

November 8, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Deferral Request ConocoPhillips Company Buck Federal Central Tank Battery Unit Letter P, Section 17, Township 26 South, Range 32 East Lea County, New Mexico 1RP-4275 Incident ID nJXK1613337497

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips Company (COP) to evaluate a release that occurred at the Buck Federal Central Tank Battery (CTB), Unit Letter P, Section 17, Township 26 South, Range 32 East, in Lea County, New Mexico (site). The site coordinates are 32.03722°, -103.6967°. The site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report, the release was discovered on May 11, 2016, and released approximately 6 barrels of produced water due to a faulty valve. The release occurred within the earthen berm of the tank battery. Immediate action was to shut down and replace the valve. Vacuum trucks were dispatched to remove the freestanding fluids, recovering approximately 5 barrels of produced water. The initial C-141 Form is included in Appendix A.

The release was subsequently assigned the Remediation Permit (RP) number 1RP-4275 and the Incident ID nJXK1613337497. The 1RP-4275 release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in a high karst potential area.

According to the New Mexico Office of the State Engineers (NMOSE reporting system, there are no water wells within a ½ mile (800-meter) radius of the site. There are four (4) water wells within 1.1-mile (1900-meter) radius with an average depth to groundwater at 240 feet (ft.) below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and the high karst potential in the Site vicinity, the remediation RRALs for the Site are as follows:

Site RRALs
600 mg/kg
100 mg/kg
50 mg/kg
10 mg/kg

As this reported contamination is in areas immediately under or around production tanks and pipelines, full remediation would cause a major facility deconstruction. The full final remediation, restoration and reclamation for this release is requested to be deferred until the equipment is removed during other operations, or when the facility is retrofitted or abandoned, whichever comes first.

INITIAL SITE ASSESSMENT

On April 24, 2016, COP personnel were onsite to visually assess a previous release at the Buck Federal CTB. Photographs were taken of the release area inside the berm. Based on the visual assessment, COP was able to prepare a Corrective Action Plan (CAP) for this previous release at the site (1RP-4262), dated April 28, 2016. The CAP provided the C-141, photographs of the release area, and outlined actions to be taken to remediate the release (excavate down six inches bgs). The CAP also detailed that three discrete floor samples would be collected and analyzed for chloride, Gasoline Range Organics (GRO), Diesel Range Organics (DRO) and BTEX and that excavated soils would be taken to an NMOCD approved facility for disposal. The CAP was conditionally approved by the NMOCD, with a stipulation to provide a map of the spill area depicting the confirmation sampling points. The CAP was apparently revised and resubmitted (through available email correspondence) and marked conditionally approved.

A second CAP (erroneously dated April 28, 2016) was prepared for the additional (and subject of this report) release (1RP-4275) and also submitted to NMOCD. The CAP provided the C-141, a photograph of the release area, and again outlined actions to be taken to remediate the release. The CAP also detailed that three discrete floor samples would be collected and analyzed for chloride, GRO, DRO and BTEX and that excavated soils would be taken to an NMOCD approved facility for disposal. The second CAP was approved May 16, 2016.

The approximate release extent is indicated in Figure 3. The proposed remediation activities were described within the CAPs submitted to NMOCD. From email correspondence, it is apparent that excavation activities were conducted for the 1RP-4262 release, at least in part. Further correspondence between NMOCD and COP indicated that NMOCD had additional questions/comments. COP then drafted and submitted a mitigation deferral request to NMOCD on August 2, 2017. Email correspondence between NMOCD and COP indicated that NMOCD found the deferral request incomplete.

As a result of the additional correspondence, on October 19, 2017, a total of five (5) trenches (SP-1 through SP-5) were installed in the eastern portion of the release area by Stingray Environmental and Construction, LLC to assess and delineate the extent of impacted soil (Figure 4) to a depth of 7 feet bgs. Grab samples were field screened for chlorides and organic vapors with a PID at multiple depths. The samples collected from 7 feet bgs at each location were collected and analyzed for TPH by EPA method 8015 modified, BTEX

by EPA Method 8260B and chlorides by EPA method 300.0. The results of the sampling event are summarized in Table 1. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The analytical results associated with the initial site assessment exceeded the specified RRAL (100 mg/kg) for total TPH (GRO + DRO + ORO) at 7' bgs at SP-1 and SP-2. However, the analytical results associated with all five of these sample locations were below the specified RRAL for chlorides and BTEX and the SP-3, SP-4 and SP-5 analytical results were below the most stringent RRALs for TPH, BTEX and chloride at a depth of 7 feet bgs.

COP submitted a second mitigation deferral request to NMOCD on November 14, 2017. Although the CAPs were approved, following the written remedial scope of work did not result in excavation floor samples below the RRALs. COP evaluated the Site for additional remediation and determined that full remediation would require a complete facility deconstruction.

ADDITIONAL SITE ASSESSMENT

Tetra Tech personnel were onsite to further delineate and sample the release area in 2018. On September 17 and October 4, 2018, a total of nine (9) soil borings (BH-1 through BH-9) ranging in total depth from 1 to 5 feet bgs were installed inside the berm to define the vertical extents of the release and to assess the extent of impacted soil. A total of 23 soil samples were collected from the nine boring locations from within the release area (Figure 4). Selected samples were field screened and submitted to an analytical laboratory to be analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8260B and chlorides by EPA method 300.0. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The analytical results associated with the additional site assessment within the release area were below the RRAL for BTEX at eight of nine locations. BH-1 (1-2') exceeded the RRAL for BTEX. The analytical results associated with the samples within the release area were above the RRALs for total TPH (GRO + DRO + ORO) and/or chloride in all samples except BH-1 (2-3'), BH-1 (3-4'), BH-2 (3-4') and BH-3 (0-1'). The sample locations are shown on Figure 4. The results of both the 2017 and 2018 sampling events are summarized in Table 1.

REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

Because of the high karst potential at the Site, COP expressed a desire to remediate the impacted soil within the berm to the maximum extent practicable in order to reduce the environmental risk. On November 12 through December 10, 2018, Tetra Tech personnel were onsite to supervise the excavation and remediation activities. The excavated areas and depths of excavation are shown on Figure 5. The excavation widths and depths were guided based on the laboratory data to safely remove the impacted soils to the maximum extent practicable.

A total of twenty-nine (29) excavation floor samples were collected at locations AH-1 through AH-23. Additionally, nineteen (19) sidewall samples were collected. The samples were analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8260B and chlorides by EPA method 300.0. Copies of laboratory analytical reports and chain-of-custody documentation are included in Appendix C.

As shown in Figure 5, the areas containing sample locations AH-1 through AH-5 and AH-7; AH-9 through AH-16; and AH-18 through AH-23 were excavated to a total depth of 3.0 feet bgs, either with machinery or via hand digging. The areas containing sample locations AH-6, AH-8 and AH-17 were excavated to a depth of 6 feet bgs. Excavations in the area immediately south of the tank battery were halted after a liner was encountered at 2 feet bgs. Therefore, a floor sample was not collected in this area.

The analytical results for all sidewall samples were below the RRAL for BTEX. Additionally, sidewall samples NSW-3, WSW-2, WSW-3 and ESW-3 were below RRALs for TPH and chlorides. The other fifteen sidewall samples exceeded the RRALs for TPH and/or chloride. However, the sidewalls within the

excavation areas were either in close proximity to production equipment, or extended to the foot of the containment berm, so it was not feasible to expand the excavation areas outward.

Approximately 750 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Once remedial excavation areas were extended to the maximum extents practicable, the excavated areas were backfilled with clean material to surface grade. Copies of the waste manifests are included in Appendix D.

ADDITIONAL SITE DELINEATION

Based on review of analytical results from all previous sampling events, it appears that vertical delineation of contamination was attained as part of the assessment and remedial activities at the Site. In the northern portion of the release area, the sample results from SP-3, SP-4 and SP-5 indicate the TPH, BTEX and chloride levels are below the specified RRALs at a depth of 7 feet bgs. Sample results from AH-17, located in the southern portion of the Site, indicate TPH, BTEX and chloride levels are below the RRALs at a depth of 6 feet bgs.

Based on laboratory analytical results from the previous sampling events, the Site required additional assessment to delineate the horizontal extents of contamination. To define the horizontal extents of the release and to assess soil contamination in this area, if any, Tetra Tech personnel were onsite to investigate the release area perimeter in 2019. On October 8, 2019, a total of four (4) soil borings (BH-19-1 through BH-19-4) were installed to total depths ranging from 10 to 15 feet bgs around the exterior of the battery firewall. A total of 18 soil samples were collected from the four boring locations (Figure 6). Selected samples were field screened and submitted to an analytical laboratory for Total Petroleum Hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX) and chlorides (USEPA method 300.0) analysis. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The results of the 2019 sampling event are summarized in Table 3. The analytical results associated with the release area perimeter samples were below the RRAL for BTEX, total TPH (GRO + DRO + ORO) and chloride in all samples. The boring locations are shown on Figure 6. Photographic documentation of the assessment and remediation activities is included as Appendix E.

2020 DEFERRAL REQUEST

Following the October 2019 additional site delineation activities, the Deferral Request was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on January 2, 2020 with fee application payment PO Number 4FLOG-200102-C-1410. In addition to the 1RP-4275 release, the January 2020 report requested deferral for two other releases (1RP-4262 and 1RP-4431) that occurred at the Buck Federal CTB within the same general area. The Deferral Request was denied via email by Bradford Billings on Thursday, June 17, 2021 with the following reason for denial:

• "Although deferral can be granted based on data presented, the following: Each individual incident number must be associated/attached to its own report. The offered report has three incident numbers attached. Again, this report can be used for each incident, but they must stand alone by incident. Resubmit each separately and they can be approved."

CONCLUSION

After the remedial activities conducted at the Site, the contamination remaining in place does not cause an imminent risk to human health, the environment, or groundwater. The release was delineated horizontally and vertically, as detailed above.

Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations. ConocoPhillips respectfully requests that NMOCD will consider delaying final remediation activities at the site until the end of life of the battery. At

ConocoPhillips

time of abandonment, retrofit, or inactivity, remediation will be completed in addition to reclamation. In accordance with the NMOCD-stated reasoning for denial of the January 2020 Deferral Request, ConocoPhillips requests deferral for the impacted area associated with the specific 1RP-4275 release (nJXK1613337497) until site abandonment. The completed C-141 forms are enclosed in Appendix A.

If you have any questions or comments concerning the assessment or remediation activities for this site, please call me at (512) 338-2861.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Program Manager

cc: Ms. Jenni Fortunato, RMR – ConocoPhillips

Mr. Charles Beauvais, GPBU - ConocoPhillips

List of Attachments

Figures:

- Figure 1 Site Location Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Approximate Release Extent
- Figure 4 Site Assessment Map
- Figure 5 Remediation Extents and Confirmation Sampling Locations
- Figure 6 Additional Horizontal Assessment

Tables:

Table 1 – Summary of Analytical Results – Initial Soil Assessment

- Table 2 Summary of Analytical Results Confirmation Soil Sampling
- Table 3 Summary of Analytical Results Horizontal Delineation

Appendices:

Appendix A - C-141 Form

Appendix B – NMOSE Groundwater Data and Karst Potential Map

Appendix C – Laboratory Analytical Reports

Appendix D – Waste Manifests

Appendix E – Photographic Documentation

ConocoPhillips

FIGURES

Released to Imaging: 10/11/2022 11:56:13 AM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESMENT	BUCK FEDERAL CTB	1RP-4275	LEA COUNTY, NM
--	------------------	----------	----------------

	~																													
	Total TPH (C ₆ - C ₃₅	mg/kg	311	160			70.8	2,266	8,600	42.5	41.1	624	219	3.8	6.66	71.135	2,396		153	4.6	6, 796	1,579	0.0404	8,193	1,482	4,300	1,637	4,891	6,677	1,395
	35	ď																		-										
TPH ³	C ₂₈ - C	mg/kg	186	83.3	<27.8	<27.8	33.3	294	1,420	9.86	10.9	137	48.6	0.785	26.7	19.9	786		57.3	1.8	1,620	466	<0.341	1,770	442	1,070	557	1,340	1,420	362
	28	ď								J5				~						-										
	C ₁₂ - C	mg/kg	125	77.1	<27.8	<27.8	37.6	1,640	5,030	32.6	30.1	484	170	2.95	73.1	51.2	1,610	-	95.6	2.76	5,060	1,110	<2.00	6,240	1,040	3,080	1,080	3,550	5,110	1,030
	2	σ								~	-			-	~	~			٦	-			-		~		-			
	C ₆ - C ₁	mg/kg	<28.4	<27.2	<27.8	<27.8	<27.8	332	2,150	0.0696	0.0567	2.57	0.581	0.0268	0.051	0.0346	0.121		0.101	0.0488	116	2.51	0.0404	183	0.0463	150	0.0507	0.731	147	3.28
	×	Ø																												
	Total BTE)	mg/kg						26.43	149.9			0.009	0.016								0.22			0.16		2.63				
	e	Ø	4	6	1	1	5			e	4	۲ t		4	9	9	9		4	6		7	4		5		6	9	m	2
	e Xylen	Q mg/kg	<0.0011	<0.0010	<0.0011	<0.0011	<0.0011	17.3	103	<0.0054	<0.0054	0.00642	0.0112	<0.0055	<0.0053	<0.0023	<0.0052		<0.0050	<0.0055	0.199	<0.0053	<0.0059	0.152	<0.0056	2.26	<0.0058	<0.0051	<0.00553	<0.0053
BTEX ²	Ethylbenzen	mg/kg	<0.00114	<0.00109	<0.00111	<0.00111	<0.00115	0.924	7.66	<0.000602	<0.000603	<0.000623	<0.000617	<0.000615	<0.000594	<0.000644	<0.000583		<0.000558	<0.00062	0.0156	<0.000595	<0.000659	<0.00062	<0.000626	0.0505	<0.000653	<0.000573	<0.000613	<0.00059
	Toluene	mg/kg Q	:0.00227	:0.00217	:0.00222	:0.00222	0.00230	7.97	36.0	:0.00142	:0.00142	0.00293 J	0.00452 J	:0.00145	:0.00140	:0.00152	:0.00138	-	:0.00132	:0.00146	0.00865	<0.0014	:0.00155	0.00294 J	:0.00148	0.313	:0.00154	:0.00135	0.00145	:0.00139
	e	Ø	4	6	1	1	2			44	5	2	99	4	8	۰ 9	4		1 <	8	7	61	- 20	3 J	'3 V		5 J <	2	33	2 2
	Benzei	mg/kg	<0.0011	<0.00109	<0.0011	<0.0011	<0.0011	0.240	3.24	<0.00045	<0.00045	<0.0004	<0.00046	<0.00045	<0.00044	<0.00048	<0.004		<0.00042	<0.00046	<0.00047	<0.00044	<0.00049	0.00083	<0.00047	0.00336	0.00049	<0.00043	<0.00046	<0.00044
Chloride ¹	2010	111B/ KB	277	199	241	32.7	338	5,850	1,060	307	264	717	581	723	267	456	056'E	-	3,850	754	3,780	2,540	1,640	2,660	248	586	64.9	1420	289	061'1
FIELD SCREENING	PID*	bpm	33	38	38	22	36			63.0	60.2			10.9	20.2			16.3	37.0	19.0			61.2	68.9	58.3	425.1	16.0	83.8	381.0	283.0
Sample	Interval	ft. bgs	7	7	7	7	7	0-1	1-2	2-3	3-4	0-1	1-2	2-3	3-4	0-1	1-2	2-3	3-4	4-5	0-1	1-2	2-3	0-1	0-1	1-2	0-1	0-1	0-1	1-2
	Sample Date		10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/4/2018***	10/4/2018***	9/17/2018	9/17/2018	10/4/2018***	10/4/2018***	9/17/2018	9/17/2018	10/4/2018***	10/4/2018***	9/17/2018	9/17/2018	9/17/2018	10/4/2018***	10/4/2018***	9/17/2018	10/4/2018***	10/4/2018***	10/4/2018***	10/4/2018***	10/4/2018***	10/4/2018***	10/4/2018***
	Sample ID		SP-1	SP-2	SP-3	SP-4	SP-5			Т-ШО				7-110				BH-3				BH-4		BH-5		0-110	BH-7	BH-8	O Ha	

NOTES:			
ft.	Feet	Shaded inter	vals indicate areas initially proposed for soil blending.
bgs	Below ground surface	Bold and itali	cized values indicate exceedance of 100 mg/kg limit for TPH.
mg/kg	Milligrams per kilogram	В	The same analyte is found in the associated blank.
bpm	Parts per million	-	The identification of the analyte is acceptable; the reported value is an estimate.
ТРН	Total Petroleum Hydrocarbons	J3	The associated batch QC was outside the established quality control range for precision.
*	Field screening measurement	J5	The sample matrix interfered with the ability to make accurate determination; spike value is high.
1	Method 300.0	JG	The sample matrix interfered with the ability to make accurate determination; spike is low.
2	Method 8260B	>	The sample concentration is too high to evaluate accurate spike recoveries.
3	TCEQ Method 1005	Л	Not detected at the Sample Detection Limit (SDL).

Received by OCD: 11/8/2021 12:57:39 PM

					•				I	•	I				┝		I		l	•	I	
			Sample	*010	Chloride ¹					BTEX ²					-				₽	Η,		
Type	Sample ID	Sample Date	Interval		malla	Benzene		Toluene		Ethylbenzene		Xylene		Total BTEX		C ₆ - C ₁₂		C ₁₂ - C ₂₈		C ₂₈ - C ₃₅	-	Fotal TPH (C ₆ - C ₃₅)
		5	ft. bgs	bpm	111 B/ KB	mg/kg	σ	mg/kg	σ	mg/kg (л	mg/kg (~	mg/kg	۔ ۲	ng/kg (- a	mg/kg	- 0	mg/kg	σ	mg/kg
	AH-1	11/14/18	œ	49.1	1,060	<0.000437		<0.00137		<0.000579	<u> </u>	<0.00523				.0503		328		129		457.05
	AH-2	11/14/18	æ	103.9	1,900	<0.000435		<0.00136		<0.000576		<0.00520			-	0.538		476		159		635.54
	AH-3	11/14/18	œ	7.8	945	<0.000442		<0.00138		<0.000586		<0.00528		,	0	.0355 E	8	75.4		23.7		99.14
	AH-4	11/14/18	e	55.9	819	<0.000441		<0.00138		<0.000585		<0.00527		,		1.08		405	-	127		533.08
	AH-5	11/14/18	e	63.1	1,210	<0.000438		<0.00137		<0.000580		<0.00523			-	0.573		1,000	-	325		1,325.57
	AH-6	11/14/18	e	357.2	912	<0.00369		<0.0115		<0.00488		<0.0440				134		4,260	-	1,270		5,664
	AH-6 (6')*	11/30/18	9	588.0	637	<0.00359		0.00775		0.283		3.46		3.75		225		3,050	-	735		4,010
	AH-7	11/14/18	e	102.0	1,310	<0.000442		<0.00138		<0.000586		<0.00528				2.53		83.1	-	224		309.63
	AH-8	11/14/18	æ	712.1	686	0.03		1.0		0.81		11.7		11.7		582		6,590		1380		8,552
	AH-8 (6')*	11/30/18	9	1081.0	343	<0.00882		0.159		0.414		3.74		4.31		263		3,680		912		4,855
sə	AH-9	11/15/18	ю	21.1	1,850	<0.000445		<0.00139		<0.000590		<0.00532			-	0.066	_	112		44		156.07
lqm	AH-10	11/15/18	e	5.1	719	<0.000450		<0.00141		<0.000596		<0.00538				.0261	<u> </u>	15.4	-	14.1		29.53
es uc	AH-11	11/15/18	'n	3.9	541	<0.000451		<0.00141		<0.000597		<0.00539		,	v	0.0245		7.13	-	2.83		9.96
oiten	AH-12	11/15/18	e	7	947	<0.000434		<0.00135		<0.000575		<0.00518			v	0.0235		29.4	-	10.9		40.30
nitn	AH-13	11/15/18	æ	2.8	85	<0.000461		<0.00144		<0.000610		<0.00551		,	0	.0296	_	45.5		21.4		66.93
იე ə	AH-14	11/15/18	æ	2.4	424	<0.000433		<0.00135		<0.000573		<0.00517			0	.0243	_	3.38	- -	0.999	_	4.40
IOH I	AH-15	11/15/18	æ	3.1	377	<0.000460		<0.00144		<0.000609		<0.00549		,	v	0.0249		3.53	_	1.09	-	4.62
nott	AH-16	11/15/18	3	3.5	1,160	<0.000489		<0.00153		<0.000648	·	<0.00585		,	0	.0324	_	<1.97	~	<0.335		0.03
og	AH-17	11/15/18	3	1412	638	<0.00358		1.08		0.852		9.1		60.6		381		2,500		768		3,649
	AH-17 (4')*	11/16/18	4	714.1	409	<0.00363		0.51		0.10		7.65		7.65		345		1,950		366		2,661
	AH-17 (6')*	11/30/18	9	9.7	294	<0.000469		<0.00146		<0.000621		<0.00560			0	.0318	_	<1.89	~	<0.321		0.03
	AH-18	11/21/18	æ	1.8	1,060	<0.000467		<0.00146		<0.000618		<0.00558			v	0.0253		2.88	- -	2.30	_	5.18
	AH-19	11/19/18	3	4.9	788	<0.000479		<0.00150		<0.000634		<0.00572		,	v	0.0260		44.70		23.0	_	67.70
	AH-20	11/19/18	æ	475.1	1,650	<0.000470		<0.00147		0.00111	_	0.0143		.01541		12.2		1,100		262		1,374.20
	AH-21	11/19/18	3	122.0	1,510	<0.000479		<0.00150		<0.000635	•	<0.00573				1.29		119		47.8		168.09
	AH-22	11/27/18	2	618	2,340	0.081		3.26		1.85		21.8		26.991		443		6,710		2,660		9,813
	AH-22 (3')*	12/06/18	3	498	920	<0.00355		0.0280	ſ	0.0632		1.05		1.141		122		2,240		573		2,935
	AH-23	11/27/18	2	549	1,730	0.00154		0.235		0.231		2.45		2.9175		126		3,500		1,040		4,666
	AH-23 (3')*	12/06/18	ю	409	825	<0.000450		<0.00141		0.000731	_	0.103		.10373		90.5	-	939		211		1,240.50

TABLE 2	UMMARY OF ANALYTICAL RE	CONFIRMATION SOIL SAMPL	BUCK FEDERAL CTB
---------	-------------------------	-------------------------	------------------

	C ₁₂ - C,	Z O	С6- С, mg/kg	a d	Total BTI mg/kg	ď	Xylene mg/kg		CK FEDERAL (1RP-4275 1RP-4275 A COUNTY, N BTEX ² Ethylbenze mg/kg		Toluen mg/kg	a 0	Benzen mg/kg	ω <mark>fe</mark> ₁
8	C ₁₂ - C	12	C ₆ - C ₁	X	Total BTI		Xylene	ene	Ethylbenze	പ	Toluen	e	Benzen	6
									BTEX ²					e1
								⊵	A COUNTY, N	LE/				
									1RP-4275					
								ШB	CK FEDERAL (BUG				
							DNI	AMPL	VTION SOIL S	FIRM	CONI			
							SULTS	AL RE	JF ANALYTIC	ARY C	SUMM			

Ype Sample ID Sample ID Dat Dat Dat I11/14 Sommples NSW-1 111/14 Sommples NSW-3 111/14 SSW-1 111/14	te Interval (1. bgs 1/18 5/18 1/18 1/18)/18)/18)/18	ppm 11.3	mg/kg	Benzene		Toluene	Ethylbenzene	Xylene		Total BTEX		C ₆ - C ₁₂	C ₁₂ - C	C ₂₈	C ₂₈ - C ₃₅	٦	tal TPH (C ₆ - C ₃₅)
Confirmation Samples NSW-1 11/14 NSW-2 11/15 NSW-3 11/12 SSW-1 11/12	ft. bgs 1/18	ppm 11.3	111 B/ NB														
Confirmation Samples NSW-1 11/14 NSW-2 11/15 NSW-3 11/12 SSW-1 11/12	1/18 5/18 3/18 1/18 2/18 2/18 2/18	11.3		mg/kg	σ	mg/kg Q	mg/kg C	t mg/kg	σ	mg/kg C	Ω m£	3/kg Q	mg/kg	Ø	mg/kg	σ	mg/kg
Confirmation Samples NSW-1 11/14 NSW-2 11/15 NSW-3 11/12 SSW-1 11/14	V/18	11.3															
Confirma Sampli NSW-3 11/19 SSW-1 11/14 SSW-1 11/14	5/18 3/18 1/18 5/18 0/18 2/18	-	441	<0.000434	v	:0.00136	<0.000575	<0.00519			0.0	1574 BJ	330		142		472.06
δ ⁶⁵ NSW-3 11/19 SSW-1 11/14)/18 1/18 1/18 2/18 2/18	52.4	2670	<0.000420		0.00166	<0.000557	<0.00502			0.2	206	808		349		1,157.21
SW-1 11/14	1/18	2.2	202	0.000438	~ _	:0.00137	<0.000580	<0.00523		0.000438	<0.(0237	10.8		8.74	_	19.54
E SSW-1 11/14	//18								ŀ			-	-			$\left \right $	
	;/18	221.3	1520	<0.000441	~	:0.00138	<0.000584	0.00614	-	0.000614	5.0	916	552		194		747
Dec SSW-2 11/15)/18	623.2	3450	0.323		5.1	1.5	15.5		15.5	9	69	8440		2760		11,869
SSW-3 11/20	7/18	50.1	467	<0.000438	v	:0.00137	<0.000580	<0.00523			0.0	l 706	104	J3,J5	55.5		159.59
SSW-4 11/27	- 0	325	1320	<0.000426	_	0.00172 J	0.000992 J	0.611		0.613712	Э.	54	1320		554		2,228
1111 1111 1111	14.0				┢	_					┝	-				┝	
51/TT T-MSM S9		517.9	354	<0.00353		0.134	0.00654 J	7.53	╡	7.67054	2	53	8780		2170	+	11,503
m wsw-2 11/16	5/18 -	3.9	343	<0.000422	v	<0.00132	<0.000560	<0.00505		,	<0.(0229	2.25	-	2.61	_	4.86
o wsw-3 11/16	5/18 _	9	553	<0.000444	J3 *	<0.00139 J3	<0.000588 J£	\$ <0.00531	J3	,	0.0	1362 J	17.1		10.9		28.04
ti WSW-4 11/16	5/18 -	693.2	1440	<0.00352		2.13	0.92	12.4		15.45	4	87	13300	>	2800		16,587
WSW-5 11/27	7/18 -	607	723	<0.000435	-	0.00179	0.00204 J	0.0174		0.02123	2.	97	142		59.3		204.27
С wsw-6 11/21	1/18 -	1.5	114	<0.000412	~	<0.00129	<0.000546	<0.00492	_		1	14	9.48		8.87	_	132.35
					┢				┠		┝	$\left \right $		F	╞	┝	
<u>e</u> ESW-1 11/14	4/18 -	35.1	1990	<0.000442	×	<0.00138	<0.000585	<0.00528	+		0.0	1623 B,J	329		159		488.06
BESW-2 11/16	5/18 _	21.8	1300	<0.000423	v	<0.00132	0.000771	<0.00506		,	0.0	1522 J	317		123		440.05
o ESW-3 11/16	5/18 -	4.7	252	<0.000433	v	<0.00135	<0.000574	<0.00518		,	0.0	l 1298 J	3.7		5.28		9.01
ESW-4 11/16	5/18 -	572.9	1360	<0.00354		1.31	1.25	12.9		15.46	4.	39	2830		1130		4,399
ESW-5 11/27	7/18 -	594	1700	0.00565		0.441	0.353	5.78		6.57965	1	70	4050		1550		5,770
G ESW-6 11/21	1/18 -	3.4	610	<0.000413	v	÷0.00129	<0.000547	<0.00493			0.0	1342 J	105		54.8		159.83

NOTES: *

These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

ft.	Feet	Bold and	talicized values indicate exceedance of proposed RRALs.
bgs	Below ground surface	в	The same analyte is found in the associated blank.
mg/kg	Milligrams per kilogram	ſ	The identification of the analyte is acceptable; the reported value is an estimate.
bpm	Parts per million	J3	The associated batch QC was outside the established quality control range for precision.
ТРН	Total Petroleum Hydrocarbons	J5	The sample matrix interfered with the ability to make accurate determination; spike value is high.
×	Field screening measurement	JG	The sample matrix interfered with the ability to make accurate determination; spike is low.
1	Method 300.0	>	The sample concentration is too high to evaluate accurate spike recoveries.
2	Method 8260B	Л	Not detected at the Sample Detection Limit (SDL).
3	TCEQ Method 1005		

Page 2 of 2

•

		Sample	:	:						BTE	X ²							трн ³			
Sample ID	Sample Date	Interval	Field Screen	ing Kesults	Chloride	_	Benzene	-	Toluene	Ethvlb	enzene	Xvlene		Total BTEX	GRO (C C.	⁴	DRO (C.º - C,	("	ORO (C C.		TPH (C₃ - C₄₀)
		ft hac	Chloride	DID				_							5	6		9	P- 97-1	3	10t- 8-1
		11 Ugo	ıdd	m	mg/kg	σ	mg/kg	σ	mg/kg Q	mg/k	g Q	mg/kg	σ	mg/kg	mg/kg	σ	mg/kg	ď	mg/kg	ď	mg/kg
		0-1	220	0.0	143		< 0.00106	·	¢ 0.00528	< 0.002	.64	< 0.00686			0.0763	ВJ	3.02	~	< 4.22	_	3.0963
BH-19-1	10/08/19	2-3	189	0.0	86.7		< 0.00109		< 0.00543	< 0.002	:71	< 0.00705			0.0766	βJ	7.07		16.4		23.5466
		4-5	NN	0.0	126		< 0.00108	~	: 0.00538	< 0.002	69	< 0.00700			0.0837	ВJ	< 4.31		0.362	ſ	0.4457
		0-1	148	2.2	30.0	В	< 0.00108	~	: 0.00540	< 0.002	570	< 0.00702			0.0691	ВJ	< 4.32		0.837	ſ	0.9061
BH-19-2	10/08/19	2-3	127	6.0	77.7		< 0.00108	-	< 0.00540	< 0.002	:70	< 0.00702			0.0767	βJ	< 4.32		0.488	ſ	0.5647
		4-5	MN	8.0	59.7		< 0.00108	· ·	: 0.00539	< 0.002	69	< 0.00701			0.0718	ВJ	< 4.31		< 4.31		0.0718
		0-1	158	7.9	80.7		< 0.00107	·	< 0.00534	< 0.002	.67	< 0.00694			0.0739	ВJ	< 4.27	-	0.903	~	0.9769
		2-3	153	0.6	69.7		< 0.00106	~	< 0.00528	< 0.002	.64	< 0.00686			0.0690	ВJ	< 4.22		4.14	ſ	4.2090
C 01 H 0	10/08/10	4-5	124	12.3	74.4		< 0.00106	~	¢ 0.00532	< 0.002	.66	< 0.00692			0.0819	ВJ	< 4.26		0.786	-	0.8679
C-6T-UQ	ET /ON/NT	6-7	69.8	8.8	15.5	В	< 0.00103	~	< 0.00513	< 0.002	56	< 0.00667	Η		0.0698	ВJ	< 4.10		< 4.10		0.0698
		9-10	201	10.7	129		< 0.00104	~	: 0.00521	< 0.002	:61	< 0.00678			0.0811	ВJ	< 4.17		< 4.17		0.0811
		14-15	281	9.4	121		< 0.00105	~	< 0.00526	< 0.002	.63	< 0.00684			0.0780	ВJ	< 4.21		< 4.21		0.0780
		0-1	NM	7.1	42.9	В	< 0.00110	~	: 0.00549	< 0.002	:75	< 0.00714			< 0.110		< 4.39		< 4.39		
		2-3	91.4	10.4	47.7		< 0.00108	~	: 0.00541	< 0.002	:70	< 0.00703		1	< 0.108		< 4.32		< 4.32		
DH-10-4	10/00/01	4-5	NM	0.6	53.2		< 0.00112	~	: 0.00559	< 0.002	579	< 0.00726		ı	< 0.122		< 4.47		0.562	ſ	0.562
t-01-10	CT /00 /01	6-7	240	10.7	66.4		< 0.00105	V	< 0.00525	< 0.002	:63	< 0.00683		ı	< 0.105		< 4.20		< 4.20		
		9-10	NM	10.9	200		< 0.00106	~	: 0.00528	< 0.002	.64	< 0.00686		I	0.0323	ВJ	< 4.22		0.293	٦	0.3253
		14-15	165	8.5	76.0		< 0.00102	~	¢ 0.00509	< 0.002	55	< 0.00662			0.0298	ВJ	< 4.07		< 4.07		0.0298
NOTES:																					

Bold and italicized values indicate exceedance of RRALs.

- 1 Method 300.0
 - Method 8260B 2

 - Method 8015 m
- Method 8015D/GRO 4
- The same analyte is found in the associated blank. в
- The identification of the analyte is acceptable; the reported value is an estimate. _
 - Diesel range organics Oil range organics DRO ORO

Total Petroleum Hydrocarbons Gasoline range organics

ТРН GRO

mg/kg Milligrams per kilogram

Not measured

MN

ppm Parts per million

Below ground surface

bgs

Feet

¥

.

APPENDIX A C-141 Forms

reived by OCD: 11/8/2021 12:57:39 PM	Page 20 of 34
District I State of S	of New Mexico
District II Energy Minera	Is and Nat By JKeyes at 10:28 am, May 12, 2016
District III Oil Cons	Servation Division Submit 1 Copy to appropriate District Office in
District IV 1220 Sou	uth St. Francis Dr.
220 S. St. Francis Dr., Santa Fe, NM 87505 Santa	Fe, NM 87505
Release Notification	on and Corrective Action
	OPERATOR Initial Report Final Report
Name of Company: ConocoPhillips	Contact: Joseph McLaughlin Telephone No. 806-567-2790
Facility Name: Buck Federal CTB	Facility Type: Central Tank Battery
Surface Owner: NMOCD Mineral Owne	er: NMOCD API No.
LOCATIC	N OF RELEASE
Unit LetterSectionTownshipRangeFeet from theNoP1726S32ENo	rth/South Line Feet from the East/West Line County rth West LEA
Latitude N32°2'14" Longitude W103°41'48"	T OF DELEASE
Type of Release: Produced Water Spill	Volume of Release: 6 BBLS Volume Recovered: 5 BBLS
Source of Release: Produced Water tank over flow (see Lat/Long	Date and Hour of Occurrence Date and Hour of Discovery 05/11/2016 11/2016
above). Was Immediate Notice Given?	U5/11/2016 11:00 am U5/11/2016 11:40 am If YES, To Whom?
🛛 Yes 🗌 No 🗌 Not Requir	ed Jamie Keyes, NMOCD Jim, BLM
By Whom? Joseph McLaughlin	Date and Hour: 05/12/2016 08:10 am
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.
If a Watercourse was Impacted. Describe Fully.*	
Describe Cause of Problem and Remedial Action Taken.*	
Describe Area Affected and Cleanup Action Taken.*	
A 6 BBL Produced Water release occurred on the ConocoPhilli	ps Buck Federal CTB located in Lea County. New Mexico: MSO was
preparing to start up SWD. MSO removed locks and opened va	lves to send water from other facilities. Another MSO was passing by when
he noticed water in berm, notified MSO to close valves from ot	her facilities. After further investigation MSO saw fluid coming from body
of a 3 inch valve. Vacuum truck was called to location 5 barrels and COPC policies with confirmation soil samples	were recovered. Location will be remediated in accordance with NMOCD
and core ponetes with commutation son samples.	
I hereby certify that the information given above is true and complete t	to the best of my knowledge and understand that pursuant to NMOCD rules and
public health or the environment. The acceptance of a C-141 report by	the NMOCD marked as "Final Report" does not relieve the operator of liability
should their operations have failed to adequately investigate and remed	liate contamination that pose a threat to ground water, surface water, human health
or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	rt does not relieve the operator of responsibility for compliance with any other
	OIL CONSERVATION DIVISION
Joseph McLaughlin	
Signature:	Approved by Environmental Specialist: Jam Physe
Printed Name: Joseph McLaughlin	
Title: HSE	Approval Date: 05/12/2016 Expiration Date: 07/12/2016
E-mail Address: .loe P Mcl aughlin@conoconhilling.com	Conditions of Approval:
E-mail Address. JOE.F.McLaughnin@conocophinips.com	Discrete samples only. Delineate and remediate per
	NMOCD guidelines.
Date: 05/12/2016 Phone:806-567-2790	
ttach Additional Sheets If Necessary	nJXK1613337497
	pJXK1613337629

Page 3

Oil Conservation Division

	Page 21 of 348
Incident ID	nJXK1613337497
District RP	1RP-4275
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	$\frac{125}{\text{hgs}}$ (ft
Did this release impact groundwater or surface water?	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	$\Box Yes \boxtimes No$
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	$\Box Yes \boxtimes No$
Are the lateral extents of the release within 300 feet of a wetland?	
Are the lateral extents of the release overlying a subsurface mine?	
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No
1	🗌 Yes 🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/8	8/2021 12:57:39 PM	` 0	r	Page 22 of
			Incident ID	nJXK1613337497
age 4	Oil Conservation Divi	sion	District RP	1RP-4275
			Facility ID	
			Application ID	
regulations all operators public health or the env failed to adequately inv addition, OCD acceptar and/or regulations. Printed Name: jenn Signature: email:	s are required to report and/or file certain relea ironment. The acceptance of a C-141 report b estigate and remediate contamination that pos- ice of a C-141 report does not relieve the oper i.fortunato@cop.com unato@cop.com	Asse notifications and perform converses of the OCD does not relieve the e a threat to groundwater, surfated ator of responsibility for compositive for compositive for the end of the end	prrective actions for rele e operator of liability sh ice water, human health liance with any other fe ger, Risk Management & 	eases which may endanger ould their operations have a or the environment. In deral, state, or local laws & Remediation
Received by:		Date:		

Received by OCD: 11/8/2021 12:57:39 PM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

	Page 23 of 34	8
Incident ID	nJXK1613337497	
District RP	1RP-4275	
Facility ID		
Application ID		

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Jenni Fortunato Title: Program Manager, Remediation Date: 11/8/21 Signature: email: jenni.fortunato@cop.com Telephone: 832-486-2477 **OCD Only** Received by: Date: Approved with Attached Conditions of Approval Approved Denied Deferral Approved Hall ittan Date: 10/11/2022 Signature:

APPENDIX B NMOSE Groundwater Data Karst Potential Map

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=P been O=or C=the close	OD has replaced phaned, e file is d)	1,	(qua (qua	rter	s a s a	re 1: re si	=NW :	2=NE 3 st to lar	3=SW 4=SE) ·gest) (NA) AD83 UTM in me	eters)	(1	n feet)	
POD Number	Code	POD Sub- basin (Count	Q :y 64	Q 16	Q 4	Sec	Tws	Rng	х	Y	Distance	Depth Well	Depth Water	Water Column
C 03537 POD1		CUB	LE	3	2	3	21	26S	32E	624250	3543985 🌍	1801	850		
C 02271 POD2		CUB	LE	3	2	3	21	26S	32E	624348	3544010* 🌍	1848	270	250	20
<u>C 02323</u>		С	LE	3	2	3	21	26S	32E	624348	3544010* 🌍	1848	405	405	0
<u>C 02271</u>	R	CUB	LE		2	3	21	26S	32E	624449	3544111* 🌍	1848	150	125	25
C 03595 POD1		CUB	LE	4	2	3	21	26S	32E	624423	3544045 🌍	1874	280	180	100
											Avera	ge Depth to	Water:	240	feet
												Minimum	Depth:	125	feet
												Maximum	Depth:	405	feet
Record Count: 5						_									

UTMNAD83 Radius Search (in meters):

Easting (X): 623092.15

Northing (Y): 3545365.88

Radius: 2000

Page 27 of 348

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/5/21 11:07 AM

APPENDIX C Laboratory Analytical Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Von Norman Stingray Environmental & Construction 11420 W County Rd 33 Midland, TEXAS 79707

Project: Concho Phillips Buck Federal Project Number: Concho Phillips Buck Federal Location:

Lab Order Number: 7J26001

NELAP/TCEQ # T104704516-16-7

Report Date: 11/03/17

Page 1 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1 7'	7J26001-01	Soil	10/19/17 12:12	10-26-2017 09:00
SP2 7'	7J26001-02	Soil	10/19/17 12:41	10-26-2017 09:00
SP3 7'	7J26001-03	Soil	10/19/17 13:17	10-26-2017 09:00
SP4 7'	7J26001-04	Soil	10/19/17 13:52	10-26-2017 09:00
SP5 7'	7J26001-05	Soil	10/19/17 15:17	10-26-2017 09:00

1400 Rankin HWY Midland. TX 79701 432-686-7235

Page 2 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

SP1 7'

		7J260	001-01 (Soi	1)		-		_	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin E	Environme	ntal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00114	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00227	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00114	mg/kg dry	Í	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xvlene (p/m)	ND	0.00227	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xvlene (o)	ND	0.00114	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.8 %	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1.4-Difluorobenzene		95.8%	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	28.4	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	125	28.4	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	186	28.4	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		98.3 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		110 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	311	28.4	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EP	A / Standard Metho	ds		_	_		-		
Chloride	277	1.14	mg/kg dry	1	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	12.0	0.1	%	I	P7J2701	10/27/17	10/27/17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the sampler received in the laboratory. This analytical report must be reproduced in its entirenwith written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 3 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Proj Project Numi Project Manaj	ect: Concho ber: Concho ger: Von No) Phillips Bu Phillips Bu orman	ick Federal ick Federal			Fax:	
			SP2 7'						
		7 J 26	001-02 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environme	ntal Lab. I	L.P.				
Organics by GC		1.6							
Benzene	ND	0.00109	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021E	
Toluene	ND	0.00217	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	I	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.3 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.2 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	77.1	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	83.3	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	÷
Surrogate: 1-Chlorooctane		100 %	70-1	130	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		113 %	70-1	130	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	160	27.2	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	Standard Method	ls			_		_		_
Chloride	199	1.09	mg/kg dry	1	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	8.0	0.1	%	I	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samplerreceived in the laboratory. This analytical report must be reproduced in its entirery with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 4 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707	Project: Concho Phillips Buck Federal Fax: Project Number: Concho Phillips Buck Federal Project Manager: Von Norman								
			SP3 7'						
		7J260	001-03 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin F	Invironme	ntal Lab.	L.P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	T	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xvlene (p/m)	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.4 %	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.8%	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: I-Chlorooctane		100 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		113 %	70-130		P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	ND	27.8	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA /	Standard Metho	ds		_				and the state of	
Chloride	241	1.11	mg/kg dry	1	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the sampler received in the laboratory. This analytical report must be reproduced in its entirem with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 5 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Project: Concho Phillips Buck Federal Fax: Project Number: Concho Phillips Buck Federal Project Manager: Von Norman							
			SP4 7'						
		7J26	001-04 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin I	Environme	ntal Lab, I	L.P.				
Organics by GC		_							
Benzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.2 %	75-,	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.3 %	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		101 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		116 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	ND	27.8	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	Standard Metho	ds			_		_		
Chloride	32.7	1.11	mg/kg dry	1	P7J3004	10/30/17	10/30/17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 6 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707	Project: Concho Phillips Buck Federal Fax: Project Number: Concho Phillips Buck Federal Project Manager: Von Norman								
			SP5 7'						
		7 J26	001-05 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin H	Environme	ntal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00115	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021E	
Toluene	ND	0.00230	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.4 %	75-1	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		86.5 %	75	125	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	37.6	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	33.3	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	-
Surrogate: 1-Chlorooctane		101 %	70	130	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		111 %	70-130		P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	70.8	28.7	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA /	Standard Metho	ds	_		_				
Chloride	338	5.75	mg/kg dry	5	P7J3004	10/30/17	10/30/17	EPA 300.0	
% Moisture	13.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samplerreceived in the laboratory. This analytical report must be reproduced in its entirem with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 7 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Project: Concho Phillips Buck Federal Project Number: Concho Phillips Buck Federal Project Manager: Von Norman								x.		
	0	rganics by	GC - Q	uality Co	ontrol							
	Pern	nian Basin	Environmental Lab, L.P.									
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch P7J2703 - General Preparation (G	C)							_				
Blank (P7.12703-BLK1)				Prepared &	Analyzed:	10/27/17						
Benzene	ND	0.00100	mg/kg wet									
Coluene	ND	0.00200	n									
Sthylbenzene	ND	0.00100	**									
Kylene (p/m)	ND	0.00200										
Xylene (o)	ND	0.00100	•*									
Surrogate: 1.4-Difluorobenzene	0.0566		"	0.0600		94.4	75-125					
Surrogate: 4-Bromofluorobenzene	0.0544		ii -	0.0600		90.6	75-125					
LCS (P7J2703-BS1)				Prepared &	Analyzed	: 10/27/17						
Benzene	0.115	0.00100	mg/kg wet	0.100		115	70-130					
Toluene	0.112	0.00200		0.100		112	70-130					
Ethylbenzene	0.119	0.00100		0.100		119	70-130					
Kylene (p/m)	0.225	0.00200					70-130					
Xylene (o)	0.120	0.00100	. Н				70-130-					
Surrogate: 1,4-Difluorobenzene	0.0641		"	0.0600		107	75-125					
Surrogate: 4-Bromofluorobenzene	0.0641		"	0.0600		107	75-125					
LCS Dup (P7J2703-BSD1)				Prepared &	2 Analyzed	: 10/27/17		_				
Benzene	0.103	0.00100	mg/kg wet	0.100		103	70-130	11.0	20			
Toluene	0.103	0.00200	"	0.100		103	70-130	8.40	20			
Ethylbenzene	0.112	0.00100		0.100		112	70-130	5.72	20			
Xylene (p/m)	0.223	0.00200	а.				70-130		20			
Xylene (o)	0.116	0.00100	7				70-130		20			
Surrogate: 4-Bromofluorobenzene	0.0579		"	0.0600		96.5	75-125					
Surrogate: 1,4-Difluorobenzene	0.0533		n	0.0600		88.9	75-125					
Calibration Blank (P7J2703-CCB1)				Prepared &	& Analyzed	1: 10/27/17						
Benzene	0.00		mg/kg wet									
Toluene	0.00											
Ethylbenzene	0.00											
Xylene (p/m)	0.00											
Xylene (o)	0.00											
Surrogate: 4-Bromofluorobenzene	0.0519		"	0.0600		86.5	75-125					
Surrogate- 1 4-Difluorabenzene	0.0520		"	0.0600		86.7	75-125					

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 8 of 15
Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2703 - General Preparation (GC)							_		_	
Calibration Check (P7J2703-CCV1)				Prepared &	Analyzed:	10/27/17				
Benzene	0.106	0.00100	mg/kg wet	0.100		106	80-120			
Tohuene	0.101	0.00200	н	0.100		101	80-120			
Ethylbenzene	0.107	0.00100	, m	0.100		107	80-120			
Xylene (p/m)	0.236	0.00200		0.200		118	80-120			
Xylene (0)	0.118	0.00100		0.100		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.0594		"	0.0600		99.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.0565		n	0.0600		94.2	75-125			
Calibration Check (P7J2703-CCV2)				Prepared &	Analyzed:	10/27/17				
Benzene	0.114	0.00100	mg/kg wet	0.100		114	80-120			
Toluene	0.106	0.00200		0.100		106	80-120			
Ethylbenzene	0.107	0.00100	n	0.100		107	80-120			
Xylene (p/m)	0.227	0.00200		0.200		113	80-120			
Xylene (o)	0.111	0.00100		0.100		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.0590		r	0.0600		98.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.0574		"	0.0600		95.7	75-125			
Matrix Spike (P7J2703-MS1)	Sou	irce: 7J26001	-05	Prepared &	Analyzed	: 10/27/17				
Benzene	0.0983	0.00115	mg/kg dry	0.115	ND	85.5	80-126			
Toluene	0.0996	0.00230	п	0.115	ND	86.7	80-120			
Ethylbenzene	0.114	0.00115	u.	0.115	ND	99.1	80-120			
Xylene (p/m)	0.200	0.00230			ND		80-120			
Xylene (o)	0.0892	0.00115			ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0831		"	0.0690		121	75-125			
Surrogate: 1.4-Difluorobenzene	0.0848			0.0690		123	75-125			
Matrix Spike Dup (P7J2703-MSD1)	So	urce: 7J26001	-05	Prepared &	k Analyzed	: 10/27/17				
Benzene	0.0900	0.00115	mg/kg dry	0.115	ND	78.3	80-120	8.83	20	QM-07
Toluene	0.0835	0.00230	n	0.115	ND	72.7	80-120	17.6	20	QM-07
Ethylbenzene	0.103	0.00115		0.115	ND	89.5	80-120	10.2	20	
Xylene (p/m)	0.183	0.00230			ND		80-120		20	
Xylene (o)	0.0883	0.00115	n		ND		80-120		20	
Surrogate: 1,4-Difluorobenzene	0.0700		n	0.0690		101	75-125			
Surrogate: 4-Bromofluorobenzene	0.0775			0.0690		112	75-125			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 9 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	A/DEC	%REC	DDD	RPD	Notas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Linn	INOLES
Batch P7J2713 - General Preparation (GC)										
Blank (P7J2713-BLK1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	n							
Surrogate: 1-Chlorooctane	103		⁽)	100		103	70-130			
Surrogate: o-Terphenyl	59.2		.11	50.0		118	70-130			
LCS (P7J2713-BS1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	869	25.0	mg/kg wet	1000		86.9	75-125			
>C12-C28	902	25.0		1000		90.2	75-125			
Surrogate: 1-Chlorooctane	112		n	100		112	70-130			
Surrogate: o-Terphenyl	54.9			50.0		110	70-130			
LCS Dup (P7J2713-BSD1)				Prepared:	10/27/17 A	nalyzed: 10)/31/17			
C6-C12	872	25.0	mg/kg wet	1000		87.2	75-125	0.425	20	
>C12-C28	930	25.0	ų	1000		93.0	75-125	3.04	20	
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	55.4		н	50.0		111	70-130			
Calibration Blank (P7J2713-CCB1)				Prepared:	10/27/17 A	nalyzed: 10)/31/17			
C6-C12	24.3		mg/kg wet							
>C12-C28	14.8									
Surrogate: 1-Chlorooctane	97.3		n	100		97.3	70-130			
Surrogate: o-Terphenyl	58.0		<i>n</i> .	50.0		116	70-130			
Calibration Blank (P7J2713-CCB2)				Prepared:	10/27/17 A	nalyzed: 10	0/31/17			
C6-C12	22.0		mg/kg wet							
>C12-C28	20.5		10							
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenyl	56.9		н.	50.0		114	70-130			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707	Project: Concho Phillips Buck Federal Fax: Project Number: Concho Phillips Buck Federal Project Manager: Von Norman									C.
	O Perm	rganics by tian Basin	GC - 0 Enviro	Quality Co onmental l	ontrol Lab, L.P					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch P7J2713 - General Preparation (GC)										_
Calibration Check (P7J2713-CCV1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
c6-C12	492	25.0	mg/kg we	et 500		98.5	85-115			
·C12-C28	496	25.0	'n	500		99.2	85-115			
urrogate: 1-Chlorooctane	110		.#	100		110	70-130			
urrogate: o-Terphenyl	57.6		."	50.0		115	70-130			

Calibration Check (P7J2713-CCV2)				Prepared: 1	0/27/17 A	nalyzed: 10)/31/17	
C6-C12	477	25.0	mg/kg wet	500		95.4	85-115	
>C12-C28	490	25.0	. 6	500		98.0	85-115	
Surrogate: 1-Chlorooctane	115		<i>n</i> .	100		115	70-130	
Surrogate: o-Terphenyl	56.4		"	50.0		113	70-130	
Calibration Check (P7J2713-CCV3)			1000	Prepared: 1	0/27/17 A	nalyzed: 10	0/31/17	
C6-C12	479	25.0	mg/kg wet	500		95.8	85-115	
>C12-C28	510	25.0	"	500		102	85-115	
Surrogate: 1-Chlorooctane	116		*	100		116	70-130	
Surrogate: o-Terphenyl	56.9		"	50.0		114	70-130	
Matrix Spike (P7J2713-MS1)	Sourc	e: 7J26001	-04	Prepared: 1	0/27/17 A	nalyzed: 10	0/31/17	
C6-C12	927	27.8	mg/kg dry	1110	25.7	81.1	75-125	
>C12-C28	1110	27.8		1110	25.9	97.9	75-125	

C6-C12	479	25.0	mg/kg wet	500	95.8	85-115
>C12-C28	510	25.0	"	500	102	85-115
Surrogate: 1-Chlorooctane	116			100	116	70-130
Surrogate: o-Terphenyl	56.9			50.0	114	70-130

Matrix Spike (P7J2713-MS1)	Sourc	e: 7J26001	-04	Prepared: 1	0/27/17 A	nalyzed: 10	/31/17	
C6-C12	927	27.8	mg/kg dry	1110	25.7	81.1	75-125	
>C12-C28	1110	27.8		1110	25.9	97.9	75-125	
Surrogate: 1-Chlorooctane	114		<i>.</i>	111		102	70-130	
Surrogate: o-Terphenyl	58.6		н	55.6		105	70-130	

Matrix Spike Dup (P7J2713-MSD1)	Sourc	e: 7J26001	-04	Prepared: 1	0/27/17 A	nalyzed: 10	0/31/17			
C6-C12	959	27.8	mg/kg dry	1110	25.7	84.0	75-125	3.54	20	
~C12-C28	1150	27.8		1110	25.9	102	75-125	3.67	20	
Surrogate: 1-Chlorooctane	117		*	111		106	70-130			
Surrogate: o-Terphenyl	60.1		н	55.6		108	70-130			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 11 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	Dente	Reporting	TTeste	Spike	Source	%PEC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70REC	Linnis	KrD	Lunit	THORES
Batch P7J2701 - *** DEFAULT PREP ***	_			_				_		_
Blank (P7J2701-BLK1)				Prepared &	Analyzed:	10/27/17				
% Moisture	ND	0.1	9/2							
Duplicate (P7J2701-DUP1)	Sou	rce: 7J25003-	-08	Prepared &	k Analyzed:	10/27/17			_	
% Moisture	10.0	0.1	%		8.0			22.2	20	
Duplicate (P7J2701-DUP2)	Sou	rce: 7J26001	-05	Prepared &	z Analyzed:	10/27/17				
% Moisture	13.0	0.1	%		13.0			0.00	26	
Batch P7J3001 - *** DEFAULT PREP ***										
Blank (P7J3001-BLK1)				Prepared &	& Analyzed:	10/30/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7J3001-BS1)				Prepared &	Analyzed:	10/30/17				
Chloride	426	1.00	mg/kg wet	400		106	80-120			
LCS Dup (P7J3001-BSD1)				Prepared &	& Analyzed:	10/30/17				
Chloride	426	1.00	mg/kg wet	400		107	80-120	0.141	20	
Duplicate (P7J3001-DUP1)	Sou	rce: 7J24003	-11	Prepared &	& Analyzed:	10/30/17				
Chloride	2980	11.6	mg/kg dry		3010			0.765	20	
Duplicate (P7J3001-DUP2)	Sou	irce: 7J24006	-03	Prepared &	& Analyzed:	10/30/17				
Chloride	3490	27.2	mg/kg dry		3460			0.900	20	
Matrix Spike (P7J3001-MS1)	Sou	irce: 7J24003	-11	Prepared &	& Analyzed	10/30/17		_		
Chloride	4240	11.6	mg/kg dry	1160	3010	107	80-120			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 12 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J3004 - *** DEFAULT PREP ***										
Blank (P7J3004-BLK1)				Prepared &	& Analyzed:	10/30/17				
Chloride	ND	1.00	mg/kg wet	2.1						
LCS (P7J3004-BS1)				Prepared &	k Analyzed:	10/30/17				
Chloride	426	1.00	mg/kg wet	400		106	80-120			
LCS Dup (P7J3004-BSD1)				Prepared &	Analyzed:	10/30/17				
Chloride	421	1.00	mg/kg wet	400		105	80-120	1.21	20	
Duplicate (P7J3004-DUP1)	Sou	rce: 7J26001	-04	Prepared &	Analyzed:	10/30/17				
Chloride	26.3	1.11	mg/kg dry		32.7			21.7	20	R
Matrix Spike (P7J3004-MS1)	Sou	rce: 7J26001	-04	Prepared &	Analyzed:	10/30/17				
Chloride	1220	1.11	mg/kg dry	1110	32.7	107	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 13 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Notes and Definitions

R2	The RPD exceeded the acceptance limit.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Date: 11/3/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 14 of 15

Received by OCD: 11/8/2021 12:57:39 PM

Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT September 27, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1026990
Samples Received:	09/19/2018
Project Number:	212C-MD-0724
Description:	Buck Fed
Site:	BUCK FED
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
BH-1 (2-3) L1026990-01	6
BH-1 (3-4) L1026990-02	7
BH-2 (2-3) L1026990-03	8
BH-2 (3-4) L1026990-04	9
BH-3 (3-4) L1026990-05	10
BH-3 (4-5) L1026990-06	11
BH-4 (2-3) L1026990-07	12
Qc: Quality Control Summary	13
Total Solids by Method 2540 G-2011	13
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	17
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23
Sc: Sample Chain of Custody	24

PROJECT: 212C-MD-0724

SDG: L1026990

DATE/TIME: 09/27/18 14:44

PAGE: 2 of 29

SAMPLE SUMMARY

ONE LAB. NAT Page 46 of 348

BH-1 (2-3) L1026990-01 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 10:40	Received date/time 09/19/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1169499	1	09/21/18 11:40	09/21/18 11:53	KDW
Wet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 17:35	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 06:04	BIMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG11/0148	1	09/20/18 14:50	09/23/18 06:59	ЛНН
Semi-Volatile Organic Compounds, (GC) by Method 82006	WG1169304	1	09/20/18 14.50	09/26/18 01.12	ΔΔΤ
	Wertesser 1		03/25/10 03.52	00/20/10/00.00	,
			Collected by	Collected date/time	Received date/time
BH-1 (3-4) L1026990-02 Solid			Clint Merritt	09/17/18 10:45	09/19/18 08:45
/lethod	Batch	Dilution	Preparation	Analysis	Analyst
Intal Solids by Method 2540 G-2011	WG1160/00	1	09/21/18 11·40	09/21/18 11:53	KDW
Nat Chamistry by Method 300.0	WC1168638	1	09/21/10 11.40	09/21/10 11.33	ELN
Act chemisury by memory 500.0 Alatile Organic Compounds (CC) by Method 2015D/CDO	WG1100030	1	09/20/10 01.07	03/24/10 17.32 09/22/18 06.25	
Volatile Organic Compounds (GC/MS) by Method 8260R	WC11701/12	1	09/20/18 1/-50	09/22/18 07:22	ІНП
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1170732	1	09/20/18 14.50	09/26/18 01:32	PI
Semi-Volatile Organic Compounds (GC) by Method 8005	WG1169304	1	09/25/18 09:52	09/26/18 10:13	AAT
			Collected by	Collected date/time	Received date/time
3H-2 (2-3) L1026990-03 Solid			Clint Merritt	09/17/18 11:30	09/19/18 08:45
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1169501	1	09/22/18 11:33	09/22/18 11:41	KDW
Vet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 18:01	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 06:46	BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 20:19	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 10:26	AAT
			Collected by	Collected date/time	Received date/time
BH-2 (3-4) L1026990-04 Solid			Clint Merritt	09/17/18 11:35	09/19/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	· ·····je ·
otal Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD
Vet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 18:10	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:07	BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 20:38	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 10:38	AAT
			Collected by	Collocted data lim-	Deceived data Hima
			Conected by		
3H-3 (3-4) LIU26990-05 Solid				03/17/10 12.23	00/10/10 00.40
/ lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD
Wet Chemistry by Method 300.0	WG1168638	10	09/20/18 01:07	09/24/18 18:19	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:28	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 20:58	JHH
Sami Valatila Organic Compounds (CC) by Mathad 2015	WG1169304	1	09/25/18 09:52	09/26/18 10.51	ΔΔΤ

PROJECT: 212C-MD-0724

SDG: L1026990

PAGE: 3 of 29 Wet Chemistry by Method 300.0

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

ONE LAB. NAT Rage A. of 348

ELN

BMB

JHH

AAT

GI

AI

Sc

BH-3 (4-5) L1026990-06 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 12:30	Received date/time 09/19/18 08:45	¹ Cp
Method	Batch	Dilution	Preparation	Analysis	Analyst	2
Tatal Calida hu Mathad 2540 C 2011	WC11C0000	1	date/time	date/time	ID	Tc
Wet Chemistry by Method 300.0	WG1168638	1	09/20/18 15:18	09/20/18 15:28	ELN	3
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:49	BMB	ଁSs
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 21:17	JHH	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 11:03	AAT	⁴ Cn
BH-4 (2-3) L1026990-07 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 13:30	Received date/time 09/19/18 08:45	⁵ Sr
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	⁶ Qc
Total Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD	7

5

1

1

1

09/20/18 01:07

09/20/18 14:50

09/20/18 14:50

09/25/18 09:52

09/24/18 18:54

09/22/18 08:10

09/22/18 21:37

09/26/18 11:16

WG1168638

WG1169146

WG1170228

WG1169304

PROJECT: 212C-MD-0724

SDG: L1026990

DATE/TIME: 09/27/18 14:44 PAGE: 4 of 29

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 90/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-0724

SDG: L1026990 DATE/TIME:

09/27/18 14:44

PAGE: 5 of 29

SAMPLE RESULTS - 01

Â

Sc

Collected date/time: 09/17/18 10:40

Total Solids by M	lethod 2540 G-20)11								1
	Result	Qualifier	Dilution	Analysis	6	Batch				— Cp
Analyte	%			date / ti	me					2
Total Solids	88.0		1	09/21/2	018 11:53	WG1169499				Tc
Wet Chemistry by Method 300.0									³ Ss	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	9	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	307		0.903	}	10.0	11.4	1	09/24/2018 17:35	WG1168638	
Volatile Organic	Compounds (GC)	by Metho	d 8015	D/GR	С					⁵ Sr

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိQင
TPH (GC/FID) Low Fraction	0.0696	J	0.0247	0.100	0.114	1	09/22/2018 06:04	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.3				77.0-120		09/22/2018 06:04	WG1169146	7 CI
									UI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000454	0.00100	0.00114	1	09/23/2018 06:59	WG1170148
Toluene	U		0.00142	0.00500	0.00568	1	09/23/2018 06:59	WG1170148
Ethylbenzene	U		0.000602	0.00250	0.00284	1	09/26/2018 01:12	WG1170732
Total Xylenes	U		0.00543	0.00650	0.00738	1	09/26/2018 01:12	WG1170732
(S) Toluene-d8	113				75.0-131		09/23/2018 06:59	WG1170148
(S) Toluene-d8	117				75.0-131		09/26/2018 01:12	WG1170732
(S) Dibromofluoromethane	91.3				65.0-129		09/23/2018 06:59	WG1170148
(S) Dibromofluoromethane	86.9				65.0-129		09/26/2018 01:12	WG1170732
(S) a,a,a-Trifluorotoluene	104				80.0-120		09/23/2018 06:59	WG1170148
(S) a,a,a-Trifluorotoluene	107				80.0-120		09/26/2018 01:12	WG1170732
(S) 4-Bromofluorobenzene	101				67.0-138		09/23/2018 06:59	WG1170148
(S) 4-Bromofluorobenzene	87.4				67.0-138		09/26/2018 01:12	WG1170732

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	32.6	<u>J5</u>	1.83	4.00	4.54	1	09/26/2018 09:35	WG1169304
C28-C40 Oil Range	9.86		0.311	4.00	4.54	1	09/26/2018 09:35	WG1169304
(S) o-Terphenyl	50.0				18.0-148		09/26/2018 09:35	WG1169304

SDG: L1026990 DATE/TIME: 09/27/18 14:44

SAMPLE RESULTS - 02 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time	—	2
Total Solids	87.9		1	09/21/2018 11:53	WG1169499	Tc

Wet Chemistry by Method 300.0

	D 11 / 1 1	0 110	601 (J)			B		D + 1	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	264		0.905	10.0	11.4	1	09/24/2018 17:52	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	264		0.905	10.0	11.4	1	09/24/2018 17:52	WG1168638	CII	
Volatile Organic Comp	ounds (GC) k	by Method	8015D/GI	RO					⁵Sr	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc	
TPH (GC/FID) Low Fraction	0.0567	J	0.0247	0.100	0.114	1	09/22/2018 06:25	WG1169146		
(S) a,a,a-Trifluorotoluene(FID)	96.5				77.0-120		09/22/2018 06:25	WG1169146		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	09/23/2018 07:23	WG1170148
Toluene	U		0.00142	0.00500	0.00569	1	09/23/2018 07:23	WG1170148
Ethylbenzene	U		0.000603	0.00250	0.00284	1	09/26/2018 01:32	WG1170732
Total Xylenes	U		0.00544	0.00650	0.00739	1	09/26/2018 01:32	WG1170732
(S) Toluene-d8	113				75.0-131		09/23/2018 07:23	WG1170148
(S) Toluene-d8	117				75.0-131		09/26/2018 01:32	WG1170732
(S) Dibromofluoromethane	90.9				65.0-129		09/23/2018 07:23	WG1170148
(S) Dibromofluoromethane	90.4				65.0-129		09/26/2018 01:32	WG1170732
(S) a,a,a-Trifluorotoluene	105				80.0-120		09/23/2018 07:23	WG1170148
(S) a,a,a-Trifluorotoluene	105				80.0-120		09/26/2018 01:32	WG1170732
(S) 4-Bromofluorobenzene	100				67.0-138		09/23/2018 07:23	WG1170148
(S) 4-Bromofluorobenzene	83.1				67.0-138		09/26/2018 01:32	WG1170732

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.1		1.83	4.00	4.55	1	09/26/2018 10:13	WG1169304
C28-C40 Oil Range	10.9		0.312	4.00	4.55	1	09/26/2018 10:13	WG1169304
(S) o-Terphenyl	61.2				18.0-148		09/26/2018 10:13	WG1169304

SDG: L1026990

SAMPLE RESULTS - 03 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	86.2		1	09/22/2018 11:41	WG1169501	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	723		0.922	10.0	11.6	1	09/24/2018 18:01	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounas (GC) r	by Method	8015D/GI	RO					
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0268	J	0.0252	0.100	0.116	1	09/22/2018 06:46	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		09/22/2018 06:46	WG1169146	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000464	0.00100	0.00116	1	09/22/2018 20:19	WG1170228
Toluene	U		0.00145	0.00500	0.00580	1	09/22/2018 20:19	WG1170228
Ethylbenzene	U		0.000615	0.00250	0.00290	1	09/22/2018 20:19	WG1170228
Total Xylenes	U		0.00554	0.00650	0.00754	1	09/22/2018 20:19	WG1170228
(S) Toluene-d8	118				75.0-131		09/22/2018 20:19	WG1170228
(S) Dibromofluoromethane	94.0				65.0-129		09/22/2018 20:19	WG1170228
(S) a,a,a-Trifluorotoluene	99.3				80.0-120		09/22/2018 20:19	WG1170228
(S) 4-Bromofluorobenzene	97.5				67.0-138		09/22/2018 20:19	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.95	J	1.87	4.00	4.64	1	09/26/2018 10:26	WG1169304
C28-C40 Oil Range	0.785	J	0.318	4.00	4.64	1	09/26/2018 10:26	WG1169304
(S) o-Terphenyl	72.7				18.0-148		09/26/2018 10:26	WG1169304

SDG: L1026990

DATE/TIME: 09/27/18 14:44 PAGE: 8 of 29

SAMPLE RESULTS - 04 L1026990

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.2		1	09/20/2018 15:28	WG1169089	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	567		0.891	10.0	11.2	1	09/24/2018 18:10	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	0.0510	J	0.0243	0.100	0.112	1	09/22/2018 07:07	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		09/22/2018 07:07	WG1169146	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000448	0.00100	0.00112	1	09/22/2018 20:38	WG1170228
Toluene	U		0.00140	0.00500	0.00560	1	09/22/2018 20:38	WG1170228
Ethylbenzene	U		0.000594	0.00250	0.00280	1	09/22/2018 20:38	WG1170228
Total Xylenes	U		0.00536	0.00650	0.00729	1	09/22/2018 20:38	WG1170228
(S) Toluene-d8	118				75.0-131		09/22/2018 20:38	WG1170228
(S) Dibromofluoromethane	89.0				65.0-129		09/22/2018 20:38	WG1170228
(S) a,a,a-Trifluorotoluene	103				80.0-120		09/22/2018 20:38	WG1170228
(S) 4-Bromofluorobenzene	83.6				67.0-138		09/22/2018 20:38	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	73.1		1.80	4.00	4.48	1	09/26/2018 10:38	WG1169304
C28-C40 Oil Range	26.7		0.307	4.00	4.48	1	09/26/2018 10:38	WG1169304
(S) o-Terphenyl	73.9				18.0-148		09/26/2018 10:38	WG1169304

SDG: L1026990

DATE/TIME: 09/27/18 14:44 PAGE: 9 of 29

A

Sc

SAMPLE RESULTS - 05 L1026990

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	94.9		1	09/20/2018 15:28	WG1169089	ר	Γ

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	3850		8.38	10.0	105	10	09/24/2018 18:19	WG1168638	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc		
TPH (GC/FID) Low Fraction	0.101	J	0.0229	0.100	0.105	1	09/22/2018 07:28	WG1169146			
(S) a,a,a-Trifluorotoluene(FID)	95.8				77.0-120		09/22/2018 07:28	WG1169146	7 CI		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	09/22/2018 20:58	WG1170228
Toluene	U		0.00132	0.00500	0.00527	1	09/22/2018 20:58	WG1170228
Ethylbenzene	U		0.000558	0.00250	0.00263	1	09/22/2018 20:58	WG1170228
Total Xylenes	U		0.00504	0.00650	0.00685	1	09/22/2018 20:58	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 20:58	WG1170228
(S) Dibromofluoromethane	89.0				65.0-129		09/22/2018 20:58	WG1170228
(S) a,a,a-Trifluorotoluene	100				80.0-120		09/22/2018 20:58	WG1170228
(S) 4-Bromofluorobenzene	95.2				67.0-138		09/22/2018 20:58	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	95.6		1.70	4.00	4.21	1	09/26/2018 10:51	WG1169304
C28-C40 Oil Range	57.3		0.289	4.00	4.21	1	09/26/2018 10:51	WG1169304
(S) o-Terphenyl	57.7				18.0-148		09/26/2018 10:51	WG1169304

SDG: L1026990

DATE/TIME: 09/27/18 14:44

PAGE: 10 of 29

SAMPLE RESULTS - 06 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	
Total Solids	85.5		1	09/20/2018 15:28	<u>WG1169089</u>		T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	754		0.930	10.0	11.7	1	09/24/2018 18:45	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	0.0488	J	0.0254	0.100	0.117	1	09/22/2018 07:49	WG1169146		
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		09/22/2018 07:49	WG1169146	7 Cl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000468	0.00100	0.00117	1	09/22/2018 21:17	WG1170228
Toluene	U		0.00146	0.00500	0.00585	1	09/22/2018 21:17	WG1170228
Ethylbenzene	U		0.000620	0.00250	0.00292	1	09/22/2018 21:17	WG1170228
Total Xylenes	U		0.00559	0.00650	0.00760	1	09/22/2018 21:17	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 21:17	WG1170228
(S) Dibromofluoromethane	89.5				65.0-129		09/22/2018 21:17	WG1170228
(S) a,a,a-Trifluorotoluene	99.0				80.0-120		09/22/2018 21:17	WG1170228
(S) 4-Bromofluorobenzene	101				67.0-138		09/22/2018 21:17	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.76	J	1.88	4.00	4.68	1	09/26/2018 11:03	WG1169304
C28-C40 Oil Range	1.80	J	0.320	4.00	4.68	1	09/26/2018 11:03	WG1169304
(S) o-Terphenyl	79.6				18.0-148		09/26/2018 11:03	WG1169304

DATE/TIME: 09/27/18 14:44

SAMPLE RESULTS - 07 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	80.5		1	09/20/2018 15:28	WG1169089	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	d 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	1640		4.94	10.0	62.1	5	09/24/2018 18:54	WG1168638	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/G	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	G
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0404	J	0.0270	0.100	0.124	1	09/22/2018 08:10	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.0				77.0-120		09/22/2018 08:10	WG1169146	7 GI
									UI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00100	0.00124	1	09/22/2018 21:37	WG1170228
Toluene	U		0.00155	0.00500	0.00621	1	09/22/2018 21:37	WG1170228
Ethylbenzene	U		0.000659	0.00250	0.00311	1	09/22/2018 21:37	WG1170228
Total Xylenes	U		0.00594	0.00650	0.00808	1	09/22/2018 21:37	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 21:37	WG1170228
(S) Dibromofluoromethane	91.1				65.0-129		09/22/2018 21:37	WG1170228
(S) a,a,a-Trifluorotoluene	99.6				80.0-120		09/22/2018 21:37	WG1170228
(S) 4-Bromofluorobenzene	86.4				67.0-138		09/22/2018 21:37	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.00	4.00	4.97	1	09/26/2018 11:16	WG1169304
C28-C40 Oil Range	U		0.341	4.00	4.97	1	09/26/2018 11:16	WG1169304
(S) o-Terphenyl	70.9				18.0-148		09/26/2018 11:16	WG1169304

SDG: L1026990

DATE/TIME: 09/27/18 14:44

Rece	ived (by O C		11/8 ო	/202 ()	4 1 2	2:5	7:39 10	נ ר א ר	လို	لے ا	ō	۳ ۵		Sc						P	age	56 o	f 34	8
ONE LAB. NATIONWIDE.																								PAGE	13 of 29
																								DATE/TIME:	09/27/18 14:44
NTROL SUMMARY 90-04.05.06.07																								SDG:	L1026990
QUALITY CON								DUP Qualifier Limits	%	10			ts LCS Qualifier											PROJECT:	12C-MD-0724
0		MB RDL	%			P)	co	IP RPD		2			Rec. Limit	% 0E 0 11E	0.00										21
		MB MDL	%			cate (DU	9/20/18 15:2	Dilution DU	%	1 4.8			LCS Rec.	%	00										
110		MB Qualifier				e (OS) • Dupl	P) R3343796-3 C	It DUP Result	%	87.4	-CS)		t LCS Result	200 200	0.00										ch
) :hod 2540 G-20	1B)	20/18 15:28 MB Result	%	0.00100		ginal Sample	20/18 15:28 • (DU	Original Resu	%	83.3	rol Sample (I	/20/18 15:28	Spike Amoun	% EO 0	0.000									ACCOUNT:	coPhillips - Tetra Te
WG116908:	post Powerhod Blank (N	0 (MB) R3343796-1 09/2	Analyte	1 Total Solids	0/11	1027078-01 Ori	C(OS) L1027078-01 09/	11:5	Analyte	W Total Solids	Laboratory Cont	(LCS) R3343796-2 09		Analyte Total Solids											Conoc

Recei	ived L		· 11	/ <mark>8/202</mark>		:57	:39 	\mathbf{P}	္တိလိ	ل ۲	5	۶. ۳		° SC						Page	e 57 o	of 34	18
ONE LAB. NATIONWIDE.																							гачс. 14 of 29
																						C ATF/TIMIE.	UA I E/ 111/1E: 09/27/18 14:44
DNTROL SUMMARY						c	2															UQU	טעס: L1026990
DUALITY CO							DUP Qualifier UUP RF	%	10			s LCS Qualifier											PROJEC I: 2C-MD-0724
0		3 MDL MB RDL %			ate (DUP)	5C:11 81/1	ution DUP RPD	%	0.102			S Rec. Rec. Limits	%	0.00									212
011		<u>MB Qualifier</u> MI			le (US) • Duplic	H) K33441UU-3 U9/2	ilt DUP Result Di	%	92.8 1	LCS)		It LCS Result LC	%	0.00									ich
99 ethod 2540 G-20	(MB)	9/21/18 11:53 MB Result %	0.00100	- -	Uriginal Samp	107) • 56:11 81/17/60	Original Resu	%	92.9	ntrol Sample (I	9/21/18 11:53	Spike Amoun	%	0.00								-THILOUCK	ACCOUNT: 1000Phillips - Tetra Te
WG116945	pMethod Blank	05 (MB) R3344100-1 05	Survey Total Solids	10/11/) E0-286920L ⁻¹ 202	(02) LIU26982-03 (1:5	Analyte	WW Total Solids	Laboratory Coi	(LCS) R3344100-2 C		Analyte										Cor

Rece	ived l	y OCD: ∼	11/8. m	2021 1 5	8:5	7:39 10	ຍ P I ກ	ို္င္လ	_ ⊐	ō	"A	((0	Page 58 of 348	
ONE LAB. NATIONWIDE.													PAGE:	15 of 29
~													DATE/TIME:	09/27/18 14:44
CONTROL SUMMAR						RPD ts	2						SDG:	11076990
QUALITY (DL				DUP Qualifier DUP	%	10			Limits LCS Qualifier	115	PROJECT:	212C-MD-0724
		MB MDL MB R %		olicate (DUP)	09/22/18 11:41	Dilution DUP RPD	%	1 0.292			LCS Rec. Rec. 8	99.9 85.0-		
2 011		MB Qualifier		e (OS) • Dup	P) R3344382-3 (sult DUP Result	%	81.4	(LCS)		unt LCS Result %	50.0		ech
501 Method 2540 G-2	(MB) אר	 09/22/18 11:41 MB Result % 	0.00100	Original Sampl	1 09/22/18 11:41 • (DUI	Original Res	%	81.2	Control Sample	2 09/22/18 11:41	Spike Amou %	50.0	ACCOUNT:	ConocoPhillips - Tetra 1
WG1169!	p Method Blar	o (MB) R3344382-1 mainte	Total Solids	0/11/0 2/-1026991-01	200S) L1026991-01	11:5		WV WV	Laboratory ((LCS) R3344382-	Analyte	Total Solids		

WG116863	8 Method 300.0			Ø	UALITY	CONTR 26990-01,02,03	OL SU 3,04,05,06,	JMMAF <u> <u> </u> </u>	X			ONE LAB	. NATIONWIDE.	Rece
Method Blank	(MB)													ived (
0 (MB) R3344717-1 09, 2 Manalyte	/24/18 16:45 MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg										by OCD:
S. Chloride	2.73	-1	0.795	10.0										11
10/11/				ĺ										/ <mark>8/202</mark>
7 1.0-0669701-1202	Jriginal Sample	n u • (SO) e	plicate (DL	(H										12 v
0 1026990-01 0)9/24/18 17:35 • (DUF Original Result	 P) R3344717-4 t DUP Result 	09/24/18 17:44			JUP RPD							(;:57:
:20:	(dry) ma/ka	(dry) ma/ka				Limits %								3<u>9</u> P س
Chloride	307	256	1 18.	2		20								M c
L1027074-23 C)riainal Sample	(OS) • Du	plicate (DU	(d										Č
(OS) L1027074-23 0	9/24/18 21:32 • (DUF	o) R3344717-7	09/24/18 21:40											פ
~	Original Resul (dry)	t DUP Result (dry)	Dilution DU	JP RPD	OUP Qualifier	DUP RPD .imits								Þ
Analyte	mg/kg	mg/kg	%		2.	%							[
Chloride	7.66	78.5	1 23	Ľ	с Г	20								Sc
Laboratory Cor	ntrol Sample (L	.CS) • Labo	ratory Con	itrol Samp	ole Duplica	te (LCSD)								
(LCS) R3344717-2 0	9/24/18 16:54 • (LCS	D) R3344717-3	09/24/18 17:0.	e e e				-			-			
Analyte	spike Amount ma/ka	ma/ka	LCSD Result ma/ka	LLS Kec.	LCSD Kec.	Kec. Limits %	LCS QUAILI	iler LCSD QU			lits			
Chloride	200	217	217	108	108	90.0-110			0.0549	20				
L1026992-03 (Driginal Sample	e (OS) • Mã	atrix Spike	(MS) • Ma	trix Spike [Juplicate (M	SD)							
(OS) L1026992-03 C)9/24/18 19:20 • (MS) R3344717-5 (09/24/18 19:29	• • (MSD) R33	44717-6 09/24	/18 19:38								
	Spike Amount (dry)	Original Resul (dry)	It MS Result (dr.	y) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	613	7080	6160	9400	0000	378	←	80.0-120	≥]	E J3 V	41.7	20		
														Page 59 oj
Con	ACCOUNT: locoPhillips - Tetra Tec	÷		P 212(ROJECT: C-MD-0724		L10	;DG : 26990		DATE 09/27/	:/TIME: 18 14:44		PAGE : 16 of 29	f 348

	2
Q	3
4	
ò	0
9	č
	_
G	+
≥.	0
Re	l

CHALITY CONTROL SHMMARY

ATIONWIDE.	
ONE LAB. N	
J	

WG1169146				g	ΙΑΓΙΤΥ (CONTRO	DL SUM	MARY			ONE LAB. NATIONWIDE.	Re
Volatile Organic Comp	ounds (GC)	by Method 8(015D/GRO		L1026	990-01,02,03,0	04,05,06,07					cei
page (MB)												ved (
(MB) R3344624-3 09/22/	18 02:55											by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL								0C °
Analyte	mg/kg		mg/kg	mg/kg								
🙀 TPH (GC/FID) Low Fraction	П		0.0217	0.100								11
(S) 10, a, a-Trifluorotoluene(FID)	97.3			77.0-120								/ <mark>8/20</mark>
1/2												21 . v
022			+000									12: 0
	Jairipie (L		alory Corr		e Duplicate	(1001)						57:
C(LCS) R3344624-1 09/22/	18 01:52 • (LCS	3D) R3344624-2	2 09/22/18 02:1	13								39 ن
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier R	RD	RPD Limits		_P
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	, 0	%		/ 9
TPH (GC/FID) Low Fraction	5.50	5.91	5.85	107	106	72.0-127		-	.10	20		ğ
(S) a, a, a-Trifluorotoluene(FID)				111	110	77.0-120						, L
												פ
L1026920-03 Orig.	inal Sampl	e (OS) • Ma	trix Spike (I	MS) • Matr	ix Spike Du	plicate (MS	D)					هم ه

LIU26920-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

9
10:3
2/18
09/2
24-5
4462
R33
MSD)
2 • ()
3 10:1
22/18
/60
24-4
3446
B33
MS.
3:37
18 0
9/22/
ο̈́ ε
20-0
269.
() L10
00

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.95	0.373	4.81	5.09	63.9	67.9	-	10.0-151			5.60	28
(S) a, a-Trifluorotoluene(FID)					101	102		77.0-120				

SC

PAGE: 17 of 29

DATE/TIME: 09/27/18 14:44

SDG: L1026990

WG1170148 Volatile Organic Comp	ounds (GC/MS	S) by Method	d 8260B	9 C	ΑLITY (CONTRO 11026990-01	DL SL	IMMAR	≻			ONE LAB. NA	TIONWIDE.	Rece
Method Blank (MB)													-	ived
(MB) R3344568-1 09/22/1	3 23:32													by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL										0 C .
Analyte	mg/kg		mg/kg	mg/kg										D:
Benzene	П		0.000400	0.00100									_] [11
10 Juene	Π		0.00125	0.00500									()	8/4
[] (S) Toluene-d8	109			75.0-131										302
S) Dibromofluoromethane	97.1			65.0-129									2	
(S) a, a, a-Trifluorotoluene	109			80.0-120										0
(S) 4-Bromofluorobenzene	98.8			67.0-138										57:
aboratory Control	Sample (LC	(S)												39_PM
1 CC1 D2211E60 1 00122	10.00.01													ွိတိ
LUS) K3344300-4 U3/23/	la U3:34 Snika Amount	1 CC Docult		Dor Limite	LCC Oualifior									
Analyte	spike Allioulit ma/ba	ברט גפטעונ ma/l/m	רכס גפר.	אפר. בוווווא %									15	Ū
	6v/6	6v/6	- - - - - - - - - - - - - - - - - - -	2000 C										D
Benzene	0.125	0.0990	/9.2	/0.0-123										
Toluene	0.125	0.108	86.2	75.0-121										
(S) Toluene-d8			103	75.0-131										
(S) Dibromofluoromethane			89.7	65.0-129									0,	
(S) a,a,a-Trifluorotoluene			104	80.0-120										S S
(S) 4-Bromofluorobenzene			102	67.0-138										
L1026878-04 Origii	1al Sample	(OS) • Mat	rix Spike (N	1S) • Matri	k Spike Du	plicate (MSI	Ô							
(OS) L1026878-04 09/23/	18 04:38 • (MS) F	R3344568-2 (09/23/18 07:47	• (MSD) R334	1568-3 09/23	/18 08:10								
	Spike Amount	Original Result	MC Docult (dr.)	MSD Result	MC Doc		Dilution	Dor Limite	MC Oublifior			DDN I imite		
	(dry)	(dry)	(k in) tinsati civi	(dry)	MO REC.	MOD REC.	חומנוסוו							
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Benzene	0.149	0.312	0.856	0.745	45.8	36.5	∞	10.0-149			13.9	37		
Toluene	0.149	13.3	13.3	12.4	0.000	0.000	~	10.0-156) 	> □	6.99	38		
(S) Toluene-d8					107	102		75.0-131						
(S) Dibromofluoromethane					91.1	90.9		65.0-129						
(S) a,a,a-Trifluorotoluene					102	103		80.0-120						
(S) 4-Bromofluorobenzene					102	105		67.0-138						
														Page 61 o
AC	COUNT:			PRO	JECT:		<u>v</u>	DG:		DATE	e/TIME:		PAGE:	f 34

18 of 29

09/27/18 14:44

L1026990

212C-MD-0724

ConocoPhillips - Tetra Tech

~~	
	,
Ö	
$ \geq $,
7	
C	
≥	
R	0

QUALITY CONTROL SUMMARY

WG1170228				QUALITY CONTROL SUMMARY	IDE:
Volatile Organic Com	pounds (GC/M	S) by Metho	d 8260B	L1026990-03,04,05,06,07	ecei
pMethod Blank (MB	(ved (
(MB) R3344766-2 09/22/	18 19:59				by C
ma	MB Result	MB Qualifier	MB MDL	MB RDL	ОС. «
Analyte	mg/kg		mg/kg	mg/kg	
Senzene	Л		0.000400	0.00100	11
Ethylbenzene			0.000530	0.00250	/ <mark>8///</mark>
II oluene	Π		0.00125	0.00500	302
Xylenes, Total			0.00478	0.00650	4
55 (S) Toluene-d8	115			75.0-131	0
(S) Dibromofluoromethane	91.7			65.0-129	57:
S) a, a, a-Trifluorotoluene	101			80.0-120	39 س
(S) 4-Bromofluorobenzene	103			67.0-138	P <i>N</i>
3 AM					ي م

Laboratory Control Sample (LCS)

						ŗ
(LCS) R3344766-1 09/22/	18 18:51					Ū
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.118	94.4	70.0-123		₹
Ethylbenzene	0.125	0.104	83.4	74.0-126		σ
Toluene	0.125	0.120	96.0	75.0-121		Š
Xylenes, Total	0.375	0.368	98.1	72.0-127		
(S) Toluene-d8			104	75.0-131		
(S) Dibromofluoromethane			011	65.0-129		
(S) a,a,a-Trifluorotoluene			99.1	80.0-120		
(S) 4-Bromofluorobenzene			89.6	67.0-138		

L1027016-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05)11027016-06 09/22/18 23:34 • (MS) R3344766-3 09/23/18 02:50 • (MSD) R3344766-4 09/23/18 03:09

(00) LIVE/ 010-00 03/26	(CIVI) • +C.C2 01/		· 00.20 01/02/6		0100 t-001	00.00							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) ¹	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg r	ng/kg	%	%		%			%	%	
Benzene	0.144	ND	0.0733	0.112	50.9	L.LT	-	10.0-149		ег Г	41.7	37	
Ethylbenzene	0.144	ND	0.0927	0.148	64.3	102	1	10.0-160		бЦ	45.8	38	
Toluene	0.144	ND	0.0884 (0.134	61.3	92.7	1	10.0-156		EL 13	40.8	38	
Xylenes, Total	0.432	ND	0.306	0.479	70.7	111	1	10.0-160		бЦ	44.1	38	
(S) Toluene-d8					120	119		75.0-131					
(S) Dibromofluoromethane					92.1	93.1		65.0-129					
(S) a,a,a-Trifluorotoluene					94.2	95.1		80.0-120					
(S) 4-Bromofluorobenzene					94.7	97.4		67.0-138					
4	ACCOUNT:			PROJE	ECT:		S	:DG:		DATE/T	'IME:	<u>a</u>	AGE:
ConocoP	hillips - Tetra Tech	£		212C-ME	D-0724		L102	26990		09/27/18	: 14:44	10) of 29

\sim	,
\mathbf{c}	
\sim	
0	
\sim	,
1	
· ·	
C	
-	
>	
5	
-	
- R.	2

QUALITY CONTROL SUMMARY

WG1170732				QUALITY CONTROL SUMMARY	E LAB. NATIONWIDE.	Re
Volatile Organic Comp	ounds (GC/M	AS) by Methc	d 8260B	DB L1026990-01,02		ecei
powerhod Blank (MB)						ived
(MB) R3345262-3 09/26/1	8 00:33					by (
ma	MB Result	MB Qualifier	MB MDL	DL MB RDL) <i>C</i> .
Analyte	mg/kg		mg/kg	blybu		D : ⊢
🙀 Ethylbenzene	n		0.000530	530 0.00250		11
Xylenes, Total	Π		0.00478	78 0.00650		/8/
(S) Toluene-d8	116			75.0-131		302
(S) Dibromofluoromethane	91.9			65.0-129		
(S) a, a, a-Trifluorotoluene	105			80.0-120		8
(S) 4-Bromofluorobenzene	96.6			67.0-138		57:
:56:1						39_P I
E Laboratory Control	Sample (L	CS) • Labo	ratory Con	 Control Sample Duplicate (LCSD) 		
KLCS) R3345262-1 09/25/	18 23:14 • (LCS	D) R3345262-:	2 09/25/18 23	5/18 23:34		с У

 $\overline{\mathbb{O}}$

₹

SC

		•	•			•			
-CS) R3345262-1 09/25	5/18 23:14 • (LCSD)) R3345262-2	09/25/18 23:3	4					
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
unalyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
thylbenzene	0.125	0.108	0.0999	86.4	79.9	74.0-126		7.72	20
(ylenes, Total	0.375	0.381	0.355	102	94.7	72.0-127		7.07	20
(S) Toluene-d8				104	104	75.0-131			
(S) Dibromofluoromethane				011	011	65.0-129			
(S) a,a,a-Trifluorotoluene				102	103	80.0-120			
(S) 4-Bromofluorobenzene				86.4	87.6	67.0-138			

20 of 29 PAGE

09/27/18 14:44 DATE/TIME:

	C
04	danic
93(C C
0	li tel
()	i-Vo
ž	u e u
Re	l

CUIDITY CONTROL SUMMARY

WG1169304				Q	JALITY	CONTR(OL SUM	MARY		ONE LAB. NATIONWIDE.	R
Semi-Volatile Organi	ic Compounds	(GC) by Met	hod 8015		L102	5990-01,02,03,	04,05,06,07				ece
post Method Blank (MI	3)										ived g
(MB) R3345188-1 09/26	/18 08:58										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C.
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	Э		1.61	4.00							11
C28-C40 Oil Range			0.274	4.00							/ <mark>8//</mark>
(S) o-Terphenyl	89.3			18.0-148							302 ,
/20.											1
22											2.
Laboratory Contr	ol Sample (L	CS) • Labo	ratory Cont	trol Sampl	e Duplicate	(LCSD)					57.3
C(LCS) R3345188-2 09/2	6/18 09:10 · (LCSI	D) R3345188-3	09/26/18 09:2	23							3 9 ഗ
:13	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ں س
C10-C28 Diesel Range	50.0	43.7	37.3	87.4	74.6	50.0-150		15.8	20		、 グ
(S) o-Terphenyl				95.0	87.4	18.0-148					~
											Ū

L1026990-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026990-01 09/26	5/18 09:35 • (MS)	R3345188-4 05	9/26/18 09:48 •	(MSD) R3345	188-5 09/26/18	3 10:00						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	56.8	32.6	119	101	153	121	-	50.0-150	<u>J5</u>		16.4	20
(S) o-Terphenyl					75.7	83.5		18.0-148				

SC

₹

PAGE: 21 of 29

•

DATE/TIME: 09/27/18 14:44

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

	Describe any second stand has also also called a filler second a filler will exclude a second stand stands for excluding
(ary)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-0724

SDG: L1026990 DATE/TIME: 09/27/18 14:44

PAGE: 22 of 29

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Nevac
Arizona	AZ0612	New H
Arkansas	88-0469	New J
California	2932	New M
Colorado	TN00003	New Y
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky 16	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virgin
Minnesota	047-999-395	Washi
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyom

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LA000356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-0724

SDG: L1026990 DATE/TIME: 09/27/18 14:44 PAGE:

23 of 29

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

		8	lling Inform	vation:			-	An	alysis / Containe	/ Preservative			
onocoPhillips - Tetra T	ech	44	ccounts 001 N. Bi	Payable g Spring St., :	Ste. 401	Pres Chk							い
001 N. Big Spring St., Ste. 401 lidland, TX 79705		2	Aldiand,	CD/E/ VI			199		36			1	annas of Barness
iporto: 1201 - 72-120	1	ω.	mail To:	1	or							12065 Letamon #d Mount Juliet, TN 371, Phone: 615-758-5858	
NOIDE LIDEL		1	220	Cirv/State			10	1000				Fax: 615-758-5859	
oject escription: Buck Fed				Collected: Le	~ GNM							1# 1006	QUA
hone: 432-687-8137	lient Project #	100		Lab Project #								A179	-
-	V-2212	F0-0	40									Trent 1	
ollected by (print):	Ite/Facility ID #	Erd		P.O.#						E		Acctnum: COP Template:	TETRA
ollected by (signature):	Rush? (Lab	MUST Be No	stified)	Quote #		(inter			-			Prelogin:	
Colored V V	Same Day Next Day Two Day Three Day	5 Day (8	(Rad Only)	Date Rei	sults Needed	No.	EX	- H				PB: PB: Shioned Via:	t McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	19	12				L Remarks	Sample # (lah only)
011 12 21	dim-1	55		2/12	04:01	1	××	×				-	P
04 112 11	5	-			10:45	-	X	×					91
10 21			XG	100	10:50	-						×	
10	-				10:55	-					-	X	
14-11		-			11:00	1						X	
(11:05	-						x	
10-91	1	-			11:10	-						×	
10. 101	1			345	11:15	-						x	•
(2)-6) (-70	7	-			11:30	-	X	X			04		ça
12-12	>	P		>	111.35	-	×	XX					-04
• Matrix: SS -Soil AIR - Air F-Fitter GW 6 Coundwater B - Bloassay	Remarks:	high s	a spla	if tap 5	anyles exce	och 4	Sines C 4	4. 0.5 mR/I	PH How	Temp	COC Set COC SLG BOTTIES Correct	<pre>Sample FaceApt. il Present/Intac ned/Accurate:</pre>	N A ANY 11
DW - Drinking Water OT - Other	Samples return UPS 0 Fed	ted via: IExCour	ier		Tracking # 44.	6 02	429	2189	12190	¢	VOA Zer	If Acplication Readspace:	this Y N
Relinquished by : (Signature)		Date:		Time:	Receivedov: (Sign	(Janie)	X	1	Trip Blank Rec	HCL/MeoH			
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	oture)	1	1.0	Temp: 0.265-1	C Battles Received:	If preser	rvation required by I	.ogin: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab b	r. (Signat	(all		Date: 911910	Time:		09-0081	Complition:
			1		A LEAN	N/N							

			Billing Infor-	mation:		1		Ana	ivsis / Container / Preservative		-	Approx 10 UII	((((
ConocoPhillips - Tetra 001 N. Big Spring St., Ste. 401 Aidland, TX 79705	Tech		Accounts 4001 N. B Midland,	Payable ig Spring St., TX 79705	Ste. 401	Pres							
eport to: Kauls Tauls			Email To:	a Taylo	L						CI W	265 Lebanon Rd uum Milet, TM 373. one: 615-758-5853 one: 800-767-5855	
roject Description:				City/State Collected:	a CONN	0.67	1. EX.				2	1 1 1 1 1	aldin
hone: 432-687-8137	Client Project /			Lab Project #			201				21	IUMO	11/1
ax:	-2212	-40-00	724								Ta	able#	
ollected by (print):	Site/Facility ID	"		P.O.#			-			100	A F	potnum: COP	TETRA
collected by (signature):	Rush? (L	ab MUST Be I	Votified)	Quote #		1258					ē.	relogin:	
mmedlately Parked on Ice N Y	Same Day Next Day Two Day	ry Five D r 5 Day r 10 Day	ey (Rad Only) y (Rad Only)	Date Re	sults Needed	No.	XI	-		-	P	5R. 526 - Chris 8:	McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Critrs	18	12			°H	Remarks	Sample # (Jab only)
RU-214-5)	1.000/	22		±1/6	11:40	1				*	X		
15-61	-	-			11:45	1	1019			•	×		
(2-7)				10.0	11:50	-	-			-	×		
(7-8)				100	11:55	-	-				×		
16-91				_	00:21	-				-	X :		
(01-10)				_	12:05	-				•	<		
BH-3 (3 - 4)	All I	-			12:25	-	×	X					51
(4-5)				_	02:21	-	×	×		-			90
(2-5)	_			_	12:35	-					X		
(8-2)	7	P		>	01:21	-	-			•	×	a second second	the state of the state
• Matrix: 55 - Soil AlR - Air F - Filter GW - Groundwater B - Bioassay WV - WasteWater	Remarks:				RAD SO	REEN:	<0.5 m	R/hr	pH Temp Flow Other	0.000	Sampa Seal Pre Signed/A ties arti credt bott	s recently ment/intact ve intact: les uned:	HAN .
DW - Drinking Water OT - Other	Samples retu	rned vla: edExCou	rier		Tracking # 44	98	3429	718	2/ 2190	TON INC	A Zero Hea	If Applica	ble
Relinquished by : (Signature)		Date: 7/18		Time: (S:20	Rentined by Billing	A Real	1		Trip Blank Received: Yes (No) HCL7 M TBR	Ho	50 45 00 - H 20		
Relinquished by : (Signature)		Date:		Time:	Received by: (Signa	(inte		1.1	Temp: °C Bottles Receiv	ed: If p	reservation	required by L	ogin: Date/ Ilme
Refinquished by : (Signature)		Date:		Time:	Received for lab by	(Signatur	(e)		gliglig OS4	£	ïÞ		
					アイシント	N			111110				

		Billing	nformation:				Anary	is / container / Fre-	Servative		T	(()
onocoPhillips - Tetra T	ech	Accou	ints Payable Ni bio Coning St	Ste 401	2 3					761	*	7
001 N. Big Spring St., Ste. 401 Iidland, TX 79705		Midla	nd, TX 79705									autoria Caraona
eporto: Kaula Taylor			and ta	Alor		10				200	12065 Lebanon Ri Mount Juliet, TN 3 Phone: 615-758-5 Phone: 800-767-5	
oject Buck Feel			City/State Collected:	en Co Nr				1			Fax: 615-758-585	TIMA IN THE T
hone: 432-687-8137	lient Project #	00-72	Lab Project#								1 Table #	410
ollected by (print):	tte/Facility ID #		P.O.#			1			210		Acctnum: CC Temnlate:	PTETRA
ollected by (signature):	Rush? (Lab	MUST Be Notified	() Quote #								Prelogin:	
Colores mmediately Y 2	Next Day Two Day Three Day	S Day (Rad On 10 Day (Rad O	N) Date Re niv)	esults Needed	PLO.	HA	-1				PB: PB: Shipped Via:	ris McCord
Sample ID	Comp/Grab	Matrix * Dep	oth Date	Time	KC S	T	2				He Remarks	Sample # (lab on
(x-010 110	1 2000/	55	£1/0	17:50	1						X	
19-10)				72:55	-						×	
(10-11)			-	13:00	-						x	
(21-11)				13:05	-						X	
(12-(3)	100		-	13:10							X	
(41-61)			-	13:15		-					×	
BH-4(1-2)	8	-	-	13-25	X or	X	×,					F
(5-2)		+	-	12:21	X	×	×				×	
(1	;	>	13:40	-						X	
Matrix: 55 - Soil All All F-Filter 56 - Groundwater B - Bioassay	Remarks:	A		h		1.10		pH Ter	du	COC S COC S Bottl	Sample Receipt al Present/Int gned/Accurate: s arrive intac	ct: fir y
WW - WasteWater DW - Drinking Water	Samples, returne	ed via:		RAD S	CREEN	<0.5 m	RAhr	Mold Mold		Suffi	tient volume se If Appli	nt: _/
01 - Other	- UPS Kedt	ExCourier		Tracking # 443.	34	2 67	Est	2190	Vol No.	VOA Z	sto Headspace: tvation Correct	/checked: 7
Re linquished by : (Signature)	1	51/18	Time: 15:20	Received by (Signal	Harris	X		ір вкалк меселлен.	HCL/MeoH TBR			I anim Dura (Tim
Relinquished by : (Signature)		Date:	Time:	Received by: (Sigher	ure)		F14	mp: 1 °C B	ottles Received.	If pres	ervation required o	rogin valet mi
Relinquished by : (Signature)		Date:	Time:	Received for lab by:	Signature			ate: T	me: NX4.S	Hold:		(Not / 1

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 C		40	alveis / Container /	Preservative		Chain of Custody	Page 4 of a
ConocoPhillips - Tetra	Tech		ccounts	Payable	101	Pres					C S
1001 N. Big Spring St., Ste. 401 Midland, TX 79705		4 <	001 N. Bi Aidland,	g Spring St., IX 79705	Ste. 401					1.5-2 E-4-1	and the second
report to: Karle Taylor		<u>u</u>	Kord	ta) a	lor					12055 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859	
Project R. U Fr.				City/State Collected: Ce	Le UN					Fac 415-758-5859	
Phone: 432-687-8137	Client Project #	1	12	Lab Project #		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1975 1977	-	"" IUUUU	0
Fax:	2126-1	20-00	+22	and the second se						Table #	
Collected by (print):	Site/Facility ID	121		P.O.#						Acctnum: COPT	ETRA
Collected by (signature):	Rush? (La	b MUST Be N	otified)	Quote #						Prelogin:	
Immediately Packed on Ice N Y	Same Day Next Day Two Day	5 Day (F 10 Day	r tad Only) (Rad Only)	Date Re-	ults Needed	No. Of			2)	TSR: 526 - Chris I PB: Skinned Viar	McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Contra			H	Semarks	Sample # (Jab only)
(7-71 nD	loab	55		モリトレ	13:45	-			X		
12-71	1	-			13:50	-			×	and and a	
17.0)					12:55				X		
10-01	105				14:00	4			×	N PH IN	
[a-10]	100-			1	14:05	_			×		
1115-11	10				14:10	1			X		
(11-12)	No. of Concession, Name				14.15	1			×		
(17 -13)				_	14:20				×		
(11-14)		1			14:25	-			×		
(14-15)	7	7		7	14:30				X	And the local sector	antif ter
Matrix: Ss - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - Watewater	Remarks:				- HAB-SO	MEENL <0.5 mB/hr	PH Flow	TempOther	coc Seal coc Signe Bottles a Correct b	Present/Intact d/Accutate: rrive intact:	N N N N N N N N N N N N N N N N N N N
DW - Drinking Water OT - Other	Samples retur	ned via: dExCour	ier		Tracking # 44	30 3429 2189	25190		VOA Zero	If Applicab Headspace:	20
Relinquished by (Signature)		Date: 9/18		15:30	Repetition (Sign	ature) C	Trip Blank Receiv	ed: Yes/No HCL/MeoH TBR			
Relinquished by : (Signature)		Date:	N.	lime:	Received by: (Sign	ature)	Temp: 00	Bottles Received:	If preservat	don required by Lo	gin: Date/Hime
Relinquished by : (Signature)	1	Date:	19	Time:	Received for lab b	y: (Signature)	Date: 01 19 18	Time: D\$45	Hold:		(NCO / OK
					A Second						

			and the second				technic (Container / Precentative		Chain of Custody	Page S of S
ConocoPhillips - Tetra	Tech		Accounts	Payable tie Spring St	Ste 401	Pres			H	C
4001 N. Big Spring St., Ste. 401 Miclland, TX 79705			Midland,	TX 79705	104.920				1.5.8 8.A.1	E-N-C-E-E
Reporto: Kayla Trylo			Email To:	the tax	loc				12065 Lehanon Rd Mount Milet, TN 37122 Phone: 615-758-5858 Bhone: 615-758-5858	
Project E. L	3			City/State Collected: Z	a Could	/			Fax: 615-758-5859	
Phone: 432-687-8137	Client Project			tab Project #					L# 1070040	0
Collected by (print):	Site/Facility ID	"Fed		P.O.#	1000				Acctnum: COPTE	TRA
Collected by (signature):	Rush? (L	ab MUST Be I	Notified)	Quote #				Ster.	Template: Prelogin:	
Immediately Packed on ice N Y	Next Day Next Day Three Di	y 5 Day	ay (Rad Only) y (Rad Only)	Date Re	sults Needed	No.		1910	TSR: 526 - Chris M PB:	cCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		24	Shipped Via: Remarks	ample # (lab only)
BH-4(15-12)	Crab	SS	1	21/2	S D: H/			×		
	1.5.								1000	
and the second										
-3										
en en	1000									
1	1	-								
1	-									
-										
 Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater 	Remarks:				RAD SCF	REEN: <0.5 mR/hr	pH Temp	COC Seal 2 COC Seal 2 COC Signed Bottles ar Correct bo	ple Receipt Cher resent/Intact: /Accurate: rive intact: ttles used:	ALL
DW - Drinking Water OT - Other	Samples retu	rned via: edEx Cou	rier	1	Tracking# 443	0 3429 24991	0612,	VOA Zero B	volume sent; If Applicable sadspace:	
Relinquished by : (Signature)		Date:		11me: 15:30	Rechweldeby: JSigna	for f	Trip Blank Received: Yes / 60 HCL/1060H	Preservati	on gorrect/LDec	
Re linquisited by : (Signature)		Date:		Time:	Received by. (Signa	ture)	Temp: "C Bottles Received	If preservatio	on required by Login	: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab by	e (Signature)	Date: Time: [9][9][8 0845	Hold:		Not / OK

Kathryn L. Cason

Login #:1026990	Client:COPTETRA	Date:9/19/18	Evaluated by:K Cameron	
LUSINHITOLOSSO				

Non-Conformance (check applicable items)

Sample Integrity		Chain of Custody Clarification	
Parameter(s) past holding time	x	Login Clarification Needed	If Broken Container:
Improper		Chain of custody is incomplete	Insufficient packing material around container
Improper container type		Please specify Metals requested.	Insufficient packing material inside cooler
Improper		Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.	×	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.		Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.		Trip Blank not received.	If no Chain of Custody:
Broken container		Client did not "X" analysis.	Received by:
Broken container:		Chain of Custody is missing	Date/Time:
Sufficient sample remains			Temp./Cont. Rec./pH:
			Carrier:
			Tracking#

Login Comments: Did not receive BH-4 (1-2) or BH-4 (8-9). Received additional sample not listed on COC: BH-3 (6-7) 9/17/18 1240 (1 container).

Client informed by:	Call	X	Email	Voice Mail	Date:9/21/18	Time:09:29	16.1
TSR Initials:CM	Client Co	ntact:					

Login Instructions:

Notified client about the missing samples. Place BH-3 (6-7) on hold with the others.

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT October 18, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1033537
Samples Received:	10/09/2018
Project Number:	212C-MD-01358
Description:	Buck Fed
Site:	BUCK FED
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, form June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
BH-1(0-1) L1033537-01	7
BH-1(1-2) L1033537-02	8
BH-2(0-1) L1033537-03	9
BH-2(1-2) L1033537-04	10
BH-3(0-1) L1033537-05	11
BH-3(1-2) L1033537-06	12
BH-4(0-1) L1033537-07	13
BH-4(1-2) L1033537-08	14
BH-5(0-1) L1033537-09	15
BH-6(0-1) L1033537-10	16
BH-6(1-2) L1033537-11	17
BH-7(0-1) L1033537-12	18
BH-8(0-1) L1033537-13	19
BH-9(0-1) L1033537-14	20
BH-9(1-2) L1033537-15	21
Qc: Quality Control Summary	22
Total Solids by Method 2540 G-2011	22
Wet Chemistry by Method 300.0	24
Volatile Organic Compounds (GC) by Method 8015D/GRO	25
Volatile Organic Compounds (GC/MS) by Method 8260B	27
Semi-Volatile Organic Compounds (GC) by Method 8015	30
GI: Glossary of Terms	32
Al: Accreditations & Locations	33
Sc: Sample Chain of Custody	34

Ср Ss Cn Sr Qc Gl Â Sc

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01358

SDG: L1033537 DATE/TIME:

10/18/18 15:43

PAGE: 2 of 36

SAMPLE SUMMARY

ONE LAB. NAT Rage 75 of 348

			Collected by	Collected date/time	Received date/time	
BH-1(0-1) L1033537-01 Solid			Clint Merritt	10/04/18 10:00	10/09/18 08:45	1
Method	Batch	Dilution	Preparation	Analysis dato/timo	Analyst	2
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW	
Wet Chemistry by Method 300.0	WG1179230	10	10/12/18 14:21	10/16/18 04:04	ELN	2
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 17:20	DWR	ູ
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 21:37	BMB	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	20	10/11/18 08:56	10/15/18 17:52	BMB	4
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	1	10/14/18 07:45	10/15/18 05:42	SHG	Ľ
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	10	10/14/18 07:45	10/15/18 14:09	DMW	5
			Collected by	Collected date/time	Received date/time	
BH-1(1-2) L1033537-02 Solid			Clint Merritt	10/04/18 10:05	10/09/18 08:45	6
Method	Batch	Dilution	Preparation	Analysis	Analyst	7
Tatal Salida by Mathad 2E40 C 2011	WC1170090	1	10/12/18 10:EC	10/12/19 11:06	KDW	
I Utal SUIUS DY MELLIUU 2340 G-2011 Wat Chamistry by Mathad 200 0	WG11/9980	1	10/12/18 10.56	10/12/18 11:06		8
Wet Chemistry by Method 300.0 Valatile Organic Compounds (CC) by Mathod 9015D/CDO	WG11/923U	200	10/12/10 14.21	10/10/10/04.13 10/12/19/17/11		Ĭ
Volatile Organic Compounds (GC/MS) by Method 8015D/GKU	WG116U15U	200	10/11/10 00.00	10/12/10 17.41	DWK	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG11800000	20	10/11/18 08:56	10/15/18 02.14	BMB	9
Semi-Volatile Organic Compounds (GC/MS) by Method 82000	WG1180710	200	10/14/18 07:45	10/15/18 14:22	DMW	Ĺ
			Collected by	Collected date/time	Received date/time	
BH-2(0-1) L1033537-03 Solid			Clint Merritt	10/04/18 10:10	10/09/18 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW	
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:21	ELN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:02	DWR	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 21:57	BMB	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	1	10/11/18 08:56	10/15/18 16:51	BMB	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	5	10/14/18 07:45	10/15/18 13:56	DMW	
			Collected by	Collected date/time	Received date/time	
BH-2(1-2) L1033537-04 Solid			Clint Merritt	10/04/18 10:15	10/09/18 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW	
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:48	ELN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:26	DWR	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 22:17	BMB	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	1	10/11/18 08:56	10/15/18 17:11	BMB	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	1	10/14/18 07:45	10/15/18 12:16	DMW	
			Collected by	Collected date/time	Received date/time	
BH-3(0-1) L1033537-05 Solid			Clint Merritt	10/04/18 10:20	10/09/18 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
	100470000		date/time	date/time		
I otal Solids by Method 2540 G-2011	WG11/9980	1	10/12/18 10:56	10/12/18 11:06	KDW	
wet Chemistry by Method 300.0	WG11/9230	1	10/12/18 14:21	10/16/18 04:56	ELN	
volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	1	10/11/18 08:56	10/12/18 18:43	DWK	
voiatile Organic Compounds (GC/MS) by Method 8260B	WG1180868]	10/11/18 08:56	10/14/18 22:37	RWR	
Semi-volatile Organic Compounds (GC) by Method 8015	WG1182012	1	10/17/18 08:50	10/1/18 19:27	1.1D	

PROJECT: 212C-MD-01358

SDG: L1033537

PAGE: 3 of 36

SAMPLE SUMMARY

ONE LAB. NAT Rage 76 of 348

BH-3(1-2) 1033537-06 Solid			Collected by Clint Merritt	Collected date/time 10/04/18 10:25	Received date/time 10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	10	10/12/18 14:21	10/16/18 05:05	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	1	10/11/18 08:56	10/12/18 19:04	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 22:56	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 20:35	TJD
			Collected by	Collected date/time	Received date/time
BH-4(0-1) L1033537-07 Solid			Clint Merritt	10/04/18 10:30	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:23	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 19:25	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:16	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:29	TJD
			Collected by	Collected date/time	Received date/time
BH-4(1-2) L1033537-08 Solid			Clint Merritt	10/04/18 10:35	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:32	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:50	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:36	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	5	10/17/18 08:50	10/17/18 20:08	TJD
			Collected by	Collected date/time	Received date/time
BH-5(0-1) L1033537-09 Solid			Clint Merritt	10/04/18 11:00	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:40	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 20:07	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:55	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:43	TJD
			Collected by	Collected date/time	Received date/time
BH-6(0-1) L1033537-10 Solid			Clint Merritt	10/04/18 11:20	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 05:49	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 17:14	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:15	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 20:49	TJD

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43

PAGE: 4 of 36

SAMPLE SUMMARY

ONE LAB. NAT Rage 77. of 348

			Collected by	Collected date/time	Received date/time
BH-6(1-2) L1033537-11 Solid			Clint Merritt	10/04/18 11:25	10/09/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 05:58	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	25	10/11/18 08:56	10/15/18 17:39	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:35	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:56	TJD
			Collected by	Collected date/time	Received date/time
BH-7(0-1) L1033537-12 Solid			Clint Merritt	10/04/18 11:35	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Vet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 06:07	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:03	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:54	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	5	10/17/18 08:50	10/17/18 20:22	TJD
			Collected by	Collected date/time	Received date/time
BH-8(0-1) L1033537-13 Solid			Clint Merritt	10/04/18 11:50	10/09/18 08:45
Лethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Vet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 06:33	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:27	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 05:50	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 21:02	TJD
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 22:23	TJD
			Collected by	Collected date/time	Received date/time
BH-9(0-1) L1033537-14 Solid			Clint Merritt	10/04/18 12:05	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	110470000				1/D///
otal Solids by Method 2540 G-2011	WG11/9982	1	10/12/18 10:43	10/12/18 10:53	KDW
ver chemistry by Method 300.0	WG11/9230	1	10/12/18 14:21	10/16/18 06:50	ELN
volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 21:50	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 10:08	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 22:10	TJD
			Collected by	Collected date/time	Received date/time
BH-9(1-2) L1033537-15 Solid			Clint Merritt	10/04/18 12:10	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 07:26	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:51	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 06:10	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 21:16	TJD

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01358

SDG: L1033537 DATE/TIME: 10/18/18 15:43

PAGE: 5 of 36

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 90/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43

PAGE: 6 of 36

SAMPLE RESULTS - 01

WG1179230

Cn

Â

Sc

date / time

10

10/16/2018 04:04

Total Solids by Method 2540 G-2011

Analyte

Chloride

	Result	Qualifier	Dilution	Analysis	Batch				ГСр
Analyte	%			date / time					2
Total Solids	81.7		1	10/12/2018 11:06	WG1179980				Tc
Wet Chemistry by N	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	

mg/kg

9.74

Volatile Organic Compounds (GC) by Method 8015D/GRO

mg/kg

5850

	Pocult (dn/)	Qualifier	SDL (dp)	Unadi MOI	MOL (dp)	Dilution	Analysis	Patch	_
	Result (uly)	Quaimer	SDL (ury)		MOL (UIY)	Dilution	Alldiysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc
TPH (GC/FID) Low Fraction	332		0.664	0.100	3.06	25	10/12/2018 17:20	WG1180150	
(S) a,a,a-Trifluorotoluene(FID)	82.1				77.0-120		10/12/2018 17:20	WG1180150	7 GI

mg/kg

10.0

mg/kg

122

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.240		0.000490	0.00100	0.00122	1	10/14/2018 21:37	WG1180868
Toluene	7.97		0.0306	0.00500	0.122	20	10/15/2018 17:52	WG1181245
Ethylbenzene	0.924		0.000649	0.00250	0.00306	1	10/14/2018 21:37	WG1180868
Total Xylenes	17.3		0.117	0.00650	0.159	20	10/15/2018 17:52	WG1181245
(S) Toluene-d8	128				75.0-131		10/14/2018 21:37	WG1180868
(S) Toluene-d8	110				75.0-131		10/15/2018 17:52	WG1181245
(S) Dibromofluoromethane	80.5				65.0-129		10/14/2018 21:37	WG1180868
(S) Dibromofluoromethane	103				65.0-129		10/15/2018 17:52	WG1181245
(S) a,a,a-Trifluorotoluene	83.7				80.0-120		10/14/2018 21:37	WG1180868
(S) a,a,a-Trifluorotoluene	101				80.0-120		10/15/2018 17:52	WG1181245
(S) 4-Bromofluorobenzene	88.7				67.0-138		10/14/2018 21:37	WG1180868
(S) 4-Bromofluorobenzene	106				67.0-138		10/15/2018 17:52	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1640		19.7	4.00	49.0	10	10/15/2018 14:09	WG1180710
C28-C40 Oil Range	294		0.335	4.00	4.90	1	10/15/2018 05:42	WG1180710
(S) o-Terphenyl	120				18.0-148		10/15/2018 05:42	WG1180710
(S) o-Terphenyl	128				18.0-148		10/15/2018 14:09	WG1180710

SDG: L1033537

SAMPLE RESULTS - 02 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

						10	\sim
	Result	Qualifier	Dilution	Analysis	Batch		<u> </u>
Analyte	%			date / time		2	_
Total Solids	80.7		1	10/12/2018 11:06	WG1179980		T

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1060		0.985	10.0	12.4	1	10/16/2018 04:13	WG1179230	`

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	1060		0.985	10.0	12.4	1	10/16/2018 04:13	WG1179230		
Volatile Organic Comp	ounds (GC) k	oy Method	8015D/G	RO	MQL (dry)	Dilution	Δnalvsis	Batch	⁵Sr	
Analyte	mg/kg	duamer	mg/kg	mg/kg	mg/kg	Dhaton	date / time	baten	⁶ Qc	
TPH (GC/FID) Low Fraction	2150		5.38	0.100	24.8	200	10/12/2018 17:41	WG1180150		
(S) a,a,a-Trifluorotoluene(FID)	84.7				77.0-120		10/12/2018 17:41	WG1180150	⁷ Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	3.24		0.00991	0.00100	0.0248	20	10/15/2018 02:14	WG1180868
Toluene	36.0		0.0310	0.00500	0.124	20	10/15/2018 02:14	WG1180868
Ethylbenzene	7.66		0.0131	0.00250	0.0619	20	10/15/2018 02:14	WG1180868
Total Xylenes	103		1.18	0.00650	1.61	200	10/15/2018 18:12	WG1181245
(S) Toluene-d8	121				75.0-131		10/15/2018 02:14	WG1180868
(S) Toluene-d8	122				75.0-131		10/15/2018 18:12	WG1181245
(S) Dibromofluoromethane	87.2				65.0-129		10/15/2018 02:14	WG1180868
(S) Dibromofluoromethane	104				65.0-129		10/15/2018 18:12	WG1181245
(S) a,a,a-Trifluorotoluene	82.4				80.0-120		10/15/2018 02:14	WG1180868
(S) a,a,a-Trifluorotoluene	101				80.0-120		10/15/2018 18:12	WG1181245
(S) 4-Bromofluorobenzene	103				67.0-138		10/15/2018 02:14	WG1180868
(S) 4-Bromofluorobenzene	107				67.0-138		10/15/2018 18:12	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5030		39.9	4.00	99.1	20	10/15/2018 14:22	WG1180710
C28-C40 Oil Range	1420		6.79	4.00	99.1	20	10/15/2018 14:22	WG1180710
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/15/2018 14:22	WG1180710

SDG: L1033537

SAMPLE RESULTS - 03 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

		-				 l'cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	85.1		1	10/12/2018 11:06	WG1179980	Tc
Wet Chemistry by	y Method 300.0					³ Ss

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	717		0.934	10.0	11.7	1	10/16/2018 04:21	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	717		0.934	10.0	11.7	1	10/16/2018 04:21	WG1179230	CII
Volatile Organic Comp	ounds (GC) b	y Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	G
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	2.57		0.0255	0.100	0.117	1	10/15/2018 16:02	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	87.5				77.0-120		10/15/2018 16:02	WG1180849	7 Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00100	0.00117	1	10/14/2018 21:57	WG1180868
Toluene	0.00293	J	0.00147	0.00500	0.00587	1	10/15/2018 16:51	WG1181245
Ethylbenzene	U		0.000623	0.00250	0.00294	1	10/14/2018 21:57	WG1180868
Total Xylenes	0.00644	J	0.00561	0.00650	0.00764	1	10/15/2018 16:51	WG1181245
(S) Toluene-d8	112				75.0-131		10/14/2018 21:57	WG1180868
(S) Toluene-d8	119				75.0-131		10/15/2018 16:51	WG1181245
(S) Dibromofluoromethane	79.4				65.0-129		10/14/2018 21:57	WG1180868
(S) Dibromofluoromethane	98.4				65.0-129		10/15/2018 16:51	WG1181245
(S) a,a,a-Trifluorotoluene	82.3				80.0-120		10/14/2018 21:57	WG1180868
(S) a,a,a-Trifluorotoluene	96.9				80.0-120		10/15/2018 16:51	WG1181245
(S) 4-Bromofluorobenzene	89.3				67.0-138		10/14/2018 21:57	WG1180868
(S) 4-Bromofluorobenzene	97.2				67.0-138		10/15/2018 16:51	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	484		9.46	4.00	23.5	5	10/15/2018 13:56	WG1180710
C28-C40 Oil Range	137		1.61	4.00	23.5	5	10/15/2018 13:56	WG1180710
(S) o-Terphenyl	119				18.0-148		10/15/2018 13:56	WG1180710

SDG: L1033537

SAMPLE RESULTS - 04 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 10/04/18 10:15

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	85.9		1	10/12/2018 11:06	WG1179980	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	581		0.926	10.0	11.6	1	10/16/2018 04:48	WG1179230	`

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn		
Chloride	581		0.926	10.0	11.6	1	10/16/2018 04:48	WG1179230	CII		
Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q c		
TPH (GC/FID) Low Fraction	0.581		0.0253	0.100	0.116	1	10/15/2018 16:26	WG1180849			
(S) a,a,a-Trifluorotoluene(FID)	93.2				77.0-120		10/15/2018 16:26	WG1180849	7 Gl		
									Gi		

Sample Narrative:

L1033537-04 WG1180849: Previous run also had low IS/SURR recovery. Matrix effect.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000466	0.00100	0.00116	1	10/14/2018 22:17	WG1180868
Toluene	0.00452	J	0.00146	0.00500	0.00582	1	10/15/2018 17:11	WG1181245
Ethylbenzene	U		0.000617	0.00250	0.00291	1	10/14/2018 22:17	WG1180868
Total Xylenes	0.0112		0.00557	0.00650	0.00757	1	10/15/2018 17:11	WG1181245
(S) Toluene-d8	116				75.0-131		10/14/2018 22:17	WG1180868
(S) Toluene-d8	118				75.0-131		10/15/2018 17:11	WG1181245
(S) Dibromofluoromethane	79.1				65.0-129		10/14/2018 22:17	WG1180868
(S) Dibromofluoromethane	94.5				65.0-129		10/15/2018 17:11	WG1181245
(S) a,a,a-Trifluorotoluene	79.8	<u>J2</u>			80.0-120		10/14/2018 22:17	WG1180868
(S) a,a,a-Trifluorotoluene	97.7				80.0-120		10/15/2018 17:11	WG1181245
(S) 4-Bromofluorobenzene	90.7				67.0-138		10/14/2018 22:17	WG1180868
(S) 4-Bromofluorobenzene	102				67.0-138		10/15/2018 17:11	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	170		1.87	4.00	4.66	1	10/15/2018 12:16	WG1180710
C28-C40 Oil Range	48.6		0.319	4.00	4.66	1	10/15/2018 12:16	WG1180710
(S) o-Terphenyl	71.6				18.0-148		10/15/2018 12:16	WG1180710

SDG: L1033537

SAMPLE RESULTS - 05 L1033537

A

Sc

Collected date/time: 10/04/18 10:20 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	82.3		1	10/12/2018 11:06	WG1179980				T
Wet Chemistry b	by Method 300.0								³ S
	Result (dry)	Qualifier	SDL (d	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	456		0.967	10.0	12.2	1	10/16/2018 04:56	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>											
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင		
TPH (GC/FID) Low Fraction	0.0346	J	0.0264	0.100	0.122	1	10/12/2018 18:43	WG1180150			
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/12/2018 18:43	WG1180150	⁷ Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00100	0.00122	1	10/14/2018 22:37	WG1180868
Toluene	U		0.00152	0.00500	0.00608	1	10/14/2018 22:37	WG1180868
Ethylbenzene	U		0.000644	0.00250	0.00304	1	10/14/2018 22:37	WG1180868
Total Xylenes	U		0.00581	0.00650	0.00790	1	10/14/2018 22:37	WG1180868
(S) Toluene-d8	114				75.0-131		10/14/2018 22:37	WG1180868
(S) Dibromofluoromethane	78.6				65.0-129		10/14/2018 22:37	WG1180868
(S) a,a,a-Trifluorotoluene	79.6	<u>J2</u>			80.0-120		10/14/2018 22:37	WG1180868
(S) 4-Bromofluorobenzene	101				67.0-138		10/14/2018 22:37	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	51.2		1.96	4.00	4.86	1	10/17/2018 19:27	WG1182012
C28-C40 Oil Range	19.9		0.333	4.00	4.86	1	10/17/2018 19:27	WG1182012
(S) o-Terphenyl	49.7				18.0-148		10/17/2018 19:27	WG1182012

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43 PAGE: 11 of 36

SAMPLE RESULTS - 06 L1033537

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time			2		
Total Solids	90.9		1	10/12/2018 11:06	WG1179980		Τc		

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn	
Chloride	3950		8.75	10.0	110	10	10/16/2018 05:05	WG1179230	CII	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO												
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>												
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ି Q c			
TPH (GC/FID) Low Fraction	0.121		0.0239	0.100	0.110	1	10/12/2018 19:04	WG1180150				
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		10/12/2018 19:04	WG1180150	⁷ GI			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000440	0.00100	0.00110	1	10/14/2018 22:56	WG1180868
Toluene	U		0.00138	0.00500	0.00550	1	10/14/2018 22:56	WG1180868
Ethylbenzene	U		0.000583	0.00250	0.00275	1	10/14/2018 22:56	WG1180868
Total Xylenes	U		0.00526	0.00650	0.00715	1	10/14/2018 22:56	WG1180868
(S) Toluene-d8	116				75.0-131		10/14/2018 22:56	WG1180868
(S) Dibromofluoromethane	82.0				65.0-129		10/14/2018 22:56	WG1180868
(S) a,a,a-Trifluorotoluene	79.5	<u>J2</u>			80.0-120		10/14/2018 22:56	WG1180868
(S) 4-Bromofluorobenzene	89.6				67.0-138		10/14/2018 22:56	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1610		17.7	4.00	44.0	10	10/17/2018 20:35	WG1182012
C28-C40 Oil Range	786		3.02	4.00	44.0	10	10/17/2018 20:35	WG1182012
(S) o-Terphenyl	30.6				18.0-148		10/17/2018 20:35	WG1182012

SAMPLE RESULTS - 07

WG1180150

Gl

AI

Sc

10/12/2018 19:25

Collected date/time: 10/04/18 10:30

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by Meth	od 2540 G-20	011							1
	Result	Qualifier	Dilution	Analysis	Batch				— Cp
Analyte	%			date / time					2
Total Solids	83.9		1	10/12/2018 11:06	WG1179980				Tc
Wet Chemistry by Me	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		4 Cn
Chloride	3780		4.74	10.0	59.6	5	10/16/2018 05:23	WG1179230	
Volatile Organic Cor	npounds (GC)	by Metho	d 8015	D/GRO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	116		0.647	0.100	2.98	25	10/12/2018 19:25	WG1180150	

77.0-120

Volatile Organic Compounds (GC/MS) by Method 8260B

103

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00100	0.00119	1	10/14/2018 23:16	WG1180868
Toluene	0.00865		0.00149	0.00500	0.00596	1	10/14/2018 23:16	WG1180868
Ethylbenzene	0.0156		0.000632	0.00250	0.00298	1	10/14/2018 23:16	WG1180868
Total Xylenes	0.199		0.00570	0.00650	0.00775	1	10/14/2018 23:16	WG1180868
(S) Toluene-d8	117				75.0-131		10/14/2018 23:16	WG1180868
(S) Dibromofluoromethane	81.0				65.0-129		10/14/2018 23:16	WG1180868
(S) a,a,a-Trifluorotoluene	79.1	<u>J2</u>			80.0-120		10/14/2018 23:16	WG1180868
(S) 4-Bromofluorobenzene	91.4				67.0-138		10/14/2018 23:16	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5060		38.4	4.00	95.4	20	10/17/2018 21:29	WG1182012
C28-C40 Oil Range	1620		6.54	4.00	95.4	20	10/17/2018 21:29	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:29	WG1182012

PROJECT: 212C-MD-01358

SDG: L1033537

SAMPLE RESULTS - 08 L1033537

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	89.1		1	10/12/2018 11:06	WG1179980	ŤΤ

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	2540		4.46	10.0	56.1	5	10/16/2018 05:32	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	2.51		0.0244	0.100	0.112	1	10/15/2018 16:50	WG1180849		
(S) a,a,a-Trifluorotoluene(FID)	84.4				77.0-120		10/15/2018 16:50	WG1180849		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000449	0.00100	0.00112	1	10/14/2018 23:36	WG1180868
Toluene	U		0.00140	0.00500	0.00561	1	10/14/2018 23:36	WG1180868
Ethylbenzene	U		0.000595	0.00250	0.00281	1	10/14/2018 23:36	WG1180868
Total Xylenes	U		0.00537	0.00650	0.00730	1	10/14/2018 23:36	WG1180868
(S) Toluene-d8	115				75.0-131		10/14/2018 23:36	WG1180868
(S) Dibromofluoromethane	78.6				65.0-129		10/14/2018 23:36	WG1180868
(S) a,a,a-Trifluorotoluene	79.2	<u>J2</u>			80.0-120		10/14/2018 23:36	WG1180868
(S) 4-Bromofluorobenzene	88.9				67.0-138		10/14/2018 23:36	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1110		9.04	4.00	22.5	5	10/17/2018 20:08	WG1182012
C28-C40 Oil Range	466		1.54	4.00	22.5	5	10/17/2018 20:08	WG1182012
(S) o-Terphenyl	30.8				18.0-148		10/17/2018 20:08	WG1182012

SDG: L1033537

SAMPLE RESULTS - 09 L1033537

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	85.5		1	10/12/2018 11:06	<u>WG1179980</u>	T

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	nod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	2660		4.65	10.0	58.5	5	10/16/2018 05:40	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ Qc	
TPH (GC/FID) Low Fraction	183		0.635	0.100	2.92	25	10/12/2018 20:07	WG1180150		
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/12/2018 20:07	WG1180150	⁷ Gl	
Volatile Organic Comp	oounds (GC/N	IS) by Met	thod 8260	В					8	
	Result (drv)	Qualifier	SDL (drv)	Unadi MQI	MQL (drv)	Dilution	Δnalvsis	Batch		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (drv)	Qualifier	SDL (drv)	Unadi MQI	MQL (drv)	Dilution	Analysis	Batch	— A
Analyte	mg/kg	quanto	mg/kg	mg/kg	mg/kg	2.10101	date / time		
Benzene	0.000833	J	0.000468	0.00100	0.00117	1	10/14/2018 23:55	WG1180868	°<
Toluene	0.00294	J	0.00146	0.00500	0.00585	1	10/14/2018 23:55	WG1180868	
Ethylbenzene	U		0.000620	0.00250	0.00292	1	10/14/2018 23:55	WG1180868	
Total Xylenes	0.152		0.00559	0.00650	0.00760	1	10/14/2018 23:55	WG1180868	
(S) Toluene-d8	114				75.0-131		10/14/2018 23:55	WG1180868	
(S) Dibromofluoromethane	80.7				65.0-129		10/14/2018 23:55	WG1180868	
(S) a,a,a-Trifluorotoluene	78.9	J2			80.0-120		10/14/2018 23:55	WG1180868	
(S) 4-Bromofluorobenzene	86.7				67.0-138		10/14/2018 23:55	WG1180868	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6240		37.7	4.00	93.6	20	10/17/2018 21:43	WG1182012
C28-C40 Oil Range	1770		6.41	4.00	93.6	20	10/17/2018 21:43	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:43	WG1182012

SDG: L1033537

SAMPLE RESULTS - 10 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch						
Analyte	%			date / time					2		
Total Solids	84.6		1	10/12/2018 11:06	WG1179980				² Tc		
Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		⁴ Cn		
Chloride	248		0.940	10.0	11.8	1	10/16/2018 05:49	WG1179230			

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0463	J	0.0256	0.100	0.118	1	10/15/2018 17:14	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	92.4				77.0-120		10/15/2018 17:14	WG1180849	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00100	0.00118	1	10/15/2018 00:15	WG1180868
Toluene	U		0.00148	0.00500	0.00591	1	10/15/2018 00:15	WG1180868
Ethylbenzene	U		0.000626	0.00250	0.00295	1	10/15/2018 00:15	WG1180868
Total Xylenes	U		0.00565	0.00650	0.00768	1	10/15/2018 00:15	WG1180868
(S) Toluene-d8	114				75.0-131		10/15/2018 00:15	WG1180868
(S) Dibromofluoromethane	77.2				65.0-129		10/15/2018 00:15	WG1180868
(S) a,a,a-Trifluorotoluene	81.8				80.0-120		10/15/2018 00:15	WG1180868
(S) 4-Bromofluorobenzene	95.8				67.0-138		10/15/2018 00:15	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1040		19.0	4.00	47.3	10	10/17/2018 20:49	WG1182012
C28-C40 Oil Range	442		3.24	4.00	47.3	10	10/17/2018 20:49	WG1182012
(S) o-Terphenyl	35.7				18.0-148		10/17/2018 20:49	WG1182012

SDG: L1033537

SAMPLE RESULTS - 11 L1033537

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	86.4		1	10/12/2018 10:53	WG1179982	T

Wet Chemistry by Method 300.0

Wet Chemistry by Me	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	586		0.921	10.0	11.6	1	10/16/2018 05:58	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc		
TPH (GC/FID) Low Fraction	150		0.628	0.100	2.89	25	10/15/2018 17:39	WG1180849			
(S) a,a,a-Trifluorotoluene(FID)	90.8				77.0-120		10/15/2018 17:39	WG1180849	7 Cl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00336		0.000463	0.00100	0.00116	1	10/15/2018 00:35	WG1180868
Toluene	0.313		0.00145	0.00500	0.00579	1	10/15/2018 00:35	WG1180868
Ethylbenzene	0.0505		0.000614	0.00250	0.00289	1	10/15/2018 00:35	WG1180868
Total Xylenes	2.26		0.00553	0.00650	0.00753	1	10/15/2018 00:35	WG1180868
(S) Toluene-d8	114				75.0-131		10/15/2018 00:35	WG1180868
(S) Dibromofluoromethane	75.6				65.0-129		10/15/2018 00:35	WG1180868
(S) a,a,a-Trifluorotoluene	78.7	<u>J2</u>			80.0-120		10/15/2018 00:35	WG1180868
(S) 4-Bromofluorobenzene	89.0				67.0-138		10/15/2018 00:35	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3080		37.3	4.00	92.6	20	10/17/2018 21:56	WG1182012
C28-C40 Oil Range	1070		6.35	4.00	92.6	20	10/17/2018 21:56	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:56	WG1182012

SAMPLE RESULTS - 12 L1033537

ONE LAB. NAT Rage 90 of 348

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	81.2		1	10/12/2018 10:53	<u>WG1179982</u>		T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
Angluda	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Chloride	mg/kg 64.9		mg/kg 0.980	10.0	mg/kg 12.3	1	10/16/2018 06:07	WG1179230	^⁴ Cn	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Com	Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ຶQc			
TPH (GC/FID) Low Fraction	0.0507	J	0.0267	0.100	0.123	1	10/15/2018 18:03	WG1180849				
(S) a,a,a-Trifluorotoluene(FID)	86.0				77.0-120		10/15/2018 18:03	WG1180849				

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000495	J	0.000493	0.00100	0.00123	1	10/15/2018 00:54	WG1180868
Toluene	U		0.00154	0.00500	0.00616	1	10/15/2018 00:54	WG1180868
Ethylbenzene	U		0.000653	0.00250	0.00308	1	10/15/2018 00:54	WG1180868
Total Xylenes	U		0.00589	0.00650	0.00801	1	10/15/2018 00:54	WG1180868
(S) Toluene-d8	115				75.0-131		10/15/2018 00:54	WG1180868
(S) Dibromofluoromethane	70.5				65.0-129		10/15/2018 00:54	WG1180868
(S) a,a,a-Trifluorotoluene	78.5	<u>J2</u>			80.0-120		10/15/2018 00:54	WG1180868
(S) 4-Bromofluorobenzene	89.9				67.0-138		10/15/2018 00:54	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1080		9.92	4.00	24.6	5	10/17/2018 20:22	WG1182012
C28-C40 Oil Range	557		1.69	4.00	24.6	5	10/17/2018 20:22	WG1182012
(S) o-Terphenyl	44.0				18.0-148		10/17/2018 20:22	WG1182012

SDG: L1033537

DATE/TIME: 10/18/18 15:43

PAGE: 18 of 36

SAMPLE RESULTS - 13 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.6		1	10/12/2018 10:53	<u>WG1179982</u>	Tc

Wet Chemistry by Method 300.0

									1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1420		4.30	10.0	54.0	5	10/16/2018 06:33	WG1179230	[]

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp		
Chloride	1420		4.30	10.0	54.0	5	10/16/2018 06:33	WG1179230			
Volatile Organic Comp	ounds (GC) b	by Method	8015D/GI	RO					⁵Sr		
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc		
TPH (GC/FID) Low Fraction	0.731		0.0234	0.100	0.108	1	10/15/2018 18:27	WG1180849			
(S) a,a,a-Trifluorotoluene(FID)	83.3				77.0-120		10/15/2018 18:27	WG1180849			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/15/2018 05:50	WG1180941
Toluene	U		0.00135	0.00500	0.00540	1	10/15/2018 05:50	WG1180941
Ethylbenzene	U		0.000573	0.00250	0.00270	1	10/15/2018 05:50	WG1180941
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/15/2018 05:50	WG1180941
(S) Toluene-d8	119				75.0-131		10/15/2018 05:50	WG1180941
(S) Dibromofluoromethane	79.0				65.0-129		10/15/2018 05:50	WG1180941
(S) a,a,a-Trifluorotoluene	79.0	<u>J2</u>			80.0-120		10/15/2018 05:50	WG1180941
(S) 4-Bromofluorobenzene	89.8				67.0-138		10/15/2018 05:50	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3550		34.8	4.00	86.4	20	10/17/2018 22:23	WG1182012
C28-C40 Oil Range	1340		2.96	4.00	43.2	10	10/17/2018 21:02	WG1182012
(S) o-Terphenyl	23.9				18.0-148		10/17/2018 21:02	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 22:23	WG1182012

SDG: L1033537

PAGE: 19 of 36

SAMPLE RESULTS - 14 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	86.4		1	10/12/2018 10:53	<u>WG1179982</u>	Tc

Wet Chemistry by Method 300.0

									1 1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	289		0.920	10.0	11.6	1	10/16/2018 06:50	WG1179230	ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	289		0.920	10.0	11.6	1	10/16/2018 06:50	WG1179230	CII	
Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					⁵ Sr	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc	
TPH (GC/FID) Low Fraction	147		0.628	0.100	2.89	25	10/12/2018 21:50	WG1180150		
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/12/2018 21:50	WG1180150	7 Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000463	0.00100	0.00116	1	10/15/2018 10:08	WG1180941
Toluene	U		0.00145	0.00500	0.00579	1	10/15/2018 10:08	WG1180941
Ethylbenzene	U		0.000613	0.00250	0.00289	1	10/15/2018 10:08	WG1180941
Total Xylenes	U		0.00553	0.00650	0.00752	1	10/15/2018 10:08	WG1180941
(S) Toluene-d8	120				75.0-131		10/15/2018 10:08	WG1180941
(S) Dibromofluoromethane	79.1				65.0-129		10/15/2018 10:08	WG1180941
(S) a,a,a-Trifluorotoluene	76.3	<u>J2</u>			80.0-120		10/15/2018 10:08	WG1180941
(S) 4-Bromofluorobenzene	89.3				67.0-138		10/15/2018 10:08	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5110		37.3	4.00	92.6	20	10/17/2018 22:10	WG1182012
C28-C40 Oil Range	1420		6.34	4.00	92.6	20	10/17/2018 22:10	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 22:10	WG1182012

SDG: L1033537

PAGE: 20 of 36

SAMPLE RESULTS - 15 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	89.9		1	10/12/2018 10:53	WG1179982	2	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1790		4.42	10.0	55.6	5	10/16/2018 07:26	WG1179230	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	bounds (GC) b	by Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	3.28		0.0241	0.100	0.111	1	10/15/2018 18:51	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		10/15/2018 18:51	WG1180849	7 CI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000445	0.00100	0.00111	1	10/15/2018 06:10	WG1180941
Toluene	U		0.00139	0.00500	0.00556	1	10/15/2018 06:10	WG1180941
Ethylbenzene	U		0.000590	0.00250	0.00278	1	10/15/2018 06:10	WG1180941
Total Xylenes	U		0.00532	0.00650	0.00723	1	10/15/2018 06:10	WG1180941
(S) Toluene-d8	115				75.0-131		10/15/2018 06:10	WG1180941
(S) Dibromofluoromethane	80.7				65.0-129		10/15/2018 06:10	WG1180941
(S) a,a,a-Trifluorotoluene	78.9	J2			80.0-120		10/15/2018 06:10	WG1180941
(S) 4-Bromofluorobenzene	90.9				67.0-138		10/15/2018 06:10	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1030		17.9	4.00	44.5	10	10/17/2018 21:16	WG1182012
C28-C40 Oil Range	362		3.05	4.00	44.5	10	10/17/2018 21:16	WG1182012
(S) o-Terphenyl	53.9				18.0-148		10/17/2018 21:16	WG1182012

SDG: L1033537

Rece	ived l	by OC		11/8/2 ""	021 I	0.5	7:39 ம	פ P א ה	ို္င္လ	۲ D	ō	$\overline{\mathtt{P}}^{_{\scriptscriptstyle (S)}}$	ຓ	Page 94 of 348	8
ONE LAB. NATIONWIDE.														PAGE:	22 of 36
														DATETIME:	10/18/18 15:43
NTROL SUMMARY .03.04.05.06.07.08.09.10														Ğ	L1033537
UALITY CO [1033537-01,02							DUP Qualifier DUP RPD Limits	%	01			LCS Qualifier		PROLECT:	C-MD-01358
Ø		IL MB RDL	%		(DUP)	11:06	1 DUP RPD	%	0.455			.c. Rec. Limits %	85.0-115		2120
		MB MC	%		uplicate	10/12/18	Dilutio		~			LCS Re %	100		
011		MB Qualifier			e (OS) • Du) R3350560-3	It DUP Result	%	85.5	LCS)		It LCS Result %	50.0		ch
O thod 2540 G-2	MB)	12/18 11:06 MB Result	%	0.00100	riginal Sampl	/12/18 11:06 • (DUF	Original Resu	%	85.1	trol Sample (0/12/18 11:06	Spike Amour %	50.0	ACCOUNT:	coPhillips - Tetra Te
WG117998	post Method Blank (I	0 (MB) R3350560-1 10/	Analyte	10/01: Total Solids	01-1033537-03 0	101 E0-223232-03 10	11:5	Analyte	Total Solids	Laboratory Con	(LCS) R3350560-2 10	Analvte	Total Solids		Conc

Rece	ived (by OC		11/8/ m	2021	12:: •	5 7:3 ഥ	9 P I ເກ	ی م	ے ا	ō	P	°Sc					Pag	e 95	of 3	48
ONE LAB. NATIONWIDE.																					PAGE: 23 of 36
																					DATE/TIME: 10/18/18 15:43
NTROL SUMMARY 37-11.12.13.14.15																					SDG: L1033537
							DUP Qualifier DUP RPD	8	10			b LCS Qualifier									PROJECT: C-MD-01358
0		MB RDL	%		á	-	JP RPD		377			Rec. Limits %	85.0-115								212
		MB MDL	%		icato (DLL	0/12/18 10:53	Dilution DI	%	1			LCS Rec. %	100								
11		MB Qualifier				R3350558-3 10	It DUP Result	%	92.2	-CS)		t LCS Result %	50.0								ch
10d 2540 G-20	B)	/18 10:53 MB Result	%	0.00100	alame2 leai	/18 10:53 • (DUP)	Original Resul	%	92.6	ol Sample (l	2/18 10:53	Spike Amount %	50.0								ACCOUNT: Phillips - Tetra Ter
WG1179982	post Method Blank (M	0 (MB) R3350558-1 10/12.	Analyte	10 10 10	1033537_13 Orio	C(OS) L1033537-13 10/12/	11:	Analyte	WV Colids	Laboratory Contr	(LCS) R3350558-2 10/1	Analyte	Total Solids								Conoco

a	Method 300.0			5	1033537-01,0	2,03,04,05,06,0	7,08,09,10,	,11,12,13,14,1	2					<u> Rece</u>
Method Blank (I	AB)													ived (
0 (MB) R3350925-1 10/	16/18 03:02 MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg										by OCD: ∼
Chloride	n		0.795	10.0										11
10/11														/ <mark>8/202</mark>
033537-06 O	riginal Sample	e (OS) • Dup	olicate (DUF	<u>(</u>										1
C(OS) L1033537-06 10	16/18 05:05 • (DUP) R3350925-4	10/16/18 05:14											2:5
(1:5	Original Result (dry)	DUP Result (dry)	Dilution DUP	RPD	UP Qualifier L	JUP RPD .imits								7:39 5
Contemporation Angle Ang	mg/kg	mg/kg	%		0~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								_P 1 0
Chloride	3950	4280	10 8.13			20								ိုင္လ
L1033537-13 Ori	ginal Sample	(OS) • Dupl	icate (DUP)	_										
(OS) L1033537-13 10/1	(6/18 06:33 • (DUP)	R3350925-5 1	0/16/18 06:42											5
	Original Result (dry)	DUP Result (dry)	Dilution DUP	RPD DI	UP Qualifier L	JUP RPD .imits								ع الا
Analyte	mg/kg	mg/kg	%		0~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
Chloride	1420	1260	5 11.6		1	20								° S C
Laboratory Con	trol Sample (L	CS) • Labor	atory Conti	rol Sampl	le Duplica:	te (LCSD)]
(LCS) R3350925-2 10	1/16/18 03:11 • (LCSD)) R3350925-3	10/16/18 03:20											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualit	fier LCSD QL	ualifier RPD	RPD Li	mits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%				
Chloride	200	198	200	0.66	99.8	90.0-110			0.755	20				
L1033537-15 Or	iginal Sample	(OS) • Matr	ix Spike (M	IS) • Matri	ix Spike D	uplicate (MS) D							
(OS) L1033537-15 10/	16/18 06:59 • (MS) F	3350925-6 10)/16/18 07:08 • ((MSD) R335C	0925-7 10/16/1	18 07:17								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifie	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	556	1840	2420	2400	104	9.4	~	80.0-120	ш	ш	1.1	20		
														Page 96 o
Cono	ACCOUNT: coPhillips - Tetra Tecl	ح		PR 212C-	COJECT: -MD-01358		L10. S	33537		DAT 10/18,	E/TIME: /18 15:43		PAGE : 24 of 36	of 348

0	Compo
18015	Organic
	Volatile

ші	
\Box	
\leq	
\geq	
4	
\circ	
F	
\triangleleft	
Z	
m.	
끳	
Ъ	
m	
≒	
5	
U	

WG1180150	ounds (GC)	bv Method 80	015D/GRO	ОQ	IALITY (1033	CONTR(DL SUM	MARY		ONE LAB. NATIONWIDE.	Reco
power (MB)											eived
(MB) R3350493-3 10/12/18	3 14:45										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C °
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	n		0.0217	0.100							11
(S) (G, a, a-Trifluorotoluene(FID)	107			77.0-120							/ <mark>8/2</mark> 0
1/20.											21 1
Laboratory Control	l Sample (L	.CS) • Labor	atory Conti	rol Sample	e Duplicate	(LCSD)					2:57
C(LCS) R3350493-1 10/12/1	8 13:42 • (LCSE)) R3350493-2	10/12/18 14:03								39 ن
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		P N
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		1 ه
TPH (GC/FID) Low Fraction	5.50	6.37	6.35	116	115	72.0-127		0.384	20		ğ
(S) a, a, a-Trifluorotoluene(FID)				108	107	77.0-120					, <u> </u>
											ס

L1033537-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1033537-01 10/12/18 17:20 • (MS) R3350493-4 10/12/18 23:14 • (MSD) R3350493-5 10/12/18 23:34

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.73	332	397	392	38.4	35.7	25	10.0-151	ш	ш	1.14	28
(S) a,a,a-Trifluorotoluene(FID)					84.7	84.4		77.0-120				

Sc

₹

PAGE: 25 of 36

DATE/TIME: 10/18/18 15:43

•

SDG: L1033537

Rece	ived (by OCD:	11	/ <mark>8/20</mark> 2	21 <u>12:5</u>	7: 39 س	PM o	ğ	ے ۲	Page 98 of	5 <u>348</u>
ONE LAB. NATIONWIDE.											PAGE: 26 of 36
							RPD Limits %	20			DATE/TIME: 10/18/18 15:43
MARY							LCSD Qualifier RPD %	0.0541			7
DL SUM 10,11,12,13,15							LCS Qualifier				SDG: L103353
CONTR(537-03,04,08,1					(LCSD)		Rec. Limits %	72.0-127	77.0-120		
JALITY 					e Duplicate		LCSD Rec. %	110	105		OJECT: MD-01358
Q		MB RDL mg/kg	0.100	77.0-120	itrol Sampl		LCS Rec. %	110	105		PR
015D/GRO		MB MDL mg/kg	0.0217		ratory Con	10/15/18 14:09	LCSD Result mg/kg	6.05			
by Method 8		MB Qualifier			.CS) • Labo) R3350929-2	LCS Result mg/kg	6.06			ų
pounds (GC)	(8 14:57 MB Result mg/kg	⊐	100	l Sample (L	18 13:44 • (LCSE	Spike Amount mg/kg	5.50			(CCOUNT: hillips - Tetra Teo
WG1180849	post Method Blank (MB	0 (MB) R3350929-3 10/15/1 2	TPH (GC/FID) Low Fraction	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	Laboratory Contro	CCS) R3350929-1 10/15/	Analyte	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)		ConocoP

∞	
9	
∞	
0	
00	,
1	
2	1
U	
-	
<	
~	
R	2

QUALITY CONTROL SUMMARY $\underline{11033537-01,02,03,04,05,06,07,08,09,10,11,12}$

WG1180868				QUALITY CONTROL SUMMARY	ATIONWIDE.
Volatile Organic Comp	ounds (GC/MS) by	y Method	8260B	L1033537-01,02,03,04,05,06,07,08,09,10,11,12	
possible Method Blank (MB)					-
(MB) R3350782-2 10/14/18	18:57				
ma	MB Result MB (Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Senzene	Π		0.000400	0.00100	
Ethylbenzene	N		0.000530	0.00250	<u></u>
Toluene	N		0.00125	0.00500	,
Vylenes, Total	N		0.00478	0.00650	4
5 (S) Toluene-d8	113			75.0-131	0
(S) Dibromofluoromethane	80.5			65.0-129	
S) a, a, a-Trifluorotoluene	82.1			80.0-120	<u></u>
(S) 4-Bromofluorobenzene	99.0			67.0-138	,
3 AM					υ

Laboratory Control Sample (LCS)

(LCS) R3350782-1 10/14/18 17:58

(LCS) R3350782-1 10/14/18	17:58					0
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.120	95.8	70.0-123		₹
Ethylbenzene	0.125	0.106	84.5	74.0-126		σ
Toluene	0.125	0.115	91.9	75.0-121		SC
Xylenes, Total	0.375	0.311	82.9	72.0-127		
(S) Toluene-d8			107	75.0-131		
(S) Dibromofluoromethane			91.1	65.0-129		
(S) a,a,a-Trifluorotoluene			87.4	80.0-120		
(S) 4-Bromofluorobenzene			103	67.0-138		

L1033103-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05)11033103-01 10/14/18 20:20 • (MS) R3350782-3 10/15/18 02:34 • (MSD) R3350782-4 10/15/18 02:53

	Y (CINI) • 07:07 c		1010 0 CZ 20 0 101	יסיחרררין לחג		2.30							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) ¹	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg r.	ng/kg	%	%		%			%	%	
Benzene	0.137	ND	0.110 (0.0573	79.9	41.8	-	10.0-149		ег Г	62.5	37	
Ethylbenzene	0.137	ND	0.126 (0.0625	91.9	45.6	-	10.0-160		EL S	67.3	38	
Toluene	0.137	ND	0.123 ().0636	89.9	46.5	-	10.0-156		SL SL	63.8	38	
Xylenes, Total	0.411	ND	0.364 (0.190	88.5	46.1	-	10.0-160		ег Г	63.0	38	
(S) Toluene-d8					113	112		75.0-131					
(S) Dibromofluoromethane					77.6	78.3		65.0-129					
(S) a, a,a-Trifluorotoluene					84.0	82.4		80.0-120					
(S) 4-Bromofluorobenzene					91.1	98.2		67.0-138					
4	VCCOUNT:			PROJ	ECT:		S	DG:		DATE/1	TIME:	PΔ	AGE:
ConocoP	hillips - Tetra Tech	-		212C-ME	0-01358		L10	33537		10/18/18	15:43	27 (of 36

Page 99 of 348

5	Comp
094	anic (
118(e Org
ָ כש א	olatil
Re	le

QUALITY CONTROL SUMMARY

Re	ecei	ived (by O	С. N	D:	11	/ <mark>8///</mark>	302	4	0	57:	39 س	PN	တို
ONE LAB. NATIONWIDE.														
QUALITY CONTROL SUMMARY	L1033537-13,14,15			B RDL	g/kg	00100	00250	00500	00650	.0-131	5.0-129	0.0-120	.0-138	
)B)L	μ	400 0	530 0	5 0	8 0	2	9	00	9	
	10d 8260			MB MC	mg/kg	0.000	0.000	0.0012	0.0047					
	MS) by Meth			MB Qualifier										
	ounds (GC/N	-	3 05:10	MB Result	mg/kg	n	П	N	П	116	78.8	80.7	103	
WG1180941	Volatile Organic Comp	period Blank (MB)	(MB) R3350783-3 10/15/16	na	Analyte	Senzene	Ethylbenzene	II oluene	Xylenes, Total	(S) Toluene-d8	(S) Dibromofluoromethane	5. (S) a, a, a - Trifluorotoluene	(S) 4-Bromofluorobenzene	3 AM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3350783-1 10/15/18 03:52 • (LCSD) R3350783-2 10/15/18 04:11

	Snika Amount	I CS Bocult	I CSD Basult	ICS Bac		Pac Limits	I C S Qualifier	I CSD Qualifier BI		PDD 1 imits
					LOUD NOU.				د	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%		%
Benzene	0.125	0.121	0.118	96.6	94.3	70.0-123		2.	43	20
Ethylbenzene	0.125	0.104	0.103	83.3	82.4	74.0-126		0.	997	20
Toluene	0.125	0.113	0.112	90.4	89.8	75.0-121		0.	629	20
Kylenes, Total	0.375	0.308	0.304	82.1	81.1	72.0-127		1.1	31	20
(S) Toluene-d8				107	108	75.0-131				
(S) Dibromofluoromethane				91.5	89.6	65.0-129				
(S) a, a, a-Trifluorotoluene				87.0	87.0	80.0-120				
(S) 4-Bromofluorobenzene				92.3	90.7	67.0-138				

SC

₹

Ū

L1033537-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05)11033537-13 10/15/18 05:50 • (MS) R3350783-4 10/15/18 12:06 • (MSD) R3350783-5 10/15/18 12:26

						2.40							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.135	Γ	0.151	0.149	112	111	Ļ	10.0-149			1.38	37	
Ethylbenzene	0.135		0.143	0.140	106	104	-	10.0-160			1.74	38	
Toluene	0.135		0.151	0.143	112	106	-	10.0-156			5.78	38	
Xylenes, Total	0.405		0.416	0.399	103	98.4	-	10.0-160			4.24	38	
(S) Toluene-d8					110	106		75.0-131					
(S) Dibromofluoromethane					84.0	87.6		65.0-129					
(S) a,a,a-Trifluorotoluene					80.6	82.0		80.0-120					
(S) 4-Bromofluorobenzene					103	86.6		67.0-138					
A	CCOUNT:			PROJ	IECT:		0)	SDG:		DATE/T	IME:	PAG	ij
ConocoPi	hillips - Tetra Tech			212C-MI	D-01358		L10	33537		10/18/18	15:43	28 of	36

Page 100 of 348

വ	,
4	
$\frac{1}{2}$	1
ί	
ž	
R	2

QUALITY CONTROL SUMMARY 11033537-01.02.03.04

WG1181245				gL	UALITY CONTROL SUMMARY	VE LAB. NATIONWIDE.	Re
Volatile Organic Com	ounds (GC/M	S) by Metho	od 8260B		L1033537-01,02,03,04		ecei
Parthod Blank (MB)							ved
(MB) R3350872-2 10/15/1	3 10:49						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C
Analyte	mg/kg		mg/kg	mg/kg			
S Toluene	Л		0.00125	0.00500			11
Xylenes, Total	П		0.00478	0.00650			/ <mark>8/</mark>
(S) Toluene-d8	121			75.0-131			302
(S) Dibromofluoromethane	94.8			65.0-129			
(S) a, a, a - Trifluorotoluene	98.7			80.0-120			8
(S) 4-Bromofluorobenzene	110			67.0-138			57:
:56:							39_P
Laboratory Control	l Sample (LC	CS)					M
KLCS) R3350872-1 10/15/1	3 09:48						о О
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			Ū

(LCS) R3350872-1 10/15/18	3 09:48					У У
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ŗ
Analyte	mg/kg	mg/kg	%	%		Ū
Toluene	0.125	0.138	110	75.0-121		
Xylenes, Total	0.375	0.377	101	72.0-127		
(S) Toluene-d8			108	75.0-131		Ī
(S) Dibromofluoromethane			108	65.0-129		a
(S) a, a,a-Trifluorotoluene			102	80.0-120		လို
(S) 4-Bromofluorobenzene			103	67.0-138		

PAGE: 29 of 36

DATE/TIME: 10/18/18 15:43

.

VG1180710 emi-Volatile Organ	nic Compounds	(GC) by Met	hod 8015	g	JALITY (CONTR L1033537-01,0	OL SUN 2,03,04	IMARY		
/Jethod Blank (N	/B)									
MB) R3350595-1 10/1	5/18 04:27									
	MB Result	MB Qualifier	MB MDL	MB RDL						
nalyte	mg/kg		mg/kg	mg/kg						
10-C28 Diesel Range	n		1.61	4.00						
28-C40 Oil Range	Π		0.274	4.00						
(S) o-Terphenyl	83.3			18.0-148						
aboratory Cont	rol Sample (LC	CS) • Labor	atory Cont	rol Sample	e Duplicate	(LCSD)				
LCS) R3350595-2 10,	/15/18 04:39 • (LCSE) R3350595-3	3 10/15/18 04:5	2						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
nalyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
10-C28 Diesel Range	50.0	32.8	34.0	65.6	68.0	50.0-150			3.59	20
(S) o-Terphenyl				77.3	85.9	18.0-148				

(S) o-Terphenyl

7:39 PM Received by OCD: 11/8/202 12:5 12:5 ğ SC $\overline{\mathbb{O}}$ <u>ک</u> ONE LAB. NATIONWIDE.

PAGE: 30 of 36

DATE/TIME: 10/18/18 15:43

•

	(
\sim	
0	(
\sim	
∞	-
~	
	,
വ	
Š	
>	
D.	

MB Outlifier MB RDL mg/kg MB RDL mm RDL 102 103 8.3.4 50.0-150 0.240 20	Compounds	(GC) by Me	thod 8015	ğ	JALITY ^{L1033537-}	CONTR 05,06,07,08,0	OL SUN 9,10,11,12,13,14	IMARY 15		ONE LAB. NATIONWIDE.
MB Dulling MB RDL mg/kg MB RDL mg/kg 161 4.00 151 4.00 151 4.00 0.274 4.00 35.0-148 8.0-148 35.0-148 8.0-148 5.0-148 8.0-148 5.0-150 2.0-150 35.5-10 2.0-150 15.1 2.0-150 16 1.0-10 17.0-10 2.0-150 18.0-148 10.2 19.1 10.2 10.2 8.0-160 10.2 8.0-160 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.6 10.2 10.2										
MB Qualifier MB MDL MB RDL ng/kg mg/kg mg/kg 1 f61 4.00 0.214 4.00 0.214 4.00 1 f61 4.00 0.214 4.00 1 f61 4.00 1 f61 4.00 1 g0 1.01	L									
mg/kg mg/kg mg/kg 161 4.00 161 4.00 0.274 4.00 0.274 4.00 18.0 Hg 18.0 Hg 18.0 Hg 100 11 LCS Result LCS Result LCS Result LCS Result LCS Result LCS Result Mg/kg mg/kg mg/kg 83.4 50.0-50 0.240 14.8 17 102 106 102 106		MB Qualifier	MB MDL	MB RDL						
161 4.00 0.274 4.00 0.274 4.00 0.274 4.00 18.0-148 8.0-148 18.0-148 8.0-148 18.0-148 8.0-148 18.0-148 1.01 18.0-148 1.01 18.0-148 1.01 18.0-148 1.01 10.11819:14 1.01/1819:14 11 LCS Neutit LCS Result 10 8.6 8.0 118 4.17 8.36 108/kg 8.1 50.0-150 118 4.17 8.36 102 1.04 0.240 102 1.06 1.8.0-148			mg/kg	mg/kg						
0.274 4.00 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 18.0.48 10.17/18 19:14 Int LCS Result LCS Result 1CS Result LCS Result LCS Result 10.8 8.9 8.9 mg/kg 8.4 8.0 10.2 10.6 18.0.48			1.61	4.00						
18.0-448 18.0-448 18.0-448 18.0-448 19.0-448 <td< td=""><td></td><td></td><td>0.274</td><td>4.00</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			0.274	4.00						
(LCS) • Laboratory Control Sample Duplicate (LCSD) SD) R3351654-3 10/17/18 19:14 unt LCS Result LCS Result LCS Dualifier LCS Qualifier RPD Limits unt LCS Result LCS Result LCS Result LCS 0 alifier RPD Limits ung/kg mg/kg % % % % 102 106 18.048 1.240 20				18.0-148						
D) R3351654-3 10/17/18 19:14 D) R3351654-3 10/17/18 19:14 nt LCS Result LCS Result LCS Result LCS Result LCS Qualifier RPD Limits mg/kg mg/kg % % % % % 41.8 41.7 83.6 83.4 50.0-150 0.240 20 102 106 18.0-148 18.0-148 18.0-148 17 105 106	Ľ	CS) • Labo	ratory Cont	irol Sampl	le Duplicate	e (LCSD)				
It LCS Result LCS Result LCS Result LCS Result LCS Qualifier RPD Limits RPD Limits </td <td>Ô</td> <td>R3351654-3</td> <td>0/17/18 19:14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ô	R3351654-3	0/17/18 19:14							
mg/kg mg/kg %	int	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
41.8 41.7 83.6 83.4 50.0-150 0.240 20 102 106 18.0-148		mg/kg	mg/kg	%	%	%		%	%	
102 106 18.0-148		41.8	41.7	83.6	83.4	50.0-150		0.240	20	
				102	106	18.0-148				

°Sc

•

PAGE: 31 of 36

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-01358

SDG: L1033537 DATE/TIME: 10/18/18 15:43

PAGE: 32 of 36

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 105 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hamps
Arkansas	88-0469	New Jersey-
California	2932	New Mexico
Colorado	TN00003	New York
Connecticut	PH-0197	North Caroli
Florida	E87487	North Caroli
Georgia	NELAP	North Caroli
Georgia ¹	923	North Dakot
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvani
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Caroli
Kentucky ²	16	South Dakot
Louisiana	AI30792	Tennessee ¹
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virgini
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01358

SDG: L1033537

etra Tech	Ac	counts P	ayable		Pres	2				
	40 M	01 N. Big idland, T	s Spring St., X 79705	Ste. 401	š					
	E	all To:	Tay/State			The Res	1			12065 (c450-000 Md Mount 2016; TN 37122 Phone 105-758, 3558 Phone 800-767, 3539 Fac 615-738-5809
			ollected:							1 102225
Client Project #			ab Project#			222				D195
an-2212	SEIO-	0	7.	2.000				1		
Site/Facility ID # Ruck Fed		1	P.O.#			720				Acctnum: COPTETRA Template:
Rush? (Lab	MUST Be Not	ified)	Quote #							Prelogin:
Same Day Next Day Three Day	Five Day 1 - 5 Day (Ra 10 Day (F	d Only) ad Only)	Date Re	sults Needed	No.	×	-			TSR: 526 - Chris McCord PB:
Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	E TE	17	1		Shipped Via: Remarks Sample #
1	SS	1	10/4	10:00	1	X	x			19-
-	-	1		10:05	+	XX	×			10-
1		1		01:01	1	××	×			-03
1	1	4		10:15	1	X	×			20
1		1		10:20	-	X	X			50-
1		1		10:25	-	×.	X			-00
1		1		10:30	-	2	×			6
1		1	P	10:35	-	X	X			\$0-
١		1	+101	11:00	-	X	X			8
1	>	1	1.0	11:20	1	XX	X		3	10
Remarks:				BW	SCHEL	10 101		pHTe	dw	COC Seal Present/intact: AP COC Stal Present/intact: AP COC Signed/Accurate: Bobtles arrive intact:
					19/1/01		12	Flow0	ther	Correct bottles used: Sufficient volume sent:
Samples return UPSFed	led via: IExCouri	14	1	Tracking # u/	4 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	479	3461	×	VOA Zero Headepade: voa Zero Headepade:
10 E 5 1	Date: 10/C	E	IS:00	Bépéjinégéry: (Sign	atupf.	X	1	Trip Blank Received:	Yes / NeoH HCL / MeoH TBR	
	Date:	-	ime:	Received by: (Sign	sature)		1	Temp: -0.2. °C	ionies Received. 15-42	If preservation required by Login: Date
and the second	Date:	-	ime:	Received foc lab t	oy: (Signat	ure)	1	Date: Intel19	Time: R. 45	Hold:

Page 106 of 348

OnocoPhillips - Tetra Tech Accounts Paya 001 N. Big Spring St., Ste. 401 4001 N. Big Spring St., Ste. 401 Idland, TX 79705 4001 N. Big Spring St., Ste. 401 Idland, TX 79705 Fmail To: sport to: K. C. T. J. C. Email To: sport to: K. C. T. J. C. Email To: sport to: K. T. J. C.	ayable Spring St., Ste. 401 X 79705	Pres			
01 N. Big Spring St., Ste. 401 Idland, TX 79705 Midland, TX 79705 Midland, TX 79705 Midland, TX 79705 Midland, TX 79705 Midland, TX 79705 Midland, TX 79705 Email To: Email To: Comp Grave Mutator Mutator Same Day Mutator Same Day Same Day Mutator Same Day Mutator Same Day Mutator	X 79705				
port to: Market Tet Correct Email To: Secription: Secription: Secription: Secription: Secription: Secription: Secription: Site/Facility ID # Context Project # Client Project # Context Project Project Project # Context Project	-				ETTAN PURE STOLE
olect escription: cone: 432-687-8137 cone: 432-687-8148 cone: 432-87-8148 cone: 432-87-8148 cone: 432-87-8148 cone: 432-87-8148 cone: 432-87-8148 cone: 432-87-8148 cone: 432-87		1.23			12005 telenon IId Nount Julie, TN 97122 Phone: 815-756-8288 Phone: 802-757-3899
Back product Liab P Anne: 432-687-8137 Client Project # Anne: 432-687-8137 Client Project # Anne: 432-687-8137 Site/Facility ID # Anne: 432-687-8137 Rush? Anne: 432-687-81 Anne Anne: 40 Numeriately Anne: 41 Numeriately Anne: 41 Numeriately Anne: 5 Simple ID Anne: 5 Simple ID Anne: 7 Simple ID	ity/State oliected:				fax: 615 758-5859 0
Milected by (print): Site/Facility ID # P.O. ollected by (signature): Site/Facility ID # P.O. needlately Rush? (Lab MUST Be Notified) Quo needlately Same Day Friee Day needlately V Trive Day acked on Ice N Trive Day Sample ID Comp/Grab Matrix * Depth BH - LC1-2 - S - BH - S(O-1) - S -	ab Project #	110,013 12,752.6			1# L(055537
Rush? Lab MUST Be Matlied) Quo oliected by (signature): Rush? (Lab MUST Be Matlied) Quo mediately Sample ID Sample ID Sample ID BH - LCI - Z) - S 10 Day (Rad Only) BH - LCI - Z) - S - SAmple ID Comp/Grab Matrix * Depth	:0,#				Acctnum: COPTETRA Terrulate
BH-2(I-2) Same Day Three Day nmediately Next Day 5 Day (Rad Only) acked on Ice N Three Day 10 Day (Rad Only) Sample ID Comp/Grab Matrix * Depth BH-2(I-2) - 5 S 10 BH-2(I-2) - 5 S 10	Quote #	-			Preiogin:
Sample ID Comp/Grab Matrix* Depth BH - 6(1-2) - \$\$ - 10 BH - 8(0-1) - \$\$ - 10	Date Results Needed	No.	- He XT		TSR: 526 - Chris McCord PB: chinned Mar
8H-6(1-2) - 55 - 10 3H-7(0-1) - 55 - 10 3H-8(0-1) - 55 - 10	Date	Cntrs	12		Remarks Sample # (lab only)
3H-7(0-1)	10/4 11:25	1 1	XXX		11-
SH-8(0-D)	52:11	1 5	XXX		21-
(11:50	~ 1	XXV		-13
	50:21	~ 1	XXV		11-
VH-90-27 - 1 - 1	A (2:10	~ 1	XX		-15
					a to the state of
Matrik: 5 - Soli AIR - Air F - Filter 5W - Groundwater B - Bioassay WW - WasteWater	RAL .	щ	n e mRAir	pH Temp Flow Other	COC Seal Present/intact: HP Y COC Stand/Accurate: Sottles arrive intact: Y Cortect bottles undi
DW - Drinking Water Samples returned via: UPSFedExCourlet	Tracking #				<u>if Arplicable</u> VOA Zero Headipace: Preservation Correct/Checked: 7
Retinquished by : (Signature) Date: 10/E 15	To Realized Dr: (Si	(inature)	S	Trip Blank Received: Yes (No) HCL MeoH	a succession of the second sec
Relinquished by : (Signature) Date: Time:	ime: Received by: (Si	gnature)	-	14,914,75 15-402	If preservation required by Login. Paker I mile
Relinquished by : (Signature) Date: Time	ime: Received for lab	by: (Signetur	6	Date: Time: [0]4/t-y 6.45	Hold:

Katie Ingram

1 102757 Client:COPTETRA	Date:10/09/18	Evaluated by:Myra "Katie" Ingram
Login #: (10 5335) Chemicor 11	The second s	

Non-Conformance (check applicable items)

	Sample Integrity	Chain of Custody Clarification	
	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
-	Improper	Chain of custody is incomplete	Insufficient packing material around container
X	Improper container	Please specify Metals requested.	cooler
-	Improper	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
-	preservation	Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on	Container lid not intact
-	Viale received with headspace.	Trip Blank not received.	If no Chain of Custody:
-	Viais received with housing and	Client did not "X" analysis.	Received by:
	Broken container	Chain of Custody is missing	Date/Time:
-	Broken container:	Chain of custody is mosting	Temp./Cont. Rec./pH:
-	Sufficient sample remains		Carrier:
-	1	The second s	Tracking#

Login Comments:

Temp: 14.7 All ice melted Saturday Delivery

the second second second	in the second				The 1105	
Client informed by:	Call	Email	Voice Mail	Date: 10/10/18	11me: 1105	(1) (1) (1)
TCD Initiale: MB	Client Con	tact: Kayla Tay	lor			
15K Initials. MD	Cucur con	cure er margan				

Login Instructions:

Run as rec'd

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.
Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT November 29, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1045249
Samples Received:	11/16/2018
Project Number:	212C-MD-01491
Description:	Buck Fed CTB
Site:	LEA COUNTY, NEW MEXICO
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, form June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH-1 (3') L1045249-01	7
AH-2 (3') L1045249-02	8
AH-3 (3') L1045249-03	9
AH-4 (3') L1045249-04	10
AH-5 (3') L1045249-05	11
AH-6 (3') L1045249-06	12
AH-7 (3') L1045249-07	13
AH-8 (3') L1045249-08	14
NSW-1 L1045249-09	15
SSW-1 L1045249-10	16
ESW-1 L1045249-11	17
WSW-1 L1045249-12	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 300.0	21
Volatile Organic Compounds (GC) by Method 8015D/GRO	23
Volatile Organic Compounds (GC/MS) by Method 8260B	25
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	29
Al: Accreditations & Locations	30
Sc: Sample Chain of Custody	31

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME:

11/29/18 11:48

PAGE: 2 of 33

Received by OCD: 11/8/2021 12:57:39 PM	SAMPLE SU	JMMA	ONE LAB. NARage 11		
AH-1 (3') L1045249-01 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 09:30	Received date/time 11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 04:29	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1201380	1	11/25/18 21:39	11/26/18 13:34	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 12:35	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1199763	1	11/20/18 12:40	11/21/18 15:41	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1199763	5	11/20/18 12:40	11/21/18 22:07	KME
			Collected by	Collected date/time	Received date/time
AH-2 (3') L1045249-02 Solid	2.11		Devin Dominguez	11/14/18 09:40	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 04:38	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 19:29	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 12:54	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/27/18 00:04	KME
			Collected by	Collected date/time	Received date/time
AH-3 (3') L1045249-03 Solid			Devin Dominguez	11/14/18 09:46	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Net Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 04:47	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 19:54	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 13:13	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	1	11/25/18 00:51	11/26/18 21:49	KME
			Collected by	Collected date/time	Received date/time
AH-4 (3') L1045249-04 Solid			Devin Dominguez	11/14/18 09:58	11/16/18 07:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Net Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 05:13	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 20:18	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 13:32	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	1	11/25/18 00:51	11/26/18 22:09	KME
semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	5	11/25/18 00:51	11/2//18 23:09	AAT
			Collected by	Collected date/time	Received date/time
AH-5 (3') L1045249-05 Solid	Dotob	Dilution	Dronorotion	11/14/10 10.00	11/10/16 07.50
vietnod	Batch	Dilution	date/time	date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 05:22	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 20:42	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 13:51	BMB
	W/G1198511	5	11/25/18 00:51	11/27/18 01:22	KME

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1045249

DATE/TIME: 11/29/18 11:48 PAGE: 3 of 33

AH-6 (3') L1045249-06 Solid			Collected by	Collected date/time	
Method			Devin Dominguez	11/14/18 10:15	Received date/time 11/16/18 07:30
	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 05:31	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	100	11/19/18 10:30	11/20/18 21:06	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	8	11/19/18 10:30	11/19/18 15:26	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	20	11/25/18 00:51	11/27/18 01:42	KME
			Collected by	Collected date/time	Received date/time
AH-7 (3') L1045249-07 Solid			Devin Donninguez	11/14/18 10:55	11/10/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 05:39	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 21:30	BMB
√olatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 14:10	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/27/18 00:24	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202380	1	11/28/18 14:13	11/29/18 00:40	AAT
			Collected by	Collected date/time	Peceived date/time
AH-8 (3') L1045249-08 Solid			Devin Dominguez	11/14/18 10:50	11/16/18 07:30
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
fotal Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	KBC
Vet Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 05:48	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	250	11/19/18 10:30	11/20/18 21:55	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	20	11/19/18 10:30	11/19/18 15:45	BMB
semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	20	11/25/18 00:51	11/2//18 02:02	KME
NSW-1 L1045249-09 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 11:05	Received date/time 11/16/18 07:30
Method	Batch	Dilution	Preparation	Analysis dato/timo	Analyst
Total Salida by Mathad 2E40 C 2011	WC1100E02	1	11/20/19 1E-11	11/20/19 1E-24	KDC
otal Solids by Method 2040 G-2011 Vat Chamistry by Mathod 200 0	WG1199502	1	11/20/10 13.11 11/17/18 15:00	11/20/10 13.24	
Interesting by Method 200.0	WG1190190 WC1100157	1	11/19/18 10:30	11/20/10 03.37	ELIN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1199137	1	11/19/18 10:30	11/19/18 12:13	RMR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/26/18 23:06	KME
SSW-1 L1045249-10 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 11:20	Received date/time 11/16/18 07:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	KBC
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 06:06	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 22:43	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 14:48	BMB
a character a character character and the second	WG1198511	2	11/25/18 00:51	11/26/18 23:25	KME

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48

PAGE: 4 of 33 Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPagev113 of 348

Sr

Qc

GI

Â

Sc

			Collected by	Collected date/time	Received date/time	
ESW-1 L1045249-11 Solid			Devin Dominguez	11/14/18 11:25	11/16/18 07:30	¹ Cp
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		^{2}Tc
Total Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	КВС	
Wet Chemistry by Method 300.0	WG1198191	5	11/17/18 15:15	11/19/18 20:05	MAJ	3
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 23:07	BMB	Ss
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 15:07	BMB	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/26/18 23:44	KME	⁴ Cn
			Collected by	Collected date/time	Received date/time	5

			Collected by	Collected date/time	Received date/time
WSW-1 L1045249-12 Solid			Devin Dominguez	11/14/18 12:00	11/16/18 07:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	KBC
Wet Chemistry by Method 300.0	WG1198191	1	11/17/18 15:15	11/19/18 20:22	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	100	11/19/18 10:30	11/20/18 23:31	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	8	11/19/18 10:30	11/19/18 16:04	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	40	11/25/18 00:51	11/27/18 02:20	KME

Released to	Imaging: 10/11/2022	11:56:13 AM	r
	ConocoPhillips - Tetra Tech		

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48

PAGE: 5 of 33

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 90/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48

PAGE: 6 of 33

SAMPLE RESULTS - 01 L1045249

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 09:30

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.5		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1060		0.869	10.0	10.9	1	11/20/2018 04:29	WG1198190	Γ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	ſ
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ì
TPH (GC/FID) Low Fraction	0.0503	J	0.0237	0.100	0.109	1	11/26/2018 13:34	WG1201380	
(S) a,a,a-Trifluorotoluene(FID)	96.6				77.0-120		11/26/2018 13:34	WG1201380	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000437	0.00100	0.00109	1	11/19/2018 12:35	WG1198957
Toluene	U		0.00137	0.00500	0.00547	1	11/19/2018 12:35	WG1198957
Ethylbenzene	U		0.000579	0.00250	0.00273	1	11/19/2018 12:35	WG1198957
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/19/2018 12:35	WG1198957
(S) Toluene-d8	101				75.0-131		11/19/2018 12:35	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 12:35	WG1198957
(S) a,a,a-Trifluorotoluene	97.4				80.0-120		11/19/2018 12:35	WG1198957
(S) 4-Bromofluorobenzene	114				67.0-138		11/19/2018 12:35	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	328		8.80	4.00	21.9	5	11/21/2018 22:07	WG1199763
C28-C40 Oil Range	129		0.300	4.00	4.37	1	11/21/2018 15:41	WG1199763
(S) o-Terphenyl	106				18.0-148		11/21/2018 15:41	WG1199763
(S) o-Terphenyl	88.6				18.0-148		11/21/2018 22:07	WG1199763

SDG: L1045249 DATE/TIME: 11/29/18 11:48 ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 02 L1045249

Â

Sc

Total Solids by Method 2540 G-2011

						1'C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	92.0		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1900		4.32	10.0	54.4	5	11/20/2018 04:38	WG1198190	`

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn	
Chloride	1900		4.32	10.0	54.4	5	11/20/2018 04:38	WG1198190		
Volatile Organic Comp	bounds (GC) b	y Method	8015D/GI	RO		D:1 -1			⁵ Sr	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		QC	
TPH (GC/FID) Low Fraction	0.538		0.0236	0.100	0.109	1	11/20/2018 19:29	WG1199157		
(S) a,a,a-Trifluorotoluene(FID)	95.7				77.0-120		11/20/2018 19:29	WG1199157	⁷ Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	11/19/2018 12:54	WG1198957
Toluene	U		0.00136	0.00500	0.00544	1	11/19/2018 12:54	WG1198957
Ethylbenzene	U		0.000576	0.00250	0.00272	1	11/19/2018 12:54	WG1198957
Total Xylenes	U		0.00520	0.00650	0.00707	1	11/19/2018 12:54	WG1198957
(S) Toluene-d8	102				75.0-131		11/19/2018 12:54	WG1198957
(S) Dibromofluoromethane	119				65.0-129		11/19/2018 12:54	WG1198957
(S) a,a,a-Trifluorotoluene	93.9				80.0-120		11/19/2018 12:54	WG1198957
(S) 4-Bromofluorobenzene	112				67.0-138		11/19/2018 12:54	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	476		3.50	4.00	8.70	2	11/27/2018 00:04	WG1198511
C28-C40 Oil Range	159		0.596	4.00	8.70	2	11/27/2018 00:04	WG1198511
(S) o-Terphenyl	53.0				18.0-148		11/27/2018 00:04	WG1198511

SAMPLE RESULTS - 03 L1045249

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time		2		
Total Solids	90.5		1	11/24/2018 10:10	<u>WG1199499</u>	Tc		

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	945		0.879	10.0	11.1	1	11/20/2018 04:47	WG1198190	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0355	ВJ	0.0240	0.100	0.111	1	11/20/2018 19:54	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	98.3				77.0-120		11/20/2018 19:54	WG1199157	7 Cl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00111	1	11/19/2018 13:13	WG1198957
Toluene	U		0.00138	0.00500	0.00553	1	11/19/2018 13:13	WG1198957
Ethylbenzene	U		0.000586	0.00250	0.00276	1	11/19/2018 13:13	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 13:13	WG1198957
(S) Toluene-d8	100				75.0-131		11/19/2018 13:13	WG1198957
(S) Dibromofluoromethane	111				65.0-129		11/19/2018 13:13	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 13:13	WG1198957
(S) 4-Bromofluorobenzene	116				67.0-138		11/19/2018 13:13	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	75.4		1.78	4.00	4.42	1	11/26/2018 21:49	WG1198511
C28-C40 Oil Range	23.7		0.303	4.00	4.42	1	11/26/2018 21:49	WG1198511
(S) o-Terphenyl	51.3				18.0-148		11/26/2018 21:49	WG1198511

SAMPLE RESULTS - 04 L1045249

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 09:58

						 1°Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	90.7		1	11/24/2018 10:10	<u>WG1199499</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	819		0.877	10.0	11.0	1	11/20/2018 05:13	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	1.08		0.0239	0.100	0.110	1	11/20/2018 20:18	WG1199157		
(S) a,a,a-Trifluorotoluene(FID)	96.0				77.0-120		11/20/2018 20:18	WG1199157	7 CI	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00100	0.00110	1	11/19/2018 13:32	WG1198957
Toluene	U		0.00138	0.00500	0.00551	1	11/19/2018 13:32	WG1198957
Ethylbenzene	U		0.000585	0.00250	0.00276	1	11/19/2018 13:32	WG1198957
Total Xylenes	U		0.00527	0.00650	0.00717	1	11/19/2018 13:32	WG1198957
(S) Toluene-d8	103				75.0-131		11/19/2018 13:32	WG1198957
(S) Dibromofluoromethane	110				65.0-129		11/19/2018 13:32	WG1198957
(S) a,a,a-Trifluorotoluene	97.1				80.0-120		11/19/2018 13:32	WG1198957
(S) 4-Bromofluorobenzene	121				67.0-138		11/19/2018 13:32	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	405		8.88	4.00	22.1	5	11/27/2018 23:09	WG1198511
C28-C40 Oil Range	127		0.302	4.00	4.41	1	11/26/2018 22:09	WG1198511
(S) o-Terphenyl	139				18.0-148		11/27/2018 23:09	WG1198511
(S) o-Terphenyl	43.9				18.0-148		11/26/2018 22:09	WG1198511

SDG: L1045249

SAMPLE RESULTS - 05 L1045249

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	91.4		1	11/24/2018 10:10	WG1199499	ŤΤ

Wet Chemistry by Method 300.0

									1 7
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1210		4.35	10.0	54.7	5	11/20/2018 05:22	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn	
Chloride	1210		4.35	10.0	54.7	5	11/20/2018 05:22	WG1198190		
Volatile Organic Comp	Posult (dp)	by Method	8015D/G	RO	MOL (dp)	Dilution	Analycic	Patch	⁵ Sr	
Analyte	mg/kg	Quaimer	mg/kg	mg/kg	mg/kg	Dilution	date / time	Batch	⁶ Qc	
TPH (GC/FID) Low Fraction	0.573		0.0237	0.100	0.109	1	11/20/2018 20:42	WG1199157		
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		11/20/2018 20:42	WG1199157	⁷ Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00100	0.00109	1	11/19/2018 13:51	WG1198957
Toluene	U		0.00137	0.00500	0.00547	1	11/19/2018 13:51	WG1198957
Ethylbenzene	U		0.000580	0.00250	0.00274	1	11/19/2018 13:51	WG1198957
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/19/2018 13:51	WG1198957
(S) Toluene-d8	104				75.0-131		11/19/2018 13:51	WG1198957
(S) Dibromofluoromethane	110				65.0-129		11/19/2018 13:51	WG1198957
(S) a,a,a-Trifluorotoluene	95.9				80.0-120		11/19/2018 13:51	WG1198957
(S) 4-Bromofluorobenzene	121				67.0-138		11/19/2018 13:51	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1000		8.81	4.00	21.9	5	11/27/2018 01:22	WG1198511
C28-C40 Oil Range	325		1.50	4.00	21.9	5	11/27/2018 01:22	WG1198511
(S) o-Terphenyl	6.72	<u>J2</u>			18.0-148		11/27/2018 01:22	WG1198511

Sample Narrative:

L1045249-05 WG1198511: Surrogate failure due to matrix interference

SDG: L1045249

SAMPLE RESULTS - 06 L1045249

Sc

Total Solids by Method 2540 G-2011

						I'Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	86.8		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn	
Chloride	912		0.916	10.0	11.5	1	11/20/2018 05:31	WG1198190		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ Qc		
TPH (GC/FID) Low Fraction	134		2.50	0.100	11.5	100	11/20/2018 21:06	WG1199157			
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		11/20/2018 21:06	WG1199157	⁷ Gl		
Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result (drv)	Qualifier	SDL (drv)	Unadi MQI	MQL (drv)	Dilution	Analysis	Batch			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00369	0.00100	0.00921	8	11/19/2018 15:26	WG1198957
Toluene	U		0.0115	0.00500	0.0461	8	11/19/2018 15:26	WG1198957
Ethylbenzene	U		0.00488	0.00250	0.0230	8	11/19/2018 15:26	WG1198957
Total Xylenes	0.261		0.0440	0.00650	0.0599	8	11/19/2018 15:26	WG1198957
(S) Toluene-d8	99.6				75.0-131		11/19/2018 15:26	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 15:26	WG1198957
(S) a,a,a-Trifluorotoluene	98.7				80.0-120		11/19/2018 15:26	WG1198957
(S) 4-Bromofluorobenzene	127				67.0-138		11/19/2018 15:26	WG1198957

Sample Narrative:

L1045249-06 WG1198957: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4260		37.1	4.00	92.1	20	11/27/2018 01:42	WG1198511
C28-C40 Oil Range	1270		6.31	4.00	92.1	20	11/27/2018 01:42	WG1198511
(S) o-Terphenyl	4.33	<u>J7</u>			18.0-148		11/27/2018 01:42	WG1198511

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 10:35

	Result	Qualifier	Dilution	Analysis	Batch		Cp
Analyte	%			date / time			2
Total Solids	90.5		1	11/24/2018 10:10	<u>WG1199499</u>		Tc
Wet Chemistry b	y Method 300.0						³ Ss
		0 110	6DL (R · · ·	·

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1310		4.40	10.0	55.3	5	11/20/2018 05:39	WG1198190

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ľ
TPH (GC/FID) Low Fraction	2.53		0.0240	0.100	0.111	1	11/20/2018 21:30	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		11/20/2018 21:30	WG1199157	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00111	1	11/19/2018 14:10	WG1198957
Toluene	U		0.00138	0.00500	0.00553	1	11/19/2018 14:10	WG1198957
Ethylbenzene	U		0.000586	0.00250	0.00276	1	11/19/2018 14:10	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 14:10	WG1198957
(S) Toluene-d8	99.1				75.0-131		11/19/2018 14:10	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 14:10	WG1198957
(S) a,a,a-Trifluorotoluene	96.5				80.0-120		11/19/2018 14:10	WG1198957
(S) 4-Bromofluorobenzene	125				67.0-138		11/19/2018 14:10	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	83.1		1.78	4.00	4.42	1	11/29/2018 00:40	WG1202380
C28-C40 Oil Range	224		0.606	4.00	8.84	2	11/27/2018 00:24	WG1198511
(S) o-Terphenyl	4.90	<u>J2</u>			18.0-148		11/27/2018 00:24	WG1198511
(S) o-Terphenyl	15.2	<u>J2</u>			18.0-148		11/29/2018 00:40	WG1202380

Sample Narrative:

L1045249-07 WG1202380, WG1198511: Low surrogate due to matrix L1045249-07 WG1202380, WG1198511: Surrogate failure due to matrix interference

SDG: L1045249 Â

Sc

SAMPLE RESULTS - 08 L1045249

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	85.8		1	11/20/2018 15:24	WG1199502	T

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	686		0.927	10.0	11.7	1	11/20/2018 05:48	<u>WG1198190</u>	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	y Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	582		6.33	0.100	29.2	250	11/20/2018 21:55	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	99.4				77.0-120		11/20/2018 21:55	WG1199157	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.0297		0.00933	0.00100	0.0233	20	11/19/2018 15:45	WG1198957
Toluene	0.996		0.0292	0.00500	0.117	20	11/19/2018 15:45	WG1198957
Ethylbenzene	0.805		0.0124	0.00250	0.0583	20	11/19/2018 15:45	WG1198957
Total Xylenes	11.7		0.111	0.00650	0.152	20	11/19/2018 15:45	WG1198957
(S) Toluene-d8	98.3				75.0-131		11/19/2018 15:45	WG1198957
(S) Dibromofluoromethane	116				65.0-129		11/19/2018 15:45	WG1198957
(S) a,a,a-Trifluorotoluene	98.2				80.0-120		11/19/2018 15:45	WG1198957
(S) 4-Bromofluorobenzene	117				67.0-138		11/19/2018 15:45	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6590		37.5	4.00	93.3	20	11/27/2018 02:02	WG1198511
C28-C40 Oil Range	1380		6.39	4.00	93.3	20	11/27/2018 02:02	WG1198511
(S) o-Terphenyl	14.5	<u>J7</u>			18.0-148		11/27/2018 02:02	WG1198511

SDG: L1045249 DATE/TIME:

PAGE: 14 of 33

SAMPLE RESULTS - 09

WG1199157

Gl

AI

Sc

11/20/2018 22:19

Collected date/time: 11/14/18 11:05

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by Meth	od 2540 G-20	011							1
	Result	Qualifier	Dilution	Analysis	Batch				— Cp
Analyte	%			date / time					2
Total Solids	92.1		1	11/20/2018 15:24	WG1199502				Tc
Wet Chemistry by Me	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (o	dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	441		0.863	10.0	10.9	1	11/20/2018 05:57	WG1198190	
Volatile Organic Cor	npounds (GC)	by Metho	d 8015	D/GRO					⁵ Sr
	Result (dry)	Qualifier	SDL (o	dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိပ္ရင
TPH (GC/FID) I ow Fraction	0.0574	ВJ	0.023	6 0.100	0.109	1	11/20/2018 22:19	WG1199157	

77.0-120

Volatile Organic Compounds (GC/MS) by Method 8260B

97.9

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00109	1	11/19/2018 14:29	WG1198957
Toluene	U		0.00136	0.00500	0.00543	1	11/19/2018 14:29	WG1198957
Ethylbenzene	U		0.000575	0.00250	0.00271	1	11/19/2018 14:29	WG1198957
Total Xylenes	U		0.00519	0.00650	0.00705	1	11/19/2018 14:29	WG1198957
(S) Toluene-d8	102				75.0-131		11/19/2018 14:29	WG1198957
(S) Dibromofluoromethane	114				65.0-129		11/19/2018 14:29	WG1198957
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		11/19/2018 14:29	WG1198957
(S) 4-Bromofluorobenzene	116				67.0-138		11/19/2018 14:29	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	330		3.49	4.00	8.68	2	11/26/2018 23:06	WG1198511
C28-C40 Oil Range	142		0.595	4.00	8.68	2	11/26/2018 23:06	WG1198511
(S) o-Terphenyl	35.5				18.0-148		11/26/2018 23:06	WG1198511

SDG: L1045249

SAMPLE RESULTS - 10 L1045249

ONE LAB. NAPagev124 of 348

⁸Al

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 11:20

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	90.8		1	11/20/2018 15:24	WG1199502	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
Result (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch										
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn	
Chloride	1520		4.38	10.0	55.1	5	11/20/2018 06:06	WG1198190		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	0.916		0.0239	0.100	0.110	1	11/20/2018 22:43	WG1199157		
(S) a,a,a-Trifluorotoluene(FID)	93.7				77.0-120		11/20/2018 22:43	WG1199157	7 Cl	
									0	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00100	0.00110	1	11/19/2018 14:48	WG1198957
Toluene	U		0.00138	0.00500	0.00551	1	11/19/2018 14:48	WG1198957
Ethylbenzene	U		0.000584	0.00250	0.00275	1	11/19/2018 14:48	WG1198957
Total Xylenes	0.00614	J	0.00527	0.00650	0.00716	1	11/19/2018 14:48	WG1198957
(S) Toluene-d8	101				75.0-131		11/19/2018 14:48	WG1198957
(S) Dibromofluoromethane	117				65.0-129		11/19/2018 14:48	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 14:48	WG1198957
(S) 4-Bromofluorobenzene	114				67.0-138		11/19/2018 14:48	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	552		3.55	4.00	8.81	2	11/26/2018 23:25	WG1198511
C28-C40 Oil Range	194		0.604	4.00	8.81	2	11/26/2018 23:25	WG1198511
(S) o-Terphenyl	53.3				18.0-148		11/26/2018 23:25	WG1198511

SDG: L1045249

SAMPLE RESULTS - 11 L1045249

Â

Sc

Collected date/time: 11/14/18 11:25 Total Solids by Method 2540 G-2011

	Posult Qualifier Dilution Analysis Batch									
	Result	Qualifier	Dilution	Analysis	Batch					
Analyte	%			date / time					2	
Total Solids	90.5		1	11/20/2018 15:24	WG1199502				Тс	
Wet Chemistry b	y Method 300.0								³ Ss	
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		4 Cn	
Chloride	1990		4.39	10.0	55.2	5	11/19/2018 20:05	WG1198191		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိQင	
TPH (GC/FID) Low Fraction	0.0623	ВJ	0.0240	0.100	0.110	1	11/20/2018 23:07	WG1199157		
(S) a,a,a-Trifluorotoluene(FID)	97.0				77.0-120		11/20/2018 23:07	WG1199157	7 Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00110	1	11/19/2018 15:07	WG1198957
Toluene	U		0.00138	0.00500	0.00552	1	11/19/2018 15:07	WG1198957
Ethylbenzene	U		0.000585	0.00250	0.00276	1	11/19/2018 15:07	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 15:07	WG1198957
(S) Toluene-d8	106				75.0-131		11/19/2018 15:07	WG1198957
(S) Dibromofluoromethane	107				65.0-129		11/19/2018 15:07	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 15:07	WG1198957
(S) 4-Bromofluorobenzene	118				67.0-138		11/19/2018 15:07	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	329		3.56	4.00	8.84	2	11/26/2018 23:44	WG1198511
C28-C40 Oil Range	159		0.605	4.00	8.84	2	11/26/2018 23:44	WG1198511
(S) o-Terphenyl	57.7				18.0-148		11/26/2018 23:44	WG1198511

SAMPLE RESULTS - 12 L1045249

ONE LAB. NAPagev126 of 348

⁸Al

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 12:00

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	90.7		1	11/20/2018 15:24	WG1199502	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Met	hod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	354		0.877	10.0	11.0	1	11/19/2018 20:22	WG1198191	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ି Q c
TPH (GC/FID) Low Fraction	553		2.39	0.100	11.0	100	11/20/2018 23:31	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	94.1				77.0-120		11/20/2018 23:31	WG1199157	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00353	0.00100	0.00882	8	11/19/2018 16:04	WG1198957
Toluene	0.134		0.0110	0.00500	0.0441	8	11/19/2018 16:04	WG1198957
Ethylbenzene	0.00654	J	0.00468	0.00250	0.0221	8	11/19/2018 16:04	WG1198957
Total Xylenes	7.53		0.0422	0.00650	0.0573	8	11/19/2018 16:04	WG1198957
(S) Toluene-d8	106				75.0-131		11/19/2018 16:04	WG1198957
(S) Dibromofluoromethane	117				65.0-129		11/19/2018 16:04	WG1198957
(S) a,a,a-Trifluorotoluene	95.2				80.0-120		11/19/2018 16:04	WG1198957
(S) 4-Bromofluorobenzene	133				67.0-138		11/19/2018 16:04	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8780		71.0	4.00	176	40	11/27/2018 02:20	WG1198511
C28-C40 Oil Range	2170		12.1	4.00	176	40	11/27/2018 02:20	WG1198511
(S) o-Terphenyl	41.5	<u>J7</u>			18.0-148		11/27/2018 02:20	WG1198511

SDG: L1045249 DATE/TIME:

Rece	ived l	y OCD ∼	: 11	/ <mark>8/2</mark> 02	21 1(4	2:5	7:39	ר P N רי	တို	۲ م	5	P		° SC						Pag	e 12	7 of	348	8
ONE LAB. NATIONWIDE.																							PAGE	19 of 33
~																							DATE/TIME:	11/29/18 11:48
ONTROL SUMMARY <u>9-01.02.03.04.05.06.07</u>							Q																SDG:	L1045249
QUALITY C		JC					DUP Qualifier DUP RF	%	10			imits LCS Qualifier		2									PROJECT:	212C-MD-01491
		MB MDL MB RC %	2		licate (DUP)	24/18 10:10	Dilution DUP RPD	%	1 0.221			LCS Rec. L Rec. L	0 0E 0.1	1-0.00										
2011		MB Qualifier			ole (OS) • Dup	IP) R3362901-3 11/:	sult DUP Result	%	91.3	(LCS)		unt LCS Result	9 U	0.00										Tech
.99 Method 2540 G-	k (MB)	11/24/18 10:10 MB Result	0.00100		Original Samp	11/24/18 10:10 • (DU	Original Re	%	91.5	ontrol Sample	11/24/18 10:10	Spike Amo	% EO 0	0.06									ACCOUNT:	ConocoPhillips - Tetra
WG11994	Method Blan	(MB) R3362901-1	Total Solids	10/11	2-1045249-01	C(OS) L1045249-01	(1:5	Analyte	W ^T otal Solids	Laboratory C	(LCS) R3362901-2	Andero		l otal solius										

Rece	ived (by OC		11/8, "	(202) S	12 0	:57	39 ن	Р М	ိတ္တိ	ے ا	5	~ ~	Ā	ů.	1	Page 128 of .	348
ONE LAB. NATIONWIDE.																		PAGE: 20 of 33
																		DATE/TIME: 11/29/18 11:48
NTROL SUMMARY 49-08.09.10.11.12																		SDG: L1045249
QUALITY CO 10452							עמם מדוע	DUP Qualifier Limits	%	10			s LCS Qualifier					PROJECT: 2C-MD-01491
0		MB RDL	%		ĺ	(40		DUP RPD	%	0.0589			Rec. Limits	%				- 212
		MB MDL	%			Dilcate (L	47.CI 81/07/1	Dilution		-			LCS Rec.	%				
		MB Qualifier				UU • (SU)	K33010/ 1-3 1	t DUP Result	%	86.1	CS)		LCS Result	%				Ę
2 hod 2540 G-20	1B)	18 15:24 MB Result	%	0.000		Iginal Sample	(100) • 47.CI 21/0	Original Resul	%	86.0	rol Sample (L	0/18 15:24	Spike Amount	%				ACCOUNT: coPhillips - Tetra Tec
WG119950	post Method Blank (N	0 (MB) R3361871-1 11/20/	Analyte	1: Total Solids	(, , , , , , , , , , , , , , , , , , ,		2/11 17-7070717 (CO)2	1:50	Analyte	W Total Solids	Laboratory Cont	(LCS) R3361871-2 11/20		Analyte				Conoc

/G1198190 at Chemistry by Method	0.005 1			0		Y CONTI 249-01,02,03,04	ROL SL 4,05,06,07,08	JMMAR 3,09,10	×			ONE LAB	. NATIONWIDE.	Rece
od Blank (MB)														ived (
361486-1 11/20/18 01:: N	28 1B Result	MB Qualifier	MB MDL	MB RDL										by OCI ∼
	gy/gr		mg/kg 0.795	mg/kg 10.0										
5236-01 Original	Sample	(OS) • Dup	olicate (D	(AU)										021 1
0011/20/18 02	2:18 • (DUP) Iriginal Result	R3361486-3 1 DUP Result	11/20/18 02:2 Dilution	26 DUP RPD	DUP Qualifier	DUP RPD								2:573
<u>→</u>	lg/kg	(dry) mg/kg		~ ~	555	Limits %								9_P M م
~	04	113	~	8.65		20								္တိလိ
249-10 Original	Sample	(OS) • Dul	plicate (D	(UP)										ط ط
00 81/02/11 01-842640 C (c	o:00 • (DUP) Iriginal Result Iry)) K3301480-0 : DUP Result (dry)	Dilution		DUP Qualifier	DUP RPD Limits								$\overline{P}^{_{\scriptscriptstyle (\mathfrak{s})}}$
Ľ	lg/kg	mg/kg	-	%		%								
	520	1720	വ	12.4		20								° S
atory Control Si	ample (L	CS)												
3361486-2 11/20/18 0 [.] Si	1:37 pike Amount	LCS Result	LCS Rec.	Rec. Limit	s LCS Quali	fler								
- L	g/kg	mg/kg	%	%										
2	00	202	101	90.0-110										
236-10 Original	Sample	(OS) • Mai	trix Spike	i (MS) • Mē	itrix Spike	Duplicate (N	ISD)							
)45236-10 11/20/18 0 [,] S	4:03 • (MS) F pike Amount	Result Result	1/20/18 04:12 It MS Result ((MSD) R336	31486-5 11/20/1 Ilt MS Rec	8 04:21 MSD Rec	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	CIAN	RPD I imits		
2 2	lg/kg	(ary) mg/kg	mg/kg	mg/kg	%	%		%			%	%		
G	32	84.3	614	601	9.66	97.0	-	80.0-120			2.27	20		
														Page 129 of
ACCO	:TNUC				PROJECT:		0)	SDG:		DATE/	TIME:		PAGE	^c 348
ConocoPhillip	vs - Tetra Tec	-		21.	2C-MD-01491		110	45249		11/29/18	3 11-48		21 of 33	8

text <u>Macountine</u> Markot Markot and <u>Macountine</u> Markot Markot <u>ninple (CS) - Duplicate (DUP)</u> UPR3364063 11918 2013 Amesit poundon pue pep <u>Durbanitire</u> Limits and Resit poundon pue pep <u>Durbanitire</u> Limits <u>anglag \$ 73 20</u> ample (CS) - Duplicate (DUP) 	Realt MB Outline MB R01. mg/s9 MB R01. mg/s9 MB R01. mg/s9 mmDle (OS) - Duplicate (DUP) 0.055 0.00 0.055 0.00 s. DUP RESSAMOSA 1000 0.095 0.00 0.055 0.0 s. DUP RESSAMOSA 1000 0.00 0.005 0.00 0.005 0.00 s. DUP RESSAMOSA 1000 0.00	Mit ME Dumine ME RU, maying ME RU, maying ME RU, maying 0.35 0.03 0.04 0.05 0.01 0.35 0.03 0.00 0.04 0.05 0.01 0.16 0.35 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.00 0.00 0.01 0.01 0.01 Mesatu Dir Present 0.00 0.01	alti <u>lie Guantice</u> Jea Mui lie Guantice Jea Mui lie Gios - Duplicate (DUP) Duplicasastrosas 1119/82 2013 Result (DP) Result (DUP) mogal Result (DP) Result (DUP) modal Result (DP) Result (DUP) Result (DP) Result (DP) Result (DP) Result (DP) Result (DP) Result (Image of the CP1 TH/SG011 15:22 13:30 - 14 10 Image of the CP1 th/SG011 15:22 13:30 - 14 10 Image o	Mail Mail Mail an Mail Mail and Mail andi Mail
Mit Monting MB R0. mg/g MB R0. mg/g 0.35 0.03 0.35 0.0 0.35 0.0 0.35 0.0 0.16 0.05 0.17 0.0 0.16 0.0 0.05 10utron 0.07 5 0.08 0.0 0.09 5 0.00	Mit MB/01 MB R01 mg/90 mg/90 mg/90 0.75 0.03 0.04 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.01 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	aft ME Outline MB MD ME RDL mg/g1 mg/g3 <	aft HE Countier MB ML mg/mg mg/mg mg/mg mg/mg 0.35 0.00 0.35 0.01 0.15 0.01 0.35 0.01 0.15 0.01 0.35 0.01 0.15 0.01 0.01 0.01 0.15 0.01 0.01 0.01 16 0.01 0.01 0.01 16 0.01 0.01 0.01 10 5 3.33 2.0 10 5 3.33 2.0 10 5 3.33 2.0 10 11 1/4 2.0 10 5 3.33 2.0 11 1/4 2.0 0.01 10 11 1/4 2.0 10 11 1/4 2.0 10 11 1/4 2.0 10 11 1/4 2.0 10 11 1/4 2.0 10 11 1/4 2.0 10 1	utu bg0 andie per of operating in the part of the par	utu <u>M3004000</u> mon M8 001 mon M8 001 mon 0.33 0.33 0.03 0.34 0.03 0.03 0.34 0.00 0.04 0.35 0.33 0.0 0.34 0.00 0.04 0.35 0.33 0.0 0.44 0.00 0.00 0.45 0.1 0.04 0.46 0.47 0.44 0.47 1 1 0.47 1 1 0.46 1 1 0.47 1 1 0.47 1 1 0.48 0 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 1 1 0.45 5 0.44 0.45 5 0.44 0.45 5 0.44 0.45 5 0.44 0.45 5 0.44 0.45 5 0.44
mg/ga mg/ga 0.35 0.0 0.35 0.0 0.01 0.35 0.01 0.35 0.01 0.35 0.01 0.35 0.01 0.01 0.01 <td>mg/ug mg/ug <th< td=""><td>mgag mgag mgag 0.35 0.0 0.35 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.06 0.0 0.07 0.0 0.08 0.0 0.09 0.0 0.00 0 0.01</td><td>mg/a mg/a mg/a mg/a 0.35 0.0 0.35 0.0 0.010110cte (OLP) 0.00 0.010110cte (DLP) 0.010110cte (DLP) 0.01017333640053 11190182013 0.0101100 Duploted (DLP) 0.0101100 1 (0101733640053 1112018 0010 1 1 1 0.0101100 mg/a 5 3.23 2.0 1 1 0.010100 mg/a 5 3.23 2.0 1 1 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.010100000 0.010100000 0.0101000000 0.01010000000 0.010100000000000000000000000000000000</td><td>Diple (OS) Diple (</td><td>Definition Image <thimage< th=""> Image Image</thimage<></td></th<></td>	mg/ug mg/ug <th< td=""><td>mgag mgag mgag 0.35 0.0 0.35 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.06 0.0 0.07 0.0 0.08 0.0 0.09 0.0 0.00 0 0.01</td><td>mg/a mg/a mg/a mg/a 0.35 0.0 0.35 0.0 0.010110cte (OLP) 0.00 0.010110cte (DLP) 0.010110cte (DLP) 0.01017333640053 11190182013 0.0101100 Duploted (DLP) 0.0101100 1 (0101733640053 1112018 0010 1 1 1 0.0101100 mg/a 5 3.23 2.0 1 1 0.010100 mg/a 5 3.23 2.0 1 1 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.010100000 0.010100000 0.0101000000 0.01010000000 0.010100000000000000000000000000000000</td><td>Diple (OS) Diple (</td><td>Definition Image <thimage< th=""> Image Image</thimage<></td></th<>	mgag mgag mgag 0.35 0.0 0.35 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.05 0.0 0.06 0.0 0.07 0.0 0.08 0.0 0.09 0.0 0.00 0 0.01	mg/a mg/a mg/a mg/a 0.35 0.0 0.35 0.0 0.010110cte (OLP) 0.00 0.010110cte (DLP) 0.010110cte (DLP) 0.01017333640053 11190182013 0.0101100 Duploted (DLP) 0.0101100 1 (0101733640053 1112018 0010 1 1 1 0.0101100 mg/a 5 3.23 2.0 1 1 0.010100 mg/a 5 3.23 2.0 1 1 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.01010000 0.010100000 0.010100000 0.0101000000 0.01010000000 0.010100000000000000000000000000000000	Diple (OS) Diple (Definition Image Image <thimage< th=""> Image Image</thimage<>
mple (OS) • Duplicate (DUP) mple (OS) • Duplicate (DUP) DUP Result Dup Reput Dup Result Dup Reput Result Dup Reput River S 013 River S 013 River S 014 River River River River River River River River River River River River River S 014 River River River S 014 River River	The (CS) - Duplicate (DUP) 100 The (CS) - Duplicate (DUP) 100 Dup Reserve at typens 20:33 100 Dup Reserve at the preserve at	0.35 0.05	Difference Difference <td>1036 0.35 0.0 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1017 (0.3) 101 1018 (0.3) 101 1019 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1017 (0.3) 101 1018 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 </td> <td>1000 0.01 0.02 0.01 1000 0.02 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01</td>	1036 0.35 0.0 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1017 (0.3) 101 1018 (0.3) 101 1019 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1016 (0.3) 101 1017 (0.3) 101 1018 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101 1019 (0.3) 101	1000 0.01 0.02 0.01 1000 0.02 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01 1000 0.01 0.01 0.01 0.01
nple (OS) • Duplicate (DUP) DUP Resait 100 Result 000 Repondinge 100 Repondinge 100 Result 000 Result 000 Repondinge 100 Repondinge 100 Result 000 S 9.73 20 Mple (OS) • Duplicate (DUP) 20 Mple (CS) 20 Add I 174 Add I 20 Add I	Die (OS) - Unplicate (DUP) CUP Raseinages interime unterson Die (OS) - Unplicate (DUP) Result Die Result Die Result interime unterson Die Personalise interime unterson Die Personalise interime unterson Result Die Re	Die (OS) • Undirate (DUP) DUPRASSIARDAS TITATIR 2013 DUPRASSIARDAS TITATIR 2013 DUPRASSIARDAS TITATIR 2013 DUPRASSIARDAS TITATIR 2013 Interim under programmer (and programer (and programer (and programmer (and pro	Die (C5) - Duplicate (DUP) OUP Reservant migne 2013 Reservant pulp Reservant migne 2014 Reservant pulp Reservant migne 2013 Reservant pulp Reservant migne 2013 Reservant pulp Reservant migne 2013 Reservant pulp Reservant	But 1 (C): - Up/Dicate (DUP) Diple Solution to the Part I puttom Diversion on t	Biol 100 100 100 100 100 Biol 100 100 100 100 Biol 100 100 </td
Model (DP) Section 2013 CUPIRasid Tonication 2013 CUPIRasid Tonication 2013 (dy) Section 2014 (mg/g) \$ 810 5 9.73 1810 5 9.73 1810 5 9.73 1810 5 9.73 1810 5 9.73 1810 5 9.73 1810 5 9.73 1810 1 100 1811 1 100 101 1 100 101 1 100 11 1/4 20 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4 10 1 1/4	Die Presidentie	The ALCAD - Contract (Cort) The ALCAD - Contract (Cort) If Realt, DuPresci, Interior DuP RED DuP Constitue If Realt, DuPresci, Interior DuP RED DuP Constitue If Realt, DuPresci, Interior DuP RED DuP Constitue Imple<(S) - Duplicate (DUP)	The first constrained of the first private constrained in the privation of the privatio of the privation of the privation of the privation of	10-10-10-10-10-10-10-10-10-10-10-10-10-1	Toppendic (OC) Description Description (a) 5 3.3 3.3 (b) 5 3.3 3.3 (c) 1 3.4 3.3 (c) 1 3.4 3.3 (c) 1 3.4 3.4 (c) 1 3.4 3.4 (c) 1 1.4 3.4 (c) 1 3.4 3.4
Amount During Dur Result Dur Republic Dur Republic (by) 5 9.73 20 mg/kg 8 0 1 (DUP) R33614056 ft/20/18 00:10 1 104 al Result Dutrition DuP Rep mg/kg 8 9 436 1 174 20 20	afternation Dup Result Dup Outline Dup Result Dup Outline Dup Result Dup Outline Dup Result Dup Resul	If each Durbanding UnPRPD (by) Interest interest interest interest mayor DUPORIATI DUPOLIATION If each Durbanding UnPRPD (by) interest inte	Internet Lutron Dur Dur Birb Dur Dur Birb 180 5 9.3 20 180 5 9.3 20 180 5 9.3 20 180 5 9.3 20 mple (OS) • Durplicate (DUP) 1 1 mple (OS) • Durplicate (DUP) 1 1 100 Result Duration Durp Result 100 Result Duration Durp Result 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 20 111 20 20 111 20 <td>State Durate Durate Durate mand mand mand mand mand mand mand mand</td> <td>Strate Defension Defension mple 05 5 3.3 mple 05 0.00 1 mple 05 0.00 1 mple 1 13 3.0 mple 1 13 3.0</td>	State Durate Durate Durate mand mand mand mand	Strate Defension Defension mple 05 5 3.3 mple 05 0.00 1 mple 05 0.00 1 mple 1 13 3.0 mple 1 13 3.0
mg/kg % * 1810 5 9.73 20 1810 5 9.73 20 mg/kg 5 9.73 20 PLDP R3361408-6 11/20/18 00:10 1 UDP Result DUP R0010 Affecult Duition DUP RP0 Immission Immission (DUP Result Division DUP R0010 Immission Immission 436 1 1.74 20 Immission Add 1 1.74 20 Immission Amout LCS Result LCS Result LCS Result LCS Result Amout LCS Result LCS Result LCS Qualifier	mg/m %	mg/g %	mplan F Mplan F Mplan Mplan </td <td>Buge State State State State Bio 5 3/3 20 20 Bio 5 3/3 20 Bio 5 3/3 20 Bio 5 3/3 20 Bio 1 1/4 20 Bio 1 1/4 20 Bio 1 1/4 20 Bio 3/3 90.900</td> <td>Base Image S 3/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 0/3 1 1/4 2/3 2/3 Image 1 1/4 2/3 2/3 2/3</td>	Buge State State State State Bio 5 3/3 20 20 Bio 5 3/3 20 Bio 5 3/3 20 Bio 5 3/3 20 Bio 1 1/4 20 Bio 1 1/4 20 Bio 1 1/4 20 Bio 3/3 90.900	Base Image S 3/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 5 3/3 2/3 2/3 2/3 Image 0/3 1 1/4 2/3 2/3 Image 1 1/4 2/3 2/3 2/3
1810 5 9.73 20 mple (OS) • Duplicate (DUP) 20 20 DUP) R3361408-6 11/20/18 00:10 20 20 Intervit UP Result DuP RPD DuP QuP Rapidifier DuP Rapidifier Mg/kg % % % 1 1.14 20 Add 1 1.74 20 Intervit Mig/kg % % % Mount LCS Result LCS Rec. Rec. Limits LCS Outlifier Mount LCS Rec. Rec. Limits LCS Outlifier Mount Mount LCS Rec. Rec. Limits LCS Outlifier Mount Mount LCS Rec. Rec. Limits LCS Mount LCS Rec. Rec. Limits	Bit 5 9.3 20 Diple (CS) • Duplicate (DP) Imple (CS) • Duplicate (DP) Imple (CS) • Duplicate (DP) Dupp Result Dutton Dup Dup Qualifier Dup Result Dup Qualifier Dup Result Mg/kg % % % % % % % % Jais 1 174 20 S %	Bi0 5 9.3 20 mple (CS) • Duplicate (DU) mple (CS) • Duplicate (DU) f f Dup Rasaitose 11/20/16 corio 1 Up Result Dup Condifier Up Repol Result up Result Dup non perpo g g g g g Ai6 1 1.14 20 g g g g g Ai6 1 1.14 20 g <td>180 5 9.73 20 100</td> <td>Bit 5 9.3 20 Diple (S) - Duplicate (DUP) Duppediate (DUP) Duppediate (DUP) Diple (S) - Duplicate (DUP) Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Sc 33 Result Duppediate (LCS) 1 1/4 20 Res 33 30.010 393 30.010 30.010</td> <td>Bit 5 20 Diple (OS) - Duplicate (DUP) Duple assistance in Zonna corrol Duple assistance in Zonna corrol Result Diple satisfies Duple assistance in Zonna corrol Duple assistance in Zonna corrol Result Diple satisfies I i st 20 Result Diple satisfies 1 i st 20 Diple in the intervention of the interventintervention of the interventintery of the intervention of</td>	180 5 9.73 20 100	Bit 5 9.3 20 Diple (S) - Duplicate (DUP) Duppediate (DUP) Duppediate (DUP) Diple (S) - Duplicate (DUP) Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Duppediate (DUP) Mont List 20 Result Duppediate (DUP) Sc 33 Result Duppediate (LCS) 1 1/4 20 Res 33 30.010 393 30.010 30.010	Bit 5 20 Diple (OS) - Duplicate (DUP) Duple assistance in Zonna corrol Duple assistance in Zonna corrol Result Diple satisfies Duple assistance in Zonna corrol Duple assistance in Zonna corrol Result Diple satisfies I i st 20 Result Diple satisfies 1 i st 20 Diple in the intervention of the interventintervention of the interventintery of the intervention of
mple (OS) • Duplicate (DUP) DUP) R3361408-6 11/20/18 00:10 DUP) R3361408-6 11/20/18 00:10 Result DUP Result DUP Oualifier (dy) 0 mg/kg % 436 1 1 174 20 le (LCS) motit LCS Result mg/kg % % % motit LCS Result motit LCS Result motit CS Result motit 0.2 motit 0.2	The (CS) - Duplicate (DUP) Result Dup Result I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	mgle (S) - Duplicate (DUP) (DUP) Rassi to so to mgle (R) (DUP) Result Dup Res	Toll CS) - Duplicate (DUP) PUP Result Purposit Result Dup Result Mayle S Mayle S Als 1 1 114 20 Als 1 10 S S Indition Exclored Indition 20 Indition Indition Indition Indition Indition Indition Indition 20 Indition Indition Indition Indition Indition Indition Indition Indition Indition 20 Indition 99 933 90.010	The (OS) - Duplicate (DUP) Result University Duppeduating University (DUP) Result University Duppeduating University (DUP) Result University Duppeduating University (DUP) Result University (D	The (OS) - Duplicate (DUP) Result During Dup Result During Dup Result During Dup Result Dup Result During Dup Result Units Result (D) Result Links (D) Result (D) Result (D)
• (DUP) R3361408-6 11/20/18 00:10 al Result DUP Result Opue DUP Rep mg/kg DUP Result Limits al Result DuP Result Opue Rep al/Rep DUP Rep al Result DuP Result DuP Rep al/Rep DUP Rep al/Rep al/Rep DUP Rep al/Rep blue Qualifier DUP Rep al/Rep al/Rep blue Dup Rep al/Rep	OUDPIRSASi10G-6 11/20/18 00:10 IUDPIRSASi140G-6 11/20/18 00:10 al Result Dilution DUP RPD mg/kg % % 436 1 174 20 Jele (LCS) 1 174 20 Amount LCS Result LCS Result LCS Qualifier 199 993 900-100	(DUP R3361408-6 11/20/18 00:10 I Result DUP Result Dur Rnp DuP Qualifier DUP Result (dy) % % % mg/kg % % % 436 1 174 20 Ole (LCS) 174 20 Immut LCS Result LCS Res. Rec. Limits LCS Qualifier Ing/kg % % 199 90.0-10	DUP R3361408-6 11/20/18 00:10 IDUP R011 DUP R011 </td <td>Duble Reading Curron Presentational Transmission Image: group Image: group Image: group Image: group</td> <td>Dub Rasalt Dur Rasalt Dur Rasalt Image Image Image Image</td>	Duble Reading Curron Presentational Transmission Image: group Image: group	Dub Rasalt Dur Rasalt Dur Rasalt Image Image
Indicestit DUP Result (dry) DUP RPD (dry) 9 mg/kg % 436 1 1.74 10 1.74 20 10 (LCS) Amount LCS Result 100 % 101 %	Indicating (dy) (dy) (dy) Dur Prob (dy) (dy) Dur Prob (dy) (dy) 9 1 1/14 20 436 1 1/14 20 101e (LCS) 1 1/14 20 Amount LCS Result mo/kg 8 20 9 93 90.010	Il Result Diutor Du Prepuilite DuP cualitie DuP cualitie (dy) % % % % mg/kg % % % % 436 1 1/4 20 % ole (LCS) 1 1/4 20 nount LCS Result Res. Limits Montri LCS Result LCS dualitie 199 933 90.010 % %	all Result Dilution Dup RPD Dup Outline Dup Outline Dup Outline Dup outline Dup RPD all disp x	alkeart Dureno	Duffesting Duffesting Duffesting mg/gg 3 1 1
g mg/kg % 436 1 1.74 20 10le (LCS) 20 20 e Mount LCS Result LCS Rec. mg/kg % % an 0.7 0.010	g0 mgkg % % 436 1 174 20 436 1 174 20 hole (LCS) 1 20 hole (LCS) 1 20 emount LCS Result LCS Res. Re. Limits g mgkg % g 99.3 90.010	mg/kg % % 436 1 174 20 1e (LCS) 20 9 Anout LCS Rest Res Limits LCS Unalifier Mout LCS Rest Res Limits LCS Oualifier 199 99.3 90.010 10	mgkg % 436 1 1/4 20 1e (LC) 1 1/4 20 1e (LC) 1 1 1 Amount LCS Result LCSRc. Rec Limits LCSOutlifier Ingkg % % % % 19 933 90.0-10 % %	Individual Main	Image Image <th< td=""></th<>
436 1 1.74 20 ple (LCS)	436 1 1.74 20 ple (LC) . . . Amount LCS Result LCS Res Rec. Limits LCS Res . mg/kg % % 93 90.0-110	436 1 1.74 20 Dle (LCS) 1 1.74 20 Imout LCS Result $CS Result mg/kg$ LCS Qualifier LCS Qualifier 199 99.3 90.0-10	43611.7420Die (LC) 1.74 20 Nount LCS ResultRec Limits mg/gg $\%$ $\%$ $\%$ 19999.390110	1 14 20 10 10 14 20 11 12 14 20 11 12 14 20 11 12 14 20 12 2 2 2 130 3 300.10 33	1 14 20 10 124 20 11 124 20 12 12 12 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 12 2 130 13 12 130 13 12 130 13 12 130 13 12 130 13 12 130 13 12 130 13 12 130 13 12
Iple (LCS) Amount LCS Result LCS Rec. Rec. Limits Impl/gp % Impl/gp %	Ple (LCS) Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier mg/kg % 199 99.3 109 99.3	Ie (LC) Amount LCS Result Res. Limits Imp/kg % % 99 90.3 90.0-10	Je (LCS) Mount LCS Result LCS Result mg/kg % % 199 99.3 90.010	Je (LC) mont iCS Result iCS Resu	Die (LC) Amont ICS Resut ICS Res. Rec. Limits ICS Res. Res. Res. Res. Res. Res. Res. Res.
Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier mg/kg % % aon on 2 on 0.10	Die (LCJ) Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier n mg/kg % % % 199 99.3 90.0-110 %	Mount LCS Result LCS Resc. Resc. Limits LCS Qualifier mg/kg % % % 199 99.3 90.0-110	Mount LCS Result Res. Limits LCS Qualifier mg/kg % % 199 99.3 90.0-10	Mount LCS Result LCS Qualifier Imply 3 % Imply 3 % Imply 3 % Imply 3 %	Mount ICS Result ICS Rec Imits ICS Rec Imits ICS Rec Imits mg/g % % % 00-10 99.3 90.410
Amount LCS Result LCS Qualifier mg/kg % % non non non	AmountLCS ResultLCS Rec.Rec. LimitsLCS Oualifierjmg/kg%%19999.390.0-110	Amount LCS Result LCS Rec. Limits LCS Oualifier mg/kg % % 199 99.3 90.0-110	AmountLCS Res.Res. LimitsLCS Oualifiermg/kg%%19999.390.0-110	Amount LCS Result CS Res. Rec. Limits LCS Outlifier mg/gg % % % % % 199 93.3 90.10 1 1 1	Amount LCS Result LCS Res Rec Limits LCS Outline mg/kg % % % % % 999 993 900-10 % % %
g mg/kg % % 400 00.2 00.110	g mg/kg % % 199 99.3 90.0-10	mg/kg % 199 99.3 90.0-110	mg/kg % 199 99.3 90.010	Page 130	2 2 600 01-00 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 00.2 ON 0.110	199 99.3 90.0-110 199	199 99.3 90.0-110	199 90.0-10	01-006 E66 66	01-006 Ece 61
UI-7.06 C.CC 661				<i>Page 130</i>	Page 130 of 3
				<i>1 4ge 150</i>	
				Page 130	
				2 130	e 130 of 3
			ruge		of 3

	8015D/GRO
	Method
	:) by
	(GO
	Compounds
19915	Organic
LID MR	Volatile

1	5
. L	
	-
	_
	-
	`
	Q
	C
-	`
	٦
	7
	2
	C
	(
	ì
	7
	`
-	1
	1
lSe	2

WG1199157			160/600	ОQ	ALITY C	CONTRO	DL SUM	MARY		ONE LAB. NATIONWIDE.	Rec
					0-0+0+0-0	., , . + , ,	01,00,00,10,11	,12			ei
powerhod Blank (ME											ved g
MB) R3362662-3 11/20/	8 16:09										by C
ma	MB Result	MB Qualifier	MB MDL	MB RDL)C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	0.0266	– 1	0.0217	0.100							11
5) 1/01 (S) 1/0, a, a-Trifluorotoluene(FID)	101			77.0-120							/ <mark>8/2</mark> 0
1/202											21 1¢
Laboratory Contro	I Sample (LC	CS) • Labor	atory Cont	ol Sample	Duplicate	(LCSD)					2:57.
C(LCS) R3362662-1 11/20/	18 14:56 • (LCSD)	R3362662-2	11/20/18 15:20								39 س
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		P 1
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	6.53	6.50	119	118	72.0-127		0.494	20		о С

Sc

Ū

77.0-120

106

106

(S) a,a,a-Trifluorotoluene(FID)

∢

23 of 33 PAGE

.

Rece	ived [by OCD ∼	x 11	/ <mark>8/20</mark> 2	21 12:57 •	7 :39 Մ	PM	ğ	ے ۲	Page 132 of	^F 348
ONE LAB. NATIONWIDE.											PAGE: 24 of 33
							RPD Limits %	20			DATE/TIME: 11/29/18 11:48
МАRҮ							LCSD Qualifier RPD %	1.76			
OL SUMI							LCS Qualifier				SDG: L1045249
CONTR L1045249-					e (LCSD)		Rec. Limits %	72.0-127	77.0-120		
UALITY					ole Duplicat		LCSD Rec. %	109	104		ROJECT: C-MD-01491
Q		MB RDL	0.100	77.0-120	rol Samp		LCS Rec. %	111	105		P 212
015D/GRO		MB MDL	0.0217		ratory Cont	: 11/26/18 11:20	LCSD Result mg/kg	5.99			
by Method 8		MB Qualifier			-CS) • Labo	D) R3362956-2	t LCS Result mg/kg	6.10			ch
ounds (GC)		12:08 MB Result	U U	99.5	Sample (I	10:56 • (LCS	Spike Amoun mg/kg	5.50			COUNT: llips - Tetra Te
WG1201380	possi Method Blank (MB)	o(MB) R3362956-3 11/26/18	TPH (GC/FID) Low Fraction	(5) 1/01, a.a. Trifluorotoluene(FID)	Laboratory Control	CCS) R3362956-1 11/26/18	Analyte	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)		AC

	0
\sim	e c
0	ر ب
8	200
<u>ത</u>	č
	0
Q	+
\leq	0
- Re	2l

QUALITY CONTROL SUMMARY ${\tt L1045249-01,02,03,04,05,06,07,08,09,10,11,12}$

WG1198957				QUALITY CONTROL SUMMARY	В Ші
Volatile Organic Comp	ounds (GC/MS) by Method	1 8260B	L1045249-01,02,03,04,05,06,07,08,09,10,11,12	ecei
post Method Blank (MB)					ived {
(MB) R3362214-3 11/19/18	10:46				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0C. ∾
Analyte	mg/kg		mg/kg	mg/kg	
Senzene	n		0.000400	0.00100	11
Ethylbenzene	N		0.000530	0.00250	/ <mark>8///</mark>
II oluene	N		0.00125	0.00500	302
Xylenes, Total	N		0.00478	0.00650	4
S) Toluene-d8	99.1			75.0-131	8
(S) Dibromofluoromethane	115			65.0-129	57:
S) a, a, a-Trifluorotoluene	94.6			80.0-120	<u>39</u> ທີ
(S) 4-Bromofluorobenzene	115			67.0-138	PN
3 АЛ					ں م
M	:) グ

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Ū

	RPD Limits	%	20	20	20	20				
	LCSD Qualifier RPD	%	4.87	5.64	3.08	2.89				
	LCS Qualifier									
	Rec. Limits	%	70.0-123	74.0-126	75.0-121	72.0-127	75.0-131	65.0-129	80.0-120	0000000
	LCSD Rec.	%	121	90.8	93.1	93.6	94.6	117	96.8	044
	LCS Rec.	%	115	85.8	90.3	6.06	96.3	121	96.3	C11
11/19/18 09:49	LCSD Result	mg/kg	0.151	0.114	0.116	0.351				
R3362214-2	LCS Result	mg/kg	0.144	0.107	0.113	0.341				
09:30 • (LCSD)	Spike Amount	mg/kg	0.125	0.125	0.125	0.375				
(LCS) R3362214-1 11/19/18 (Analyte	Benzene	Ethylbenzene	Toluene	Xylenes, Total	(S) Toluene-d8	(S) Dibromofluoromethane	(S) a, a, a-Trifluorotoluene	C) A Dame Barrelow of C

SC

₹

L1045249-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1045249-12 11/19/18 16:04 • (MS) R3362214-4 11/19/18 16:23 • (MSD) R3362214-5 11/19/18 16:42

		2		0 - 1 - 0 0 0 0 0	1.0.0.0.1								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) (ASD Result dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	ng/kg	%	%		%			%	%	
Benzene	0.138	П	0.362 0	1.331	32.9	30.0	∞	10.0-149			9.07	37	
Ethylbenzene	0.138	0.00654	0.411 0	.388	36.6	34.6	~	10.0-160			5.56	38	
Toluene	0.138	0.134	0.473 (1.444	30.7	28.0	∞	10.0-156			6.46	38	
Xylenes, Total	0.413	7.53	8.40 8	3.15	26.3	18.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.0-160			3.06	38	
(S) Toluene-d8					103	108		75.0-131					
(S) Dibromofluoromethane					113	110		65.0-129					
(S) a,a,a-Trifluorotoluene					98.4	99.8		80.0-120					
(S) 4-Bromofluorobenzene					141	135		67.0-138	5				
Ā	CCOUNT:			PROJ	ECT:		5,	SDG:		DATE/1	TIME:	PAGE	
ConocoP	hillips - Tetra Tech	-		212C-MI	D-01491		L1C	145249		11/29/18	11:48	25 of 33	m

Page 133 of 348

	~
511	Ordanic
198	
۲G1	o // -i m e
\geq_{Re}	ľ

VUANNUS ICOTION VII VIIO

	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.
GC) by Method 8015	L1045249-02,03,04,05,06,07,08,09,10,11,12	

1-	/18 20:50
	ယ
	0
	\leq
- 1	÷
5	11-1
	32
5	õ
	(\mathbf{r})
	m
;	R
	m
- 1	\leq
	2
	_

WG1198511				g	JALITY C	ONTROL SU	MMARY	0	NE LAB. NATIONWIDE.
Semi-Volatile Organ	ic Compounds	(GC) by Me	thod 8015		L1045249-02,(03,04,05,06,07,08,09,10	0,11,12		
Post Method Blank (M	B)								
(MB) R3363241-1 11/26/1	8 20:50								
ma	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					-
😽 C10-C28 Diesel Range	П		1.61	4.00					
C28-C40 Oil Range	Π		0.274	4.00					
(S) o-Terphenyl	111			18.0-148					
/202									4
1 aboratory Contro	ol Sample (L(CS) • Labo	ratory Cont	rol Sampl	e Duplicate (L	CSD)			
1			(
CLCS) R3363241-2 11/26	:/18 21:09 • (LCSD)) R3363241-3	11/26/18 21:29						-
:13	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS Qualifier	r LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	20	%	%	
C10-C28 Diesel Range	50.0	53.1	50.8	106	102 5	50.0-150	4.43	20	

 $\overline{\mathbb{O}}$

₹

L1045249-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1045249-07 11/2	27/18 00:24 • (MS)	R3363241-4 11/2	27/18 00:43 • (N	1SD) R336324	1-5 11/27/18 01:	03						
	Spike Amount (dry)	t Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.9	758	783	835	44.3	143	2	50.0-150	> □	ш	6.43	20
(S) o-Terphenyl					3.53	5.20		18.0-148	2 <mark>7</mark>	2 <mark>7</mark>		

SC

Sample Narrative:

OS: Surrogate failure due to matrix interference

26 of 33 PAGE

$\mathbf{\omega}$	
0	
6	
Ō	
1	
C	
\geq	
RA	,

WG1199763			200 2015	QU	ALITY (DL SUMI	MARY		ONE LAB. NATIONWIDE.	Rec
			200				5				eiv
Method Blank (MB)											ed [
(MB) R3362121-1 11/21/18 13:	16										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	n		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8///</mark>
(S) o-Terphenyl	103			18.0-148							302
/20											1
22											2.
Laboratory Control	Sample (L(CS) • Labor	atory Conti	ol Sample	Duplicate	(LCSD)					57:3
CCS) R3362121-2 11/21/18 1:	3:33 • (LCSD) F	3362121-3 11/2	21/18 13:48								39 ທ
:13	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ل س
C10-C28 Diesel Range	50.0	42.0	44.0	84.0	88.0	50.0-150		4.65	20		ر ک
(S) o-Terphenyl				140	143	18.0-148					7
											Ū

SC

 $\overline{P}_{_{\odot}}$

Page 135 of 348 **PAGE:** 27 of 33 DATE/TIME: 11/29/18 11:48 **SDG**: L1045249 PROJECT: 212C-MD-01491 ACCOUNT: ConocoPhillips - Tetra Tech

WG1202380	Semi_Volatile Organic

QUALITY CONTROL SUMMARY

8015	
Method	
bу	
(C))	
Compounds	
i C	į
gar	
ō	
<u>0</u>	
ati	
0	
> -	
еш	

WG1202380	6			g	JALITY (CONTRO	DL SUN	1MARY		ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organ	c Compounds	(GC) by Met	thod 8015			L1045249-0	07				cei
page Method Blank (Mi	3)										ved (
(MB) R3363865-1 11/28/	18 23:25										by O
na	MB Result	MB Qualifier	MB MDL	MB RDL							2
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	n		1.61	4.00							11
(S) o-Terphenyl	80.3			18.0-148							8/4
/11/											3021)
202											4
	oi sampie (LC	(C) • Labo	ratory Cont	roi sampi	e Duplicate						5:5
LCS) R3363865-2 11/28	3/18 23:40 • (LCSE)) R3363865-3	3 11/28/18 23:55	10							13
.56	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		ູ ທ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		РМ
Extractable Petroleum	50.0	33.6	35.9	67.2	71.8	50.0-150		6.62	20		°Q

(LCS) R3363865-2 11/28	3/18 23:40 • (LCSE	D) R3363865-3	3 11/28/18 23:55	10						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier R	DD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	, c	%
Extractable Petroleum Hydrocarbon	50.0	33.6	35.9	67.2	71.8	50.0-150		9	.62	20
C10-C28 Diesel Range	50.0	36.2	38.5	72.4	77.0	50.0-150		9	.16	20
(S) o-Terphenvl				81.4	80.5	18.0-148				

Ū

∢

Sc

PAGE: 28 of 33

DATE/TIME: 11/29/18 11:48

•

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48

PAGE: 29 of 33

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 138 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NE
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
ldaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48 PAGE: 30 of 33

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁹Sc

Immunity Concordinging Immunity Concordinging Immunity minuture Bio/France Bio/France Concordinging Concordinging minuture Bio/France Bio/France Concordinging Concordinging minuture Bio/France Concordinging Concordinging Concordinging minuture Bio/France Concordinging Concordinging Concordinging minuture Bio/France Concordinging Concordinging Concordinging minuture Concordinging Concordinging Concordinging Concordinging minuture Concordi	F	Tetra Tech. Inc.		M 008	Vost Walf Street, Sta 100 Ibfand, Toxas 79/01 Foi (432) 682-4559 ax (432) 680-3445	1						Page		1 01
Montant Biotik FeiGTB Montant Biotik FeiGTB Montant min Joint Joi	Client Name:	ConocoPhillips	Site Manager:	Kavla T	avlor		$\left \right $			NAL VO	010			
Maintain Maintain Control Name Maintain 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000<	roject Name:	Buck Fed CTB		n fas.	aylor		T	0	ircle o	IN Spe	cify Me	ethod	No.)	
Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image: manual sector Image:	oject Location: ate)	county, Lea County, New Mexico	Project #:	1010	TAIN ALLON		Т	1	_		_	3	-	_
Market Instrumenten Instrumenten Proprintipation Instrument Proprintipation Instrument Proprintipation Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument </td <td>voice to:</td> <td>Accounts Payable 900 West Wall Street Suite 100 Midsond Touco 70704</td> <td></td> <td>2121</td> <td>16410-UM-0</td> <td></td> <td>Т</td> <td>((</td> <td>-</td> <td></td> <td></td> <td>1</td> <td>(ISII C</td> <td>_</td>	voice to:	Accounts Payable 900 West Wall Street Suite 100 Midsond Touco 70704		2121	16410-UM-0		Т	((-			1	(ISII C	_
International COPTETA International International COPTETA International International International International	ceiving Laboratory:	Pace Analytical	Sampler Signature:				Т	- MPC	6 _H as	_	_	37	ache	
(HA2)14 M.B. Summer in the contribution on the contribution Summer in the contribution Summer in the contribution MAR AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION Summer in the contribution ALM AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution ALM AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution Summer in the contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution Summer in the contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution Summer in the contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution Summer in the contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution Summer in the contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION Contribution A AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION A AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION AMPLE IDENTIFICATION A AMPLE IDENTIFICATION	mments:	COPTETRA		Devi	n Dominguez		9) 85608)	080-080	s da no bi		0/852		l) (see st S	
MBr SAMPLE IDENTIFICATION Monostric Autor (1) Autor (2) Autor (2) Autor (2) Autor (2) Autor (2) Autor (2) Autor (2) Autor (2) <td>hhで540</td> <td></td> <td>SAMPLING</td> <td>MATRIX</td> <td>PRESERVATIVE</td> <td>s</td> <td>4 IP C3</td> <td>10 - 06 0 68 a</td> <td>) e8 sA</td> <td>18 \ 654 Jea</td> <td>95700</td> <td>0.0</td> <td>JT 9 Itaimer</td> <td>000</td>	hhで540		SAMPLING	MATRIX	PRESERVATIVE	s	4 IP C3	10 - 06 0 68 a) e8 sA	18 \ 654 Jea	95700	0.0	JT 9 Itaimer	000
Multi Interest (a) Militation (b) Mil	LAB	SAMPLE IDENTIFICATION	YEAR: 2018		METHOD	IE BE	(3) S	A DA	se / By	0928	.10V .))) (sc	In Change	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LAB USE)		ЭТА(ЭМІ	A TER OIL	oue E NO ³ CF	VIATNOC CORPL	EX 8021	al Metals H 8270C	elisteM 9. NiteloV 9.	/ ime2 9.	ime2 2M S808 a'i	ytsødaA) (Sebin	2 ebite deW liste	80108
02 H12 (87) H14 (87) H	10+	AH-1 (3')	11/14/2018 02	\$ >) # ·	18 91	A9 101	101	101 101	PCE PCE	CHIP BLIM	Gen	нат
07 AH3 (3) 11/142018 940 X 1 X X I X X I X X I X	03	AH-2 (3')		<	×	-	×	×		-	_	×		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69	AH-3 (3')	11/14/2018 94	×	×	-	×	×				×		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ho	AH-4 (3')	11/14/2010 34	× >	×	-	×	×				×		
Ob AH-6(3) Inversion 1000 X X I N X N X N X N X N X N X N X N X N	50	AH-5 (31)	CR 0102/51/11	×	×	-	×	~				×		E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Olo	AH-8 (3')		X	×	-	×	~				×		
66 AH-8(3) 11/14/2018 1035 X X X X X X 01 10 XSW-1 11/14/2018 1050 X X X X X X 01 10 XSW-1 11/14/2018 11/2 X X X X X X 01 10 X X X X X X X X 01 11/14/2018 11/2 X X X X X X X 0using by Date: Ime: Ime: Bate: Ime: Ime: Bate: Ime: X <td>10</td> <td>AH-7 (31)</td> <td>10 10/01/01/01</td> <td>×</td> <td>×</td> <td>(Pr N</td> <td>×</td> <td>~</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td>	10	AH-7 (31)	10 10/01/01/01	×	×	(Pr N	×	~				×		
04 NSW-1 11/14/2018 1050 X X X X X X 011 SSW-1 11/14/2018 1120 X X X X X X X 0111 SSW-1 11/14/2018 1120 X X X X X X X 0111 Bate Time 11/14/2018 1320 X X X X X X 0111 Date Time Bate Time LaB USE ONLY X X X X X 0111 Date Time Bate Time Bate Time Alter 72 h 0111 Date Time Bate Time Bate Time Alter 72 h 0111 Date Time Bate Time Bate Time Bate Time 0111 Date Time Bate Main Time Bate Time Plane Time 0111 Date Time Bate Time Bate Date Time Plane Time 0111 Date Time Bate Time Bate Time Bate	68	AH-8/31	01 8102/01/11	22 ×	×	N 18	×				1	×	t	
ID Normalian 11/14/2018 1105 X X N X X N X X quished by: Date: Time: 1/1/14/2018 1120 X <	na	NSW +	11/14/2018 105	×	×	ASA N	×					×	+	+
quished br. Date: Time: 11/14/2018 12/0 X X X X X X X X X X quished br. Date: Time: Date: Time: Date: Time: Date: Time: Adm X <td>0</td> <td>1-MCN</td> <td>11/14/2018 110</td> <td>5 ×</td> <td>×</td> <td>1.60 N</td> <td>×</td> <td></td> <td>F</td> <td></td> <td>+</td> <td>: ×</td> <td>+</td> <td></td>	0	1-MCN	11/14/2018 110	5 ×	×	1.60 N	×		F		+	: ×	+	
Kull Jauge II II III III III quished by: Date: Time: Date: Time: Date: Time: Date: Time: quished by: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: quished by: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: quished by: Date: Time: Date: Time: Date: Time: Date: Time: Time: Date: Time: T	quished by: A	I Deter Taxes	11/14/2018 112	X 0	×	1 8/1	×		F		-	< >	+	+
Theorem over the parties Date: Time: Bacelved by: Date: Toke Date: Date:<	-KOWL	a Saulon 11/15/18 1330	Haceived by:	les m	Sate: Time:	8	LAB U	SE ONI	REM	ARKS: DVST	ANDAR	A	è	
quished by: Date: Time: Baceived by: Date: Time: Date: Date: Time: Date: Time: Date: Time: Date: Date: Time: Date: Date: <thdate:< th=""> Date: Date: Dat</thdate:<>	Huissiad by:	J Date: Time:	Received by:		Date: Time:	>	Sampie Te	mperature		BUSH	Same De	y 24hr	48 hr	7 74 Z
ORIGINAL COPY T.C.C. 12:402 0.3 to 1: = 0.4 % RAD SCREEN: 205 mBAr	quished by:	Date: Time:	Received by:	о — Л.	ate: Time:	130	-]Rush Cl]Special	narges Au Report Lir	thorized nits or TR	RP Repo	=
T.C.S. 12 = UBY 0.3 to.1 = 04 8 RAD SCREEN: 405 MANY			NDO IVINIDIDU	N			(Circle) H/	ND DELW	ERED F	EDEX UP	S Tracki	10.40		
RAD SCREEN: <0.5 mR/hr				ć	C 2 12	Laha)	0.3	1.01	101	23			
				Ø					2	D SCR	EEN!	5		

Ime: LAB USE ONLY REMARKS: Ime: LAB USE ONLY REMARKS: Ime: Sample Temperature Intel: Ime: Sample Temperature Intel:		X X X X X X X X X X X X X X X X X X X	PLM (Asbestos) PLM (Asbestos) PCB (A	85,10C/I656 B1 (654 B1 (654 A2 B9 C4 Ct 1 (0 - DHO - C 1 (0 - DHO - C) 1 (0 - DHO - C) 1 (0 - DHO - C) (0 - DHO - C) 1 (0 - DHO - C) (0 - D	1 Dominguez	6 ₁	MD-01491	Circle or Specify Metho	or ANALYSIS REQUEST	al Street. Sin 100 (Texas 7970) 2) 682 4559 2) 682 4559	e 4 hr 23 hr	(ayla Taylor Caller Vision 212C-MD-01491 212C-MD-01491 212C-MD-01491 Click of the solution of the solutio
---	--	---------------------------------------	--	---	-------------	----------------	----------	-------------------------	---------------------	--	--	---

Rel

Pace Analytical National Center for 7	esting & Innov	ation	
Cooler Receipt For	Ë		
Client: COPTETRA	SDG#	54017	349
Cooler Received/Opened On: 11/ [6/18	Temperature:	0-4	
Received By: Patrick Nshizirungu	and and the second		
Signature:	Section and the		
	The state of the second second	and the second	All and a second
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	/		
COC Signed / Accurate?		/	
Bottles arrive intact?		<	
Correct bottles used?		/	
Sufficient volume sent?		/	
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT November 30, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1046071 11/20/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
AH-9 L1046071-01	8
AH-10 L1046071-02	9
AH-11 L1046071-03	10
AH-12 L1046071-04	11
AH-13 L1046071-05	12
AH-14 L1046071-06	13
AH-15 L1046071-07	14
AH-16 L1046071-08	15
AH-17 L1046071-09	16
NSW-2 L1046071-10	17
SSW-2 L1046071-11	18
ESW-2 L1046071-12	19
ESW-3 L1046071-13	20
WSW-2 L1046071-14	21
WSW-3 L1046071-15	22
AH-17 L1046071-16	23
WSW-4 L1046071-17	24
ESW-4 L1046071-18	25
Qc: Quality Control Summary	26
Total Solids by Method 2540 G-2011	26
Wet Chemistry by Method 300.0	29
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	32
Semi-Volatile Organic Compounds (GC) by Method 8015	34
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

ME: 6:45 **PAGE**: 2 of 40 Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPagev144 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-9 L1046071-01 Solid			Collected by	11/15/18 10:05	11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Net Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 10:22	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 21:21	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 17:43	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 20:26	KME
AH-10 1 1046071-02 Solid			Collected by	Collected date/time 11/15/18 10:10	Received date/tim 11/20/18 07:45
	D !	D.I	D		
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Iotal Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Net Chemistry by Method 300.0	WG1199854	1	11/21/18 1/:30	11/2//18 10:31	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 21:45	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 18:03	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 18:41	KME
AH 11 1 10/6071 03 Salid			Collected by	Collected date/time 11/15/18 10:20	Received date/tin 11/20/18 07:45
	D. I. I.	D:1 .:	D		A 1 .
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 1/:30	11/2//18 10:40	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 18:21	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 20:10	KME
AH-12 1046071-04 Solid			Collected by	Collected date/time 11/15/18 10:30	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	2
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:06	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:33	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 18:41	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 18:55	KME
			Collected by	Collected date/time	Received date/tin
AH-13 L1046071-05 Solid				11/15/18 10:51	11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:15	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:58	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 21:40	ACG
Sami Valatila Organic Compounds (CC) by Mathed 2015	WC1200994	1	11/24/18 11-40	11/24/18 19.11	KME

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1046071

DATE/TIME: 11/30/18 16:45

PAGE: 3 of 40
Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPagev145 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-14 L1046071-06 Solid			Collected by	Collected date/time 11/15/18 11:05	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:24	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 23:22	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 22:00	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:27	KME
AH-15 1046071-07 Solid			Collected by	Collected date/time 11/15/18 11:32	Received date/tim 11/20/18 07:45
Mathed	Datab	Dilution	Droporation	Analusia	Analyst
Method	Batch	Dilution	Preparation	Analysis	Analyst
Tatal Calida hu Mathad 2540 C 2011	WC1201421	1	11/2C/10 12-EE	11/20/10 14:00	
Not Chemistry by Method 200.0	WG1201431	1	11/20/10 13.33	11/20/10 14.00	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/10 1/:3U	11/21/10 11:33	
Volatile Organic Compounds (CC/MS) by Method 8250P	WGIZUU3ZU	1	11/21/10 U0:32	11/21/10 23:40	ACG
Somi Valatila Arganic Compounds (CC) by Method 2015	WG1200331	1	11/21/10 U0.32	11/21/10 ZZ.ZU	ACG
Semi-volatile Organic Compounds (GC) by Method 8015	WG1200994	I	11/24/18 11:40	11/24/18 19:41	KIVIE
AH-16 L1046071-08 Solid			Collected by	Collected date/time 11/15/18 11:50	Received date/tin 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	-)
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	.ID
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 11:59	FLN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 00:10	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 22:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:58	KME
			Collected by	Collected date/time	Received date/tim
AH-17 L1046071-09 Solid				11/15/18 12:00	11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	ID
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 12:08	FLN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 00:34	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 00:42	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	20	11/24/18 11:40	11/26/18 02:11	MTJ
			Collected by	Collected date/time	Received date/tim
NSW-2 L1046071-10 Solid				11/15/18 10:00	11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:16	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 00:58	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 23:00	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	5	11/24/18 11:40	11/26/18 01:58	MTJ

PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

6:45

PAGE: 4 of 40 Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPagev146 of 348

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

SSW-2 L1046071-11 Solid			Conceled by	11/15/18 10:30	11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Fotal Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Vet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:25	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	200	11/21/18 08:32	11/22/18 01:22	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	20	11/21/18 08:32	11/22/18 01:01	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	100	11/24/18 11:40	11/26/18 02:25	MTJ
ESW-2 L1046071-12 Solid			Collected by	Collected date/time 11/16/18 11:15	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
fotal Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Net Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:51	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 01:45	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 23:20	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 05:40	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	5	11/27/18 07:59	11/29/18 16:45	MTJ
ESW-3 L1046071-13 Solid			Collected by	Collected date/time 11/16/18 12:00	Received date/tir 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:00	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 02:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 23:41	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/30/18 00:19	AAT
WSW-2 L1046071-14 Solid			Collected by	Collected date/time 11/16/18 13:00	Received date/tin 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	10
I otal Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD
wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:09	ELN
volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 02:33	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200331 WG1201271	1 1	11/21/18 08:32 11/27/18 07:59	11/22/18 00:01 11/29/18 06:12	ACG KME
			Collected by	Collected date/time 11/16/18 13:30	Received date/tir 11/20/18 07:45
VV3VV-3 LIV400/1-13 30110					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:18	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 02:57	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/22/18 00:21	ACG
Semi-Valatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 06.27	KME

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1046071

DATE/TIME: 11/30/18 16:45

PAGE: 5 of 40

Received by OCD: 11/8/2021 12:57:39 PM	SAMPLE SU	JMMAF	2Y	ONE LAB. NAROSEVIAT of 3			
AH-17 L1046071-16 Solid			Collected by	Collected date/time 11/16/18 13:55	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst		
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:27	ELN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 03:21	ACG		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 01:21	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 06:43	KME		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	20	11/27/18 07:59	11/29/18 17:16	MTJ		
WSW-4 L1046071-17 Solid			Collected by	Collected date/time 11/16/18 15:05	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 13:35	ELN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 03:44	ACG		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 01:41	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	10	11/27/18 07:59	11/29/18 08:47	KME		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	100	11/27/18 07:59	11/29/18 10:09	KME		
ESW-4 L1046071-18 Solid			Collected by	Collected date/time 11/16/18 15:40	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst		
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Wet Chemistry by Method 300.0	WG1200542	5	11/23/18 10:33	11/27/18 18:00	ELN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 04:08	ACG		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 02:01	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	25	11/27/18 07:59	11/29/18 17:32	MTJ		
Semi-Volatile Organic Compounds (GC) by Method 8015	W/C1201271	5	11/27/10 07.50	11/20/19 17.00	MTT		

SDG: L1046071

DATE/TIME: 11/30/18 16:45

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

7TIME: 3 16:45 PAGE: 7 of 40

SAMPLE RESULTS - 01 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:05

						I'C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	89.8		1	11/26/2018 14:18	WG1201430	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by N	Aethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	1850		4.43	10.0	55.7	5	11/27/2018 10:22	WG1199854	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) l	by Methoc	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0660	J	0.0242	0.100	0.111	1	11/21/2018 21:21	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.7				77.0-120		11/21/2018 21:21	WG1200320	7 Cl
									UI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000445	0.00100	0.00111	1	11/21/2018 17:43	WG1200088
Toluene	U		0.00139	0.00500	0.00557	1	11/21/2018 17:43	WG1200088
Ethylbenzene	U		0.000590	0.00250	0.00278	1	11/21/2018 17:43	WG1200088
Total Xylenes	U		0.00532	0.00650	0.00724	1	11/21/2018 17:43	WG1200088
(S) Toluene-d8	99.7				75.0-131		11/21/2018 17:43	WG1200088
(S) Dibromofluoromethane	90.9				65.0-129		11/21/2018 17:43	WG1200088
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 17:43	WG1200088
(S) 4-Bromofluorobenzene	101				67.0-138		11/21/2018 17:43	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	112		1.79	4.00	4.45	1	11/24/2018 20:26	WG1200994
C28-C40 Oil Range	44.0		0.305	4.00	4.45	1	11/24/2018 20:26	WG1200994
(S) o-Terphenyl	62.0				18.0-148		11/24/2018 20:26	WG1200994

SDG: L1046071

SAMPLE RESULTS - 02 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:10

	2010 0 20					 1'Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	88.9		1	11/26/2018 14:18	WG1201430	Tc

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	719		0.895	10.0	11.2	1	11/27/2018 10:31	WG1199854	ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Met	hod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	719		0.895	10.0	11.2	1	11/27/2018 10:31	WG1199854	CI
Volatile Organic Comp	oounds (GC) b	y Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0261	J	0.0244	0.100	0.112	1	11/21/2018 21:45	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.7				77.0-120		11/21/2018 21:45	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000450	0.00100	0.00112	1	11/21/2018 18:03	WG1200088
Toluene	U		0.00141	0.00500	0.00562	1	11/21/2018 18:03	WG1200088
Ethylbenzene	U		0.000596	0.00250	0.00281	1	11/21/2018 18:03	WG1200088
Total Xylenes	U		0.00538	0.00650	0.00731	1	11/21/2018 18:03	WG1200088
(S) Toluene-d8	99.0				75.0-131		11/21/2018 18:03	WG1200088
(S) Dibromofluoromethane	96.4				65.0-129		11/21/2018 18:03	WG1200088
(S) a,a,a-Trifluorotoluene	113				80.0-120		11/21/2018 18:03	WG1200088
(S) 4-Bromofluorobenzene	96.8				67.0-138		11/21/2018 18:03	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.4		1.81	4.00	4.50	1	11/24/2018 18:41	WG1200994
C28-C40 Oil Range	14.1		0.308	4.00	4.50	1	11/24/2018 18:41	WG1200994
(S) o-Terphenyl	54.6				18.0-148		11/24/2018 18:41	WG1200994

SDG: L1046071 DATE/TIME:

WG1200320

WG1200320

Gl

AI

Sc

Collected date/time: 11/15/18 10:20

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by N	lethod 2540 G-20)11							1
	Result	Qualifier	Dilution	Analysis	Batch				— Ср
Analyte	%			date / time					2
Total Solids	88.8		1	11/26/2018 14:18	WG1201430				² Tc
Wet Chemistry b	y Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (c	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	541		0.896	10.0	11.3	1	11/27/2018 10:40	WG1199854	CII
Volatile Organic	Compounds (GC)	by Metho	d 8015	D/GRO					⁵ Sr
	Result (dry)	Qualifier	SDL (c	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	G
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

U

98.1

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000451	0.00100	0.00113	1	11/21/2018 18:21	WG1200088
Toluene	U		0.00141	0.00500	0.00563	1	11/21/2018 18:21	WG1200088
Ethylbenzene	U		0.000597	0.00250	0.00282	1	11/21/2018 18:21	WG1200088
Total Xylenes	U		0.00539	0.00650	0.00732	1	11/21/2018 18:21	WG1200088
(S) Toluene-d8	99.1				75.0-131		11/21/2018 18:21	WG1200088
(S) Dibromofluoromethane	91.2				65.0-129		11/21/2018 18:21	WG1200088
(S) a,a,a-Trifluorotoluene	110				80.0-120		11/21/2018 18:21	WG1200088
(S) 4-Bromofluorobenzene	96.8				67.0-138		11/21/2018 18:21	WG1200088

0.100

0.113

77.0-120

1

0.0245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.13		1.81	4.00	4.51	1	11/24/2018 20:10	WG1200994
C28-C40 Oil Range	2.83	J	0.309	4.00	4.51	1	11/24/2018 20:10	WG1200994
(S) o-Terphenyl	73.9				18.0-148		11/24/2018 20:10	WG1200994

SDG: L1046071 DATE/TIME: 11/30/18 16:45

11/21/2018 22:09

11/21/2018 22:09

Qc

Gl

Â

Sc

Collected date/time: 11/15/18 10:30

Total Solids by I	Method 2540 G-20)11							1
	Result	Qualifier	Dilution	Analysis	Batch				— Ср
Analyte	%			date / time					2
Total Solids	92.3		1	11/26/2018 14:06	WG1201431				Tc
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	947		0.862	10.0	10.8	1	11/27/2018 11:06	WG1199854	
Volatile Organic	c Compounds (GC)	by Metho	d 8015	D/GRO					⁵Sr
	Decult (dp.)	Qualifier			MOL (drai)	Dilution	Analysis	Datah	

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	11/21/2018 22:33	WG1200320
(S) a,a,a-Trifluorotoluene(FID)	98.6				77.0-120		11/21/2018 22:33	WG1200320

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00108	1	11/21/2018 18:41	WG1200088
Toluene	U		0.00135	0.00500	0.00542	1	11/21/2018 18:41	WG1200088
Ethylbenzene	U		0.000575	0.00250	0.00271	1	11/21/2018 18:41	WG1200088
Total Xylenes	U		0.00518	0.00650	0.00705	1	11/21/2018 18:41	WG1200088
(S) Toluene-d8	99.6				75.0-131		11/21/2018 18:41	WG1200088
(S) Dibromofluoromethane	98.1				65.0-129		11/21/2018 18:41	WG1200088
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 18:41	WG1200088
(S) 4-Bromofluorobenzene	99.1				67.0-138		11/21/2018 18:41	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	29.4		1.75	4.00	4.34	1	11/24/2018 18:55	WG1200994
C28-C40 Oil Range	10.9		0.297	4.00	4.34	1	11/24/2018 18:55	WG1200994
(S) o-Terphenyl	60.3				18.0-148		11/24/2018 18:55	WG1200994

SDG: L1046071

WG1200320 WG1200320 Qc

Gl

AI

Sc

Collected date/time: 11/15/18 10:51

Analyte

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	86.8		1	11/26/2018 14:06	WG1201431				T
Wet Chemistry b	by Method 300.0								³ S
	Result (dry)	Qualifier	SDL (c	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	84.8		0.916	10.0	11.5	1	11/27/2018 11:15	WG1199854	
Volatile Organic	c Compounds (GC)	by Metho	d 8015	D/GRO					⁵ S
·									

mg/kg

0.100

mg/kg

0.115

77.0-120

1

Volatile Organic Compounds (GC/MS) by Method 8260B

mg/kg

0.0296

97.4

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000461	0.00100	0.00115	1	11/21/2018 21:40	WG1200331
Toluene	U		0.00144	0.00500	0.00576	1	11/21/2018 21:40	WG1200331
Ethylbenzene	U		0.000610	0.00250	0.00288	1	11/21/2018 21:40	WG1200331
Total Xylenes	U		0.00551	0.00650	0.00749	1	11/21/2018 21:40	WG1200331
(S) Toluene-d8	114				75.0-131		11/21/2018 21:40	WG1200331
(S) Dibromofluoromethane	86.6				65.0-129		11/21/2018 21:40	WG1200331
(S) a,a,a-Trifluorotoluene	113				80.0-120		11/21/2018 21:40	WG1200331
(S) 4-Bromofluorobenzene	108				67.0-138		11/21/2018 21:40	WG1200331

mg/kg

0.0250

Ţ

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	45.5		1.85	4.00	4.61	1	11/24/2018 19:11	WG1200994
C28-C40 Oil Range	21.4		0.316	4.00	4.61	1	11/24/2018 19:11	WG1200994
(S) o-Terphenyl	49.1				18.0-148		11/24/2018 19:11	WG1200994

SDG: L1046071 date / time

11/21/2018 22:58

11/21/2018 22:58

SAMPLE RESULTS - 06 L1046071

Â

Sc

Collected date/time: 11/15/18 11:05 Total Solids by Mothod 2540 C 2011

	Result	Qualifier	Dilution	Analysis	Batch				— C
Analyte	%			date / time					2
Total Solids	92.4		1	11/26/2018 14:06	WG1201431				T
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
	42.4		0.000	10.0	10.0	1	11/27/2010 11.24	WC11000E4	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>											
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc		
TPH (GC/FID) Low Fraction	0.0243	J	0.0235	0.100	0.108	1	11/21/2018 23:22	WG1200320			
(S) a,a,a-Trifluorotoluene(FID)	97.4				77.0-120		11/21/2018 23:22	WG1200320	7 Gl		
									0		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	11/21/2018 22:00	WG1200331
Toluene	U		0.00135	0.00500	0.00541	1	11/21/2018 22:00	WG1200331
Ethylbenzene	U		0.000573	0.00250	0.00271	1	11/21/2018 22:00	WG1200331
Total Xylenes	U		0.00517	0.00650	0.00703	1	11/21/2018 22:00	WG1200331
(S) Toluene-d8	113				75.0-131		11/21/2018 22:00	WG1200331
(S) Dibromofluoromethane	90.5				65.0-129		11/21/2018 22:00	WG1200331
(S) a,a,a-Trifluorotoluene	112				80.0-120		11/21/2018 22:00	WG1200331
(S) 4-Bromofluorobenzene	107				67.0-138		11/21/2018 22:00	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.38	J	1.74	4.00	4.33	1	11/24/2018 19:27	WG1200994
C28-C40 Oil Range	0.999	J	0.296	4.00	4.33	1	11/24/2018 19:27	WG1200994
(S) o-Terphenyl	67.8				18.0-148		11/24/2018 19:27	WG1200994

WG1200320

WG1200320

Qc

Gl

AI

Sc

Collected date/time: 11/15/18 11:32

Total Solids by I	Method 2540 G-20	711							1 Cp
	Result	Qualifier	Dilution	nalysis	Batch				
Analyte	%		(late / time					2
Total Solids	87.0		1 1	1/26/2018 14:06	WG1201431				² Tc
Wet Chemistry I	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	377		0.914	10.0	11.5	1	11/27/2018 11:33	WG1199854	CI
		by Motho	4 20150	/GRO					⁵ Sr
Volatile Organic	c Compounds (GC)	by Metho	u 8015D						

Analyte	mg/kg	mg/kg	mg/kg	mg/kg		date / time
TPH (GC/FID) Low Fraction	U	0.0249	0.100	0.115	1	11/21/2018 23:46
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		11/21/2018 23:46
(3) 0,0,0-1111001010101010101010101010101010	30.2			77.0-120		11/21/2010 23.4

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000460	0.00100	0.00115	1	11/21/2018 22:20	WG1200331
Toluene	U		0.00144	0.00500	0.00574	1	11/21/2018 22:20	WG1200331
Ethylbenzene	U		0.000609	0.00250	0.00287	1	11/21/2018 22:20	WG1200331
Total Xylenes	U		0.00549	0.00650	0.00747	1	11/21/2018 22:20	WG1200331
(S) Toluene-d8	112				75.0-131		11/21/2018 22:20	WG1200331
(S) Dibromofluoromethane	87.5				65.0-129		11/21/2018 22:20	WG1200331
(S) a,a,a-Trifluorotoluene	112				80.0-120		11/21/2018 22:20	WG1200331
(S) 4-Bromofluorobenzene	104				67.0-138		11/21/2018 22:20	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.53	J	1.85	4.00	4.60	1	11/24/2018 19:41	WG1200994
C28-C40 Oil Range	1.09	J	0.315	4.00	4.60	1	11/24/2018 19:41	WG1200994
(S) o-Terphenyl	69.8				18.0-148		11/24/2018 19:41	WG1200994

SDG: L1046071

WG1200320

WG1200320

Gl

AI

Sc

Collected date/time: 11/15/18 11:50

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by I	Method 2540 G-20)11							1
	Result	Qualifier	Dilution	Analysis	Batch				— [C
Analyte	%			date / time					2
Total Solids	81.8		1	11/26/2018 14:06	WG1201431				T
Wet Chemistry b	by Method 300.0								³ S
	Result (dry)	Qualifier	SDL (dr	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1160		4.86	10.0	61.1	5	11/27/2018 11:59	WG1199854	
Volatile Organic	c Compounds (GC)	by Metho	d 8015[)/GRO					⁵ S
	Result (dry)	Qualifier	SDL (dr	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°G

Volatile Organic Compounds (GC/MS) by Method 8260B

0.0324

97.7

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00100	0.00122	1	11/21/2018 22:40	WG1200331
Toluene	U		0.00153	0.00500	0.00611	1	11/21/2018 22:40	WG1200331
Ethylbenzene	U		0.000648	0.00250	0.00306	1	11/21/2018 22:40	WG1200331
Total Xylenes	U		0.00585	0.00650	0.00795	1	11/21/2018 22:40	WG1200331
(S) Toluene-d8	110				75.0-131		11/21/2018 22:40	WG1200331
(S) Dibromofluoromethane	88.5				65.0-129		11/21/2018 22:40	WG1200331
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 22:40	WG1200331
(S) 4-Bromofluorobenzene	105				67.0-138		11/21/2018 22:40	WG1200331

0.100

0.122

77.0-120

1

0.0265

J

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.97	4.00	4.89	1	11/24/2018 19:58	WG1200994
C28-C40 Oil Range	U		0.335	4.00	4.89	1	11/24/2018 19:58	WG1200994
(S) o-Terphenyl	59.2				18.0-148		11/24/2018 19:58	WG1200994

SDG: L1046071 11/22/2018 00:10

11/22/2018 00:10

SAMPLE RESULTS - 09 L1046071

WG1199854

Â

Sc

Collected date/time: 11/15/18 12:00 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch					
Analyte	%			date / time					2	
Total Solids	89.3		1	11/26/2018 14:06	WG1201431				Tc	
Wet Chemistry b	by Method 300.0								³ Ss	
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		4 Cn	

Volatile Organic Compounds (GC) by Method 8015D/GRO

638

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>											
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင		
TPH (GC/FID) Low Fraction	381		2.43	0.100	11.2	100	11/22/2018 00:34	WG1200320			
(S) a,a,a-Trifluorotoluene(FID)	94.8				77.0-120		11/22/2018 00:34	WG1200320	7 Gl		

10.0

11.2

1

11/27/2018 12:08

0.890

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00358	0.00100	0.00895	8	11/22/2018 00:42	WG1200331
Toluene	1.08		0.0112	0.00500	0.0448	8	11/22/2018 00:42	WG1200331
Ethylbenzene	0.852		0.00475	0.00250	0.0224	8	11/22/2018 00:42	WG1200331
Total Xylenes	9.09		0.0428	0.00650	0.0582	8	11/22/2018 00:42	WG1200331
(S) Toluene-d8	108				75.0-131		11/22/2018 00:42	WG1200331
(S) Dibromofluoromethane	100				65.0-129		11/22/2018 00:42	WG1200331
(S) a,a,a-Trifluorotoluene	105				80.0-120		11/22/2018 00:42	WG1200331
(S) 4-Bromofluorobenzene	131				67.0-138		11/22/2018 00:42	WG1200331

Sample Narrative:

Chloride

L1046071-09 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2500		36.0	4.00	89.5	20	11/26/2018 02:11	WG1200994
C28-C40 Oil Range	768		6.13	4.00	89.5	20	11/26/2018 02:11	WG1200994
(S) o-Terphenyl	331	<u>J7</u>			18.0-148		11/26/2018 02:11	WG1200994

SDG: L1046071

Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE RESULTS - 10

ONE LAB. NAPage 158 of 348

Â

Sc

Collected date/time: 11/15/18 10:00

Total Solids by I	Method 2540 G-20)11								
	Result	Qualifier	Dilution	Analysis	Batch					
Analyte	%			date / time					2	
Total Solids	95.2		1	11/26/2018 14:06	WG1201431				Tc	
Wet Chemistry b	by Method 300.0								³ Ss	
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	ı mg/kg	mg/kg		date / time			
Chloride	2670		4.18	10.0	52.5	5	11/27/2018 12:16	WG1199854		
Volatile Organic Compounds (GC) by Method 8015D/GRO										

	Result (drv)	Qualifier	SDL (drv)	Unadi, MQL	MQL (drv)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Qc
TPH (GC/FID) Low Fraction	0.206		0.0228	0.100	0.105	1	11/22/2018 00:58	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	83.6				77.0-120		11/22/2018 00:58	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	11/21/2018 23:00	WG1200331
Toluene	0.00166	J	0.00131	0.00500	0.00525	1	11/21/2018 23:00	WG1200331
Ethylbenzene	U		0.000557	0.00250	0.00263	1	11/21/2018 23:00	WG1200331
Total Xylenes	U		0.00502	0.00650	0.00683	1	11/21/2018 23:00	WG1200331
(S) Toluene-d8	111				75.0-131		11/21/2018 23:00	WG1200331
(S) Dibromofluoromethane	90.4				65.0-129		11/21/2018 23:00	WG1200331
(S) a,a,a-Trifluorotoluene	110				80.0-120		11/21/2018 23:00	WG1200331
(S) 4-Bromofluorobenzene	105				67.0-138		11/21/2018 23:00	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	808		8.45	4.00	21.0	5	11/26/2018 01:58	WG1200994
C28-C40 Oil Range	349		1.44	4.00	21.0	5	11/26/2018 01:58	WG1200994
(S) o-Terphenyl	91.9				18.0-148		11/26/2018 01:58	WG1200994

SDG: L1046071

SAMPLE RESULTS - 11 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:30

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	88.2		1	11/26/2018 14:06	WG1201431	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	3450		4.51	10.0	56.7	5	11/27/2018 12:25	WG1199854	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
Result (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch										
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင	
TPH (GC/FID) Low Fraction	669		4.92	0.100	22.7	200	11/22/2018 01:22	WG1200320		
(S) a,a,a-Trifluorotoluene(FID)	96.4				77.0-120		11/22/2018 01:22	WG1200320	7 Gl	
									0	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.323		0.00907	0.00100	0.0227	20	11/22/2018 01:01	WG1200331
Toluene	5.10		0.0284	0.00500	0.113	20	11/22/2018 01:01	WG1200331
Ethylbenzene	1.50		0.0120	0.00250	0.0567	20	11/22/2018 01:01	WG1200331
Total Xylenes	15.5		0.108	0.00650	0.147	20	11/22/2018 01:01	WG1200331
(S) Toluene-d8	105				75.0-131		11/22/2018 01:01	WG1200331
(S) Dibromofluoromethane	105				65.0-129		11/22/2018 01:01	WG1200331
(S) a,a,a-Trifluorotoluene	104				80.0-120		11/22/2018 01:01	WG1200331
(S) 4-Bromofluorobenzene	120				67.0-138		11/22/2018 01:01	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8440		183	4.00	454	100	11/26/2018 02:25	WG1200994
C28-C40 Oil Range	2760		31.1	4.00	454	100	11/26/2018 02:25	WG1200994
(S) o-Terphenyl	1090	<u>J7</u>			18.0-148		11/26/2018 02:25	WG1200994

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 11:15

						I'Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	94.5		1	11/26/2018 14:06	WG1201431	Tc

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1300		4.21	10.0	52.9	5	11/27/2018 12:51	WG1199854	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0522	J	0.0230	0.100	0.106	1	11/22/2018 01:45	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.4				77.0-120		11/22/2018 01:45	WG1200320	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000423	0.00100	0.00106	1	11/21/2018 23:20	WG1200331
Toluene	U		0.00132	0.00500	0.00529	1	11/21/2018 23:20	WG1200331
Ethylbenzene	0.000771	J	0.000561	0.00250	0.00264	1	11/21/2018 23:20	WG1200331
Total Xylenes	U		0.00506	0.00650	0.00687	1	11/21/2018 23:20	WG1200331
(S) Toluene-d8	113				75.0-131		11/21/2018 23:20	WG1200331
(S) Dibromofluoromethane	91.1				65.0-129		11/21/2018 23:20	WG1200331
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/21/2018 23:20	WG1200331
(S) 4-Bromofluorobenzene	107				67.0-138		11/21/2018 23:20	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	317		8.51	4.00	21.2	5	11/29/2018 16:45	WG1201271
C28-C40 Oil Range	123		0.290	4.00	4.23	1	11/29/2018 05:40	WG1201271
(S) o-Terphenyl	93.6				18.0-148		11/29/2018 05:40	WG1201271
(S) o-Terphenyl	100				18.0-148		11/29/2018 16:45	WG1201271

SDG: L1046071 DATE/TIME: 11/30/18 16:45 ³Ss ⁴Cn

⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 13 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 12:00

	Result	Qualifier	Dilution	Analysis	Batch		2
Analyte	%			date / time		2	_
Total Solids	92.3		1	11/26/2018 14:06	WG1201431	-	Г

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	252		0.861	10.0	10.8	1	11/27/2018 13:00	WG1199854		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO												
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>												
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Qc			
TPH (GC/FID) Low Fraction	0.0298	J	0.0235	0.100	0.108	1	11/22/2018 02:09	WG1200320				
(S) a,a,a-Trifluorotoluene(FID)	97.8				77.0-120		11/22/2018 02:09	WG1200320	⁷ Gl			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	11/21/2018 23:41	WG1200331
Toluene	U		0.00135	0.00500	0.00542	1	11/21/2018 23:41	WG1200331
Ethylbenzene	U		0.000574	0.00250	0.00271	1	11/21/2018 23:41	WG1200331
Total Xylenes	U		0.00518	0.00650	0.00704	1	11/21/2018 23:41	WG1200331
(S) Toluene-d8	113				75.0-131		11/21/2018 23:41	WG1200331
(S) Dibromofluoromethane	92.9				65.0-129		11/21/2018 23:41	WG1200331
(S) a,a,a-Trifluorotoluene	107				80.0-120		11/21/2018 23:41	WG1200331
(S) 4-Bromofluorobenzene	109				67.0-138		11/21/2018 23:41	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.70	J	1.74	4.00	4.33	1	11/30/2018 00:19	WG1201271
C28-C40 Oil Range	5.28		0.297	4.00	4.33	1	11/30/2018 00:19	WG1201271
(S) o-Terphenyl	73.6				18.0-148		11/30/2018 00:19	WG1201271

SAMPLE RESULTS - 14 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:00

	\$						I'C
	R	esult	Qualifier	Dilution	Analysis	Batch	
Analyte	%)			date / time		2
Total Solids	9	4.7		1	11/26/2018 13:52	WG1201432	Ťτ

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	343		0.840	10.0	10.6	1	11/27/2018 13:09	WG1199854		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>											
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc		
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.106	1	11/22/2018 02:33	WG1200320			
(S) a,a,a-Trifluorotoluene(FID)	98.2				77.0-120		11/22/2018 02:33	WG1200320	7 Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	11/22/2018 00:01	WG1200331
Toluene	U		0.00132	0.00500	0.00528	1	11/22/2018 00:01	WG1200331
Ethylbenzene	U		0.000560	0.00250	0.00264	1	11/22/2018 00:01	WG1200331
Total Xylenes	U		0.00505	0.00650	0.00687	1	11/22/2018 00:01	WG1200331
(S) Toluene-d8	115				75.0-131		11/22/2018 00:01	WG1200331
(S) Dibromofluoromethane	89.9				65.0-129		11/22/2018 00:01	WG1200331
(S) a,a,a-Trifluorotoluene	107				80.0-120		11/22/2018 00:01	WG1200331
(S) 4-Bromofluorobenzene	110				67.0-138		11/22/2018 00:01	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.25	J	1.70	4.00	4.22	1	11/29/2018 06:12	WG1201271
C28-C40 Oil Range	2.61	J	0.289	4.00	4.22	1	11/29/2018 06:12	WG1201271
(S) o-Terphenyl	80.3				18.0-148		11/29/2018 06:12	WG1201271

SDG: L1046071

SAMPLE RESULTS - 15 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:30

	Result	Qualifier	Dilution	Analysis	Batch	 C
Analyte	%			date / time		2
Total Solids	90.1		1	11/26/2018 13:52	WG1201432	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	553		0.883	10.0	11.1	1	11/27/2018 13:18	WG1199854	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	0.0362	J	0.0241	0.100	0.111	1	11/22/2018 02:57	WG1200320		
(S) a,a,a-Trifluorotoluene(FID)	97.8				77.0-120		11/22/2018 02:57	WG1200320	⁷ GI	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000444	0.00100	0.00111	1	11/22/2018 00:21	WG1200331
Toluene	U	J3	0.00139	0.00500	0.00555	1	11/22/2018 00:21	WG1200331
Ethylbenzene	U	J3	0.000588	0.00250	0.00277	1	11/22/2018 00:21	WG1200331
Total Xylenes	U	J3	0.00531	0.00650	0.00721	1	11/22/2018 00:21	WG1200331
(S) Toluene-d8	117				75.0-131		11/22/2018 00:21	WG1200331
(S) Dibromofluoromethane	88.5				65.0-129		11/22/2018 00:21	WG1200331
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/22/2018 00:21	WG1200331
(S) 4-Bromofluorobenzene	111				67.0-138		11/22/2018 00:21	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	17.1		1.79	4.00	4.44	1	11/29/2018 06:27	WG1201271
C28-C40 Oil Range	10.9		0.304	4.00	4.44	1	11/29/2018 06:27	WG1201271
(S) o-Terphenyl	69.2				18.0-148		11/29/2018 06:27	WG1201271

SDG: L1046071

SAMPLE RESULTS - 16 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:55

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	88.2		1	11/26/2018 13:52	WG1201432	ΤC

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	409		0.902	10.0	11.3	1	11/27/2018 13:27	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	345		2.46	0.100	11.3	100	11/22/2018 03:21	WG1200320		
(S) a,a,a-Trifluorotoluene(FID)	97.0				77.0-120		11/22/2018 03:21	WG1200320	7 GI	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00363	0.00100	0.00907	8	11/22/2018 01:21	WG1200331
Toluene	0.510		0.0113	0.00500	0.0453	8	11/22/2018 01:21	WG1200331
Ethylbenzene	0.100		0.00481	0.00250	0.0227	8	11/22/2018 01:21	WG1200331
Total Xylenes	7.65		0.0434	0.00650	0.0590	8	11/22/2018 01:21	WG1200331
(S) Toluene-d8	106				75.0-131		11/22/2018 01:21	WG1200331
(S) Dibromofluoromethane	103				65.0-129		11/22/2018 01:21	WG1200331
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/22/2018 01:21	WG1200331
(S) 4-Bromofluorobenzene	121				67.0-138		11/22/2018 01:21	WG1200331

Sample Narrative:

L1046071-16 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1950		36.5	4.00	90.7	20	11/29/2018 17:16	WG1201271
C28-C40 Oil Range	366		0.311	4.00	4.53	1	11/29/2018 06:43	WG1201271
(S) o-Terphenyl	240	<u>J7</u>			18.0-148		11/29/2018 17:16	WG1201271
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		11/29/2018 06:43	WG1201271

SDG: L1046071

SAMPLE RESULTS - 17 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 15:05

	·						l'Cr
		Result	Qualifier	Dilution	Analysis	Batch	
Analyte		%			date / time		2
Total Solids		90.9		1	11/26/2018 13:52	WG1201432	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1440		4.37	10.0	55.0	5	11/27/2018 13:35	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင	
TPH (GC/FID) Low Fraction	487		2.39	0.100	11.0	100	11/22/2018 03:44	WG1200320		
(S) a,a,a-Trifluorotoluene(FID)	93.1				77.0-120		11/22/2018 03:44	WG1200320	7 Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00352	0.00100	0.00880	8	11/22/2018 01:41	WG1200331
Toluene	2.13		0.0110	0.00500	0.0440	8	11/22/2018 01:41	WG1200331
Ethylbenzene	0.920		0.00466	0.00250	0.0220	8	11/22/2018 01:41	WG1200331
Total Xylenes	12.4		0.0421	0.00650	0.0572	8	11/22/2018 01:41	WG1200331
(S) Toluene-d8	106				75.0-131		11/22/2018 01:41	WG1200331
(S) Dibromofluoromethane	102				65.0-129		11/22/2018 01:41	WG1200331
(S) a,a,a-Trifluorotoluene	103				80.0-120		11/22/2018 01:41	WG1200331
(S) 4-Bromofluorobenzene	143	J1			67.0-138		11/22/2018 01:41	WG1200331

Sample Narrative:

L1046071-17 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13300	V	177	4.00	440	100	11/29/2018 10:09	WG1201271
C28-C40 Oil Range	2800		3.01	4.00	44.0	10	11/29/2018 08:47	WG1201271
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		11/29/2018 08:47	WG1201271
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		11/29/2018 10:09	WG1201271

SDG: L1046071

SAMPLE RESULTS - 18 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 15:40

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	90.4		1	11/26/2018 13:52	WG1201432	¯Τc

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1360		4.40	10.0	55.3	5	11/27/2018 18:00	WG1200542	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	date / time									
Total Solids	90.4	1	1 11/26/	11/26/2018 13:52					Tc				
Wet Chemistry by Met	hod 300.0								³ Ss				
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L				
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp				
Chloride	1360		4.40	10.0	55.3	5	11/27/2018 18:00	WG1200542					
Volatile Organic Comp	ounds (GC) k	by Method	8015D/G	RO					⁵ Sr				
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6				
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q c				
TPH (GC/FID) Low Fraction	439		2.40	0.100	11.1	100	11/22/2018 04:08	WG1200320					
(S) a,a,a-Trifluorotoluene(FID)	e(FID) 96.4				77.0-120		11/22/2018 04:08	WG1200320	⁷ Gl				

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00354	0.00100	0.00885	8	11/22/2018 02:01	WG1200331
Toluene	1.31		0.0111	0.00500	0.0443	8	11/22/2018 02:01	WG1200331
Ethylbenzene	1.25		0.00469	0.00250	0.0221	8	11/22/2018 02:01	WG1200331
Total Xylenes	12.9		0.0423	0.00650	0.0575	8	11/22/2018 02:01	WG1200331
(S) Toluene-d8	105				75.0-131		11/22/2018 02:01	WG1200331
(S) Dibromofluoromethane	106				65.0-129		11/22/2018 02:01	WG1200331
(S) a,a,a-Trifluorotoluene	103				80.0-120		11/22/2018 02:01	WG1200331
(S) 4-Bromofluorobenzene	144	<u>J1</u>			67.0-138		11/22/2018 02:01	WG1200331

Sample Narrative:

L1046071-18 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2830		44.5	4.00	111	25	11/29/2018 17:32	WG1201271
C28-C40 Oil Range	1130		1.52	4.00	22.1	5	11/29/2018 17:00	WG1201271
(S) o-Terphenyl	348	<u>J1</u>			18.0-148		11/29/2018 17:00	WG1201271
(S) o-Terphenyl	265	<u>J7</u>			18.0-148		11/29/2018 17:32	WG1201271

Sample Narrative:

L1046071-18 WG1201271: Surrogate failure due to matrix interference

SDG: L1046071

Rece	ived (by OC		11/8,	/202 5	1 <u>1</u>	2:5	7:39 10	פ_ף א גר	မို	ے ا	5	۶. ۳		හ හ Pag	e 167 of	°348	
ONE LAB. NATIONWIDE.																	PAGE	26 of 40
																	DATE/TIME:	11/30/18 16:45
NTROL SUMMARY																	SDG:	11046071
UALITY CO								DUP Qualifier DUP RPD Limits	%	10			LCS Qualifier				ROJECT:	C-MD-01491
Ø		MB RDL	%		ĺ	(dh)		DUP RPD	%	0.823			Rec. Limits	% 01 0 11			L C	1212
		MB MDL	%		:	plicate (L	/26/18 14:18	Dilution		-			LCS Rec.	%				
011		MB Qualifier				e (OS) • Du	R3363176-3 1	ult DUP Result	%	89.5	LCS)		nt LCS Result	%				ch
O thod 2540 G-2	AB)	5/18 14:18 MB Result	%	0.00100	(iginal Sampl	26/18 14:18 • (DUP)	Original Resu	%	88.8	trol Sample (26/18 14:18	Spike Amour	%			ACCOUNT:	coPhillips - Tetra 16
WG120143	post Method Blank (N	(MB) R3363176-1 11/26	Analyte	1:50 Total Solids	0/11	2-1046071-03 Or	C(OS) L1046071-03 11/2	11:5	Analyte	WV Solids	Laboratory Con	(LCS) R3363176-2 11/2		Analyte				Cono

Rece	ived (by OCD ∼	: 11	/ <mark>8/202</mark>	1 1 2	2:5	7:39 10	ב רא בי	္လို	ل ک	5	Ъ		Page 169 of 34	8
ONE LAB. NATIONWIDE.														H	28 of 40
														DATE/TIME.	11/30/18 16:45
NTROL SUMMARY														ë	L1046071
QUALITY CON							DUP Qualifier DUP RPD Limits	%	10			nits <u>LCS Qualifier</u>		-LCT.	212C-MD-01491
		ADL MB RDL %	2		(DUP)	13:52	ion DUP RPD	%	1.18			Rec. Rec. Lim %	85 0-115		
		fier MB N %	2		uplicate	3 11/26/18 1	ult Dilut		~			IIT LCS	100		
11		MB Quali			(OS) • D	R3363173-0	It DUP Resu	%	89.9	-CS)		t LCS Resu %	50.0		ch
2 sthod 2540 G-20	MB)	6/18 13:52 MB Result %	0.00100		iginal Sample	26/18 13:52 • (DUP)	Original Resul	%	6.06	itrol Sample (L	26/18 13:52	Spike Amoun %	50.0		ocoPhillips - Tetra Tec
WG120143	post Method Blank (0 (MB) R3363173-1 11/2 2010 Analyte	Solids	10/11	1046071-17 Or	C(OS) L1046071-17 11/2	11:5	Analyte	Total Solids	Laboratory Con	(LCS) R3363173-2 11/	Analyte	Total Solids		Conc

WG1199854	0.00° bo			Q 1	UALITY 46071-01,02,0	CONTR 13,04,05,06,07,	OL SUMMA 08,09,10,11,12,13,14,15	RҮ ^{16,17}		ONE LAB. N	ATIONWIDE.	Rece
performed Blank (MB)											-	ived a
MB) R3363335-1 11/27/18 0	8:48 MB Result	MB Qualifier	MB MDL	MB RDL							1	by O
Analyte	mg/kg		mg/kg	mg/kg							0	
Chloride			0.795	10.0								11/
10/1											n	8/20
2-1045558-04 Origin	al Sample	(OS) • Dup	olicate (Dl	(AL							4	21
2003) L1045558-04 11/27/18	10:05 • (DUP) R	3363335-3 1	1/27/18 10:14									<u>e:5</u>
11:5	Original Result (dry)	DUP Result (dry)	Dilution DL	JP RPD	OUP Qualifier	DUP RPD Limits					L)	7:39
Analyte	mg/kg	mg/kg	%			%						ר אין רא
WV Chloride	121	133	1 9.0	74		20					Q	ရွိ
L1046071-17 Original	Sample (C	IS) • Dupli	cate (DUF	()								Ū
(OS) L1046071-17 11/27/18 13	:35 • (DUP) R3:	363335-6 11/	27/18 13:44									5
~	Original Result	DUP Result	Dilution DL		OUP Qualifier						œ	_
Analyte	(dry) ma/ka	(dry) ma/ka	%			Limits %						Ī
Chloride	1440	1440	2 0	191		00					0	(
Laboratory Control S	Sample (I C	(r.]	
(LCS) R3363335-2 11/27/18	08:57											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualif	er						
Analyte	mg/kg	mg/kg	%	%								
Chloride	200	217	108	90.0-110								
L1046071-07 Origine	al Sample ((DS) • Matr	ix Spike (I	MS) • Mati	rix Spike D	uplicate (MS	SD)					
(OS) L1046071-07 11/27/18 1	1:33 • (MS) R334	53335-4 11/2	7/18 11:41 • (MS	SD) R336333	5-5 11/27/18 11	50						
	Spike Amount (drv)	Original Result (drv)	MS Result (dr	y) MSD Result	MS Rec.	MSD Rec.	Dilution Rec. Limits	MS Qualifier	MSD Qualifier RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%		%	%		
Chloride	574	377	966	1050	108	118	1 80.0-120		5.69	20		
												Pa
												ge 170 oj
ACC	COUNT: ins. Tetra Tech			Ч <u>с</u> с	ROJECT: 0-MD-01491		SDG: 1 1046071		DATE/TIME: 11/30/18 16:45		PAGE: 29 of 40	f 348

	0
0	E E
2	Ċ
\mathcal{O}	
O	2
0	L C
\Box	0
ίΠ.	tile
3	0
\$	2
Re	el

${\tt L1046071-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18}$ QUALITY CONTROL SUMMARY

щ	
\cap	
=	
2	
\geq	
\geq	
$\overline{\frown}$	
\cup	
~	
2	
\leq	
m	
7	
Ч	
_	
LL L	
=	
\sim	
\cap	
\sim	

WG1200320				g	ΙΑΓΙΤΥ (CONTRO	DL SUM	IMARY		ONE LAB. NATIONWIDE.	Ro
Volatile Organic Com	lpounds (GC) b	y Method 8(015D/GRO	L10460	71-01,02,03,04	.,05,06,07,08,0	09,10,11,12,13,	14,15,16,17,18			ecei
Method Blank (ME	3)										ived g
(MB) R3363238-3 11/21/1	8 20:15										by O
analyte	MB Result ma/ka	MB Qualifier	MB MUL ma/ka	MB KUL ma/ka							
TPH (GC/FID) Low Fraction			0.0217	0.100							: 11
10 (S) 1/01 a.a.a.Trifluorotoluene(FID)	99.4			77.0-120							/ <mark>8/2</mark> 0
1/202											21 1¢
Laboratory Contro	ol Sample (LC	CS) • Laboi	atory Cont	rol Sample	e Duplicate	(LCSD)					2:57.
(LCS) R3363238-1 11/21/1	18 19:03 • (LCSD) I	R3363238-2	11/21/18 19:27								39 ن
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		PN
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	5.53	5.58	101	102	72.0-127		0.928	20		ğ

77.0-120 72.0-127

104 101 %

(S) a, a, a-Trifluorotoluene(FID)

102 104 Ū

SC

₹

L1046071-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046071-18 11/22/18 04:08 • (MS) R3363238-4 11/22/18 04:32 • (MSD) R3363238-5 11/22/18 04:56

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.09	439	829	799	64.2	59.1	100	10.0-151			3.79	28
(S) a.a.a-Trifluorotoluene(FID)					102	101		77.0-120				

31 of 40 PAGE:

11/30/18 16:45 DATE/TIME:

∞
00
0
0
0
\Box
$\sum_{i=1}^{n}$
G
\geq
\leq
Re

QUALITY CONTROL SUMMARY L1046071-01,02,03,04

WG1200088				QUALITY CONTROL SUMMARY	R H
Volatile Organic Comp	ounds (GC/N	AS) by Metho	d 8260B	L1046071-01,02,03,04	ecei
page (MB)					ved (
(MB) R3362689-2 11/21/18	13:29				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0 ~
Analyte	mg/kg		mg/kg	mg/kg	
S Benzene	Π		0.000400	0.00100	11
Ethylbenzene	n		0.000530	0.00250	/ <mark>8///</mark>
Toluene	N		0.00125	0.00500	302
Vylenes, Total	Π		0.00478	0.00650	4
(S) Toluene-d8	100			75.0-131	8
(S) Dibromofluoromethane	91.5			65.0-129	57.
S) a, a, a-Trifluorotoluene	110			80.0-120	39 ທີ
(S) 4-Bromofluorobenzene	100			67.0-138	PN
3 AM					ے م

Laboratory Control Sample (LCS)

(LCS) R3362689-1 11/21/18 11:07

LCS) R3362689-1 11/21/18	11:07					0
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	its LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		~
Benzene	0.125	0.106	84.9	70.0-123		Ī
ethylbenzene	0.125	0.114	91.1	74.0-126		٥
oluene	0.125	0.115	92.1	75.0-121		လို
kylenes, Total	0.375	0.349	93.1	72.0-127		
(S) Toluene-d8			95.2	75.0-131		
(S) Dibromofluoromethane			94.9	65.0-129		
(S) a, a,a-Trifluorotoluene			112	80.0-120		
(S) 4-Bromofluorobenzene			96.2	67.0-138		

L1045482-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Aec. MSD Rec. Dilution Rec. Limits MS Qualifier Astronom % % % % 9 9 9 10.0-149 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2	MSD Rec. Dilution Rec. Limits MSD Qualifier RPD Qualifier RPD (11) %
% % 9 76.3 80 10.0-149 2 112 80 10.0-160 1 98.2 80 10.0-156 1 131 80 10.0-160 1 93.7 75.0-131 8 10.0-160 93.8 10.0-160 8 131 80 10.0-160 8 131 80 10.0-160 8 131 80 10.0-150 8 131 80 10.0-150 8 112 80 10.0-150 8 112 80.0-129 8 10	% % % 76.3 80 10.0-149 26.3 76.3 80 10.0-160 26.3 98.2 80 10.0-160 12.9 99.7 75.0-131 8.13 93.8 65.0-129 8.13 112 80.0-120 9.13
76.3 80 10.0-149 2 112 80 10.0-160 1 98.2 80 10.0-156 1 131 80 10.0-160 8 133 80 10.0-160 8 134 80 10.0-156 1 131 80 10.0-150 8 133 80 10.0-150 8 131 80 10.0-150 8 132 80 10.0-150 8 112 80.0-120 8	76.3 80 10.0-149 26.3 112 80 10.0-160 12.9 98.2 80 10.0-166 10.6 131 80 10.0-160 10.6 99.7 75.0-131 8.13 93.8 65.0-129 8.13 112 80.0-120 8.13 93.8 65.0-129 8.13 95.8 65.0-129 8.13
112 80 10.0-160 1 98.2 80 10.0-156 1 131 80 10.0-160 8 133 75.0-131 8 99.7 75.0-131 8 112 80.0-120	112 80 10.0-160 12.9 98.2 80 10.0-156 10.6 131 80 10.0-160 8.13 99.7 75.0-131 8.13 93.8 65.0-129 8.13 112 80.0-120 8.13 95.8 67.0-138 10.0-138
98.2 80 10.0-156 1 131 80 10.0-160 8 99.7 75.0-131 8 112 80 66.0-129 112 80.0-120	98.2 80 10.156 10.6 131 80 10.0160 8.13 99.7 75.0-131 8.13 93.8 65.0-129 8.13 112 80.0-120 8.0-120 95.8 67.0-138 8.00-120
131 80 10.0-160 8 99.7 75.0-131 75.0-129 10.129 * 93.8 65.0-129 112	131 80 10.160 8.13 99.7 75.0.131 8.13 93.8 65.0.129 8.13 112 80.0.120 8.13 95.8 67.0.138 8.13
99.7 75.0-131 93.8 65.0-129 112 80.0-120	99.7 75.0-131 93.8 65.0-129 112 80.0-120 95.8 67.0-138
· 93.8 65.0-129 112 80.0-120	93.8 65.0-129 112 80.0-120 95.8 67.0-138
112 80.0-120	112 80.0-120 95.8 67.0-138
	95.8 67.0-138
95.8 67.0-138	

32 of 40 PAGE:

11/30/18 16:45 DATE/TIME:

SDG: L1046071

212C-MD-01491 **PROJECT:**

ConocoPhillips - Tetra Tech ACCOUNT:

Ç
ľ
ļ
Ç

QUALITY CONTROL SUMMARY ${\tt L1046071-05,06,07,08,09,10,11,12,13,14,15,16,17,18}$

	~
- 1	-
-	Σ
	0
	~
	Ξ
/	· ·
- 1	
- 1	(
- 1	11
5 1	
- 1	ĉ
1 1 1 1 1	9
- 1	ñ
x	1.1
<i>,</i>	<u>u</u>
1 1 1 1 1	(m
, I	à
- 1	<u> </u>
- 1	Ω
-	
)	\sim
1	ш
- 1	~
7	
11	0
_	

WG1200331				QUALITY CONTROL SUMMARY	JDE
Volatile Organic Compo	ounds (GC/N	AS) by Metho	d 8260B	L1046071-05,06,07,08,09,10,11,12,13,14,15,16,17,18	ecei
participation Blank (MB)					ved (
(MB) R3363004-2 11/21/18 1	19:21				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0 ∝
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	П		0.000400	0.00100	11
Ethylbenzene			0.000530	0.00250	/ <mark>8///</mark>
II oluene	Π		0.00125	0.00500	302
Xylenes, Total			0.00478	0.00650	4
S) Toluene-d8	115			75.0-131	0
(S) Dibromofluoromethane	85.4			65.0-129	57:
S) a, a, a-Trifluorotoluene	107			80.0-120	39 ທີ
(S) 4-Bromofluorobenzene	106			67.0-138	PN
3 AM					و م م

Laboratory Control Sample (LCS)

(LCS) R3363004-1 11/21/18 18:01

						ſ
(LCS) R3363004-1 11/21/18	S 18:01					0
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	s LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.0924	74.0	70.0-123		₹
Ethylbenzene	0.125	0.129	103	74.0-126		٥
Toluene	0.125	0.101	80.9	75.0-121		လို
Xylenes, Total	0.375	0.383	102	72.0-127		
(S) Toluene-d8			105	75.0-131		
(S) Dibromofluoromethane			99.5	65.0-129		
(S) a,a,a-Trifluorotoluene			107	80.0-120		
(S) 4-Bromofluorobenzene			104	67.0-138		

L1046071-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

102/110/6071-15 11/22/18 00:21

1/77/11 GI-1/00+017 (CO)	בא (כואו) י וביטט פ	11/2.	2/10 02.22 • (IVIS	L) K3303UU4	+-+ II/77/ID 07	2.42							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) ¹	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg r	ng/kg	%	%		%			%	%	
Benzene	0.139	П	0.0481	0.113	34.7	81.5	-	10.0-149		ег Г	80.5	37	
Ethylbenzene	0.139	П	0.0714 (0.168	51.5	121	-	10.0-160		<u>ور</u>	80.6	38	
Toluene	0.139	Π	0.0584 (0.139	42.1	99.9	-	10.0-156		<u>ول</u>	81.4	38	
Xylenes, Total	0.416	П	0.226 (0.496	54.3	119	-	10.0-160		с <u>Г</u>	74.7	38	
(S) Toluene-d8					110	111		75.0-131					
(S) Dibromofluoromethane					94.5	90.7		65.0-129					
(S) a,a,a-Trifluorotoluene					107	107		80.0-120					
(S) 4-Bromofluorobenzene					111	011		67.0-138					
	-TOURNE				÷ L		U			DATE/T			-10VD
	HUCCON I.)						UD4L
ConocoF	Phillips - Tetra Tech			212C-ME	0-01491		L10	146071		11/30/18	16:45		33 of 40

	0
4	
σ	2
σ	č
0	
0	1
\sim	-
\sum	>
U	
\geq	2
Re	į

(GC) by Method 8015	
Compounds	
Organic	
emi-Volatile	

WG120099	4			Q	JALITY	CONTRO	DL SUM	MARY		ONE LAB. NATIONWIDE.
Semi-Volatile Orgar	nic Compounds	(GC) by Mer	thod 8015		L1046071-C	01,02,03,04,05,	06,07,08,09,1	0,11		
Method Blank (N.	IB)									
(MB) R3362656-1 11/24	/18 16:52									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
C10-C28 Diesel Range	Э		1.61	4.00						
C28-C40 Oil Range			0.274	4.00						
(S) o-Terphenyl	84.4			18.0-148						
Laboratory Conti	ol Sample (LC	CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)				
(LCS) R3362656-2 11/2	14/18 17:25 • (LCSD)) R3362656-3	3 11/24/18 17:37							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
Extractable Petroleum		0	0	Ú CU	C C T	1001		(()	

LCS) R3362656-2 11/24/	'18 17:25 • (LCSD,) R3362656-3	11/24/18 17:37						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Extractable Petroleum Hydrocarbon	50.0	31.8	36.0	63.6	72.0	50.0-150		12.4	20
C10-C28 Diesel Range	50.0	37.0	40.9	74.0	81.8	50.0-150		10.0	20
(S) o-Terphenyl				87.4	83.5	18.0-148			

Ū

∢

Sc

L1046080-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

20	
ñ	
<u></u>	
\sim	
00	
2	
4	
\sim	
2	
•	
Q	
h.	
ň	
ó	
Ň	
0	
m	
<u>m</u>	
r	
$\widehat{}$	
÷	
\leq	
•	
. +	
4	
<u> </u>	
\sim	
00	
2	
4	
\sim	
2	
<u> </u>	
4	
4-0	
56-4	
656-4	
2656-4	
862656-4 1	
3362656-4 1	
3362656-4	
K3362656-4	
S) K3362656-4	
VIS) R3362656-4	
(MS) K3362656-4	
• (MS) K3362656-4	
27 • (MS) K3362656-4 1	
:2/ • (MS) K3362656-4 1	
21:27 • (MS) K3362656-4	
3 21:27 • (MS) K3362656-4 1	
18 21:27 • (MS) K3362656-4 1	
4/18 21:27 • (MS) K3362656-4	
24/18 21:27 • (MS) K3362656-4	
1/24/18 21:27 • (MS) K3362656-4 1	
11/24/18 21:27 • (MS) K3362656-4	
1 11/24/18 21:27 • (MS) K3362656-4	
-01 11/24/18 21:27 • (MS) K3362656-4 1	
0-01 11/24/18 21:27 • (MS) K3362656-4 1	
80-01 11/24/18 21:27 • (MS) K3362656-4 1	
080-01 11/24/18 21:27 • (MS) K3362656-4 1	
6080-01 11/24/18 21:27 • (MS) K3362656-4 1	
146080-01 11/24/18 21:27 • (MS) K3362656-4 1	
1046080-01 11/24/18 21:27 • (MS) K3362656-4 1	
L1046080-01 11/24/18 21:27 • (MS) K3362656-4 1	
5) L1046080-01 11/24/18 21:27 • (MS) R3362656-4 1	

	יש (כואו) • (בואו כו		NI • ++- 17 01/+-			00.						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
Extractable Petroleum Hydrocarbon	50.0		29.2	35.8	53.0	66.2	-	50.0-150		را	20.3	20
C10-C28 Diesel Range	50.0	DN	31.5	38.4	63.0	76.8	-	50.0-150			19.7	20
(S) o-Terphenyl					70.0	64.7		18.0-148				

34 of 40 PAGE

11/30/18 16:45 DATE/TIME:

	~
271	Organic
WG1201	Semi-Volatile

Compounds (GC) by Method 8015 Method Blank (MB)

	en en	
1	/18 04:5	
	-1 11/29	
	363864	
	MB) R3	
11	o In	

WG1201271				Q	JALITY (CONTROL	- SUM	MARY		ONE LAB. NATIONWIDE.
Semi-Volatile Organ	ic Compounds	(GC) by Met	thod 8015		L104	46071-12,13,14,15,1	16,17,18			
Method Blank (M	1B)									
MB) R3363864-1 11/29,	1/18 04:53									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
C10-C28 Diesel Range	Э		1.61	4.00						
C28-C40 Oil Range			0.274	4.00						
(S) o-Terphenyl	86.8			18.0-148						
aboratory Contr-	rol Sample (LC	CS) • Labo	ratory Coni	trol Sampl	e Duplicate	(LCSD)				
LCS) R3363864-2 11/2	9/18 05:09 • (LCSE) R3363864-	3 11/29/18 05:2	4						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LC	S Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
C10-C28 Diesel Range	50.0	38.0	40.8	76.0	81.6	50.0-150		7.11	20	

	5D Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits	% %	5 50.0-150 7.11 20	5 18.0-148
	CS Rec. LC	%	6.0 81.	5.9 90
-3 11/29/18 05:24	LCSD Result L	mg/kg %	40.8	8
)) R3363864-	LCS Result	mg/kg	38.0	
9/18 05:09 • (LCSE	Spike Amount	mg/kg	50.0	
(LCS) R3363864-2 11/25		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

 $\overline{\mathbb{O}}$

₹

L1046071-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046071-17 11/29/	18 08:47 • (MS) R3	3363864-4 11/25	7/18 09:23 • (M.	SD) R3363864	t-5 11/29/18 09	:37						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.0	13000	12300	13100	0.000	200	10	50.0-150	> 三	<u> – Ц</u>	6.06	20
(S) o-Terphenyl					0.000	0.000		18.0-148	2 <mark>7</mark>	27		

SC

35 of 40 PAGE:

11/30/18 16:45 DATE/TIME:

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1046071

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 178 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hamp
Arkansas	88-0469	New Jerse
California	2932	New Mexic
Colorado	TN00003	New York
Connecticut	PH-0197	North Caro
Florida	E87487	North Caro
Georgia	NELAP	North Caro
Georgia ¹	923	North Dako
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvar
Kansas	E-10277	Rhode Isla
Kentucky 16	90010	South Caro
Kentucky ²	16	South Dake
Louisiana	AI30792	Tennessee
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washingto
Mississippi	TN00003	West Virgir
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

PAGE: 37 of 40

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Cardon Conco Pulipio Cardon Mutures Mutures Markins Exc. Mo Exc. Mo Exc. Mo Exc. Mo Exc. Mo Markins Exc. Mo Image Exc. Mo Exc. Mo Exc. Mo Exc. Mo Markins Exc. Mo Image Exc. Mo Image Exc. Mo	Control Concorphility Image: Concorphility	Control Conco Prulips Team Conco Prulips Team Conco Prulips Team Conco Prulips Team Team <thteam< th=""> Team</thteam<>	F	Tetra Tech, Inc.			900 West Midia Tel Fax	Walf Street, Ste Ind, Texts 79701 (432) 682-4559 (432) 682-3945	00 	F16	4						1		5
Пода (во страна)	Internet Euch Fed Implement Fed Implement Euch Fed Implement <th>Полна (стана) Concilio (стана)<th>Client Name:</th><th>Conoco Phillips</th><th>Site Manager:</th><th></th><th>Kayla Ta</th><th>vior</th><th></th><th></th><th></th><th></th><th>A</th><th>NALYS</th><th>IS REO</th><th>UEST</th><th></th><th></th><th></th></th>	Полна (стана) Concilio (стана) <th>Client Name:</th> <th>Conoco Phillips</th> <th>Site Manager:</th> <th></th> <th>Kayla Ta</th> <th>vior</th> <th></th> <th></th> <th></th> <th></th> <th>A</th> <th>NALYS</th> <th>IS REO</th> <th>UEST</th> <th></th> <th></th> <th></th>	Client Name:	Conoco Phillips	Site Manager:		Kayla Ta	vior					A	NALYS	IS REO	UEST			
Manual Manua Manual Manua Manual Manual Manual Manual Manual Manual Manual Ma	Manuality La Cururi, Naw Modo Parts ZiC-MD014I Market Manuality La Cururi, Naw Modo Parts ZiC-MD014I Market Manuality Market Manuality Market Manuality ZiC-MD014I Market Manuality Market Manuality Market Manuality Market Manuality Market Manuality Market Manualit	Manualization Let Cum/Lynkw Macio Partie 212C-MD-01491 Manualization Partie Partie Partie Partie Manualization Partie Partie Partie Partie Manualization Manualization Manualization Partie Partie Manualization Manualization <td< th=""><th>Project Name:</th><th>Buck Fed</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0</th><th>rcle d</th><th>or Spe</th><th>cify M</th><th>ethod</th><th>No.)</th><th></th><th></th></td<>	Project Name:	Buck Fed								0	rcle d	or Spe	cify M	ethod	No.)		
Models Tocase Paralia models Events Paralia termina Barrian termina Para Antonia termina Antonia <	Image: Control from the control fr	Поли на <	Project Location: (county, state)	Lea County, New Mexico	Project #:		212C-	MD-01491			_							_	
Instrume Top Analytical Teams Teams Transmark COTETTA Accinum Instrument of the provident of the pro	Instrument Top Analytical An	Instrument Teo Analytical An	invoice to:	Accounts Payable 900 West Wall Street Suite 100 Micland, Texas 79701			hi e				_	((-			(tei) (
ODTETRA ACITUM COTETRA ACITUM COLPTA ACITUM	Operation Conference Conference Conference Marcine	Оплания СОТЕТНА АСПЛИ COL IIII COL IIII COL IIIII COL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Receiving Laboratory:	Pace Analytical	Sampler Signat	:eun	-					DBM - I	6H es	_		-	perhad		
L[b](6) SMMPLE IDENTIFICATION MATERIAL MATERIAL<	LUHAI AMPLING	LUHH SMPLE IDENTIFICATION SMPLE IDENTIFICATION SMPLE IDENTIFICATION Lues	Comments: COP	FETRA Acctnum							98) 20192	080-08	Cq CL Pb	P)C\852		trý (see st D2	_	
More IDENTIFICATION More IDENTIFICATION More IDENTIFICATION More IDENTIFICATION 01 AH-10 IN15118 100 XX XX 1 XX 1 XX 1 XX 1 XX 1 XX 0 0 0 0 0 0 XX 0 <td>Mort Internation Mort Internation Mort Internation Mort Internation 0 0 AH-10 11/15/16 0/0</td> <td>Control Control <t< td=""><td>1 1154 mar</td><td></td><td>SAMPL</td><td>DNG</td><td>MATRIX</td><td>PRESERVA</td><td>TIVE 0</td><td>()</td><td>XI IO C</td><td>0 - OA</td><td>e8 eA</td><td>aelit A A Ao</td><td>8 11 852(</td><td></td><td>T et</td><td>ance</td><td>_</td></t<></td>	Mort Internation Mort Internation Mort Internation Mort Internation 0 0 AH-10 11/15/16 0/0	Control Control <t< td=""><td>1 1154 mar</td><td></td><td>SAMPL</td><td>DNG</td><td>MATRIX</td><td>PRESERVA</td><td>TIVE 0</td><td>()</td><td>XI IO C</td><td>0 - OA</td><td>e8 eA</td><td>aelit A A Ao</td><td>8 11 852(</td><td></td><td>T et</td><td>ance</td><td>_</td></t<>	1 1154 mar		SAMPL	DNG	MATRIX	PRESERVA	TIVE 0	()	XI IO C	0 - OA	e8 eA	aelit A A Ao	8 11 852(T et	ance	_
Wile No. No. <td>(MUN AH9 (MUN AH9 (MUN AH9 (MUN (M</td> <td>Out AH-10 AH-110 AH-112 AH-112 AH-113 AH-113</td> <td>LAB</td> <td>SAMPLE IDENTIFICATION</td> <td>VEAR: 2018</td> <td>Π</td> <td></td> <td></td> <td></td> <td>N/X) (</td> <td>819 3) 900</td> <td>D CO</td> <td>selit BA sit</td> <td>ieloV i aca</td> <td>oV .im 2 / 60</td> <td>0.0 (sols</td> <td>silu2 O tete</td> <td>t Ieg ud</td> <td></td>	(MUN AH9 (MUN AH9 (MUN AH9 (MUN (M	Out AH-10 AH-110 AH-112 AH-112 AH-113	LAB	SAMPLE IDENTIFICATION	VEAR: 2018	Π				N/X) (819 3) 900	D CO	selit BA sit	ieloV i aca	oV .im 2 / 60	0.0 (sols	silu2 O tete	t Ieg ud	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-01 AH3 111 <td>-01 AH-10 111/51/51 1005 X A/A X</td> <td>(LAB USE)</td> <td></td> <td>∃1AG</td> <td>TIME</td> <td>NATER JIOS</td> <td>CE HOO³ HCF</td> <td>enoi</td> <td>ізнатл</td> <td>11X1 Hd</td> <td>orse HA</td> <td>SLP Mela</td> <td>NAS Vol K Mes Aut</td> <td>808 8.83</td> <td>Mirit edeA) M 05 ebitol</td> <td>ebhol W leren</td> <td>19108 H</td> <td>100</td>	-01 AH-10 111/51/51 1005 X A/A X	(LAB USE)		∃1AG	TIME	NATER JIOS	CE HOO ³ HCF	enoi	ізнатл	11X1 Hd	orse HA	SLP Mela	NAS Vol K Mes Aut	808 8.83	Mirit edeA) M 05 ebitol	ebhol W leren	19108 H	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02 AH-10 111516 1010 X X 1 X X 1 X	03 AH-10 111518 1010 X X 1 X <	10/	AH-9	11/15/18	1005	6 ×				1	3 11	<u>)</u> ц	95 11(bC BC		90 40	d1	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	03 AH-11 111/15/18 1020 X X 1 N X N X N X N X N X N X N X N N X N	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	AH-10	11/15/18	1010	×	×		Z	<2	2 5		+	-	< >	×		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	01 A+12 11/15/16 1030 X X 1 X X 1 X	01 At-12 11/15/18 1030 X X 1 N X N N X N N X N	63	AH-11	11/15/18	1020	×	×	-	2	1-			+	+	× .		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 A+13 111518 1051 X X 1 N X N X N X N X N X N X N X N N X N N X N N X N <	07 AH-13 (1/15/18 1051 X X 1 X	04	AH-12	11/15/18	1030	×	×		z	1	5		+	-	Χ.	+	+	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OP AH-14 1/1/5/18 1/05 X X 1 N X N X N X N X N X N X N X N X N X N N X N N X N N X N N X N	OP AH-14 1/15/16 105 X X 1 N X N X N X N X N X N X N X N X N X N X N X N N X N N X N N X N N X N	62	AH-13	11/15/18	1051	×	×	-	z	23			-		2	+	+	
01 AH-15 11/15/18 1/12 X X 1 N X X N X N X N X N X N X N X N X N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N	01 AH-15 11/15/18 122 X X 1 N X N X N N X N	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	90	AH-14	11/15/18	1105	×	×	-	z	43			+		< -	+	+	
OB AH-16 11/15/18 1150 X X 1 N X X N X	08 AH-15 11/15/18 150 X X 1 N X N N X N	08 AH-16 11/15/18 150 X 1 N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N N X N	0)	AH-15	11/15/18	1132	×	×	-	z				+	+	X	+	-	
Of AH-17 11/15/18 1200 X X 1 X	04 AH-17 11/15/18 1200 X X 1 N X X N 10 NSW-2 11/16/18 1000 X X 1 N X X N elinquished by: Date: Time: Received by: Date: Time: LAB USE Remarks: elinquished by: Date: Time: Received by: Date: Time: LAB USE StantDate: X T T elinquished by: Date: Time: Received by: Date: Time: LAB USE StantDate: X T T elinquished by: Date: Time: Received by: Date: Time: LAB USE StantDate: X T T elinquished by: Date: Time: Received by: Date: Time: Date: Time: Remarks: Same Day 24 hi 48 hr 72 hr elinquished by: Date: Time: Remarks: LAPU L: Same Time: Remarks: Remarks: </td <td>04 AH-17 11/15/18 1200 X X 1 N X X N X 10 NSW-2 11/16/18 1000 X X 1 N X X N X 11 Date Time Received by Date Time Date Time X X N X X N X elinquished by Date: Time Received by Date Time Date Time Date Time elinquished by Date: Time Date Time Date Time Date Time elinquished by Date: Time Date Time Date Time elinquished by Date Time Date Time Date Time Olden by Date</td> <td>08</td> <td>AH-16</td> <td>11/15/18</td> <td>1150</td> <td>×</td> <td>×</td> <td></td> <td>z</td> <td></td> <td>1</td> <td></td> <td>+</td> <td>+</td> <td>2-</td> <td>+</td> <td>-</td> <td></td>	04 AH-17 11/15/18 1200 X X 1 N X X N X 10 NSW-2 11/16/18 1000 X X 1 N X X N X 11 Date Time Received by Date Time Date Time X X N X X N X elinquished by Date: Time Received by Date Time Date Time Date Time elinquished by Date: Time Date Time Date Time Date Time elinquished by Date: Time Date Time Date Time elinquished by Date Time Date Time Date Time Olden by Date	08	AH-16	11/15/18	1150	×	×		z		1		+	+	2-	+	-	
Image: Time: Internet 1000 X X 1 N X X X X X Binquished by: Date: Time: Beceived by: Date: Time: Date: Tim	International Difference Instruction Instruction Instruction Instruction Intrustriend Difference Date: Time: Instruction Instruction Intrustriend Difference Date: Time: Date: Time: <	Intrusted by: NSW-2 11/16/18 1000 X X X X X X X X Intrusted by: Date: Time: Received by: Date: Time: LaB USE Sambare Sd_x Td Intrusted by: Date: Time: Inte: Inte: Inte: Inte: LaB USE Sambare Sd_x Td Intrusted by: Date: Time: Date: Time: Date: Time: LAB USE Sambare Sd_x Td Intrusted by: Date: Time: Date: Time: Date: Time: Date: Time: Intrusted by: Date: Time: Date: Time: Date: Time: Date: Time: Intrusted by: Date: Time: Date: Time: Date: Time: Date: Time: Intrusted by: Date: Time: Date: Time: Date: Time: Date: Time: Intrusted by: Date: Time: Date: Time: Date: Time: Date: Time: ORIGINAL COPY TCL TUL TUL D Time: Distributer <td>60</td> <td>AH-17</td> <td>11/15/18</td> <td>1200</td> <td>×</td> <td>×</td> <td>-</td> <td>z</td> <td></td> <td>× .</td> <td></td> <td>-</td> <td></td> <td>XX</td> <td>+</td> <td></td> <td></td>	60	AH-17	11/15/18	1200	×	×	-	z		× .		-		XX	+		
Image: Time: Date: Time: Laboration: Lab	Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Image: Time: Image: Time: Image: Time: Image: Time: Image: Time: Image: Time: Date: Time: Date: Time: Image: Time: Image: Time: Image: Time: Image: Time: Image: Time: Date: Time: Date: Time: Date: Time: Image: Time: Image: Time: Image: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Image: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: <td>Immunosity Date: Time: Time:</td> <td>10</td> <td>Z-MSN</td> <td>11/16/18</td> <td>1000</td> <td>×</td> <td>×</td> <td>-</td> <td>z</td> <td>X</td> <td></td> <td></td> <td></td> <td>-</td> <td>< 2</td> <td>+</td> <td>-</td> <td></td>	Immunosity Date: Time:	10	Z-MSN	11/16/18	1000	×	×	-	z	X				-	< 2	+	-	
alinquished by: Date: Time: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Time: Time: Time: Time: Time: Time: Date: Time: Ti	elinquished by: Date: Time: Date: Time: Benole Tomperature Barter Time: Benole Tomperature Barter Tame: Time: Benole Tomperature Barter Tame: Date: Time: Date: Da	elinquished by Date: Time: Time: Hecogred by Date: Time: Sample Temperature Barnole Temperature HIG-16 1500 11-19-16 1500 11-10-12 144 15 144 15 11-10-12 144 15 11-10-12 144 15 11-10-12 144 15 11-10-12 144 15 1	o .	ALL UP19 CADO	Received by:		19	Ite: Time:	10:50		PIP	3 USE	BE	ARKS:	ANDAF		- gree	7	1-
linquished by: The matrix is the solution of the line. Time: Base Time: Base Time: Date: Time: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Time: Date: Time: Time: Date: Time: Date: Time: Time: Date: Time: Time: Time: Date: Time: Time: Time: Date: Time: Time: Date: Time: Time: Date: Time:	Bilinquished by: Date: Time: Received by: Date: Time: Hush Charges Authorized ORIGINAL COPY I/10/12 7ULG I/10/12 I/10/12 I/10/12 I/10/12	Bilinquished by: Date: Time: Date: Time: Date: Time: Plush Charges Authorized Provided by: Date: Time: Date: Time: Date: Time: Plush Charges Authorized Provided by: Date: Time: Date: Time: Date: Time: Plush Charges Authorized Provided by: Provided Time: Date: Time: Date: Time: Provided by: Provided Time: Time: Date: Time: Date: Provided by: Provided Time: Time: Time: Date: Time: Provided by: Provided Provided Provided Provided	elinquished by:	A ANDON 1-19-18 1500	Received by:	S No	1	te: Time:			Sample T	mperatur		BUSH	Same D	ay 24 t	r 48h	72.hr	8
Circle HAND DELIVERED FENEX IDS Tradition	ORIGINAL COPY ICC 83407 RANDELIVERED FEDEX UPS Freeding #:	OPIGINAL COPY TCC (83460 HANDDELINERED FEDEX UPS TRACKING #:	elinquished by:	Date: Time:	Received by:	h	Da	rollo	3 TPL]Rush (]Specia	harges A	uthorized imits or T	RRP Re	port	
	OPIGINAL COPY I-C SILDA PARTICIAL FLOCK UPS FIREHINDER	PCZ (834602 RAD STORT 20.5 mRAN			-						Circle/ H	AND OF	MERCH	crimen	-				
Pace Analytical National Center for Te	sting & Innov	ation																	
--	------------------	---------	------																
Cooler Receipt Forr																			
Client: (OPTETRA	SDG#	1 1 141	1001																
Cooler Received/Opened On: 11/70/18	Temperature:		1100																
Received By: Patrick Nshizirungu		2																	
Signature:																			
Receipt Check List	dM		1																
COC Seal Present / Intact?	IN	res	No																
COC Signed / Accurate?		-																	
Bottles arrive intact?	State of Charles	1																	
Correct bottles used?																			
Sufficient volume sent?			-																
f Applicable																			
/OA Zero headspace?																			
Preservation Correct / Checked?																			

Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT December 04, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1047275 11/27/2018 212C-MD-01491 COP BUCK Federal

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, toph Jn

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
NSW-3 L1047275-01	6
SSW-3 L1047275-02	7
ESW-6 L1047275-03	8
WSW-6 L1047275-04	9
AH-18 L1047275-05	10
AH-19 L1047275-06	11
AH-20 L1047275-07	12
AH-21 L1047275-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	15
Volatile Organic Compounds (GC) by Method 8015D/GRO	16
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Semi-Volatile Organic Compounds (GC) by Method 8015	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

PROJECT: 212C-MD-01491

SDG: L1047275

DATE/TIME: 12/04/18 13:43

PAGE: 2 of 22 Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPage 184 of 348

			Collected by	Collected date/time	Received date/time
NSW-3 L1047275-01 Solid			Joe Tyler	11/19/18 14:10	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Tatal Salida hu Mathad 2540 C 2041	WC12022CE	1	date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:18	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 1/:5/	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 20:36	ACG
Semi-volatile Organic Compounds (GC) by Method 8015	WG1202659	I	11/28/18 15:38	11/30/18 20:18	MIJ
			Collected by	Collected date/time	Received date/time
SSW-3 L1047275-02 Solid			Joe Tyler	11/20/18 11:00	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:27	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 18:21	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 20:55	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 19:33	MTJ
			Collected by	Collected date/time	Pocoivod dato/timo
ESW 6 11047275 02 Solid			Joe Tyler	11/21/18 11:35	11/27/18 08:45
ESW-0 LI04/2/5-03 Solid	2.11	D .1			
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Net Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 09:40	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 18:45	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 21:15	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 20:33	MTJ
			Collected by	Collected date/time	Received date/time
WSW-6 L1047275-04 Solid			Joe Tyler	11/21/18 11:00	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:35	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 19:09	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 21:34	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 20:46	MTJ
			Collected by	Collected date/time	Received date/time
AH-18 L1047275-05 Solid			Joe Tyler	11/21/18 12:00	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analvst
	/		date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	5	11/28/18 10:53	11/29/18 12:44	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 19:33	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 21:53	ACG

PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

=: 43 PAGE: 3 of 22 Received by OCD: 11/8/2021 12:57:39 PM

SAMPLE SUMMARY

ONE LAB. NAPage 185 of 348

	0, 1011 22 00		、 1		
AH-19 L1047275-06 Solid			Collected by Joe Tyler	Collected date/time 11/19/18 12:30	Received date/time 11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:53	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 19:57	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 22:13	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:18	MTJ
			Collected by	Collected date/time	Received date/time
AH-20 L1047275-07 Solid			Joe Tyler	11/19/18 13:05	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	5	11/28/18 10:53	11/29/18 13:28	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 20:22	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 22:32	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:33	MTJ
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	10	11/28/18 15:38	11/30/18 22:01	MTJ
			Collected by	Collected date/time	Received date/time
AH-21 L1047275-08 Solid			Joe Tyler	11/19/18 13:30	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst

Method	Batch Dilution Pr		Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	5	11/28/18 10:53	11/29/18 13:37	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202945	1	11/27/18 16:56	11/29/18 09:44	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 22:52	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:46	MTJ

SDG: L1047275

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

IME: 13:43 PAGE: 5 of 22

SAMPLE RESULTS - 01 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/19/18 14:10

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time			2	
Total Solids	91.5		1	11/28/2018 11:15	WG1202265		Tc	

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	202		0.870	10.0	10.9	1	11/29/2018 12:18	WG1202061	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn		
Chloride	202		0.870	10.0	10.9	1	11/29/2018 12:18	WG1202061	CII		
Volatile Organic Comp	oounds (GC) b	by Method	8015D/G	RO					⁵ Sr		
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc		
TPH (GC/FID) Low Fraction	U		0.0237	0.100	0.109	1	11/28/2018 17:57	WG1202378			
(S) a,a,a-Trifluorotoluene(FID)	98.3				77.0-120		11/28/2018 17:57	WG1202378	⁷ Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000438	J	0.000437	0.00100	0.00109	1	11/28/2018 20:36	WG1202609
Toluene	U		0.00137	0.00500	0.00547	1	11/28/2018 20:36	WG1202609
Ethylbenzene	U		0.000580	0.00250	0.00273	1	11/28/2018 20:36	WG1202609
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/28/2018 20:36	WG1202609
(S) Toluene-d8	114				75.0-131		11/28/2018 20:36	WG1202609
(S) Dibromofluoromethane	101				65.0-129		11/28/2018 20:36	WG1202609
(S) a,a,a-Trifluorotoluene	97.1				80.0-120		11/28/2018 20:36	WG1202609
(S) 4-Bromofluorobenzene	97.8				67.0-138		11/28/2018 20:36	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.8		1.76	4.00	4.37	1	11/30/2018 20:18	WG1202659
C28-C40 Oil Range	8.74		0.300	4.00	4.37	1	11/30/2018 20:18	WG1202659
(S) o-Terphenyl	88.6				18.0-148		11/30/2018 20:18	WG1202659

SDG: L1047275

SAMPLE RESULTS - 02 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/20/18 11:00

						I C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	91.4		1	11/28/2018 11:15	WG1202265	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	467		0.870	10.0	10.9	1	11/29/2018 12:27	WG1202061	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>											
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc		
TPH (GC/FID) Low Fraction	0.0907	J	0.0237	0.100	0.109	1	11/28/2018 18:21	WG1202378			
(S) a,a,a-Trifluorotoluene(FID)	98.2				77.0-120		11/28/2018 18:21	WG1202378	7 Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00100	0.00109	1	11/28/2018 20:55	WG1202609
Toluene	U		0.00137	0.00500	0.00547	1	11/28/2018 20:55	WG1202609
Ethylbenzene	U		0.000580	0.00250	0.00274	1	11/28/2018 20:55	WG1202609
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/28/2018 20:55	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 20:55	WG1202609
(S) Dibromofluoromethane	95.3				65.0-129		11/28/2018 20:55	WG1202609
(S) a,a,a-Trifluorotoluene	99.7				80.0-120		11/28/2018 20:55	WG1202609
(S) 4-Bromofluorobenzene	93.0				67.0-138		11/28/2018 20:55	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	104	<u>J3 J5</u>	1.76	4.00	4.38	1	11/30/2018 19:33	WG1202659
C28-C40 Oil Range	55.5		0.300	4.00	4.38	1	11/30/2018 19:33	WG1202659
(S) o-Terphenyl	100				18.0-148		11/30/2018 19:33	WG1202659

SAMPLE RESULTS - 03 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/21/18 11:35

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time			2	
Total Solids	96.9		1	11/28/2018 11:15	WG1202265		Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	610		0.820	10.0	10.3	1	11/29/2018 09:40	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn		
Chloride	610		0.820	10.0	10.3	1	11/29/2018 09:40	WG1202061			
Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc		
TPH (GC/FID) Low Fraction	0.0342	J	0.0224	0.100	0.103	1	11/28/2018 18:45	WG1202378			
(S) a,a,a-Trifluorotoluene(FID)	96.8				77.0-120		11/28/2018 18:45	WG1202378	⁷ Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000413	0.00100	0.00103	1	11/28/2018 21:15	WG1202609
Toluene	U		0.00129	0.00500	0.00516	1	11/28/2018 21:15	WG1202609
Ethylbenzene	U		0.000547	0.00250	0.00258	1	11/28/2018 21:15	WG1202609
Total Xylenes	U		0.00493	0.00650	0.00671	1	11/28/2018 21:15	WG1202609
(S) Toluene-d8	118				75.0-131		11/28/2018 21:15	WG1202609
(S) Dibromofluoromethane	93.8				65.0-129		11/28/2018 21:15	WG1202609
(S) a,a,a-Trifluorotoluene	101				80.0-120		11/28/2018 21:15	WG1202609
(S) 4-Bromofluorobenzene	95.1				67.0-138		11/28/2018 21:15	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	105		1.66	4.00	4.13	1	11/30/2018 20:33	WG1202659
C28-C40 Oil Range	54.8		0.283	4.00	4.13	1	11/30/2018 20:33	WG1202659
(S) o-Terphenyl	92.1				18.0-148		11/30/2018 20:33	WG1202659

SAMPLE RESULTS - 04

WG1202378

WG1202378

11/28/2018 19:09

Qc

Gl

AI

Sc

Collected date/time: 11/21/18 11:00

(S) a,a,a-Trifluorotoluene(FID)

Total Solids by M	Nethod 2540 G-20)11							1	
	Result	Qualifier	Dilution	Analysis	Batch				— Ср	
Analyte	%			date / time					2	
Total Solids	97.1		1	11/28/2018 11:15	WG1202265				² Tc	
Wet Chemistry b	by Method 300.0								³ Ss	
	Result (dry)	Qualifier	SDL (dry) Unadj. MQI	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	j mg/kg	mg/kg		date / time		⁴ Cp	
Chloride	114		0.819	10.0	10.3	1	11/29/2018 12:35	WG1202061	CII	
Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry) Unadj. MQI	MQL (dry)	Dilution	Analysis	Batch	6	

77.0-120

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time
TPH (GC/FID) Low Fraction	U		0.0224	0.100	0.103	1	11/28/2018 19:09

Volatile Organic Compounds (GC/MS) by Method 8260B

97.6

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	11/28/2018 21:34	WG1202609
Toluene	U		0.00129	0.00500	0.00515	1	11/28/2018 21:34	WG1202609
Ethylbenzene	U		0.000546	0.00250	0.00258	1	11/28/2018 21:34	WG1202609
Total Xylenes	U		0.00492	0.00650	0.00670	1	11/28/2018 21:34	WG1202609
(S) Toluene-d8	118				75.0-131		11/28/2018 21:34	WG1202609
(S) Dibromofluoromethane	95.5				65.0-129		11/28/2018 21:34	WG1202609
(S) a,a,a-Trifluorotoluene	97.4				80.0-120		11/28/2018 21:34	WG1202609
(S) 4-Bromofluorobenzene	100				67.0-138		11/28/2018 21:34	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.48		1.66	4.00	4.12	1	11/30/2018 20:46	WG1202659
C28-C40 Oil Range	8.87		0.282	4.00	4.12	1	11/30/2018 20:46	WG1202659
(S) o-Terphenyl	90.5				18.0-148		11/30/2018 20:46	WG1202659

SDG: L1047275

SAMPLE RESULTS - 05 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/21/18 12:00

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	85.7		1	11/28/2018 11:15	WG1202265	Ťτο

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1060		4.64	10.0	58.3	5	11/29/2018 12:44	WG1202061	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	U		0.0253	0.100	0.117	1	11/28/2018 19:33	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/28/2018 19:33	WG1202378	7 Cl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000467	0.00100	0.00117	1	11/28/2018 21:53	WG1202609
Toluene	U		0.00146	0.00500	0.00583	1	11/28/2018 21:53	WG1202609
Ethylbenzene	U		0.000618	0.00250	0.00292	1	11/28/2018 21:53	WG1202609
Total Xylenes	U		0.00558	0.00650	0.00758	1	11/28/2018 21:53	WG1202609
(S) Toluene-d8	115				75.0-131		11/28/2018 21:53	WG1202609
(S) Dibromofluoromethane	95.1				65.0-129		11/28/2018 21:53	WG1202609
(S) a,a,a-Trifluorotoluene	98.0				80.0-120		11/28/2018 21:53	WG1202609
(S) 4-Bromofluorobenzene	95.2				67.0-138		11/28/2018 21:53	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.88	J	1.88	4.00	4.67	1	11/30/2018 21:02	WG1202659
C28-C40 Oil Range	2.30	J	0.320	4.00	4.67	1	11/30/2018 21:02	WG1202659
(S) o-Terphenyl	72.7				18.0-148		11/30/2018 21:02	WG1202659

SAMPLE RESULTS - 06 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/19/18 12:30

	<i>,</i>						l'Cr
		Result	Qualifier	Dilution	Analysis	Batch	
Analyte		%			date / time		2
Total Solids		83.5		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	788		0.952	10.0	12.0	1	11/29/2018 12:53	WG1202061	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	C	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	U		0.0260	0.100	0.120	1	11/28/2018 19:57	WG1202378		
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/28/2018 19:57	WG1202378		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00100	0.00120	1	11/28/2018 22:13	WG1202609
Toluene	U		0.00150	0.00500	0.00599	1	11/28/2018 22:13	WG1202609
Ethylbenzene	U		0.000634	0.00250	0.00299	1	11/28/2018 22:13	WG1202609
Total Xylenes	U		0.00572	0.00650	0.00778	1	11/28/2018 22:13	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 22:13	WG1202609
(S) Dibromofluoromethane	96.7				65.0-129		11/28/2018 22:13	WG1202609
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		11/28/2018 22:13	WG1202609
(S) 4-Bromofluorobenzene	113				67.0-138		11/28/2018 22:13	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	44.7		1.93	4.00	4.79	1	11/30/2018 21:18	WG1202659
C28-C40 Oil Range	23.0		0.328	4.00	4.79	1	11/30/2018 21:18	WG1202659
(S) o-Terphenyl	152	<u>J1</u>			18.0-148		11/30/2018 21:18	WG1202659

SAMPLE RESULTS - 07 L1047275

Qc

Â

Sc

Collected date/time: 11/19/18 13:05

	Result	Qualifier	Dilution	Analysis	Batch				— C
Analyte	%			date / time					2
Total Solids	85.1		1	11/28/2018 11:15	WG1202265				T
Wet Chemistry b	by Method 300.0	Qualifiar	SDL (a		MOL (drs)	Dilution	Analysis	Datab	³ S
Analyte	ma/ka	Qualifier	DL (0 ma/ka	y) Unauj. MQL ma/ka	ma/ka	Dilution	date / time	Batch	4
Chloride	1650		4.67	10.0	58.8	5	11/29/2018 13:28	WG1202061	
Volatile Organic	: Compounds (GC)	by Metho	d 8015)/GRO					⁵ S

	nooune (ur.j.)	duamor	000 = (0.1)	enauj. mu		Bunation	, and join	Baten	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	12.2		0.0255	0.100	0.118	1	11/28/2018 20:22	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	97.4				77.0-120		11/28/2018 20:22	WG1202378	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00100	0.00118	1	11/28/2018 22:32	WG1202609
Toluene	U		0.00147	0.00500	0.00588	1	11/28/2018 22:32	WG1202609
Ethylbenzene	0.00111	J	0.000623	0.00250	0.00294	1	11/28/2018 22:32	WG1202609
Total Xylenes	0.0143		0.00562	0.00650	0.00764	1	11/28/2018 22:32	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 22:32	WG1202609
(S) Dibromofluoromethane	101				65.0-129		11/28/2018 22:32	WG1202609
(S) a,a,a-Trifluorotoluene	96.5				80.0-120		11/28/2018 22:32	WG1202609
(S) 4-Bromofluorobenzene	117				67.0-138		11/28/2018 22:32	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1100		18.9	4.00	47.0	10	11/30/2018 22:01	WG1202659
C28-C40 Oil Range	262		0.322	4.00	4.70	1	11/30/2018 21:33	WG1202659
(S) o-Terphenyl	155	<u>J1</u>			18.0-148		11/30/2018 21:33	WG1202659
(S) o-Terphenyl	225	<u>J1</u>			18.0-148		11/30/2018 22:01	WG1202659

SDG: L1047275

SAMPLE RESULTS - 08 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/19/18 13:30

						L'C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	83.4		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	1510		4.77	10.0	59.9	5	11/29/2018 13:37	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/G	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	1.29		0.0260	0.100	0.120	1	11/29/2018 09:44	WG1202945	
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		11/29/2018 09:44	WG1202945	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000479	0.00100	0.00120	1	11/28/2018 22:52	WG1202609
Toluene	U	<u>J3</u>	0.00150	0.00500	0.00599	1	11/28/2018 22:52	WG1202609
Ethylbenzene	U	<u>J3</u>	0.000635	0.00250	0.00300	1	11/28/2018 22:52	WG1202609
Total Xylenes	U	<u>J3</u>	0.00573	0.00650	0.00779	1	11/28/2018 22:52	WG1202609
(S) Toluene-d8	115				75.0-131		11/28/2018 22:52	WG1202609
(S) Dibromofluoromethane	95.5				65.0-129		11/28/2018 22:52	WG1202609
(S) a,a,a-Trifluorotoluene	97.5				80.0-120		11/28/2018 22:52	WG1202609
(S) 4-Bromofluorobenzene	110				67.0-138		11/28/2018 22:52	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	119		1.93	4.00	4.79	1	11/30/2018 21:46	WG1202659
C28-C40 Oil Range	47.8		0.328	4.00	4.79	1	11/30/2018 21:46	WG1202659
(S) o-Terphenyl	83.3				18.0-148		11/30/2018 21:46	WG1202659

d 300.0			Ø	UALITY L104	CONTR 7275-01,02,03,0	OL SUM 4,05,06,07,08	MARY			ONE LAB. NA	rionwide.
											-
MB Qual	fier	MB MDL	MB RDL								
		mg/kg 0.795	mg/kg 10.0								I L
		IC) ata/I	۵								(^r)
1001	7 0 0 0 0										4
DUP Re	sult	Dilution DI	JP RPD	DUP Qualifier D							
(ary) mg/kg		%	•)
546		1	-	2	0						
(OS)	• Dup	licate (Dl	(AL								
3364	019-6 11/	29/18 13:19									
DUP R (dry)	tesult	Dilution DI		DUP Qualifier L	JUP RPD .imits						ω
mg/kc	_	%		~	~0						
751		1	78	2	0						
(S											
LCS R	esult	LCS Rec.	Rec. Limits	LCS Qualifie	51						
mg/kg		%	%								
206		103	90.0-110								
• (SO)	Matri	x Spike (MS) • Matr	ix Spike Di	uplicate (MS	D)					
36401	9-4 11/29	9/18 11:34 • (N	ASD) R336401	19-5 11/29/18 11:	:43						
Origin (dry)	al Result	MS Result (dr	y) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution Rec.	Limits <u>MS Quali</u>	ifier MSD Qualif	ier RPD	RPD Limits	
mg/kg		mg/kg	mg/kg	%	%	%			%	%	
51200		44700	43800	0.000	0.000	1 80.0	120 <u>E V</u>	Ē<	1.97	20	
			đ	ROJECT:		SDG:		DA	ATE/TIME:		PAGE:
			2120	C-MD-01491		L104727	10	12/0	04/18 13:43		15 of 22

	1000
00	5
\sim	Ċ
∞	
\sim	2
0	č
N	C
<u> </u>	0
()	÷
\leq	-
\leq	2
Re	ĺ

QUALITY CONTROL SUMMARY

ш	
\Box	
\leq	
\leq	
2	
5	
\leq	
⊢	
\triangleleft	
ラ	
~	
m	
7	
7	
Щ.	
_	
0	
~	

WG1202378				g	JALITY C	ONTROL SI	JMMARY		ONE LAB. NATIONWIDE.	R
Volatile Organic Com	pounds (GC) b	y Method 8	015D/GRO		L10472	75-01,02,03,04,05,06,	07			ecei
pMethod Blank (MB										ived
(MB) R3363879-3 11/28/1	8 11:35									by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL						0C
Analyte	mg/kg		mg/kg	mg/kg						
G TPH (GC/FID) Low Fraction	Э		0.0217	0.100						11
(S) (S) (A) (FID)	99.8			77.0-120						/ <mark>8/2</mark> 0
1/202										21 19
Laboratory Contro	I Sample (LC	CS) • Labo	ratory Cont	rol Sample	e Duplicate (LCSD)				2:5 7.
LCS) R3363879-1 11/28/1	8 10:23 • (LCSD)	R3363879-2	11/28/18 10:46							39 0
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS Quali	fier LCSD Qualifier RPD	RPD Limits		_P)
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	%	%		1 "
TPH (GC/FID) Low Fraction	5.50	6.13	6.32	111	115	72.0-127	3.18	20		ğ

L1046908-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

77.0-120 72.0-127

107

105 11 %

(S) a, a, a-Trifluorotoluene(FID)

Ū

		MSD Qualifier RPD Lim	%	3.36 28	
		MS Qualifier			
		Rec. Limits	%	10.0-151	77.0-120
/		Dilution		25	
	3 01:22	MSD Rec.	%	61.0	102
	379-5 11/29/18	MS Rec.	%	58.9	102
	• (MSD) R33638	MSD Result	mg/kg	84.4	
	/29/18 00:59	MS Result	mg/kg	81.6	
	3363879-4 11	Original Result	mg/kg	ND	
	18 17:09 • (MS) R	Spike Amount	mg/kg	5.50	
	(OS) L1046908-05 11/28/		Analyte	TPH (GC/FID) Low Fraction	(S) a, a, a-Trifluorotoluene(FID)

SC

₹

16 of 22 PAGE

12/04/18 13:43 DATE/TIME:

	0 0 0 0 0 0 0 0 0
വ	2
4	Ċ
σ	
\sim	2
0	Č
N	C
~	2
G	+
Ś	-
>	-
Re	l

ONE LAB. NATIONWIDE.	ıcei	ved (by (C 2								
												RPD Limits	RPD Limits
												QA	RPD %
1 MARY												LCSD Qualifier	LCSD Qualifier
OL SUN	-08											LCS Qualifier	LCS Qualifier
CONTR	L1047275									e (LCSD)	e (LCSD)	e (LCSD) Rec. Limits	e (LCSD) Rec. Limits
UALITY										le Duplicate	le Duplicate	le Duplicate LCSD Rec.	le Duplicate LcsD Rec.
Q				MB RDL		mg/kg	mg/kg 0.100	mg/kg 0.100 <i>77.0-120</i>	mg/kg 0.100 77.0-120	^{mg/kg} 0.100 77.0-120 ntrol Sampl	^{mg/kg} 0.100 77.0-120 htrol Sampl	mg/kg 0.100 77.0-120 ntrol Sampl LCS Rec.	mg/kg 0.100 77.0-120 htrol Sampl 2 LCS Rec. %
	015D/GRO			MB MDL		mg/kg	mg/kg 0.0217	mg/kg 0.0217	mg/kg 0.0217	mg/kg 0.0217 ratory Cor	mg/kg 0.0217 0.0217 11/29/18 03:22	mg/kg 0.0217 0.0217 0.0217 11/29/18 03:22 LCSD Result	mg/kg 0.0217 0.0217 0.0217 17/29/18 03:22 LCSD Result mg/kg
	by Method 8			MB Qualifier						CS) • Labo	CS) • Labo	CS) • Labo)) R3364106-2 LCS Result	CS) • Labo)) R3364106-2 LCS Result mg/kg
	ounds (GC) b		04:09	MB Result		mg/kg	mg/kg U	mg/kg U 99.4	mg/kg U <i>99.4</i>	ng/kg U 99.4 Sample (L(mg/kg U 99.4 Sample (L(02:58 • (LCSD	mg/kg U 99.4 Sample (L(02:58 · (LCSD Spike Amount	mg/kg U 99.4 Sample (L(02:58 • (LCSD 5pike Amount mg/kg
WG1202945	Volatile Organic Comp	Method Blank (MB)	(MB) R3364106-3 11/29/18	ma		Analyte	Analyte TPH (GC/FID) Low Fraction	Analyte TPH (GC/FID) Low Fraction (5) (5) (7) (7) (7)	Analyte TPH (GC/FID) Low Fraction (5) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	TPH (GC/FID) Low Fraction (5) TPH (GC/FID) Low Fraction (5) Triffuorotoluene(FID) (5) Triffuorotoluene(FID)	Analyte TPH (GC/FID) Low Fraction (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Analyte TPH (GC/FID) Low Fraction (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	TPH (GC/FID) Low Fraction TPH (GC/FID) Low Fraction (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

> 72.0-127 77.0-120

> 102 104

(S) a, a, a-Trifluorotoluene(FID)

105 101 %

Ū

<u>ک</u>

SC

.

PAGE: 17 of 22

_
ດ
0
Q
\sim
0
\sim
C
>
\geq
Re

QUALITY CONTROL SUMMARY 1047275-01.02.03.04.05.06.07.08

WG1202609				QUALITY CONTROL SUMMARY	Re iii
Volatile Organic Comp	ounds (GC/M	S) by Metho	d 8260B	L1047275-01,02,03,04,05,06,07,08	ecei
powerhod Blank (MB)					ved (
(MB) R3363876-2 11/28/18	15:05				by O
ma	MB Result	MB Qualifier	MB MDL	MB RDL	2 C . 2
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	Π		0.000400	0.00100	11
Cethylbenzene	Π		0.000530	0.00250	/ <mark>8/</mark> /
II oluene	Π		0.00125	0.00500	302
Vylenes, Total	Π		0.00478	0.00650	4
22 (S) Toluene-d8	114			75.0-131	8
(S) Dibromofluoromethane	95.6			65.0129	57:
S) a, a, a-Trifluorotoluene	97.5			80.0-120	39 ۲
(S) 4-Bromofluorobenzene	94.1			67.0-138	
3 AM					ی م

Laboratory Control Sample (LCS)

(LCS) R3363876-1 11/28/18 14:06

(LCS) R3363876-1 11/28/18	14:06					0
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.128	102	70.0-123		₹
Ethylbenzene	0.125	0.101	80.9	74.0-126		σ
Toluene	0.125	0.118	94.0	75.0-121		လို
Xylenes, Total	0.375	0.327	87.2	72.0-127		
(S) Toluene-d8			103	75.0-131		
(S) Dibromofluoromethane			105	65.0-129		
(S) a,a,a-Trifluorotoluene			93.7	80.0-120		
(S) 4-Bromofluorobenzene			95.0	67.0-138		

L1047275-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

000 101/1 (OS) 110/17775-08 11/28/18 27:52

1/07/11 00-C/7/+017 (CO)	1 (CINI) • 70.77 0	11 0-0/00000Y	101 • 00.02 01/07	10202270/102	0-4 11/22/10 C	JU.US							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	ng/kg	%	%		%			%	%	
Benzene	0.150	Л	0.129	0.0683	86.4	45.6	-	10.0-149		EL EL	61.8	37	
Ethylbenzene	0.150		0.149	0.0729	99.4	48.7	-	10.0-160		ег Г	68.5	38	
Toluene	0.150	Π	0.143	0.0740	95.5	49.4	-	10.0-156		<u>с</u> Г	63.7	38	
Xylenes, Total	0.450		0.430	0.223	95.7	49.5	-	10.0-160		ег Г	63.6	38	
(S) Toluene-d8					112	112		75.0-131					
(S) Dibromofluoromethane					90.7	96.0		65.0-129					
(S) a,a,a-Trifluorotoluene					92.0	93.7		80.0-120					
(S) 4-Bromofluorobenzene					117	106		67.0-138					
A	CCOUNT:			PROJE	ECT:		S	DG:		DATE/T	IME:		PAGE:
ConocoPh	nillips - Tetra Tech	£		212C-MD	0-01491		L10.	47275		12/04/18	13:43		18 of 22

	(
~	,
\mathbf{O}	1
10	
D ,	
(0)	3
~.	(
\mathbf{N}	
\frown	-
\mathbf{O}	
\sim	
	2
()	
\sim	
>	
>	ł
R	,]
- 110	

VG1202659 emi-Volatile Organi	c Compounds	(GC) by Met	hod 8015	9 C	JALITY L10472	CONTR(75-01,02,03,04	DL SUM .05,06,07,08	MARY		ONE LAB. NATIONWIDE.	Recei
ethod Blank (Mi	3)										ived (
3) R3364371-1 11/30/18	3 17:05										by (
	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
alyte	mg/kg		mg/kg	mg/kg							
-C28 Diesel Range	Л		1.61	4.00							11
-C40 Oil Range			0.274	4.00							/ <mark>8/</mark>
s) o-Terphenyl	100			18.0-148							3021 12 •
boratory Contro	ol Sample (L	CS) • Labor	atory Conti	rol Sample	e Duplicate	(LCSD)					:57:3
S) R3364371-2 11/30/	'18 17:19 • (LCSD)	R3364371-3 11,	/30/18 17:35								39 س
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
lyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ں ق
-C28 Diesel Range	50.0	39.7	42.3	79.4	84.6	50.0-150		6.34	20		ר פ
) o-Terphenyl				84.2	94.0	18.0-148					
											Ū

L1047275-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	s <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits	% %	<u>J5</u> <u>J3</u> 33.7 20	
	Dilution Rec. Limit	%	1 50.0-150	18.0-148
20:03	MSD Rec.	%	73.9	104
-5 11/30/18	MS Rec.	%	182	108
(MSD) R3364371-	dry) MSD Result (dry)	mg/kg	143	
0/18 19:47 •	MS Result (o	mg/kg	201	
3364371-4 11/30	Original Result (dry)	mg/kg	104	
)/18 19:33 • (MS) R3	Spike Amount (dry)	mg/kg	53.5	
(OS) L1047275-02 11/30		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

Sc

∢

PAGE: 19 of 22

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

PAGE: 20 of 22

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 202 of 348 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1047275

ì

Released to Imaging: 10/11/2022 11:56:13 AM

Page 203 of 348

Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT December 07, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1048605 11/30/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1					
Tc: Table of Contents						
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
ESW-5 L1048605-01	5					
WSW-5 L1048605-02	6					
AH-22 L1048605-03	7					
AH-23 L1048605-04	8					
SSW-4 L1048605-05	9					
Qc: Quality Control Summary	10					
Total Solids by Method 2540 G-2011	10					
Wet Chemistry by Method 300.0	12					
Volatile Organic Compounds (GC) by Method 8015D/GRO	13					
Volatile Organic Compounds (GC/MS) by Method 8260B	15					
Semi-Volatile Organic Compounds (GC) by Method 8015	16					
GI: Glossary of Terms	17					
Al: Accreditations & Locations	18					
Sc: Sample Chain of Custody	19					

PROJECT: 212C-MD-01491

SDG: L1048605 DATE/TIME:

12/07/18 16:53

PAGE: 2 of 20

SAMPLE SUMMARY

ONE LAB. NAPage 206 of 348

ESW-5 L1048605-01 Solid			Collected by	11/27/18 10:00	11/30/18 09:00
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
Total Salida by Mathad 2540 C 2011	WC1204080	1	date/time	date/time	KDW
Not Chamistay by Method 2040 G-2011	WG1204080	L L	12/01/18 10:49	12/01/18 11:02	KDW ELN
(elatile Organic Compounds (CC) by Mathad 801ED/CDO	WG1205969 WC1205562	200	12/01/18 15:00	12/04/10 02.12	
Alatile Organic Compounds (CC/MS) by Method 8015D/GRO	WG1205505	200	12/01/10 13.52	12/05/10 02.33	DWR
Somi Volatilo Organic Compounds (GC) by Mothod 8015	WG1200001	ч Б	12/01/18 15:52	12/03/18 23.24	VME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1204109	50	12/01/18 10:12	12/02/18 13:30	KME
The volatile organic compounds (OC) by method bors	W0120+103	50	12/01/10 10.12	12/03/10 03:31	KIME
			Collected by	Collected date/time	Received date/time
NSW-5 L1048605-02 Solid				11/2//18 10:30	11/30/18 09:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
/et Chemistry by Method 300.0	WG1203989	1	12/01/18 15:00	12/04/18 02:20	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1205847	25	12/01/18 13:52	12/05/18 14:39	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	1	12/01/18 13:52	12/05/18 23:44	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	1	12/01/18 10:12	12/02/18 10:33	KME
			Collected by	Collected date/time	Received date/time
AH-22 L1048605-03 Solid				11/27/18 11:05	11/30/18 09:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
et Chemistry by Method 300.0	WG1203989	5	12/01/18 15:00	12/04/18 02:29	ELN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:15	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	8	12/01/18 13:52	12/06/18 00:04	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	50	12/01/18 10:12	12/03/18 03:43	KME
			Collected by	Collected date/time	Received date/time
AH-23 L1048605-04 Solid			,	11/27/18 11:30	11/30/18 09:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
/et Chemistry by Method 300.0	WG1203989	5	12/02/18 07:26	12/04/18 02:38	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:36	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	1	12/01/18 13:52	12/06/18 00:24	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	20	12/01/18 10:12	12/07/18 14:10	AAT
			Collected by	Collected date/time	Received date/time
SSW-4 L1048605-05 Solid				11/27/18 12:10	11/30/18 09:00
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1204712	1	12/04/18 14:26	12/04/18 14:38	KBC
/et Chemistry by Method 300.0	WG1203989	5	12/02/18 07:26	12/04/18 02:47	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:58	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	1	12/01/18 13:52	12/06/18 00:43	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	10	12/01/18 10:12	12/03/18 03:07	KME

PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53

PAGE: 3 of 20

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 90/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53 PAGE: 4 of 20

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 10:00

	,					l'Cr
	Resul	t <u>Qualifier</u>	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	93.1		1	12/01/2018 11:02	WG1204080	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1700		4.27	10.0	53.7	5	12/04/2018 02:12	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	P
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	170		4.66	0.100	21.5	200	12/05/2018 02:33	WG1205563	L
(S) a,a,a-Trifluorotoluene(FID)	91.4				77.0-120		12/05/2018 02:33	WG1205563	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00565		0.00172	0.00100	0.00429	4	12/05/2018 23:24	WG1206061
Toluene	0.441		0.00537	0.00500	0.0215	4	12/05/2018 23:24	WG1206061
Ethylbenzene	0.353		0.00228	0.00250	0.0107	4	12/05/2018 23:24	WG1206061
Total Xylenes	5.78		0.0205	0.00650	0.0279	4	12/05/2018 23:24	WG1206061
(S) Toluene-d8	116				75.0-131		12/05/2018 23:24	WG1206061
(S) Dibromofluoromethane	91.4				65.0-129		12/05/2018 23:24	WG1206061
(S) a,a,a-Trifluorotoluene	97.0				80.0-120		12/05/2018 23:24	WG1206061
(S) 4-Bromofluorobenzene	111				67.0-138		12/05/2018 23:24	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4050		86.4	4.00	215	50	12/03/2018 03:31	WG1204169
C28-C40 Oil Range	1550		1.47	4.00	21.5	5	12/02/2018 13:56	WG1204169
(S) o-Terphenyl	20.8				18.0-148		12/02/2018 13:56	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/03/2018 03:31	WG1204169

SDG: L1048605 1 12 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 02 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 10:30

						l' Cr
	Re	sult <u>Qualif</u>	ier Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	92	0	1	12/01/2018 11:02	WG1204080	⁻Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	d 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	723		0.864	10.0	10.9	1	12/04/2018 02:20	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	723		0.864	10.0	10.9	1	12/04/2018 02:20	WG1203989	
Volatile Organic Comp	ounds (GC) k	by Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc
TPH (GC/FID) Low Fraction	2.97		0.589	0.100	2.72	25	12/05/2018 14:39	WG1205847	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		12/05/2018 14:39	WG1205847	⁷ CI
									GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	12/05/2018 23:44	WG1206061
Toluene	0.00179	J	0.00136	0.00500	0.00543	1	12/05/2018 23:44	WG1206061
Ethylbenzene	0.00204	J	0.000576	0.00250	0.00272	1	12/05/2018 23:44	WG1206061
Total Xylenes	0.0174		0.00519	0.00650	0.00706	1	12/05/2018 23:44	WG1206061
(S) Toluene-d8	118				75.0-131		12/05/2018 23:44	WG1206061
(S) Dibromofluoromethane	85.1				65.0-129		12/05/2018 23:44	WG1206061
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		12/05/2018 23:44	WG1206061
(S) 4-Bromofluorobenzene	97.8				67.0-138		12/05/2018 23:44	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	142		1.75	4.00	4.35	1	12/02/2018 10:33	WG1204169
C28-C40 Oil Range	59.3		0.298	4.00	4.35	1	12/02/2018 10:33	WG1204169
(S) o-Terphenyl	66.2				18.0-148		12/02/2018 10:33	WG1204169

SAMPLE RESULTS - 03

Â

Sc

Collected date/time: 11/27/18 11:05

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	88.0		1	12/01/2018 11:02	WG1204080			
Wet Chemistry	by Method 300.0							
	Result (dry)	Qualifier	SDL (d	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
,			4 5 0	10.0	66.0	E	12/01/2019 02:20	WC1202090

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	443		2.47	0.100	11.4	100	12/05/2018 03:15	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	87.5				77.0-120		12/05/2018 03:15	WG1205563	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.0810		0.00364	0.00100	0.00909	8	12/06/2018 00:04	WG1206061
Toluene	3.26		0.0114	0.00500	0.0455	8	12/06/2018 00:04	WG1206061
Ethylbenzene	1.85		0.00482	0.00250	0.0227	8	12/06/2018 00:04	WG1206061
Total Xylenes	21.8		0.0435	0.00650	0.0591	8	12/06/2018 00:04	WG1206061
(S) Toluene-d8	115				75.0-131		12/06/2018 00:04	WG1206061
(S) Dibromofluoromethane	95.8				65.0-129		12/06/2018 00:04	WG1206061
(S) a,a,a-Trifluorotoluene	97.9				80.0-120		12/06/2018 00:04	WG1206061
(S) 4-Bromofluorobenzene	94.6				67.0-138		12/06/2018 00:04	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6710		91.5	4.00	227	50	12/03/2018 03:43	WG1204169
C28-C40 Oil Range	2660		15.6	4.00	227	50	12/03/2018 03:43	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/03/2018 03:43	WG1204169

DATE/TIME: 12/07/18 16:53

SAMPLE RESULTS - 04 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 11:30

						1'Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	92.8		1	12/01/2018 11:02	WG1204080	Tc

Wet Chemistry by Method 300.0

									1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1730		4.29	10.0	53.9	5	12/04/2018 02:38	WG1203989	Γ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	- L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		2
Chloride	1730		4.29	10.0	53.9	5	12/04/2018 02:38	WG1203989	
									L.
Volatile Organic Comp	oounds (GC) b	y Method	8015D/GF	RO	MQL (drv)	Dilution	Δnalvsis	Batch	5
Volatile Organic Comp Analyte	nounds (GC) b Result (dry) mg/kg	by Method Qualifier	8015D/GF SDL (dry) mg/kg	RO Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	e
Volatile Organic Comp Analyte TPH (GC/FID) Low Fraction	Dounds (GC) b Result (dry) mg/kg 126	oy Method <u>Qualifier</u>	8015D/GF SDL (dry) mg/kg 2.34	CUnadj. MQL mg/kg 0.100	MQL (dry) mg/kg 10.8	Dilution 100	Analysis date / time 12/05/2018 03:36	Batch WG1205563	(

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00154		0.000431	0.00100	0.00108	1	12/06/2018 00:24	WG1206061
Toluene	0.235		0.00135	0.00500	0.00539	1	12/06/2018 00:24	WG1206061
Ethylbenzene	0.231		0.000571	0.00250	0.00269	1	12/06/2018 00:24	WG1206061
Total Xylenes	2.45		0.00515	0.00650	0.00701	1	12/06/2018 00:24	WG1206061
(S) Toluene-d8	118				75.0-131		12/06/2018 00:24	WG1206061
(S) Dibromofluoromethane	87.7				65.0-129		12/06/2018 00:24	WG1206061
(S) a,a,a-Trifluorotoluene	97.6				80.0-120		12/06/2018 00:24	WG1206061
(S) 4-Bromofluorobenzene	115				67.0-138		12/06/2018 00:24	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3500		34.7	4.00	86.2	20	12/07/2018 14:10	WG1204169
C28-C40 Oil Range	1040		5.91	4.00	86.2	20	12/07/2018 14:10	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/07/2018 14:10	WG1204169

SAMPLE RESULTS - 05 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 12:10

						1°C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	93.9		1	12/04/2018 14:38	WG1204712	Tc

Wet Chemistry by Method 300.0

	D 11/1)	0 110				D:1 .:	A 1 -	D + 1	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1320		4.23	10.0	53.2	5	12/04/2018 02:47	WG1203989	`

Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Met	hod 300.0								3
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1320		4.23	10.0	53.2	5	12/04/2018 02:47	WG1203989	
Volatile Organic Comp	bounds (GC) b	by Method	8015D/G	RO					5
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	354		2.31	0.100	10.6	100	12/05/2018 03:58	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	94.8				77.0-120		12/05/2018 03:58	WG1205563	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00106	1	12/06/2018 00:43	WG1206061
Toluene	0.00172	J	0.00133	0.00500	0.00532	1	12/06/2018 00:43	WG1206061
Ethylbenzene	0.000992	J	0.000564	0.00250	0.00266	1	12/06/2018 00:43	WG1206061
Total Xylenes	0.611		0.00509	0.00650	0.00692	1	12/06/2018 00:43	WG1206061
(S) Toluene-d8	123				75.0-131		12/06/2018 00:43	WG1206061
(S) Dibromofluoromethane	87.2				65.0-129		12/06/2018 00:43	WG1206061
(S) a,a,a-Trifluorotoluene	98.5				80.0-120		12/06/2018 00:43	WG1206061
(S) 4-Bromofluorobenzene	99.8				67.0-138		12/06/2018 00:43	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1320		17.1	4.00	42.6	10	12/03/2018 03:07	WG1204169
C28-C40 Oil Range	554		2.92	4.00	42.6	10	12/03/2018 03:07	WG1204169
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		12/03/2018 03:07	WG1204169

SDG: L1048605 DATE/TIME:

PAGE: 9 of 20

WG1204080	d 2540 G-201	5		Ø	UALITY CONTI	ROL SUMMARY		ONE LAB. NATIONWIDE.	Rece
period Blank (MB)									vived (
(MB) R3364657-1 12/01/18	11:02								by O
analyte	MID RESUIL		MB MUL %	MB RUL %					
Total Solids	0.00400								11/8
10/1									8/20
21-1048605-04 Origi	inal Sample	(OS) • Du	olicate (Di	(HD)					21 1
COS) L1048605-04 12/01/1	8 11:02 • (DUP)	R3364657-3 1	2/01/18 11:02						<u>2:5</u>
11:5	Original Result	DUP Result	Dilution DI	JP RPD	DUP Qualifier DUP RPD Limits				7:39
Analyte	%	%	%		%				
W Total Solids	92.8	92.9	1 0.	118	10				ی کی
Laboratory Control	Sample (L	CS)							ے ا
(LCS) R3364657-2 12/01/1	8 11:02								5
Analyte	Spike Amount %	LCS Result %	LCS Rec. %	Rec. Limits %	LCS Qualifier				۳ ۳
Total Solids	50.0	50.0	100	85.0-115					6
									Page 213 of
A	CCOUNT:			۵.	ROJECT:	SDG:	DATE/TIME:	PAGE:	348
									8

y OCD: 11/8/2021 12:57.3	y OCD: 11/8/2021 12:57 39.PM 30	
		et MSD Qualifier %
		its MS Qualifier MSD Qualifier MSD Qualifier A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Dilution Rec.Limits 80.0-120 E
	er DUP RPD Limits 20	er Limits 20 20 20 20 20 20 20 20 20 20
IP RPD DUP Qualifier	P RPD DUP Qualifier	P RPD DUP Qualifier 0 0 55 0 60 55 55 0 55 0 56 0 57 0 55 0 7 0 90.0-110 0
%	1 2.60 uplicate (DUP)	1 2.60 upplicate (DUP) -6 -6 12/04/18 02:55 Dilution DUP RPD % % 99.1 90 99.1 90 1trix Spike (MS) ut MS Result (dry) (MS) mg/kg mg 3860 36
(ary) mg/kg	413 mple (OS) • Du	413 (DUP) R3364927-6 (DUP) R3364927-6 tesult DUP Result (dry) mg/kg 1280
(ary) ma ^{/b} a	403 A13 Driginal Samp	And Antiginal Samp 2/04/18 02:47 • (D 2/04/18 02:47 • (D 0riginal Res (dry) mg/kg 1320 1320 1320 1320 1320 1320 1320 1320
26:	Chloride L1048605-05 C	W Chloride Cos) L1048605-05 C (OS) L1048605-05 12 Analyte Chloride Chloride Laboratory Con (LCS) R3364927-2 12 Laboratory Con Chloride

2
Ċ
2
2.2
÷
0 /
ĺ

QUALITY CONTROL SUMMARY

'IONWIDE.	
B. NAT	
NE LAB	
õ	

WG1205563				О С	ALITY (CONTRO	DL SUM	IMARY			ONE LAB. NATIONWIDE.	Re
Volatile Organic Com	pounds (GC) b	y Method 8(015D/GRO			L1048605-01,03	3,04,05					ecei
possi Method Blank (MB												ived (
(MB) R3365357-3 12/04/	18 22:38											by e
ma	MB Result	MB Qualifier	MB MDL	MB RDL)C. ∾
Analyte	mg/kg		mg/kg	mg/kg								
TPH (GC/FID) Low Fraction	n		0.0217	0.100								11
(S) (S) (A, a, a-Trifluorotoluene(FID)	94.6			77.0-120								/ <mark>8/2</mark> 0
1/202												21 19
Laboratory Contro	I Sample (LC	cs) • Labor	atory Cont	rol Sample	e Duplicate	(LCSD)						2:57
C(LCS) R3365357-1 12/04/	18 21:34 • (LCSD)	R3365357-2	12/04/18 21:55									39 لان
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		P)
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		1 9
TPH (GC/FID) Low Fraction	5.50	5.17	5.55	93.9	101	72.0-127			7.14	20		ğ

L1049339-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

77.0-120 72.0-127

108

(S) a, a, a-Trifluorotoluene(FID)

> 93.9 107

SC

₹

Ū

(OS) L1049339-03 12/05/18 05:23 • (MS) R3365357-4 12/05/18 05:44 • (MSD) R3365357-5 12/05/18 06:05

			-									
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) ¹	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg r	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.06	263	651 (684	32.0	34.7	200	10.0-151			4.92	28
(S) a,a,a-Trifluorotoluene(FID)					95.9	95.9		77.0-120				

13 of 20 PAGE

12/07/18 16:53 DATE/TIME:
7
0
2 2
ĉ
-
2
C
_
+
0
ĺ

ய	
Ž	
Ê	
¥	
ш.	
P	
뿌	
ō	

	i
	-
	ł
	ļ

WG1205847				g	JALITY	CONTR	OL SUN	1MARY			ONE LAB. NATIONWIDE.	Re
Volatile Organic Con	1 (GC) t	y Method 8	015D/GRO			L1048605-	-02					cei
Method Blank (ME	3)											ved (
(MB) R3365710-3 12/05/	18 11:03											y v
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/kg		mg/kg	mg/kg								
TPH (GC/FID) Low Fraction	n		0.0217	0.100								11
(S) a, a, a-Trifluorotoluene(FID)	93.7			77.0-120								ола 0.
1/20												4
Laboratory Contro	ol Sample (L(CS) • Labo	ratory Cont	trol Sample	e Duplicate	(LCSD) e						5
(LCS) R3365710-1 12/05	/18 10:00 • (LCSD) R3365710-2	12/05/18 10:21									ັ (ທ
6.1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		\mathbf{P}
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		1 س
TPH (GC/FID) Low Fraction	5.50	5.98	5.54	109	101	72.0-127			7.56	20		ğ

Ū

77.0-120

108

109

(S) a,a,a-Trifluorotoluene(FID)

∢

Sc

PAGE: 14 of 20

DATE/TIME: 12/07/18 16:53

.

~	
Ó	
0	
9	
0	
2	
G	
\geq	
~	
Re	2

QUALITY CONTROL SUMMARY 11048605-01.02.03.04.05

VG1206061				QUALITY CONTROL SUMMARY	Re M
olatile Organic Comp	ounds (GC/MS)	by Method	I 8260B	L1048605-01,02,03,04,05	ece
1ethod Blank (MB)					ived
AB) R3365742-2 12/05/16	3 22:25				by (
	MB Result	AB Qualifier	MB MDL	MB RDL	0C
nalyte	mg/kg		mg/kg	шg/kg	
enzene	П		0.000400	0.00100	11
thylbenzene	Π		0.000530	0.00250	/ <mark>8/4</mark>
oluene	N		0.00125	0.00500	302
ylenes, Total	Π		0.00478	0.00650	4
(S) Toluene-d8	112			75.0-131	0
(S) Dibromofluoromethane	91.2			65.0-129	57
(S) a, a, a-Trifluorotoluene	98.2			80.0-120	39 س
(S) 4-Bromofluorobenzene	108			67.0-138	
					ိုင္လ

Laboratory Control Sample (LCS)

11 CC1 D236E712-1 12/0E/18 21.18

LCS) R3365742-1 12/05/18	8 21:18					Ū
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	is LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.0994	79.5	70.0-123		Ī
Ethylbenzene	0.125	0.153	123	74.0-126		σ
Toluene	0.125	0.0991	79.3	75.0-121		လို
Xylenes, Total	0.375	0.424	113	72.0-127		
(S) Toluene-d8			106	75.0-131		
(S) Dibromofluoromethane			96.0	65.0-129		
(S) a,a,a-Trifluorotoluene			98.5	80.0-120		
(S) 4-Bromofluorobenzene			107	67.0-138		

PAGE: 15 of 20

σ
Q
41
0
\sim
7
Ċ
>
~
Re

WG1204169				л О	JALITY (CONTRO	DL SUM	MARY		ONE LAB. NATIONWIDE.	Rec
emi-Volatile Urganic	c Compounds	(GC) by Met	c108 bon		5	048605-01,02,0	13,04,05				cei
powerhod Blank (ME	3)										ved i
(MB) R3364516-1 12/02/1	8 09:21										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
😽 C10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8/</mark> /
(S) o-Terphenyl	99.8			18.0-148							3 0 2
/20											4
022											0
Laboratory Contro	ol Sample (L	CS) • Labor	atory Cont	rol Sample	e Duplicate	(LCSD)					57.
CLCS) R3364516-2 12/02	/18 09:33 • (LCSI	D) R3364516-3	12/02/18 09:4!	D							3 9 ഗ
:13	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		Ű
KExtractable Petroleum Hydrocarbon	50.0	33.8	39.9	67.6	79.8	50.0-150		16.6	20		ר פ
C10-C28 Diesel Range	50.0	35.5	41.6	71.0	83.2	50.0-150		15.8	20		ت ∼
											5

Sc

 \overline{P}_{∞}

18.0-148

133

122

(S) o-Terphenyl

PAGE: 16 of 20

•

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-01491

SDG: L1048605 DATE/TIME: 12/07/18 16:53

PAGE: 17 of 20

Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 221 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshir
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1048605 DATE/TIME: 12/07/18 16:53 PAGE: 18 of 20

Released to Imaging: 10/11/2022 11:56:13 AM

Received by OCD: 11/8/2021 12:57:39 PM

Pace Analytical National Center for Testi	ing & Innova	ation	
Cooler Receipt Form			
Client: COPTETRA	SDG#	21048	602
Cooler Received/Opened On: 11/ 30 /18	Temperature:	1.4	
Received By: Alexandra Murtaugh			
Signature: CMMM			
		No. of Street, or other	
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	1		
COC Signed / Accurate?		1	Santan In
Bottles arrive intact?		1	
Correct bottles used?	State State State	1	15 - C - C - C - C - C - C - C - C - C -
Sufficient volume sent?		1	
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			A LEAST

Received by OCD: 11/8/2021 12:57:39 PM

ANALYTICAL REPORT December 06, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1049339 12/04/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary	3				
Cn: Case Narrative	4				
Sr: Sample Results	5				
AH-17 (6') L1049339-01	5				
AH-6 (6') L1049339-02	6				
AH-8 (6') L1049339-03	7				
Qc: Quality Control Summary	8				
Total Solids by Method 2540 G-2011	8				
Wet Chemistry by Method 300.0	9				
Volatile Organic Compounds (GC) by Method 8015D/GRO	10				
Volatile Organic Compounds (GC/MS) by Method 8260B	11				
Semi-Volatile Organic Compounds (GC) by Method 8015 12					
GI: Glossary of Terms	13				
Al: Accreditations & Locations	14				
Sc: Sample Chain of Custody	15				

Ср

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1049339 DATE/TIME: 12/06/18 16:33

PAGE: 2 of 16

SAMPLE SUMMARY

ONE LAB. NAPage 226 of 348

Â

Sc

			Collected by	Collected date/time	Received date/time
AH-17 (6') L1049339-01 Solid				11/30/18 10:35	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
Wet Chemistry by Method 300.0	WG1205791	1	12/05/18 12:41	12/06/18 11:45	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	1	12/04/18 16:44	12/05/18 04:40	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1205525	1	12/04/18 16:44	12/04/18 22:06	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	1	12/04/18 21:33	12/06/18 12:09	KME
			Collected by	Collected date/time	Received date/time
AH-6 (6') L1049339-02 Solid				11/30/18 13:00	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
Wet Chemistry by Method 300.0	WG1205791	1	12/05/18 12:41	12/06/18 11:54	ELN

Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/04/18 16:44	12/05/18 05:01	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1205525	8	12/04/18 16:44	12/04/18 22:27	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	25	12/04/18 21:33	12/06/18 13:14	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	5	12/04/18 21:33	12/06/18 12:25	KME
			Collected by	Collected date/time	Received date/time
AH-8 (6') L1049339-03 Solid				11/30/18 13:15	12/04/18 08:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
Wet Chemistry by Method 300.0	WG1205791	1	12/05/18 12:41	12/06/18 12:03	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	200	12/04/18 16:44	12/05/18 05:23	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1205525	20	12/04/18 16:44	12/04/18 22:47	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	25	12/04/18 21:33	12/06/18 13:29	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	5	12/04/18 21:33	12/06/18 12:41	KME

SDG: L1049339 DATE/TIME:

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1049339

: 39 DATE/TIME: 12/06/18 16:33

PAGE: 4 of 16

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	85.3		1	12/05/2018 09:35	WG1205617	Tc

Wet Chemistry by Method 300.0

									1.1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	294		0.932	10.0	11.7	1	12/06/2018 11:45	WG1205791	ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	ſ
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ì
TPH (GC/FID) Low Fraction	0.0318	J	0.0254	0.100	0.117	1	12/05/2018 04:40	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	92.1				77.0-120		12/05/2018 04:40	WG1205563	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	0.00117	1	12/04/2018 22:06	WG1205525
Toluene	U		0.00146	0.00500	0.00586	1	12/04/2018 22:06	WG1205525
Ethylbenzene	U		0.000621	0.00250	0.00293	1	12/04/2018 22:06	WG1205525
Total Xylenes	U		0.00560	0.00650	0.00762	1	12/04/2018 22:06	WG1205525
(S) Toluene-d8	116				75.0-131		12/04/2018 22:06	WG1205525
(S) Dibromofluoromethane	92.9				65.0-129		12/04/2018 22:06	WG1205525
(S) a,a,a-Trifluorotoluene	107				80.0-120		12/04/2018 22:06	WG1205525
(S) 4-Bromofluorobenzene	108				67.0-138		12/04/2018 22:06	WG1205525

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.89	4.00	4.69	1	12/06/2018 12:09	WG1205367
C28-C40 Oil Range	U		0.321	4.00	4.69	1	12/06/2018 12:09	WG1205367
(S) o-Terphenyl	62.3				18.0-148		12/06/2018 12:09	WG1205367

SDG: L1049339 ³Ss ⁴Cn ⁵Sr

⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 02 L1049339

Â

Sc

Total Solids by Method 2540 G-2011

						 L'Cn
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	89.1		1	12/05/2018 09:35	<u>WG1205617</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	d 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	637		0.893	10.0	11.2	1	12/06/2018 11:54	WG1205791	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/G	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ି Qc
TPH (GC/FID) Low Fraction	225		2.44	0.100	11.2	100	12/05/2018 05:01	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	91.9				77.0-120		12/05/2018 05:01	WG1205563	7 GI
									0

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00359	0.00100	0.00898	8	12/04/2018 22:27	WG1205525
Toluene	0.0775		0.0112	0.00500	0.0449	8	12/04/2018 22:27	WG1205525
Ethylbenzene	0.283		0.00476	0.00250	0.0225	8	12/04/2018 22:27	WG1205525
Total Xylenes	3.46		0.0429	0.00650	0.0584	8	12/04/2018 22:27	WG1205525
(S) Toluene-d8	106				75.0-131		12/04/2018 22:27	WG1205525
(S) Dibromofluoromethane	106				65.0-129		12/04/2018 22:27	WG1205525
(S) a,a,a-Trifluorotoluene	104				80.0-120		12/04/2018 22:27	WG1205525
(S) 4-Bromofluorobenzene	123				67.0-138		12/04/2018 22:27	WG1205525

Sample Narrative:

L1049339-02 WG1205525: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3050		45.2	4.00	112	25	12/06/2018 13:14	WG1205367
C28-C40 Oil Range	735		1.54	4.00	22.5	5	12/06/2018 12:25	WG1205367
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/06/2018 13:14	WG1205367
(S) o-Terphenyl	367	<u>J1</u>			18.0-148		12/06/2018 12:25	WG1205367

Sample Narrative:

L1049339-02 WG1205367: Surrogate failure due to matrix interference

SDG: L1049339

SAMPLE RESULTS - 03 L1049339

Â

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.7		1	12/05/2018 09:35	WG1205617	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	1ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	343		0.877	10.0	11.0	1	12/06/2018 12:03	WG1205791	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင
263		4.79	0.100	22.1	200	12/05/2018 05:23	WG1205563	
91.5				77.0-120		12/05/2018 05:23	WG1205563	
F	Result (dry) ng/kg 263 91.5	Result (dry) <u>Qualifier</u> ng/kg 263 <i>91.5</i>	Result (dry)QualifierSDL (dry)ng/kgmg/kg2634.7921.5	Qualifier SDL (dry) Unadj. MQL ng/kg mg/kg mg/kg 263 4.79 0.100 21.5 3 3	Qualifier SDL (dry) Unadj. MQL MQL (dry) ng/kg mg/kg mg/kg mg/kg mg/kg 263 4.79 0.100 22.1 91.5 77.0-120 77.0-120	Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution ng/kg mg/kg mg/kg mg/kg 200 263 4.79 0.100 22.1 200 97.5 77.0-120 77.0-120 77.0-120	Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis ng/kg mg/kg mg/kg mg/kg date / time 263 4.79 0.100 22.1 200 12/05/2018 05:23 97.5 T.0-120 77.0-120 12/05/2018 05:23	Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch ng/kg mg/kg mg/kg mg/kg mg/kg date / time 263 4.79 0.100 22.1 200 12/05/2018 05:23 WG1205563 97.5 T2.0-120 T2.05/2018 05:23 WG1205563 WG1205563

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00882	0.00100	0.0221	20	12/04/2018 22:47	WG1205525
Toluene	0.159		0.0276	0.00500	0.110	20	12/04/2018 22:47	WG1205525
Ethylbenzene	0.414		0.0117	0.00250	0.0551	20	12/04/2018 22:47	WG1205525
Total Xylenes	3.74		0.105	0.00650	0.143	20	12/04/2018 22:47	WG1205525
(S) Toluene-d8	101				75.0-131		12/04/2018 22:47	WG1205525
(S) Dibromofluoromethane	109				65.0-129		12/04/2018 22:47	WG1205525
(S) a,a,a-Trifluorotoluene	105				80.0-120		12/04/2018 22:47	WG1205525
(S) 4-Bromofluorobenzene	111				67.0-138		12/04/2018 22:47	WG1205525

Sample Narrative:

L1049339-03 WG1205525: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3680		44.4	4.00	110	25	12/06/2018 13:29	WG1205367
C28-C40 Oil Range	912		1.51	4.00	22.1	5	12/06/2018 12:41	WG1205367
(S) o-Terphenyl	471	<u>J1</u>			18.0-148		12/06/2018 12:41	WG1205367
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/06/2018 13:29	WG1205367

Sample Narrative:

L1049339-03 WG1205367: Surrogate failure due to matrix interference

SDG: L1049339

vive.	<i>l by (</i>							DCD: 11/8/2021 12:57:39 PA				
							DUP RPD Limits	ifier DUP RPD Limits	ifier DUP RPD Limits 10	DUP RPD Limits 10	Ifier DUP RPD %	ifier DUP RPD % 10 3 Qualifier
		MB RDL %) RPD <u>DUP Qualif</u>	() RPD DUP Qualif	() PUP Qualif	(DUP Qualif	PUP Qualif	PD DUP Qualif Rec. Limits LCS 0
		MB MDL %			olicate (DUP)	olicate (DUP) 12/05/18 09:35	Dlicate (DUP) 12/05/18 09:35 Dilution DUP RP	olicate (DUP) 12/05/18 09:35 Dilution DUP RP	Dilicate (DUP) 12/05/18 09:35 Dilution Dilution DUP RP % 1	Olicate (DUP)12/05/18 09:35DilutionDUP RP%10.112	olicate (DUP) 12/05/18 09:35 Dilution DUP RP * 1 0.112	Dilicate (DUP) 12/05/18 09:35 Dilution DUP RP % 1 0.112 LCS Rec. R %
		MB Qualifier			le (OS) • Dup	le (OS) • Dup UP) R3365705-3	le (OS) • Dup UP) R3365705-3 ult DUP Result	le (OS) • Dup UP) R3365705-3 ult DUP Result %	le (OS) • Dup JP) R3365705-3 ⁻ ult DUP Result 89.2	le (OS) • Dup JP) R3365705-3 ⁻ lit DUP Result [%] ^{89.2} (LCS)	le (OS) • Dup JP) R3365705-3 ⁻ JIt DUP Result % 89.2 (LCS)	le (OS) • Dup JP) R3365705-3 · JIt DUP Result % 89.2 (LCS) rt LCS Result %
ũ	5/18 09:35	MB Result %	0.00100		iginal Sample	.ginal Samplı 15/18 09:35 • (DU	ginal Sampl()5/18.09:35 • (DU Original Resul	ginal Sampl()5/18 09:35 • (DU Original Resul	ginal Sample)5/18 09:35 • (DU Original Resul % 89.1	ginal Sampl()5/18.09:35.(DU 0riginal Resul % ^{89.1} ol Sample (L	ginal Sampl()5/18 09:35 • (DU Original Resul % 89.1 89.1 05/18 09:35	ginal Sampl()5/18 09:35 • (DU) 0riginal Result % 89.1 0l Sample (L 55/18 09:35 \$pike Amount %
thod Rlank (MF) R3365705-1 12/05/	yte	1 Calide	SUIUS	19339-02 Oric	13011115 149339-02 Oriç 11049339-02 12/0 ¹	13011us 149339-02 Oriç 11049339-02 12/01	1301lus 149339-02 Oriç 11049339-02 12/0! Vte	130lius 149339-02 Oriç 11049339-02 12/01 11049339-02 12/01 yte 1 Solids	1301lus 149339-02 Oriç 11049339-02 12/05 1201ds 1501ds boratory Contro	130lius 149339-02 Oriç 11049339-02 12/05 150lids 150lids boratory Contre 5) R3365705-2 12/0	130lius 149339-02 Oriç 11049339-02 12/05 150lids 150lids boratory Contre 5) R3365705-2 12/0

B MDL MB RDL 9/kg mg/kg 795 10.0	
3 MDL MB RDL 3/kg mg/kg 795 10.0	
3/kg mg/kg 795 10.0	
ato (DLID)	
cato (001) 6/1911-37	
lution DUP RPD DUP Qualifier DUP RPD	
%	
2.85 20	
S Rec. Rec. Limits <u>LCS Qualifier</u>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
90.0-110	
Spike (MS)	
/18 12:21	
S Result (dry) MS Rec. Dilution Rec. Limits MS Qualifier	
×11,~ 0/ 0/	
۵/ ۵/ NA	

$\infty$	5
9	č
വ	<u>.</u>
വ	2
0	č
$\sim$	C
~	٥
	Ŧ
U.	÷
	÷
<	5
Re	ĺ

щ	
∃	
≥	
0	
ΔT	
Ż	
щ	
4	
삦	
õ	

WG1205563				gL	ΙΑΔΙΤΥ (	CONTRO	DL SUM	MARY		ONE LAB. NATIONWIDE.	Re
Volatile Organic Com	pounds (GC) b	y Method 80	015D/GRO			L1049339-01,0	12,03				ece
pMethod Blank (MB	(										ived (
(MB) R3365357-3 12/04/1	18 22:38										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							)C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	Л		0.0217	0.100							11
(S) (G, a, a-Trifluorotoluene(FID)	94.6			77.0-120							/ <mark>8/2</mark> 0
1/202											<b>21 1</b> (
Laboratory Contro	l Sample (LC	cs) • Labo	ratory Cont	rol Sample	e Duplicate	(LCSD)					2:57.
(LCS) R3365357-1 12/04/.	18 21:34 • (LCSD)	R3365357-2	12/04/18 21:55								<b>39</b> ن
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		<b>P</b> )
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<b>1</b> ە
TPH (GC/FID) Low Fraction	5.50	5.17	5.55	93.9	101	72.0-127		7.14	20		ğ

# L1049339-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

> 77.0-120 72.0-127

> > 108

(S) a, a, a-Trifluorotoluene(FID)

> 93.9 107

Ū

SC

₹

(OS) L1049339-03 12/05/18 05:23 • (MS) R3365357-4 12/05/18 05:44 • (MSD) R3365357-5 12/05/18 06:05

	Chilvo Amount	Original Docult										
	dry)	(dry)	MS Result (dry)	(dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.06	263	651	684	32.0	34.7	200	10.0-151			4.92	28
(S) a,a,a-Trifluorotoluene(FID)					95.9	95.9		77.0-120				

10 of 16 PAGE

12/06/18 16:33 DATE/TIME:

_
വ
$\sim$
വ
വ
0
$\sim$
~
വ
Š
>
Re

WG1205525				QUALITY CONTROL SUMMARY	NIDE.
ovolatile Organic Comp	ounds (GC/MS)	by Method	18260B	L1049339-01,02,03	ece
as					iv
Method Blank (MB)					ed (
(MB) R3365315-2 12/04/18	21:46				by (
ma	MB Result MI	B Qualifier	MB MDL	MB RDL	0 C. ∾
Analyte	mg/kg		mg/kg	mg/kg	<b>D</b> : ⊢
Senzene	Л		0.000400	0.00100	11
Ethylbenzene	Π		0.000530	0.00250	/ <mark>8///</mark>
Toluene	Π		0.00125	0.00500	302
Vylenes, Total	Π		0.00478	0.00650	4
S) Toluene-d8	113			75.0-131	Ő
(S) Dibromofluoromethane	88.5			65.0-129	57
S) a, a, a-Trifluorotoluene	110			80.0-120	<b>39</b>
(S) 4-Bromofluorobenzene	106			67.0-138	<b>P</b> <i>N</i>
3 AM					ී ප

## Laboratory Control Sample (LCS)

(LCS) R3365315-1 12/04/18 20:21

(LCS) R3365315-1 12/04/18	: 20:21					ر ص
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		~ ~
Benzene	0.125	0.103	82.5	70.0-123		Ī
Ethylbenzene	0.125	0.141	113	74.0-126		a
Toluene	0.125	0.113	90.7	75.0-121		လို
Xylenes, Total	0.375	0.422	113	72.0-127		
(S) Toluene-d8			107	75.0-131		
(S) Dibromofluoromethane			103	65.0-129		
(S) a,a,a-Trifluorotoluene			103	80.0-120		
(S) 4-Bromofluorobenzene			105	67.0-138		

# L1048899-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	37	38	38	38						
	r RPD	%	17.7	12.9	11.4	13.9						
	MSD Qualifier			>	E <	E <						
	<b>MS</b> Qualifier				E <	<u>Е &lt;</u>						
	Rec. Limits	%	10.0-149	10.0-160	10.0-156	10.0-160	75.0-131	65.0-129	80.0-120	67.0-138		
	Dilution		40	40	40	40						
8 U5:12	MSD Rec.	%	143	328	823	533	104	105	99.1	106		
21/GN/71 7-GIS	MS Rec.	%	79.4	152	389	207	93.6	99.8	100	105		
• (INISU) K3365.	<b>MSD</b> Result	mg/kg	19.6	73.0	202	378						
24:40 81/GU/;	<b>MS Result</b>	mg/kg	16.4	64.2	180	329						
∠1 2-0120055	<b>Original Result</b>	mg/kg	12.5	56.6	160	298						
3 U4:12 • (M) h	Spike Amount	mg/kg	0.125	0.125	0.125	0.375						
31/90/21 /0-668890-01 (90)		Analyte	Benzene	Ethylbenzene	Toluene	Xylenes, Total	(S) Toluene-d8	(S) Dibromofluoromethane	(S) a,a,a-Trifluorotoluene	(S) 4-Bromofluorobenzene		

PAGE 11 of 16

12/06/18 16:33 DATE/TIME:

SDG: L1049339

212C-MD-01491 **PROJECT:** 

ConocoPhillips - Tetra Tech ACCOUNT:

NG1205367	iemi-Volatile Organic C
$\geq_{Re}$	eleas

L1049339-01,02,0 <u>3</u>	
Volatile Organic Compounds (GC) by Method 8015	

WG1205367				Л О	IALITY C	CONTROL	SUMN	1ARY		ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organic	Compounds	(GC) by Met	hod 8015			L1049339-01,02,03	m				ecei
Method Blank (MB)	(										ived (
(MB) R3365823-1 12/06/1	3 11:23										by (
m	MB Result	MB Qualifier	MB MDL	MB RDL							0C
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8///</mark>
(S) o-Terphenyl	73.3			18.0-148							3021
202:											12 0 12
Laboratory Control	l Sample (L	CS) • Labor	atory Cont.	rol Sample	e Duplicate	(LCSD)					57.
CLCS) R3365823-2 12/06	/18 11:40 • (LCSE	)) R3365823-3	12/06/18 11:54								<b>39</b> ທ
-13	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS	Qualifier L(	CSD Qualifier RPD	RPD Limits		PM
A				5	5	/0		/0	/0		,

ő

Ū

20 20 %

50.0-150 *18.0-148* 

69.4 68.0

67.4 67.7

33.7 31.8

> C10-C28 Diesel Range (S) o-Terphenyl

50.0-150 %

65.4 %

63.6 %

mg/kg 32.7 34.7

mg/kg

mg/kg 50.0 50.0

V Analyte Extractable Petroleum Hydrocarbon

2.79 2.92

%

∢

Sc

PAGE: 12 of 16

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

## Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

## Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1049339 DATE/TIME: 12/06/18 16:33

PAGE: 13 of 16

## Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 237 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alahama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	A70612	New Hampshire
Arkansas	88-0469	New Jersev–NELA
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	DH_0107	North Carolina
Elorida	E87/87	North Carolina ¹
Goorgia	NELAD	North Carolina ³
Coorgia ¹	NELAF 022	North Carolina
Georgia	923	
	100003	Unio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

## Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

## **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1049339 DATE/TIME: 12/06/18 16:33

PAGE: 14 of 16

				Control Witness	Vind Others City 1701												
	Tetra Tech, Inc.			Tel (	rum Strong, Ser 19701 04, Tenser 79701 132) 682:4559 132) 682:3946												
Client Name:	Conoco Phillips	Site Manager:	-	Kayla Tay	for					4	NALY	SIS R	EQUE	ST			
roject Name:	Buck Fed	14		100			Γ		<u> </u>		or Sp	ecify	Met	pour -	- N	-	_
roject Location: (	county, Lea County, New Mexico	Project #:		212C-1	AD-01491				210	_	1	-		27 I	(45	ha	16
Irroice to:	Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701						Г	(OH)	6	бн			-	_	il heda		-
deceiving Laboratory:	Pace Analytical	Sampler Signatu	iar	212	1			N- 0H	l eS de	es dq			_		ette aa		-
COF COF	PTETRA Acctnum			8	jine J		X 85606	DHO - C (32)	Cd Cr I	10 b0 B		1.0C\95 95 <b>4</b>	1	1	SQT SQT	8	1115
		SAMPL	SNI	MATRIX	PRESERVATIVE METHOD	SE	(N	3BO -	ið sA l	9 s¥ 6	səige	/ 809i / 809i	80	(	eteli 9101	onsieß	1
		VEAR: 2018				IIII	(V) C	) 900e (	ne ∀6 C	A sla zeida	ioV in	58 .)k 7 .imi	9 / 28	o.00 softe	u2 leteV	a noi	н
LAB #	SAMPLE DENILITICATION	ЭТАО	TIME	NATEH	None ICE HNO ₃ HCL	ATNOO #	IBRBTJIP 208 XBT8	IPH BUT	etaM lietoT	TCLP Vola	HCI LCFb 264	PS SW/DE PA SW/DE	AOBW bCB,8 80	etabioirto Mara	Shloride V leneral V	teO'noinA	SLOB HAT
- Contraction	AH-8 (4')	11/29/18	1200	×	×	-	z										-
after and the	AH-8 (4')	11/29/18	1220	×	×	1	z							-			-
	AH-17 (4')	11/29/18	1305	×	×	F	z										
	AH-17 (5')	11/29/18	1400	×	×	-	z										
10-1959-01	AH-17 (6')	11/30/18	1035	×	×	-	X z	×						×			-
	AH-6 (5')	11/30/18	1120	×	×	-	z										-
Sector Address	AH-8 (S ¹ )	11/30/18	1200	×	×	-	z										_
03	AH-6 (6')	11/30/18	1300	×	×	-	x	×						×			-
20	AH-8 (6')	11/30/18	1315	×	×	-	x z	×		-				×			
Relinquished by:	Date: Time:	Received by:			ate: Time:		1	all all	NO 3	R	MARK						-
	C 400 10/01 1000	lated	h	R	418 15.	10	T		5	1 1 1				3 5	C.	(	11.00
Relinquished by:	Date; Time;	Received by:	2	0	ate; Time;		e S	mple Ten	perature	1		ULL: U	ame De	sy 24	Ð,		
Relinquished by:	Date: Time:	Received by	h	1	ats. Time: V/W/A	0.02	8	1.0.1	1	2		acial R	port Lit	mits or	тянр	Report	
							Q	Icle) HAI	VD DELI	VERED	FEDE	C UPS	Tracki	ie Gu			

Test Conter for Test	ing & Innova	tion	
Pace Analytical National Certer for Test			
Cooler Receipt Form			-
r ADTETER	SDG#	50017	122
	Tammarature.	5.7	
Cooler Received/Opened On: 12/ 24/18	1 emperatury.	~	
Received By: Patrick Nshizirungu			
Signature:			
	-	Vac	QN
Pereint Check List	AN	ca1	
concert Brosset / Intact?	~		
COC Seal Present / Intacti	CONTRACTION OF CONTRACTION	/	
COC Signed / Accurate?		1	
Bottles arrive intact?	No. of Contraction of	1	
Correct bottles used?		1	
Sufficient volume sent?	States of States of		
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 11/8/2021 12:57:39 PM



## ANALYTICAL REPORT December 19, 2018

## **ConocoPhillips - Tetra Tech**

Sample Delivery Group: Samples Received: Project Number: Description:

L1051879 12/11/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-22 (3') L1051879-01	5
AH-23 (3') L1051879-02	6
Qc: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8015D/GRO	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
Semi-Volatile Organic Compounds (GC) by Method 8015	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SDG: L1051879 DATE/TIME:

PAGE: 2 of 15

## SAMPLE SUMMARY

## ONE LAB. NAPage 242 of 348

			Collected by	Collected date/time	Received date/time
AH-22 (3') L1051879-01 Solid				12/06/18 12:00	12/11/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1210272	1	12/13/18 13:55	12/13/18 14:05	KBC
Wet Chemistry by Method 300.0	WG1210216	2.09205	12/13/18 10:17	12/13/18 16:47	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1211483	100	12/12/18 11:42	12/15/18 22:41	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1211544	8	12/12/18 11:42	12/16/18 04:01	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1210000	20	12/13/18 06:18	12/13/18 16:00	TJD
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1210000	5	12/13/18 06:18	12/13/18 14:52	TJD
AH-23 (3') L1051879-02 Solid			Collected by	Collected date/time 12/06/18 14:30	Received date/time 12/11/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1210272	1	12/13/18 13:55	12/13/18 14:05	KBC
Wet Chemistry by Method 300.0	WG1210216	1.519757	12/13/18 10:17	12/13/18 17:03	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1211483	25	12/12/18 11:42	12/15/18 20:54	DWR
Valatila Organic Compounds (CC/MS) by Mathad 8260B		1	12/12/18 11.12	12/16/18 00:57	DWR
Volatile Organic Compounds (OC/MS) by Method 8200b	WG1211544	I	12/12/10 11.42	12/10/10 00.07	Dim

SDG: L1051879

D4 12/ PAGE: 3 of 15

## CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1051879

DATE/TIME: 12/19/18 15:08 PAGE: 4 of 15

## SAMPLE RESULTS - 01 L1051879

Sc

## Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	90.2		1	12/13/2018 14:05	WG1210272	Tc

## Wet Chemistry by Method 300.0

									1
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	920		1.85	10.0	23.2	2.09205	12/13/2018 16:47	WG1210216	

## Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	mg/kg							
	5 5		mg/kg	mg/kg	mg/kg		date / time	
Chloride	920		1.85	10.0	23.2	2.09205	12/13/2018 16:47	WG1210216
Volatile Organic Com	pounds (GC) k Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	122		2.41	0.100	11.1	100	12/15/2018 22:41	WG1211483
(S) a,a,a-Trifluorotoluene(FID)	91.3				77.0-120		12/15/2018 22:41	WG1211483

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00355	0.00100	0.00887	8	12/16/2018 04:01	WG1211544
Toluene	0.0280	J	0.0111	0.00500	0.0444	8	12/16/2018 04:01	WG1211544
Ethylbenzene	0.0632		0.00470	0.00250	0.0222	8	12/16/2018 04:01	WG1211544
Total Xylenes	1.05		0.0424	0.00650	0.0577	8	12/16/2018 04:01	WG1211544
(S) Toluene-d8	105				75.0-131		12/16/2018 04:01	WG1211544
(S) Dibromofluoromethane	104				65.0-129		12/16/2018 04:01	WG1211544
(S) a,a,a-Trifluorotoluene	104				80.0-120		12/16/2018 04:01	WG1211544
(S) 4-Bromofluorobenzene	117				67.0-138		12/16/2018 04:01	WG1211544

## Sample Narrative:

L1051879-01 WG1211544: Nontarget compounds are too large to run at a lower dilution.

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2240		35.7	4.00	88.7	20	12/13/2018 16:00	WG1210000
C28-C40 Oil Range	578		1.52	4.00	22.2	5	12/13/2018 14:52	WG1210000
(S) o-Terphenyl	177	<u>J1</u>			18.0-148		12/13/2018 14:52	WG1210000
(S) o-Terphenyl	194	<u>J7</u>			18.0-148		12/13/2018 16:00	WG1210000

SDG: L1051879

## SAMPLE RESULTS - 02 L1051879

A

Sc

## Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.9		1	12/13/2018 14:05	WG1210272	Tc

## Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	825		1.36	10.0	17.1	1.519757	12/13/2018 17:03	WG1210216	Ĺ

## Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	825		1.36	10.0	17.1	1.519757	12/13/2018 17:03	WG1210216	
Volatile Organic Comp	Result (dry)	by Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Volatile Organic Comp Analyte	Result (dry) mg/kg	by Method <u>Qualifier</u>	8015D/GF SDL (dry) mg/kg	CO Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Volatile Organic Comp Analyte TPH (GC/FID) Low Fraction	Result (dry) mg/kg 90.5	y Method <u>Qualifier</u>	8015D/GF SDL (dry) mg/kg 0.610	CUnadj. MQL mg/kg 0.100	MQL (dry) mg/kg 2.81	Dilution 25	Analysis date / time 12/15/2018 20:54	Batch WG1211483	6

## Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000450	0.00100	0.00112	1	12/16/2018 00:57	WG1211544
Toluene	U		0.00141	0.00500	0.00562	1	12/16/2018 00:57	WG1211544
Ethylbenzene	0.000731	J	0.000596	0.00250	0.00281	1	12/16/2018 00:57	WG1211544
Total Xylenes	0.103		0.00537	0.00650	0.00731	1	12/16/2018 00:57	WG1211544
(S) Toluene-d8	111				75.0-131		12/16/2018 00:57	WG1211544
(S) Dibromofluoromethane	92.4				65.0-129		12/16/2018 00:57	WG1211544
(S) a,a,a-Trifluorotoluene	107				80.0-120		12/16/2018 00:57	WG1211544
(S) 4-Bromofluorobenzene	135				67.0-138		12/16/2018 00:57	WG1211544

## Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	939		9.05	4.00	22.5	5	12/13/2018 14:38	WG1210000
C28-C40 Oil Range	211		1.54	4.00	22.5	5	12/13/2018 14:38	WG1210000
(S) o-Terphenyl	92.8				18.0-148		12/13/2018 14:38	WG1210000

SDG: L1051879

Rece	ived b	y OCD:	11/8/2 ""	021 1 +	<u>e:5</u>	7:39	<b>פ P</b> א ה	ိုင္လ	٦ D	)	٦ ۵	° Sc					Page 2	246 ој	f 348
ONE LAB. NATIONWIDE.																			PAGE: 7 of 15
۲																			DATE/TIME: 12/19/18 15-08
CONTROL SUMMAR L1051879-01.02						UP RPD mits													SDG: 11051879
UALITY						UP Qualifier DI	%	10			LCS Qualifier								:OJECT: -MD-01491
Ø		MB RDL %		(dr			%	2.03			Rec. Limits %	85.0-115							44 0.010
		% WB WDL		plicate (Dl	12/13/18 14:05	Dilution	0.1	-			LCS Rec. %	6.66							
011		MB Qualifier		e (OS) • Du	) R3368174-3	ult DUP Result	%	81.7	LCS)		nt LCS Result %	50.0							-C
<b>272</b> y Method 2540 G-2	nk (MB)	12/13/18 14:05 MB Result %	0.00300	1 Original Sample	1 12/13/18 14:05 • (DUP,	Original Resu	%	83.4	Control Sample (	2 12/13/18 14:05	Spike Amour %	50.0							ACCOUNT: ConocoPhillios - Tetra Te
WG1210	period Blai	0 (MB) R3368174-1 0 (MB) R3368174-1 1 Analyte	ug: 10/	0; 1051893-0	20S) L1051893-0	11:5	Analyte	WW Solids	Laboratory (	(LCS) R3368174	Analyte	Total Solids							

WG1210216	ethod 300.0			Ø	JALITY	CONTR L1051879-0	OL SI	JMMAF	X		ONE	LAB. NATIONWIDE.
post Method Blank (N.	IB)											
0 (MB) R3368093-1 12/13	/18 12:21 MB Result ^{ma/ka}	MB Qualifier	MB MDL ma/ka	MB RDL ma/ka								
Chloride			0.795	10.0								
	(		Ĺ	Ĺ								
70-1048960-01 Ori	ginal Sample	e (OS) • Du _l	plicate (DI									
<b>Z</b> (OS) L1048960-01 12/1;	3/18 13:46 • (DUP)	R3368093-3	12/13/18 14:03									
1:50	Original Resul (dry)	It DUP Result (dry)	Dilution D		UP Qualifier D	NUP RPD imits						
Analyte	mg/kg	mg/kg	1 %		~ ~							
	- 0+	5 1 1	_	t.	7	D						
L1052197-01 Orig	linal Sample	(OS) • Dup	licate (DU	(H)								
(OS) L1052197-01 12/13	/18 17:20 • (DUP) F	R3368093-4 1	2/13/18 17:36									
	Original Resuli	t DUP Result	Dilution D		UP Qualifier D	NUP RPD imits						
Analyte	mg/kg	mg/kg	%	_	. %							
Chloride	93.4	81.2	1	1.0	2	0						
Laboratory Conti	ol Sample (L	-CS)										
(LCS) R3368093-2 12/1	13/18 12:37											
0	Spike Amount	t LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie	۶I						
Analyte	mg/kg	mg/kg	%	%								
Chioride	700	194	97.0	011-0.06								
L1052197-02 Ori	ginal Sample	e (OS) • Mat	trix Spike	(MS) • Matr	ix Spike Dı	uplicate (MS	(D)					
(OS) L1052197-02 12/15	3/18 17:53 • (MS) R	3368093-5 12	2/13/18 18:09 •	(MSD) R33680	93-6 12/13/18	18:26	:	:				
A 50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Spike Amount	t Original Resul	It MS Result	msD Result	MS Rec.	MSD Rec. «	Dilution	Kec. Limits	MS Qualifier	MSD Qualifier RPD	NPD LIMIts ∞	
Chloride	500	1119/kg 275	690	710	83.0	87.0	-	% 80.0-120		2.86	20	
	ACCOUNT:			R	OJECT:		0)	SDG:		DATE/TIME:		PAGE:
Conoc	Dhillins - Totra Tor	4		2120-	MD.01491		110	151870		17/19/18 15:08		2 of 15

	2
m	č
$\dot{\omega}$	. <u>.</u>
7	200
5	ç
5	( 
9	+ 0 - 1
$\leq$	1
AC	

.AB. NATIONWIDE.	
ONEL	
U	

-
C
<
<
_
0
1
_
r
1
7
6
2
-
7
2
2
-

WG1211483				g	ΙΑΓΙΤΥ (	CONTRO	DL SUM	MARY		ONE LAB. NATIONWIDE.	Re
Volatile Organic Com	pounds (GC) b	y Method 8(	015D/GRO			L1051879-01	,02				ecei
position Blank (MB											ived (
MB) R3368594-3 12/15/1	8 14:54										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							)C.
Analyte	mg/kg		mg/kg	mg/kg							
🙀 TPH (GC/FID) Low Fraction	n		0.0217	0.100							11
(S) (S) (A) (C) (C) (C) (C) (C) (C) (C) (C	91.3			77.0-120							/ <mark>8/20</mark>
1/202											<b>21 1</b> 2
Laboratory Contro	I Sample (LC	S) • Labo	atory Cont	rol Sample	e Duplicate	(LCSD)					2:57
C(LCS) R3368594-1 12/15/1	18 13:50 • (LCSD)	R3368594-2	12/15/18 14:12								.39 ഗ
6:1	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		<b>_P</b> )
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<mark>لا</mark> ە
TPH (GC/FID) Low Fraction	5.50	5.73	5.69	104	103	72.0-127		0.688	20		ğ

## L1051879-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

77.0-120 72.0-127 %

106

(S) a, a, a-Trifluorotoluene(FID)

> 104 106

Ū

SC

₹

(OS) L1051879-01 12/15/18 22:41 • (MS) R3368594-4 12/15/18 23:02 • (MSD) R3368594-5 12/15/18 23:23

			-									
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.10	122	711	652	96.6	86.9	100	10.0-151			8.72	28
(S) a.a.a-Trifluorotoluene(FID)					102	104		77.0-120				

9 of 15 PAGE:

12/19/18 15:08 DATE/TIME:

4	200
4	
2	2000
5	ć
5	
$\geq$	101
Re	ıĮ

WG1211544				QUALITY CONTROL SUMMARY	NWIDE.
Volatile Organic Comp	ounds (GC/h	<b>MS) by Metho</b>	d 8260B	L1051879-01,02	ece
					ive
Method Blank (MB)					ed (1
(MB) R3368600-3 12/15/18	3 21:34				by (
	<b>MB</b> Result	MB Qualifier	MB MDL	MB RDL	2 <b>0</b> 2
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	Л		0.000400	0.00100	11
<b>S</b> Ethylbenzene	Ο		0.000530	0.00250	/ <mark>8///</mark>
Toluene	N		0.00125	0.00500	302
Xylenes, Total	П		0.00478	0.00650	4
S) Toluene-d8	011			75.0-131	0
(S) Dibromofluoromethane	93.5			65.0-129	57
(S) a, a, a-Trifluorotoluene	109			80.0-120	39 
(S) 4-Bromofluorobenzene	104			67.0-138	P
2					1

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ŠQ

Ū

	RPD Limits	%	20	20	20	20				
	LCSD Qualifier RPD	%	0.993	0.422	0.400	1.06				
	LCS Qualifier									
	Rec. Limits	%	70.0-123	74.0-126	75.0-121	72.0-127	75.0-131	65.0-129	80.0-120	67.0-138
	LCSD Rec.	%	79.7	101	87.3	100	108	104	103	106
4	LCS Rec.	%	80.5	101	87.0	101	106	105	105	103
2 12/15/18 20:3	LCSD Result	mg/kg	9660.0	0.126	0.109	0.375				
R3368600-3	LCS Result	mg/kg	0.101	0.126	0.109	0.379				
18 20:13 • (LCSD)	Spike Amount	mg/kg	0.125	0.125	0.125	0.375				
(LCS) R3368600-1 12/15/		Analyte	Benzene	Ethylbenzene	Toluene	Xylenes, Total	(S) Toluene-d8	(S) Dibromofluoromethane	(S) a, a,a-Trifluorotoluene	(S) 4-Bromofluorobenzene

SC

₹

# L1051783-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1051783-02 12/15/18	23:16 • (MS) R3	3368600-4 12/1	5/18 04:41 • (M	SD) R336860C	-5 12/16/18 05	5:01						
	Spike Amount	<b>Original Result</b>	<b>MS Result</b>	<b>MSD</b> Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	ND	0.0816	0.0646	65.3	51.7	~	10.0-149			23.3	37
Ethylbenzene	0.125	ND	0.123	0.0919	98.4	73.5	-	10.0-160			28.9	38
Toluene	0.125	ND	0.103	0.0819	82.6	65.5	~	10.0-156			23.0	38
Xylenes, Total	0.375	ND	0.358	0.285	95.5	76.0	-	10.0-160			22.7	38
(S) Toluene-d8					116	116		75.0-131				
(S) Dibromofluoromethane					89.0	88.4		65.0-129				
(S) a,a,a-Trifluorotoluene					110	106		80.0-120				
(S) 4-Bromofluorobenzene					106	106		67.0-138				

10 of 15 PAGE

12/19/18 15:08 DATE/TIME:

L1051879 SDG:

	á
	(C))
	Compounds
000	Organic
G1210	mi-Volatile
$\geq$	Ser

000			Q	JALITY	CONTR	OL SUM	IMARY		ONE LAB. NATIONWIDE.
ounds	(GC) by Met	hod 8015			L1051879-0	1,02			
esult	MB Qualifier	MB MDL	MB RDL						
D		mg/kg	mg/kg						
		1.61	4.00						
		0.274	4.00						
			18.0-148						
ple (LC	cs) • Laboi	ratory Cont	rol Sampl	e Duplicate	e (LCSD)				
(LCSD) R	3368012-3 1	2/13/18 11:55							
e Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
D	mg/kg	mg/kg	%	%	%		%	%	
	35.4	33.4	70.8	66.8	50.0-150		5.81	20	

# L1052100-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

105/11052100-02 12/12/18 15-06 - (MS) D3368012-4 12/13/18 15-19 - (MSD) D3368012-5 12/13/18 15-33

(CD) LIU22100-U2126017 (CD)	7 (SIM) • 90:GL 81	3308012-4 12/1	NI) • 61.51 81/2	21089257 (US	.:CI 81/51/71 C-	33						
	Spike Amount	<b>Original Result</b>	<b>MS Result</b>	<b>MSD</b> Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	<b>MS</b> Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Extractable Petroleum Hydrocarbon	48.5	63.3	35.7	29.5	0.000	0.000	10	50.0-150	<u> </u>	<u>JG</u>	19.0	20
C10-C28 Diesel Range	48.5	ND	33.8	33.9	69.7	67.8	10	50.0-150			0.295	20
(S) o-Terphenyl					132	111		18.0-148				

SC

Ū

20

5.77

50.0-150 18.0-148

74.0 78.2

78.4 84.7

37.0

39.2

50.0

C10-C28 Diesel Range (S) o-Terphenyl ₹

11 of 15 PAGE:

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

## Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

## Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-01491

SDG: L1051879 DATE/TIME: 12/19/18 15:08

PAGE: 12 of 15

## Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 252 of 348 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Ne
Alaska	17-026	Ne
Arizona	AZ0612	Ne
Arkansas	88-0469	Ne
California	2932	Ne
Colorado	TN00003	Ne
Connecticut	PH-0197	No
Florida	E87487	No
Georgia	NELAP	No
Georgia ¹	923	No
ldaho	TN00003	Oh
Illinois	200008	Ok
Indiana	C-TN-01	Ore
lowa	364	Per
Kansas	E-10277	Rhe
Kentucky ¹⁶	90010	Sou
Kentucky ²	16	Sou
Louisiana	AI30792	Ter
Louisiana ¹	LA180010	Tex
Maine	TN0002	Tex
Maryland	324	Uta
Massachusetts	M-TN003	Ver
Michigan	9958	Vir
Minnesota	047-999-395	Wa
Mississippi	TN00003	We
Missouri	340	Wis
Montana	CERTOO86	Wy

	Nebraska	NE-OS-15-05
	Nevada	TN-03-2002-34
	New Hampshire	2975
	New Jersey–NELAP	TN002
	New Mexico 1	n/a
	New York	11742
	North Carolina	Env375
	North Carolina ¹	DW21704
	North Carolina ³	41
	North Dakota	R-140
	Ohio-VAP	CL0069
	Oklahoma	9915
	Oregon	TN200002
	Pennsylvania	68-02979
	Rhode Island	LAO00356
	South Carolina	84004
	South Dakota	n/a
	Tennessee ¹⁴	2006
	Texas	T 104704245-17-14
	Texas ⁵	LAB0152
	Utah	TN00003
	Vermont	VT2006
	Virginia	460132
	Washington	C847
	West Virginia	233
	Wisconsin	9980939910
	Wyoming	A2LA

## Third Party Federal Accreditations

A2LA – ISO 17025	4 – ISO 17025 1461.01		100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

## **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1051879 DATE/TIME: 12/19/18 15:08
Instrume	Telent Name: Conoco Phillips Toject Name: Buck Fed Toject Location: Lea County, New Mexi Toject Location: Lea County, New Mexi Teles Suits Teles Location: County Page Analytical Teles Suits Teles Suits Teles Suits Teles Suits Teles Suits Teles Suits Teles Suits Somments: COPTETRA Acchnum COPTETRA Acchnum CONTETRA Acchnum CONTETRA Acchnum CONTETRA Acchnum CONTETRA ACCHNUM	goo		1.352.0	900 West W McBand Tel (43	al Street. Ste , Texas 79701 2) 682-4550	100	d.	1.	8							
Including         Concon Prilips         Team And Servers         Concon Prilips         And Arcsis Resource           Instrument         Buck Fed         And Arcsis         Buck Fed         And Arcsis Resource         And Arcsis Resource           Instrument         Buck Fed         And Arcsis         Buck Fed         And Arcsis Resource         And Arcsis Resou	Topiect Name: Conoco Phillips Topiect Name: Buck Fed Topiect Location: Lea County, New Mexi Tate) Lea County New Mexi Tate) County Reconstrated accounts Payable Topiect Location: COPTETRA Acctnum Continents: COPTETRA Acctnum COPTETRA Acctnum COPTETRA Acctnum COPTETRA Acctnum COPTETRA Acctnum CORT	goo	and the second second		Fax (45	20) 882-3846			1		22	0		1			
Market Market         BLUE FED         Market	Toject Name:     Buck Fed       Toject Location:     (ounty, New Meximulation)       tatle)     Accounts Payable       worce to:     300 west Wall Street Suite       worce to:     900 west Wall Street Suite       teceiving Laboratory:     Pace Analytical       comments:     COPTETRA Acctnum       LaB #     SAMPLE IDENTIFIC       (1AB #     SAMPLE IDENTIFIC       (1AB #     AH-22(3)	deo	Site Manager:	Ka	yla Tayl	or			_		- indo	ANALY	SIS RE	QUEST	No No	-	
Multi Landin Multi La	roject Location: (county, New Mexx tate) Lea County, New Mexx worke to: Accounts Payable 900 West Wall Street Suite 900 West Wall Street Suite 900 West Wall Street Suite Pace Analytical Pace	deo		10.8	2				-	-		de				123	
Worker         Coverant Pargetion           worker         Account Pargetion           worker         Account Pargetion           worker         Account Pargetion           worker         Account Pargetion           mont         Account Pargetion           Marce         Account Pargetion           Marce         Account Pargetion           Account         Account P	Molice to:     Accounts Payable 900 Weat Weal Street Suite 900 Weat Weal Street Suite 900 Weat Weal Street Suite Pace Analytical       Demments:     COPTETRA Acctnum       Demments:     COPTETRA Acctnum       Laß #     SAMPLE IDENTIFI       ( LAB #     SAMPLE IDENTIFI       ONLY     AH-22(31)		Project #:		212C-N	ID-01491		1	-			13		. 1	-		, -
Monte Lacensery         Page Analytical         Sempler Bigname           Andre Lacensery         Page Analytical         Sempler Bigname           Andre Lacensery         COPTETTA Actruin         Sempler Bigname           Andre Lacensery         Analytical         Sempler Bigname           Analytical         Analytical         Sempler Bigname           Analytical         Analytical         Sempler Bigname           Analytical         Analytical         Analytical         Sempler Bigname           Analytical         Analytical         Analytical         Analytical           Analytical         Analytical         Analytical	Incerving Laboratory: Pace Analytical Comments: COPTETRA Acctnum LAB # LAB # LAB # LAB # LAB # AH-22(3)	100 Midland, Texas 79701					233			(ORN	бн			13		peupe	
COPTETRA Acctinum           COPTETRA Acctinum           COPTETRA Acctinum           Lue         autor to the provided of the pro	Comments: COPTETRA Acctnum LAB # SAMPLE IDENTIFI ( ^{LAB USE} ) AH-22(3)		Sampler Signature.	C.	1 al	1			4	N- OR(	es qa es qa		9			the ees	in the second
LUB         SAMELLION         MATURIO         MATURIO         MATURIO         MATURIO           CAURLE         CONTINUENT         CONTINUENT </td <td>LAB# SAMPLE IDENTIFI</td> <td>1444</td> <td>Sec. Sec.</td> <td>Ĵ</td> <td></td> <td></td> <td>3</td> <td></td> <td>X 8560</td> <td>D-OHO</td> <td>IN CO CI</td> <td>N</td> <td>530C/85</td> <td></td> <td>SOL</td> <td>s) Yutaim 90</td> <td></td>	LAB# SAMPLE IDENTIFI	1444	Sec. Sec.	Ĵ			3		X 8560	D-OHO	IN CO CI	N	530C/85		SOL	s) Yutaim 90	
LUB I         SAMPLE LIDENTFICATION         Concerning         Conconcerning         Concerning <t< td=""><td>LAB # SAMPLE IDENTIFI ( LAB USE ) AH-22(3)</td><td></td><td>SAMPLING</td><td>2</td><td>ATRIX</td><td>PRESERV</td><td>ATIVE</td><td>SH</td><td>BIE</td><td>- OHĐ</td><td>9 sy 64</td><td>selltelo</td><td>701 80 701 80 5608 /</td><td>(9</td><td>etettu</td><td>er Chai</td><td>32</td></t<>	LAB # SAMPLE IDENTIFI ( LAB USE ) AH-22(3)		SAMPLING	2	ATRIX	PRESERV	ATIVE	SH	BIE	- OHĐ	9 sy 64	selltelo	701 80 701 80 5608 /	(9	etettu	er Chai	32
(Neuror Occurs)         AH-22(3)         Take Tel 12 are to AH-22(3)         AH-22(3)         AH-22(3)         AH-22(4)         AH-14 Are to AH-14         AH-14         AH-14 <th< th=""><th>( LAR USE ) ORLY ) AH-22(3')</th><th>ICATION</th><th>YEAR: 2018</th><th>В</th><th></th><th></th><th>-</th><th>TAINE</th><th>81205</th><th>S20C</th><th>A siste A sister</th><th>oV ime</th><th>Semi. Vot. 8</th><th>/ ZBUG</th><th>0.00£ e S =1</th><th>noite0</th><th>NOID</th></th<>	( LAR USE ) ORLY ) AH-22(3')	ICATION	YEAR: 2018	В			-	TAINE	81205	S20C	A siste A sister	oV ime	Semi. Vot. 8	/ ZBUG	0.00£ e S =1	noite0	NOID
AH-22(5)         Table 18         1200         X         X         1         N         X         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N	AH-22(3')		Этад	amit ataw	TIOS	ICE HNO ³ HCC	anoN	EILTEE # COM	8 X318	a HA9	TOLP N TOTAL N	HCI LCF6 2	GC/W2	MHON MHON	Chland	nene0 VnoinA	0.1141
AH-23(3)     Table 1430     X     X     1     N     X     N     X     N       AH-23(3)     Table 1430     X     X     X     X     X     X     X       AH-23(3)     Table 1430     X     X     X     X     X     X     X       AH-23(3)     Table 1430     X     X     X     X     X     X     X       AH-23(3)     Table 1430     X     X     X     X     X     X     X       AH-23(3)     Table 1430     X     X     X     X     X     X       AH-23(3)     X     X     X     X     X     X     X       Almutuited by     Date: Time:     Time:     Time:     X     X     X       Admutuited by:     Date: Time:     Time:     Time:     Time:     X     X     X       Admutuited by:     Date: Time:     Time:     Time:     Date: Time:     X     X     X       Admutuited by:     Date: Time:     Time:     Time:     Time:     X     X     X       Admutuited by:     Date: Time:     Time:     Date: Time:     Date: Time:     X     X     X       Admutuited by:     Date: Time: <td></td> <td></td> <td>12/6/18 1</td> <td>200</td> <td>×</td> <td>×</td> <td>-</td> <td>-</td> <td>×</td> <td>X</td> <td></td> <td></td> <td>1</td> <td></td> <td>X</td> <td></td> <td>0</td>			12/6/18 1	200	×	×	-	-	×	X			1		X		0
Television     Time     Time     Time     Time       Administrated by     Date:     Time     Date:     Time	AH-23(3)	and the second	12/6/18 1	430	×	×		1 1	X	X				1	×	22	0
Time:     Date:     Time:       nainquistred by:     Date:     Time:					1				-		-						
Time     Time     Time     Time       alinquished by:     Date:     Time       Adinquished by:     Date:     Time:								+	-		-	-	-		1		1
Tailinguished by     Date:     Time:     Date:     Time:       Tailinguished by     Time:     Date:     Time:     Date:     Time:       Tailinguished by     Time:     Date:     Time:     Date:     Time:       Tailinguished by     Date:     Time:     Date:     Time:     Date:       Tailinguished by     Date:     Time:     Date:     Time:     Same Date:       Time:     Date:     Time:     Date:     Time:     Same Face Verter       Tailiquished by:     Date:     Time:     Date:     Time:     Same Face Verter       Tailiquished by:     Date:     Time:     Date:     Time:     Same Face Verter       Tailiquished by:     Date:     Time:     Date:     Time:     PaceNeed by:     Date:       Tailiquished by:     Date:     Time:     Date:     Time:     Date:     Time:		- A.				1		-		1			E				
Time:     Date:     Time:       Time:     Time:     Date:       Time:     Date:     Time:       Time:													-				
Time     Date:     Time:     Time:     Date:     Time:     Date:     Time:       Teinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:       Teinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:       Teinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:       Teinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:       Teinquished by:     Date:     Time:     Date:     Date:     Time:     Date:     Time:     Date:								1	-		1	2					
Telenquished by:     Date:     Time:     Sample Temperature     OL     OS     OL     OS     OL     OS     OL     OL     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:     OL     OS     OL     OS     OL     OS     OL     OS     OL     <	A CONTRACTOR OF	and the second second						-		12			E	Ħ		F	
Telinquished by:     Date:     Time:     Barte:     Time:     Sample Temperature     Date:     Time:     Date:     Time:     Date:     Temperature     24 hr     48 hr     72 hr       Telinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Date:     Time:     Date:	Relinquished by: All Date	a Time 1-18 1345	Received by:	2	D	10-15- Tu	12:4	V	LAE	I USE C	AUNC	REMARK	S: BTAN	State of the	Jaco	41 +	H
Time: Date: Time: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Time: Time: Date: Time: Time	Relinquished by: Date:	c Time:	Received by:	the	Amp.	tte: The	- D D	0	Samp	te Tempera	ende		ISH: Sa sh Charo	me Day es Autho	24 hr orized	48 hr	72 hr
ICIRCIEI HAND DELIVERED FEDEX UPS Tracking #	Relinquished by: Date:	: Time:	Received by:		ä	ile: Tir		1	s I	č	42	) 🗋	ecial Rep	out Limit	IS OF THE	IP Repor	-
				ľ				ľ	(Circh	HAND 0	JELIVERE	D FEDE	K UPS	Tracking			

Pace Analytical National Center for Test	ng & Innov	ation		-
Cooler Receipt Form				-
Jient: MOPTETTER	SDG#	ISON	879	
Cooler Received/Opened On: 12/ 18	Temperature:	0.2		
Received By: malik Tisdale				-
Signature: McJ94 7.				
				_
Receipt Check List	NP	Yes	No	_
COC Seal Present / Intact?				-
COC Signed / Accurate?	たい日本のないという			
Bottles arrive intact?				- 1
Correct bottles used?				
Sufficient volume sent?	State of the			1.0
if Applicable				
VOA Zero headspace?	1000			
Preservation Correct / Checked?				

Received by OCD: 11/8/2021 12:57:39 PM



### ANALYTICAL REPORT October 24, 2019

### **ConocoPhillips - Tetra Tech**

Sample Delivery Group: Samples Received: Project Number: Description:

L1150137 10/15/2019 212C-MD-01491 COP Buck Fed CTB

Report To:

Christian Llull 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

ʹQc

Gl

AI

Sc

Page 255 of 348

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1150137

DATE/TIME: 10/24/19 21:42

PAGE: 1 of 46

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
BH-19-1 (0'-1') L1150137-01	8
BH-19-1 (2'-3') L1150137-02	9
BH-19-1 (4'-5') L1150137-03	10
BH-19-2 (0'-1') L1150137-04	11
BH-19-2 (2'-3') L1150137-05	12
BH-19-2 (4'-5') L1150137-06	13
BH-19-3 (0'-1') L1150137-07	14
BH-19-3 (2'-3') L1150137-08	15
BH-19-3 (4'-5') L1150137-09	16
BH-19-3 (6'-7') L1150137-10	17
BH-19-3 (9'-10') L1150137-11	18
BH-19-3 (14'-15') L1150137-12	19
BH-19-4 (0'-1') L1150137-13	20
BH-19-4 (2'-3') L1150137-14	21
BH-19-4 (4'-5') L1150137-15	22
BH-19-4 (6'-7') L1150137-16	23
BH-19-4 (9'-10') L1150137-17	24
BH-19-4 (14'-15') L1150137-18	25
Qc: Quality Control Summary	26
Total Solids by Method 2540 G-2011	26
Wet Chemistry by Method 300.0	28
Volatile Organic Compounds (GC) by Method 8015D/GRO	30
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 8015	38
GI: Glossary of Terms	41
Al: Accreditations & Locations	43
Sc: Sample Chain of Custody	44



PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

1ME: 21:42 PAGE: 2 of 46 Received by OCD: 11/8/2021 12:57:39 PM

### SAMPLE SUMMARY

ONE LAB. NAPage 257 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

3H-19-1 (0'-1') L1150137-01 Solid			JT	10/08/19 11:00	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:03	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 18:32	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:06	ACG	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:17	KME	Mt. Juliet, T
3H-19-1 (2'-3')   1150137-02 Solid			Collected by JT	Collected date/time 10/08/19 11:10	Received da 10/15/19 09:1	te/time 5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batem	Dilation	date/time	date/time	, and you	Eocation
otal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:13	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 18:54	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:25	ACG	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:30	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-19-1 (4'-5') L1150137-03 Solid			JT	10/08/19 11:20	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:22	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 19:17	DWR	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:44	ACG	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/19/19 06:42	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-19-2 (0'-1') L1150137-04 Solid			JT	10/08/19 11:50	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:32	ST	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:04	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366698	1	10/16/19 10:24	10/21/19 14:40	JHH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:56	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-19-2 (2'-3') L1150137-05 Solid			JT	10/08/19 12:00	10/15/19 09:1	5
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:41	ST	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:27	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366698	1	10/16/19 10:24	10/21/19 14:59	JHH	Mt. Juliet, T
Comi Valatila Organic Compounds (CC) by Mathad 2015	WC1365004	1	10/18/19 06.39	10/18/19 23:08	KME	, Mt Iuliet T

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 3 of 46

### SAMPLE SUMMARY

ONE LAB. NAPage 258 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-19-2 (4'-5') L1150137-06 Solid			JT	10/08/19 12:10	10/15/19 09:1	te/time 5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:51	ST	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:49	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/21/19 23:31	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 11:50	FM	Mt. Juliet, Tl
RH-19-3 (0'-1')   1150137-07 Solid			Collected by JT	Collected date/time 10/08/19 12:40	Received da 10/15/19 09:1	te/time 5
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, Tl
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 00:00	ST	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 21:11	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/21/19 23:50	JHH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:03	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-3 (2'-3') L1150137-08 Solid			JT	10/08/19 12:50	10/15/19 09:1	5
<b>N</b> ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 00:29	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 21:33	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 00:08	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:15	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-3 (4'-5') L1150137-09 Solid			JT	10/08/19 13:00	10/15/19 09:1	5
Method	Batch	Dilution	Preparation	Analysis date/time	Analyst	Location
Intal Solids by Method 2540 G-2011	WC1267017	1	10/23/10 1/1-02	10/22/10 1/1-12	KDW	Mt Juliot T
Vet Chemistry by Method 300.0	WC136/01/	1	10/23/13 14.02	10/23/13 14.13	CD W CT	Mt Juliot T
Initial Pragatic Compounds (GC) by Method 2015D/GPO	WC1265550	1	10/16/19 10:24	10/20/19 21.55	D/W/D	Mt Tuliot T
	WC1266702	1	10/16/19 10.24	10/20/19 21.00	ЦЦЦ	Mt Juliot T
Semi-Volatile Organic Compounds (GC) by Method 8200B	WG1365515	1	10/19/19 04:32	10/19/19 12:28	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-3 (6'-7') L1150137-10 Solid			JT	10/08/19 13:10	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:07	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 22:17	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 00:46	JHH	Mt. Juliet, T
Sami-Valatila Organic Compounds (GC) by Mathod 8015	WG1365515	1	10/10/10 01.32	10/19/19 12:41	FM	Mt Juliet T

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 4 of 46

### SAMPLE SUMMARY

ONE LAB. NAPage 259 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-19-3 (9'-10') L1150137-11 Solid			JT	10/08/19 13:20	10/15/19 09:1	te/time 5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:16	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 22:39	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 01:05	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:54	FM	Mt. Juliet, T
RH-19-3 (14'-15')   1150137-12 Solid			Collected by JT	Collected date/time 10/08/19 13:30	Received dat 10/15/19 09:1	te/time 5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:26	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 23:02	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 01:23	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:06	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-4 (0'-1') L1150137-13 Solid			JI	10/10/19 14:00	10/15/19 09:1	5
<b>N</b> ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:35	ST	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 04:09	ACG	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 13:38	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:32	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received dat	te/time
BH-19-4 (2'-3') L1150137-14 Solid			JT	10/10/19 14:10	10/15/19 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Calida by Mathead 2540 C 2011	WC12C7010	1	10/22/10 12:40	10/22/10 14:00	KDW	Mt Juliat T
uldi Sullus by Method 2040 G-2011	WG1367U18	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt Juliet, T
Vet Chennishy by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:09		Mt Juliet, T
Alatile Organic Compounds (GC) by Method 8015D/GRU	WG1365589	1	10/16/19 10:24	10/20/19/04:30	ALG	Mt Juliet, I
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 13:57	DWR	Mt Juliet T
	WG1202212	I	10/19/19 04.52	10/19/19 15.19	LINI	Mit. Juliet, 1
			Collected by	Collected date/time	Received dat	te/time
вн-19-4 (4'-5') L1150137-15 Solid			JI	10/10/13 14.10	10/13/13/03/1	J
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:18	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 04:52	ACG	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:16	DWR	Mt. Juliet, T
Comi Valatila Organia Compounda (CC) hy Mathad 201E	WC120FF1F	1	10/10/10 04.22	10/10/10 12:45	EM	

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 5 of 46

### SAMPLE SUMMARY

ONE LAB. NAPage 260 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time	Received date/	time
BH-19-4 (6'-7') L1150137-16 Solid			JT	10/10/19 14:20	10/15/19 09:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 05:13	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:35	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 16:53	KME	Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
BH-19-4 (9'-10') L1150137-17 Solid			JT	10/10/19 14:40	10/15/19 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365978	1	10/16/19 10:24	10/20/19 13:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 17:06	KME	Mt. Juliet, TN

BH-19-4 (14'-15') L1150137-18 Solid			Collected by JT	Collected date/time 10/10/19 15:00	Received date/1 10/15/19 09:15	ime
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365978	1	10/16/19 10:24	10/20/19 14:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368190	1	10/16/19 10:24	10/23/19 23:09	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 17:19	KME	Mt. Juliet, TN

SDG: L1150137

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1150137

,

DATE/TIME: 10/24/19 21:42

PAGE: 7 of 46

### SAMPLE RESULTS - 01 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

-						I C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	94.8		1	10/23/2019 14:13	WG1367017	ŤΤ

### Wet Chemistry by Method 300.0

Wet Chemistry by Metho	d 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	143		0.839	10.0	10.6	1	10/17/2019 23:03	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/G	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Qc
TPH (GC/FID) Low Fraction	0.0763	ВJ	0.0229	0.100	0.106	1	10/20/2019 18:32	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 18:32	WG1365550	7 Cl
									UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	10/20/2019 22:06	WG1366257
Toluene	U		0.00132	0.00500	0.00528	1	10/20/2019 22:06	WG1366257
Ethylbenzene	U		0.000559	0.00250	0.00264	1	10/20/2019 22:06	WG1366257
Total Xylenes	U		0.00504	0.00650	0.00686	1	10/20/2019 22:06	WG1366257
(S) Toluene-d8	112				75.0-131		10/20/2019 22:06	WG1366257
(S) 4-Bromofluorobenzene	103				67.0-138		10/20/2019 22:06	WG1366257
(S) 1,2-Dichloroethane-d4	84.6				70.0-130		10/20/2019 22:06	WG1366257

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.02	J	1.70	4.00	4.22	1	10/18/2019 22:17	WG1365094
C28-C40 Oil Range	6.14		0.289	4.00	4.22	1	10/18/2019 22:17	WG1365094
(S) o-Terphenyl	83.1				18.0-148		10/18/2019 22:17	WG1365094

SDG: L1150137

### SAMPLE RESULTS - 02 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.2		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	86.7		0.863	10.0	10.9	1	10/17/2019 23:13	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>										
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	0.0766	ВJ	0.0235	0.100	0.109	1	10/20/2019 18:54	WG1365550		
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 18:54	WG1365550	7 CI	
									U	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00109	1	10/20/2019 22:25	WG1366257
Toluene	U		0.00136	0.00500	0.00543	1	10/20/2019 22:25	WG1366257
Ethylbenzene	U		0.000575	0.00250	0.00271	1	10/20/2019 22:25	WG1366257
Total Xylenes	U		0.00519	0.00650	0.00705	1	10/20/2019 22:25	WG1366257
(S) Toluene-d8	108				75.0-131		10/20/2019 22:25	WG1366257
(S) 4-Bromofluorobenzene	98.3				67.0-138		10/20/2019 22:25	WG1366257
(S) 1,2-Dichloroethane-d4	90.7				70.0-130		10/20/2019 22:25	WG1366257

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.07		1.75	4.00	4.34	1	10/18/2019 22:30	WG1365094
C28-C40 Oil Range	16.4		0.297	4.00	4.34	1	10/18/2019 22:30	WG1365094
(S) o-Terphenyl	89.1				18.0-148		10/18/2019 22:30	WG1365094

SDG: L1150137

### SAMPLE RESULTS - 03 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.9		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	126		0.856	10.0	10.8	1	10/17/2019 23:22	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
Result (dry) <u>Qualifier</u> SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis <u>Batch</u>										
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	0.0837	ВJ	0.0234	0.100	0.108	1	10/20/2019 19:17	WG1365550		
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 19:17	WG1365550	7 GI	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	10/20/2019 22:44	WG1366257
Toluene	U		0.00135	0.00500	0.00538	1	10/20/2019 22:44	WG1366257
Ethylbenzene	U		0.000571	0.00250	0.00269	1	10/20/2019 22:44	WG1366257
Total Xylenes	U		0.00515	0.00650	0.00700	1	10/20/2019 22:44	WG1366257
(S) Toluene-d8	109				75.0-131		10/20/2019 22:44	WG1366257
(S) 4-Bromofluorobenzene	100				67.0-138		10/20/2019 22:44	WG1366257
(S) 1,2-Dichloroethane-d4	90.2				70.0-130		10/20/2019 22:44	WG1366257

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.00	4.31	1	10/19/2019 06:42	WG1365094
C28-C40 Oil Range	0.362	J	0.295	4.00	4.31	1	10/19/2019 06:42	WG1365094
(S) o-Terphenyl	79.9				18.0-148		10/19/2019 06:42	WG1365094

SDG: L1150137

### SAMPLE RESULTS - 04 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.6		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn	
Chloride	30.0	B	0.859	10.0	10.8	1	10/17/2019 23:32	WG1364664		
Volatile Organic Comp	ounds (GC) b	by Method	1 8015D/G	RO		<b>D</b> .(1, 1)			⁵Sr	
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		QC	
TPH (GC/FID) Low Fraction	0.0691	<u>B J</u>	0.0234	0.100	0.108	1	10/20/2019 20:04	WG1365550		
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 20:04	WG1365550	⁷ Gl	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0691	ВJ	0.0234	0.100	0.108	1	10/20/2019 20:04	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 20:04	WG1365550	1

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/21/2019 14:40	WG1366698
Toluene	U		0.00135	0.00500	0.00540	1	10/21/2019 14:40	WG1366698
Ethylbenzene	U		0.000572	0.00250	0.00270	1	10/21/2019 14:40	WG1366698
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/21/2019 14:40	WG1366698
(S) Toluene-d8	107				75.0-131		10/21/2019 14:40	WG1366698
(S) 4-Bromofluorobenzene	107				67.0-138		10/21/2019 14:40	WG1366698
(S) 1,2-Dichloroethane-d4	94.3				70.0-130		10/21/2019 14:40	WG1366698

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/18/2019 22:56	WG1365094
C28-C40 Oil Range	0.837	J	0.296	4.00	4.32	1	10/18/2019 22:56	WG1365094
(S) o-Terphenyl	84.9				18.0-148		10/18/2019 22:56	WG1365094

SDG: L1150137

### SAMPLE RESULTS - 05

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.7		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

									<u> </u>
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	77.7		0.858	10.0	10.8	1	10/17/2019 23:41	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0767	ВJ	0.0234	0.100	0.108	1	10/20/2019 20:27	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 20:27	WG1365550	7

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/21/2019 14:59	WG1366698
Toluene	U		0.00135	0.00500	0.00540	1	10/21/2019 14:59	WG1366698
Ethylbenzene	U		0.000572	0.00250	0.00270	1	10/21/2019 14:59	WG1366698
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/21/2019 14:59	WG1366698
(S) Toluene-d8	110				75.0-131		10/21/2019 14:59	WG1366698
(S) 4-Bromofluorobenzene	101				67.0-138		10/21/2019 14:59	WG1366698
(S) 1,2-Dichloroethane-d4	83.5				70.0-130		10/21/2019 14:59	WG1366698

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/18/2019 23:08	WG1365094
C28-C40 Oil Range	0.488	J	0.296	4.00	4.32	1	10/18/2019 23:08	WG1365094
(S) o-Terphenyl	71.1				18.0-148		10/18/2019 23:08	WG1365094

SDG: L1150137 DATE/TIME: 10/24/19 21:42

³Ss ⁴Cn ⁵Sr

⁵Sr ⁶Qc ⁷Gl

Â

Sc

### SAMPLE RESULTS - 06 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	92.8		1	10/23/2019 14:13	WG1367017	2	T

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	59.7		0.857	10.0	10.8	1	10/17/2019 23:51	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ି Q c
TPH (GC/FID) Low Fraction	0.0718	ВJ	0.0234	0.100	0.108	1	10/20/2019 20:49	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 20:49	WG1365550	
									UI UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	10/21/2019 23:31	WG1366783
Toluene	U		0.00135	0.00500	0.00539	1	10/21/2019 23:31	WG1366783
Ethylbenzene	U		0.000571	0.00250	0.00269	1	10/21/2019 23:31	WG1366783
Total Xylenes	U		0.00515	0.00650	0.00701	1	10/21/2019 23:31	WG1366783
(S) Toluene-d8	109				75.0-131		10/21/2019 23:31	WG1366783
(S) 4-Bromofluorobenzene	110				67.0-138		10/21/2019 23:31	WG1366783
(S) 1,2-Dichloroethane-d4	83.9				70.0-130		10/21/2019 23:31	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.31	1	10/19/2019 11:50	WG1365515
C28-C40 Oil Range	U		0.295	4.00	4.31	1	10/19/2019 11:50	WG1365515
(S) o-Terphenyl	56.5				18.0-148		10/19/2019 11:50	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 07 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.6		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	80.7		0.849	10.0	10.7	1	10/18/2019 00:00	WG1364664	CII

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0739	ВJ	0.0232	0.100	0.107	1	10/20/2019 21:11	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 21:11	WG1365550	7 Cl
									UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000427	0.00100	0.00107	1	10/21/2019 23:50	WG1366783
Toluene	U		0.00134	0.00500	0.00534	1	10/21/2019 23:50	WG1366783
Ethylbenzene	U		0.000566	0.00250	0.00267	1	10/21/2019 23:50	WG1366783
Total Xylenes	U		0.00511	0.00650	0.00694	1	10/21/2019 23:50	WG1366783
(S) Toluene-d8	112				75.0-131		10/21/2019 23:50	WG1366783
(S) 4-Bromofluorobenzene	100				67.0-138		10/21/2019 23:50	WG1366783
(S) 1,2-Dichloroethane-d4	85.8				70.0-130		10/21/2019 23:50	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.00	4.27	1	10/19/2019 12:03	WG1365515
C28-C40 Oil Range	0.903	J	0.293	4.00	4.27	1	10/19/2019 12:03	WG1365515
(S) o-Terphenyl	68.7				18.0-148		10/19/2019 12:03	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 08 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.7		1	10/23/2019 14:13	WG1367017	Tc

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	69.7		0.840	10.0	10.6	1	10/18/2019 00:29	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0690	ВJ	0.0229	0.100	0.106	1	10/20/2019 21:33	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 21:33	WG1365550	7 Cl

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	10/22/2019 00:08	WG1366783
Toluene	U		0.00132	0.00500	0.00528	1	10/22/2019 00:08	WG1366783
Ethylbenzene	U		0.000560	0.00250	0.00264	1	10/22/2019 00:08	WG1366783
Total Xylenes	U		0.00505	0.00650	0.00686	1	10/22/2019 00:08	WG1366783
(S) Toluene-d8	97.5				75.0-131		10/22/2019 00:08	WG1366783
(S) 4-Bromofluorobenzene	91.8				67.0-138		10/22/2019 00:08	WG1366783
(S) 1,2-Dichloroethane-d4	81.0				70.0-130		10/22/2019 00:08	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.22	1	10/19/2019 12:15	WG1365515
C28-C40 Oil Range	4.14	J	0.289	4.00	4.22	1	10/19/2019 12:15	WG1365515
(S) o-Terphenyl	75.5				18.0-148		10/19/2019 12:15	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 09 L1150137

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	94.0		1	10/23/2019 14:13	WG1367017		Т

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	74.4		0.846	10.0	10.6	1	10/18/2019 00:57	WG1364664	CII

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0819	ВJ	0.0231	0.100	0.106	1	10/20/2019 21:55	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 21:55	WG1365550	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00106	1	10/22/2019 00:27	WG1366783
Toluene	U		0.00133	0.00500	0.00532	1	10/22/2019 00:27	WG1366783
Ethylbenzene	U		0.000564	0.00250	0.00266	1	10/22/2019 00:27	WG1366783
Total Xylenes	U		0.00509	0.00650	0.00692	1	10/22/2019 00:27	WG1366783
(S) Toluene-d8	111				75.0-131		10/22/2019 00:27	WG1366783
(S) 4-Bromofluorobenzene	103				67.0-138		10/22/2019 00:27	WG1366783
(S) 1,2-Dichloroethane-d4	85.1				70.0-130		10/22/2019 00:27	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.00	4.26	1	10/19/2019 12:28	WG1365515
C28-C40 Oil Range	0.786	J	0.292	4.00	4.26	1	10/19/2019 12:28	WG1365515
(S) o-Terphenyl	68.3				18.0-148		10/19/2019 12:28	WG1365515

SDG: L1150137

DATE/TIME: 10/24/19 21:42 PAGE: 16 of 46

Â

Sc

### SAMPLE RESULTS - 10 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	97.5		1	10/23/2019 14:13	WG1367017	T

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn		
Chloride	15.5	B	0.815	10.0	10.3	1	10/18/2019 01:07	WG1364664	CII		
Volatile Organic Comp	ounds (GC) k	by Method	8015D/G	RO					⁵Sr		
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc		
TPH (GC/FID) Low Fraction	0.0698	<u>B J</u>	0.0223	0.100	0.103	1	10/20/2019 22:17	WG1365550			
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 22:17	WG1365550	⁷ Gl		

### Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	e
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0698	ВJ	0.0223	0.100	0.103	1	10/20/2019 22:17	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 22:17	WG1365550	7

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00103	1	10/22/2019 00:46	WG1366783
Toluene	U		0.00128	0.00500	0.00513	1	10/22/2019 00:46	WG1366783
Ethylbenzene	U		0.000543	0.00250	0.00256	1	10/22/2019 00:46	WG1366783
Total Xylenes	U		0.00490	0.00650	0.00667	1	10/22/2019 00:46	WG1366783
(S) Toluene-d8	102				75.0-131		10/22/2019 00:46	WG1366783
(S) 4-Bromofluorobenzene	103				67.0-138		10/22/2019 00:46	WG1366783
(S) 1,2-Dichloroethane-d4	88.3				70.0-130		10/22/2019 00:46	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.10	1	10/19/2019 12:41	WG1365515
C28-C40 Oil Range	U		0.281	4.00	4.10	1	10/19/2019 12:41	WG1365515
(S) o-Terphenyl	71.1				18.0-148		10/19/2019 12:41	WG1365515

SDG: L1150137

DATE/TIME: 10/24/19 21:42 PAGE: 17 of 46

### SAMPLE RESULTS - 11 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	95.9		1	10/23/2019 14:00	WG1367018		Т

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	129		0.829	10.0	10.4	1	10/18/2019 01:16	WG1364664	CII

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0811	ВJ	0.0226	0.100	0.104	1	10/20/2019 22:39	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 22:39	WG1365550	7 Cl
									UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000417	0.00100	0.00104	1	10/22/2019 01:05	WG1366783
Toluene	U		0.00130	0.00500	0.00521	1	10/22/2019 01:05	WG1366783
Ethylbenzene	U		0.000553	0.00250	0.00261	1	10/22/2019 01:05	WG1366783
Total Xylenes	U		0.00498	0.00650	0.00678	1	10/22/2019 01:05	WG1366783
(S) Toluene-d8	109				75.0-131		10/22/2019 01:05	WG1366783
(S) 4-Bromofluorobenzene	102				67.0-138		10/22/2019 01:05	WG1366783
(S) 1,2-Dichloroethane-d4	88.3				70.0-130		10/22/2019 01:05	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.00	4.17	1	10/19/2019 12:54	WG1365515
C28-C40 Oil Range	U		0.286	4.00	4.17	1	10/19/2019 12:54	WG1365515
(S) o-Terphenyl	73.5				18.0-148		10/19/2019 12:54	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 12 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	95.0		1	10/23/2019 14:00	WG1367018	Ťτ

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	121		0.837	10.0	10.5	1	10/18/2019 01:26	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0780	ВJ	0.0228	0.100	0.105	1	10/20/2019 23:02	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 23:02	WG1365550	7 Cl

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	J3	0.000421	0.00100	0.00105	1	10/22/2019 01:23	WG1366783
Toluene	U	J3	0.00132	0.00500	0.00526	1	10/22/2019 01:23	WG1366783
Ethylbenzene	U	J3	0.000558	0.00250	0.00263	1	10/22/2019 01:23	WG1366783
Total Xylenes	U	J3	0.00503	0.00650	0.00684	1	10/22/2019 01:23	WG1366783
(S) Toluene-d8	107				75.0-131		10/22/2019 01:23	WG1366783
(S) 4-Bromofluorobenzene	99.4				67.0-138		10/22/2019 01:23	WG1366783
(S) 1,2-Dichloroethane-d4	88.5				70.0-130		10/22/2019 01:23	WG1366783

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.21	1	10/19/2019 13:06	WG1365515
C28-C40 Oil Range	U		0.289	4.00	4.21	1	10/19/2019 13:06	WG1365515
(S) o-Terphenyl	69.3				18.0-148		10/19/2019 13:06	WG1365515

### SAMPLE RESULTS - 13 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.0		1	10/23/2019 14:00	WG1367018	Tc

### Wet Chemistry by Method 300.0

									<u> </u>
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	42.9	В	0.874	10.0	11.0	1	10/18/2019 01:35	WG1364664	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp	
Chloride	42.9	В	0.874	10.0	11.0	1	10/18/2019 01:35	WG1364664		
Volatile Organic Comp	Dounds (GC) k	oy Method	8015D/G	RO Unadi, MQL	MQL (drv)	Dilution	Analysis	Batch	⁵Sr	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Qc	
TPH (GC/FID) Low Fraction	U		0.0238	0.100	0.110	1	10/20/2019 04:09	WG1365589		
(S) a,a,a-Trifluorotoluene(FID)	99.0				77.0-120		10/20/2019 04:09	WG1365589	⁷ Gl	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000439	0.00100	0.00110	1	10/24/2019 13:38	WG1368147
Toluene	U		0.00137	0.00500	0.00549	1	10/24/2019 13:38	WG1368147
Ethylbenzene	U		0.000582	0.00250	0.00275	1	10/24/2019 13:38	WG1368147
Total Xylenes	U		0.00525	0.00650	0.00714	1	10/24/2019 13:38	WG1368147
(S) Toluene-d8	96.7				75.0-131		10/24/2019 13:38	WG1368147
(S) 4-Bromofluorobenzene	95.5				67.0-138		10/24/2019 13:38	WG1368147
(S) 1,2-Dichloroethane-d4	131	<u>J1</u>			70.0-130		10/24/2019 13:38	WG1368147

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.00	4.39	1	10/19/2019 13:32	WG1365515
C28-C40 Oil Range	U		0.301	4.00	4.39	1	10/19/2019 13:32	WG1365515
(S) o-Terphenyl	76.2				18.0-148		10/19/2019 13:32	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 14 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time	—	2	_
Total Solids	92.5		1	10/23/2019 14:00	WG1367018	-	T

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	47.7		0.860	10.0	10.8	1	10/20/2019 18:09	WG1365616	СП

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO											
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc		
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	10/20/2019 04:30	WG1365589			
(S) a,a,a-Trifluorotoluene(FID)	99.3				77.0-120		10/20/2019 04:30	WG1365589			

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/24/2019 13:57	WG1368147
Toluene	U		0.00135	0.00500	0.00541	1	10/24/2019 13:57	WG1368147
Ethylbenzene	U		0.000573	0.00250	0.00270	1	10/24/2019 13:57	WG1368147
Total Xylenes	U		0.00517	0.00650	0.00703	1	10/24/2019 13:57	WG1368147
(S) Toluene-d8	95.1				75.0-131		10/24/2019 13:57	WG1368147
(S) 4-Bromofluorobenzene	95.3				67.0-138		10/24/2019 13:57	WG1368147
(S) 1,2-Dichloroethane-d4	132	<u>J1</u>			70.0-130		10/24/2019 13:57	WG1368147

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/19/2019 13:19	WG1365515
C28-C40 Oil Range	U		0.296	4.00	4.32	1	10/19/2019 13:19	WG1365515
(S) o-Terphenyl	66.7				18.0-148		10/19/2019 13:19	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 15 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

-							$\cap$
	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		5	,
Total Solids	89.5		1	10/23/2019 14:00	WG1367018		T

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	53.2		0.889	10.0	11.2	1	10/20/2019 18:18	WG1365616	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc	
TPH (GC/FID) Low Fraction	U		0.0243	0.100	0.112	1	10/20/2019 04:52	WG1365589		
(S) a,a,a-Trifluorotoluene(FID)	98.9				77.0-120		10/20/2019 04:52	WG1365589	7 Cl	
									0	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000447	0.00100	0.00112	1	10/24/2019 14:16	WG1368147
Toluene	U		0.00140	0.00500	0.00559	1	10/24/2019 14:16	WG1368147
Ethylbenzene	U		0.000592	0.00250	0.00279	1	10/24/2019 14:16	WG1368147
Total Xylenes	U		0.00534	0.00650	0.00726	1	10/24/2019 14:16	WG1368147
(S) Toluene-d8	95.4				75.0-131		10/24/2019 14:16	WG1368147
(S) 4-Bromofluorobenzene	94.9				67.0-138		10/24/2019 14:16	WG1368147
(S) 1,2-Dichloroethane-d4	134	<u>J1</u>			70.0-130		10/24/2019 14:16	WG1368147

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.00	4.47	1	10/19/2019 13:45	WG1365515
C28-C40 Oil Range	0.562	J	0.306	4.00	4.47	1	10/19/2019 13:45	WG1365515
(S) o-Terphenyl	79.9				18.0-148		10/19/2019 13:45	WG1365515

SDG: L1150137

### SAMPLE RESULTS - 16 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

-						I C
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	95.2		1	10/23/2019 14:00	WG1367018	ŤΤ

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	66.4		0.835	10.0	10.5	1	10/20/2019 18:27	WG1365616	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	U		0.0228	0.100	0.105	1	10/20/2019 05:13	WG1365589	
(S) a,a,a-Trifluorotoluene(FID)	99.7				77.0-120		10/20/2019 05:13	WG1365589	7 Cl
									UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	10/24/2019 14:35	WG1368147
Toluene	U		0.00131	0.00500	0.00525	1	10/24/2019 14:35	WG1368147
Ethylbenzene	U		0.000557	0.00250	0.00263	1	10/24/2019 14:35	WG1368147
Total Xylenes	U		0.00502	0.00650	0.00683	1	10/24/2019 14:35	WG1368147
(S) Toluene-d8	97.5				75.0-131		10/24/2019 14:35	WG1368147
(S) 4-Bromofluorobenzene	97.5				67.0-138		10/24/2019 14:35	WG1368147
(S) 1,2-Dichloroethane-d4	134	<u>J1</u>			70.0-130		10/24/2019 14:35	WG1368147

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.00	4.20	1	10/19/2019 16:53	WG1365703
C28-C40 Oil Range	U		0.288	4.00	4.20	1	10/19/2019 16:53	WG1365703
(S) o-Terphenyl	65.2				18.0-148		10/19/2019 16:53	WG1365703

### SAMPLE RESULTS - 17 L1150137

Â

Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		2
Analyte	%			date / time	—	2	_
Total Solids	94.8		1	10/23/2019 14:00	WG1367018	1	Γ

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	200		0.839	10.0	10.6	1	10/20/2019 18:37	WG1365616	CII

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0323	ВJ	0.0229	0.100	0.106	1	10/20/2019 13:47	WG1365978	
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		10/20/2019 13:47	WG1365978	7 Cl
									UI

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	10/24/2019 14:54	WG1368147
Toluene	U		0.00132	0.00500	0.00528	1	10/24/2019 14:54	WG1368147
Ethylbenzene	U		0.000559	0.00250	0.00264	1	10/24/2019 14:54	WG1368147
Total Xylenes	U		0.00504	0.00650	0.00686	1	10/24/2019 14:54	WG1368147
(S) Toluene-d8	95.8				75.0-131		10/24/2019 14:54	WG1368147
(S) 4-Bromofluorobenzene	94.3				67.0-138		10/24/2019 14:54	WG1368147
(S) 1,2-Dichloroethane-d4	135	<u>J1</u>			70.0-130		10/24/2019 14:54	WG1368147

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.22	1	10/19/2019 17:06	WG1365703
C28-C40 Oil Range	0.293	J	0.289	4.00	4.22	1	10/19/2019 17:06	WG1365703
(S) o-Terphenyl	66.9				18.0-148		10/19/2019 17:06	WG1365703

SDG: L1150137

### SAMPLE RESULTS - 18 L1150137

°Sc

### Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	98.2		1	10/23/2019 14:00	WG1367018		To

### Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	76.0		0.810	10.0	10.2	1	10/20/2019 18:46	WG1365616	

### Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	y Method	8015D/GI	20					⁵Sr
Analyte	<b>Result (dry)</b> mg/kg	Qualifier	<b>SDL (dry)</b> mg/kg	<b>Unadj. MQL</b> mg/kg	<b>MQL (dry)</b> mg/kg	Dilution	Analysis date / time	Batch	⁶ Qc
TPH (GC/FID) Low Fraction	0.0298	ВJ	0.0221	0.100	0.102	1	10/20/2019 14:07	WG1365978	
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		10/20/2019 14:07	WG1365978	⁷ Gl
Volatile Organic Comp	bounds (GC/M	1S) by Met	hod 8260	B	MOL (dr.)	Dilution	Analysis	Datah	

### Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000407	0.00100	0.00102	1	10/23/2019 23:09	WG1368190
Toluene	U		0.00127	0.00500	0.00509	1	10/23/2019 23:09	WG1368190
Ethylbenzene	U		0.000540	0.00250	0.00255	1	10/23/2019 23:09	WG1368190
Total Xylenes	U		0.00487	0.00650	0.00662	1	10/23/2019 23:09	WG1368190
(S) Toluene-d8	106				75.0-131		10/23/2019 23:09	WG1368190
(S) 4-Bromofluorobenzene	98.2				67.0-138		10/23/2019 23:09	WG1368190
(S) 1,2-Dichloroethane-d4	97.6				70.0-130		10/23/2019 23:09	WG1368190

### Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.00	4.07	1	10/19/2019 17:19	WG1365703
C28-C40 Oil Range	U		0.279	4.00	4.07	1	10/19/2019 17:19	WG1365703
(S) o-Terphenyl	64.8				18.0-148		10/19/2019 17:19	WG1365703

Boulifier     MB MOL     MB ROL       Boulifier     MB MOL     MB ROL       Boulifier     MB ROL       Secaral 10123109 1413     Secaral 10123109 1413       Secaral 10123109 1413     DUPOuntier       DuP Result     DUP Result       Main     ND       Ma     DUPOuntier       Main     MB ROL       Secaral 10123109 1413     Secaral 10123109 1413       Main     ND	Confilter     MB MDL     MB RDL       0     0     0     0       0     100     85.0.15	Durfactor     MB MOL     MB RDL       Sealar     MB MOL     MB RDL       Sealar     Durplicator     N       Sealar     Durplicator     N       Sealar     Durplicator     N       I     0.126     N	Image: March	Image: Rel No.     Rel No.       Solution: Rel No.     Rel No.       Solution: Rel No.     Rel No.       Solution: Rel No.     Solution: Rel No.	d 2540 G-2011	QL	JALITY CONTROL S [1150137-01.02.03.04.05.06.07.07.07.07.07.07.07.07.07.07.07.07.07.	5UMMARY 08.09.10	ONE LAB. NATIONWIDE.
alifier MB MOL MB ROL % % % BUDICICITE (DUP) Bes 10/23/19 14:13 Bes 10	ailiter Mit MOL % % % % % % % % % % % % % % % % % % %	adition     NB MDL       Seal     0.023/109 H413       Seal     0.010 B000       Seal     1       0     8       1     0.026       Seal     1       1     0.026       1     0.026       1     0.026       1     0.026       1     0.026       1     1       1     1       1     1       1     1       1     1       1     1       1     1 <td< td=""><td>alitie     ke kh       ke kh</td><td>Main     Main     Main       8     1000     Main       8     1000     Main       8     1000     Main       8     1000     Main       1     100     Main</td><td></td><td></td><td></td><td></td><td></td></td<>	alitie     ke kh	Main     Main     Main       8     1000     Main       8     1000     Main       8     1000     Main       8     1000     Main       1     100     Main					
Duplicate (DUP)     Sales 10/23/19 4413     Result Diurion DUP RPD     Result Diurion DUP RPD     Result Diurion DUP RPD     Result LC5 Rec.     Rec.     Result LC5 Rec.	Duplicate (DU)     228.3 10/23/19 14/13     228.3 10/23/19 14/13     228.3 10/23/19 14/13     228.3 10/23/19 14/13     228.3 10/23/19 14/13     228.3 10/23/19 14/13     228.4 10 00 00 RPD DUP Dualitier     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126     1 0.126	• Duplicate (DUP)         2233 10/23719 1413         Result bluckin ouP RPD         9         1         0.126         1         1         0.126         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         2         2         3         3         4         4         4         5         2         2         3         4         4         5	Duplicate (JUP)     Sea 1022-09 H43     Sea 1022-09 H43     Sea 1022-09 H43     Sea 1022-09 H43     Sea 1040     Sea 11     Sea	Duplicate (DU) attraction of the second of		ualifier MB MDL MB RDL % %			
• Duplicate (DU)         4628-3 10/23/19 14/13         4628-3 10/23/19 14/13         4628-1 10/10 10 PRPD         9         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         7       1         8       1         10       10         11       10         12       10         13       10         14       10         15       1         16       10         17       10         18       10         19       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10 <td>Cublicate (DUP)     Ecsat 20/23/19 1413     Ecsat 20/23/19 141     Ecsat 20/23/19 14     Ecsat 20/23/19 14</td> <td>Duplicate (DUP)     328.3 10/23/19 14:13     Result Diuton DuP RPD     Result Diuton DuP RPD     Result LCS Rec.     Rec Limits     Result LCS Rec.     Rec Limits     Result LCS Rec.     Rec Limits     Result LCS Rec.     Rec Limits</td> <td>Oblicate (DUP)     Size 3 1022116 at Ma     The intervention of the rest of the rest of the intervention of the rest of t</td> <td>Duplicate (DUP) asian outsing up asian outsing the second second</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cublicate (DUP)     Ecsat 20/23/19 1413     Ecsat 20/23/19 141     Ecsat 20/23/19 14     Ecsat 20/23/19 14	Duplicate (DUP)     328.3 10/23/19 14:13     Result Diuton DuP RPD     Result Diuton DuP RPD     Result LCS Rec.     Rec Limits	Oblicate (DUP)     Size 3 1022116 at Ma     The intervention of the rest of the rest of the intervention of the rest of t	Duplicate (DUP) asian outsing up asian outsing the second					
46.28-3       10/123/19       10/123/19       11/13         7       1       0.126       0       0         7       1       0.126       0       0         7       1       0.126       0       0         7       1       0.126       0       0         7       1       0.126       0       0         8       8       8       9       0         9       6       8       8       9         9       9       10       8       8       9	Result       Diurion       DUP RPD       DUP Qualifier       DUP Qualifier       To         7       1       0.126       10       To       To       To       To         7       1       0.126       10       To	28-3       10/23/191413         Result       Divition       DUP RPD       DUP Outlifier         8       9       9         Result       0.126       10         8       1       0.126       10         8       1       0.126       10         8       1       0.126       10         8       1       0.126       10         8       1       0.126       10         8       1       0.126       10         9       8       9       9         10       85.045       8       9	Si3-3 10:23:09 Ht13       Real I blueno DUP RPD       DuP RDD         Real I blueno DUP RDD       Si3-10:23:09 Ht13       Si3-10:20:00 Ht13         1       0:03       Si3-10:20       Si3-10:20         0       0:03       Si3-10:20       Si3-10:20         0       0:03       Si3-10:20       Si3-10:20	2.3.3     1023119.14(3)       10     1       11     10       12     1       13     1       14     1       15     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1       1     1 </td <td></td> <td>· Duplicate (DUP)</td> <td></td> <td></td> <td></td>		· Duplicate (DUP)			
UP Result Diur RPD DUP RPD DUP Qualifier Units 4.7 1 0.126 10 2.5 Result LCS Rec. Rec. Limits LCS Qualifier 5.8 Result LCS Rec. Rec. Limits LCS Qualifier 0.0 85.0-115 0.0 85.0-115	PResult     Dilution     DUP RPD     DUP Outlifier       7     1     0.126     0       8     8     10     0.126       1     0.126     10       8     8       1     0.126     10       0     10     10       0     8.0.15	Result Dirton DU PPPD DUP Cualifier UN PPD Result LCS Rec Limits 8 % % % % % % % % % % % % % % % % % % %	Reaut Indon DuP POP OutFile UNP OUTFILE UN	text During our etc 3. A built our etc 4. A bui	4	28-3 10/23/19 14:13			
7       1       0.126       0         7       1       0.126       0         8       8       1       0.126         8       8       1       0.126         9       9       1       0.126       10         10       10       8       10       10         10       10       8       10       10         10       10       8       10       10         10       10       8       10       10         10       100       8       10       10	%       %       %         7       1       0.106       10         8 Result       LCS Rec.       Rec. Limits       LCS Qualifier         0       100       85.0-115       7       7	1       0.126       %         1       0.126       %         1       0.126       %         1       0.126       %         1       0.126       %         1       0.126       %         1       0.126       %         1       0.126       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %       %         1       %	Result       CS       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S </td <td>Market       1       0.18       1       0.18       1       0.18       1       1       0.19       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td> <td></td> <td>Result Dilution DUP RPD DUF</td> <td>P Qualifier DUP RPD</td> <td></td> <td></td>	Market       1       0.18       1       0.18       1       0.18       1       1       0.19       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		Result Dilution DUP RPD DUF	P Qualifier DUP RPD		
1     0.126     10       Result     LCS Rec.     Rec. Limits       %     %       0     100       85.0-115	1     0.126     10       Result     LCS Rec.     Rec. Limits       %     %       0     100       85.0-115	1 0.126 10 Result LCS Rec. Rec Linits LCS Qualifier % % % 100 85.0-115	1 012 10 Reading to the line of the line	1 015 664 L L(5 Rec. Rec. Limits L(5 Gould file 854 L L(5 Rec. Rec. Limits L(5 Gould file 856 L L(1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		%	%		
Result LCS Rec. Rec. Limits LCS Qualifier % % 100 85.0-115	Result LCS Rec. Rec. Limits LCS Qualifier % % % 100 85.0-115	Result LCS Rec. Rec. Limits LCS Rec. a. a. 100 8.5.0-115	Real LCSPec. Res Linits LCSPec. Res L	Red I ICSRC Re Chinks ICSOutline 8. Re Chinks ICSOutline 00 8.01% 8.01% 1. Control 8.01% 1. Control 1. Control		1 0.126	10		
S Result LCS Rec. Rec. Limits LCS Qualifier % % % % % % % % % % % % % % % % % % %	S Result LCS Rec. Rec. Limits LCS Qualifier % % % 0 100 85.0-115	Result LCS Rec. Rec Limits LCS Qualifier % % % % % % % % % % % % % % % % % % %	Result LCSRe. Rec. timits LCSOutlinet m	est       LCSRe       Rec Limits       LCSOutling         00       85.0.15       S.0.15       S.0.15					
CS Result LCS Rec. Rec. Limits LCS Qualifier	Result       LCS Rec.       Rec. Limits       LCS Outlifier         %       %       %       %         0       100       85.0-115       %	Result LCS Rec. Rec Linits LCS Qualifier % % % Inits LCS Qualifier 100 85.0-15 85.0-15 101 95.0-15 102 95.0-15 103 95.0-15 104 95.0-15 105 9	Realt LCSRc. Rec Linis Counting 3. 3. 3. 100 85.045 100 85.045	Root ICS Rec. Rec Linis ICS Counting 8 8 3 8 0 10 85.015 8.5.015 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9.5.15 9					
0.0 100 85.0-115	0 100 85.0-115	10 85.0-15 87.0-15			S ~	Result LCS Rec. Rec. Limits % %	LCS Qualifier		
					20.	100 85.0-115			

<b>Rece</b>	vived (	<i>b</i> у ОС с		11/8/ m	(202 ) )	1 10 +	5:5	7:35 10	<b>ר אין</b> רא	o م	لم ا	5	۳	ို							Р	age 2	281	of :
ONE LAB. NATIONWIDI																								
NTROL SUMMARY .12.13.14.15.16.17.18																								
QUALITY CO								DUP Qualifier DUP RPD Limits	%	10			ts LCS Qualifier											
U		MB MDL MB RDL	%			ate (DUP)	23/19 14:00	Dilution DUP RPD	%	1 0.349			LCS Rec. Rec. Limit % %	99.9 85.0-115										
11		MB Qualifier			:- ( ( (	(OS) • Duplic	R3464621-3 10/2	It DUP Result	%	94.6	-CS)		t LCS Result %	50.0										
<b>18</b> ethod 2540 G-20	(MB)	/23/19 14:00 MB Result	%	0.00100		iginal Sample (	'23/19 14:00 • (DUP)	Original Resul	%	95.0	ntrol Sample (L	0/23/19 14:00	Spike Amount %	50.0										
WG136701	pMethod Blank (	o(MB) R3464621-1 10/	Analyte	total Solids	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	013/-12 On	C(OS) L1150137-12 10/.	11:5	Analyte	W Total Solids	Laboratory Cor	(LCS) R3464621-2 10	Analyte	Total Solids										

WG136466	5 <b>4</b> Method 300.0			Ø		/ CONTF 1,02,03,04,05,0	ROL SU	MMAR 0,11,12,13	~			ONE LAB. N	ATIONWIDE.	Rece
Method Blank (	MB)												-	ived (
0 (MB) R3462290-1 10.	/17/19 20:49 MB Result	MB Qualifier	MB MDL	MB RDL										by OC
Analyte	mg/kg		mg/kg	mg/kg									4	
ourde	4./1	<b>-</b> 1	c6/.0	0.01										1/8/2
2/1150129-40 Or	'iginal Sample	(OS) • Dup	olicate (DU	) D										021 1
C(OS) L1150129-40 10	'17/19 21:56 • (DUP)	R3462290-3	10/17/19 22:06											<u>e:5</u>
11:5	Original Resu (dry)	t DUP Result (drv)	Dilution DI	UP RPD	<b>UP Qualifier</b>	DUP RPD Limits								7:39
Analyte	mg/kg	mg/kg	%			%								
Chloride	59.9	43.5	1 31		EL	20							U	ို္င္လ
L1150137-13 Ori	ginal Sample (	Idnd • (SO	licate (DUF	(*										Ū
(OS) L1150137-13 10/1	8/19 01:35 • (DUP) F	13462290-6	0/18/19 01:45											5
	Original Resui (drv)	t DUP Result (drv)	Dilution DI	UP RPD	<b>UP</b> Qualifier	DUP RPD Limits								٦
Analyte	mg/kg	mg/kg	%			%							1	
Chloride	42.9	41.9	1 2.	37		20								ွိပ
Laboratory Cor	itrol Sample (L	.CS)												
(LCS) R3462290-2 1	0/17/19 20:58													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualit	ier								
Analyte	mg/kg	mg/kg	%	%										
Chloride	200	212	106	90.0-110										
L1150137-07 Or	iginal Sample	(OS) • Mati	rix Spike (N	MS) • Matri	x Spike D	uplicate (MS	(D							
(OS) L1150137-07 10/	18/19 00:00 • (MS) I	33462290-4 1	. 0/18/19 00:10	· (MSD) R3462	290-5 10/18/	19 00:19								
	Spike Amoun: (dry)	t Original Resu (dry)	ilt MS Result (dr	ry) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	<b>RPD</b> Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	0.	%			%	%		
Chloride	534	80.7	629	606	103	98.3	-	30.0-120			3.76	20		
														Pa
														ge 282 d
				Ē	DO LECT.		Ľ	C		T/JTA				of 34
Con	ocoPhillips - Tetra Tec	4		2120	C-MD-01491		ог Г115	0137		10/24/19	IIVIE: 21:42		гачс. 28 of 46	18

Recei	ived (	ђу <b>ОС</b>		<b>11</b> /0	<mark>8/20</mark>	<b>21</b>	<u>e:</u> 5	7:39 ه	_ <b>₽</b> ♪ ∩	္စိတ္တ	لم ال	ō	۵ ۵		С С	)											P	age 28.	3 of 3	348	ł
: LAB. NATIONWIDE.																														PAGE:	29 of 16
ONE																								RPD Limits	%	20					
																								fier RPD	%	4.51				ATE/TIME:	CD-1C P1/PC
																								MSD Quali		> Ш				Q	10/
۲۲																								MS Qualifier		> U					
UMMAF																								Rec. Limits	%	80.0-120				SDG:	1150137
20LS																						ISD)		Dilution		-					
CONTI L1150137-14,								UP RPD mits		0			UP RPD mits	1								uplicate (N	19 20:22	MSD Rec.	%	47.9					
JALITY								JP Qualifier DI	%	2(			JP Qualifier DI	i %	2(				LCS Qualifier			x Spike Du	3039-5 10/20	MS Rec.	%	0.000				OJECT:	MD-01491
Q		MB RDL	mg/kg	10.0		(0				m					2				Rec. Limits	9/	90.0-110	MS) • Matri	• (MSD) R3460	/) MSD Result (drv)	mg/kg	6550				PR	-212C-
		MB MDL	mg/kg	0.795		licate (DUF	0/20/19 19:53	Dilution DU	%	5 2.8	cate (DUP	0/20/19 22:35	Dilution DU	%	1 10.				LCS Rec.	%	104	rix Spike (I	0/20/19 20:12	MS Result (dr)	mg/kg	6260					
		MB Qualifier		<b>ا</b> ر -		OS) • Dup	33463039-3 1	DUP Result (dry)	mg/kg	1180	JS) • Dupli	33463039-6 1	DUP Result	mg/kg	913		CS)		LCS Result	1119/Kg	207	(OS) • Mat	R3463039-4 1	Original Result (drv)	mg/kg	6270					
<b>G</b> Method 300.0	MB)	20/19 16:50 MB Result	mg/kg	3.42		iginal Sample (	20/19 19:44 • (DUP) F	Original Result (dry)	mg/kg	1140	ginal Sample ((	:0/19 22:25 • (DUP) I	Original Result	mg/kg	824		itrol Sample (Lo	0/20/19 17:00	Spike Amount	IIIJ/KJ	200	riginal Sample	/20/19 20:03 • (MS)	Spike Amount (drv)	mg/kg	587				ACCOUNT:	DonPhillins - Tetra Tech
WG136561	Method Blank (	0 (MB) R3463039-1 10/	Analyte	Chloride	10/1	01-1150393-01 Or	C(OS) L1150393-01 10/.	11:5	Analyte	Chloride	L1151537-01 Ori	(OS) L1151537-01 10/2		Analyte	Chloride		Laboratory Con	(LCS) R3463039-2 10		Analyte	Chloride	L1150393-05 OI	(OS) L1150393-05 10,		Analyte	Chloride					Conc

	1
0	5
വ	ć
D	(
īO.	2
<b>L</b> ,	2
Q.	2
$\infty$	C
<u> </u>	(
2.	
(')	+
~	_
2	0
>	>
Re	l

WG1365550	ounds (GC) b	y Method 80	115D/GRO	QU	ALITY CONTROL SUMMARY L1150137-01,02,03,04,05,06,07,08,09,10,11,12	ONE LAB. NATIONWIDE.	Recei
post Method Blank (MB)	_						ived i
(MB) R3463029-2 10/20/1	9 14:10						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C. ∾
Analyte	mg/kg		mg/kg	mg/kg			
🙀 TPH (GC/FID) Low Fraction	0.0731	<b>ا</b> ر -	0.0217	0.100			11
(S) (G) (S) (C) (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	106			77.0-120			/ <mark>8/2</mark> 0
1/202							21 19 t
Laboratory Control	Sample (LC	CS)					2:57
C(LCS) R3463029-1 10/20/1	¹ 9 13:09						<b>39</b> ن
6:1	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		<b>.P</b> <i>N</i>
Analyte	mg/kg	mg/kg	%	%			<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	5.45	99.1	72.0-127			ğ
(S) a, a, a-Trifluorotoluene(FID)			103	77.0-120			7
							פ

# L1150129-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Sc

∢

(OS) L1150129-29 10/20/19 17:25 • (MS) R3463029-3 10/20/19 23:24 • (MSD) R3463029-4 10/20/19 23:46

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.69	0.0784	1.22	2.19	20.1	37.2	-	10.0-151		с С	57.0	28
(S) a,a,a-Trifluorotoluene(FID)					101	90.9		77.0-120				

•

SDG: L1150137

DATE/TIME: 10/24/19 21:42

30 of 46 PAGE

	2
6	0 20 0
202	
80	0010
() ()	0+
ž	0101
Re	l

## 

WG1365589				0 0	ALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
olatile Organic Comp	oounds (GC) b	y Method 80	015D/GRO		L1150137-13,14,15,16		cei
powerhod Blank (MB)	(						ved (
(MB) R3463765-2 10/19/19	9 20:48						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C.
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	П		0.0217	0.100			11
<pre>16 (S) 1/a, a.a.Trifluorotoluene(FID)</pre>	100			77.0-120			/ <mark>8/2</mark> 0
1/202							<b>21</b> 1
Laboratory Control	l Sample (LC	CS)					2:57
C(LCS) R3463765-1 10/19/16	9 19:38						<b>39</b> ه
6:1	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		<b>P</b> 7
Analyte	mg/kg	mg/kg	%	%			<b>1</b> 9
FIPH (GC/FID) Low Fraction	5.50	5.14	93.5	72.0-127			ğ
(S) a, a, a-Trifluorotoluene(FID)			102	77.0-120			7

 $\overline{\mathbb{O}}$ 

SC

∢

## L1150129-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150129-07 10/19/19 23:42 • (MS) R3463765-3 10/20/19 05:33 • (MSD) R3463765-4 10/20/19 05:54

			-									
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	575	46.3	589	602	94.3	96.5	100	10.0-151			2.11	28
(S) a, a. a-Trifluorotoluene(FID)					108	109		77.0-120				

**PAGE:** 31 of 46

.

SDG: L1150137

С О О О О
mpounds
ő
nic
a a
ō
0
lat
>
le

/G1365978 latile Organic Comp	ounds (GC) b	y Method 80	)15D/GRO	ОО	JALITY CONTROL SUMMARY	VE LAB. NATIONWIDE.	Rece
hod Blank (MB)	(						ived (
R3463260-3 10/20/1	19 10:59						by (
	MB Result	MB Qualifier	MB MDL	MB RDL			0C
te	mg/kg		mg/kg	mg/kg			D:
3C/FID) Low Fraction	0.0244	ا ر	0.0217	0.100			11
Trifluorotoluene(FID)	95.2			77.0-120			/ <mark>8/2</mark> 0
							21 <u>1</u> 2
oratory Control	l Sample (LC	CS)					5:57
R3463260-2 10/20	/19 09:56						39 5
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		<b>.P</b> <i>N</i>
е	mg/kg	mg/kg	%	%			1
C/FID) Low Fraction	5.50	4.76	86.5	72.0-127			ğ

SC

Ū

77.0-120

106

(S) a, a, a-Trifluorotoluene(FID)

<u>ک</u>

**PAGE:** 32 of 46

•

$\sim$	
വ	1
$\sim$	
Q	
Q	
$^{\circ}$	1
<u>_</u>	
G	1
5	
$\leq$	
RA	,

## QUALITY CONTROL SUMMARY

WG1366257				QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
olatile Organic Comp	ounds (GC/N	1S) by Metho	d 8260B	0B L1150137-01,02,03		ecei
page (MB) Method Blank (MB)						ved g
(MB) R3463366-3 10/20/19	9 21:29					by (
ma	MB Result	MB Qualifier	MB MDL	DL MB RDL		0C. ∾
Analyte	mg/kg		mg/kg	J mg/kg		
Senzene	n		0.000400	1400 0.00100		11
<b>D</b> Ethylbenzene	Л		0.000530	1530 0.00250		/ <mark>8/</mark>
Toluene	N		0.00125	25 0.00500		302
Vylenes, Total	Л		0.00478	78 0.00650		4
(S) Toluene-d8	108			75.0-131		8
(S) 4-Bromofluorobenzene	100			67.0-138		57:
(5) 1,2-Dichloroethane-d4	86.1			70.0-130		<b>39_PM</b> ഗ്
Laboratory Control	Sample (L	CS) • Laboi	ratory Con	/ Control Sample Duplicate (LCSD)		စ္တိ

(LCS) R3463366-1 10/20/19 20:14 • (LCSD) R3463366-2 10/20/19 20:32

		1 00000-02-1	1001010101						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS	Qualifier L	-CSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Benzene	0.00500	0.00431	0.00434	86.2	86.8	70.0-123		0.694	20
Ethylbenzene	0.00500	0.00511	0.00549	102	110	74.0-126		7.17	20
Toluene	0.00500	0.00477	0.00505	95.4	101	75.0-121		5.70	20
Xylenes, Total	0.0150	0.0167	0.0171	111	114	72.0-127		2.37	20
(S) Toluene-d8				107	108	75.0-131			
(S) 4-Bromofluorobenzene				99.8	98.8	67.0-138			
(S) 1, 2-Dichloroethane-d4				92.6	87.5	70.0-130			

Sc

Ū

∢

10/24/19 21:42 DATE/TIME:

33 of 46 PAGE

00
σ
Q
Q
Q
ω
<u> </u>
വ
5
$\leq$
Re

## QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)         L150137-04.05           Method Blank (MB)         Image: MB MDL         Image: MB MDL <th></th>	
Method Blank (MB) MB R3463541-2 10/21/19 10:44 MB Result MB Qualifier MB MDL MB RDL MB Result MB Qualifier MB MDL MB RDL MB RSULt MB RSULt MB RDL MB RSULT MB RSULT MB RSULT MB RSUL	L1150137-04,05
MB R3453541-2         10/21/19         0.14           MB Result         MB Result         MB NDL         MB RDL           Malyte         mg/kg         mg/kg         mg/kg           Barzene         U         0.000530         0.00050         0.00050           Cithylbenzene         U         0.000530         0.00250         0.00500	
MBD         R3463541-2         10/21/19         10:44           MB Result         MB Qualifier         MB MDL         MB RDL           Mailter         mg/kg         mg/kg         mg/kg           Banzene         U         0.000530         0.00100           Ultilotenzene         U         0.00125         0.00500	
MB Result         MB Qualifier         MB NDL         MB RDL           Analyte         mg/kg         mg/kg         mg/kg           Bazenee         U         0.000400         0.00100           Uclinhybenzene         U         0.000530         0.00250           U         0.00125         0.00500         0.00500	
Malyte         mg/kg         mg/kg           Barzene         U         0.000400         0.00100           Ethylbenzene         U         0.000530         0.00250           Ulouene         U         0.00125         0.00500	
Banzene         U         0.000400         0.00100           Citylbenzene         U         0.000530         0.00250           Infoluene         U         0.00125         0.00500	
0.5thylbenzene U 0.000530 0.00250 U 0.00125 0.00500 U 0.00125 0.00500	
U 0.00500 0.00125 0.00500	
Vylenes, Total U 0.00478 0.00650	
75. (5) Toluene-d8 109 75.0-131	
1 (5) 4-Bromofluorobenzene 101 67.0-138	
10.0-130 70.0-130 70.0-130 70.0-130	

### Laboratory Control Sample (LCS)

ğ

ILCS) R3463541-1 10/21/19 09:48

CS) R3463541-1 10/21/19	09:48					1
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Ū
nalyte	mg/kg	mg/kg	%	%		
tenzene	0.125	0.114	91.2	70.0-123		~ ~
thylbenzene	0.125	0.131	105	74.0-126		Ī
oluene	0.125	0.127	102	75.0-121		σ
kylenes, Total	0.375	0.435	116	72.0-127		လို
(S) Toluene-d8			108	75.0-131		
(S) 4-Bromofluorobenzene			100	67.0-138		
(S) 1,2-Dichloroethane-d4			87.9	70.0-130		

# L1149584-67 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1149584-67 10/21/19 19:58 • (MS) R3463541-3 10/21/19 17:48 • (MSD) R3463541-4 10/21/19 18:07

			-									
	Spike Amount	<b>Original Result</b>	<b>MS</b> Result	<b>MSD</b> Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	25.0	ND	21.2	12.4	84.8	49.6	200	10.0-149		с Г	52.4	37
Ethylbenzene	25.0	35.8	61.8	55.1	104	77.2	200	10.0-160			11.5	38
Toluene	25.0	ND	24.9	15.5	9.6	62.0	200	10.0-156		сг Г	46.5	38
Xylenes, Total	75.0	210	299	283	119	97.3	200	10.0-160			5.50	38
(S) Toluene-d8					100	112		75.0-131				
(S) 4-Bromofluorobenzene					103	011	~	57.0-138				
(S) 1,2-Dichloroethane-d4					90.1	88.9		70.0-130				

### Sample Narrative:

OS: Target compounds too high to run at a lower dilution.

	PAGE	34 of 46
	DATE/TIME:	10/24/19 21:42
	SDG:	L1150137
	PROJECT:	212C-MD-01491
	ACCOUNT:	ConocoPhillips - Tetra Tech
$\mathcal{O}$		
---------------	--	
00		
$\sim$		
ဖ		
Q		
$\infty$		
~		
Ċ		
>		
>		
Re		

### QUALITY CONTROL SUMMARY L1150137-06,07,08,09,10,11,12

Received by OCD: 11/8/202

Method Blank (MB) by Method 8260B Method Blank (MB)

(MB) R3463542-3 10/21/19	22:08			
ma	MB Result	MB Qualifier	MB MDL	DL MB RDL
Analyte	mg/kg		mg/kg	bulkg mg/kg
Benzene	Π		0.000400	400 0.00100
Ethylbenzene	Π		0.000530	530 0.00250
Toluene	N		0.00125	25 0.00500
Vylenes, Total	Π		0.00478	78 0.00650
(S) Toluene-d8	108			75.0-131
(S) 4-Bromofluorobenzene	99.1			67.0-138
(5) 1,2-Dichloroethane-d4	83.6			70.0-130

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

Ū

3<u>9</u>P

12

(LCS) R3463542-1 10/21/19 20:54 • (LCSD) R3463542-2 10/21/19 21:12

	1001 - 0.04	1 10000 001							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Benzene	0.125	0.104	0.106	83.2	84.8	70.0-123		1.90	20
Ethylbenzene	0.125	0.129	0.128	103	102	74.0-126		0.778	20
Toluene	0.125	0.121	0.122	96.8	97.6	75.0-121		0.823	20
Xylenes, Total	0.375	0.413	0.437	110	117	72.0-127		5.65	20
(S) Toluene-d8				107	108	75.0-131			
(S) 4-Bromofluorobenzene				101	011	67.0-138			
(S) 1, 2-Dichloroethane-d4				89.1	90.5	70.0-130			

SC

₹

## L1150137-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150137-12 10/22/19 01:23 • (MS) R3463542-4 10/22/19 06:23 • (MSD) R3463542-5 10/22/19 06:42

	Spike Amount (dry)	Original Result (dry)	MS Result (dry) M	ISD Result Iry)	MS Rec.	MSD Rec.	Dilution R	ec. Limits <u>M</u>	S Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg m	ig/kg	%	%	%				%	%
Benzene	0.132	Л	0.0923 0.	.0566	70.2	43.0	1	0.0-149		с Г	47.9	37
Ethylbenzene	0.132	Π	0.111 0.	.0655	84.0	49.8	1 10	0.0-160		EL EL	51.2	38
Toluene	0.132	N	0.107 0.	.0645	81.6	49.0	1 10	0.0-156		EL E	49.8	38
Xylenes, Total	0.395	П	0.362 0.	.231	91.7	58.4	1 10	0.0-160		с.	44.4	38
(S) Toluene-d8					108	110	7.	5.0-131				
(S) 4-Bromofluorobenzene					100	102	9	7.0-138				
(S) 1,2-Dichloroethane-d4					90.4	89.6	7	0.0-130				

35 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

	,
4	
	2
$\infty$	
Q	
$\mathbf{\omega}$	(
<u> </u>	
C	1
~	
$\leq$	
Re	1

### QUALITY CONTROL SUMMARY

Received by OCD: 11/8/202

12:5

39 P

ğ

 $\overline{\mathbb{O}}$ 

₹

Volatile Organic Compounds (GC/MS) by Method 8260B Method Blank (MB)

(MB) R3464753-3 10/24/19	08:00			
ma	MB Result	MB Qualifier	MB MDL	MDL MB RDL
Analyte	mg/kg		mg/kg	kg mg/kg
Benzene	П		0.000400	00400 0.00100
Cethylbenzene	N		0.000530	00530 0.00250
TT oluene	0.00165		0.00125	0.00500 0.00500
Vylenes, Total	Π		0.00478	)478 0.00650
(S) Toluene-d8	95.3			75.0-131
(S) 4-Bromofluorobenzene	95.6			67.0-138
(S) 1,2-Dichloroethane-d4	121			70.0-130

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3464753-1 10/24/19 06:45 • (LCSD) R3464753-2 10/24/19 07:03

		1 00 10 01 01 0							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS	Qualifier L	CSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Benzene	0.125	0.107	0.108	85.6	86.4	70.0-123		0.930	20
Ethylbenzene	0.125	0.113	0.105	90.4	84.0	74.0-126		7.34	20
Toluene	0.125	0.108	0.106	86.4	84.8	75.0-121		1.87	20
Xylenes, Total	0.375	0.352	0.350	93.9	93.3	72.0-127		0.570	20
(S) Toluene-d8				95.6	94.0	75.0-131			
(S) 4-Bromofluorobenzene				96.9	97.5	67.0-138			
(S) 1, 2-Dichloroethane-d4				611	124	70.0-130			

Sc

# L1149492-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1149492-03 10/24/19	9 08:18 • (MS) R:	3464753-4 10/2	.4/19 16:09 • (N	1SD) R3464753	3-5 10/24/1916	3:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	5.	%			%	%
Benzene	0.125	ND	0.103	0.109	82.4	87.2	1	10.0-149			5.66	37
Ethylbenzene	0.125	ND	0.0963	0.108	77.0	86.4	1	10.0-160			11.5	38
Toluene	0.125	ND	0.104	0.109	83.2	87.2	1	10.0-156			4.69	38
Xylenes, Total	0.375	ND	0.327	0.354	87.2	94.4	1	10.0-160			7.93	38
(S) Toluene-d8					94.4	95.3		75.0-131				
(S) 4-Bromofluorobenzene					93.9	96.6	2	57.0-138				
(S) 1, 2-Dichloroethane-d4					126	128		70.0-130				

36 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

_	
0	
σ	
$\omega$	
Q	
$\mathbf{c}$	
$\sum_{i=1}^{n}$	
Ū	
$\geq$	
R	,

### QUALITY CONTROL SUMMARY

WG1368190				QUALITY CONTROL SUMMARY	<b>R</b> e ii
olatile Organic Comp	ounds (GC/MS) b	y Method	8260B	L1150137-18	ecei
polymethod Blank (MB)					ved (
(MB) R3464397-2 10/23/19	9 18:40				by (
ma	MB Result MB	Qualifier	MB MDL	MB RDL	0 ∝
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	П		0.000400	0.00100	11
Cethylbenzene	Π		0.000530	0.00250	/ <mark>8///</mark>
II oluene	Π		0.00125	0.00500	302
Vylenes, Total	Π		0.00478	0.00650	4
(S) Toluene-d8	107			75.0-131	0
(S) 4-Bromofluorobenzene	97.6			67.0-138	57:
(5) 1,2-Dichloroethane-d4	91.6			70.0-130	<b>39 PM</b> س
Laboratory Control	Sample (LCS)				0 C C

(LCS) R3464397-1 10/23/19 17:38

	00.2					٦
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Ū
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.125	100	70.0-123		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ethylbenzene	0.125	0.116	92.8	74.0-126		Ī
Toluene	0.125	0.110	88.0	75.0-121		σ
Xylenes, Total	0.375	0.305	81.3	72.0-127		SC
(S) Toluene-d8			103	75.0-131		
(S) 4-Bromofluorobenzene			99.2	67.0-138		
(S) 1, 2-Dichloroethane-d4			110	70.0-130		

## L1150137-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150137-18 10/23/19 23:09 • (MS) R3464397-3 10/24/19 02:16 • (MSD) R3464397-4 10/24/19 02:36

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.127	Л	0.112	0.120	88.0	94.4	-	10.0-149			7.02	37
Ethylbenzene	0.127	П	0.107	0.117	84.0	92.0	<del>, -</del>	10.0-160			9.09	38
Toluene	0.127	N	0.102	0.111	79.9	87.2	<del>, -</del>	10.0-156			8.71	38
Xylenes, Total	0.382	П	0.275	0.303	72.0	79.5	<del>, -</del>	10.0-160			9.86	38
(S) Toluene-d8					105	103		75.0-131				
(S) 4-Bromofluorobenzene					97.6	96.6		67.0-138				
(S) 1,2-Dichloroethane-d4					<i>99.9</i>	97.8		70.0-130				

37 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

	(
4	
σ	
0	(
വ	
Ő	
$\stackrel{(i)}{\leftarrow}$	
Ċ	
2	
Re	

WG1365094				QU	IALITY CONTROL SUMMARY	NE LAB. NATIONWIDE.	Re
Semi-Volatile Organic	Compounds	(GC) by Meth	3015 and 2015		L1150137-01,02,03,04,05		ecei
Method Blank (MB)	_						ved
(MB) R3462663-1 10/18/19	13:36						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C
Analyte	mg/kg		mg/kg	mg/kg			
🙀 C10-C28 Diesel Range	Э		1.61	4.00			11
C28-C40 Oil Range	П		0.274	4.00			/ <mark>8/</mark> /
(S) o-Terphenyl	84.5			18.0-148			302
/202							1 <u>10</u>
Laboratory Control	Sample (LC	CS)					5:57.
C(LCS) R3462663-2 10/18/1	9 13:49						<b>39</b> س
5:13	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		<b>Р</b> М
Analyte	mg/kg	mg/kg	%	%			کی
C10-C28 Diesel Range	50.0	43.1	86.2	50.0-150			ר ז
(S) o-Terphenyl			105	18.0-148			~
							0

# L1150103-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Qualifier RPD Limits	%	0.231 20	
	MS Qualifier MSL			
	ution Rec. Limits	%	50.0-150	18.0-148
2:05	MSD Rec. Dil	%	88.0 1	105
63-4 10/18/19 22	MS Rec.	%	88.9	108
• (MSD) R34626	dry) MSD Result (dry)	mg/kg	44.6	
0/18/19 21:52	ult MS Result (	mg/kg	44.5	
3462663-3 1	Original Resu (dry)	mg/kg		
1/19 21:39 • (MS) R3	Spike Amount (dry)	mg/kg	50.1	
(OS) L1150103-20 10/16		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

SC

∢

**PAGE**: 38 of 46

DATE/TIME: 10/24/19 21:42

•

	(
വ	
_	
i o	
ц)	(
10	
(O)	1
~	
$(\mathbf{r})$	
~	,
(D	•
U	
-	
<	
~	1
Re	2

WG1365515	Compounds	(GC) by Meth	10d 8015	ОØ	ALITY CONTROL SUMMARY L1150137-06.07.08.09.10.11.12.13.14.15	ONE LAB. NATIONWIDE.	Rece
period Blank (MB)							eived (
(MB) R3462800-1 10/19/19	06:30						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	П		1.61	4.00			11
C28-C40 Oil Range	N		0.274	4.00			/ <mark>8/</mark>
(S) o-Terphenyl	88.3			18.0-148			302
/202							1
22							2.: )
Laboratory Control	Sample (LC	S)					57:3
C(LCS) R3462800-2 10/19/1	9 09:43						3 <b>9</b>
:13	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		РМ
Analyte	mg/kg	mg/kg	%	%			ک
C10-C28 Diesel Range	50.0	43.1	86.2	50.0-150			ר ז
(S) o-Terphenyl			107	18.0-148			~
							Ū

# L1150129-35 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

IS) L1150129-35 10/19/19 alyte 9-C28 Diesel Range	09:56 • (MS) R Spike Amount (dry) mg/kg 53.2	3462800-3 10, Original Result (dry) mg/kg U	19/19 10:08 • (MS MS Result (dry) ( mg/kg r 46.9 2	sD) R3462800 <b>ASD Result</b> dry) mg/kg 44.2	4 10/19/19 10 MS Rec. % 88.1	):21 MSD Rec. % 83.2	Dilution	Rec. Limits % 50.0-150	MS Qualifier	MSD Qualifier	RPD % 5.87	RPD Limits % 20
(S) o-Terphenyl					96.7	91.7		18.0-148				

Sc

₹

•

39 of 46 PAGE

	Con
WG1365703	Semi-Volatile Organic

### QUALITY CONTROL SUMMARY

15	
080	
Method	
bу	
(C)()	
Compounds	
Organic	
ii e	

WG1365703				QU	ALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organic	Compounds	(GC) by Met	hod 8015		L1150137-16,17,18		ece
post Method Blank (MB)							ived s
(MB) R3462886-1 10/19/15	9 16:27						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C. ∾
Analyte	mg/kg		mg/kg	mg/kg			
🙀 C10-C28 Diesel Range	Л		1.61	4.00			11
C28-C40 Oil Range	n		0.274	4.00			/ <mark>8/</mark>
(S) o-Terphenyl	64.9			18.0-148			302
/202							1 <b>1</b> 2
		Ú					;: <b>5</b>
	I Sample (L	(c)					7: ŝ
CCS) R3462886-2 10/19/	19 16:40						<u>.</u> ທີ
:13	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		РМ
Analyte	mg/kg	mg/kg	%	%			ې ۵
C10-C28 Diesel Range	50.0	34.7	69.4	50.0-150			ン グ
(S) o-Terphenyl			61.9	18.0-148			7

SC

Ū

<u>ک</u>

•

**PAGE**: 40 of 46

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 41 of 46

### GLOSSARY OF TERMS

Qualifier	Description
V	The sample concentration is too high to evaluate accurate spike recoveries.



PROJECT: 212C-MD-01491

SDG: L1150137

DATE/TIME: 10/24/19 21:42

PAGE: 42 of 46

### Received by OCD: 11/8/2021 12:57:39 PACCREDITATIONS & LOCATIONS

Page 297 of 348 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Ν
Alaska	17-026	N
Arizona	AZ0612	Ν
Arkansas	88-0469	Ν
California	2932	Ν
Colorado	TN00003	Ν
Connecticut	PH-0197	Ν
Florida	E87487	N
Georgia	NELAP	Ν
Georgia ¹	923	N
ldaho	TN00003	C
Illinois	200008	C
Indiana	C-TN-01	C
lowa	364	Р
Kansas	E-10277	R
Kentucky ¹⁶	90010	S
Kentucky ²	16	S
Louisiana	Al30792	Т
Louisiana ¹	LA180010	Т
Maine	TN0002	T
Maryland	324	U
Massachusetts	M-TN003	V
Michigan	9958	V
Minnesota	047-999-395	٧
Mississippi	TN00003	٧
Missouri	340	٧
Montana	CERT0086	V

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

### Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



Released to Imaging: 10/11/2022 11:56:13 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

P/ 43

	For the first of the formula       Contraine for the first set of the formula       Contraine for the
--	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Internet         Defaultion         Internet State         Diversion           Maint         Concordination         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         Internet State           Maint         Internet State         Internet State         Internet State         InternetState           Maint <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>L</th><th>. al</th><th>V</th><th>5</th></t<>															L	. al	V	5
Instrume         Concorp Philips         Concorp Philips         Annon-State Reconcert           Instrume         Concorp Philips         Annon-State Reconcert         Annon-State Reconcert           Instrume         Concorp Bunk         Concorp Bunk         Concorp Bunk         Concorp Bunk         Annon-State Reconcert           Instrume         Concorp Bunk         Concorp Bunk         Texa Manual         Annon-State Reconcert	<b>۲</b>	Tetra Tech. Inc.			901	West Wall S Midland,Tex Tel (432) 6 Fax (432) 6	treet, Suite xas 79701 582-4559 582-3946	9 100										
Match Marketing         COP Buck Fed CTB         Concrete Manual Marketing         Concrete Marketing         Conc	Client Name:	Conoco Phillips	Site Manager:		Christiar	n Llull						AN	ALYS	IS RE(	DUEST			
Considerationation (consideration)         Lat County, New Mexico (consideration)         Test Consideration (consideration)         Consideration (consideration)         Consideration (consideration)           model         model         consideration (consideration)         consideration)         consideration         consideration         consideration)         consideration         consideration         consideration)         consideration         consideration         consideration         consideration)         consideration         consideration         consideration         consideration         consideration         consideration         consideration         consideration         consin         consideration         c	Project Name:	COP Buck Fed CTB								-			- spe	city n		N 00		
Monton         Monton Terment         Monton Terment         Monton Terment         Monton Terment         Monton Terment           Retring Lakeres         Dee Analytical         Dee Analytical         Terment         Monton Terment         M	Project Location: county, state)	Lea County, New Mexico	Project #:		212C	-MD-0149	91		1			n tersendi Kalendari Kalendari	an a	-				
Marchine Line         Tack Analytical         Sametre strates         Account         A	Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			1				-	(0)	0				<u></u>	inter Alter	(tail b	
Commun.         Run deeper samples (GO-DFO exceeds 10 mg/g or frances so mg/	Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:		X			_	- Of	DH 92 d	11.05	9 100				ettache	
Lue         SameTrucio         Ametrucion         Ametrucion         Ametrucion         Ametrucion           (Lable outor)         Example         Emitro outor)         Emitro outor         Emitro outor         Emitro outor)         Emitro outor         Emitro outor         Emitro outor         Emitro outor)         Emitro outor	Comments: Run mg/ŀ	deeper samples if GRO+DRO exceeds 100 mg/kg or if bi ig or if total BTEX exceeds 50 mg/kg or if chlorides excee	enzene excee d 600 mg/kg.	ds 10	CC	DPTETRA	Acctnu	E	80928	90 - OH	Cd Cr Pr		254	529/202		Sal	stry (see a	
LMail         Sample Deviring Line         Concaration			SAMP	LING	MATRIX	PRESERV	ATIVE	(N/	KETE	- OUS	s8 sA	atiles	9 / 809	ol. 82	4 - 1 ³	ete	Chemis	1. 1970 1. 1970 1. 1970
Underse       Date       Time	LAB #	SAMPLE IDENTIFICATION	YEAR: 2019		B			Y) Dar	81208	) WST(	pA slate	selitsio solatiles sloV ime	Vol. 82	V .ime2 8 \ S808	(soteeda	0.005 (	) Vater ( 88 noits	Rel
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	( LAB USE )		DATE	TIME	IJTAW JIOS	ICE HNO ³ HCC	NONE		8 X3T8	08 HqT	TCLP IN	TCLP S	CC/W2 BCI	BCB/P 8	MAON RA) MJ9	Chloride	General OlnoinA	108 H9T
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/	BH-19-3 (9'- 10')	10/8/2019	1320	×	×		1 N	×	×	Silv.					×		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	BH-19-3 (14'- 15')	10/8/2019	1330	×	×		1 N	×	×						×		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	BH-19-4 (0'- 1')	10/10/2019	1400	×	×		1 N	×	×			si. Tèsi			×	268	
15       BH-19-4 (4'-5')       10/10/2019       1415       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       141       1	14	BH-19-4 (2'- 3')	10/10/2019	1410	X	×		1 N	×	×						×		182
$ \frac{ l }{ l } = \frac{ l }{ l } + \frac{ l }{ l } +$	15	BH-19-4 (4'- 5')	10/10/2019	1415	×	×		1 N	×	×				1		×		
17       BH-19-4 (14'-15')       10/10/2019       1440       1       1       N       X       X       N       N       X       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       <	16	BH-19-4 (6'- 7')	10/10/2019	1420	×	×		1 N	×	×						×		
If       BH-194 (14'-15')       10/10/2019       1500	17.	BH-19-4 (9'- 10')	10/10/2019	1440	×	X		1 N	×	×	1					×		
Relinquished by:     Date:     Time:     Date:     Time:     Date:     Time:       Relinquished by:     Date:     Time:     Received by:     Date:     Time:     REMARKS:       Relinquished by:     Date:     Time:     Date:     Time:     Date:     Time:	\$1	BH-19-4 (14'- 15')	10/10/2019	1500	×	×		Z -	×	×						×		
Relinquished by:     Date:     Time:     Date:     Time:     LaB USE     REMARKS:       Relinquished by:     Date:     Time:     Date:     Time:     LaB USE     STANDARD       Relinquished by:     Date:     Time:     Date:     Time:     LaB USE     STANDARD       Relinquished by:     Date:     Time:     Date:     Time:     LaB USE     Sample Temperature       Relinquished by:     Date:     Time:     Date:     Time:     Sample Temperature     Push Charges Authorized       Relinquished by:     Date:     Time:     Date:     Time:     Sample Temperature     Push Charges Authorized       Relinquished by:     Date:     Time:     Date:     Time:     Image Charges Authorized       Relinquished by:     Date:     Time:     Date:     Time:     Image Charges Authorized       Relinquished by:     Date:     Time:     Date:     Time:     Image Charges Authorized       Relinquished by:     Date:     Time:     Time:     Image Charges Authorized       Relinquished by:     Date:     Time:     Time:     Image Charges Authorized       Relinquished by:     Date:     Time:     Time:     Image Charges Authorized																	-	
Relinquished by:     Date:     Time:     Bample     Time:     Bample     RUSH:     Same Day     24 hr     48 hr     72 hr       Relinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Time:     Date:     Play:     Charges Authorized       Relinquished by:     Date:     Time:     Date:     Time:     Date:     Time:     Date:	Relinquished by:	LAN Date: Time:	Received by:	Rec		Date:	Time: (イ:	10		U AB L	SE	REMA	RKS: STAN	DARD	-			
Relinquished by:     Date:     Time:     Image Authorized       Relinquished by:     Date:     Time:     Image Secial Report Limits or TRRP Report	Relinquished by:	Date: Time:	Received by:			Date:	Time:		Samp	le Temp.	erature		RUSH:	Same D	ay 24 h	r 48 hr	r 72 hr	
(Circle) HAND DELIVERED FEDEX UPS Tracking #:	Relinquished by:	Date: Time:	Received by	IN IN	T	Date: 10/15/10	Time:	01					Rush C Special	harges Au Report Lir	thorized mits or TF	RP Rep	ort	
					P				(Circ	le) HAN	D DELIV	ERED	FEDEX	UPS 1	racking #	#		

Released to Imaging: 10/11/2022 11:56:13 AM

Cooler Receipt Form		
Client: Coptética	locil	37
Cooler Received/Opened On: 10/ 15/19 Temperature:	2.0	
Received By: Hailey Melson		
Signature: Nauluy NUC		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	/	
Bottles arrive intact?	/	
Correct bottles used?	6	
Sufficient volume sent?	$\langle$	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		日本のないの

Received by OCD: 11/8/2021 12:57:39 PM

Pace Analytical National Center for Testing & Innovation

Page 300 of 348

•

### APPENDIX D Waste Manifests

Received by OCD: 11/8/2021 12:57: <b>PR360</b> ENVIRONMENTAL SOLUTIONS Permian Basin		Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card # Job Re	mer: C( mer #: Cl ed by: JC est #: 1 Date: 11 	DNOCOPHIL RI2190 DE TYLER /13/2018 CNABB PAR UMER 32	LIPS	E C C C C C C C C C C C C C C C C C C C	Ficket #: Bid #: Date: Generator: Generator #: Vell Ser. #: Vell Name: Vell #: Field #: Rig: County	700-95155 O6UJ9A0 11/13/201 CONOCO 999908 BUCK CE TANK BA	58 009Z1 8 PHILLIPS Fedura NTRAL TTERY	Page 302 of 348	
Facility: CRI											
Product / Ser	vice	ier and	12 yet	1		Q	uantity Un	lits			
Contaminated	d Soil (R	CRA Exem	pt)				18.00 y	ards			
	Cell	рH	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Ce	rtificatio	n Stateme	nt of Wa	ste Statu	S		1.32 3	Rectifier 1	NST ST		
I hereby certify 1988 regulatory X RCRA Exer _ RCRA Non characteristics e amended. The _ MSDS Info	that accor determina mpt: Oil F n-Exempt: established following prmation	ding to the I ation, the ab ield wastes Oil field wa in RCRA r documentati RCRA	Resource ( ove descr generated ste which egulations fon is atta Hazardou	conservati ibed waste from oil a is non-haz s, 40 CFR 2 ched to den s Waste A	on and Recover is: nd gas explorate cardous that do 261.21-261.24 monstrate the a nalysisP	ery Act (F ation and p bes not ex- or listed h above-des brocess Kr	production o ceed the min azardous wa cribed waste nowledge	pperations and imum standa aste as define e is non-hazar Other (Pro	d are not mix rds for waste d in 40 CFR, dous. (Chec ovide descrip	ted with not e hazardous , part 261, s k the appro- ption above	n-exempt wast s by ubpart D, as priate items): )
Driver/ Agent	Signatu	re		- 20	R360	Represe	ntative Sig	nature			
Customer Ap	proval	(S) ( regard		THIS	IS NOT	AN II	NVOIC	E! (4)		-	

Approved By: _____

Date: _____

Received by OCD: 11/8/2021 12:52	7:39 PM			Page 303 of 3	<b>48</b>
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JENNI FORTUNATO 2 11/13/2018 MCNABB PARTNERS JR M82	Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-951557 OGUJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 999908, Col-eral BUCK CENTRAL TANK BATTERY	
Facility: CRI					
Product / Service			Quantity Units		
Contaminated Soil (RCRA Exem	pt)		20.00 yards		
Cell pH	CI Con	d %Solids TDS	PCI/GM MR/HR	H2S % Oil Weight	

0.00

0.00

0.00

1 hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative-Signature
Customer Approval	
	THIS IS NOT AN INVOICE

Approved By:

Lab Analysis: 50/51

Date:

Released to Imaging: 10/11/2022 11:56:13 AM

Received by OCD: 11/8/2021 12:57.	:39 PM			Pag	e 304 of 348
RBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TYLER 3 11/13/2018 MCNABB PARTNERS JR M82	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-951602 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENT NON-DRILLING LEA (NM)	ral T/ STB
Facility: CRI					
Product / Service		Quant	ity Units	and the second second	

Product / Serv	lice	10-11 (C-1.)				Q	uantity Uni	ts			
Contaminated	Soil (R	CRA Exe	mpt)				20.00 ya	rds			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-_ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
	N
Customer Approval	
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by O	CD: 11/8	/2021 12:5	7:39 PM								<b>Page 305 of 3</b> 4
RS	36	0	Custor Custor Ordere AFE #	mer: CC mer #: CF ed by: JC :	NOCOPHIL RI2190 E TY,LER	LIPS	Ti Bi Di G	cket #: d #: ate: enerator: enerator #:	700-95160 06UJ9A0 11/13/201 CONOCO	01 009Z1 8 PHILLIPS	(
ENVIRONMENT	AL	1	Manife	est#: 4			Ŵ	ell Ser. #:	999908		ENTRAL T
SOLUTIO	NS C		Manif. Hauler	Date: 11	/13/2018 CNABB PAR	TNERS	VV VV	ell Name. /ell #:	BUCK FE	DENAL	
Permian Basir	n		Driver	Gl	JMBER		Fi	eld:			
			Truck Card ‡ Job Re	# M3 # ef <i>#</i>	32		Fi R C	eld #: ig: ounty	NON-DRI LEA (NM)	LLING	
Facility: CRI											
Product / Serv	vice		2.3			Q	uantity Uni	ts			
Contaminated	Soil (R	CRA Exer	npt)				18.00 ya	rds			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis.	50/51	0.00	0.00	0.00	0						
Generator Cer	rtificatio	n Statem	ent of Wa	ste Statu	S	100			Section.		
I hereby certify t 1988 regulatory X RCRA Exer RCRA Non characteristics e	that accor determina mpt: Oil F -Exempt: established following	ding to the ation, the al 'ield wastes Oil field w I in RCRA documenta	Resource bove descr generated aste which regulations tion is atta	Conservati ibed waste from oil a is non-haz s, 40 CFR 2 ched to de	on and Recoversis: nd gas explorated are and the second se	ery Act (R ation and p bes not exc or listed h above-des	CRA) and th production op ceed the mini azardous was cribed waste	e US Envir erations and mum standa te as define is non-haza:	onmental Pr d are not min rds for wast d in 40 CFR rdous. (Chec wide descrive	otection Ag ked with no e hazardous , part 261, s k the appro-	gency's July n-exempt wast s by subpart D, as opriate items):
amended. The f	rmation	_ RCRA	Hazardou	s Waste Ai	ialysis _ P	IUCCSS KI	owieuge _		ovide descrip	biion above	:)

Customer Approval

### THIS IS NOT AN INVOICE!

Approved By: _____

Date: _____

Ce

Received by O	7:39 PM Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card # Job Re	mer: C mer #: C ed by: J est #: 5 Date: 1 T: M J # M # M ef #	ONOCOPHIL RI2190 DE TYLER 1/13/2018 ICNABB PAR R 182	LIPS	T E C C C C C C C C C C C C C C C C C C	Ficket #: Bid #: Date: Generator: Generator #: Vell Ser. #: Vell Ser. #: Vell Name: Vell #: Field: Field #: Rig: County	700-951680 06UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS #: 9999908 BUCK FEDERAL CENTRAL T NON-DRILLING LEA (NM)				
Facility: CRI											
Product / Serv	vice	5 12 10 12			-	Q	uantity Un	lits		-	
Contaminated	Soil (R	CRA Exem	pt)				20.00 y	ards			
	Cell	nH	CI	Cond	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Ce	rtificatio	n Stateme	nt of Wa	ste Stat	us	1. 1. 1. 1.		A start	10		
I nereby certify 1988 regulatory X RCRA Exer _ RCRA Non characteristics e amended. The f _ MSDS Info	that accor determina mpt: Oil F -Exempt: established following prmation	aing to the ation, the ab ield wastes Oil field wa in RCRA r documentat _ RCRA	Resource ove descr generated iste which egulations ion is atta Hazardou	ibed wast from oil is non-ha s, 40 CFR ched to do s Waste A	and gas explored and gas explored zardous that de 261.21-261.24 emonstrate the AnalysisF	ation and j bes not ex or listed h above-des Process Kr	production o ceed the min nazardous was cribed waste nowledge	perations and nimum standa aste as define e is non-haza Other (Pro	d are not mix rds for waste d in 40 CFR, rdous. (Chec ovide descrip	ed with nor hazardous part 261, s k the appro- ption above	n-exempt wast s by subpart D, as opriate items):
Driver/ Agent	Signatu	re		-	R360	Represe	ntative Sig	nature		2	
Customer Ap	proval	-	-	THIS		ANI	NVOIC	E!	Λ		

Approved By: _____

Date:

•

Received by O	<b>)CD: 11</b> /	/ <mark>8/2021 12:</mark> :	57:39 PM								Page 307 of 3
RBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		Custor Custor Ordere AFE # PO #: Manife Manif. Haule Driver Truck Card # Job R	mer: C mer #: C ed by: J( : bate: 1' r: M G # M # M # M	ONOCOPHIL RI2190 DE TYLER 1/13/2018 ICNABB PAR UMER I32	LIPS	T B G G V V V F F F F C	Ficket #: Bid #: Date: Generator: Vell Ser. #: Vell Name: Vell Name: Field: Field: Field #: Rig: County	700-951681 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T7			
Facility: CRI								14-			
Product / Serv	vice					Q	uantity Un	ns			
Contaminated	Soil (R	CRA Exen	npt)				18.00 ya	ards			
	Cell	рH	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information __ RCRA Hazardous Waste Analysis __ Process Knowledge __ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	0
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by O	<b>CD: 11</b> /	8/2021 12:.	57:39 PM								Page 308 of 348
R360 ENVIRONMENTAL SOLUTIONS		Custor Custor Ordere AFE # PO #: Manife Manif. Haule Driver Truck Card # Job R	mer: mer #: ed by: : est #: Date: r: # # ef #	CONOCOPHIL CRI2190 JOE TYLER 7 11/14/2018 MCNABB PAR JR M82	LIPS		Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-95192 06UJ9A00 11/14/201 CONOCO 999908 BUCK FE NON-DRI LEA (NM)	24 009Z1 8 PHILLIPS DERAL CI	ENTRAL T#	
Facility: CRI											
Product / Serv	ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exen	npt)				20.00	yards			
	Cell	рH	CI	Cond	d. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0 0		1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster

RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):
 MSDS Information ______ RCRA Hazardous Waste Analysis ______ Process Knowledge ______ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!

Approved	By:
----------	-----

Received by OCD: 11/8/2021 12:57.	:39 PM				Page 309 of 348
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TYLER 8 11/14/2018 MCNABB PARTNERS JOSH M79	Tick Bid : Date Gen Gen Wel Wel Vel Fiel Rig: Cou	ket #: #: herator: herator #: II Ser. #: II Name: II #: d: i d #: i unty	700-951926 O6UJ9A0009Z1 11/14/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/ NON-DRILLING LEA (NM)
Facility: CRI					
Product / Service		(	Quantity Units		
and the second states as been as a fact of the			00.00		

Product / Serv	ice	1				-	uantity on				
Contaminated	Soil (R	CRA Exe	mpt)				20.00 ya	rds			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	22	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval		
	THIS IS NOT AN INVOICE!	
Approved By:	Date:	

Received by OCD: 11/8/2021 12:57			Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOC CRI2190 JOE TY NA 11/14/20 MCNAB JOSH M79	OPHIL 0 'LER 018 3B PAR	LIPS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-95230 06UJ9A00 11/14/201 CONOCO 999908 BUCK FE NON-DRI LEA (NM)	03 009Z1 8 PHILLIPS DERAL C	<i>Page 310 of 348</i> S
Facility: CRI											
Product / Serv	/ice					Q	antity U	nits			
Contaminated	Soil (RC	RA Exem	pt)				20.00	yards			
Lab Analysis:	Cell 50/51	рН 0.00	CI Cor 0.00 0.0	nd. %5 00	Solids 0	TDS	PCI/GM	I MR/HR	H2S	% Oil	Weight
Generator Cer	rtification	Statemen	nt of Waste St	tatus			1.800	6.000	Constant State		
I hereby certify 1 1988 regulatory X RCRA Exer RCRA Non characteristics e amended. The f MSDS Info	that accord determina mpt: Oil Fi -Exempt: ( stablished following c rmation	ling to the R tion, the abo eld wastes g Dil field was in RCRA re locumentati RCRA H	Resource Conserved described w generated from of ste which is non egulations, 40 C on is attached to hazardous Wast	vation and aste is: bil and gas -hazardou FR 261.21 demonstr e Analysis	d Recover as explored as that do -261.24 rate the state $rate = 10^{-2}$	ery Act (R ation and p bes not exc or listed ha above-desc rocess Kn	CRA) and roduction eed the mi azardous w cribed was owledge	the US Enviro operations and inimum standar vaste as defined te is non-hazar Other (Pro	onmental Pro l are not mix rds for waste d in 40 CFR dous. (Chec ovide descrip	otection Ag ced with no e hazardous , part 261, s k the appro- ption above	gency's July n-exempt wast s by subpart D, as opriate items):
Driver/ Agent	Signatur	e			R360	Represer	ntative Si	gnature			
Customer Ap	proval							٢.	N	/	

### THIS IS NOT AN INVOICE!

Approved By: _____

Date: _____

V

Received by O	C <b>D: 11/8</b> /	/2021 12:5	7:39 PM								Page 311 of 348
R360 ENVIRONMENTAL SOLUTIONS			Customer: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JOE TYLER AFE #: PO #: Manifest #: 10 Manif. Date: 11/14/2018 Hauler: MCNABB PARTNERS Driver JR Truck # M82 Card # Job Ref #					Ficket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Field #: County	700-952308 O6UJ9A0009Z1 11/14/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/ NON-DRILLING LEA (NM)		
Facility: CRI											
Product / Serv	vice	1				Q	uantity Ur	nits		-	
Contaminated	Soil (R	CRA Exen	npt)				20.00 y	ards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Generator Cer I hereby certify f 1988 regulatory X RCRA Exer RCRA Non- characteristics es amended. The f MSDS Infor	tificatio that accor determina npt: Oil F Exempt: stablished ollowing rmation	n Stateme ding to the ation, the ab field wastes Oil field wastes in RCRA n documentat _ RCRA	ent of Wa Resource ( oove descri generated aste which regulations tion is attac Hazardous	ste Statu Conservat ibed waste from oil a is non-ha s, 40 CFR ched to de s Waste A	IS ion and Recove is: and gas explora zardous that do 261.21-261.24 monstrate the a nalysis _ P	ery Act (R ation and p bes not exe or listed h above-des rocess Kn	CRA) and t production c ceed the mir azardous wa cribed waste owledge	he US Envir operations and nimum standa aste as define e is non-haza Other (Pro	onmental Pr d are not mix rds for wast d in 40 CFR rdous. (Chec ovide descrij	otection Ag ked with noi e hazardous , part 261, s k the appro otion above	ency's July n-exempt waste s by ubpart D, as priate items): )
Driver/ Agent	Signatu	re			R360 I	Represe	ntative Sig	nature	11. 11. 1		

Customer Approval

### THIS IS NOT AN INVOICE!

Approved By:

Date:

Received by O	C <b>D: 11/8</b> /	2021 12:5	7:39 PM									Page 312 of 348
R360			Custom Custom Ordered AFE #:	er: er #: d by:	CON CRI2 JOE	OCOPHIL 190 TYLER	LIPS		Ticket #: Bid #: Date: Generator:	700-9526 06UJ9A0 11/15/201 CONOCC	25 009Z1 8 PHILLIPS	
ENVIRONMENT	AL C	1	PO #: Manifes	st #:	11				Well Ser. #:	999908		
SOLUTION	VS		Manif. D	Date:	11/15/2018				Well Name: BUCK CENTRAL			
Permian Basin			Driver		JOSH		INCINO	Field:			A 100000	
			Truck # Card # Job Ret	f #	M79				Field #: Rig: County	NON-DRI	LLING	
Facility: CRI												
Product / Serv	ice						Q	antity U	nits			
Contaminated	Soil (RC	RA Exem	pt)					20.00	yards			
	Cell	рН	CI	Con	d.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.0	0	0						
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fa MSDS Infor	tification hat accord determina hpt: Oil F Exempt: 0 stablished ollowing or mation	a Stateme ling to the l tion, the ab teld wastes Oil field was in RCRA r locumentat RCRA	nt of Was Resource C ove describ generated f ste which i egulations, ion is attacl Hazardous	te Sta onserv bed wa rom o s non- 40 CF hed to Waste	atus vation ste is: il and hazarc rR 261 demon e Analy	and Recover gas explorations that do .21-261.24 instrate the state of	ery Act (R ation and p bes not exc or listed ha above-desc Process Kn	CRA) and roduction eed the m azardous w cribed was owledge	the US Enviro operations and inimum standa vaste as defined te is non-hazar Other (Pro	onmental Pr l are not min rds for wast d in 40 CFR dous. (Cheo ovide descrip	otection Ag ked with no e hazardous , part 261, s k the appro- ption above	ency's July n-exempt wast s by ubpart D, as priate items): )

Driver/ Agent Signature	R360 Representative Signature
	- Aller
Customer Approval	

### THIS IS NOT AN INVOICE!

Approved By:

Date:

Received by OCD: 11/8/20	021 12:57:39	РМ							1	Page 313 of 348
R36 ENVIRONMENTAL SOLUTIONS	Cu Cu Or AF PC Ma Ma Ha Dr Tr Ca Jo	ustomer: ustomer #: dered by: E #: D #: anifest #: anif. Date: auler: viver vuck # and # bb Ref #	CONOCC CRI2190 JUSTIN V NA 11/15/20' MCNABE JR M82	PHILLI VRIGH 18 PART	PS T NERS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well %: Field: Field #: Rig: County	700-952627 O6UJ9A000 11/15/2018 CONOCOF 999908 BUCK FED NON-DRIL LEA (NM)	7 09Z1 PHILLIPS PERAL CE LING	INTRAL T
Facility: CRI										
Product / Service					Q	uantity U	nits	1000		
Contaminated Soil (RCR	A Exempt)					20.00	yards			
Cell	CI CI	Con	d %Sc	lids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MEDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
	(
Customer Approval	
	THE IS NOT AN INVOICE

### THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by O	C <b>D: 11</b> /8	8/2021 12:5	7:39 PM								Page 314 of 348		
R360			Custome Custome Ordered AFE #:	r: C0 r #: C1 by: J0	ONOCOPHIL RI2190 DE TYLER	LIPS		Ticket #: Bid #: Date: Generator:		700-952702 O6UJ9A0009Z1 11/15/2018 CONOCOPHILLIPS			
			PO #: Manifest Manif. Da	#: 13 ate: 11	3 1/15/2018			Well Ser. #: Well Name:	999908 BUCK FEDERAL CENTRAL TA				
Permian Basin		Hauler: Driver Truck # Card #	J M	CNABB PAR R 182	INERS		Field: Field #: Rig:	NON-DRILLING					
			Job Ref #	#				County	LEA (NM)				
Facility: CRI													
Product / Serv	ice					Q	uantity U	nits					
Contaminated	Soil (R	CRA Exen	npt)				20.00	yards					
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight		
Lab Analysis:	50/51	0.00	0.00	0.00	0								

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

**Driver/ Agent Signature** 

**R360 Representative Signature** 

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:	57:39 PM					Page 315 of
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILI CRI2190 JOE TAYLOR 14 11/15/2018 MCNABB PART JOSH M79	IPS	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-952698 O6UJ9A0009Z1 11/15/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING	5
Facility: CRI						
Product / Service			Qua	antity Units		
Contaminated Soil (RCRA Exe	npt)			20.00 yards		
Cell nH	CI Con	d %Solids	TDS	PCI/GM MR/HR	H2S % Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

**R360 Representative Signature Driver/ Agent Signature Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Date:

Released to Imaging: 10/11/2022 11:56:13 AM

Received by O	CD: 11/8	8/2021 12::	57:39 PM									Page 316 of 34	
R360 ENVIRONMENTAL SOLUTIONS			Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card # Job R	mer: mer #: ed by: : : Date: : : # # # # #	er: CONOCOPHILI er #: CRI2190 by: JOE TAYLOR t #: 15 Date: 11/15/2018 MCNABB PAR JOSH M79			IPS Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: NERS Well #: Field: Field #: Rig: County			700-952775 O6UJ9A0009Z1 11/15/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING		
Facility: CRI													
Product / Serv	/ice	to be					Q	uantity U	nits				
Contaminated	I Soil (R	CRA Exer	npt)					20.00	yards				
	Cell	pН	CI	Con	d. %5	Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight	
Lab Analysis:	50/51	0.00	0.00	0.0	0	0							
Generator Ce	rtificatio	on Statem	ent of Wa	ste St	atus				See 2 miles				
	and a second second		T	0	and the second second	1 D	A + (T)	(DA) and	the LIC Envir	onmental Pr	otection Ac	enev's huv	

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

Driver/ Agent Signature R360 Representative Signature

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Received by OC	CD: 11/8	/2021 12:57	':39 PM							1	Page 317 of 348
R360 ENVIRONMENTAL SOLUTIONS		Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card # Job Re	mer: mer #: ed by: : est #: Date: : : # # ef #	CONOCOPHI CRI2190 JOE TYLER 16 11/15/2018 MCNABB PAF JR M82	LLIPS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-9527 O6UJ9A0 11/15/201 CONOCO 999908 BUCK CE TANK BA			
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	I Soil (R	CRA Exem	npt)				20.00	yards			
	Cell	pН	CI	Cond	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	) 0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Date:

Released to Imaging: 10/11/2022 11:56:13 AM

Received by OCD: 11/8/2021 12:57:3	9 PM			Page 318 of 348
R360	Customer: Customer #: Ordered by: AFE #: PO #:	CONOCOPHILLIPS CRI2190 JOE TYLER	Ticket #: Bid #: Date: Generator: Generator #:	700-953014 O6UJ9A0009Z1 11/16/2018 CONOCOPHILLIPS
ENVIRONMENTAL SOLUTIONS	Manifest #: Manif. Date:	17 11/16/2018	Well Ser. #: Well Name:	999908 BUCK FEDERAL CENTRAL T/
Permian Basin	Hauler: Driver Truck #	MCNABB PARTNERS JR M82	Well #: Field: Field #:	
	Card # Job Ref #		Rig: County	NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		G	uantity Units	
webs and the same the transment and the between the band of the				

Contaminated	CRA Exe	mpt)		20.00 yards							
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):
 MSDS Information _____ RCRA Hazardous Waste Analysis _____ Process Knowledge _____ Other (Provide description above)

Driver/ Agent Signature

**R360 Representative Signature** 

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/20	21 12:57:39 1	PM						Page 319 of 348	
ENVIRONMENTAL SOLUTIONS		ustomer: ustomer #: rdered by: FE #: O #: lanifest #: lanif. Date: auler: river	CONOCOP CRI2190 JOE TYLE 18 11/16/2018 MCNABB F GUMER	PHILLIPS R 3 PARTNERS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field:	700-953015 O6UJ9A0009Z1 11/16/2018 CONOCOPHILLIPS *#: #: 999908 e: BUCK FEDERAL CENTRAL		
	C	ard # ob Ref #	10102			Rig: County	NON-DRILLING LEA (NM)		
Facility: CRI									
Product / Service				Q	uantity U	nits			
Contaminated Soil (RCR	A Exempt)				18.00	yards			
Cell p	H CI	Con	d. %Solid	ds TDS	PCI/GN	1 MR/HR	H2S % O	il Weight	

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

 <u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast- RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information _____ RCRA Hazardous Waste Analysis _____ Process Knowledge _____ Other (Provide description above)

**Driver/ Agent Signature** 

**R360 Representative Signature** 

**Customer Approval** 

Lab Analysis: 50/51

### THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:57:3	9 PM				Page 320 of 348	
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TYLER 19 11/16/2018 RT TRUCKING LLC JR M82		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-953110 O6UJ9A0009Z1 11/16/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/	
Facility: CRI						
Product / Service			Quantity U	nits		
Contaminated Soil (RCRA Exempt	t)	20.00 yards				

0.00

pH

CI

0.00

Cond.

0.00

Cell

Lab Analysis: 50/51

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

TDS

PCI/GM

MR/HR

H2S

% Oil

Weight

%Solids

0

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	Q.
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by OCD: 11/8/2021 12:57:	39 PM			Page 321 of 348		
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TYLER 20 11/16/2018 MCNABB PARTNERS GUMER M32	Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-953111 O6UJ9A0009Z1 11/16/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/ NON-DRILLING LEA (NM)		
Facility: CRI						
Product / Service		Q	uantity Units			
Contaminated Soil (RCRA Exemp	ot)		18.00 yards			
Cell pH	CI Cond	d. %Solids TDS	PCI/GM MR/HR	H2S % Oil Weight		

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	- A
	THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by OC	C <b>D: 11/8</b>	/2021 12:57	:39 PM							i i	Page 322 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin		Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck : Card # Job Re	mer: mer #: ed by: : est #: Date: : # # # #	CONOCOPHILLIPS #: CRI2190 y: JOE TYLER :: 21 re: 11/19/2018 MCNABB PARTNERS JOSH M79			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-953734 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/			
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				20.00	yards			
	Cell	рН	CI	Cond	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0				AMERICA		risigitt

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

**Driver/ Agent Signature** 

R360 Representative Signature

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Date:

Released to Imaging: 10/11/2022 11:56:13 AM

Received by O	CD: 11/8	8/2021 12:5	7:39 PM								Page 323 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin			Custo Custo Orde AFE PO # Manif Manif Haule Drive Truck Card Job R	omer: omer #: red by: #: est #: Date: or: f f f f f f f f f f f f f f f f f f f	CONOCOPHI CRI2190 JOE TYLER 22 11/19/2018 MCNABB PAF GUMER M32	LLIPS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-953741 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/		
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits			
Contaminated	I Soil (R	CRA Exen	npt)				18.00 )	/ards			
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						- Volgin
Generator Cer	tificatio	n Stateme	ent of Wa	ste Stat	us						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:57: Received by OCD: 11/8/2021 12:57: Received by OCD: 11/8/2021 12:57: Province of the second			Custo Custo Orde AFE = PO # Manif Manif Haule Drive Truck Card = Job R	:39 PMCustomer:CONOCOPHILLIPSCustomer #:CRI2190Ordered by:JOE TYLERAFE #:PO #:PO #:Manifest #:23Manif. Date:11/19/2018Hauler:MCNABB PARTNERSDriverJRTruck #M82Card #Job Ref #				Ticket #: 700-953740 Bid #: O6UJ9A0009Z1 Date: 11/19/2018 Generator: CONOCOPHILLIP Generator #: Well Ser. #: 999908 Well Name: BUCK FEDERAL C Well #: Field: Field #: Rig: NON-DRILLING County LEA (NM)			<i>Page 324 of 348</i> S CENTRAL T7
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	Soil (RC	CRA Exem	pt)				20.00	/ards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fo MSDS Infor Driver/ Agent	tification hat accord determina npt: Oil Fi Exempt: 0 stablished ollowing o mation Signatur	n Stateme ding to the I tion, the ab- ield wastes g Oil field wa in RCRA re documentati RCRA I	nt of Wa Resource ( ove descr generated ste which egulations on is attac Hazardou:	ste Statu Conservatio ibed waste from oil an is non-haz 40 CFR 2 ched to der s Waste Ar	s on and Recove is: nd gas explora ardous that do 261.21-261.24 c nonstrate the a nalysis _ Pr R360 F	ery Act (R tion and p es not exo or listed h bove-des rocess Kn Represer	CRA) and production of ceed the min azardous w cribed wast owledge	the US Enviro operations and nimum standar aste as defined e is non-bazaro other Prov	nmental Pro are not mix ds for wasto in 40 CFR, dous. (Chec vide descrip	otection Ag and with no hazardous part 261, s k the appro- ption above	gency's July n-exempt wast s by subpart D, as opriate items): )
Customer App	oroval		ē				<u></u>				

### THIS IS NOT AN INVOICE!

Approved By:

Date: _____
<i>Received by OCD: 11/8/2021 12:57:3</i>	9 PM		Page 325 of			
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TAYLOR 24 11/19/2018 MCNABB PARTNERS JOSH M79	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-953869 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING		
Facility: CRI						
Product / Service		Qua	antity Units			
Contaminated Soil (RCRA Exempt	)	20.00 yards				

	Cell	pH	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	
Lab Analysis.	50/51	0.00	0.00	0.00	0				

### Generator Certification Statement of Waste Status

Cell

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

H2S

% Oil

Weight

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

**Driver/ Agent Signature** 

R360 Representative Signature

**Customer Approval** 

# THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:57	:39 PM			I	Page 326 of
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TAYLOR 25 11/19/2018 MCNABB PARTNERS GUMER M32	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Field: Field #: Rig: County	700-953879 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING	
Facility: CRI					
Product / Service		Q	uantity Units		
Contaminated Soil (RCRA Exem	pt)		18.00 yards		
Cell pH	CI Con	d. %Solids TDS	PCI/GM MR/HR	H2S % Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ____ Other (Provide description above)

0

Driver/ Agent Signature	R360 Representative Signature
	All
Customer Approval	

### THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by OCD: 11/8/2021 12:57:3	89 PM			<b>Page 327 of 348</b>
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TAYLOR 26 11/19/2018 MCNABB PARTNERS JR M82	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-953875 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/
Facility: CRI				
Product / Service		Qua	ntity Units	

Product / Serv	lice					Quantity Units					
Contaminated Soil (RCRA Exempt)					20.00 yards						
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0				0.040.80		

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

### THIS IS NOT AN INVOICE!

Approved By:

**Customer Approval** 

Received by OCD: 11/8	/2021 12:57:3	9 PM							Page 328 of 348
R36	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #:	CONOCO CRI2190 JOE TAYL 27	PHILLIPS OR		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #:	700-954264 O6UJ9A0009Z1 11/20/2018 CONOCOPHILLIPS 999908			
Permian Basin		Manif. Date: Hauler: Driver Truck # Card # Job Ref #	11/20/2018 MCNABB F JOSH M79	3 PARTNERS		Well Name: Well #: Field: Field #: Rig: County	NON-DRII	DERAL C	ENTRAL T/
Facility: CRI									
Product / Service	-			0	uantity U	Inits			
Contaminated Soil (R	CRA Exempt	1			20.00	yards			
Cell	pH (	CI Con	d. %Solid	ds TDS	PCI/GN	MR/HR	H2S	% Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

0

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	

### THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by O	<b>CD: 11/</b> 8	8/2021 12:5%	7:39 PM								Page 329 of 348		
ENVIRONMEN SOLUTIO Permian Basi	RBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB		Custor Custor Ordere AFE #: PO #: Manife Manif. Hauler Driver Truck # Card # Job Re	mer: mer #: ed by: st #: Date: : f #	<ul> <li>CONOCOPHILLIPS</li> <li>#: CRI2190</li> <li>y: JUSTIN WRIGHT.</li> <li>Sectified</li> <li>t: 28</li> <li>te: 11/27/2018</li> <li>MCNABB PARTNERS</li> <li>JOSH</li> <li>M79</li> </ul>			Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	Ticket #:700-956341Bid #:O6UJ9A0009Z1Date:11/27/2018Generator:CONOCOPHILLIPSGenerator #:999908Well Ser. #:999908Well Name:BUCK FEDERAL CENTRAL 1/Well #:.Field:.Field #:.Rig:NON-DRILLINGCountyLEA (NM)				
Facility: CRI													
Product / Serv	vice					Q	uantity U	nits					
Contaminated	I Soil (R	CRA Exem	pt)				20.00	/ards					
	Cell	рН	CI	Cond	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight		
Lab Analysis:	50/51	0.00	0.00	0.00	0	and the second		2002 A 174 B	1.012.2				

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature

	A COMPANY AND A STATE		1
R360	Represe	entative Sig	hature
		/	
		V	
		A	
		80	
		// -	

**Customer Approval** 

# THIS IS NOT AN INVOICE!

Approved By:

Received by O	C <b>D: 11</b> /8	2/2021 12:57	:39 PM							i	Page 330 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin		Customer: Customer : Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	: CONOCOPHILLIPS #: CRI2190 by: JUSTIN WRIGHT Joc Tyle f: NA te: 11/27/2018 MCNABB PARTNERS JR M82				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	Ficket #:700-9563513id #:O6UJ9A0009Z1Date:11/27/2018Denerator:CONOCOPHILLIPSGenerator #:999908Well Ser. #:999908Well Name:BUCK FEDERAL CENTRAL T,Vell #:.Field:.Field #:.Rig:NON-DRILLINGCountyLEA (NM)			
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				20.00	/ards			
	Cell	рН	CI Co	nd. %	Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00 0.	00	0			and the second			

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information RCRA Hazardous Wester Acababaa and the above-described waste is non-hazardous.

MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ____ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

**Customer Approval** 

### THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:57:.	39 PM					P	Page 331 of 348				
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: C Customer #: C Ordered by: # AFE #: PO #: Manifest #: N Manif. Date: 1 Hauler: N Driver J Truck # N Card # Job Ref #	CONOCOPHILLIPS CRI2190 USTIN WRIGHT JOE TYLE IA 1/27/2018 ICNABB PARTNER OSH 179	RS	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-956467 O6UJ9A0009Z1 11/27/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING						
Facility: CRI											
Product / Service Quantity Units											
Contaminated Soil (RCRA Exemp	ot)		20.00	yards							
Cell pH	CI Cond.	%Solids TE	S PCI/GI	MR/HR	H2S	% Oil	Weight				
Lab Analysis: 50/51 0.00	0.00 0.00	0									
Generator Certification Statemen I hereby certify that according to the R 1988 regulatory determination, the abo X RCRA Exempt: Oil Field wastes g RCRA Non-Exempt: Oil field was characteristics established in RCRA reg amended. The following documentation MSDS Information RCRA H	t of Waste State esource Conservat ve described waste enerated from oil a te which is non-ha gulations, 40 CFR n is attached to de azardous Waste A	us tion and Recovery Ac e is: and gas exploration a zardous that does no 261.21-261.24 or liste emonstrate the above analysis Process	t (RCRA) and nd production exceed the n ed hazardous described wa Knowledge	I the US Enviro n operations and hinimum standar waste as defined ste is non-hazar Other (Pro	onmental Prov l are not mixe rds for waste d in 40 CFR, j rdous. (Check ovide descript	tection Ag ed with nor hazardous part 261, so the appro- tion above)	ency's July i-exempt wast by ubpart D, as priate items):				
Driver/ Agent Signature		R360 Repre	sentative 5	A							
Customer Approval			-	-							
	THIS	IS NOT AN	INVOI	CE!							

Approved By: _____

Date: _____

-

Received by O	CD: 11/8	/2021 12:5	7:39 PM								Page 332 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin		Custo Custo Order AFE = PO # Manif Haule Driver Truck Card = Job R	omer: omer #: red by: #: est #: Date: # # # #	CONOCOPHI CRI2190 JOE TYLER 31 11/27/2018 MCNABB PAR JR M82	LLIPS		Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-956 O6UJ9A 11/27/20 CONOC 999908 BUCK C TANK B/	487 0009Z1 018 OPHILLIP ENTRAL ATTERY	S	
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	npt)				20.00	/ards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Generator Cer I hereby certify f 1988 regulatory X RCRA Exer RCRA Non- characteristics es amended. The f MSDS Infor Driver/ Agent	tification hat accord determina npt: Oil F Exempt: 0 stablished ollowing of mation	n Stateme ding to the l tion, the ab ield wastes Oil field wa in RCRA r locumentati RCRA	ent of Wa Resource ( ove descri generated aste which egulations ion is attao Hazardous	ste Stati Conservat ibed waste from oil a is non-ha , 40 CFR ched to de s Waste A	us tion and Recove e is: and gas explora zardous that do 261.21-261.24 c emonstrate the a nalysis Pr	ery Act (R tion and p es not exc or listed ha bove-desc rocess Kn	CRA) and a roduction of eed the min zardous was cribed wast owledge	the US Enviro operations and nimum standar aste as defined e is non-hazarc Other (Prov	nmental Pr are not min ds for wast in 40 CFR lous. (Chec vide descrip	otection Ag ked with not e hazardous , part 261, s k the appro ption above	ency's July n-exempt wast s by ubpart D, as priate items): )

Customer Approval	Cus	tomer	Approval	1	
-------------------	-----	-------	----------	---	--

# THIS IS NOT AN INVOICE!

Approved By:

Date:

.

Received by O	CD: 11/8	/2021 12:5	7:39 PM							1	Page 333 of 348
RB3600 ENVIRONMENTAL SOLUTIONS		Custa Custa Orde AFE PO # Manif Haule Drive Truck Card Job R	omer: pmer #: red by: - #: fest #: Date: pr: r # ter: # ter: #	CONOCOPHI CRI2190 JUSTIN WRIC DOE TY LEY 32 32 11/29/2018 MCNABB PAF HOWARD M78	LLIPS		Ticket #:700-957186Bid #:O6UJ9A0009Z1Date:11/29/2018Generator:CONOCOPHILLIPSGenerator #:999908Well Ser. #:999908Well Name:BUCK FEDERAL CENTRALWell #:.Field:.Field #:.Rig:NON-DRILLINGCountyLEA (NM)				
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	Contaminated Soil (RCRA Exemp		npt)	ot) 20.00 yar				vards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	. %Solids 0	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval		
	THIS IS NOT AN INVOICE	

# THIS IS NUT AN INVOICE:

Approved By:

Received by OCD: 11/8/2021 12:57: RB3600 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: CONOC Customer #: CRI219 Ordered by: JOE TY AFE #: PO #: Manifest #: 33 Manif. Date: 11/29/20 Hauler: MCNAB Driver HOWAF Truck # M78 Card # Job Ref #	COPHILLIPS 0 LER 018 B PARTNERS D	Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Field: Field #: Rig: County	700-957301 O6UJ9A0009Z1 11/29/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING	Page 334 of 348
Facility: CRI					
Product / Service		Qı	antity Units		
Contaminated Soil (RCRA Exemp	t)	04540	20.00 yards		
Cell pH	CI Cond. %S	olids TDS	PCI/GM MR/HR	H2S % Oil	Weight
Generator Certification Statemen I hereby certify that according to the Re 1988 regulatory determination, the abov X RCRA Exempt: Oil Field wastes ge RCRA Non-Exempt: Oil field waste characteristics established in RCRA reg amended. The following documentatio MSDS Information RCRA He Driver/ Agent Signature	t of Waste Status esource Conservation and ve described waste is: enerated from oil and gas of e which is non-hazardous ulations, 40 CFR 261.21-2 n is attached to demonstra azardous Waste Analysis	) Recovery Act (RC exploration and pr that does not exce 261.24 or listed ha: te the above-desci _ Process Kno R360 Represent	CRA) and the US Enviro roduction operations and eed the minimum standard zardous waste as defined ribed waste is non-hazard wledge Other throw tative Signature	nmental Protection Ag are not mixed with nor ds for waste hazardous in 40 CFR, part 261, si ors. (Check the appro- ide description above)	ency's July n-exempt wast by abpart D, as priate items)
	THIS IS N	IOT AN IN	VOICE!		

Approved By:

Date:

.

Received by O	CD: 11/8	/2021 12:57:	39 PM							1	Page 335 of 348
R3600 ENVIRONMENTAL SOLUTIONS		Customer: Customer # Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS #: CRI2190 y: JOE TYLER : 34 e: 11/30/2018 MCNABB PARTNERS HOWARD M78				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-957569 O6UJ9A0009Z1 11/30/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/			
Facility: CRI											
Product / Serv	lice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exemp	ot)				20.00	yards			
and the second second	Cell	pН	CI Cor	id. %S	olids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00 0.0	00	0					70 011	vveignt

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information — RCRA Hazardou With the following documentation of the statement of the state

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature

**R360 Representative Signature** 

Customer Approval

# THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 12:57:3	9 PM			Page 336 of 348
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	CONOCOPHILLIPS CRI2190 JOE TYLER 35 11/30/2018 MCNABB PARTNERS CLEO M32 M-31	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-957571 O6UJ9A0009Z1 11/30/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL 1/ NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		Quantit	ty Units	
Contaminated Soil (RCRA Exempt	)	18	.00 yards	

	Cell	pH	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weigh
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
	M
Customer Approval	0
	THIS IS NOT AN INVOICE!

Approved By:

Received by O	C <b>D: 11/8</b>	/2021 12:5	7:39 PM								Page 337 of 348
R	3¢	50	Custo Custo Orde AFE	omer: ( omer #: ( red by: . #:	CONOCOPHI CRI2190 IOE TYLER	LLIPS		Ticket #: Bid #: Date: Generator:	700-958: O6UJ9A 12/3/201 CONOCO	342 0009Z1 8 OPHILLIP:	S
ENVIRONMEN SOLUTIO	TAL		Manif	fest#: 3	6			Generator #: Well Ser. #:	999908		
Permian Basi	SOLUTIONS Solutions			: Date: 1 er: N r H : # N # Ref#	MCNABB PARTNERS HOWARD M78			Weil Name: BOCK FEDERAL CENT Well #: Field: Field #: Rig: NON-DRILLING County LEA (NM)			ENTRAL T7
Facility: CRI											
Product / Serv	lice					Q	uantity U	nits	0.00-		
Contaminated	Soil (R	CRA Exer	npt)				20.00	vards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fe MSDS Infor	tificatio hat accor determina npt: Oil F Exempt: stablished ollowing o mation	n Stateme ding to the ation, the al- ield wastes Oil field wastes in RCRA documentat	ent of Wa Resource bove descri- generated aste which regulations tion is attac Hazardous	ste Statu Conservat ibed waste from oil a is non-haz s, 40 CFR 2 ched to de s Waste A	IS ion and Recover is: nd gas explora zardous that do 261.21-261.24 c monstrate the a nalysis Pr	ery Act (R tion and p es not exc or listed ha bove-desc rocess Kno	CRA) and roduction eed the mi azardous w cribed wast owledge	the US Environ operations and nimum standard aste as defined e is non-hazard Other (Prov	nmental Pro are not mix ls for waste in 40 CFR, ous. (Checl ide descrip	otection Ag ed with nor hazardous part 261, so k the appro tion above)	ency's July n-exempt wast by ubpart D, as priate items):
Driver/ Agent :	Signatu	re		A Contraction	R360 F	epreser	tative Sig	gnature	12	1.2	

Customer Approval

# THIS IS NOT AN INVOICE!

Approved By: _____

Date:

.

Received by OC	<b>D: 11/8</b> /	2021 12:57	':39 PM							P	age 338 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin		Custo Custo Order AFE # PO #: Manif Manif Haule Driver Truck Card : Job R	omer: omer #: red by: #: est #: Date: er: * # # ef #	CONOCOPHI CRI2190 JOE TYLER 37 11/30/2018 MCNABB PAF CLEO M31	RTNERS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-958343 O6UJ9A0009Z1 12/3/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T7			
Facility: CRI											
Product / Serv	vice	15-111	5.	11.50	9 2 M 4	Q	uantity U	nits			
Contaminated	Soil (R	CRA Exen	npt)				18.00	yards			
	Cell	pН	CI	Conc	. %Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis.	50/51	0.00	0.00	0.00	0 (						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

Customer Approval

# THIS IS NOT AN INVOICE!

w

Approved By:

<b>Received</b> by O	<b>CD: 11</b> /	8/2021 12::	57:39 PM								Page 339 of 34	
Received by OCD: 11/8/202112 Received by OCD: 11/8/202112 ENVIRONMENTAL SOLUTIONS Permian Basin		50	Customer Customer Ordered b AFE #: PO #: Manifest Manif. Da Hauler: Driver Truck #	: CC #: CR by: JO #: 38 ate: 12 MC HC M	NOCOPHILI E TAYLOR /7/2018 CNABB PAR DWARD 78	LIPS	Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #: Field: Field #: Rig:		700-960105 OGUJ9A0009Z1 12/7/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/			
			Job Ref	#				County	LEA (NM)			
Facility: CRI												
Product / Serv	lice					Q	uantity U	Inits				
Contaminated	Soil (R	CRA Exen	npt)				20.00	yards				
oontanniatee	Cell	nH	CI	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight	
Lab Analysis:	50/51	0.00	0.00	0.00	0							

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast

RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	

### THIS IS NOT AN INVOICE!

Approved By: _____

# APPENDIX E Photographic Documentation



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Assessment activities at southeastern corner of tank battery containment.	1
	SITE NAME	Buck Federal CTB (1RP-4275)	10/19/2017



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View southeast. Assessment activities at northeastern corner of tank battery containment.	2
	SITE NAME	Buck Federal CTB (1RP-4275)	10/19/2017



TETRA TECH, INC.	DESCRIPTION	View east. Lined area in southern portion of the containment.	3
212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	11/27/2018



TETRA TECH, INC.	DESCRIPTION	View northwest. Excavated area in the northern portion of the containment.	4
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	11/30/2018



TETRA TECH, INC.	DESCRIPTION	View north. Excavated area in eastern portion the of containment.	5
212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	11/30/2018



TETRA TECH, INC.	DESCRIPTION	View northeast. Excavated area at the southeastern corner of the containment.	6
TETRA TECH, INC. PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	11/30/2018



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Excavated area in western portion of containment.	7
	SITE NAME	Buck Federal CTB (1RP-4275)	12/6/2018



TETRA TECH, INC.	DESCRIPTION	View north. Excavated area in western portion of containment.	8
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	12/6/2018



TETRA TECH, INC.	DESCRIPTION	View south. Backfilled area in the northwestern portion of the containment.	9
212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	12/7/2018



TETRA TECH, INC.	DESCRIPTION	View north. Backfilled area in the eastern portion of the containment.	10
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	12/7/2018



TETRA TECH, INC.	DESCRIPTION	View north. Backfilled area in western portion of containment.	11
212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4275)	12/7/2018



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View west. Backfilled area in the southern portion of the containment.	12
	SITE NAME	Buck Federal CTB (1RP-4275)	12/7/2018



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View southeast. Excavated area in northeastern portion of containment.	13
	SITE NAME	Buck Federal CTB (1RP-4275)	1/7/2019



TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View southeast. Backfilled area in northeastern portion of containment.	14
	SITE NAME	Buck Federal CTB (1RP-4275)	1/7/2019

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	60811
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

CONDI		
Created	Condition	Condition Date
Ву		
bhall	Deferral approved. Incident will remain open until remediation is completed when the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first.	10/11/2022
bhall	1RP-4275 closed. Refer to incident #NJXK1613337497 for future correspondence.	10/11/2022

CONDITIONS

Page 348 of 348

Action 60811