.001  | <0.001  | <0.001           | <0.003           | 70.1    | Clear No odor |
| 7  | 42.77                | 47.35          | 0.7            | 5                | 3/17/2010   | 268 | 862 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 7  | 42.84                | 47.35          | 0.7            | 5                | 6/8/2010    | 248 | 788 | <0.001  | <0.001  | <0.001           | <0.003           | 54.8    | Clear No odor |
| 7  | 41.42                | 47.35          | 0.9            | 5                | 9/7/2010    | 272 | 886 | <0.001  | <0.001  | <0.001           | <0.003           | 77.4    | Clear No odor |
| 7  | 41.76                | 47.35          | 0.9            | 5                | 12/9/2010   | 272 | 899 | <0.001  | <0.001  | <0.001           | <0.003           | 169     | Clear No odor |
| 7  | 42.52                | 47.35          | 0.8            | 5                | 3/15/2011   | 268 | 864 | <0.001  | <0.001  | <0.001           | <0.003           | 94.3    | Clear No odor |
| 7  | 42.98                | 47.35          | 0.7            | 5                | 6/22/2011   | 260 | 854 | <0.001  | <0.001  | <0.001           | <0.003           | 85.1    | Clear No odor |
| 7  | 43.26                | 47.35          | 0.7            | 5                | 9/21/2011   | 260 | 872 | <0.001  | <0.001  | <0.001           | <0.003           | 80.2    | Clear No odor |
| 7  | 43.41                | 47.35          | 0.6            | 5                | 12/13/2011  | 272 | 919 | 0.003   | <0.001  | <0.001           | <0.003           | 89.3    | Clear No odor |
| 7  | 43.65                | 47.35          | 0.6            | 5                | 3/20/2012   | 268 | 883 | <0.001  | <0.001  | <0.001           | <0.003           | 95.2    | Clear No odor |
| 7  | 43.83                | 47.35          | 0.6            | 5                | 6/14/2012   | 260 | 863 | <0.001  | <0.001  | <0.001           | <0.003           | 116     | Clear No odor |
| 7  | 43.9                 | 47.35          | 0.6            | 5                | 9/11/2012   | 256 | 985 | <0.001  | <0.001  | <0.001           | <0.001           | 74.4    | Clear No odor |
| 7  | 44.08                | 47.35          | 0.5            | 5                | 12/12/2012  | 272 | 877 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear No odor |
| 7  | 44.22                | 47.35          | 0.5            | 5                | 3/5/2013    | 272 | 848 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Clear No odor |
| 7  | 44.56                | 47.35          | 0.4            | 5                | 6/20/2013   | 200 | 809 | <0.001  | <0.001  | <0.001           | <0.003           | 130     | Clear No odor |
| 7  | 44.63                | 47.35          | 0.4            | 5                | 9/18/2013   | 264 | 849 | <0.001  | <0.001  | <0.001           | <0.003           | 74.2    | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS  | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|------|---------|---------|------------------|------------------|---------|---------------|
| 7  | 44.84                | 47.35          | 0.4            | 5                | 12/16/2013  | 244 | 859  | <0.001  | <0.001  | <0.001           | <0.003           | 75.9    | Clear No odor |
| 7  | 44.96                | 47.35          | 0.4            | 5                | 3/24/2014   | 164 | 660  | <0.001  | <0.001  | <0.001           | <0.003           | 107     | Clear No odor |
| 7  | 45.17                | 47.35          | 0.3            | 5                | 6/18/2014   | 200 | 830  | <0.001  | <0.001  | <0.001           | <0.003           | 155     | Clear No odor |
| 7  | 45.44                | 47.35          | 0.3            | 4                | 9/11/2014   | 216 | 868  | <0.001  | <0.001  | <0.001           | <0.003           | 168     | Clear No odor |
| 7  | 45.54                | 47.35          | 0.3            | 4                | 12/22/2014  | 252 | 748  | <0.001  | <0.001  | <0.001           | <0.003           | 77      | Clear No odor |
| 7  | 45.12                | 47.35          | 0.4            | 4                | 3/19/2015   | 208 | 788  | <0.001  | <0.001  | <0.001           | <0.003           | 145     | Clear No odor |
| 7  | 45.23                | 47.35          | 0.3            | 5                | 6/18/2015   | 276 | 924  | <0.001  | <0.001  | <0.001           | <0.003           | 80      | Clear No odor |
| 7  | 45.3                 | 47.35          | 0.3            | 4                | 9/23/2015   | 88  | 560  | <0.001  | <0.001  | <0.001           | <0.003           | 90      | Clear No odor |
| 7  | 45.07                | 47.35          | 0.4            | 4                | 12/3/2015   | 252 | 876  | <0.001  | <0.001  | <0.001           | <0.003           | 65      | Clear No odor |
| 7  | 44.85                | 47.35          | 0.4            | 4                | 3/30/2016   | 308 | 978  | <0.001  | <0.001  | <0.001           | <0.003           | 67.4    | Clear No odor |
| 7  | 44.59                | 47.35          | 0.3            | 4                | 6/28/2016   | 248 | 826  | <0.001  | <0.001  | <0.001           | <0.003           | 77.9    | Clear No odor |
| 7  | 44.9                 | 47.35          | 0.4            | 4                | 9/28/2016   | 212 | 826  | <0.001  | <0.001  | <0.001           | <0.003           | 162     | Clear No odor |
| 7  | 44.28                | 47.35          | 0.5            | 4                | 12/7/2016   | 264 | 876  | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Clear No odor |
| 7  | 44.44                | 47.35          | 0.5            | 4                | 3/22/2017   | 288 | 904  | <0.001  | <0.001  | <0.001           | <0.003           | 75      | Clear No odor |
| 7  | 44.93                | 47.35          | 0.4            | 4                | 6/29/2017   | 284 | 1080 | <0.001  | <0.001  | <0.001           | <0.003           | 183     | Clear No odor |
| 7  | 44.83                | 47.35          | 0.4            | 4                | 9/27/2017   | 188 | 790  | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 7  | 44.98                | 47.35          | 0.4            | 4                | 12/26/2017  | 256 | 900  | <0.001  | <0.001  | <0.001           | <0.003           | 167     | Clear No odor |
| 7  | 45.34                | 47.35          | 0.3            | 4                | 3/22/2018   | 268 | 842  | <0.001  | <0.001  | <0.001           | <0.003           | 85.2    | Clear No odor |
| 7  | 45.55                | 47.35          | 0.3            | 4                | 6/29/2018   | 240 | 830  | <0.001  | <0.001  | <0.001           | <0.003           | 101     | Clear No odor |
| 7  | 45.64                | 47.35          | 0.3            | 4                | 9/20/2018   | 232 | 844  | <0.001  | <0.001  | <0.001           | <0.003           | 79.2    | Clear No odor |
| 7  | 45.58                | 47.35          | 0.3            | 4                | 12/23/2018  | 80  | 457  | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| 7  | 45.63                | 47.35          | 0.3            | 4                | 3/28/2019   | 232 | 652  | <0.001  | <0.001  | <0.001           | <0.003           | 85      | Clear No odor |
| 7  | 45.32                | 47.35          | 0.3            | 4                | 6/27/2019   | 220 | 821  | <0.001  | <0.001  | <0.001           | <0.003           | 88      | Clear No odor |
| 7  | 46.43                | 47.35          | 0.1            | 3                | 9/27/2019   | 208 | 781  | <0.001  | <0.001  | <0.001           | <0.003           | 74      | Clear No odor |
| 7  | 45.54                | 47.35          | 0.3            | 3                | 12/13/2019  | 236 | 661  | <0.001  | <0.001  | <0.001           | <0.003           | 76      | Clear No odor |
| 7  | 45.98                | 47.35          | 0.2            | 4                | 3/25/2020   | 204 | 802  | <0.001  | <0.001  | <0.001           | <0.003           | 70.6    | Clear No odor |
| 7  | 46.38                | 47.35          | 0.2            | 3                | 9/29/2020   | 236 | 842  | <0.001  | <0.001  | <0.001           | <0.003           | 70.8    | Clear No odor |
| 7  | 46.68                | 47.35          | 0.2            | 3                | 3/29/2021   | 240 | 632  | <0.001  | <0.001  | <0.001           | <0.003           | 159     | Clear No odor |

| MW | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| 7  | 46.82                | 47.35          | 0.1            | 3                | 6/29/2021   | 248 | 834 | <0.001  | <0.001  | <0.001           | <0.003           | 87.2    | Clear No odor |
| 7  | 47                   | 47.35          | 0.1            | 1                | 9/28/2021   | 256 | 953 | <0.001  | <0.001  | <0.001           | <0.003           | 109     | Clear No odor |
| 7  | 47.05                | 47.35          | 0.1            | 1                | 12/2/2021   | 300 | 856 | <0.001  | <0.001  | <0.001           | <0.003           | 83.1    | Clear No odor |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                                                                    |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-------|---------|---------|------------------|------------------|---------|-------------------------------------------------------------------------------------------------------------|
| BS1 | 40.9                 | 65.7           | 16.1           | 25               | 12/6/2005   | 93  | 608   | 0.0323  | 0.0209  | 0.107            | 0.0825           | 54.4    |                                                                                                             |
| BS1 | 43.33                | 65.7           | 14.5           | 45               | 3/1/2006    | 105 | 912   | 0.44    | 0.0357  | 0.168            | 0.1195           |         |                                                                                                             |
| BS1 | 41.08                | 65.7           | 16             | 50               | 6/5/2006    | 171 | 858   | 0.544   | 0.0125  | 1.142            | 0.03479          | 45      | Dark Gray with Stong<br>Pet. Odor/ Heavy skim<br>of Oil                                                     |
| BS1 | 39.9                 | 65.7           | 16.8           | 70               | 9/12/2006   | 142 | 1,010 | 1.15    | 0.0283  | 0.207            | 0.04044          | Z       | Clear Strong Petroleum<br>Odor                                                                              |
| BS1 | 39.92                | 63.75          | 15.5           | 50               | 11/15/2006  | 283 | 1,450 | 1.06    | 0.0298  | 0.159            | 0.0772           | 28.6    | Clear Strong Petroleum<br>Odor                                                                              |
| BS1 | 40.47                | 63.74          | 15.1           | 50               | 3/14/2007   | 427 | 2,040 | 1.19    | 0.0402  | 0.323            | 0.0958           | 24.2    |                                                                                                             |
| BS1 | 42.59                | 63.74          | 13.7           | 50               | 6/12/2007   | 346 | 1,580 | 0.569   | 0.00923 | 0.146            | 0.0891           | 24.7    | Clear                                                                                                       |
| BS1 | 42.45                | 63.74          | 13.8           | 45               | 9/18/2007   | 428 | 1,804 | 1.88    | 0.026   | 0.394            | 0.202            | 13.2    | Clear Strong petroleum<br>odor                                                                              |
| BS1 | 44.18                | 63.74          | 12.7           | 45               | 12/6/2007   | 500 | 1,997 | 1.31    | 0.001   | 0.255            | 0.11             | 66.1    | Clear Strong petroleum<br>odor                                                                              |
| BS1 | ххх                  | 63.74          | ххх            | ххх              | 3/4/2008    | 550 | 2,070 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Hydrocarbon present<br>Strong odor<br>Hydrocarbon emulsion<br>make it impossible to<br>measure water column |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | CI  | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                                                                         |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-------|---------|---------|------------------|------------------|---------|------------------------------------------------------------------------------------------------------------------|
| BS1 | 43.29                | 63.74          | 13.3           | 45               | 5/29/2008   | 810 | 2,590 | 0.025   | 0.124   | 0.318            | 0.197            | 99.2    | Hydrocarbons present<br>Clear Strong odor                                                                        |
| BS1 | 43.4                 | 63.74          | 13.2           | 45               | 9/5/2008    | 710 | 2,270 | 0.736   | 0.004   | 0.238            | 0.117            | 58      | Clear Strong petroleum<br>odor                                                                                   |
| BS1 | 43.1                 | 63.74          | 13.4           | 45               | 12/15/2008  | 580 | 2,070 | 0.347   | 0.004   | 0.188            | 0.09             | 76.8    | Clear Strong petroleum<br>odor                                                                                   |
| BS1 | 43.21                | 63.74          | 13.3           | ххх              | 3/16/2009   | xxx | ххх   | ХХХ     | ххх     | ххх              | ххх              | ххх     | Product is present and<br>emulsion was so thick<br>the well could not be<br>pumped or bailed                     |
| BS1 | 47.34                | 63.74          | 10.7           | ххх              | 6/9/2009    | ххх | ххх   | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon Present<br>Strong Odor<br>Emulsion/Strong<br>Petrolum Odor. Well<br>could not be pumped<br>or bailed |
| BS1 | 48.2                 | 63.74          | 10.1           | ххх              | 9/15/2009   | ххх | ххх   | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>Strong odor<br>Emulsion/Strong<br>petroleum odor Could<br>not be sampled                  |
| BS1 | 48.36                | 63.74          | 10             | ххх              | 11/20/2009  | ххх | ххх   | ххх     | ххх     | ХХХ              | ххх              | ххх     | Hydrocarbon present<br>Strong odor<br>Emulsion/Strong<br>petroleum odor Could<br>not be sampled                  |
| BS1 | 48.47                | 63.74          | 9.9            | ххх              | 3/18/2010   | XXX | XXX   | XXX     | XXX     | XXX              | XXX              | XXX     | Hydrocarbon Present<br>with Strong odor                                                                          |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                             |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|----------------------------------------------------------------------|
| BS1 | 48.83                | 63.74          | 9.7            | ххх              | 6/7/2010    | xxx | ххх | ххх     | ххх     | ххх              | ХХХ              | ххх     | Hydrocarbon present<br>Strong odor Emulsion<br>Strong petroleum odor |
| BS1 | 47.38                | 63.74          | 10.6           | ххх              | 9/8/2010    | xxx | xxx | ххх     | ххх     | ххх              | ХХХ              | ххх     | Hydrocarbon present<br>Strong odor Emulsion<br>Strong petroleum odor |
| BS1 | 47.49                | 63.74          | 10.6           | ххх              | 12/8/2010   | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |
| BS1 | 47.93                | 63.74          | 10.3           | ххх              | 3/16/2011   | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |
| BS1 | 48.22                | 63.74          | 10.1           | ххх              | 6/23/2011   | xxx | ххх | ххх     | ххх     | ххх              | ХХХ              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |
| BS1 | 48.51                | 63.74          | 9.9            | ххх              | 9/22/2011   | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |
| BS1 | 48.63                | 63.74          | 9.8            | ххх              | 12/12/2011  | xxx | ххх | ххх     | ххх     | ххх              | ХХХ              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |
| BS1 | 48.79                | 63.74          | 9.7            | ххх              | 3/21/2012   | xxx | ххх | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor     |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                                                                |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-----------------------------------------------------------------------------------------|
| BS1 | 48.96                | 63.74          | 9.6            | ххх              | 6/14/2012   | xxx | xxx | ххх     | ххх     | ххх              | xxx              | ххх     | Hydrocarbon present<br>Emulsion present<br>Strong petroleum odor                        |
| BS1 | 46.03                | 63.74          | 11.5           | xxx              | 9/12/2012   | xxx | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon Present<br>with Strong Petroleum<br>odor                                    |
| BS1 | 45.67                | 63.74          | 11.7           | ххх              | 12/13/2012  | ххх | ххх | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon Present<br>with Strong odor,<br>Product is present, well<br>was not sampled |
| BS1 | 46.11                | 63.74          | 11.5           | ххх              | 3/6/2013    | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon Present<br>with Strong odor,<br>Product is present, well<br>was not sampled |
| BS1 | 46.31                | 63.74          | 11.3           | ххх              | 6/20/2013   | xxx | ххх | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon Present<br>with Strong odor,<br>Product is present, well<br>was not sampled |
| BS1 | 46.79                | 63.74          | 11             | ххх              | 9/19/2013   | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hyrdrocarbon present<br>with Strong odor;<br>Product present well<br>was not sampled.   |
| BS1 | 47.02                | 63.74          | 10.9           | ххх              | 12/17/2013  | xxx | xxx | ххх     | ххх     | ххх              | ххх              | ххх     | Hydrocarbon present<br>with Strong odor;<br>Product present well<br>was not sampled     |
| BS1 | 47.14                | 63.74          | 10.8           | ххх              | 3/25/2014   | XXX | XXX | XXX     | XXX     | XXX              | ххх              | xxx     | Hydrocarbon present<br>Strong odor                                                      |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                               |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|--------------------------------------------------------|
| BS1 | 47.36                | 63.74          | 10.6           | XXX              | 6/19/2014   | XXX | ххх | ххх     | ххх     | ххх              | XXX              | ххх     | Hydrocarbon present<br>Strong odor                     |
| BS1 | 47.62                | 63.74          | 10.5           | xxx              | 9/12/2014   | xxx | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.7                 | 63.74          | 10.4           | xxx              | 12/22/2014  | xxx | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.7                 | 63.74          | 10.4           | xxx              | 3/20/2015   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.44                | 63.74          | 10.6           | xxx              | 6/18/2015   | ххх | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.51                | 63.74          | 10.5           | xxx              | 9/22/2015   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.23                | 63.74          | 10.7           | xxx              | 12/3/2015   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.01                | 63.74          | 10.9           | xxx              | 3/30/2016   | xxx | xxx | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.72                | 63.74          | 10.4           | xxx              | 6/28/2016   | xxx | xxx | ххх     | ххх     | ххх              | ххх              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.06                | 63.74          | 10.8           | xxx              | 9/28/2016   | xxx | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 46.38                | 63.74          | 11.3           | xxx              | 12/6/2016   | ххх | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                               |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|--------------------------------------------------------|
| BS1 | 46.51                | 63.74          | 11.2           | xxx              | 3/21/2017   | xxx | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 46.89                | 63.74          | 11             | ххх              | 6/29/2017   | ххх | ххх | ххх     | ххх     | xxx              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 46.76                | 63.74          | 11             | ххх              | 9/26/2017   | ххх | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 46.93                | 63.74          | 10.9           | ххх              | 12/22/2017  | ххх | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.38                | 63.74          | 10.6           | ххх              | 3/22/2018   | ххх | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.5                 | 63.74          | 10.5           | ххх              | 6/29/2018   | ххх | ххх | ххх     | ххх     | ххх              | ххх              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.65                | 63.74          | 10.4           | xxx              | 9/20/2018   | ххх | ххх | ххх     | ххх     | ххх              | ххх              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.5                 | 63.74          | 10.5           | xxx              | 12/23/2018  | ххх | ххх | ххх     | ххх     | ххх              | ххх              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.66                | 63.74          | 10.5           | ххх              | 3/28/2019   | ххх | ххх | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.36                | 63.74          | 10.6           | xxx              | 6/27/2019   | ххх | ххх | ххх     | ххх     | ххх              | ххх              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | 47.82                | 63.74          | 10.3           | xxx              | 9/27/2019   | xxx | ххх | ххх     | ххх     | xxx              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                               |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|--------------------------------------------------------|
| BS1 | 47.56                | 63.74          | 10.5           | XXX              | 12/12/2019  | ххх | ХХХ | ххх     | ххх     | ххх              | XXX              | xxx     | Hydrocarbon present<br>Strong odor Well not<br>sampled |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 3/25/2020   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 9/29/2020   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 3/29/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 6/29/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 9/28/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |
| BS1 | XXX                  | XXX            | XXX            | XXX              | 12/2/2021   | XXX | XXX | XXX     | XXX     | XXX              | XXX              | XXX     | XXX                                                    |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene | Toluene     | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                       |
|-----|----------------------|----------------|----------------|------------------|-------------|------|-----|---------|-------------|------------------|------------------|---------|--------------------------------|
| BS2 | 42.59                | 73.32          | 20             | 60               | 11/15/2006  | 81.8 | 522 | 0.0373  | 0.00314     | 0.0404           | 0.0994           | 107     | Clear Strong petroleum<br>odor |
| BS2 | 41.4                 | 71.59          | 19.6           | 60               | 3/14/2007   | 64.5 | 444 | 0.00274 | j[0.000935] | 0.00225          | 0.00282          | 74.4    |                                |
| BS2 | 41.8                 | 71.59          | 19.4           | 60               | 6/12/2007   | 83.8 | 546 | 0.00179 | 0.00119     | 0.002            | 0.0011           | 75.9    | Clear                          |
| BS2 | 41.65                | 71.59          | 19.5           | 60               | 9/18/2007   | 108  | 588 | <0.001  | <0.001      | <0.001           | <0.003           | 111     | Clear Strong petroleum<br>odor |
| BS2 | 41.5                 | 71.59          | 19.6           | 60               | 12/6/2007   | 108  | 571 | 0.001   | <0.001      | 0.002            | <0.003           | 97.5    | Clear Strong petroleum<br>odor |
| BS2 | 41.78                | 71.08          | 19             | 60               | 3/4/2008    | 100  | 553 | 0.002   | <0.001      | 0.004            | <0.003           | 113     | Clear Strong petroleum<br>odor |
| BS2 | 42.06                | 71.08          | 18.9           | 60               | 5/29/2008   | 100  | 605 | 0.002   | <0.001      | 0.002            | <0.003           | 99.6    | Clear Strong petroleum<br>odor |
| BS2 | 42.35                | 71.08          | 18.7           | 60               | 9/5/2008    | 88   | 511 | 0.008   | <0.001      | 0.002            | <0.003           | 101     | Clear Strong petroleum<br>odor |
| BS2 | 42.46                | 71.08          | 18.6           | 60               | 12/15/2008  | 92   | 568 | 0.005   | <0.001      | 0.001            | <0.003           | 96.3    | Clear Strong petroleum<br>odor |

#### Page 33 of 82

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                       |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|--------------------------------|
| BS2 | 42.81                | 70.83          | 18.2           | 60               | 3/16/2009   | 88  | 497 | <0.001  | <0.001  | <0.001           | <0.003           | 85.9    | Clear Strong petroleum<br>odor |
| BS2 | 42.92                | 70.83          | 18.1           | 60               | 6/9/2009    | 88  | 530 | <0.001  | <0.001  | <0.001           | <0.003           | 79.8    | Clear Strong Petroleum<br>Odor |
| BS2 | 43.41                | 70.83          | 17.8           | 60               | 9/15/2009   | 92  | 533 | <0.001  | <0.001  | <0.001           | <0.003           | 83.7    | Clear Strong petroleum<br>odor |
| BS2 | 43.61                | 70.83          | 17.7           | 60               | 11/19/2009  | 92  | 568 | <0.001  | <0.001  | <0.001           | <0.003           | 76.2    | Clear Strong petroleum<br>odor |
| BS2 | 43.85                | 70.83          | 17.5           | 60               | 3/18/2010   | 92  | 555 | <0.001  | <0.001  | <0.001           | <0.003           | 112     | Clear Strong Petroleum<br>odor |
| BS2 | 43.48                | 70.83          | 17.8           | 60               | 6/7/2010    | 84  | 553 | <0.001  | <0.001  | <0.001           | <0.003           | 94.6    | Clear Strong petroleum<br>odor |
| BS2 | 42.38                | 70.83          | 18.5           | 60               | 9/8/2010    | 92  | 554 | <0.001  | <0.001  | <0.001           | <0.003           | 83.5    | Clear Strong petroleum<br>odor |
| BS2 | 42.59                | 70.83          | 18.4           | 60               | 12/8/2010   | 104 | 496 | <0.001  | <0.001  | <0.001           | <0.003           | 93.6    | Clear Strong petroleum<br>odor |
| BS2 | 42.86                | 70.83          | 18.2           | 60               | 3/16/2011   | 80  | 525 | <0.001  | <0.001  | <0.001           | <0.003           | 89.7    | Clear Strong petroleum<br>odor |
| BS2 | 43.33                | 70.83          | 17.9           | 60               | 6/23/2011   | 140 | 649 | <0.001  | <0.001  | <0.001           | <0.003           | 92.4    | Clear Strong petroleum<br>odor |
| BS2 | 43.56                | 70.83          | 17.7           | 60               | 9/22/2011   | 156 | 688 | <0.001  | <0.001  | <0.001           | <0.003           | 112     | Clear Strong petroleum<br>odor |
| BS2 | 43.75                | 70.83          | 17.6           | 60               | 12/12/2011  | 144 | 665 | 0.001   | <0.001  | <0.001           | <0.003           | 118     | Clear Strong petroleum<br>odor |
| BS2 | 43.89                | 70.83          | 17.5           | 60               | 3/21/2012   | 84  | 569 | <0.001  | <0.001  | <0.001           | <0.003           | 131     | Clear Strong petroleum<br>odor |
| BS2 | 44.13                | 70.83          | 17.4           | 60               | 6/15/2012   | 80  | 548 | <0.001  | <0.001  | <0.001           | <0.003           | 116     | Clear Strong petroleum<br>odor |
| BS2 | 44.2                 | 70.83          | 17.3           | 60               | 9/12/2012   | 72  | 511 | <0.001  | <0.001  | <0.001           | <0.003           | 101     | Clear Strong petroleum<br>odor |
| BS2 | 44.32                | 70.83          | 17.2           | 60               | 12/13/2012  | 48  | 477 | <0.001  | <0.001  | <0.001           | <0.003           | 84.3    | Clear Strong petroleum<br>odor |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                     |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|----------------------------------------------|
| BS2 | 44.85                | 70.83          | 16.9           | 60               | 3/6/2013    | 64  | 482 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Began Pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.06                | 70.83          | 16.8           | 60               | 6/21/2013   | 76  | 537 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Began Pumping/Clear<br>Strong Petroleum Odor |
| BS2 | 45.25                | 70.83          | 16.6           | 60               | 9/19/2013   | 56  | 515 | <0.001  | <0.001  | <0.001           | <0.003           | 79.4    | Began Pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.61                | 70.83          | 16.4           | 60               | 12/16/2013  | 68  | 509 | <0.001  | <0.001  | <0.001           | <0.003           | 82.3    | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.73                | 70.83          | 16.3           | 60               | 3/24/2014   | 104 | 588 | <0.001  | <0.001  | <0.001           | <0.003           | 102     | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.95                | 70.83          | 16.2           | 60               | 6/19/2014   | 76  | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 81.9    | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 46.21                | 70.83          | 16             | 60               | 9/11/2014   | 140 | 714 | <0.001  | <0.001  | <0.001           | <0.003           | 127     | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 46.31                | 70.83          | 15.9           | 60               | 12/22/2014  | 200 | 688 | <0.001  | <0.001  | <0.001           | <0.003           | 165     | Began Pumping/Clear<br>Strong petroleum odor |

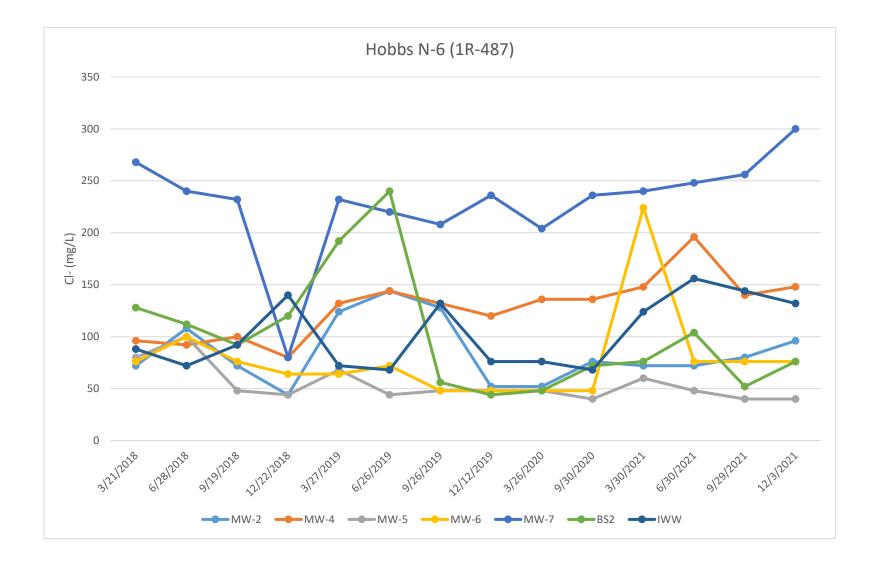
| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                                     |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|----------------------------------------------|
| BS2 | 45.91                | 70.83          | 16.2           | 60               | 3/19/2015   | 52  | 502 | <0.001  | <0.001  | <0.001           | <0.003           | 125     | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 46.01                | 70.83          | 16.1           | 60               | 6/17/2015   | 128 | 626 | <0.001  | <0.001  | <0.001           | <0.003           | 94      | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 46.07                | 70.83          | 16.1           | 60               | 9/22/2015   | 68  | 550 | <0.001  | <0.001  | <0.001           | <0.003           | 68      | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.58                | 70.83          | 16.4           | 60               | 12/3/2015   | 80  | 522 | <0.001  | <0.001  | <0.001           | <0.003           | 71      | Began pumping/Clear<br>Strong petroleum odor |
| BS2 | 45.35                | 70.83          | 16.6           | 60               | 3/30/2016   | 96  | 552 | <0.001  | <0.001  | <0.001           | <0.003           | 81      | Clear Slight odor                            |
| BS2 | 46.28                | 70.83          | 16             | 50               | 6/28/2016   | 120 | 560 | <0.001  | <0.001  | <0.001           | <0.003           | 91.3    | Clear Slight odor                            |
| BS2 | 45.54                | 70.83          | 16             | 60               | 9/28/2016   | 84  | 586 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Clear Slight odor                            |
| BS2 | 44.92                | 70.83          | 17             | 60               | 12/6/2016   | 124 | 570 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear Slight odor                            |
| BS2 | 45.14                | 70.83          | 17             | 60               | 3/22/2017   | 160 | 688 | <0.001  | <0.001  | <0.001           | <0.003           | 86      | Clear Strong odor                            |
| BS2 | 45.68                | 70.83          | 17             | 60               | 6/29/2017   | 108 | 594 | <0.001  | <0.001  | <0.001           | <0.003           | 101     | Clear Strong odor                            |
| BS2 | 45.59                | 70.83          | 16             | 60               | 9/27/2017   | 76  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 91      | Clear Strong odor                            |
| BS2 | 45.74                | 70.83          | 16             | 60               | 12/26/2017  | 88  | 564 | <0.001  | <0.001  | <0.001           | <0.003           | 106     | Clear Strong odor                            |
| BS2 | 46.02                | 70.83          | 16.1           | 60               | 3/22/2018   | 128 | 602 | <0.001  | <0.001  | <0.001           | <0.003           | 86.9    | Clear Strong odor                            |
| BS2 | 46.26                | 70.83          | 16             | 50               | 6/29/2018   | 112 | 502 | <0.001  | <0.001  | <0.001           | <0.003           | 83.5    | Clear Strong odor                            |
| BS2 | 45.27                | 70.83          | 16.6           | 60               | 9/19/2018   | 92  | 516 | <0.001  | <0.001  | <0.001           | <0.003           | 22.3    | Clear Strong odor                            |
| BS2 | 45.21                | 70.83          | 16.7           | 50               | 12/23/2018  | 120 | 562 | <0.001  | <0.001  | <0.001           | <0.003           | 105     | Clear Strong odor                            |
| BS2 | 45.26                | 70.83          | 17             | 60               | 3/28/2019   | 192 | 564 | <0.001  | <0.001  | <0.001           | <0.003           | 101     | Clear Strong odor                            |
| BS2 | 45.06                | 70.83          | 17             | 60               | 6/27/2019   | 240 | 839 | <0.001  | <0.001  | <0.001           | <0.003           | 84      | Clear Strong odor                            |

#### Page 36 of 82

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments          |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|-------------------|
| BS2 | 45.23                | 70.83          | 16             | 50               | 9/27/2019   | 56  | 483 | <0.001  | <0.001  | <0.001           | <0.003           | 102     | Clear Strong odor |
| BS2 | 45.68                | 70.83          | 16             | 50               | 12/13/2019  | 44  | 482 | <0.001  | <0.001  | <0.001           | <0.003           | 97      | Clear Strong odor |
| BS2 | 46.11                | 70.83          | 16.1           | 45               | 3/25/2020   | 48  | 518 | <0.001  | <0.001  | <0.001           | <0.003           | 92.6    | Clear Strong odor |
| BS2 | 46.53                | 70.83          | 15.8           | 45               | 9/29/2020   | 72  | 559 | <0.001  | <0.001  | <0.001           | <0.003           | 68.1    | Clear Strong odor |
| BS2 | 46.03                | 70.83          | 16             | 45               | 3/29/2021   | 76  | 517 | <0.001  | <0.001  | <0.001           | <0.003           | 84.7    | Clear Strong odor |
| BS2 | 46.22                | 70.83          | 16             | 45               | 6/29/2021   | 104 | 514 | <0.001  | <0.001  | <0.001           | <0.003           | 78      | Clear Strong odor |
| BS2 | 46.96                | 70.83          | 16             | 45               | 9/28/2021   | 52  | 526 | <0.001  | <0.001  | <0.001           | <0.003           | 82.8    | Clear Strong odor |
| BS2 | 47.06                | 70.83          | 16             | 45               | 12/2/2021   | 76  | 509 | <0.001  | <0.001  | <0.001           | <0.003           | 103     | Clear Strong odor |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                       |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-------|---------|---------|------------------|------------------|---------|--------------------------------|
| BS3 | 41.53                | 70.8           | 19             | 65               | 3/4/2008    | 500 | 1,410 | 0.037   | 0.001   | 0.115            | 0.032            | 68.3    | Clear Strong petroleum<br>odor |
| BS3 | 41.82                | 70.8           | 18.8           | 65               | 5/29/2008   | 384 | 1,074 | 0.006   | <0.001  | 0.005            | <0.003           | 79.4    | Clear Strong petroleum<br>odor |
| BS3 | 42.09                | 70.8           | 18.7           | 65               | 9/5/2008    | 580 | 1,480 | 0.01    | <0.001  | 0.051            | <0.003           | 106     | Clear Strong petroleum<br>odor |
| BS3 | 42.19                | 70.8           | 18.6           | 65               | 12/15/2008  | 540 | 1,440 | 0.007   | 0.001   | 0.014            | <0.003           | 69.5    | Clear Strong petroleum<br>odor |
| BS3 | 42.45                | 69.58          | 17.6           | 60               | 3/16/2009   | 480 | 1,320 | 0.021   | <0.001  | 0.024            | <0.003           | 67      | Clear Strong petroleum<br>odor |
| BS3 | 42.64                | 69.58          | 17.5           | 60               | 6/9/2009    | 420 | 1,340 | 0.013   | <0.001  | 0.023            | <0.003           | 63.3    | Clear Strong petroleum<br>odor |
| BS3 | 42.76                | 69.58          | 17.4           | 60               | 9/15/2009   | 352 | 1,160 | 0.02    | <0.001  | <0.001           | <0.003           | 63.8    | Clear Strong petroleum<br>odor |
| BS3 | 42.89                | 69.58          | 17.3           | 60               | 11/19/2009  | 400 | 1,160 | 0.038   | <0.001  | <0.001           | <0.003           | 61      | Clear Strong odor              |
| BS3 | 43.08                | 69.58          | 17.2           | 60               | 3/18/2010   | 316 | 1,030 | 0.023   | <0.001  | 0.014            | <0.003           | 86.6    | Clear Strong petroleum<br>odor |

## Page 37 of 82


| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS     | Benzene       | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                       |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|---------|---------------|---------|------------------|------------------|---------|--------------------------------|
| BS3 | 43.24                | 69.58          | 17.1           | 60               | 6/7/2010    | 276 | 972     | 0.008         | <0.001  | 0.007            | <0.003           | 90      | Clear Strong petroleum<br>odor |
| BS3 | 42.01                | 69.58          | 17.9           | 60               | 9/8/2010    | 100 | 514     | 0.001         | <0.001  | 0.001            | <0.003           | 85.5    | Clear Strong petroleum<br>odor |
| BS3 | 42.23                | 69.58          | 17.8           | 60               | 12/8/2010   | 88  | 458     | <0.001        | <0.001  | <0.001           | <0.003           | 94.6    | Clear Strong petroleum<br>odor |
| BS3 | 43.19                | 69.58          | 17.2           | 60               | 3/16/2011   | 80  | 511     | <0.001        | <0.001  | <0.001           | <0.003           | 87      | Clear Strong petroleum<br>odor |
| BS3 | 43.68                | 69.58          | 16.8           | 60               | 6/23/2011   | 84  | 530     | <0.001        | <0.001  | <0.001           | <0.003           | 94.3    | Clear Strong petroleum<br>odor |
| BS3 | 43.93                | 69.58          | 16.7           | 60               | 9/22/2011   | 90  | 503     | <0.001        | <0.001  | <0.001           | <0.003           | 105     | Clear Strong petroleum<br>odor |
| BS3 | 44.14                | 69.58          | 16.5           | 60               | 12/12/2011  | 76  | 545     | <0.001        | <0.001  | <0.001           | <0.003           | 107     | Clear Strong petroleum<br>odor |
| BS3 | 44.21                | 69.58          | 16.5           | 60               | 3/21/2012   | 68  | 405     | <0.001        | <0.001  | <0.001           | <0.003           | 118     | Clear Strong petroleum<br>odor |
| BS3 | 44.38                | 69.58          | 16.4           | 60               | 6/15/2012   | 72  | 520     | <0.001        | <0.001  | <0.001           | <0.003           | 88      | Clear Strong petroleum<br>odor |
| BS3 | 44.45                | 69.58          | 16.3           | 60               | 9/12/2012   | 80  | 557     | <0.001        | <0.001  | <0.001           | <0.003           | 98      | Clear Strong petroleum<br>odor |
|     |                      |                |                |                  |             |     | BS3 plu | igged 12/17/2 | 2012    |                  |                  |         |                                |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments |
|-----|----------------------|----------------|----------------|------------------|-------------|------|-----|---------|---------|------------------|------------------|---------|----------|
| IWW | 40.42                | 98.25          | 58.98          | 176.95           | 8/14/2002   | XXX  | XXX | XXX     | XXX     | XXX              | XXX              | XXX     |          |
| IWW | 40.79                | 98.18          | 37.3           | 111.91           | 3/14/2003   | 239  | XXX | 0.004   | <0.001  | <0.001           | <0.001           | 110     |          |
| IWW | 40.45                | 98.24          | 37.56          | 112.69           | 6/27/2003   | 40.7 | 465 | <0.001  | <0.001  | <0.001           | <0.001           | 102     |          |
| IWW | 40.43                | 98.2           | 37.78          | 113.34           | 9/22/2003   | 42.5 | 493 | <0.001  | <0.001  | <0.001           | <0.001           | 79.6    |          |
| IWW | 40.33                | 98.23          | 37.8           | 113.42           | 12/18/2003  | 52   | 485 | <0.002  | <0.002  | <0.002           | <0.006           | 38.6    |          |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl   | TDS   | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments                      |
|-----|----------------------|----------------|----------------|------------------|-------------|------|-------|---------|---------|------------------|------------------|---------|-------------------------------|
| IWW | 41.75                | 98.23          | 82.96          | 248.9            | 3/15/2004   | 487  | 1,130 | 0.00619 | <0.001  | <0.001           | <0.001           | 130     |                               |
| IWW | 40.12                | 98.22          | 37.93          | 113.81           | 5/27/2004   | 40.8 | 474   | <0.001  | <0.001  | <0.001           | <0.001           | 100     |                               |
| IWW | 41.93                | 98.2           | 57.4           | 172.19           | 9/8/2004    | 78   | 583   | <0.001  | <0.001  | <0.001           | <0.001           | 89.6    |                               |
| IWW | 39.71                | 98.2           | 59.66          | 178.98           | 11/23/2004  | 88.3 | XXX   | <0.001  | <0.001  | <0.001           | <0.001           | 82.5    |                               |
| IWW | 39.01                | 98.2           | XXX            | 250              | 3/29/2005   | 419  | 1,010 | <0.001  | <0.001  | <0.001           | <0.001           | 81      |                               |
| IWW | 39.39                | 50             | XXX            | 21               | 6/28/2005   | 85.3 | 510   | <0.001  | <0.001  | <0.001           | <0.001           | 73.5    |                               |
| IWW | 39.6                 | 98.2           | 59.8           | 185              | 12/6/2005   | 49   | 498   | <0.001  | <0.001  | <0.001           | <0.001           | 64.2    |                               |
| IWW | 39.83                | 98.2           | 59.5           | 180              | 2/28/2006   | 41.9 | 532   | <0.001  | <0.001  | <0.001           | <0.001           | 60.3    |                               |
| IWW | 40.2                 | 98.2           | 59.2           | 180              | 6/5/2006    | 44.5 | 494   | <0.001  | <0.001  | <0.001           | <0.001           | 61.1    |                               |
| IWW | 39.76                | 98.2           | 59.6           | 180              | 9/12/2006   | 38.8 | 528   | <0.001  | <0.001  | <0.001           | <0.001           | 80.7    |                               |
| IWW | 39.61                | 98.2           | 59.8           | 180              | 11/14/2006  | 43.7 | 434   | <0.001  | <0.001  | <0.001           | <0.001           | 78.1    | Clear No odor pH<br>increased |
| IWW | 40.13                | 97.9           | 58.9           | 180              | 3/14/2007   | 35.2 | 538   | <0.001  | <0.001  | <0.001           | <0.001           | 66.7    | Clear                         |
| IWW | 40.5                 | 97.9           | 58.5           | 180              | 6/11/2007   | 40.1 | 490   | <0.001  | <0.001  | <0.011           | <0.001           | 74.7    | Clear                         |
| IWW | 40.49                | 97.9           | 58.6           | 180              | 9/18/2007   | 48   | 606   | 0.006   | <0.001  | <0.001           | <0.003           | 91.9    | Clear No odor                 |
| IWW | 40.58                | 97.9           | 58.5           | 200              | 12/5/2007   | 44   | 505   | <0.001  | <0.001  | <0.001           | <0.003           | 87.5    | Clear No odor                 |
| IWW | 40.93                | 97.9           | 58.1           | 200              | 3/4/2008    | 40   | 526   | <0.001  | <0.001  | <0.001           | <0.003           | 90.1    | Clear No odor                 |
| IWW | 41.16                | 97.9           | 57.9           | 200              | 5/29/2008   | 44   | 556   | <0.001  | <0.001  | <0.001           | <0.003           | 82.6    | Clear No odor                 |
| IWW | 41.38                | 97.9           | 57.7           | 200              | 9/5/2008    | 44   | 534   | <0.001  | <0.001  | <0.001           | <0.003           | 85      | Clear No odor                 |
| IWW | 41.61                | 97.9           | 57.4           | 200              | 12/16/2008  | 48   | 574   | <0.001  | <0.001  | <0.001           | <0.003           | 74      | Clear No odor                 |
| IWW | 41.76                | 97.9           | 57.3           | 200              | 3/16/2009   | 40   | 480   | <0.001  | <0.001  | <0.001           | <0.003           | 82.8    | Clear No odor                 |
| IWW | 41.96                | 97.9           | 57.1           | 200              | 6/9/2009    | 40   | 505   | <0.001  | <0.001  | <0.001           | <0.003           | 73.2    | Clear No odor                 |
| IWW | 42.06                | 97.9           | 57             | 200              | 9/15/2009   | 88   | 554   | <0.001  | <0.001  | <0.001           | <0.003           | 75.8    | Clear No odor                 |
| IWW | 42.21                | 97.9           | 56.8           | 200              | 11/20/2009  | 44   | 447   | <0.001  | <0.001  | <0.001           | <0.003           | 68.5    | Clear No odor                 |
| IWW | 42.36                | 97.9           | 56.7           | 200              | 3/18/2010   | 108  | 577   | <0.001  | <0.001  | <0.001           | <0.003           | 95.1    | Clear No odor                 |
| IWW | 42.49                | 97.9           | 56.5           | 200              | 6/7/2010    | 48   | 510   | <0.001  | <0.001  | <0.001           | <0.003           | 93.1    | Clear No odor                 |
| IWW | 41.39                | 97.9           | 57.6           | 200              | 9/8/2010    | 40   | 499   | <0.001  | <0.001  | <0.001           | <0.003           | 73.3    | Clear No odor                 |
| IWW | 41.52                | 97.9           | 57.5           | 200              | 12/8/2010   | 68   | 481   | <0.001  | <0.001  | <0.001           | <0.003           | 81.9    | Clear No odor                 |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| IWW | 42.15                | 97.9           | 56.9           | 200              | 3/16/2011   | 68  | 534 | <0.001  | <0.001  | <0.001           | <0.003           | 74.2    | Clear No odor |
| IWW | 42.63                | 97.9           | 56.4           | 200              | 6/23/2011   | 84  | 512 | <0.001  | <0.001  | <0.001           | <0.003           | 73.3    | Clear No odor |
| IWW | 42.88                | 97.9           | 56.1           | 200              | 9/22/2011   | 84  | 493 | <0.001  | <0.001  | <0.001           | <0.003           | 81.8    | Clear No odor |
| IWW | 42.98                | 97.9           | 56             | 200              | 12/12/2011  | 92  | 521 | <0.001  | <0.001  | <0.001           | <0.003           | 84.5    | Clear No odor |
| IWW | 43.18                | 97.9           | 55.8           | 200              | 3/21/2012   | 88  | 567 | <0.001  | <0.001  | <0.001           | <0.003           | 84.5    | Clear No odor |
| IWW | 43.46                | 97.9           | 55.5           | 200              | 6/15/2012   | 92  | 493 | <0.001  | <0.001  | <0.001           | <0.003           | 77      | Clear No odor |
| IWW | 43.57                | 97.9           | 55.4           | 200              | 9/12/2012   | 72  | 573 | <0.001  | <0.001  | <0.001           | <0.003           | 97.4    | Clear No odor |
| IWW | 43.69                | 97.9           | 55.3           | 200              | 12/13/2012  | 124 | 627 | <0.001  | <0.001  | <0.001           | <0.003           | 78      | Clear No odor |
| IWW | 43.8                 | 97.9           | 55.2           | 200              | 3/5/2013    | 136 | 607 | <0.001  | <0.001  | <0.001           | <0.003           | 78      | Clear No odor |
| IWW | 44.1                 | 97.9           | 54.9           | 200              | 6/21/2013   | 128 | 618 | <0.001  | <0.001  | <0.001           | <0.003           | 74      | Clear No odor |
| IWW | 44.19                | 97.9           | 54.8           | 200              | 9/18/2013   | 168 | 641 | <0.001  | <0.001  | <0.001           | <0.003           | 79.9    | Clear No odor |
| IWW | 44.49                | 97.9           | 54.5           | 200              | 12/17/2013  | 132 | 620 | <0.001  | <0.001  | <0.001           | <0.003           | 72.6    | Clear No odor |
| IWW | 44.6                 | 97.9           | 54.4           | 200              | 3/25/2014   | 140 | 610 | <0.001  | <0.001  | <0.001           | <0.003           | 123     | Clear No odor |
| IWW | 44.81                | 97.9           | 54.2           | 200              | 6/18/2014   | 160 | 680 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| IWW | 45.07                | 97.9           | 53.9           | 175              | 9/12/2014   | 124 | 630 | <0.001  | <0.001  | <0.001           | <0.003           | 111     | Clear No odor |
| IWW | 45.18                | 97.9           | 53.8           | 175              | 12/23/2014  | 84  | 582 | <0.001  | <0.001  | <0.001           | <0.003           | 173     | Clear No odor |
| IWW | 44.8                 | 97.9           | 54.2           | 175              | 3/20/2015   | 68  | 586 | <0.001  | <0.001  | <0.001           | <0.003           | 180     | Clear No odor |
| IWW | 44.82                | 97.9           | 54.1           | 200              | 6/17/2015   | 136 | 690 | <0.001  | <0.001  | <0.001           | <0.003           | 95      | Clear No odor |
| IWW | 44.87                | 97.9           | 54.1           | 175              | 9/22/2015   | 88  | 586 | <0.001  | <0.001  | <0.001           | <0.003           | 94      | Clear No odor |
| IWW | 44.69                | 97.9           | 54.3           | 175              | 12/2/2015   | 76  | 564 | <0.001  | <0.001  | <0.001           | <0.003           | 100     | Clear No odor |
| IWW | 44.46                | 97.9           | 54.5           | 175              | 3/29/2016   | 128 | 622 | <0.001  | <0.001  | <0.001           | <0.003           | 81      | Clear No odor |
| IWW | 45.11                | 97.9           | 53.8           | 200              | 6/27/2016   | 152 | 592 | <0.001  | <0.001  | <0.001           | <0.003           | 78.4    | Clear No odor |
| IWW | 44.6                 | 97.9           | 54             | 175              | 9/27/2016   | 184 | 698 | <0.001  | <0.001  | <0.001           | <0.003           | 87      | Clear No odor |
| IWW | 43.98                | 97.9           | 55             | 175              | 12/6/2016   | 68  | 514 | <0.001  | <0.001  | <0.001           | <0.003           | 23      | Clear No odor |
| IWW | 44.05                | 97.9           | 55             | 175              | 3/21/2017   | 128 | 680 | <0.001  | <0.001  | <0.001           | <0.003           | 93      | Clear No odor |
| IWW | 44.45                | 97.9           | 55             | 175              | 6/28/2017   | 184 | 814 | <0.001  | <0.001  | <0.001           | <0.003           | 129     | Clear No odor |
| IWW | 44.36                | 97.9           | 54             | 90               | 9/26/2017   | 76  | 588 | <0.001  | <0.001  | <0.001           | <0.003           | 96      | Clear No odor |
| IWW | 44.45                | 97.9           | 54             | 90               | 12/22/2017  | 120 | 652 | <0.001  | <0.001  | <0.001           | <0.003           | 103     | Clear No odor |

| MW  | Depth<br>to<br>Water | Total<br>Depth | Well<br>Volume | Volume<br>Purged | Sample Date | Cl  | TDS | Benzene | Toluene | Ethyl<br>Benzene | Total<br>Xylenes | Sulfate | Comments      |
|-----|----------------------|----------------|----------------|------------------|-------------|-----|-----|---------|---------|------------------|------------------|---------|---------------|
| IWW | 44.95                | 97.9           | 54             | 175              | 3/21/2018   | 88  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 74.1    | Clear No odor |
| IWW | 45.22                | 97.9           | 53.7           | 200              | 6/28/2018   | 72  | 546 | <0.001  | <0.001  | <0.001           | <0.003           | 76      | Clear No odor |
| IWW | 45.21                | 97.9           | 53.7           | 175              | 9/19/2018   | 92  | 594 | <0.001  | <0.001  | <0.001           | <0.003           | 13.4    | Clear No odor |
| IWW | 45.14                | 97.9           | 52.76          | 200              | 12/22/2018  | 140 | 618 | <0.001  | <0.001  | <0.001           | <0.003           | 108     | Clear No odor |
| IWW | 45.21                | 97.9           | 54             | 150              | 3/27/2019   | 72  | 490 | <0.001  | <0.001  | <0.001           | <0.003           | 93      | Clear No odor |
| IWW | 45.02                | 97.9           | 54             | 175              | 6/26/2019   | 68  | 538 | <0.001  | <0.001  | <0.001           | <0.003           | 89      | Clear No odor |
| IWW | 44.17                | 97.9           | 55             | 125              | 9/26/2019   | 132 | 609 | <0.001  | <0.001  | <0.001           | <0.003           | 77      | Clear No odor |
| IWW | 44.98                | 97.9           | 54             | 150              | 12/12/2019  | 76  | 511 | <0.001  | <0.001  | <0.001           | <0.003           | 80      | Clear No odor |
| IWW | 45.63                | 97.9           | 53.3           | 150              | 3/26/2020   | 76  | 584 | <0.001  | <0.001  | <0.001           | <0.003           | 78.3    | Clear No odor |
| IWW | 45.98                | 97.9           | 53             | 150              | 9/30/2020   | 68  | 522 | <0.001  | <0.001  | <0.001           | <0.003           | 69.4    | Clear No odor |
| IWW | 45.5                 | 97.9           | 53             | 150              | 3/30/2021   | 124 | 620 | <0.001  | <0.001  | <0.001           | <0.003           | 83      | Clear No odor |
| IWW | 45.69                | 97.9           | 53             | 150              | 6/30/2021   | 156 | 646 | <0.001  | <0.001  | <0.001           | <0.003           | 79.3    | Clear No odor |
| IWW | 46.11                | 97.9           | 53             | 150              | 9/29/2021   | 144 | 642 | <0.001  | <0.001  | <0.001           | <0.003           | 80.8    | Clear No odor |
| IWW | 46.19                | 97.9           | 53             | 150              | 12/3/2021   | 132 | 591 | <0.001  | <0.001  | <0.001           | <0.003           | 43.9    | Clear No odor |





April 12, 2021

KATIE JONES Rice Operating Company 112 W. Taylor Hobbs, NM 88240

RE: HOBBS N-6

Enclosed are the results of analyses for samples received by the laboratory on 03/31/21 16:41.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/30/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

## Sample ID: MONITOR WELL # 2 (H210808-01)

| BTEX 8021B                           | mg/L    |                 | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001  | 0.001           | 04/06/2021 | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021 | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %   | 58.2-13         | 3          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 72.0    | 4.00            | 04/01/2021 | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 78.4    | 25.0            | 04/06/2021 | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 405     | 5.00            | 04/06/2021 | ND           | 543   | 109        | 500           | 1.52  |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 4 (H210808-02)

| ВТЕХ 8021В                           | `mg/    | Ĺ               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value OC | RPD   | Qualifier |
| ,                                    |         |                 |            |              |       | ,          |               |       | Quanner   |
| Benzene*                             | <0.001  | 0.001           | 04/06/2021 | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021 | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103 9   | 58.2-13         | 3          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 148     | 4.00            | 04/01/2021 | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 79.4    | 10.0            | 04/06/2021 | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 625     | 5.00            | 04/05/2021 | ND           | 543   | 109        | 500           | 1.52  |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/30/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 5 (H210808-03)

| •                                    | •       | ,               |            |              |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| BTEX 8021B                           | mg/     | L               | Analyze    | d By: MS     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021 | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %   | 58.2-13         | 3          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 60.0    | 4.00            | 04/01/2021 | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 102     | 25.0            | 04/06/2021 | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 404     | 5.00            | 04/05/2021 | ND           | 543   | 109        | 500           | 1.52  |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 6 (H210808-04)

| •                                    | •       |                 |                       |              |       |            |               |       |           |
|--------------------------------------|---------|-----------------|-----------------------|--------------|-------|------------|---------------|-------|-----------|
| BTEX 8021B                           | mg/     | L               | Analyze               | d By: MS     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021            | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021            | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %   | 58.2-13         | 3                     |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze               | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 224     | 4.00            | 04/01/2021            | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze               | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 100     | 25.0            | 04/06/2021            | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze               | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed Method Blank |              | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 754     | 5.00            | 04/05/2021 ND         |              |       | 109        | 500           | 1.52  |           |
|                                      |         |                 |                       |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 7 (H210808-05)

| ВТЕХ 8021В                           |         | , ,             | • •                   |              |       |            |               |       |           |
|--------------------------------------|---------|-----------------|-----------------------|--------------|-------|------------|---------------|-------|-----------|
| BIEX 8021B                           | mg/     | L               | Analyze               | d By: MS     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021            | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021            | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021            | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 9   | 58.2-13         | 3                     |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze               | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 240     | 4.00            | 04/01/2021            | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze               | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed              | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 159     | 25.0            | 04/06/2021            | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze               | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed Method Blank |              | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 632     | 5.00            | 04/06/2021 ND         |              |       | 109        | 500           | 1.52  |           |
|                                      |         |                 |                       |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/30/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: IWW (H210808-06)

| BTEX 8021B                           | mg/     | 'L              | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/06/2021 | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/06/2021 | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/06/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 9   | 58.2-13         | 3          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | Έ               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 124     | 4.00            | 04/01/2021 | /2021 ND     |       | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | Έ               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 83.0    | 25.0            | 04/06/2021 | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | 'L              | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 620     | 5.00            | 04/08/2021 | ND           | 544   | 109        | 500           | 0.323 |           |

Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 03/31/2021                        | Sampling Date:      | 03/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 04/12/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: BIO SPARGE #2 (H210808-07)

| BTEX 8021B                           | mg/     | L               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 04/07/2021 | ND           | 0.021 | 106        | 0.0200        | 1.34  |           |
| Toluene*                             | < 0.001 | 0.001           | 04/07/2021 | ND           | 0.020 | 99.5       | 0.0200        | 0.975 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 04/07/2021 | ND           | 0.020 | 101        | 0.0200        | 1.32  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 04/07/2021 | ND           | 0.062 | 104        | 0.0600        | 1.22  |           |
| Total BTEX                           | <0.006  | 0.006           | 04/07/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 9   | 58.2-13         | 3          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 76.0    | 4.00            | 04/01/2021 | ND           | 104   | 104        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 84.7    | 25.0            | 04/06/2021 | ND           | 21.9  | 110        | 20.0          | 7.53  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
|                                      |         |                 |            |              |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

|      | Page |     | of   | 1 | _ |
|------|------|-----|------|---|---|
| <br> | VOID | DEO | IECT |   | Т |

| 01 82                                                      |                               |        |                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      | Pa           | ge_              | _1                      |                  | of                                 | 1         | _             |                             |
|------------------------------------------------------------|-------------------------------|--------|--------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-----------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------------------------------|-----------|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------------|----------------------------|----------------|----------------------|--------------|------------------|-------------------------|------------------|------------------------------------|-----------|---------------|-----------------------------|
|                                                            |                               |        |                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | _                     | -                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | CH                                       | AIN       | 1-0                                             | F-C                                                 | CUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | то              | DY        | A                    | ND                         | AN             | AL                   | YSI          | IS F             | REC                     | JUE              | EST                                |           |               | ]                           |
| 101 East Marland - Hob<br>Tel (575) 393-<br>Fax (575) 393- |                               | al     | L                                                      | al                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ra                  | ate    | or                    | ie               | es,                 | Contra and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of Concession, Name | C    | •                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           | LAE                                             | -                                                   | der I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -               | -         |                      |                            |                |                      |              |                  |                         | -                |                                    | _         | Page 10 of 10 | 5                           |
| Company Name:                                              |                               |        | BILL TO                                                |                         | compan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |        |                       |                  |                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0#                      |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 | Α                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LYS             | SIS       | RE                   | QU                         | JES            |                      |              |                  |                         |                  |                                    |           | ļ             | <u>ک</u>                    |
| RICE Operati                                               | ing Company                   | I      | RICE Operating Company<br>Address: (Street, City, Zip) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -    | (Circle or Specify Method No.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      | 1                          |                | ซ้                   |              |                  |                         |                  |                                    |           |               |                             |
| Project Manager:                                           |                               |        |                                                        | -                       | ddress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c),p)                   | /    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               | 1                           |
| Katie Jones                                                |                               | 1      | 122 W T                                                | and the owner where the | and the second se | ALC: NOT THE OWNER. | bbs,   | New                   | Mexic            | 0 882               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ax#:                    | -    |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |                                          | -         |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               | ٦                           |
| 10001000                                                   | treet, City, Zip)             |        | (575)                                                  |                         | Phone#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 39   | 7-14                           | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                |                                          | 2         | S.                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| 122 W Taylor Stree                                         | et ~ Hobbs, New Mexico 88240  | -ax #: | (575)                                                  | 39.                     | 5-917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                   | ~      |                       |                  |                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 010)                    |      |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | 2                                        | , ad      |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| Phone #:                                                   |                               | (575)  | 397-1                                                  | 147                     | 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | ( <u>C</u>                               | 100       |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| (575) 393-91                                               | 74<br>Project Name:           | (373)  | 001                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 1      | Inconstitut           | /                | 7                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | ded                                      | 1         | Se Hg                                           | 2                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| Project #:                                                 | Hobbs N-6                     |        |                                                        | /                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                   |        | /                     |                  | /                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | den                                      | 0         | Se                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  | 1                       | 3                |                                    |           |               | s                           |
| Project Location:                                          |                               |        |                                                        | 1                       | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er Sig              | Instur | e:                    | Roza             | nne J               | ohn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nson (S                 | 575) | 631-93                         | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                | TPH 418.1/TX1005 / TX1005 Extended (C35) | đ         | Total Metals Ag As Ba Cd Cr Pb Se Hg 00100/2000 | I CLP Metals Ag As ba cu ci i s<br>TCI D Violatiles |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      | 325                        |                |                      |              |                  | 3                       | CO3, HCO3)       |                                    |           |               | Turn Around Time ~ 24 Hours |
| T19S-R38E-                                                 | Sec5&6 E/H ~ Lea County - Nev | w Me>  | xico                                                   |                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                   | //     | N                     | /                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/15                   | -    |                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | 100                                      |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      | 0C/6                       |                |                      |              |                  | 2                       | E                | s                                  |           | 1             | 24 1                        |
| TISOTICOL                                                  |                               |        | -1                                                     |                         | MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RIX                 | 7.     | P                     |                  | ETH                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | s    | AMPI                           | LING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                | F                                        |           | 3a C                                            | Da                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |           | 1624                 | 827                        |                | 308                  |              |                  | Na,                     | Ś                | olid                               |           |               | 2                           |
| 110,000                                                    |                               |        | 0                                                      | +                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                   | 1      | $\vdash$              | IVI              |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | +    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N         | N              | 005                                      |           | Ase                                             | 2                                                   | atiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0               |           | 60B                  | 0.                         |                | 1A6                  |              | ent              | Vg,                     | 4                | S P                                |           |               | Ime                         |
| H210808                                                    |                               | (C)omp | # CONTAINERS                                           | r                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | ľ      | (VO)                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICE (1-1Liter HDPE)     |      | ~                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8021B/602 | BTEX 8021B/602 | XI                                       |           | P                                               | PAS A                                               | Semi Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TCLP Pesticides |           | GC/MS Vol. 8260B/624 | GC/MS Semi. Vol. 8270C/625 | PCB's 8082/608 | Pesticides 8081A/608 | BOD, TSS, pH | Moisture Content | Cations (Ca, Mg, Na, K) | Anions (Cl, SO4, | Sulfates<br>Total Dissolved Solids |           | 1:            | pq                          |
| LAB #                                                      | FIELD CODE                    | (C)    | N N                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       |                  | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iter                    |      | 021                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 021       | 0211           | 3.17                                     | 2         | tals                                            | etali                                               | emi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | estic           |           | Nol                  | Ser                        | 808            | es                   | SS,          | e                | S (0                    | 9                | SS                                 | Sal       | 22            | rou                         |
|                                                            |                               | 5      | Ę                                                      | R                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                   | Ž      | (4 40                 |                  | 00                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 르브                      |      | 1 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ю<br>8    | 8(             | 41                                       | 82        | N N                                             |                                                     | P S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P P             |           | MS                   | MS                         | 3's            | ticio                | L,           | istu             | tion                    | ions             | Sulfates<br>Total Dis              | Chlorides |               | LU A                        |
| ( LAB USE<br>ONLY )                                        |                               | (G)rab | 0                                                      | WATER                   | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIK                 | 51     | HCL (4 40ml VOA)      | HNO <sub>3</sub> | NaHSO4              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NONF (1-1               | 5    | DATE (2021)                    | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MTBE      | E              | Hd                                       | PAH 8270C | Tota                                            | 32                                                  | TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12              | RCI       | GC                   | GC                         | PC             | Pes                  | BO           | Ň                | Ca                      | An               | Su                                 | 2 8       | 5             | 7                           |
| ( one /                                                    |                               | Ð      | #                                                      | 3                       | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AIA                 | ñ      | Ĩ                     | I                | ZJ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -    |                                | Contraction of the local distance of the loc | -         | X              | F                                        | -         | -                                               | ť                                                   | ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | †               | 1         |                      |                            |                |                      |              |                  |                         |                  | XX                                 |           | X             |                             |
| 1                                                          | Monitor Well #2               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\perp$             |        | 4                     |                  |                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | -    |                                | 14:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -         | -              | $\square$                                | -         | +                                               | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | $\vdash$  | $\vdash$             | $\square$                  | $\square$      |                      |              | Π                | Π                       |                  | x )                                |           | x             |                             |
| 2                                                          | Monitor Well #4               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | 4                     |                  | _                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | -    |                                | 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -         | X              | $\square$                                |           | +                                               | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | $\vdash$                   | $\top$         |                      | $\square$    | Π                | $\square$               | T                | x )                                | K         | X             |                             |
| 3                                                          |                               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | 4                     |                  |                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | +    | -                              | 9:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -         | X              |                                          | -         | +                                               | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | $\vdash$             | $\top$       | Π                |                         | T                | x )                                | x         | x             |                             |
|                                                            | Monitor Well #6               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | 4                     |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       | -    |                                | 13:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -         | X              |                                          | $\vdash$  | +                                               | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | +                    | $\top$       | $\vdash$         | $\square$               | $\top$           | X)                                 | x         | x             |                             |
| 4                                                          | Monitor Well #7               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | 4                     |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |      | 3/29                           | 9:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | X              | -                                        |           | $\vdash$                                        | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | +                    | +            | $\vdash$         | $\square$               | $\neg$           |                                    | -         | x             |                             |
| 5                                                          |                               | G      | 5                                                      | X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        | 4                     |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |      | 3/30                           | 12:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | X              | -                                        |           | $\vdash$                                        | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | +                    | +            | +                | Η                       | $\vdash$         | X                                  |           | X             | -                           |
| 4                                                          | , IWW                         | G      | 5                                                      | x                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Τ      | 4                     |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |      | 3/29                           | 16:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0         | X              |                                          |           |                                                 | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | +                    | +            | +                | $\vdash$                | $\vdash$         | Ĥ                                  | +         | -             |                             |
| 7                                                          | Bio Sparge #2                 | Ť      | +                                                      | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 1      | T                     |                  | Π                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 | $\rightarrow$                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               | +         | +                    | +                          | +              | +                    | +            | +                | $\vdash$                | H                | +                                  | +         | +             |                             |
|                                                            |                               |        | +                                                      | +                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                   | +      | T                     | 1                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Т    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | +         | +                    | +                          | +              | +                    | +            | +                | +                       | $\vdash$         | +                                  | +         | +             |                             |
|                                                            | 1                             |        | -                                                      | +                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                   | +      | +                     | $\top$           | $\square$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | T    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | -         |                      |                            |                |                      |              |                  |                         |                  | _                                  | _         |               |                             |
|                                                            |                               | Peace  | ived by                                                | <i>r</i>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       | D                | ate:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tim                     | ne:  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ph        | none           | Res                                      | ults      |                                                 |                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               | N         | 0                    |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| Relinquished by                                            |                               | Rece   | aved by                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fa        | ax R           | esult                                    | s         |                                                 |                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | N         | 0                    | A                          | dditi          | onal                 | Fax          | (Nu              | mbe                     | ar:              |                                    |           |               |                             |
| Rozanne Johnso                                             | mh 3/31/2021 16:40            |        |                                                        | . /                     | Labora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ton                 | Staf   | Ð                     | Γ                | )ate:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tim                     | ne:  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R         | EMA            | RKS                                      | 3:        |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | and price |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| Relinquished by                                            |                               | Rece   | ived B                                                 | y: (I                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . /                 | Λ.     | 0.0                   | 2                |                     | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      | 10'                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                |                                          |           |                                                 | kic                                                 | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0               | rice      | SW                   | d.co                       | om             |                      |              |                  |                         |                  |                                    |           |               |                             |
| 120                                                        |                               | 4      | 001                                                    | 10                      | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                   | SI     | Statistics in a local | -                | Statement Statement | State of the local division in which the local division in the loc | 1/2                     |      | 16:0                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -E        | man            | Res                                      | unts      |                                                 | -                                                   | Contraction of the local division of the loc |                 |           |                      |                            |                | com                  | n            |                  |                         |                  |                                    |           |               |                             |
| Relinquished by<br>Delivered By:                           | (Circle One)                  | Samp   | le Cond                                                | lition                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | T      | C                     | HECK             | KED B               | BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                       |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ant             | 1010      | 200                  |                            |                |                      | -            |                  |                         |                  |                                    |           |               |                             |
| Delivered By:                                              |                               |        |                                                        | Co                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intact              |        |                       | - 141 - 1 -      | 1                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                       | /    | -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
|                                                            |                               | 1      | Yes                                                    |                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                   |        | (Ir                   | nitials          | 14                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                       |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
|                                                            | UPS - Bus - Other:            |        | No                                                     |                         | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |                       | (                | 41                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 | -                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |
| a sampler -                                                |                               |        |                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |                       | 1                | U                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                          |           |                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |                      |                            |                |                      |              |                  |                         |                  |                                    |           |               |                             |

Released to Imaging: 10/6/2022 8:30:46 AM

•



July 08, 2021

KATIE JONES Rice Operating Company 112 W. Taylor Hobbs, NM 88240

RE: HOBBS N-6

Enclosed are the results of analyses for samples received by the laboratory on 07/01/21 14:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/30/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

## Sample ID: MONITOR WELL # 2 (H211709-01)

| BTEX 8021B                           | mg/    | L               | Analyze    | d By: MS     |       |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 101        | 0.0200        | 1.22 |           |
| Toluene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.021 | 103        | 0.0200        | 1.52 |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 100        | 0.0200        | 3.41 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 07/02/2021 | ND           | 0.060 | 101        | 0.0600        | 2.92 |           |
| Total BTEX                           | <0.006 | 0.006           | 07/02/2021 | ND           |       |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 92.9 9 | % 77.1-12       | 4          |              |       |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride*                            | 72.0   | 4.00            | 07/02/2021 | ND           | 104   | 104        | 100           | 3.92 |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Sulfate*                             | 83.4   | 25.0            | 07/02/2021 | ND           | 17.4  | 87.2       | 20.0          | 8.25 |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| TDS*                                 | 525    | 5.00            | 07/06/2021 | ND           | 520   | 104        | 500           | 1.65 |           |

Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/29/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 4 (H211709-02)

| BTEX 8021B                           | mg/L   |                 | Analyze    | Analyzed By: MS |       |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|-----------------|-------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 101        | 0.0200        | 1.22 |           |
| Toluene*                             | <0.001 | 0.001           | 07/02/2021 | ND              | 0.021 | 103        | 0.0200        | 1.52 |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 100        | 0.0200        | 3.41 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 07/02/2021 | ND              | 0.060 | 101        | 0.0600        | 2.92 |           |
| Total BTEX                           | <0.006 | 0.006           | 07/02/2021 | ND              |       |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.7 % | % 77.1-12       | 4          |                 |       |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride*                            | 196    | 4.00            | 07/02/2021 | ND              | 104   | 104        | 100           | 3.92 |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Sulfate*                             | 97.3   | 25.0            | 07/02/2021 | ND              | 17.4  | 87.2       | 20.0          | 8.25 |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| TDS*                                 | 756    | 5.00            | 07/06/2021 | ND              | 520   | 104        | 500           | 1.65 |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/30/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 5 (H211709-03)

| BTEX 8021B                           | mg/L    |                 | Analyze    | Analyzed By: MS |       |            |               |      |           |
|--------------------------------------|---------|-----------------|------------|-----------------|-------|------------|---------------|------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.001  | 0.001           | 07/02/2021 | ND              | 0.020 | 101        | 0.0200        | 1.22 |           |
| Toluene*                             | <0.001  | 0.001           | 07/02/2021 | ND              | 0.021 | 103        | 0.0200        | 1.52 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 100        | 0.0200        | 3.41 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 07/02/2021 | ND              | 0.060 | 101        | 0.0600        | 2.92 |           |
| Total BTEX                           | <0.006  | 0.006           | 07/02/2021 | ND              |       |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 94.6 \$ | % 77.1-12       | 4          |                 |       |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride*                            | 48.0    | 4.00            | 07/02/2021 | ND              | 104   | 104        | 100           | 3.92 |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Sulfate*                             | 83.6    | 25.0            | 07/02/2021 | ND              | 17.4  | 87.2       | 20.0          | 8.25 |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC        |       |            |               |      |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| TDS*                                 | 368     | 5.00            | 07/06/2021 | ND              | 520   | 104        | 500           | 1.65 |           |
|                                      |         |                 |            |                 |       |            |               |      |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/29/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 6 (H211709-04)

| BTEX 8021B                           | mg/L    |                 | Analyze    | Analyzed By: MS |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|-----------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001  | 0.001           | 07/02/2021 | ND              | 0.020 | 101        | 0.0200        | 1.22  |           |
| Toluene*                             | < 0.001 | 0.001           | 07/02/2021 | ND              | 0.021 | 103        | 0.0200        | 1.52  |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 100        | 0.0200        | 3.41  |           |
| Total Xylenes*                       | <0.003  | 0.003           | 07/02/2021 | ND              | 0.060 | 101        | 0.0600        | 2.92  |           |
| Total BTEX                           | <0.006  | 0.006           | 07/02/2021 | ND              |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.69   | % 77.1-12       | 4          |                 |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 76.0    | 4.00            | 07/02/2021 | ND              | 104   | 104        | 100           | 3.92  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 92.8    | 25.0            | 07/02/2021 | ND              | 17.4  | 87.2       | 20.0          | 8.25  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 545     | 5.00            | 07/07/2021 | ND              | 535   | 107        | 500           | 0.913 |           |

Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/29/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 7 (H211709-05)

| BTEX 8021B                           | mg/L   |                 | Analyze    | Analyzed By: MS |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|-----------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 101        | 0.0200        | 1.22  |           |
| Toluene*                             | <0.001 | 0.001           | 07/02/2021 | ND              | 0.021 | 103        | 0.0200        | 1.52  |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 07/02/2021 | ND              | 0.020 | 100        | 0.0200        | 3.41  |           |
| Total Xylenes*                       | <0.003 | 0.003           | 07/02/2021 | ND              | 0.060 | 101        | 0.0600        | 2.92  |           |
| Total BTEX                           | <0.006 | 0.006           | 07/02/2021 | ND              |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.2 % | % 77.1-12       | 4          |                 |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 248    | 4.00            | 07/02/2021 | ND              | 104   | 104        | 100           | 3.92  |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 87.2   | 25.0            | 07/02/2021 | ND              | 17.4  | 87.2       | 20.0          | 8.25  |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC        |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank    | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 834    | 5.00            | 07/07/2021 | ND              | 535   | 107        | 500           | 0.913 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/30/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

### Sample ID: IWW (H211709-06)

| BTEX 8021B                           | mg/    | ′L              | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 101        | 0.0200        | 1.22  |           |
| Toluene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.021 | 103        | 0.0200        | 1.52  |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 100        | 0.0200        | 3.41  |           |
| Total Xylenes*                       | <0.003 | 0.003           | 07/02/2021 | ND           | 0.060 | 101        | 0.0600        | 2.92  |           |
| Total BTEX                           | <0.006 | 0.006           | 07/02/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 91.5   | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′L              | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 156    | 4.00            | 07/02/2021 | ND           | 104   | 104        | 100           | 3.92  |           |
| Sulfate 375.4                        | mg/    | ′L              | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 79.3   | 25.0            | 07/02/2021 | ND           | 17.4  | 87.2       | 20.0          | 8.25  |           |
| TDS 160.1                            | mg/    | ′L              | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 646    | 5.00            | 07/07/2021 | ND           | 535   | 107        | 500           | 0.913 |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 07/01/2021                        | Sampling Date:      | 06/29/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 07/08/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: BIO SPARGE #2 (H211709-07)

| BTEX 8021B                           | mg/    | L               | Analyze    | d By: MS     |       |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 101        | 0.0200        | 1.22 |           |
| Toluene*                             | <0.001 | 0.001           | 07/02/2021 | ND           | 0.021 | 103        | 0.0200        | 1.52 |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 07/02/2021 | ND           | 0.020 | 100        | 0.0200        | 3.41 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 07/02/2021 | ND           | 0.060 | 101        | 0.0600        | 2.92 |           |
| Total BTEX                           | <0.006 | 0.006           | 07/02/2021 | ND           |       |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 93.7 % | 77.1-12         | 4          |              |       |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride*                            | 104    | 4.00            | 07/02/2021 | ND           | 104   | 104        | 100           | 3.92 |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
| Sulfate*                             | 78.0   | 25.0            | 07/02/2021 | ND           | 17.4  | 87.2       | 20.0          | 8.25 |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC     |       |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD  | Qualifier |
|                                      |        |                 |            |              |       |            |               |      |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| BS-3 | Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected. |
|------|-------------------------------------------------------------------------------------------------------------------------------------|
| ND   | Analyte NOT DETECTED at or above the reporting limit                                                                                |
| RPD  | Relative Percent Difference                                                                                                         |
| **   | Samples not received at proper temperature of 6°C or below.                                                                         |
| ***  | Insufficient time to reach temperature.                                                                                             |
| -    | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                         |
|      | Samples reported on an as received basis (wet) unless otherwise noted on report                                                     |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

| 101 East Marland - 1<br>Tel (575) 3<br>Eax (575) 3 | 193-2326 <b>ara</b>                                    | ina              | 11         | a      | b                                                                                                               | 01                    | •8     | t      | or               | ie                      | es.    |                     | In           | c.          |       | F         |           | С                                        | HA           | -                                                | -      | -                   | -               |     | -                    |                  | -              | -                    | -            | SIS              | REC                                                    | QUE      | ST                     |           |                  |
|----------------------------------------------------|--------------------------------------------------------|------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------|--------|------------------|-------------------------|--------|---------------------|--------------|-------------|-------|-----------|-----------|------------------------------------------|--------------|--------------------------------------------------|--------|---------------------|-----------------|-----|----------------------|------------------|----------------|----------------------|--------------|------------------|--------------------------------------------------------|----------|------------------------|-----------|------------------|
| Fax (575) 3<br>Company Name:                       | 393-2476                                               |                  | BILL       |        |                                                                                                                 | npany                 |        |        |                  | _                       |        |                     | 0#           |             |       | ┡         |           |                                          |              | LA                                               | ABC    | orde                | r ID            | #   |                      |                  |                | _                    |              |                  |                                                        | -        |                        |           |                  |
|                                                    | ating Company                                          |                  | RIC        |        |                                                                                                                 |                       |        | om     | pan              | v                       |        | F                   | 0#           |             |       |           |           |                                          |              |                                                  |        |                     |                 |     |                      | REQ              |                |                      |              |                  |                                                        |          |                        |           |                  |
| Project Manager:                                   |                                                        |                  | -          |        | The second se | ress:                 |        |        |                  | No. of Concession, Name | Street | t, Ci               | ty, Zip      | )           |       | 1         |           |                                          |              |                                                  | (0     | Circle              | e or            | Spe | cify                 | Met              | hod            | No.)                 |              |                  |                                                        |          |                        |           | Ļ                |
| Katie Jones                                        |                                                        |                  | 122 V      | / Tayl | -                                                                                                               | and the second second | Hot    | obs,   | New M            | Aexic                   | 0 882  | Concession of       |              |             |       |           |           |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
|                                                    | (Street, City, Zip)<br>treet ~ Hobbs, New Mexico 88240 |                  | (575       | 3) 30  |                                                                                                                 | ne#:                  |        |        |                  |                         |        |                     | ax#:<br>575) | 207         | 1471  |           |           |                                          |              | 0.7                                              |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Phone #:                                           | acet * Hobbs, New Mexico 66240                         | Fax #:           | (0/0       | 1 33   | 0-3                                                                                                             | 11/4                  |        |        |                  |                         | -      | (.                  | 515)         | 391-        | 14/1  | 1         |           |                                          |              | B/20                                             |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| (575) 393-9                                        |                                                        | (575             | ) 397      | -147   | 71                                                                                                              |                       |        | $\sim$ | 1                |                         |        |                     |              |             |       |           |           | (C35                                     |              | 8010                                             |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Project #:                                         | Project Name:                                          |                  |            |        |                                                                                                                 | /                     |        | /      | 17               |                         |        |                     |              |             |       | 1         |           | ded                                      |              | 말                                                | 위      |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Project Location:                                  | Hobbs N-6                                              |                  |            |        | San                                                                                                             | pler :                | Sign   | atute  |                  | ozar                    | ine Jo | ohns                | son (5       | 75)631      | -9310 |           |           | xten                                     |              | Se                                               | D Se   |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| T19S-R38E                                          | E-Sec5&6 E/H ~ Lea County - N                          | lew Me           | exico      | 1      |                                                                                                                 | K                     |        | F      | th               | ~                       |        |                     | 1.10         |             |       |           |           | TPH 418.1/TX1005 / TX1005 Extended (C35) |              | Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 | 2 L    |                     |                 |     |                      | 325              |                |                      |              |                  | Cations (Ca, Mg, Na, K)<br>Anions (Cl. SO4, CO3, HCO3) |          |                        |           | ~ 24 Hours       |
|                                                    | 1                                                      | T                | P          | L      | M                                                                                                               | ATR                   | x      | 1      | PF               |                         | ERV    |                     | VE           | SAM         | PLING | 1         |           | TX10                                     |              | B                                                | Ca     |                     |                 |     | 4                    | 8270C/625        |                |                      |              | 1                | Ω Ĭ                                                    |          | s                      |           | HPC              |
| H211709                                            |                                                        |                  | S          | F      |                                                                                                                 |                       |        |        | Т                | ME                      | THO    | T                   |              |             | T     |           |           | 12/1                                     |              | s Ba                                             | VS Ba  | es                  |                 |     | GC/MS Vol. 8260B/624 | 827              |                | Pesticides 8081A/608 |              |                  | CO3 H                                                  |          | Total Dissolved Solids |           | 20               |
| LAB #                                              | FIELD CODE                                             | (G)rab or (C)omp | CONTAINERS |        |                                                                                                                 |                       |        |        | (VO)             |                         |        | ICE (1-11 #ar HDBE) |              |             |       | 8021B/602 | 8021B/602 | X100                                     |              | AgA                                              | Age    | TCLP Semi Volatiles | les             |     | 3260                 | GC/MS Semi. Vol. | 308            | 81A                  | -            | Moisture Content | Mg.                                                    |          | ed S                   |           | Turn Around Time |
|                                                    | FIELD CODE                                             | 0                | IAI        | ~      |                                                                                                                 |                       | ш      |        | HCL (4 40ml VOA) |                         | 4      | Harl                |              | DATE (2021) |       | 021E      | 021B      | .1/1                                     | 8270C        | als                                              | Iatile | mi <                | TCLP Pesticides |     | 0.                   | emi              | PCB's 8082/608 | s 80                 | BOD, TSS, pH | õ                | Cla,                                                   | 5        | solv                   | s         | put              |
| ( LAB USE )<br>ONLY                                | X                                                      | ab o             | NO         | WATER  |                                                                                                                 |                       | SLUDGE |        | 4                | NaHSO.                  | 0      | 14-41               | ų            | E (3        |       | ш<br>8    | × 80      | 418                                      | 827          | Mei                                              | N N    | Se                  | Pe              |     | NS V                 | AS S             | s 8(           | cide                 | TS.          | ture             | ) su                                                   | Sulfates | Dis                    | Chlorides | Aro              |
|                                                    | 1                                                      | (Ċ)              | U<br>#     | MA     | SOIL                                                                                                            | AIR                   | SLL    |        | PH               | NaHS(                   | H2SO4  |                     | NONE         | DAT         | TIME  | MTBE      | BTEX      | HHT                                      | PAH          | Tota                                             |        | 12                  | TCL             | RCI | GCM                  | GC               | PCB            | Pest                 | BOD          | Mois             | Catio                                                  | Sulfa    | Tota                   | Chlo      | L III            |
| 1                                                  | Monitor Well #2                                        | G                | 5          | х      |                                                                                                                 |                       |        |        | 4                | T                       |        | 1                   | 1            | 6/30        | 14:00 |           | x         |                                          |              | 1                                                | T      | T                   | Ť               | T   |                      |                  |                |                      | T            | 1                | 1                                                      | X        | ++                     | X         | ŕ                |
| 2                                                  | Monitor Well #4                                        | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                |                         |        | 1                   |              | 6/29        | 11:15 | 5         | x         |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      | Π            | T                | T                                                      | X        | x                      | х         | Γ                |
| 3                                                  | Monitor Well #5                                        | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                |                         |        | 1                   |              | 6/30        | 9:30  |           | X         |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      | Π            | T                | T                                                      | X        | X                      | х         |                  |
| 4                                                  | Monitor Well #6                                        | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                |                         |        | 1                   |              | 6/29        | 13:40 |           | x         |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        | X        | X                      | Х         |                  |
| S                                                  | Monitor Well #7                                        | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                |                         |        | 1                   |              | 6/29        | 9:30  |           | х         |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        | X        | X                      | Х         |                  |
| 6                                                  | iww                                                    | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                |                         |        | 1                   |              | 6/30        | 12:45 |           | x         |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        | X        | X                      | х         |                  |
| 7                                                  | Bio Sparge #2                                          | G                | 5          | X      |                                                                                                                 |                       |        |        | 4                | _                       |        | 1                   |              | 6/29        | 16:30 |           | X         |                                          | $\downarrow$ | _                                                | _      |                     |                 |     |                      |                  |                |                      | $\square$    |                  |                                                        | X        | X                      | Х         |                  |
|                                                    | 0                                                      | -                |            |        |                                                                                                                 | $\square$             | _      | -      | -                | +                       | -      | +                   | +            |             | -     |           |           |                                          | _            | +                                                | +      | 1                   |                 |     |                      |                  |                |                      | $\square$    | +                | +                                                      |          | Ц                      |           | L                |
|                                                    | $\square$                                              | -                |            |        | -                                                                                                               |                       | -      | -      | +                | +                       | +      | +                   | $\square$    |             |       |           |           | _                                        | -            | +                                                | +      | -                   | -               | -   | -                    | -                |                |                      | $\square$    | +                | +                                                      | +        | Ц                      |           | L                |
| Relinquished by:                                   | Date: Time:                                            | Receiv           | L d bu     |        |                                                                                                                 |                       | _      |        | _                | Det                     |        | Ļ                   |              |             |       |           |           |                                          |              | +                                                | N      |                     | -               |     | 1                    |                  |                |                      |              |                  |                                                        |          |                        | -         | L                |
| 71                                                 | 1 11 110                                               |                  | veu by     | 110    | 4 1                                                                                                             |                       |        |        | -                | Dete                    | -      |                     | ime:         |             | 5     | -         | ne F      |                                          | IIIS         | ╋                                                | Y      |                     | ⊢               | No  |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Rozanne Johnso<br>Relinquished by:                 | nf/1/202/ /4,50<br>Date: Time:                         | Receiv           | ved By     |        | 14<br>abor                                                                                                      | atory                 | Sta    | ff)    | U.               | Date                    |        |                     | ime:         | 19          | 50    | RE        | Res       | _                                        | -            |                                                  | Y      | es                  |                 | No  |                      | Add              | dition         | nal F                | ax N         | lum              | ber:                                                   |          |                        |           |                  |
| 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0            | Sato. Timo.                                            | 10000            | icu by     | (10    | 2001                                                                                                            | atory                 | Ota    |        | -                | Dale                    |        |                     | nne.         |             |       |           |           |                                          |              |                                                  |        |                     | ~ .             |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Delivered By:                                      | (Circle One)                                           | 0                | 0          |        |                                                                                                                 |                       | -      | -      |                  |                         | -      |                     |              |             | _     | Em        | ail R     | esu                                      | lts:         | K                                                |        |                     |                 |     |                      | .00              | _              |                      |              |                  |                                                        |          |                        |           |                  |
| Delivered by.                                      | (Circle One)                                           | Sample           | e Condit   | Cool   |                                                                                                                 | Intact                |        | (      | CHEC             | KED                     | BY:    |                     |              |             |       |           |           |                                          |              |                                                  | re     | oza                 | nne             |     | sda                  | cre              | S.CO           | om                   |              |                  |                                                        |          |                        |           |                  |
|                                                    |                                                        |                  | Yes        | -      | Yes                                                                                                             | 2                     | 1      |        | Initial          |                         |        |                     |              |             |       |           |           |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| Sampler - I                                        | JPS - Bus - Other:                                     |                  | No         |        | No                                                                                                              |                       |        |        | Y                | ٣,                      |        |                     |              |             |       |           |           |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |
| $\leq$                                             |                                                        |                  |            |        |                                                                                                                 |                       |        |        |                  |                         |        |                     |              |             |       |           |           |                                          |              |                                                  |        |                     |                 |     |                      |                  |                |                      |              |                  |                                                        |          |                        |           |                  |

Released to Imaging: 10/6/2022 8:30:46 AM

•



October 06, 2021

KATIE JONES Rice Operating Company 112 W. Taylor Hobbs, NM 88240

RE: HOBBS N-6

Enclosed are the results of analyses for samples received by the laboratory on 10/01/21 14:16.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

## Sample ID: MONITOR WELL # 2 (H212732-01)

| BTEX 8021B                           | `mg/    | Ľ               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001  | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | <0.001  | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006  | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102 %   | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 80.0    | 4.00            | 10/04/2021 | ND           | 96.0  | 96.0       | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 75.3    | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  | QM-07     |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 554     | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/28/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 4 (H212732-02)

| ВТЕХ 8021В                           | `mg/    | ,<br>L          | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
|                                      |         |                 | •          |              |       |            |               |       | 0 110     |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006  | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102 %   | 6 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 140     | 4.00            | 10/04/2021 | ND           | 96.0  | 96.0       | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 80.6    | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 656     | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 5 (H212732-03)

| BTEX 8021B                           | `mg/   | Ĺ               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006 | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %  | 6 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 40.0   | 4.00            | 10/04/2021 | ND           | 96.0  | 96.0       | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 71.7   | 10.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 363    | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |
|                                      |        |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/28/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 6 (H212732-04)

| ВТЕХ 8021В                           | `mg/    | ,<br>I          | Δnalvze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
|                                      |         | -               | Analyze    | u Dyr 110    |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | <0.001  | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006  | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102 %   | 6 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 76.0    | 4.00            | 10/04/2021 | ND           | 96.0  | 96.0       | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 75.9    | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1 mg/L                       |         | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 550     | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/28/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: MONITOR WELL # 7 (H212732-05)

|                                      | •      |                 |            |              |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| BTEX 8021B                           | mg/    | L               | Analyze    | d By: MS     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006 | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %  | 6 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 256    | 4.00            | 10/04/2021 | ND           | 100   | 100        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 109    | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1 mg/L                       |        | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 953    | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |
|                                      |        |                 |            |              |       |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/29/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

## Sample ID: IWW (H212732-06)

| BTEX 8021B                           | mg/     | L               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | < 0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | <0.001  | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006  | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 %   | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 144     | 4.00            | 10/04/2021 | ND           | 100   | 100        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 80.8    | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1 mg/L                       |         | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 642     | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 10/01/2021                        | Sampling Date:      | 09/28/2021    |
|-------------------|-----------------------------------|---------------------|---------------|
| Reported:         | 10/06/2021                        | Sampling Type:      | Water         |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Jodi Henson   |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |               |

#### Sample ID: BIO SPARGE #2 (H212732-07)

| BTEX 8021B                           | mg/    | L               | Analyze    | d By: MS     |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.022 | 108        | 0.0200        | 0.181 |           |
| Toluene*                             | <0.001 | 0.001           | 10/04/2021 | ND           | 0.021 | 103        | 0.0200        | 1.09  |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 10/04/2021 | ND           | 0.020 | 102        | 0.0200        | 0.784 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 10/04/2021 | ND           | 0.064 | 107        | 0.0600        | 1.08  |           |
| Total BTEX                           | <0.006 | 0.006           | 10/04/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 101 9  | 77.1-12         | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 52.0   | 4.00            | 10/04/2021 | ND           | 100   | 100        | 100           | 0.00  |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 82.8   | 25.0            | 10/05/2021 | ND           | 19.9  | 99.6       | 20.0          | 4.21  |           |
| TDS 160.1 mg/L                       |        | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 526    | 5.00            | 10/05/2021 | ND           | 253   | 84.3       | 300           | 1.89  |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery. |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                             |
| RPD   | Relative Percent Difference                                                                                                      |
| **    | Samples not received at proper temperature of 6°C or below.                                                                      |
| ***   | Insufficient time to reach temperature.                                                                                          |
| -     | Chloride by SM4500CI-B does not require samples be received at or below 6°C                                                      |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                  |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

| 01 East Marland - Hobbs, NM 88240<br>Tel (575) 393-2326<br>Fay (575) 393-2476 | na               | I T                                                    | ,9    | h     | 0     | ra               | t                       | 0                | ri                             | 0                  | S                              | T                   | n      | C                        |       | L                |                | Cł                                       | IAI    | N-C                                 | OF-            | CU                  | ST              | OD        | Y                    | ANI                        | DA             | NA                   | LY           | SIS              | RE               | QU                                      | ES                     | т         |              |
|-------------------------------------------------------------------------------|------------------|--------------------------------------------------------|-------|-------|-------|------------------|-------------------------|------------------|--------------------------------|--------------------|--------------------------------|---------------------|--------|--------------------------|-------|------------------|----------------|------------------------------------------|--------|-------------------------------------|----------------|---------------------|-----------------|-----------|----------------------|----------------------------|----------------|----------------------|--------------|------------------|------------------|-----------------------------------------|------------------------|-----------|--------------|
| 1 4x (0/0) 030-24/0                                                           |                  |                                                        |       |       |       |                  |                         |                  |                                |                    | 39                             |                     |        |                          |       |                  |                |                                          |        | LA                                  | во             | rde                 | ID              | #         |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| ompany Name:<br>RICE Operating Company                                        |                  | BILL T                                                 |       |       |       |                  | om                      | na               | nv                             |                    |                                | PO                  | #      |                          |       | ANALYSIS REQUEST |                |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| oject Manager:                                                                |                  | RICE Operating Company<br>Address: (Street, City, Zip) |       |       |       |                  |                         |                  | (Circle or Specify Method No.) |                    |                                |                     |        |                          |       |                  |                |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| Katie Jones                                                                   |                  | 122 W                                                  | Tay   | lor S | treet | ~ Hot            | obs,                    | Nev              | v Me                           | xico               | 8824                           | 40                  |        |                          |       |                  |                |                                          |        | 1                                   |                |                     |                 |           |                      |                            |                | 1                    |              |                  |                  |                                         |                        | 1         | 1            |
| ddress: (Street, City, Zip)                                                   |                  |                                                        |       |       | one#  |                  |                         |                  |                                |                    |                                | Fax                 |        |                          |       | 1                |                |                                          | r      | -                                   |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| 122 W Taylor Street ~ Hobbs, New Mexico 88240                                 | Fax #:           | (575                                                   | ) 39  | 93-9  | 917   | 4                | -                       |                  |                                |                    | -                              | (57                 | 75):   | 397-1                    | 471   | 1                |                |                                          | 000    |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         | 1                      |           |              |
| (575) 393-9174                                                                |                  | ) 397-                                                 | -14   | 71    |       |                  |                         |                  |                                |                    |                                |                     |        |                          |       |                  |                | C35)                                     | 0100   | TCLP Metals Ad As Ba Cd Cr Pb Se Ho |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| oject #: Project Name:                                                        |                  |                                                        |       |       |       |                  | /                       |                  | /                              | 7                  | 7                              |                     |        |                          |       | 1                |                | ) ped (                                  | 0      | PH                                  | 2              |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| oject Location:                                                               |                  |                                                        | -     | Sar   | npler | Sign             | ature                   | a.               | Rez                            | ann                | le Jo                          | hnso                | >      | 5)631-                   | 0310  | 1                |                | xtend                                    | Col    | Se                                  | 8              |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| T19S-R38E-Sec5&6 E/H ~ Lea County - Ne                                        | ew Me            | xico                                                   |       | -     |       | 2                | 6                       |                  | V                              | A                  |                                | 11130               | 11 (07 | 0)001-                   | 3510  |                  |                | 05 E)                                    | la r   |                                     |                |                     |                 |           |                      | 25                         |                |                      |              |                  | ľ                | (S)                                     |                        |           |              |
| 1212732                                                                       |                  | e                                                      | P     | N     | ATF   | RIX              | 1                       | 1                |                                |                    | RVA                            |                     | E      | SAM                      | PLING | 1                |                | TPH 418.1/TX1005 / TX1005 Extended (C35) | 1000   | S D                                 |                |                     |                 |           | 4                    | GC/MS Semi. Vol. 8270C/625 |                |                      |              |                  | 2                | Anions (Cl, SO4, CO3, HCO3)<br>Sulfates | s                      |           |              |
|                                                                               | ٩                | SS                                                     | F     | Τ     | Т     | TI               |                         | -                |                                | AEI                | ГНО                            |                     |        |                          |       |                  |                | 05/                                      | e Ba   | As Ba                               |                | les                 |                 |           | GC/MS Vol. 8260B/624 | 82                         |                | Pesticides 8081A/608 |              |                  | Na, K)           | 8                                       | Total Dissolved Solids |           |              |
| LAB # FIELD CODE                                                              | (G)rab or (C)omp | # CONTAINERS                                           |       |       |       |                  |                         | HCL (4 40ml VOA) |                                |                    |                                | ICE (1-1Liter HDPE) |        | -                        |       | MTBE 8021B/602   | BTEX 8021B/602 | X10                                      | An A   | A                                   | S              | TCLP Semi Volatiles | des             |           | 8260                 | Nol                        | 308            | 81A                  |              | Moisture Content | Cations (Ca, Mg, | ð.                                      | ed                     |           |              |
| LABUSE                                                                        | 0<br>0           | TAI                                                    | ~     |       |       | Щ                |                         | 40ml             |                                | 4                  |                                | Liter               |        | DATE (2021)              |       | 021E             | 021B           | 17                                       | Matale | stals                               | TCLP Volatiles | mi V                | sticio          |           | ol.                  | emi                        | 082/           | s 80                 | BOD, TSS, pH | Ŝ                | Ca,              | C.                                      | solv                   | 0         |              |
| ONLY                                                                          | abo              | NO                                                     | WATER | _     |       | ğ                |                         | L (4             | °                              | NaHSO <sub>4</sub> | H <sub>2</sub> SO <sub>4</sub> | (1-1                | NONE   | E (                      | ш     | 8<br>Ш           | 8<br>8         | 418                                      | Nal Ma | P Me                                | 2              | P Se                | P Pe            |           | VSV                  | AS S                       | s 8(           | cide                 | TS.          | ture             | Suc              | ns (                                    | Dis lo                 | ride      |              |
|                                                                               | Ō                | 0<br>#                                                 | Å     | SOIL  | AIR   | SLUDGE           |                         | HC               | HNO <sub>3</sub>               | Nal                | H <sub>2</sub> S               | UE<br>E             | 8<br>N | DAT                      | TIME  | MTE              | BTE            | H                                        | Total  | TCL                                 | TCL            | TCL                 | TCLP Pesticides | RCI       | GC/                  | GCA                        | PCB's 8082/608 | Pest                 | Bo           | Mois             | Cati             | Sulfates                                | Tota                   | Chlorides |              |
| Monitor Well #2                                                               | G                | 5                                                      | X     |       |       |                  |                         | 4                |                                |                    |                                | 1                   |        | 9/29                     | 13:40 |                  | X              |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              | T                | T                | -                                       | X                      |           | +            |
| 2 Monitor Well #4                                                             | G                | 5                                                      | X     |       |       |                  |                         | 4                |                                |                    |                                | 1                   |        | 9/28                     | 11:00 |                  | x              |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  | T                | >                                       | X                      |           | +            |
| 3 Monitor Well #5                                                             | G                | 5                                                      | X     |       |       |                  |                         | 4                |                                |                    |                                | 1                   |        | 9/29                     | 8:20  |                  | X              |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  | ×                                       | X                      | X         | T            |
| 4 Monitor Well #6                                                             | G                | 5                                                      | X     |       | 1     | $\square$        |                         | 4                |                                |                    |                                | 1                   |        | 9/28                     | 13:10 |                  | x              |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  | X                                       | X                      | X         | Τ            |
| 5 Monitor Well #7                                                             | G                | 5                                                      | X     |       | -     |                  |                         | 4                |                                |                    |                                | 1                   |        | 9/28                     | 9:15  |                  | X              |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  | X                                       | X                      | X         |              |
| 6 IWW                                                                         | G                | 5                                                      | X     |       |       |                  | _                       | 4                |                                |                    |                                | 1                   |        | and a state of the state | 12:00 |                  | X              |                                          | -      |                                     |                |                     |                 |           |                      |                            |                |                      |              | $ \downarrow$    | $\square$        | X                                       | X                      | X         |              |
| Bio Sparge #2                                                                 | G                | 5                                                      | X     | -     | +-    | $\left  \right $ |                         | 4                |                                |                    |                                | 1                   | -      | 9/28                     | 16:00 |                  | X              | -                                        | +      |                                     |                |                     |                 | _         |                      |                            |                |                      |              | $\downarrow$     | $\perp$          | ×                                       | X                      | X         |              |
|                                                                               |                  |                                                        | -     |       | -     | $\left  \right $ | -                       | _                | _                              |                    | $\left  \right $               |                     | -      |                          |       |                  |                | -                                        | -      | -                                   |                |                     |                 |           |                      |                            |                |                      |              | $\downarrow$     | 4                |                                         |                        |           | $\downarrow$ |
| -                                                                             |                  |                                                        |       |       | +-    | $\left  \right $ | -                       | -                |                                |                    |                                |                     | +      |                          |       |                  |                | +                                        | +      | +                                   |                |                     |                 | _         | _                    |                            |                |                      |              | +                | +                |                                         | -                      |           | $\downarrow$ |
| elinguished by: Date: Time:                                                   | Receiv           | ed by:                                                 | 1     | L     | L     |                  |                         |                  | D                              | ate:               |                                | Tin                 |        |                          |       | Dho              | ne R           |                                          |        | ┢                                   | Va             |                     |                 | No        | _                    |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| branne Johnson 10/1/2021 14:15                                                |                  | ou by.                                                 |       |       |       |                  |                         |                  | 00                             | 10.                |                                | 1 11 1              | ne.    |                          |       |                  | Res            |                                          | .5     | -                                   | Ye             | -                   |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           | -            |
| linquished by: Date: Time:                                                    | Receiv           | ed By:                                                 | (Li   | abor  | ator  | y Sta            | ff)                     |                  | Da                             | ate:               | 1000                           | Tim                 | ne:    |                          |       | -                | MAR            | -                                        | -      | L                                   | Ye             | s                   |                 | No        |                      | Add                        | litior         | nal F                | ax N         | lumi             | oer:             |                                         |                        |           |              |
|                                                                               |                  | nd.                                                    | į.    |       | A.M.  | M                | A                       | 4                |                                |                    |                                |                     |        | 111                      | :16   |                  |                |                                          |        | La                                  |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| elivered By: (Circle One)                                                     | Sample           | Conditi                                                |       | 1     | u     |                  | No. of Concession, Name | Conceptor 1      | Contraction of                 | -0.0               | BY:                            | 14                  | U      | 17                       | .10   | Ema              | all Re         | esult                                    | s:     | KI                                  |                |                     |                 |           |                      | cor                        |                |                      |              |                  |                  |                                         |                        |           |              |
| #113                                                                          | Cample           | Conditi                                                | Cool  |       | Intac |                  |                         | CHE              | UNE                            | ED E               | <b>1</b>                       |                     | 1      | _                        |       |                  |                |                                          |        |                                     | 10             | zan                 | ine             | <u>ws</u> | dad                  | cres                       | <u>S.CC</u>    | m                    |              |                  |                  |                                         |                        |           |              |
| TIN                                                                           |                  | Yes                                                    | V     | Yes   | ~     |                  | (                       | (Initia          | als)                           | 1                  | 17                             | H                   | T      |                          |       |                  |                |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |
| ampler - UPS - Bus - Other:                                                   | L                | No                                                     |       | No    |       |                  |                         |                  |                                | 6                  | N                              | $\wedge$            | 1      |                          |       |                  |                |                                          |        |                                     |                |                     |                 |           |                      |                            |                |                      |              |                  |                  |                                         |                        |           |              |

Released to Imaging: 10/6/2022 8:30:46 AM

•



December 15, 2021

KATIE JONES Rice Operating Company 112 W. Taylor Hobbs, NM 88240

RE: HOBBS N-6

Enclosed are the results of analyses for samples received by the laboratory on 12/08/21 10:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/03/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

## Sample ID: MONITOR WELL # 2 (H213532-01)

| ВТЕХ 8021В                           | `mg/    | ,<br>I          | Δnalvze    | d By: MS/    |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
|                                      |         | -               | Analyze    | a 9,1110,    |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006  | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.7 %  | 6 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 96.0    | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 101     | 25.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 544     | 5.00            | 12/10/2021 | ND           | 501   | 100        | 500           | 0.398 |           |
|                                      |         |                 |            |              |       |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/02/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 4 (H213532-02)

| BTEX 8021B                           | mg/L Analyzed By: MS/ |                 | d By: MS/  |              |       |            |               |       |           |
|--------------------------------------|-----------------------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result                | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001                | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | <0.001                | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | < 0.001               | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003                | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006                | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 96.7 9                | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/                   | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result                | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 148                   | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/                   | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result                | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 110                   | 25.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/                   | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result                | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 619                   | 5.00            | 12/10/2021 | ND           | 501   | 100        | 500           | 0.398 |           |
|                                      |                       |                 |            |              |       |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/03/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 5 (H213532-03)

| BTEX 8021B                           | mg/     | L               | Analyze    | d By: MS/    |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001  | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006  | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.0 \$ | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 40.0    | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 71.3    | 10.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 338     | 5.00            | 12/10/2021 | ND           | 501   | 100        | 500           | 0.398 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/02/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 6 (H213532-04)

| •                                    | •       | ,               |            |              |       |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| BTEX 8021B                           | mg/     | L               | Analyze    | d By: MS/    |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | < 0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003  | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006  | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.9 9  | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 76.0    | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/     | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 107     | 25.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/     | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 524     | 5.00            | 12/10/2021 | ND           | 501   | 100        | 500           | 0.398 |           |
|                                      |         |                 |            |              |       |            |               |       |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/02/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: MONITOR WELL # 7 (H213532-05)

| BTEX 8021B                           | mg/L Analyzed By |                 | d By: MS/  |              |       |            |               |       |           |
|--------------------------------------|------------------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result           | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001           | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | <0.001           | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | < 0.001          | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003           | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006           | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.3 9           | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/              | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result           | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 300              | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/              | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result           | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 83.1             | 25.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/              | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result           | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 856              | 5.00            | 12/10/2021 | ND           | 501   | 100        | 500           | 0.398 |           |
|                                      |                  |                 |            |              |       |            |               |       |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/03/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

### Sample ID: IWW (H213532-06)

| BTEX 8021B                           | mg/    | L               | Analyze    | d By: MS/    |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | <0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006 | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 95.7 9 | 77.1-12         | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 132    | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/    | L               | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 43.9   | 10.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/    | L               | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 591    | 5.00            | 12/13/2021 | ND           | 523   | 105        | 500           | 3.65  |           |

**Cardinal Laboratories** 

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Rice Operating Company KATIE JONES 112 W. Taylor Hobbs NM, 88240 Fax To: (575) 397-1471

| Received:         | 12/08/2021                        | Sampling Date:      | 12/02/2021     |
|-------------------|-----------------------------------|---------------------|----------------|
| Reported:         | 12/15/2021                        | Sampling Type:      | Water          |
| Project Name:     | HOBBS N-6                         | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN                        | Sample Received By: | Tamara Oldaker |
| Project Location: | T19S-R38E-SEC5&6 E/H ~LEA CO - NM |                     |                |

#### Sample ID: BIO SPARGE #2 (H213532-07)

| BTEX 8021B                           | mg/    | ′L              | Analyze    | d By: MS/    |       |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|-------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.001 | 0.001           | 12/14/2021 | ND           | 0.021 | 103        | 0.0200        | 0.524 |           |
| Toluene*                             | <0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.7       | 0.0200        | 0.999 |           |
| Ethylbenzene*                        | <0.001 | 0.001           | 12/14/2021 | ND           | 0.019 | 95.4       | 0.0200        | 0.351 |           |
| Total Xylenes*                       | <0.003 | 0.003           | 12/14/2021 | ND           | 0.060 | 99.4       | 0.0600        | 0.205 |           |
| Total BTEX                           | <0.006 | 0.006           | 12/14/2021 | ND           |       |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.3   | % 77.1-12       | 4          |              |       |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′L              | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride*                            | 76.0   | 4.00            | 12/09/2021 | ND           | 100   | 100        | 100           | 4.08  |           |
| Sulfate 375.4                        | mg/    | ′L              | Analyze    | d By: GM     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| Sulfate*                             | 103    | 25.0            | 12/09/2021 | ND           | 21.9  | 109        | 20.0          | 0.728 |           |
| TDS 160.1                            | mg/    | 'L              | Analyze    | d By: AC     |       |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS    | % Recovery | True Value QC | RPD   | Qualifier |
| TDS*                                 | 509    | 5.00            | 12/13/2021 | ND           | 523   | 105        | 500           | 3.65  |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

|                                                                                                                                                                             |                              |                                              | -                                                              |          |      |       |        |       |                     | •       |                                           | -                  |        |             |       |           | (                                                              | CHA       | IN      | -OF                                 | -CI            | JSI                 |         | Y /                 | ANI                       | DA             | NAI                  | LYS          | SIS              | REC                     | QUE      | ST                     |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|----------------------------------------------------------------|----------|------|-------|--------|-------|---------------------|---------|-------------------------------------------|--------------------|--------|-------------|-------|-----------|----------------------------------------------------------------|-----------|---------|-------------------------------------|----------------|---------------------|---------|---------------------|---------------------------|----------------|----------------------|--------------|------------------|-------------------------|----------|------------------------|-----------|
| 01 East Marland - Ho<br>Tel (575) 393<br>Fax (575) 393                                                                                                                      | -2326 Caru                   | na                                           | L                                                              |          |      | _     | a      | to    | r                   | ie      |                                           |                    | -      | c.          |       |           |                                                                |           | L       | AB                                  | Orde           | er ID               | #_      | H                   | 21                        | 35             | 53                   | 2            |                  |                         | -        |                        |           |
| ompany Name:                                                                                                                                                                | and the second second        |                                              | BILL TO                                                        |          |      | pany: | ~      |       |                     |         |                                           | PO#                | #      |             |       |           |                                                                |           |         |                                     | AN             | AL                  | YS      | SR                  | EC                        | UE             | ST                   |              |                  |                         |          |                        |           |
|                                                                                                                                                                             | ting Company                 |                                              | RICE                                                           |          | Addr |       | CO     | mp    | any                 |         | reet, (                                   | City.              | Zip)   |             |       |           |                                                                |           |         | (                                   | Circ           | e or                | Spe     | cify                | Met                       | hod            | No.)                 |              |                  |                         |          |                        |           |
| oject Manager:<br>Katie Jones                                                                                                                                               |                              |                                              | 122 W Taylor Street ~ Hobbs, New Mexico 88240<br>Phone#: Fax#: |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
|                                                                                                                                                                             | treet, City, Zip)            |                                              |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           | 2                                                              |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
|                                                                                                                                                                             | et ~ Hobbs, New Mexico 88240 |                                              | (575) 393-9174 (575)397-1471                                   |          |      |       |        |       |                     |         |                                           |                    |        |             |       | /200      |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| none #:                                                                                                                                                                     |                              | Fax #:                                       |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           | 351                                                            |           | 10B     |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| (575) 393-91                                                                                                                                                                |                              | (575)                                        |                                                                |          |      |       |        |       | A                   |         |                                           |                    |        |             |       |           | 0,0                                                            |           | 09 6    | D                                   |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| roject #:                                                                                                                                                                   | Project Name:<br>Hobbs N-6   |                                              |                                                                |          |      |       | /      |       |                     | Y       | 2                                         | 1.0                | /      |             |       |           | apue                                                           |           | e H     | Ser                                 |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| oject Location:                                                                                                                                                             |                              |                                              | -                                                              | C        | Sam  | pers  | lignal | ture: | R                   | ozanr   | ne Joh                                    | hnso               | on (57 | 5)631-      | 9310  |           | E vto                                                          |           | Pb S    | Pp                                  |                |                     |         |                     | 5                         |                |                      |              |                  | ie c                    | (0)      |                        | Ē.        |
|                                                                                                                                                                             | -Sec5&6 E/H ~ Lea County - N | ew Me                                        | xico                                                           |          |      | 11    |        | X     | I                   | ~       | /                                         |                    |        |             |       |           | 005                                                            | 8         | 5       | 5<br>P                              |                |                     |         |                     | 2/62                      |                |                      |              |                  |                         | 2        |                        | -         |
|                                                                                                                                                                             |                              |                                              |                                                                | Γ        | M    | ATRI  | х      | V     | PF                  | ESE     | RVA<br>THOI                               |                    | E      | SAM         | PLING |           | BTEX 8021B/602<br>TPU 446 4 / Y 4006 / T Y 4006 Evtended (C35) |           | a Cd    | TCLP Metals Ag As Ba Cd Cr Pb Se Hg |                |                     |         | 24                  | GC/MS Semi Vol. 8270C/625 |                | 8                    |              |                  | Cations (Ca, Mg, Na, K) | 3        | lids                   |           |
| 213532                                                                                                                                                                      |                              |                                              | S                                                              | $\vdash$ |      |       |        | +     | Т                   | ME      | 1                                         |                    |        |             |       | N         | 2                                                              |           | As B    | AsE                                 |                | nies                |         | GC/MS Vol 8260B/624 | 8                         |                | Pesticides 8081A/608 |              | ŧ                | Z C                     | )<br>+   | Total Dissolved Solids |           |
| LAB #                                                                                                                                                                       |                              | dmo                                          | ER.                                                            |          |      |       |        |       | (AOA)               |         |                                           | CE (1-1Liter HDPE) |        | =           |       | 8021B/602 | 3/60                                                           |           | Ag      | Ag                                  | es             | TCLP Semi volatiles | sani    | 826                 |                           | PCB's 8082/608 | 3081                 | E            | Moisture Content | Cations (Ca, Mg,        | 20       | lveo                   | 1         |
|                                                                                                                                                                             | FIELD CODE                   | Û                                            | AIN                                                            |          |      |       | ш      |       | Oml                 |         |                                           | Liter I            |        | 2021        |       | 0211      | 0215                                                           | PAH 8270C | tals    | etals                               | TCLP Volatiles | ille                | astic   | 5                   | Sam                       | 3082           | es                   | BOD, TSS, pH | Ŭ<br>e           | Ü                       | ە (ز     | isso                   | es        |
| LAB USE                                                                                                                                                                     |                              | o<br>q                                       | Z                                                              | Ë        |      |       | 8      |       | 4                   | sol sol | 04                                        | 1-1                | 빌      | Ш           | L m   | е<br>Ш    | X                                                              | 4 8       | Ň       | PR                                  | > d            |                     |         | W                   |                           | 3's            | ticid                | H'           | stur             | ions                    | Sulfates | alD                    | Chlorides |
| ONLY                                                                                                                                                                        |                              | (G)rab or (C)omp                             | # CONTAINERS                                                   | WATER    | SOIL | AIR   | SLUDGE | 9     | HCL (4 40ml VOA)    | NaHSO4  | H <sub>2</sub> SO <sub>4</sub>            | UE                 | NONE   | DATE (2021) | TIME  | MTBE      | BTEX 8021B/602                                                 | PAH       | Tota    | TCL                                 | TCL            |                     |         |                     |                           | D D            | Pes                  | BOI          | Mo               | Cat                     | Sul      | Tot                    | G         |
| 1                                                                                                                                                                           | Monitor Well #2              | G                                            | 5                                                              | X        |      |       |        | -     | 4                   |         |                                           | 1                  |        | 12/3        | -     |           | x                                                              |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         | X        | -                      | X         |
|                                                                                                                                                                             | Monitor Well #4              | G                                            | 5                                                              | x        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/2        | 10:50 |           | x                                                              |           |         |                                     |                | 4                   | $\perp$ | _                   | $\downarrow$              | $\perp$        | $\perp$              | $\vdash$     |                  | $\square$               | X        | -                      | X         |
|                                                                                                                                                                             | Monitor Well #5              | G                                            | 5                                                              | X        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/3        | 8:50  |           | x                                                              |           |         |                                     |                | $\downarrow$        | +       | +                   | +                         | +              | +                    | +            |                  | $\square$               | X        | -                      | X         |
|                                                                                                                                                                             | Monitor Well #6              | G                                            | 5                                                              | X        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/2        | 13:00 |           | x                                                              | -         | $\perp$ |                                     |                | $\downarrow$        | +       | $\perp$             | +                         | +              | +                    | +            | -                | $\vdash$                | X        | -                      | X         |
| 5                                                                                                                                                                           | Monitor Well #7              | G                                            | 5                                                              | X        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/2        | 9:00  |           | X                                                              | _         | $\perp$ |                                     |                | $\downarrow$        | +       | +                   | +                         | +              | +                    | +            | -                | $\vdash$                | X        | +                      | X         |
| 6                                                                                                                                                                           | IWW                          | G                                            | 5                                                              | X        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/3        | 12:20 |           | x                                                              | _         | $\perp$ |                                     | $\square$      | +                   | +       | +                   | +                         | +              | +                    | +            | +                | $\vdash$                | ×        | +                      |           |
| 7                                                                                                                                                                           | Bio Sparge #2                | G                                            | 5                                                              | X        |      |       |        |       | 4                   |         |                                           | 1                  |        | 12/2        | 16:10 |           | X                                                              | _         | $\perp$ |                                     | $\square$      | $\downarrow$        |         | +                   | +                         | +              | +                    | +            |                  | $\vdash$                | ×        | X                      | X         |
| /                                                                                                                                                                           |                              |                                              |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                | $\perp$   | $\perp$ |                                     | Ц              | +                   | +       | +                   | +                         | +              | +                    | +            | -                | $\vdash$                | +        | +                      | ⊢         |
|                                                                                                                                                                             |                              |                                              |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                | $\perp$   | $\perp$ |                                     | $\square$      | $\downarrow$        | -       | +                   | +                         | +              | +                    | +            | +                | $\vdash$                | +        | +                      | ⊢         |
| //                                                                                                                                                                          |                              |                                              |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                |           |         | $\vdash$                            |                | 4                   | -       |                     |                           |                |                      |              |                  |                         |          |                        |           |
| elinquished by:                                                                                                                                                             | Rece                         | Received by: Date: Time:                     |                                                                |          |      |       |        |       |                     |         | Phone Results Yes No                      |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| ozanne Johnso                                                                                                                                                               |                              | Jamara Hagfer 12-8-21 1000                   |                                                                |          |      |       |        |       |                     |         | Fax Results Yes No Additional Fax Number: |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| elinquished by:                                                                                                                                                             | Rece                         | Received By: (Laboratory Staff)  Date: Time: |                                                                |          |      |       |        |       |                     |         | REMARKS:                                  |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| 49                                                                                                                                                                          |                              |                                              |                                                                |          |      |       |        |       |                     |         |                                           | Em                 | ail R  | esul        | ts:   | kj        | one                                                            | s@        | ric     | esw                                 | d.c            | om                  |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| Relinquished by:       Date:       Time:         Relinquished by:       Date:       Time:         Delivered By:       (Circle One)       Sample Condition       CHECKED BY: |                              |                                              |                                                                |          |      |       |        |       | rozanne@sdacres.com |         |                                           |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| Cartorou Dy.                                                                                                                                                                |                              | Cool Intact                                  |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
| Sampler - UPS - Bus - Other:                                                                                                                                                |                              |                                              |                                                                |          |      |       |        |       |                     |         |                                           |                    |        |             |       |           |                                                                |           |         |                                     |                |                     |         |                     |                           |                |                      |              |                  |                         |          |                        |           |
|                                                                                                                                                                             |                              |                                              |                                                                |          |      |       |        |       |                     | _       |                                           |                    |        |             |       | -         | _                                                              | -         | _       |                                     |                |                     |         |                     | -                         | -              |                      |              |                  |                         |          |                        |           |

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 90555

| CONDITIONS             |                                                          |  |  |  |  |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Operator:              | OGRID:                                                   |  |  |  |  |  |  |  |  |  |  |
| RICE OPERATING COMPANY | 19174                                                    |  |  |  |  |  |  |  |  |  |  |
| 122 W Taylor           | Action Number:                                           |  |  |  |  |  |  |  |  |  |  |
| Hobbs, NM 88240        | 90555                                                    |  |  |  |  |  |  |  |  |  |  |
|                        | Action Type:                                             |  |  |  |  |  |  |  |  |  |  |
|                        | [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT) |  |  |  |  |  |  |  |  |  |  |

#### CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Condition<br>Date |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| nvelez        | Review of 2021 Annual Groundwater Report: Content satisfactory 1. Continue sampling on a bi-annual schedule at a minimum. 2. OCD pre-approves sampling termination and gauging only from MW #2, #4, #5, #6, #7, BS-2, and IWW. 3. OCD requires historic and present free phase product thickness data in any of the site wells, but namely, the MW #1 and BS-1. 4. Submit summarized activities completed and their results in a 2022 Annual Report. Submittal to OCD expected no later than March 31, 2023. 5. OCD requires an abatement option(s) be submitted no later than March 31,2023 to initiate more aggressive removal of free phase product from BS-1 & MW #1. OCD suggest arranging a meeting to discuss alternative methods in order to mitigate the free phase products. | 10/6/2022         |