Ike Tavarez Project Manager ConocoPhillips RM&R

600 W. Illinois Ave, Midland, Texas 79701 Work: 432.685.2573 Cell: 432.701.8630

Ike.Tavarez@conocophillips.com

September 28, 2022

New Mexico Oil Conservation Division, District II 811 S. First Ct Artesia, NM 88210

Re: Copperhead Fee 31 E CTB
2022 Remediation Summary and Soil Closure Request Report
Incident # NAPP2127034861
Eddy County, New Mexico

Dear whom it concerns,

Please find enclosed for your filed, copies of the following:

 Copperhead Fee 31 E CTB – September 28, 2022 Remediation Summary and Soil Closure Request Report

The Report was prepared by Arcadis U.S., Inc. (Arcadis) on behalf of ConocoPhillips (COP).

Please do not hesitate to call Scott Foord with Arcadis at 713.953.4853 or myself at 432.685.2573, should you have any questions.

Sincerely,

Kee Tavarez

Ike Tavarez

Encl. Copperhead Fee 31 E CTB, NAPP2127034861 2022 Remediation Summary and Soil Closure Request Report

COG (ConocoPhillips)

2022 Remediation Summary and Soil Closure Request Report

Copperhead Fee 31 E CTB Incident # NAPP2127034861

September 2022

2022 Remediation Summary and Soil Closure Request Report

Copperhead Fee 31 E CTB Incident # NAPP2127034861

September 2022

Prepared By:

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042

Phone: 713 953 4800 Fax: 713 977 4620

Our Ref: 30130425

Justin Nixon Task Manager

Scott Foord, PG

Certified Project Manager

Prepared For:

Ike Tavarez Project Manager ConocoPhillips RM&R 600 W. Illinois Ave. Midland, TX 79701

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

1	Ir	ntroduction	1
2	Р	Project Summary	1
	2.1	Incident # NAPP2127034861	1
3	S	Site Characterization	1
4	С	Closure Criteria for Soils Impacted by a Release	2
5	R	Remediation Activities Summary	3
	5.1	Soil Removal	3
	5.2	Excavation Confirmation Sampling Activities	3
	5.3	Chloride	4
	5.4	TPH	4
	5.5	ВТЕХ	4
6	R	Restoration, Reclamation, and Re-Vegetation Plan	4
7	S	Summary	4
8	s	Soil Closure Request	5

Tables

Table 1. 2022 Soil Analytical Results

Figures

Figure 1. Site Location Map

Figure 2. Excavation Sidewall Soil Sample Locations

Figure 3. Excavation Base Soil Sample Locations

Photographic Log

Log 1. 2022 Soil Remediation Photographic Log

Appendices

Appendix A. Initial C-141 Form Incident #NAPP2127034861

Appendix B. Final C-141 Form Incident #NAPP2127034861

Appendix C. Work Plan

Appendix D. Soil Boring Log and Groundwater Location Bore Location Map

Appendix E. Laboratory Analytical Reports

1 Introduction

Arcadis U.S., Inc. (Arcadis) has prepared this Remediation Summary and Soil Closure Request Report (Report), on behalf of Concho Operating, LLC (COG – now ConocoPhillips), for the release site known as the Copperhead Fee 31 E CTB (Site). Details of the release are summarized in the Initial C-141 Form included as **Appendix A**.

2 Project Summary

The Site is located approximately 15.61 miles south of Malaga in Unit E, Section 31, Township 26 South, Range 29 East, Eddy County, New Mexico. A Site Location Map is included as **Figure 1**.

2.1 Incident # NAPP2127034861

According to the Initial C-141 Form, on September 7, 2021, a corrosion induced leak was discovered in the transfer flex pipe at the Site. The leak resulted in the release of approximately 20 barrels (bbls) of produced water to ground surface on the eastern portion of the tank battery located at the Site. The impacted areas measured approximately 245 feet by 21 feet and 230 feet by 21 feet. The Initial C-141 Form was submitted to the New Mexico Oil Conservation Division (NMOCD) on September 21, 2021 and assigned Incident ID number NAPP2127034861. The Initial C-141 Form is included as **Appendix A** and the final C-141 is included in **Appendix B**.

3 Site Characterization

Soil assessment activities were performed at the Site during September and October 2021 by New Tech Global Environmental, LLC (NTGE) to determine the horizontal and lateral extent of the release area. The assessment activities associated analytical soil sample results and the initial proposed remediation/reclamation activities for the impacted areas are detailed in the 2021 Work Plan submitted previously by New Tech Global Environmental, LLC (NTGE) to the NMOCD (see **Appendix C**). The laboratory analytical report was submitted with the initial work plan.

In an email from Ms. Nobui with the NMOCD dated April 7, 2022, to NTGE, approval of the 2021 Work Plan was rescinded based on lack of verification of depth to groundwater within 0.5 miles of the Site. Remediation efforts (excavation) had previously begun but were halted following the denial of the initial Work Plan by NMOCD.

In a virtual meeting held between the NMOCD, Arcadis, NTGE, and COG (ConocoPhillips) on April 12, 2022, the NMOCD requested that an addendum to the 2021 Work Plan be submitted requesting variance approval in accordance with New Mexico Administrative Code (NMAC) 19.15.29.14. The Work Plan Addendum was prepared and submitted to NMOCD requesting approval to use constituent screening values for sites with groundwater at depths ranging from 51 to 100 feet bgs from Table I of NMAC 19.15.29 for impacted soil at depths greater than 4 feet bgs within the release areas at the Site. Approval was also requested to allow the installation of a liner within excavated areas with chloride concentrations confirmed above the applicable NMAC part 19.15.29 chloride reclamation limit of 600 milligrams per kilogram (mg/Kg) at depths greater than 4 feet below ground surface (bgs).

NMOCD verbally agreed to allow ongoing remediation activities at the Site to continue and verbally approved the variance request during the virtual meeting based on the following information and conditions:

- Per the Work Plan for the COG Operating, LLC, Copperhead 31 Federal Com #001, prepared by Tetra Tech, Inc. (Tetra Tech) dated March 18, 2019, there is a water well located approximately 0.8 miles from the Site with a reported depth to groundwater of 54.30 feet bgs. NNOCD approved using this data to allow the use of screening levels within NMAC part 19.15.29.12 for sites where groundwater is between 51 to 100 feet bgs for the Site.
- COG (ConocoPhillips) agreed to install a soil boring in the near future within 0.5 miles of the Site to verify
 depth to groundwater at this location and to utilize as verification of depth to groundwater at additional
 facilities with planned remedial activities within a 0.5-mile radius of the proposed soil boring location. A
 workplan detailing the proposed soil boring will be provided at a later date.
 - A soil boring was installed by Carmona Resources at the Site to a depth of approximately 55 feet bgs on April 25th, 2022. Groundwater was not encountered within the soil boring confirming depth to groundwater at the Site is greater than 50 feet bgs. The boring log and Groundwater Determination Bore location map are included in **Appendix D**.
- All soils from the uppermost four feet exceeding the chloride reclamation limit of 600 mg/Kg will be excavated from the impacted area and properly disposed of at an NMOCD-approved disposal facility.
- COG (ConocoPhillips) requested approval of a variance to install a synthetic 20 mill liner atop soil at a depth
 of 4 feet bgs where chloride concentrations are equal to or less than 10,000 mg/Kg. This area was believed to
 only encompass the area adjacent to the high-pressure pipeline running east to west across the release
 areas. This request was approved by NMOCD and was included in the Work Plan Addendum and Variance
 Request submitted subsequently to NMOCD.
- COG (ConocoPhillips) believes the synthetic liner will provide equal or better protection of fresh water, public
 health and the environment by preventing downward migration of remaining shallow chloride impacted soil to
 depths that could potentially impact groundwater at the Site.
- The excavated area will be backfilled with non-waste containing, earthen material with chloride concentrations less than 600 mg/Kg.

After backfilling is completed, all areas disturbed by the remediation activities shall be reclaimed to match the original surface conditions and drainage.

4 Closure Criteria for Soils Impacted by a Release

The NMOCD initially agreed to allow the use of the water well located approximately 0.8 miles from the Site with a reported depth to groundwater of 54.30 feet bgs for the Site, and depth to groundwater was confirmed to be greater than 50 feet bgs at the Site following installation of the previously mentioned soil boring. Per Table I of NMAC part 19.15.29.12, the following closure criteria apply to a Site with depth to ground water between 51 and 100 feet bgs:

Constituent	Limit (mg/Kg))
Chloride	10,000 mg/Kg
TPH (GRO+DRO+MRO)	2,500 mg/kg
GRO+DRO	1,000 mg/Kg

BTEX	50 mg/Kg
Benzene	10 mg/Kg

The approved Work Plan Addendum and Variance Request was submitted via e-mail to Jennifer Nobui and Mike Bratcher.

5 Remediation Activities Summary

5.1 Soil Removal

Prior to any intrusive activities, a NM One Call notification, a private utility locate (ground penetrating radar), and daylighting of underground utility lines with a hydrovac were conducted to clear the area and identify underground utilities.

Soil remediation activities were performed by Arcadis and Standard Safety and Supply (Standard) from April 7 through April 28, 2022. Photo-ionization detector (PID) readings, chloride field screening with Hach test strip results, and analytical results from the pre-remediation assessment activities were evaluated prior to and during remediation activities to determine the lateral and vertical extent of soil affected by the spill. Lateral and vertical delineation of the impacted soil requiring removal was based on samples collected from the perimeter and bottom of the release area. Based on these results, it was determined that the release covered an approximately 6,610 square foot area with intersecting utility easements determined to be high pressure gas lines owned by COG running N/S and E/W and extending to a depth of approximately 1.5 to 4 feet bgs. Soil analytical results are discussed in **Sections 5.3, 5.4, and 5.5**.

Excavation activities were conducted to a maximum depth of approximately 4 feet bgs as approved in the Work Plan Addendum and Variance Request. The liner was installed on April 19th, 2022 at a depth of approximately 4 feet bgs (see **Photographic Log**) over an area along the western area of the excavation north of the high-pressure pipeline. Approximately 1,600 cubic yards of impacted soil were excavated from the spill area. The limits of the excavation are presented on **Figure 2**. Excavated soil was stockpiled on-site, adjacent to the release area. The soil stockpile was placed on 20 mil plastic sheeting and covered with 20 mil plastic sheeting during remediation process prior to hauling off the impacted material.

The stockpiled soil was disposed offsite at the R360 Red Bluff Landfill facility located at 5053 US Hwy 285, in Orla, Texas as Class 2 non-hazardous material. Standard transported a total of 80 truckloads of soil directly to the landfill on April 19 through April 25, 2022. Copies of disposal manifests can be provided upon request. Photographic documentation of the excavation activities is attached below in the photographic log.

5.2 Excavation Confirmation Sampling Activities

Arcadis personnel conducted excavation confirmation soil sampling activities on April 7, 2022, through April 25, 2022 for laboratory analyses. Following excavation of the impacted area, eight additional confirmation soil samples were collected from the side walls and base of the excavation as needed to maintain an approximate 200 square. foot sample spacing or less for both side walls and base of the excavated area.

The soil confirmation soil samples were collected in 2- 4oz jars provided by Pace Analytical Laboratory (Pace) located in Mt. Juliet, Tennessee, then placed on ice and shipped to Pace to be analyzed for chloride by United States Environmental Protection Agency (USEPA) Method 300; total petroleum hydrocarbons (TPH) by Method 8015 M for gasoline range organics (GRO), diesel range organics (DRO), and oil range organics (ORO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) by USEPA Methods 8015/8021. Analytical results are shown in **Table 1**, and sidewall confirmation sample locations are depicted on **Figure 2** and excavation base confirmation samples are depicted on **Figure 3**. Laboratory analytical reports are included in **Appendix E**.

5.3 Chloride

Several soil samples collected north of the east to west pipeline corridor were reported above the NMAC reclamation limit of 600 mg/Kg at a depth of greater than 4 feet bgs and the area was subsequently lined with a synthetic 20 mill liner at a depth of 4 feet bgs. Chloride concentrations reported were less than the NMAC screening standard of 10,000 mg/Kg at depths greater than 4 feet bgs within the lined area.

5.4 TPH

Total TPH concentrations were reported below the NMAC screening standard of 2,500 mg/Kg at all sample locations and below the NMOCD Reclamation Standard of 100 mg/Kg at all sample locations. GRO and DRO concentrations were reported below the NMAC screening standard of 1,000 mg/Kg at all sample locations.

5.5 BTEX

Benzene concentrations were reported below the NMAC standard of 10 mg/Kg at all sample locations. BTEX concentrations were reported below the NMAC standard of 50 mg/Kg at all sample locations.

6 Restoration, Reclamation, and Re-Vegetation Plan

Upon receiving laboratory analytical results from the excavation confirmation soil samples confirming impacted soil over the applicable restoration limits had been removed, excavated areas were backfilled with locally sourced, non-impacted "like" material placed at or near the original relative positions. The affected area was contoured and/or compacted to achieve erosion control, stability, and preservation of surface water flow to the extent practicable. Affected areas were located on production pads, lease roads, and/or pipeline corridors. Excavated areas were topped with a topsoil similar to native the surrounding pasture material.

7 Summary

A Work Plan Addendum and Variance Request was approved verbally in a virtual meeting between the NMOCD, Arcadis, NTGE, and COG (ConocoPhillips) on April 12, 2022, with conditions that a liner must be placed in any excavated areas exceeding chloride concentrations of 600 mg/Kg, but less than 10,000 mg/Kg at a depth of 4 feet bgs. Analytical results associated with recent remediation activities conducted in 2022 indicate that the horizontal and vertical extent of chloride, TPH, and BTEX impact in soil above NMAC screening standards for a site with

depth the groundwater greater than 50 feet bgs, but less than 100 feet bgs, have been delineated both horizontally and vertically and excavated from the impacted area.

8 Soil Closure Request

Remediation activities were conducted in accordance with the NMOCD stipulations and an approved variance. Impacted soil affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standard was excavated and transported to an NMOCD-approved disposal facility. Laboratory analytical results from confirmation soil samples indicate concentrations of BTEX, TPH and chloride are below the NMOCD Closure Criteria in each of the submitted soil samples for areas with impact less than 4 feet bgs. In accordance with the Work Plan Addendum and Variance Request, a liner was installed atop impacted soil affected above the NMOCD Reclamation Standard present within the floor of the excavated area in the area with impacted determined below 4 feet bgs. Confirmation soil samples collected from the base of the lined area confirm that no NMAC soil screening levels were exceeded for a site with depth to groundwater greater than 50 feet bgs, but less than 100 feet bgs.

Based on laboratory analytical results and field activities conducted to date, Arcadis requests closure be granted to the Copperhead Fee 31 E CTB site for Incident ID number NAPP2127034861. The Final C-141 Form is included as **Appendix B**.

Tables

Table 1 2022 Soil Sample Analytical Results Copperhead Fee 31 E CTB COG (ConocoPhillips)

					(BTEX N	lethod)			(TPH Metho	od)		(CI Method)
	Sample ID	Date	Donth	Soil Status	Benzene	BTEX	GRO	DRO	GRO+DRO	ORO	TPH	Chloride
	Sample 1D	Date	Deptii	Jon Status	(mg/kg)	(mg/kg)	C6-C10	C10-C28	C6-C28	C28-C36	C6-C36	(mg/kg)
							(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
	B-1	4/7/2022	4	In-Situ	<0.000549	<0.00549	<0.11	1.88 J	1.88 J	8.73	10.61 J	1,600
-	B-2 B-3	4/8/2022 4/11/2022	4	In-Situ In-Situ	<0.000563 <0.000545	<0.00563 <0.00545	<0.113 <0.109	<4.51 <4.36	<4.51 <4.36	0.873 J 3.16 J	0.873 J 3.16 J	264 992
	B-3	4/11/2022	4	In-Situ	<0.000545	<0.00545	<0.109	<4.4	<4.4	2.84 J	2.84 J	1,480
-	B-5	4/11/2022	4	In-Situ	<0.000562	<0.00562	<0.112	<4.49	<4.49	0.894 J	0.894 J	988
	B-6	4/11/2022	4	In-Situ	<0.000536	<0.00536	<0.107	<4.29	<4.29	2.03 J	2.03 J	1,490
	B-7	4/13/2022	4	In-Situ	NA	NA	NA	NA	NA	NA	NA	1,550
	B-8	4/13/2022	4	In-Situ	NA	NA	NA	NA	NA	NA	NA	3,180
	B-9	4/13/2022	4	In-Situ	NA	NA	NA	NA	NA	NA	NA	1,360
	B-10	4/13/2022	4	In-Situ	NA	NA	NA	NA	NA	NA	NA	810
-	B-11 B-12	4/13/2022 4/14/2022	4	In-Situ In-Situ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	580 2,940
-	B-13	4/14/2022	4	In-Situ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	797
-	B-14	4/18/2022	4	In-Situ	<0.000538	<0.00538	<0.108	<4.31	<4.31	3.78 J	3.78 J	5,820
	B-15	4/18/2022	4	In-Situ	<0.000571	<0.00571	<0.114	<4.57	<4.57	2.6 J	2.6 J	2,620
	B-16	4/18/2022	4	In-Situ	< 0.000593	< 0.00593	<0.119	<4.74	<4.74	3.02 J	3.02 J	1,330
	B-17	4/18/2022	4	In-Situ	<0.000576	< 0.00576	<0.115	1.92 J	1.92 J	6.69	8.61 J	1,240
	B-20	4/19/2022	4	In-Situ	<0.000548	<0.00548	<0.11	<4.38	<4.38	6.32	6.32	1,370
	B-21	4/19/2022	4	In-Situ	<0.00058	<0.0058	<0.116	<4.64	<4.64	3.98 J	3.98 J	728
	B-22	4/19/2022	4	In-Situ	<0.000514	0.000695 J	<0.103	5.22	5.22	11.9	17.12	596
	B-23	4/19/2022	4	In-Situ	<0.000513	0.00147 J	<0.103	6.41	6.41	14.1	20.51	633
	B-25 B-26	4/20/2022 4/25/2022	4 2.5	In-Situ In-Situ	<0.000682 <0.000528	<0.00682 0.000948 J	<0.136 <0.106	NA <4.23	<0.136 <4.23	NA 2.1 J	<0.136 2.1 J	34.7 164
	B-27	4/20/2022	4	In-Situ	<0.000526	<0.00612	<0.100	NA	<0.122	NA	<0.122	<24.4
	B-28	4/25/2022	2.5	In-Situ	<0.000513	<0.00513	<0.103	<4.1	<4.1	2.97 J	2.97 J	101
	B-29	4/21/2022	2.5	In-Situ	<0.000711	0.002852 J	<0.142	<5.69	<5.69	<5.69	<5.69	68.8
	B-30	4/20/2022	4	In-Situ	0.000508 BJ	0.002777 J	<0.116	NA	<0.116	NA	<0.116	21.3 J
	B-31	4/21/2022	2.5	In-Situ	<0.000519	<0.00519	<0.104	<4.15	<4.15	4.21	4.21	35.3
	B-32	4/22/2022	2	In-Situ	<0.000559 T8	<0.00559	<0.112 T8		3.49 J	15.7 T8	19.19 J	404
	D 00	4/25/2022	2.5	In-Situ	<0.000522	0.000982 J	<0.104	<4.17	<4.17	2.34 J	2.34 J	222
	B-33 B-34	4/21/2022 4/25/2022	2.5	In-Situ In-Situ	<0.000661 <0.00051	<0.00661 0.00105 J	<0.132 <0.102	<5.29 <4.08	<5.29 <4.08	1.04 J 1.25 J	1.04 J 1.25 J	71.1 38
	B-35	4/21/2022	1	In-Situ	0.00223	0.00103 J	<0.102	<5.27	<5.27	0.979 J	0.979 J	268
	B-36	4/25/2022	2.5	In-Situ	<0.000513	<0.00513	<0.103	<4.1	<4.1	6.01	6.01	30
	B-37	4/22/2022	2	In-Situ	<0.000543 T8	0.000813 J	<0.109 T8		2.13 J	8.66 T8	10.79 J	126
	B-41	4/22/2022	1	In-Situ	<0.000605 T8	<0.00605	<0.121 T8		9.65	23.6 T8	33.25	77.8
	B-42	4/25/2022	2	In-Situ	<0.000524	<0.00524	<0.105	<4.19	<4.19	2.32 J	2.32 J	16.1 J
	B-43	4/22/2022	2	In-Situ	0.000881 T8	0.001805 J	<0.111 T8		2.32 J	16.9 T8	19.22 J	514
	B-44 B-45	4/25/2022 4/22/2022	2	In-Situ In-Situ	<0.000511 <0.000638 T8	<0.00511 <0.00638	<0.102 <0.128 T8	<4.09 <5.11 T8	<4.09 <5.11	2.52 J 2.81 BJT8	2.52 J 2.81 J	121 146
	B-46	4/25/2022	2	In-Situ	<0.000513	<0.00513	<0.128 18	<4.1	<4.1	2.31 J	2.31 J	138
	B-47	4/25/2022	1	In-Situ	<0.000532	<0.00532	<0.106	<4.26	<4.26	2.86 J	2.86 J	84
	SW-1	4/7/2022	2	In-Situ	0.00079	0.00191 J	<0.109	2.4 J	2.4 J	18.6	21 J	103
	SW-2	4/7/2022	2	In-Situ	0.000971	0.002291 J	<0.11	2.32 J	2.32 J	12.5	14.82 J	361
	SW-3	4/7/2022	2	In-Situ	<0.000555	<0.00555	<0.111	<4.44	<4.44	4.74	4.74	17.5 J
	SW-4	4/8/2022	2	In-Situ	<0.000564	<0.00564	<0.113	<4.51	<4.51	1.9 J	1.9 J	244
	SW-5 SW-7	4/8/2022 4/11/2022	2	In-Situ In-Situ	<0.000532 <0.000539	<0.00532 <0.00539	<0.106 <0.108	<4.26 <4.32	<4.26 <4.32	5.54 5.69	5.54 5.69	239 68.5
-	SW-8	4/11/2022	2	In-Situ	<0.000539	<0.00539	<0.108	<4.32	<4.32	4.88	4.88	132
	SW-9	4/11/2022	2	In-Situ	<0.000531	<0.00531	<0.106	<4.24	<4.24	5.02	5.02	493
	SW-10	4/19/2022	2	In-Situ	<0.000523	<0.00523	<0.105	2.5 JJ3	2.5 J	15.2	17.7 J	66.5
	SW-11	4/13/2022	2	In-Situ	NA	NA	NA	NA	NA	NA	NA	113
	SW-12	4/19/2022	2	In-Situ	0.00116	0.00296 J	<0.105	2.84 J	2.84 J	17.4	20.24 J	33.9
<u> </u>	SW-13	4/13/2022 4/19/2022	2	Removed	NA 0.00112	NA 0.00242 J	NA <0.106	NA 2 04 1	NA 2.01.1	NA 22.0	NA 26.71 I	714
	SW-14 SW-15	4/19/2022	2	In-Situ In-Situ	0.00112 NA	0.00242 J NA	<0.106 NA	3.81 J NA	3.81 J NA	22.9 NA	26.71 J NA	33.5 157
<u> </u>	SW-16	4/13/2022	2	Removed	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	714
	SW-16A	4/18/2022		In-Situ	NA	NA NA	NA	NA	NA	NA	NA	28.4
		4/18/2022	2	In-Situ	<0.000548	<0.00548	<0.11	<4.38	<4.38	8.56	8.56	NA
	SW-17	4/19/2022	2	In-Situ	0.00105	0.00257 J	<0.107	3.49 J	3.49 J	13.5	16.99 J	26.3
	SW-18	4/18/2022	2	In-Situ	0.00107	0.00504 J	<0.101	<4.06	<4.06	9.22	9.22	NA
	0111.45	4/19/2022	2	In-Situ	0.000755	0.002265 J	<0.107	2.05 J	2.05 J	12.8	14.85 J	NA 00.4
	SW-19	4/18/2022	2	In-Situ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	89.4
	SW-20	4/19/2022 4/18/2022	2	In-Situ In-Situ	NA 0.000725	NA 0.003073 J	NA <0.103	NA <4.11	NA <4.11	NA 7.24	7.24	25 449
-	SW-20	4/18/2022	2	In-Situ	<0.000725	<0.00589	<0.103	<4.11	<4.11	2.32 J	2.32 J	47.9
	SW-23	4/20/2022	2	In-Situ	0.000389 0.00044 BJ	0.002582 J	<0.118	2.16 J	2.16 J	5.73	7.89 J	22.2 JP1
	SW-24	4/18/2022	2	In-Situ	<0.000555	<0.00555	<0.111	<4.44	<4.44	3.71 J	3.71 J	325
	SW-25	4/20/2022	2	In-Situ	0.00134 J3J5	0.00313 J	<0.117	3.09 J	3.09 J	9.73	12.82 J	12 J
	SW-26	4/18/2022	2	In-Situ	<0.00054	<0.0054	<0.108	<4.32	<4.32	8.17	8.17	22.6
1	SW-27	4/20/2022	2	In-Situ	0.00122	0.00376 J	<0.116	2.77 J	2.77 J	13.3	16.07 J	19.2 J
_	SW-28	4/18/2022	2	In-Situ	< 0.000547	< 0.00547	<0.109	<4.38	<4.38	10.9	10.9	37.3

Table 1 2022 Soil Sample Analytical Results Copperhead Fee 31 E CTB COG (ConocoPhillips)

				(BTEX N	lethod)			(TPH Metho	od)		(Cl Method)
Sample ID	Date	Depth	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C6-C10 (mg/kg)	DRO C10-C28 (mg/kg)	GRO+DRO C6-C28 (mg/kg)	ORO C28-C36 (mg/kg)	TPH C6-C36 (mg/kg)	Chloride (mg/kg)
SW-29	4/21/2022	2	In-Situ	0.00154	0.006199 J	<0.135	<5.41	<5.41	1.49 J	1.49 J	15.3 J
SW-30	4/19/2022	2	In-Situ	<0.000533	< 0.00533	<0.107	1.78 J	1.78 J	11.1	12.88 J	145
SW-31	4/21/2022	2	In-Situ	0.000799	0.002979 J	<0.125	<5.02	<5.02	4.53 J	4.53 J	<24.1
SW-32	4/19/2022	2	In-Situ	< 0.000539	< 0.00539	<0.108	1.96 J	1.96 J	12.7	14.66 J	203
SW-33	4/19/2022	2	In-Situ	<0.000535	< 0.00535	<0.107	1.84 J	1.84 J	13.3	15.14 J	136
SW-35	4/21/2022	2.5	In-Situ	0.001	0.00209 J	<0.125	<5.01	<5.01	4.51 J	4.51 J	249
SW-37	4/21/2022	2	In-Situ	0.00109	0.00212 J	<0.132	<5.27	<5.27	0.965 J	0.965 J	204
SW-38	4/25/2022	1	In-Situ	<0.000527	< 0.00527	<0.105	<4.21	<4.21	1.45 J	1.45 J	165
SW-39	4/21/2022	1	In-Situ	0.00271	0.00808 J	0.0429 J	<4.79	0.0429 J	5.67	5.7129 J	12.4 J
SW-41	4/22/2022	1	In-Situ	0.00105 T8	0.00229 J	<0.109 T8	3.3 JT8	3.3 J	18.8 T8	22.1 J	57.9
SW-42	4/22/2022	1	In-Situ	<0.000561 T8	< 0.00561	<0.112 T8	<4.49 T8	<4.49	8.15 T8	8.15	248
SW-43	4/21/2022	1	In-Situ	0.00269	0.008433 J	0.0275 J	<4.92	0.0275 J	3.03 J	3.0575 J	14.5 J
SW-44	4/25/2022	1	In-Situ	<0.000524	< 0.00524	<0.105	<4.19	<4.19	3.89 J	3.89 J	12.6 J
SW-46	4/25/2022	1	In-Situ	<0.000545	< 0.00545	<0.109	<4.36 J6	<4.36	1.75 J	1.75 J	23.3 P1
SW-48	4/25/2022	1	In-Situ	<0.000549	< 0.00549	<0.11	<4.4	<4.4	1.89 J	1.89 J	128
SW-49	4/22/2022	1	In-Situ	0.00149 T8	0.0044 J	<0.107 T8	2.57 JT8	2.57 J	20.7 T8	23.27 J	112
SW-51	4/22/2022	1	In-Situ	<0.00062 T8	<0.0062	<0.124 T8	5.79 T8	5.79	22.8 T8	28.59	63.9
NMOCD Reclama	tion Stand	ard		10	50					100	600
NMOCD Closu	ıre Criteria			10	50			1,000		2,500	10,000

Legend:

Detections reported are indicated in **bold**

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

F1: MS and/or MSD recovery exceeds control limits

H: Sample was prepared or analyzed beyond the specified holding time

Analytes exceeding NMAC Standards are indicated in yellow
'<' indicates the analyte was not detected at or above the Method Detection Limit (MDL)

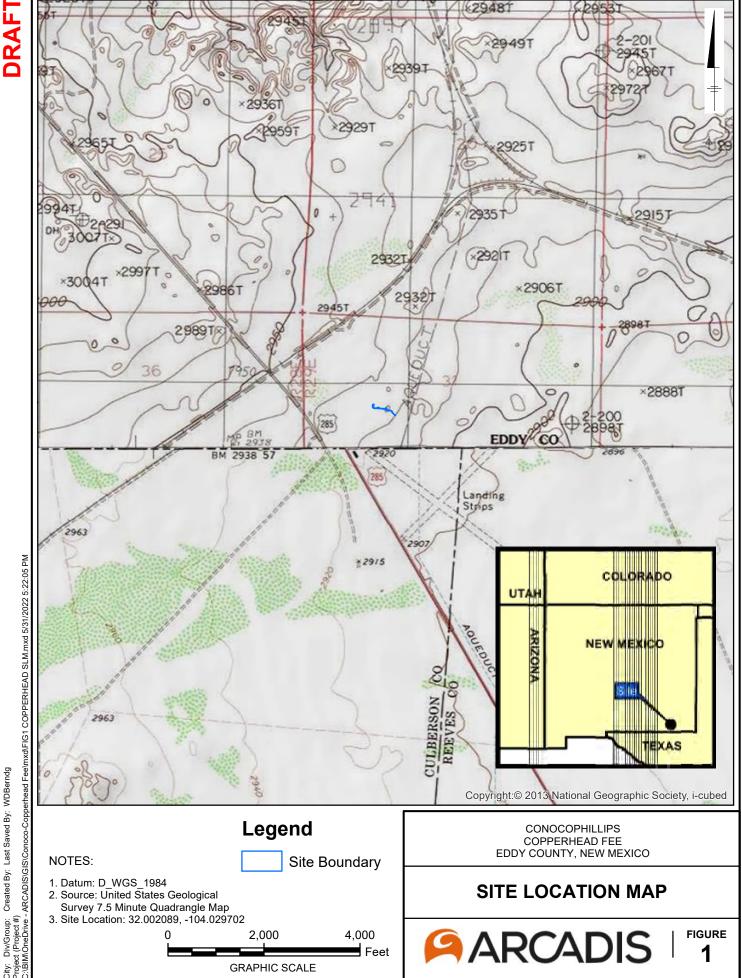
mg/kg: Milligram per Kilogram

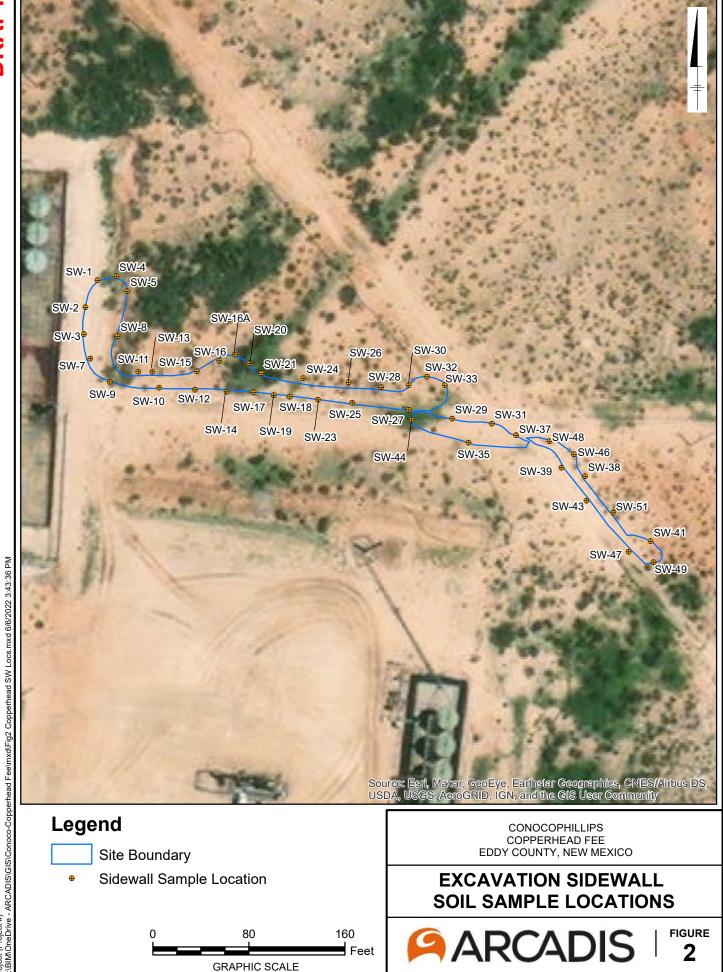
BTEX: Benzene, Toluene, Ethylbenzene, and Total Xylenes

NMAC: New Mexico Administration Code

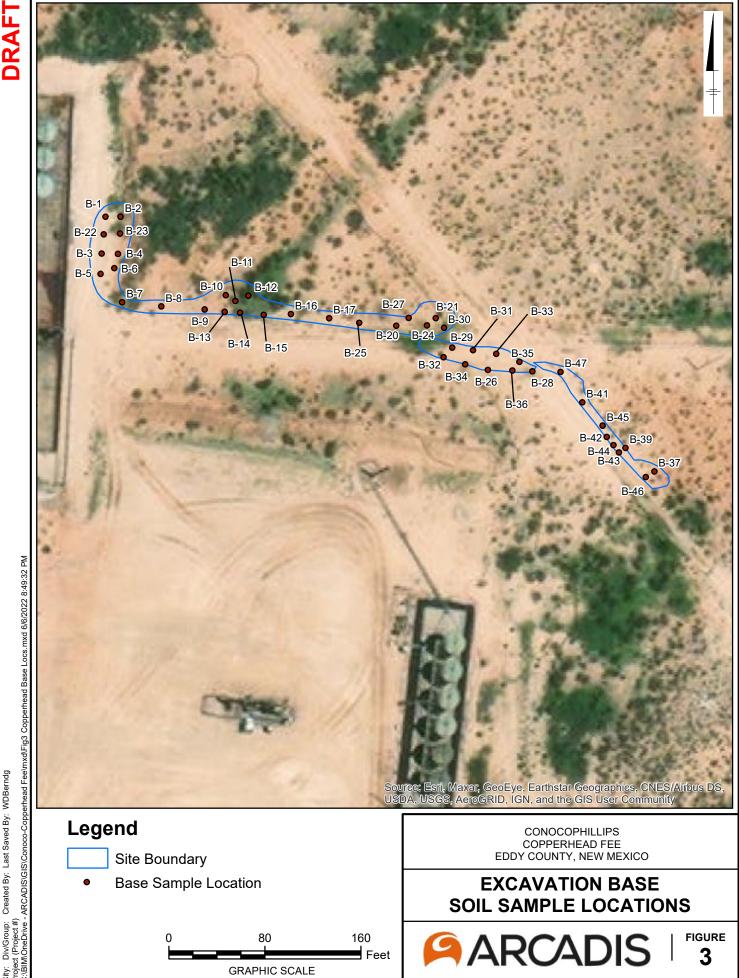
TPH GRO: Total Petroleum Hydrocarbons Gasoline Range Organics TPH DRO: Total Petroleum Hydrocarbon Diesel Range Organics TPH ORO: Total Petroluem Hydrocarbons Oil Range Organics

": Indicated inches bgs: below ground surface


SS : Soil sample


BG : background sample

Sample locations with strikethroughs were excavated and additional confirmation samples were collected within that 200 sq ft area.


- 1. Chloride analyzed by EPA Method 300
- 2. TPH analyzed by EPA Method 8015 M
- 3. BTEX analyzed by EPA Method 8260B
- 4. Closure Criteria New Mexico Administrative Code 19.15.29.12.E(2)

Figures

Created By: Last Saved By: WDBerndg

Photographic Log

2022 Soil Remediation Photographic Log

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Loving County, NM

Case No.

Photo No.

Date:

1 04/19/2022 Direction Photo Taken:

Facing North

nAPP2127034861

Description:

NW excavation area lined at 4' bgs.

ARCADIS

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Case No.

Loving County, NM

nAPP2127034861

Photo No. Date: 04/19/2022

Direction Photo Taken:

Facing East

Description:

East excavation area lined at 4' bgs.

ARCADIS

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Loving County, NM

Case No.

nAPP2127034861

Photo No.

3

Date:

04/19/22

Direction Photo Taken:

Facing NE

Description:

NE corner of excavation area lined at 4' bgs.

ARCADIS

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Case No.

Loving County, NM

nAPP2127034861

Photo No. Date: 4 4/25/2022

Direction Photo Taken:

Facing SE

Description:

Southwest excavation area ranging from 1 to 2.5' bgs.

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Loving County, NM

Case No.

nAPP2127034861

Photo No.

Date: 09/13/2021

Direction Photo Taken:

Facing West

Description:

View of backfilled excavation area.

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Loving County, NM

Case No.

nAPP2127034861

Photo No. Date: 4/28

Direction Photo Taken:

Facing South

Description:

View of south excavation area backfilled.

ARCADIS

PHOTOGRAPHIC LOG

Property Name:

Copperhead Fee 31 E CTB

Location:

Loving County, NM

Case No.

nAPP2127034861

Photo No.

Date: 09/13/2021

Direction Photo Taken:

Facing NE

View of NE excavation area backfilled.

Appendix A

Initial C-141 Form Incident #NAPP2127034861

32.001536

Latitude

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	nAPP2127034861
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137		
Contact Name	Jacqui Harris	Contact Telephone	(575) 496-0780		
Contact email	Jacqui.Harris@ConocoPhillips.com	Incident # (assigned by OCD)	nAPP2127034861		
Contact mailing address	fress 600 West Illinois Avenue, Midland, Texas 79701				

Location of Release So	ource
Longitude	-104.028187

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Copperhead Fee 31E CTB	Site Type	Tank Battery
Date Release Discovered	September 7, 2021	API# (if applicable)	

Unit Letter	Section	Township	Range	County
Е	31	26S	29E	Eddy

Surface Owner: State Federal Tribal Private (Name: Harrison, Harry Lee Jr ETAL (N-JT)

Nature and Volume of Release

Crude Oil	(s) Released (Select all that apply and attach calculations or specific Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 20	Volume Recovered (bbls) 7
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	■ Yes □ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a hole in the transfer pump flex pipe due to corrosion.

The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Page 25 of 361

Incident ID	nAPP2127034861
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the respo	nsible party consider this a major release?
Yes No		
If YES, was immediate no	otice given to the OCD? By whom? To when	nom? When and by what means (phone, email, etc)?
	Initial R	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
	s been secured to protect human health and	the environment.
Released materials ha	ave been contained via the use of berms or	dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
If all the actions describe	d above have <u>not</u> been undertaken, explain	why:
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environ failed to adequately investig	required to report and/or file certain release not ment. The acceptance of a C-141 report by the Cate and remediate contamination that pose a through	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name Brittar	ıy N. Esparza	Title: Environmental Technician
Signature:	ny N. Esparza	Date: 9/21/2021
email: Brittany.Espar	za@ConocoPhillips.com	Date: 9/21/2021 Telephone: (432) 221-0398
OCD Only		
Received by: Ramona N	farcus	Date: 9/27/2021
Ramona IV	Edd V GU	

Relogsed									NAPP	2127034861		Received
3						L48 Spill Vo	lume Estimat	e Form				61
7		Facilit	y Name & Number:	Copperhead Fee 31E	СТВ							
			Asset Area:	DBWN								
	Rele	ase Disc	overy Date & Time:	9/7/2021								
70			Release Type:	Produced Water								
Provid	de any kn	own deta	ails about the event:	The release was caus	sed by a hole in th	e transfer pump f	lex pipe due to corro	sion.				
2					S	pill Calculation	- On Pad Surface	Pool Spill				
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	240.0	54.0	0.25	3	12960.000	0.007	16.020	0.000	16.026			<u> </u>
Rectangle B	153.0	23.0	0.25	3	3519.000	0.007	4.350	0.000	4.351			
Rectangle C					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle D					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle E					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle F					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle G					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle H					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle I					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
Rectangle J					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
								Total Volume Release:	20.377			

Appendix B

Final C-141 Form Incident #NAPP2127034861

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2127034861
District RP	N/A
Facility ID	fAPP2132637940
Application ID	76935

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<100 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	⊠ Yes □ No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.
Characterization Report Checklist: Each of the following items must be included in the report.
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody

Dago	- 7 G	01		6 I
ruse	47	(//	.,,	u_I
		-,	-	

Incident ID	NAPP2127034861
District RP	N/A
Facility ID	fAPP2132637940
Application ID	76935

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and

public health or the environment. The acceptance of a C-141 re failed to adequately investigate and remediate contamination that	release notifications and perform corrective actions for releases which may endanger port by the OCD does not relieve the operator of liability should their operations have at pose a threat to groundwater, surface water, human health or the environment. In e operator of responsibility for compliance with any other federal, state, or local laws
Printed Name:Ike Tavarez	Title:Project Manager RM&R
Printed Name:Ike Tavarez Signature: Kee Tavarez	Date:5/11/2022
email:ike.tavarez@conocophillips.com	432-701-
8630	
OCD Only	
Received by:	Date:10/11/2022

Page 30 of 361

Incident ID	NAPP2127034861
District RP	N/A
Facility ID	fAPP2132637940
Application ID	76935

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

	•
A scaled site and sampling diagram as described in 19.15.29.11	NMAC
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)
☐ Description of remediation activities	
may endanger public health or the environment. The acceptance of a	ediate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ions. The responsible party acknowledges they must substantially ditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.
OCD Only	
Received by: Jocelyn Harimon	Date:10/11/2022
	of liability should their operations have failed to adequately investigate and rater, human health, or the environment nor does not relieve the responsible r regulations.
Closure Approved by:	Date:10/27/2022
Printed Name: Jennifer Nobui	

Appendix C

Work Plan

Site Information

Work Plan
Copperhead Fee 31 E CTB (09.07.21)
Eddy County, New Mexico
Incident #: NAPP2127034861
32.002089°, -104.029702°

Produced Water Release
Source: Hole in the transfer pump flex pipe
Release Date: 09/07/2021
Volume Released: 20 bbls/Produced Water
Volume Recovered: 7 bbls/Produced Water

Prepared for: Concho Operating, LLC 15 West London Rd Loving, NM 88256

Prepared by: NTG Environmental 701 Tradewinds Blvd Suite C Midland, TX 79706

TABLE OF CONTENTS

FIGURES

FIGURE 1	OVERVIEW MAP
FIGURE 2	TOPOGRAPHIC MAP
FIGURE 3	SAMPLE LOCATION MAP
FIGURE 4	PROPOSED EXCAVATION AREA & DEPTH MAP

TABLES/PHOTOLOG

TABLE 1	INITIAL SOIL ANALYTICAL RESULTS
PHOTOS	PHOTOLOG

APPENDICES

APPENDIX A	C-141 INITIAL AND C-141 REMEDIATION
APPENDIX B	GROUNDWATER RESEARCH
APPENDIX C	LABORATORY ANALYTICAL REPORTS

701 Tradewinds Boulevard, Suite C Midland, Texas 79706 Tel. 432.685.3898 www.ntglobal.com

November 4, 2021

Mike Bratcher
District Supervisor
Oil Conservation Division, District 2
811 S. First Street
Artesia, New Mexico 88210

Re: Work Plan

Copperhead Fee 31 E CTB
Concho Operating, LLC
Site Location: Unit E, S31, T26S, R29E
Incident #: NAPP2127034861

(Lat 32.002089°, Long -104.029702°)

Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), New Tech Global Environmental, LLC (NTGE) has prepared this letter to document site assessment activities for Copperhead Fee 31 E CTB (09.07.21). The site is located at 32.002089°, -104.029702° within Unit E, S31, T26S, R29E, and approximately 15.61 miles south of Malaga, New Mexico, in Eddy County (Figures 1 and 2).

Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the leak was discovered on September 7, 2021, caused by a hole in the transfer pump flex pipe due to corrosion. It resulted in the release of approximately twenty (20) barrels of produced water, and seven (7) barrels of produced water were recovered. The impacted area measured approximately 245' x 21' and 230' x 21, as shown on Figure 3. The initial C-141 form is attached in Appendix A.

Site Characterization

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water source is within a ½ mile radius of the location. The nearest identified well is located approximately 2.53 miles Northwest of the site in S27, T26S, R28E and was drilled in 2017. The well has a reported depth to groundwater of 145' feet below ground surface (ft bgs). A copy of the associated *Point of Diversion Summary* report is attached in Appendix B.

Regulatory Criteria

In accordance with the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg

Site Assessment

On September 20, 2021, NTGE personnel were on site to horizontally and vertically define the release. A total of six (6) vertical sample points (S-1, S-2, S-3, S-4, S-5, and S-6) and nine (9) horizontal sample points (H-1 through H-9) were installed to total depths ranging from surface to 4.5 ft below the surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, the areas of (S-1 through S-3) had chloride concentration values ranging from 730 mg/kg to 8,460 mg/kg at a depth from the surface to 4.5' below the surface. The area of (S-4) had chloride concentrations ranging from 62.6 mg/kg to 7,280 mg/kg at a depth from the surface to 2.5' below the surface. The areas of (S-5 and S-6) had chloride concentrations ranging from 175 mg/kg to 7,280 mg/kg at a depth from surface to 1.5' below the surface.

Trenches

On October 7, 2021, NTGE personnel were on site to horizontally and vertically define the release. A total of three (3) trenches (T-1, T-2, and T-3) were installed to total depths ranging from surface to 12 ft below the surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

The area of (T-1) had high chloride concentration values ranging from 968 mg/kg to 15,800 mg/kg at a depth from the surface to 9.0' below the surface. The area of (T-2) had chloride concentration values ranging from 3,650 mg/kg to 11,600 mg/kg at a depth from the surface to 7.0' below the surface. The area of (T-3) had chloride concentration ranging from 698 mg/kg to 10,100 mg/kg at a depth of surface to 6.0'. All areas were vertically delineated (Refer to Table 1).

Proposed Work Plan

Based on the laboratory results, COG proposes to excavate the areas as shown in Figure 4 and highlighted (yellow) in Table 1. COG also proposes to drill a groundwater determination bore to 55' bgs (See Figure 3). Once achieved the Chloride concentration will be 20,000 mg/kg, and the TPH concentrations will be 2,500 mg/kg (GRO + DRO + MRO) and 1,000 mg/kg (GRO + DRO).

- The areas of S-1 (Trench-1), S-2 (Trench-2), and S-3 (Tench-3) will be excavated to 4.0' below surface and backfilled with clean material to grade.
- The area of S-4 will be excavated to a depth of 2.5' below surface backfilled with clean material to grade.
- The areas of S-5 and S-6 will be excavated to 1.5' below surface and backfilled with clean material to grade.

Safety Concerns

The proposed excavation depths may not be reached due to wall cave-ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safety concerns for onsite personnel. As such, COG will excavate the impacted soils to the maximum extent possible.

Composite sidewall and bottom hole samples will be collected every 200 square feet and analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B. Chloride by EPA method 300.0. COG estimates approximately 1,550 cubic yards to be removed and hauled to the nearest disposal.

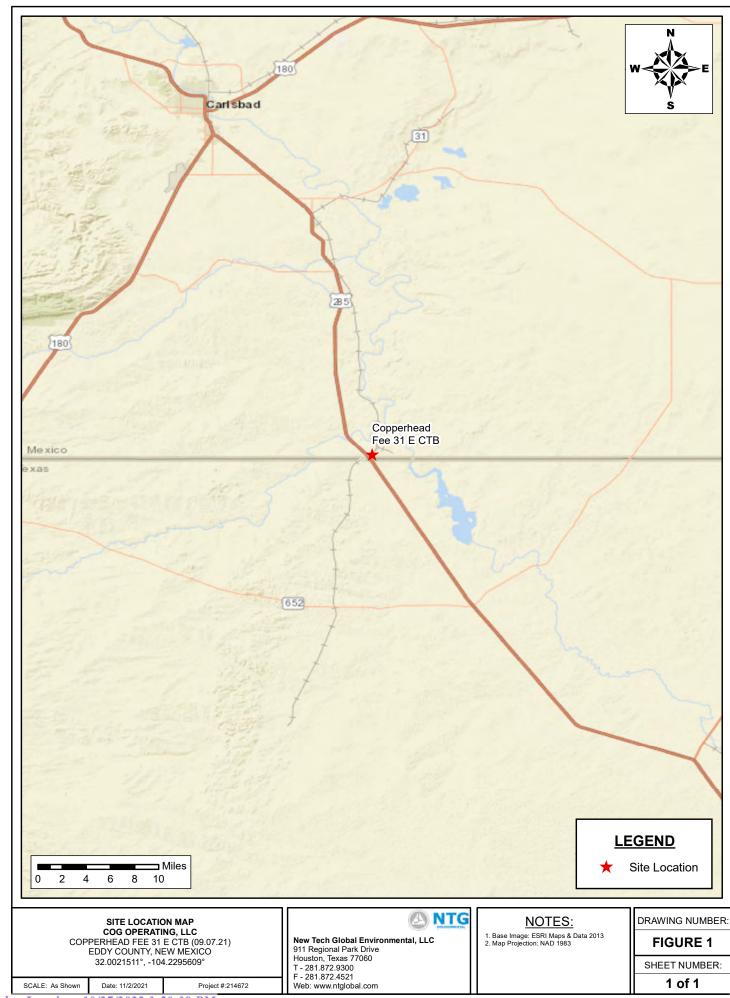
Once the site and excavation activities are complete, the areas will be backfilled with clean material to surface grade. The remediation will be implemented 90 days after the work plan is approved.

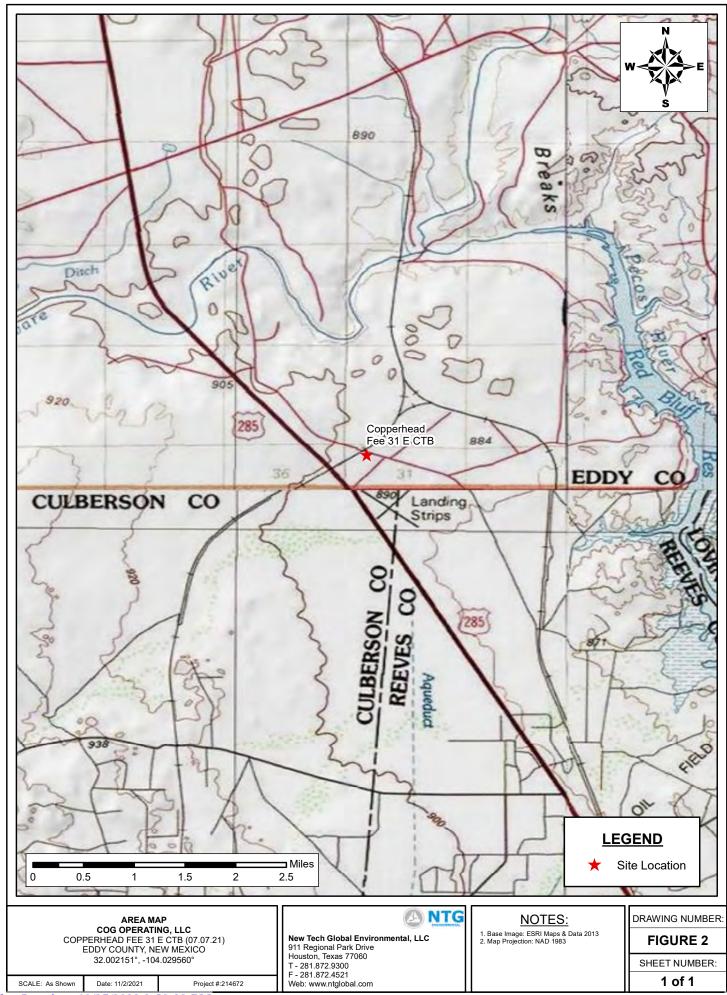
Conclusions

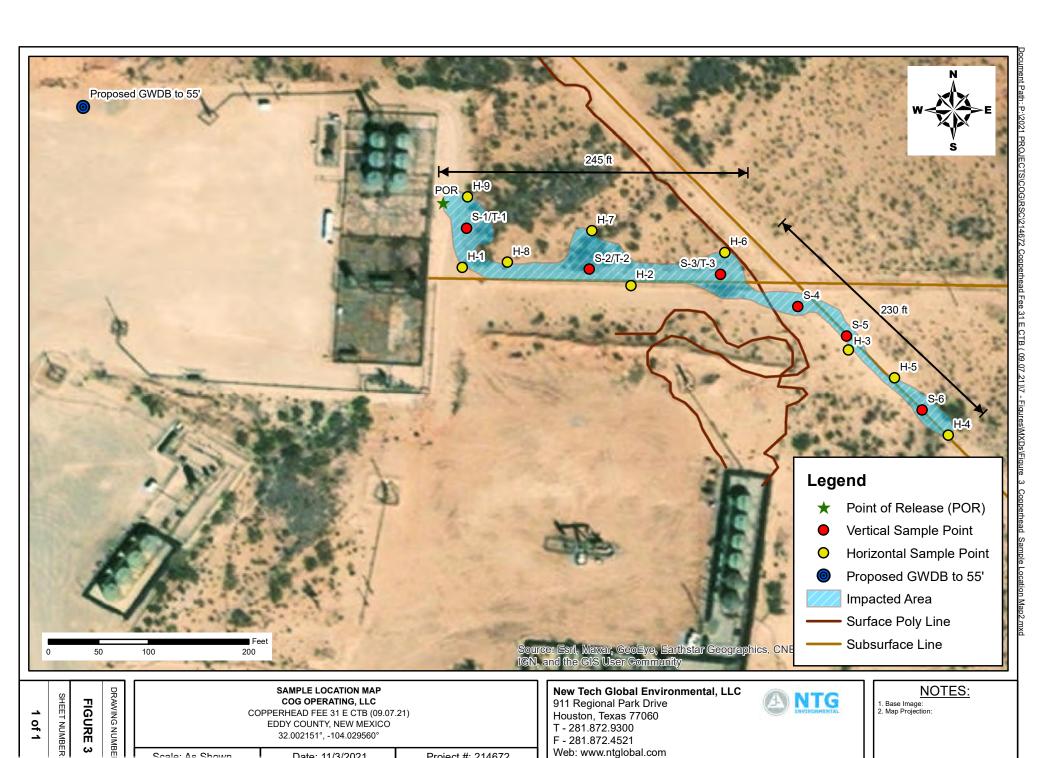
Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions regarding this report or need additional information, please contact us at 432-813-0263.

Sincerely,

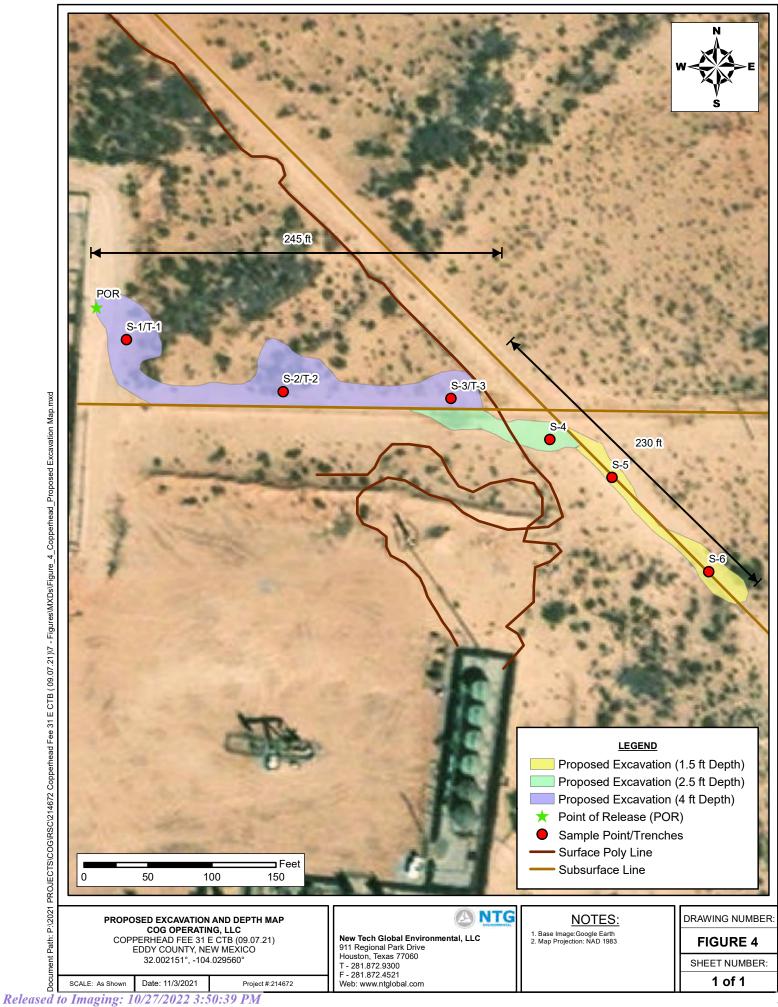
NTG Environmental


Mike Carmona


Senior Project Manager


Clinton Merritt Project Manager

Figures



Project #: 214672

Date: 11/3/2021

Tables

Table 1 Concho Operating, LLC Copperhead Fee 31 E CTB (09.07.21) Eddy County, New Mexico

Sample ID				TPH	(mg/kg)		_				Total	
	Date	Sample/Trenching Depth (ft)	DRO	GRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	BTEX (mg/kg)	Chloride (mg/kg)
	9/20/2021	0-1'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	0.0143	0.0143	6,150
		1-1.5'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6,680
S-1		2-2.5'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	8,260
		3-3.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	6,780
	•	4-4.5'	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	7,360
	10/7/2021	0-1'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	15,800
		1'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	6,000
		2'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	6,490
		3'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,640
		4'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	3,620
Trench 1		5'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,670
Trench 1		6'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	746
	•	7'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	4,080
		8'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,000
		9'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	968
	•	10'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	58.4
	-	11'	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	38.6
		12'	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	41.3
	9/20/2021	0-1'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	8,040
		1-1.5'	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	8,460
S-2		2-2.5'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	7,150
		3-3.5'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,900
		4-4.5'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	6,330
	10/7/2021	0-1'	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	7,820
		1'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	11,600
		2'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	5,490
		3'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	8,050
		4'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	8,220
Trench 2		5'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,810
		6'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	4,230
		7'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	3,650
		8'	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	77.1
		9'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	58.9
		10'	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	76.8
	9/20/2021	0-1'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	< 0.00401	0.00404	7,520
		1-1.5'	<49.9	<49.9	<49.9					.0.00.0	< 0.00401	7,020
S-3		2-2.5'			C49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00401	5,110
3-3		2-2.5	<49.9	<49.9	<49.9	<49.9 <49.9	<0.00199 <0.00200	<0.00199 <0.00200	<0.00199 <0.00200			
		3-3.5'	<49.9 <49.8							<0.00398	<0.00398	5,110
				<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00398 <0.00400	<0.00398 <0.00400	5,110 1,810
		3-3.5'	<49.8 <50.0	<49.9 <49.8 <50.0	<49.9 <49.8	<49.9 <49.8 <50.0	<0.00200 <0.00201 <0.00201	<0.00200 <0.00201 <0.00201	<0.00200 <0.00201 <0.00201	<0.00398 <0.00400 <0.00402 <0.00402	<0.00398 <0.00400 <0.00402 <0.00402	5,110 1,810 730
		3-3.5' 4-4.5'	<49.8 <50.0 <49.9	<49.9 <49.8 <50.0 <49.9	<49.9 <49.8 <50.0 <49.9	<49.9 <49.8	<0.00200 <0.00201 <0.00201 <0.00198	<0.00200 <0.00201 <0.00201 <0.00198	<0.00200 <0.00201 <0.00201 <0.00198	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397	5,110 1,810 730 901
	10/7/2021	3-3.5' 4-4.5' 0-1'	<49.8 <50.0 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402	5,110 1,810 730 901 10,100
	10/7/2021	3-3.5' 4-4.5' 0-1' 1'	<49.8 <50.0 <49.9	<49.9 <49.8 <50.0 <49.9	<49.9 <49.8 <50.0 <49.9	<49.9 <49.8 <50.0	<0.00200 <0.00201 <0.00201 <0.00198	<0.00200 <0.00201 <0.00201 <0.00198	<0.00200 <0.00201 <0.00201 <0.00198	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397	5,110 1,810 730 901 10,100 732
Trench 3	10/7/2021	3-3.5' 4-4.5' 0-1' 1' 2'	<49.8 <50.0 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399	5,110 1,810 730 901 10,100 732 15.7
Trench 3	10/7/2021	3-3.5' 4-4.5' 0-1' 1' 2' 3'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8	<49.9 <49.8 <50.0 <49.9 <50.0 <49.9 <50.0 <49.8	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200	<0.00200 <0.00201 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200	<pre><0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402</pre>	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 	5,110 1,810 730 901 10,100 732 15.7 437
Trench 3	10/7/2021	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9	<49.9 <49.8 <50.0 <49.9 <50.0 <49.9 <50.0 <49.8 <49.9	<pre><0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200</pre>	<0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200	<pre><0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00402 <0.00401</pre>	 <0.00398 <0.00400 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00399 <0.00402 <0.00401 	5,110 1,810 730 901 10,100 732 15.7 437
Trench 3	10/7/2021	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.8	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.9 <50.0 <49.8 <49.8	<pre><0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200 <0.00200</pre>	<pre><0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200 <0.00200 <0.00201</pre>	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00401 <0.00402	<0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00401 <0.00402	5,110 1,810 730 901 10,100 732 15.7 437 142
Trench 3	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <49.8 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <49.8 <49.9 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <49.8 <49.9 <50.0	<pre><0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200 <0.00201 <0.00209 <0.00199</pre>	<pre><0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00201 <0.00200 <0.00201 <0.00200 <0.00201 <0.00199 <0.00199</pre>	 <0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00401 <0.00402 <0.00403 <0.00403 <0.00403 <0.00398 <0.00398 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00399 <0.00402 <0.00401 <0.00402 <0.00398 <0.00398 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117
Trench 3	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0	<pre><0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00200 <0.00201 <0.00199 <0.00199 <0.00202</pre>	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00199 <0.00202 	 <0.00200 <0.00201 <0.00201 <0.00198 <0.00201 <0.00200 <0.00200 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00199 <0.00202 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00402 <0.00401 <0.00402 <0.00398 <0.00398 <0.00403 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00402 <0.00401 <0.00402 <0.00402 <0.00398 <0.00398 <0.00398 <0.00403 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117
	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 11' 2' 3' 4' 5' 6' 7' 0-1' 1-1.5'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <49.8	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8	<pre><49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0 <49.8</pre>	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0 <49.8	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00402 <0.00402 <0.00402 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00402 <0.00401 <0.00402 <0.00402 <0.00398 <0.00398 <0.00403 <0.00403 <0.00403 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117
	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 11' 2' 3' 4' 5' 6' 7' 0-1' 1-1.5' 2-2.5'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <50.0 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <50.0 <50.0 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <49.8 <50.0	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00201 	 <0.00200 <0.00201 <0.00199 <0.00202 <0.00202 <0.00202 <0.00201 	<0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00402 <0.00402 <0.00399 <0.00402 <0.00398 <0.00402 <0.00398 <0.00402 <0.00398 <0.00403 <0.00403 <0.00403 <0.00403	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00401 <0.00402 <0.00398 <0.00398 <0.00403 <0.00403 <0.00403 <0.00402 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117 7,280 1,240
	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7' 0-1' 1-1.5' 2-2.5'	<49.8 <50.0 <49.9 <50.0 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <49.8	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <49.8 <49.9 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <49.8 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <49.9 <50.0 <49.8 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.8 <50.0 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.002001 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00200 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00199 <0.00202 <0.00200 	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00401 <0.00402 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00402 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 	 -0.00398 -0.00400 -0.00402 -0.00402 -0.00402 -0.00402 -0.00402 -0.00402 -0.00402 -0.00401 -0.00402 -0.00403 -0.00403 -0.00403 -0.00402 -0.00403 -0.00403<	5,110 1,810 730 901 10,100 732 15.7 437 144 698 117 7,280 1,240 62.6
S-4	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7' 0-1' 1-1.5' 2-2.5' 0-1' 1-1.55'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0 <50.0 <49.8 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <50.0 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00200 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00201 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00199 <0.00199 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	<0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00399 <0.00402 <0.00399 <0.00402 <0.00398 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00402 <0.00399 <0.00400	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00401 <0.00402 <0.00401 <0.00402 <0.00398 <0.00403 <0.00403 <0.00402 <0.00402 <0.00403 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117 7,280 62.6 5,190
S-4	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7' 1-1.5' 2-2.5' 0-1' 1-1.5'	<49.8 <50.0 <49.9 <50.0 <50.0 <50.0 <49.8 <49.9 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.9 <49.8 <49.8 <50.0 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00202 <0.00202 <0.00201 <0.00200 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00202 <0.00202 <0.00201 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00199 <0.00202 <0.00202 <0.00201 <0.00202 <0.00202 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00198 	<0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 <0.00401 <0.00401 <0.00401 <0.00402 <0.00398 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00400 <0.00400 <0.00400 <0.00400	 <0.00398 <0.00400 <0.00402 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00400 <0.00399 <0.00400 <0.00397 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117 7,280 62.6 5,190 175 3,500
S-4 S-5 S-6	" " " " " " " " " " " " " " " " " " "	3-3.5' 4-4.5' 0-1' 1' 2' 3' 4' 5' 6' 7' 0-1' 1-1.5' 2-2.5' 0-11 1-1.5'	<49.8 <50.0 <49.9 <50.0 <50.0 <49.8 <49.9 <49.8 <49.9 <50.0 <50.0 <50.0 <49.8 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <49.9 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <49.8 <50.0	<49.9 <49.8 <50.0 <50.0 <50.0 <50.0 <49.8 <49.8 <49.9 <50.0 <50.0 <50.0 <49.8 <49.9 <50.0 <50.0 <49.8 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0	<0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00200 <0.00201 <0.00201 <0.00200 <0.00201 <0.00202 <0.00202 <0.00202 <0.00202 <0.00201 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00200 <0.00200 <0.00201 <0.00201 <0.00201 <0.00201 <0.00199 <0.00199 <0.00199 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	<0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00402 <0.00399 <0.00402 <0.00399 <0.00402 <0.00398 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00402 <0.00399 <0.00400	 <0.00398 <0.00400 <0.00402 <0.00402 <0.00402 <0.00402 <0.00397 <0.00402 <0.00399 <0.00401 <0.00402 <0.00401 <0.00402 <0.00398 <0.00403 <0.00403 <0.00402 <0.00402 <0.00403 <0.00402 <0.00402 <0.00402 <0.00402 <0.00402 	5,110 1,810 730 901 10,100 732 15.7 437 142 144 698 117 7,280 1,240 62.6 5,190

Toble 1 - 19.15.29 NMAC
 mg/kg - milligram per kilogram
 TPH- Total Petroleum Hydrocarbons
ft-feet

Prepared by:

NTG

Table 1
Concho Operating, LLC
Copperhead Fee 31 E CTB (09.07.21)
Eddy County, New Mexico

		Sample/Trenching		TPH	(mg/kg)		Benzene	Toluene		Xylene (mg/kg)	Total	Chloride
Sample ID	Date	Depth (ft)	DRO	GRO	MRO	Total	(mg/kg)	(mg/kg)			BTEX (mg/kg)	(mg/kg)
H-1	9/20/2021	0-0.5'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	143
H-2	9/20/2021	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	11.3
H-3	9/20/2021	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	11.2
H-4	9/20/2021	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	11.2
H-5	9/20/2021	0-0.5'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	10.6
H-6	9/20/2021	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	11.6
H-7	9/20/2021	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	10.7
H-8	9/20/2021	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	13.1
H-9	9/20/2021	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	11.3
Regulatory Limits ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg	

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

Photo Log

PHOTOGRAPHIC LOG

COG Operating, LLC

Photograph No. 1

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View East, of proposed excavation area containing Trench 1.

Photograph No. 2

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View Northeast, of proposed excavation area containing Trench 2.

Photograph No. 3

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View West, of proposed excavation area containing Trench 3.

PHOTOGRAPHIC LOG

COG Operating, LLC

Photograph No. 4

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View East, of proposed excavation area containing Trench 4.

Photograph No. 5

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View Southeast, of proposed excavation area containing Trench 5.

Photograph No. 6

Facility: Copperhead Fee 31 E CTB

(09.07.21)

County: Eddy County, New Mexico

Description:

View Southeast, of proposed excavation area containing Trench 6.

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party			OGRID	OGRID				
Contact Nam	ie			Contact	Contact Telephone				
Contact email					Incident # (assigned by OCD)				
Contact mail:	ing address			· · · · · · · · · · · · · · · · · · ·					
			Location	of Release	Source				
Latitude				Longitud	e				
			(NAD 83 in dec	cimal degrees to 5 de	ecimal places)				
Site Name				Site Typ	e				
Date Release	Discovered			API# (if	applicable)				
Unit Letter	Section	Township	Range	Co	ounty				
Omit Detter	Section	Township	Runge		, diffy	+			
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Private (I	Name:)			
			Nature and	d Volume of	f Release				
Crude Oil		l(s) Released (Select al Volume Release		calculations or speci	Volume Reco	e volumes provided below) overed (bbls)			
Produced	Water	Volume Release	` ,		Volume Recovered (bbls)				
			ion of dissolved c	hloride in the	☐ Yes ☐ N	, ,			
		produced water							
Condensa	te	Volume Release	d (bbls)		Volume Reco	overed (bbls)			
Natural G	as	Volume Release	d (Mcf)		Volume Recovered (Mcf)				
Other (des	scribe)	Volume/Weight	Released (provide	e units)	Volume/Weight Recovered (provide units)				
Cause of Rele	ease								

Received by OCD: 10/11/2022 7:11517 AM
State of New Mexico
Page 2
Oil Conservation Division

- 73		73	-			~	~	-	-
· ·	an	12	1	de la c	10	•	æ.	n	
	ag		E-27.	17	A 24	, ,	,	u	2
	0			3 -	- 7				

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release? If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?
☐ Yes ☐ No
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
11 1 L5, was infinediate notice given to the OCD. By whom: To whom: When and by what means (phone, eman, etc).
Initial Response
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
☐ The source of the release has been stopped.
☐ The impacted area has been secured to protect human health and the environment.
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and recoverable materials have been removed and managed appropriately.
If all the actions described above have <u>not</u> been undertaken, explain why:
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name Title:
Signature: Date:
email: Telephone:
OCD Only

NAPP2127034861

L48 Spill Volume Estimate Form													
	Facility Name & Number: Copperhead Fee 31E CTB												
			Asset Area:	Area DBWN									
	Rele	ase Disc	Discovery Date & Time: 9/7/2021										
			Release Type:	Produced Water									
Provid	e any kn	own deta	ils about the event:	The release was caus	sed by a hole in th	e transfer pump f	lex pipe due to corros	sion.					
					SI	oill Calculation	- On Pad Surface	Pool Spill					
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)	
Rectangle A	240.0	54.0	0.25	3	12960.000	0.007	16.020	0.000	16.026				
Rectangle B	153.0	23.0	0.25	3	3519.000	0.007	4.350	0.000	4.351				
Rectangle C					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle D					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle E					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle F					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle G					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle H					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle I					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
Rectangle J					0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!				
			•		•			Total Volume Release:	20.377				

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 52031

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	52031
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date		
rmarcus	None	9/27/2021		

Received by OCD: 10/11/2022 7:11:17 AM Form C-141 State of New Mexico
Page 3 Oil Conservation Division

	Page 53 of 361
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)						
Did this release impact groundwater or surface water?	☐ Yes ☐ No						
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No						
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No						
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No						
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No						
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No						
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No						
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No						
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No						
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No						
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No						
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No						
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.							
Characterization Report Checklist: Each of the following items must be included in the report.							
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody							

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/11/2022 7:11:17 AM
Form C-141 State of New Mexico
Page 4 Oil Conservation Division

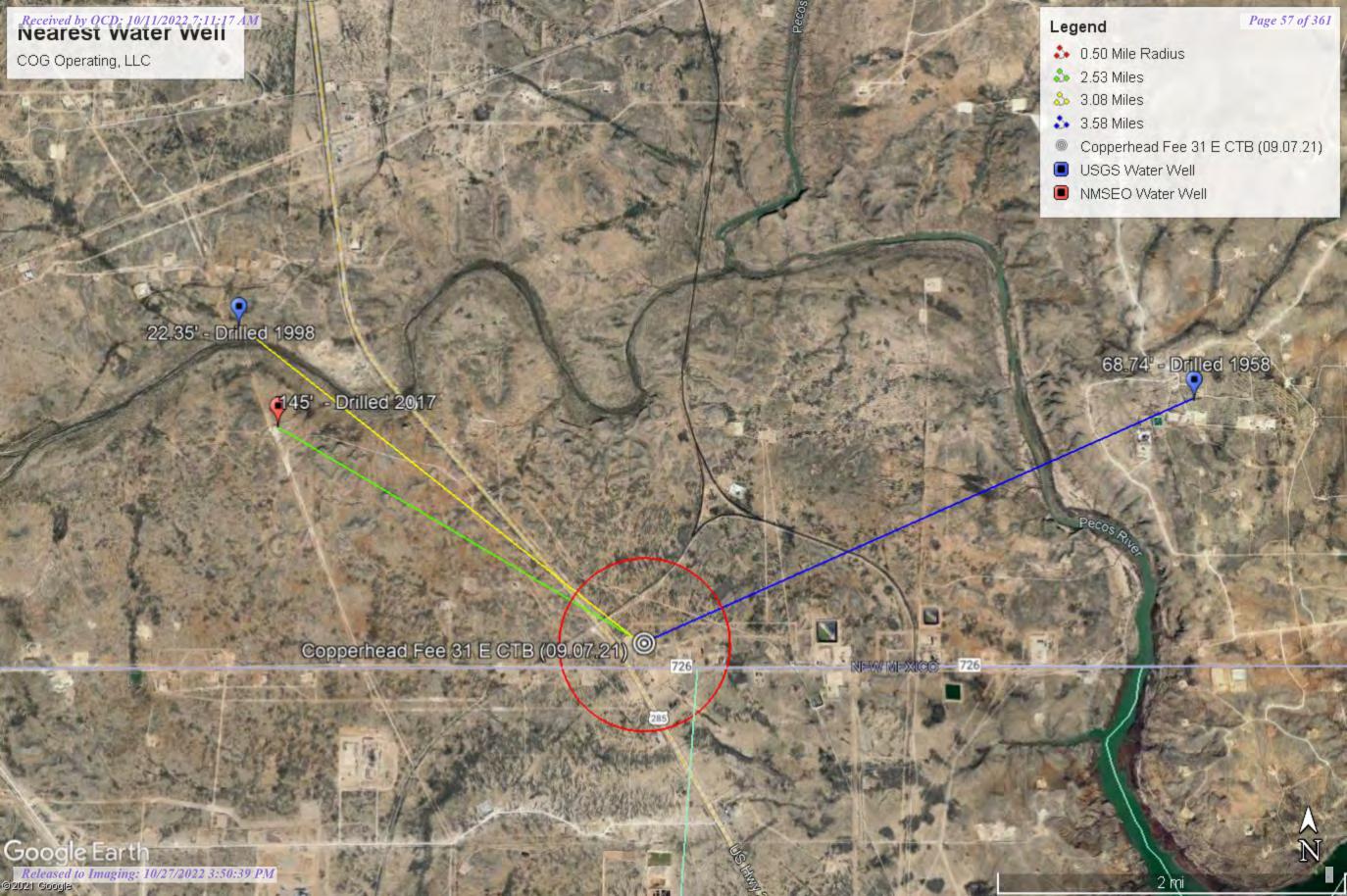
Page 54 of 361

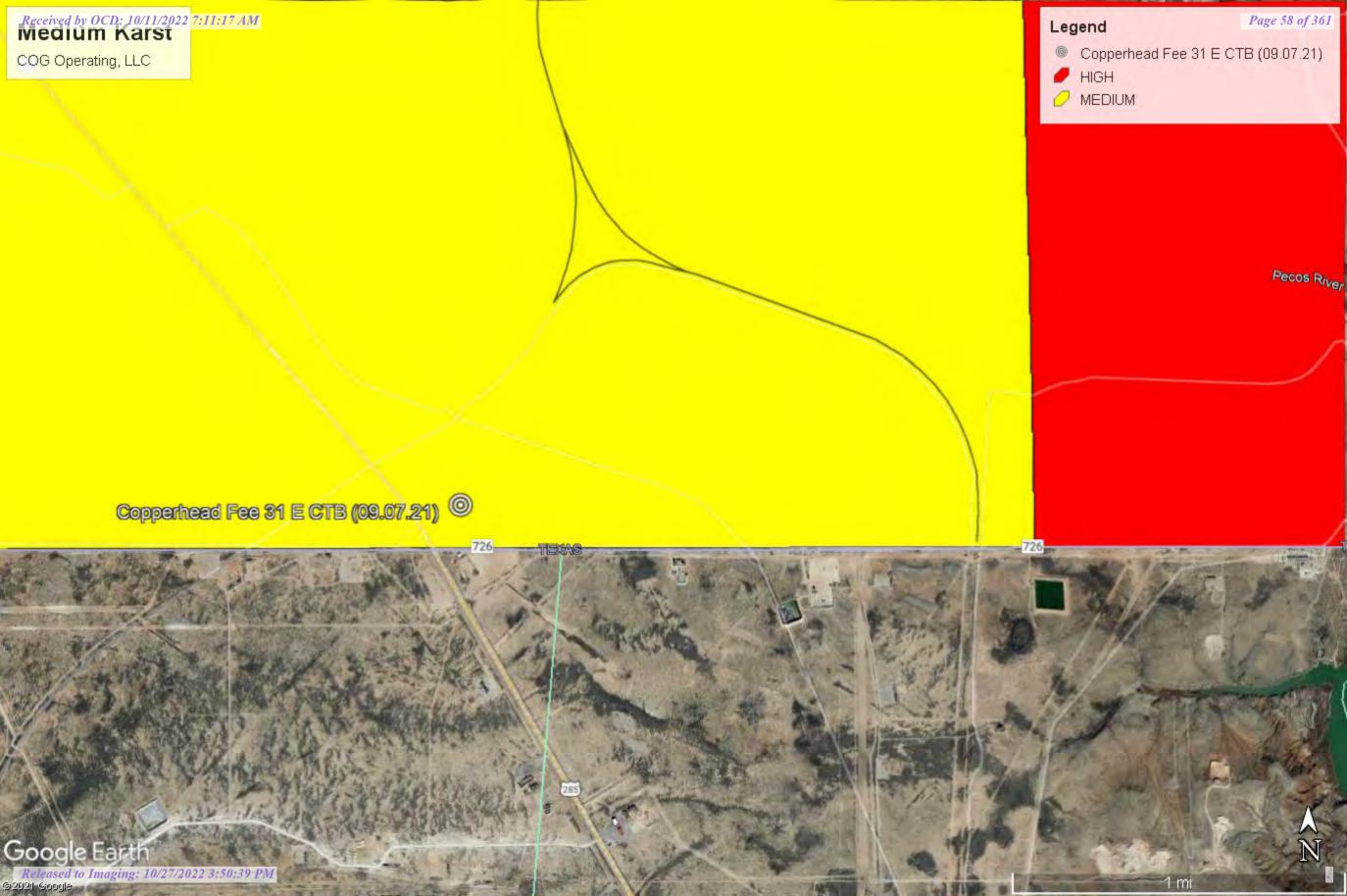
Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the Gailed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 10/11/2022 7:11:17 AM Form C-141 State of New Mexico Page 5 Oil Conservation Division

State of New Mexico Incident ID


Incident ID	
District RP	
Facility ID	
Application ID	


Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.						
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC □ Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 						
Deferral Requests Only: Each of the following items must be con-	nfirmed as part of any request for deferral of remediation.					
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.						
Extents of contamination must be fully delineated.						
Contamination does not cause an imminent risk to human health	n, the environment, or groundwater.					
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of					
Printed Name:	Title:					
Signature:	Date:					
email:	Telephone:					
OCD Only						
	D .					
Received by:	Date:					
☐ Approved ☐ Approved with Attached Conditions of	Approval					
Signature:	Date:					

Appendix B

National Water Information System: Mapper

(In feet)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

	POD Sub-		Q	Q G	2					Depth	Depth	Water
POD Number	Code basin	County	64	16 4	Sec	Tws	Rng	Х	Y	Well	Water (Column
C 01354 X-3	CUB	ED	2	1 3	23	26S	29E	598323	3543837 🌑	170		
C 02038	С	ED	3	2 4	26	26S	29E	599204	3541992* 🎒	200		
C 03507 POD1	С	ED	1	3 3	05	26S	29E	593064	3548313 🌍	140	78	62
C 03508 POD1	С	ED	1	3 3	05	26S	29E	593063	3548361 🎒	140	75	65
C 03605 POD1	CUB	ED	4	2 3	27	26S	29E	596990	3541983 🌍	45	0	45
C 04561 POD1	CUB	ED	4	3 3	24	26S	29E	599924	3543208 🌍			

Average Depth to Water: 51 feet

Minimum Depth: **0 feet**

Maximum Depth: 78 feet

Record Count: 6

PLSS Search:

Township: 26S Range: 29E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number

Q64 Q16 Q4 Sec Tws Rng

X

C 04022 POD2

2 2 2 27 26S 28E

588106 3543082

6

Driller License: 1184

Driller Company:

WEST TEXAS WATER WELL SERVICE

Driller Name: KEITH, RONNY

Drill Start Date: 05/08/2017

Drill Finish Date:

05/12/2017

Plug Date:

Log File Date:

06/05/2017

PCW Rcv Date:

Source:

Shallow

Pump Type:

/05/201/

Pipe Discharge Size:

Estimated Yield:

60 GPM

Casing Size:

12.25

Depth Well:

250 feet

Depth Water:

145 feet

Water Bearing Stratifications: Top Bottom Description

150 160 Sandstone/Gravel/Conglomerate
160 180 Sandstone/Gravel/Conglomerate
180 190 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom

130 250

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/28/21 10:21 AM

POINT OF DIVERSION SUMMARY

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs

site_no list =

320145104041701

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320145104041701 26S.28E.22.234431

Eddy County, New Mexico

Latitude 32°01'45", Longitude 104°04'17" NAD27

Land-surface elevation 2,980 feet above NGVD29

The depth of the well is 23.00 feet below land surface.

This well is completed in the Other aguifers (N99990THER) national aguifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1987-12-12		D	62610		2958.98	NGVD29	1	S		
1987-12-12		D	62611		2960.55	NAVD88	1	S		
1987-12-12		D	72019	21.02			1	S		
1998-01-22		D	62610		2957.65	NGVD29	1	S		
1998-01-22		D	62611		2959.22	NAVD88	1	S		
1998-01-22		D	72019	22.35			1	S		

Explanation

Section Code De		Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface

Section	Code	Description
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	Α	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site **Automated retrievals** <u>Help</u> Data Tips **Explanation of terms** Subscribe for system changes **News**

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2021-09-21 21:11:49 EDT

0.28 0.24 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320126103562801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320126103562801 26S.29E.22.340

Eddy County, New Mexico

Latitude 32°01'22", Longitude 103°58'26" NAD27

Land-surface elevation 2,888 feet above NGVD29

The depth of the well is 80 feet below land surface.

This well is completed in the Other aguifers (N9999OTHER) national aguifer.

This well is completed in the Rustler Formation (312RSLR) local aquifer.

Output formats

Table of dat	: <u>a</u>									
<u>Tab-separat</u>	Tab-separated data									
Graph of da	<u>ıta</u>									
Reselect pe	<u>riod</u>									
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1958-08-1	8	D	62610		2819.26	NGVD29	1		Z	
1958-08-1	8	D	62611		2820.78	NAVD88	1		Z	
1958-08-1	8	D	72019	68.74			1		Z	

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static

Section	Code	Description	
Method of measurement	Z	Other.	
Measuring agency		Not determined	
Source of measurement		Not determined	
Water-level approval status	Α	Approved for publication Processing and review completed.	

Questions about sites/data? Feedback on this web site **Automated retrievals** <u>Help</u> Data Tips **Explanation of terms** Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

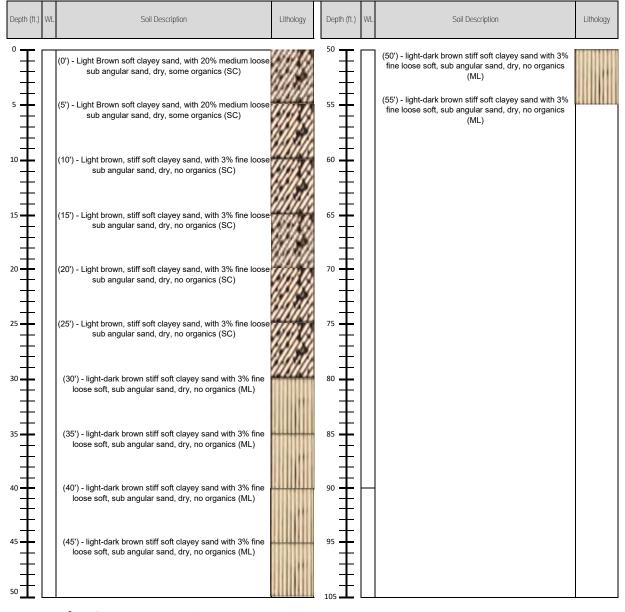
U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: New Mexico Water Data Maintainer Page Last Modified: 2021-09-21 21:14:35 EDT

0.27 0.23 nadww01

Appendix D


Soil Boring Log and Groundwater Location Bore Location Map

Project Name : Date: COG - Copperhead Fee A 3H (02.08.22) Monday, April 25, 2022 Project No. : Sampler : Lane Scarborough **Eddy County, New Mexico** Location: Driller: Coordinates :

32.016146, -104.021411 Scarborough Drilling Method: Elevation:

2,935' Air Rotary

Comments: Boring terminated at 55' at 10:00 AM Central Time with no presence of groundwater or moisture. Well gauged on 4/29/22 at 11:00 AM Central Time with no detection of groundwater or moisture

Appendix E

Laboratory Analytical Reports

Pace Analytical® ANALYTICAL REPORT

Ss

Arcadis_ConocoPhillips

Description:

Report To:

L1480575 Sample Delivery Group:

Samples Received: 04/09/2022

Project Number: 30130426

Justin Nixon

1004 N. Big Spring St.

Project Manager

Suite 121

Midland, TX 79701

Copperhead CTB

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and

ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW1-2-040722 L1480575-01	5
SW2-2-040722 L1480575-02	6
B-1-4-040722 L1480575-03	7
SW-3-2-040822 L1480575-04	8
B-2-4-040822 L1480575-05	9
SW-4-2-040822 L1480575-06	10
SW-5-2-040822 L1480575-07	11
Qc: Quality Control Summary	12
Total Solids by Method 2540 G-2011	12
Wet Chemistry by Method 300.0	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
SW1-2-040722 L1480575-01 Solid			Justin Nixon	04/07/22 13:15	Received date/time 04/09/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	1	04/13/22 09:34	04/13/22 13:26	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW2-2-040722 L1480575-02 Solid			Justin Nixon	04/07/22 13:30	04/09/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	1	04/13/22 09:34	04/13/22 14:04	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-1-4-040722 L1480575-03 Solid			Justin Nixon	04/07/22 14:30	04/09/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	5.15	04/13/22 09:34	04/13/22 14:14	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
SW-3-2-040822 L1480575-04 Solid			Justin Nixon	04/07/22 15:00	04/09/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	1.03	04/13/22 09:34	04/13/22 14:24	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
B-2-4-040822 L1480575-05 Solid			Justin Nixon	04/08/22 15:00	04/09/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	1.04	04/13/22 09:34	04/13/22 14:33	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SW-4-2-040822 L1480575-06 Solid			Justin Nixon	04/08/22 15:10	04/09/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1846964	1.05	04/13/22 09:34	04/13/22 14:43	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
SW-5-2-040822 L1480575-07 Solid			Justin Nixon	04/08/22 15:20	04/09/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847336	1	04/13/22 10:03	04/13/22 10:16	CMK	Mt. Juliet, TN
Mat Classification by Mathematical 200 0	WC10 4C0C 4	4.04	04/40/00 00 04	0.4/40/00 44 50	1.00	NAC LEG TAI

Wet Chemistry by Method 300.0

WG1846964

1.01

04/13/22 09:34

04/13/22 14:52

LBR

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Total Solids by Method 2540 G-2011

Collected date/time: 04/07/22 13:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.3		1	04/13/2022 10:16	WG1847336

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	103		9.97	21.7	1	04/13/2022 13:26	WG1846964

Page 75 of 361

SAMPLE RESULTS - 02

Collected date/time: 04/07/22 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.8		1	04/13/2022 10:16	WG1847336

²T₆

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	361		10.1	22.0	1	04/13/2022 14:04	WG1846964

Page 76 of 361

SAMPLE RESULTS - 03

L1480575

Total Solids by Method 2540 G-2011

Collected date/time: 04/07/22 14:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.6		1	04/13/2022 10:16	WG1847336

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1600		52.3	114	5.15	04/13/2022 14:14	WG1846964

Page 77 of 361

SAMPLE RESULTS - 04

Collected date/time: 04/07/22 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.4		1	04/13/2022 10:16	WG1847336

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.5	J	10.3	22.3	1.03	04/13/2022 14:24	WG1846964

Page 78 of 361

SAMPLE RESULTS - 05

RDL (dry)

mg/kg

23.8

Dilution

1.04

Analysis

date / time

04/13/2022 14:33

Batch

WG1846964

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

264

Qualifier

MDL (dry)

mg/kg

11.0

Collected date/time: 04/08/22 15:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.3		1	04/13/2022 10:16	WG1847336

Page 79 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/08/22 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	86.7		1	04/13/2022 10:16	WG1847336

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	244		11.1	24.2	1.05	04/13/2022 14:43	WG1846964

Page 80 of 361

SAMPLE RESULTS - 07

Collected date/time: 04/08/22 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.9		1	04/13/2022 10:16	WG1847336

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	239		9.89	21.5	1.01	04/13/2022 14:52	WG1846964

Page 81 of 361

Total Solids by Method 2540 G-2011

L1480575-01,02,03,04,05,06,07

(MB) R3780904-1 C	04/13/22 10:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

3

L1480575-03 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.6	90.8	1	0.236		10

⁴Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3780904-2 04/13/22 10:16

(LC3) R3780904-2 04/13/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 82 of 361

Wet Chemistry by Method 300.0

L1480575-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3780778-1 04/13/2	22 09:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1480323-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1480323-04	04/13/22 12:39 •	(DUP) R3780778-3	04/13/22 12:48
------------------	------------------	------------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2620	2640	5.05	0.450		20

[†]Cn

L1480575-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1480575-01 04/13.	3/22 13:26 • (DUP) Original Result (dry)				DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	103	108	1.02	4.10		20

Laboratory Control Sample (LCS)

(LCS) R3780778-2 04/13/22 09:52

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	101	90.0-110	

L1480323-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480323-04 04/13/22 12:39 • (MS) R3780778-4 04/13/22 12:58 • (MSD) R3780778-5 04/13/22 13:07

(03) [1400323=04 04/13]	(OS) E1400325-04 O4/13/22 12:35 * (WIS) N3/00/70-4 O4/13/22 12:30 * (WIS) N3/00/70-5 O4/13/22 13:0/											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	586	2620	3230	3150	103	88.7	5.1	80.0-120			2.65	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	IIN 3/122

Alabama 40660	Nebraska	NE-OS-15-05
Alaska 17-026	Nevada	TN000032021-1
Arizona AZ0612	New Hampshire	2975
Arkansas 88-0469	New Jersey-NELAP	TN002
California 2932	New Mexico ¹	TN00003
Colorado TN00003	New York	11742
Connecticut PH-0197	North Carolina	Env375
Florida E87487	North Carolina ¹	DW21704
Georgia NELAP	North Carolina ³	41
Georgia ¹ 923	North Dakota	R-140
ldaho TN00003	Ohio-VAP	CL0069
Illinois 200008	Oklahoma	9915
Indiana C-TN-01	Oregon	TN200002
lowa 364	Pennsylvania	68-02979
Kansas E-10277	Rhode Island	LAO00356
Kentucky ^{1 6} KY90010	South Carolina	84004002
Kentucky ² 16	South Dakota	n/a
ouisiana Al30792	Tennessee 1 4	2006
ouisiana LA018	Texas	T104704245-20-18
Maine TN00003	Texas ⁵	LAB0152
Maryland 324	Utah	TN000032021-11
Massachusetts M-TN003	Vermont	VT2006
Michigan 9958	Virginia	110033
Minnesota 047-999-395	Washington	C847
Mississippi TN00003	West Virginia	233
Missouri 340	Wisconsin	998093910
Montana CERT0086	Wyoming	A2LA
A2LA – ISO 17025 1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵ 1461.02	DOD	1461.01
Canada 1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

cerved by OCD: 10/11/2022 7: Company Name/Address:	21017 11112		Billing Inf	ormation:		T	-	7	_	Analysis	Contain	er / Prese	121.10	T	Chain	of Custody Pa
Arcadis_ConocoPhillips .004 N. Big Spring St.			Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129				+				+	+		- /	Pace	
Midland, TX 79701			Email To:		ra da se		1		1			- 1			12005 (abo	MT JULIET, T
ustin Nixon			justin.nixon@arcadis.com;william.foord@arca			@arcad	i i					- 1	1			a sample was this chair of accrowledgment and acc
roject Description: Copperhead CTB		City/State Collected:			Please C		展									and Conditions found at pacerials com/hydrs/pas-
none: 432-214-2972	Client Project 30130426			COPARCA-3	0130426		To To	oPres							SDG#	14805
ollected by (print):	Site/Facility I	D#		P.O.#			- Page	4ozClr-NoPres				1			Table #	COPARCA
ollected by (signature):		Lab MUST Be					1	00 405			1					T206699 P915946
mmediately Y	Next Da	ay <u>美</u> 5 Day			ts Needed No.		BTEXGRO, DRO	CHLORIDE-300							PM: 526 - PB:	Chris McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	FEXG	HLOF							Shipped V	
5w-1-2-040722	6	SS	2	7-7-22	1315	1	<u> </u>	X						1		-0
5~-2-2-2040722	6	SS	2	-1-	1330	2		X	_			1	-	-	-	1-02
R-1-4 640722	6	SS	4		1430	2		X		_	1	1-1	_	-	-	1-03
50-3-2-040722	6	SS	7.	1	1500	2		X			-		-	_	-	1-04
B-2-4-040822	6	SS	4	7-3-22	1500	2		X					1	_		-05
5.1-4-7 (-040822	6	SS	4'	1	1510	5		X								-ap
50-5-2-040822	6	SS	2-	1	1520	2		X								-07
300 7 7 0		SS														
		SS														
		SS				1	Page 1	2		Ex.	1					
Matrix; S - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay	marks:	01	1/7	500	y TAT					pH	Temp		Corre	Seal Pre- Signed/Ad les arriv ect bettl	ve intact: les used:	necklist
DW - Drinking Water Sai	mples returned UPS A FedEx	vla: Courier	-	Tracking	_				Tr. 1- 1	New Pare	had. V	s/No	VOA Z	ero Read	Correct/Che	_Y _N
(Signature)		te: 1-8-22	Time:	Time: Received by: (Signature)					inp	Blank Rece	T	ICL / MeoH BR	RAD S	creen <0	.5 mR/hr: quired by Logi	Z4 _4
delinquished by: (Signature)	Da	te:	Time:		by: (Signature				Temp	3±0:	53	s Received:		- woon re	dough by role	
Relinquished by: (Signature)	Da		Time:	1//	focial by: (Sil	//			Date:	22	Time	230	Hold:			Condition:

Pace Analytical® ANALYTICAL REPORT

Ss

Arcadis_ConocoPhillips

Sample Delivery Group: L1480576

Samples Received: 04/09/2022 Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SW1-2-040722 L1480576-01	6
SW2-2-040722 L1480576-02	7
B-1-4-040722 L1480576-03	8
SW-3-2-040722 L1480576-04	9
B-2-4-040822 L1480576-05	10
SW-4-2-040822 L1480576-06	11
SW-5-2-040822 L1480576-07	12
Qc: Quality Control Summary	13
Total Solids by Method 2540 G-2011	13
Volatile Organic Compounds (GC) by Method 8015/8021	15
Semi-Volatile Organic Compounds (GC) by Method 8015M	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SAMPLE SUMMARY

SW1-2-040722 L1480576-01 Solid			Collected by Justin Nixon	Collected date/time 04/07/22 13:15	Received da 04/09/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
inculou	Baten	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847545	1	04/13/22 07:48	04/13/22 07:54	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1848120	1	04/12/22 10:33	04/13/22 23:32	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 14:33	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW2-2-040722 L1480576-02 Solid			Justin Nixon	04/07/22 13:30	04/09/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1847340 WG1848120	1	04/12/22 10:33	04/13/22 17:52	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 14:19	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-1-4-040722 L1480576-03 Solid			Justin Nixon	04/07/22 14:30	04/09/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1848120	1	04/12/22 10:33	04/14/22 00:15	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 14:06	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-3-2-040722 L1480576-04 Solid			Justin Nixon	04/07/22 15:00	04/09/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1848120	1	04/12/22 10:33	04/14/22 00:36	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 13:52	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-2-4-040822 L1480576-05 Solid			Justin Nixon	04/08/22 15:00	04/09/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1848120	1	04/12/22 10:33	04/14/22 00:58	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 13:11	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-4-2-040822 L1480576-06 Solid			Justin Nixon	04/08/22 15:10	04/09/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Valatila Ovaania Compounda (CC) by Mathad 2015 (2001	WC1040120	4	04/12/22 10:22	0.4/1.4/2.2.01.10	100	NAC 1 II TAI

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1848120

WG1849240

1

04/12/22 10:33

04/15/22 13:29

ACG

JN

04/14/22 01:19

04/16/22 13:25

Mt. Juliet, TN

Mt. Juliet, TN

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

SW-5-2-040822 L1480576-07 Solid	Justin Nixon	04/08/22 15:20	04/09/22 09:	30		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1847546	1	04/13/22 17:37	04/13/22 17:52	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1848120	1	04/12/22 10:33	04/14/22 01:41	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1849240	1	04/15/22 13:29	04/16/22 13:38	JN	Mt. Juliet, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Arcadis_ConocoPhillips

Collected date/time: 04/07/22 13:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.6		1	04/13/2022 07:54	WG1847545

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000790		0.000131	0.000546	1	04/13/2022 23:32	WG1848120
Toluene	0.00112	J	0.000164	0.00546	1	04/13/2022 23:32	WG1848120
Ethylbenzene	U		0.000120	0.000546	1	04/13/2022 23:32	WG1848120
Total Xylene	U		0.000502	0.00164	1	04/13/2022 23:32	WG1848120
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	04/13/2022 23:32	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/13/2022 23:32	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/13/2022 23:32	WG1848120

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.40	<u>J</u>	1.76	4.37	1	04/16/2022 14:33	WG1849240
C28-C36 Motor Oil Range	18.6		0.299	4.37	1	04/16/2022 14:33	WG1849240
(S) o-Terphenyl	61.6			18.0-148		04/16/2022 14:33	WG1849240

Collected date/time: 04/07/22 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.3		1	04/13/2022 17:52	WG1847546

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000971		0.000132	0.000548	1	04/13/2022 23:53	WG1848120
Toluene	0.00132	<u>J</u>	0.000164	0.00548	1	04/13/2022 23:53	WG1848120
Ethylbenzene	U		0.000121	0.000548	1	04/13/2022 23:53	WG1848120
Total Xylene	U		0.000504	0.00164	1	04/13/2022 23:53	WG1848120
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	04/13/2022 23:53	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		04/13/2022 23:53	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	99.5			72.0-128		04/13/2022 23:53	WG1848120

Cn

Semi-Volatile Organic Compounds (GC) by Method 8015M

•	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.32	<u>J</u>	1.76	4.38	1	04/16/2022 14:19	WG1849240
C28-C36 Motor Oil Range	12.5		0.300	4.38	1	04/16/2022 14:19	WG1849240
(S) o-Terphenyl	55.1			18.0-148		04/16/2022 14:19	WG1849240

7 of 20

Collected date/time: 04/07/22 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.1		1	04/13/2022 17:52	WG1847546

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000132	0.000549	1	04/14/2022 00:15	WG1848120
Toluene	U		0.000165	0.00549	1	04/14/2022 00:15	WG1848120
Ethylbenzene	U		0.000121	0.000549	1	04/14/2022 00:15	WG1848120
Total Xylene	U		0.000505	0.00165	1	04/14/2022 00:15	WG1848120
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	04/14/2022 00:15	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/14/2022 00:15	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/14/2022 00:15	WG1848120

Ss

Cn

⁵Sr

6 QC

		, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.88	<u>J</u>	1.77	4.39	1	04/16/2022 14:06	WG1849240
C28-C36 Motor Oil Range	8.73		0.301	4.39	1	04/16/2022 14:06	WG1849240
(S) o-Terphenyl	58.9			18.0-148		04/16/2022 14:06	WG1849240

Collected date/time: 04/07/22 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.0		1	04/13/2022 17:52	WG1847546

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000133	0.000555	1	04/14/2022 00:36	WG1848120
Toluene	U		0.000167	0.00555	1	04/14/2022 00:36	WG1848120
Ethylbenzene	U		0.000122	0.000555	1	04/14/2022 00:36	WG1848120
Total Xylene	U		0.000511	0.00167	1	04/14/2022 00:36	WG1848120
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	04/14/2022 00:36	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		04/14/2022 00:36	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/14/2022 00:36	WG1848120

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	04/16/2022 13:52	WG1849240
C28-C36 Motor Oil Range	4.74		0.304	4.44	1	04/16/2022 13:52	WG1849240
(S) o-Terphenyl	52.9			18.0-148		04/16/2022 13:52	WG1849240

L1480576

Total Solids by Method 2540 G-2011

Collected date/time: 04/08/22 15:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.8		1	04/13/2022 17:52	WG1847546

²Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000135	0.000563	1	04/14/2022 00:58	WG1848120
Toluene	U		0.000169	0.00563	1	04/14/2022 00:58	WG1848120
Ethylbenzene	U		0.000124	0.000563	1	04/14/2022 00:58	WG1848120
Total Xylene	U		0.000518	0.00169	1	04/14/2022 00:58	WG1848120
TPH (GC/FID) Low Fraction	U		0.0244	0.113	1	04/14/2022 00:58	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/14/2022 00:58	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/14/2022 00:58	WG1848120

⁵Sr

Cn

⁶Qc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.51	1	04/16/2022 13:11	WG1849240
C28-C36 Motor Oil Range	0.873	J	0.309	4.51	1	04/16/2022 13:11	WG1849240
(S) o-Terphenyl	55.5			18.0-148		04/16/2022 13:11	WG1849240

Page 96 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/08/22 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.6		1	04/13/2022 17:52	WG1847546

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000135	0.000564	1	04/14/2022 01:19	WG1848120
Toluene	U		0.000169	0.00564	1	04/14/2022 01:19	WG1848120
Ethylbenzene	U		0.000124	0.000564	1	04/14/2022 01:19	WG1848120
Total Xylene	U		0.000519	0.00169	1	04/14/2022 01:19	WG1848120
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	04/14/2022 01:19	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/14/2022 01:19	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/14/2022 01:19	WG1848120

Ss

Cn

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.82	4.51	1	04/16/2022 13:25	WG1849240
C28-C36 Motor Oil Range	1.90	<u>J</u>	0.309	4.51	1	04/16/2022 13:25	WG1849240
(S) o-Terphenyl	60.4			18.0-148		04/16/2022 13:25	WG1849240

Collected date/time: 04/08/22 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	04/13/2022 17:52	WG1847546

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000128	0.000532	1	04/14/2022 01:41	WG1848120
Toluene	U		0.000160	0.00532	1	04/14/2022 01:41	WG1848120
Ethylbenzene	U		0.000117	0.000532	1	04/14/2022 01:41	WG1848120
Total Xylene	U		0.000489	0.00160	1	04/14/2022 01:41	WG1848120
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/14/2022 01:41	WG1848120
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/14/2022 01:41	WG1848120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/14/2022 01:41	WG1848120

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	04/16/2022 13:38	WG1849240
C28-C36 Motor Oil Range	5.54		0.292	4.26	1	04/16/2022 13:38	WG1849240
(S) o-Terphenyl	67.3			18.0-148		04/16/2022 13:38	WG1849240

Page 98 of 361

Total Solids by Method 2540 G-2011

L1480576-01

Method Blank (MB)

(MB) R3/80837-1 04	4/13/22 07:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

³Ss

L1481268-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1481268-11 04/13/22 07:54 • (DUP) R3780837-3 04/13/22 07:54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.9	90.6	1	0.384		10

⁵Cn

Laboratory Control Sample (LCS)

(LCS) R3780837-2 04/13/22 07:54

(LC3) N3/80837-2 04/13/	Spike Amount	nt LCS Resu	lt LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 99 of 361

Total Solids by Method 2540 G-2011

L1480576-02,03,04,05,06,07

Method Blank (MB)

(MB) R3/81068-1 0	04/13/22 17:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00300			

3

L1480603-03 Original Sample (OS) • Duplicate (DUP)

	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.5	92.2	1	0.800		10

^⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3781068-2 04/13/22 17:52

(LC3) K3701000-2 04/13/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 100 of 361

Volatile Organic Compounds (GC) by Method 8015/8021

L1480576-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3780976-3 04/13/	22 21:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	100			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3780976-2	04/13/22 20:20
------------------	----------------

(LCS) R3/809/6-2 04/13/	/22 20:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.31	96.5	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			106	72.0-128	

L1480652-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1480652-01 04/14/	/22 02:02 • (MS) R3780976-4	. 04/14/22 06:20 •	(MSD) R3780976-5	04/14/22 06:42

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	0.776	2.15	3.68	25.0	52.8	1	10.0-151		<u>J3</u>	52.5	28
(S) a,a,a-Trifluorotoluene(FID)					99.2	96.6		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					101	101		72.0-128				

Page 101 of 361

Semi-Volatile Organic Compounds (GC) by Method 8015M

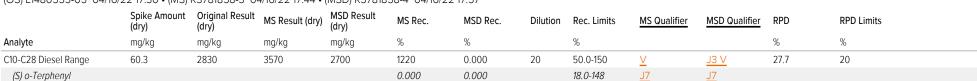
L1480576-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3781858-2 04/16/2	22 12:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	52.1			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3781858-1 04/16/	22 12:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	27.3	54.6	50.0-150	
(S) o-Terphenyl			67.6	18.0-148	



L1480555-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480555-05 04/16/22 17:30 • (MS) R3781858-3 04/16/22 17:44 • (MSD) R3781858-4 04/16/22 17:57

0.000

Arcadis_ConocoPhillips

(S) o-Terphenyl

0.000

<u>J7</u>

18.0-148

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Released to Imaging: 10/27/2022 3:50:39 PM

Received by OCD: 10/11/20 company Name/Address:			Billing Info	rmation:				1111	An	alvsis / Co	ntainer	Preser	vative			Chain of Custo	Page ot
Arcadis_ConocoPhillip	S	Attn: Accounts Payable Pre		Pres													
1004 N. Big Spring St. Suite 121			A TOTAL COMMITTEE COMMITTE	630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129												PEOP	ace°
Midland. TX 79701																	
Report to:			Email To:			2				All H							IULIET, TN
Justin Nixon		Ten ten t		n@arcadis.com;	I 61 6	-										Submitting a sample	Mount Juliet, TN 37122 via this chain of custody edgment and acceptance of
Project Description: Copperhead CTB		City/State Collected:	Eddy	and, NA	Please C		es									Pace Terms and Con- https://info.pacelabs terms.pdf	ditions found at: s.com/hubfs/pas-standard-
Phone: 432-214-2972	Client Project 30130426			Lab Project # COPARCA-3			4ozCir-NoPres	oPres									006
Collected by (print):	Site/Facility	ID#		P.O.#			- MINORIDA	4ozClr-NoPres								Table #	PARCA
Collected by (signature):	Same I	(Lab MUST Be Day Five Day 5 Da	Day	Quote #	ults Needed		BTEXGRO, DRONM	1		V						relogin: P9 PM: 526 - Chr	15946
mmediaely Packed on Ice N Y	Two Di	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	ay (Rad Only)	4-15-22	Clonk	No.	RO,	SIDE				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	втехс	CHLORIDE-300							1	Shipped Via: Remarks	Sample # (lab on
5WY-2-040722	G	SS	2	4-1-22	- 1315	2	X	X								12 h	
Sw-2-2 040721		SS	2-	[27]	/330	2	X	X				1					是种的重要
B-1-4040782	6	SS	4'		1436	2	X	人									
Sw-3-2-04072	6	SS	2-	4	1500	2	X	X									
13-2-4-040820	6	SS	4-	4-8-22	1500	12	X	X	E Line			This					P. P. P. P.
5w-4-2 -04082e	6	SS	2'	1 1	1510	2	X	X		4							
5W-5-2'-04082	6	SS	2-	4	1520	97	X	X	S. A.						75		E BOOK
		SS		440													
		SS	100	7 7 4	Eur M. C.	17.5											
		SS		11,475			On the										
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay NW - WasteWater		at .d	cl.very	#5 du Astanda	TEX	4	TPH	pH	1.	emp		COC Si Bottle	al Pres gned/Ac es arriv	Receipt C ent/Intact curate: e intact: es used:	hecklist :: _NP _Y _ _Y _ _Y _		
DW - Drinking Water DT - Other	Samples returned UPSFedEx	d via:			Tracking # /203 - 5 780									VOA Ze	ro Head		ole Y
Relinquished by: (Signature)		48-2	L Time	95 Rece	ived by: (Signat	ture)			Trij	Blank Re	ceived	The state of the s	MeoH	Preser RAD Sc	vation reen <0	Correct/Ch .5 mR/hr:	ecked: _Y _
Relinquished by : (Signature)	D	ate:	Time		ived by: (Signat		_	1000	Ter 5	.3+0=	°C 5.3	Bottles Re	ceived:	If prese	rvation re	equired by Lo	ogin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Rece	Wed for Jab by:	1	ma		Dat 4	9.7	7	Time:	30	Hold:	High.		Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT

April 15, 2022

Ss

Cn

Śr

Ğl

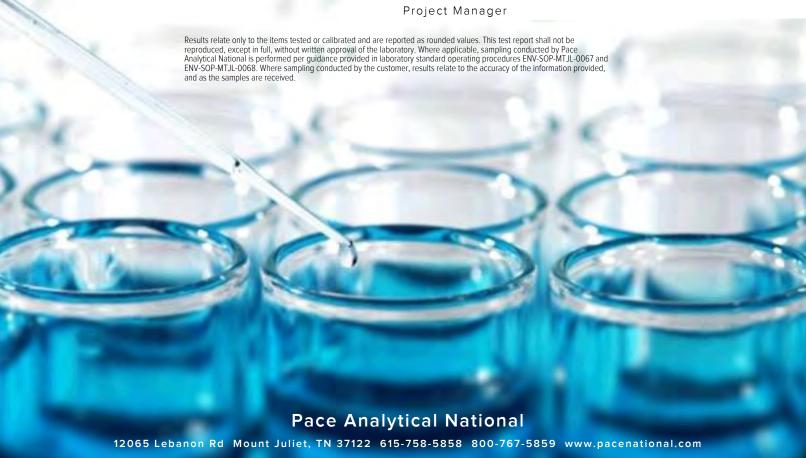
Arcadis_ConocoPhillips

Sample Delivery Group: L1481943 Samples Received: 04/13/2022 Project Number: 30130426

Description: Copperhead CTB Site: COPPERHEAD, NM

Report To: Justin Nixon

1004 N. Big Spring St.


Suite 121

Midland, TX 79701

Entire Report Reviewed By:

[Preliminary Report]

Chris McCord

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SW-7-2'-041122 L1481943-01	6
SW-8-2'-041122 L1481943-02	7
SW-9-2'-041122 L1481943-03	8
B-3-4'-041122 L1481943-04	9
B-4-4'-041122 L1481943-05	10
B-5-4'-041122 L1481943-06	11
B-6-4'-041122 L1481943-07	12
SW-7-2'-041122 L1481943-08	13
SW-8-2'-041122 L1481943-09	14
SW-9-2'-041122 L1481943-10	15
B-3-4'-041122 L1481943-11	16
B-4-4'-041122 L1481943-12	17
B-5-4'-041122 L1481943-13	18
B-6-4'-041122 L1481943-14	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21

Sc: Sample Chain of Custody

22

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
SW-7-2'-041122 L1481943-01 Solid			Justin Nixon	04/11/22 11:35	04/13/22 09:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	1	04/14/22 01:45	04/14/22 07:05	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-8-2'-041122 L1481943-02 Solid			Justin Nixon	04/11/22 13:00	04/13/22 09:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	1	04/14/22 01:45	04/14/22 08:02	KEG	Mt. Juliet, TN
	Collected by Collected		Collected date/time	Received date/time		
SW-9-2'-041122 L1481943-03 Solid			Justin Nixon	04/11/22 13:50	04/13/22 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	1	04/14/22 01:45	04/14/22 08:11	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
B-3-4'-041122 L1481943-04 Solid			Justin Nixon	04/11/22 11:00	04/13/22 09:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	5	04/14/22 01:45	04/14/22 08:21	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
B-4-4'-041122 L1481943-05 Solid			Justin Nixon	04/11/22 11:30	04/13/22 09:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	5	04/14/22 01:45	04/14/22 08:30	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-5-4'-041122 L1481943-06 Solid			Justin Nixon	04/11/22 14:25	04/13/22 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1848166	5	04/14/22 01:45	04/14/22 08:40	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	e Received date/time	
B-6-4'-041122 L1481943-07 Solid			Justin Nixon	04/11/22 15:00	04/13/22 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848270	1	04/14/22 08:09	04/14/22 08:18	CMK	Mt. Juliet, TN
10ta 00ta by metrod 20 to 0 2011	***************************************	'	5 1/1 1/22 00.05	0 1/1 1/22 00.10	Civil	m. Janet, IIV

Wet Chemistry by Method 300.0

WG1848166

5

04/14/22 01:45 04/14/22 08:49

KEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	to/timo
SW-7-2'-041122 L1481943-08 Solid			Justin Nixon	04/11/22 11:35	04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	CMK	Mt. Juliet, TN
SW-8-2'-041122 L1481943-09 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 13:00	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	CMK	Mt. Juliet, TN
SW-9-2'-041122 L1481943-10 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 13:50	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	СМК	Mt. Juliet, TN
B-3-4'-041122 L1481943-11 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 11:00	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	CMK	Mt. Juliet, TN
B-4-4'-041122 L1481943-12 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 11:30	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	CMK	Mt. Juliet, TN
B-5-4'-041122 L1481943-13 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 14:25	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1848276	1	04/14/22 11:11	04/14/22 11:17	CMK	Mt. Juliet, TN
B-6-4'-041122 L1481943-14 Solid			Collected by Justin Nixon	Collected date/time 04/11/22 15:00	Received da 04/13/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Total Solids by Method 2540 G-2011

WG1848276

date/time

04/14/22 11:11

date/time

04/14/22 11:17

CMK

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

[Preliminary Report]

Chris McCord Project Manager

SAMPLE RESULTS - 01

Dilution

1

Analysis

date / time

04/14/2022 07:05

Batch

WG1848166

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result

mg/kg

63.5

Qualifier

MDL

9.20

mg/kg

Collected date/time: 04/11/22 11:35

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.7		1	04/14/2022 08:18	WG1848270

RDL

mg/kg

20.0

Ss

⁴ Cn

Page 112 of 361

SAMPLE RESULTS - 02

Collected date/time: 04/11/22 13:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

132

Qualifier

MDL (dry)

mg/kg

9.77

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	04/14/2022 08:18	WG1848270

RDL (dry)

mg/kg

21.2

Dilution

Analysis

date / time

04/14/2022 08:02

Batch

WG1848166

Ss

Page 113 of 361

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

493

Qualifier

MDL (dry)

mg/kg

9.67

Collected date/time: 04/11/22 13:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	04/14/2022 08:18	WG1848270

RDL (dry)

mg/kg

21.0

Dilution

Analysis

date / time

04/14/2022 08:11

Batch

WG1848166

Page 114 of 361

SAMPLE RESULTS - 04

RDL (dry)

mg/kg

107

Dilution

5

Analysis

date / time

04/14/2022 08:21

Batch

WG1848166

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

992

Qualifier

MDL (dry)

mg/kg

49.1

Collected date/time: 04/11/22 11:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	04/14/2022 08:18	WG1848270

	_	_	
4	_		1

Αl

Page 115 of 361

SAMPLE RESULTS - 05

RDL (dry)

mg/kg

110

Dilution

5

Analysis

date / time

04/14/2022 08:30

Batch

WG1848166

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

1480

Qualifier

MDL (dry)

mg/kg

50.6

Collected date/time: 04/11/22 11:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.9		1	04/14/2022 08:18	WG1848270

³ Ss

4
⁴Cn

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

Collected date/time: 04/11/22 14:25

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.5		1	04/14/2022 08:18	WG1848270

|--|

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	988		49.7	108	5	04/14/2022 08:40	WG1848166

Page 117 of 361

SAMPLE RESULTS - 07

Collected date/time: 04/11/22 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	90.5		1	04/14/2022 08:18	WG1848270	

Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1490		50.8	110	5	04/14/2022 08:49	WG1848166

Page 118 of 361

SAMPLE RESULTS - 08

Collected date/time: 04/11/22 11:35

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	92.7		1	04/14/2022 11:17	WG1848276	

Page 119 of 361

SAMPLE RESULTS - 09

Collected date/time: 04/11/22 13:00

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	92.8		1	04/14/2022 11:17	WG1848276	

SAMPLE RESULTS - 10

Page 120 of 361

Collected date/time: 04/11/22 13:50

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	94.2		1	04/14/2022 11:17	WG1848276	

Page 121 of 361

SAMPLE RESULTS - 11

L1481943

Total Solids by Method 2540 G-2011

Collected date/time: 04/11/22 11:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.8		1	04/14/2022 11:17	WG1848276

Page 122 of 361

SAMPLE RESULTS - 12

L1481943

Total Solids by Method 2540 G-2011

Collected date/time: 04/11/22 11:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.0		1	04/14/2022 11:17	WG1848276

Page 123 of 361

SAMPLE RESULTS - 13

Collected date/time: 04/11/22 14:25

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	89.0		1	04/14/2022 11:17	WG1848276	

Page 124 of 361

SAMPLE RESULTS - 14

Collected date/time: 04/11/22 15:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.2		1	04/14/2022 11:17	WG1848276

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	11N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

TN00003

EPA-Crypto

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Carbagned/Dyd Gir D: 10/11/201	22 /:11:1/	AM	Billing Info	rmation:						Analysis /	Contair	ner / Pre	servative		Chain of Cus	ody Pag	Page 12/
Arcadis_ConocoPhillips	5			counts Payal		Pres Chk										7	
1004 N. Big Spring St. Suite 121 Midland. TX 79701				a Drive, Suite ds Ranch, CO		Clik										Pace"	
Report to: Justin Nixon			Email To:	n@arcadis.com	:william.foord	@arcadi									12065 Lebanon Re	JULIET,	
Project Description: Copperhead CTB		City/State Collected:		and pho		Circle:									Submitting a same constitutes acknot Pace Terms and Chttps://info.pacel.terms.odf	wledgment and a	cceptance of the t:
Phone: 432-214-2972	Client Proje 3013042	ect #	70	Lab Project #			r NoPres	oPres							SDG#	181	943
Collected by (print):	Site/Facility	W, NA	^	P.O. #			AOZC	CIr-N							Acctnum: C	089	
Collected by (signature): Immediately Packed on Ice N Y	Rush?	(Lab MUST Be Bay Five Day 5 Day Day 10 D	Notified)	Quote # Date Res	ults Needed	No.	BTEXGRO, DRONM	CHLORIDE-300 4ozClr-NoPres							Template:T Prelogin: P PM: 526 - C	206699 915946	
Sample ID	Comp/Gra	1	Depth	Date	Time	of Cntrs	HEXCI	HLOR							Shipped Via		e # (lab only)
Sw-7-2'-041122	Comp	SS	12'	14-11-22	1135	2		X					GAIDCINIII MARTINIA MARTINIA MARTINIA			-	01
5w-8-2-041122	Comp	SS	2-		1300	2		X									02
Sw-9-2-041122	(ony	SS	2		1350	2	TO TO	X								120	23
13-3-4-041122	Comp	SS	4-		1100	12		X								1	29
B-4-4-041122	comp	SS	4-		1130	12		X								-	29
B-5-4-041122	Com	SS	4-		1425	2		X								-1	76
13-6-4-041122	Com	SS	4		1500	2		X						AUG		-/	77
		SS												1			
		SS												200			
		SS															
S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:	2day	TAT	for c	1-300.	0				pH _ Flow _		Temp		COC Seal COC Sign Bottles	ample Receipt Present/Intaged/Accurate: arrive intact bottles used:	t: _NP	
DW - Drinking Water DT - Other	ups AFedE	ed via: Ex Courier		Trac	king# 57	190	eli	1780	10					Sufficie	nt volume sen If Applic Headspace:		Y N
Relinquished by : (Signature)		Date: 4-12-12	Time:	TERRESCRIPTION OF THE PARTY OF	eived by: (Signa	Name and Address of the Owner, where				Trip Blank	Receive		CL / MeoH	Preserva	tion Correct/o en <0.5 mR/hr		Y N
Relinquished by : (Signature)		Date:	Time:	Rece	eived by: (Signa	ture)			To .	28K): Z-{	Bottle	Received:	If preserva	ation required by	ogin: Date	/Time
Relinquished by: (Signature)		Date:	Time:	Rece	tred for lab by:	(Signatu	h	ud	1	13	122	Time:	945	Hold:		DD009401 0220030332200322	dition /

Checeined Dydes D: 10/11/20	22 /:11:1/	AM	Billing Info	rmation:						Analysis	Contain	er / Prese	ervative		Chain of	Custody	Page Age L	20
Arcadis_ConocoPhillip 1004 N. Big Spring St.	S		630 Plaz	counts Pay a Drive, Su ds Ranch, C	ite 600	Pres Chk									_ /-	Pa	ace.	
Suite 121			nigniano	us Kanch, C	0 80129		E B								1	PEOPLE	ADVANCING SCIENCE	
Midland. TX 79701 Report to:			Email To:	_												MT JU	JLIET, TN	
Justin Nixon				n@arcadis.co	m;william.foord	@arcadi											unt Juliet, TN 37122 a this chain of custody	
Project Description: Copperhead CTB		City/State Collected:	Eddy	Carty, 1			res								Pace Terms	and Condit	sment and acceptance of the ions found at: orn/hubfs/pas-standard-	
Phone: 432-214-2972	3013042			COPARCA	# A-30130426		4ozCir-NoPres	Solde							SDG#	10	18/943	
Collected by (print):	Site/Facility	rhew N	M	P.O. #				T T							Table #	n: COF	PARCA	
Collected by (signature):	Rush?	(Lab MUST Be Day Five I	Notified) Day	Quote #			BTEXGRO, DRONM	9							Templat Prelogin			
Immediately Packed on Ice N Y	Next Two Thre		(Rad Only) ay (Rad Only)	Stander	esults Needed	No. of	SRO,D	CHLORIDESOD							PM: 526	- Chris	McCord	
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	ВТЕХ	E E							Shipped		Sample # (lab only)	-
5w-7-2-041122	Conv	SS	2-	4-11-2	2 1135	2	X										-08	
Sw-8-2-041122	com	o ss	2	14-11-2	2 1300	12	X										-19	
Sw-9-21-041122	Comy	SS	2	4-11-2	2 1350	12	X							The series			-10	
13-3-4-04/122	Com	cc	4	4-11-2	2/1100	2	X							THE WOLL			-11	
B-4-4-64/122	Com		4-	14-11-2	2 1130	12	X										-12	1
13-5-4-04/122	con	1	4	4-11-2	2142	5 1	X										-13	
B-6-4'-04/12Z			4'	4-11-2	2 1500	2	4					9					11	1
		SS							William .									1
		SS												All Sand				1
		SS		-		-								THE STATE OF THE PARTY OF THE P				1
S - Soil AIR - Air F - Filter	Remarks:			-			I memorale			рН	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	Temp_		COC Sea	Sample Recei 1 Present/In ned/Accurate	tact:		
W - Groundwater B - Bioassay WW - WasteWater										Flow		Other_		Bottles	arrive inta	ct:	Z N	ı
W - Drinking Water OT - Other	Samples returne	ed via: Ex Courier		Tr	acking# 5	1190	17	1780	516)				Suffici	ent volume s If Appl o Headspace:	ent:	e Z N	
Relinquished by : (Signature)		Date:	Time:		ceived by: (Signa	ature)	Carl Patrician		I	rip Blan	k Receive	ed: Yes		Preserv	ation Corrected to the correct to th	t/Che	cked: Y N	ı
Mollie		4-12-22	117	100				-			0	HCI TBF	7 MeoH					1
delinquished by: (Signature)		Date:	Time:	Re	ceived by: (Signa	ature)			I	2. 8t	6°C	Bottles 8	Received:	If preserv	vation required	by Logi	n: Date/Time	
elinquished by : (Signature)		Date:	Time:	Re	elved for lab by	(Signate	me)	the	2	1/13	bz	Time:	945	Hold:			Condition: NCF / OK	-

Pace Analytical® ANALYTICAL REPORT

Ss

Arcadis_ConocoPhillips

Sample Delivery Group: L1482872 Samples Received: 04/15/2022 Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Project Manager

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SW-11-2'-041322 L1482872-01	6
B-7-4'-041322 L1482872-02	7
B-8-4'-041322 L1482872-03	8
B-9-4'-041322 L1482872-04	9
SW-13-2'-041322 L1482872-05	10
SW-15-2'-041322 L1482872-06	11
SW-16-2'-041322 L1482872-07	12
B-10-4'-041322 L1482872-08	13
B-11-4'-041322 L1482872-09	14
B-12-4'-041422 L1482872-10	15
B-13-4'-041422 L1482872-11	16
Qc: Quality Control Summary	17
Total Solids by Method 2540 G-2011	17
Wet Chemistry by Method 300.0	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21

Sc: Sample Chain of Custody

22

SAMPLE SUMMARY

SW-11-2'-041322 L1482872-01 Solid			Collected by Justin Nixon	Collected date/time 04/13/22 10:00	Received da 04/15/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	1	04/15/22 22:15	04/16/22 00:25	LBR	Mt. Juliet, TN
B-7-4'-041322 L1482872-02 Solid			Collected by Justin Nixon	Collected date/time 04/13/22 10:15	Received da 04/15/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	10	04/15/22 22:15	04/16/22 00:44	LBR	Mt. Juliet, TN
			Collected by	Collected date/time		
B-8-4'-041322 L1482872-03 Solid			Justin Nixon	04/13/22 11:30	04/15/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	10	04/15/22 22:15	04/16/22 00:54	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-9-4'-041322 L1482872-04 Solid			Justin Nixon	04/13/22 11:40	04/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	5	04/15/22 22:15	04/16/22 01:03	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SW-13-2'-041322 L1482872-05 Solid			Justin Nixon	04/13/22 12:00	04/15/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	1.01	04/15/22 22:15	04/16/22 01:13	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-15-2'-041322 L1482872-06 Solid			Justin Nixon	04/13/22 14:00	04/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	1	04/15/22 22:15	04/16/22 01:22	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-16-2'-041322 L1482872-07 Solid			Justin Nixon	04/13/22 14:20	04/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Total Solius by Wethou 2340 G-2011	WG1849206	ı	U4/10/22 12.21	U4/10/22 12:3U	CIVIK	ivit. Juliet, TN

Wet Chemistry by Method 300.0

WG1849287

04/15/22 22:15

04/16/22 01:32

LBR

Mt. Juliet, TN

Wet Chemistry by Method 300.0

SAMPLE SUMMARY

			Collected by	Collected date/time	Received dat	e/time
B-10-4'-041322 L1482872-08 Solid			Justin Nixon	04/13/22 15:00	04/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	1	04/15/22 22:15	04/16/22 02:00	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	:e/time
B-11-4'-041322 L1482872-09 Solid			Justin Nixon	04/13/22 15:30	04/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	1	04/15/22 22:15	04/16/22 02:10	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	:e/time
B-12-4'-041422 L1482872-10 Solid			Justin Nixon	04/14/22 11:30	04/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1849266	1	04/16/22 12:21	04/16/22 12:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1849287	10	04/15/22 22:15	04/16/22 02:20	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
B-13-4'-041422 L1482872-11 Solid			Justin Nixon	04/14/22 14:15	04/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1849314	1	04/16/22 10:35	04/16/22 10:55	CMK	Mt. Juliet, TN

WG1849287

04/15/22 22:15

04/16/22 02:29

LBR

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 134 of 361

SAMPLE RESULTS - 01

L1482872

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/22 10:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	04/16/2022 12:30	WG1849266

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	113		9.53	20.7	1	04/16/2022 00:25	WG1849287

Page 135 of 361

SAMPLE RESULTS - 02

L148287

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/22 10:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.6		1	04/16/2022 12:30	WG1849266

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1550		96.2	209	10	04/16/2022 00:44	WG1849287

Page 136 of 361

SAMPLE RESULTS - 03

L1482872

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/22 11:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.6		1	04/16/2022 12:30	WG1849266

²--

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3180		102	221	10	04/16/2022 00:54	WG1849287

SAMPLE RESULTS - 04

L1482872

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/22 11:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.2		1	04/16/2022 12:30	WG1849266

²T₆

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1360		52.2	113	5	04/16/2022 01:03	WG1849287

Page 138 of 361

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

714

Qualifier

MDL (dry)

mg/kg

10.1

Collected date/time: 04/13/22 12:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.7		1	04/16/2022 12:30	WG1849266

RDL (dry)

mg/kg

22.0

Dilution

1.01

Analysis

date / time

04/16/2022 01:13

Batch

WG1849287

Page 139 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/13/22 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.2		1	04/16/2022 12:30	WG1849266

²TC

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	157		9.67	21.0	1	04/16/2022 01:22	WG1849287

Page 140 of 361

SAMPLE RESULTS - 07

Collected date/time: 04/13/22 14:20

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

714

Qualifier

MDL (dry)

mg/kg

9.91

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.8		1	04/16/2022 12:30	WG1849266

RDL (dry)

mg/kg

21.5

Dilution

Analysis

date / time

04/16/2022 01:32

Batch

WG1849287

Page 141 of 361

SAMPLE RESULTS - 08

Collected date/time: 04/13/22 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	04/16/2022 12:30	WG1849266

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	810		9.90	21.5	1	04/16/2022 02:00	WG1849287

Page 142 of 361

SAMPLE RESULTS - 09

L1482872

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/22 15:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	04/16/2022 12:30	WG1849266

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	580		9.72	21.1	1	04/16/2022 02:10	WG1849287

Page 143 of 361

SAMPLE RESULTS - 10

L1482872

Total Solids by Method 2540 G-2011

Collected date/time: 04/14/22 11:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.4		1	04/16/2022 12:30	WG1849266

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2940		105	229	10	04/16/2022 02:20	WG1849287

Page 144 of 361

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

Collected date/time: 04/14/22 14:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.6		1	04/16/2022 10:55	WG1849314

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	797		10.6	23.1	1	04/16/2022 02:29	WG1849287

Ss

QUALITY CONTROL SUMMARY

Page 145 of 361

Total Solids by Method 2540 G-2011

L1482872-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3782103-1 0	04/16/22 12:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1482872-01 Original Sample (OS) • Duplicate (DUP)

	Original Resul	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.5	96.6	1	0.0318		10

Laboratory Control Sample (LCS)

(LCS) R	23782103-2 04/16/2	22 12:30				
		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte		%	%	%	%	
Total So	lids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Page 146 of 361

Total Solids by Method 2540 G-2011

L1482872-11

Method Blank (MB)

(MB) R3782084-1 04/16/22 10:55

MB Result MB Qualifier MB MDL MB RDL

Analyte % % %

Total Solids 0.00100

L1482872-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1482872-11 04/16/22 10:55 • (DUP) R3782084-3 04/16/22 10:55

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits
Analyte	%	%		%		
Total Solids	86.6	86.4	1	0.255		

[†]Cn

51

Laboratory Control Sample (LCS)

(LCS) R3782084-2 04/16/22 10:55

,	Spike Amount LO	Spike Amount	LCS Result LCS Rec.	Rec. Limits
Analyte	% %	%	% %	%
Total Solids	50.0 50		50.0 99.9	85.0-115

QUALITY CONTROL SUMMARY L1482872-01,02,03,04,05,06,07,08,09,10,11

Page 147 of 361

Wet Chemistry by Method 300.0

Method Blank (MB)

(MB) R3781831-1	04/15/22 23:57
	MR Posult

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1482872-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1482872-01 04/16/22 00:25 • (DUP) R3781831-3 04/16/22 00:35

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	113	111	1	1.27		20

L1482872-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1482872-11 04/16/22	02:29 • (DUP)	R3/81831-4 04	4/16/22 02	2:39		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	797	796	1	0.171		20

Laboratory Control Sample (LCS)

(LCS) R3781831-2 04/16/22 00:06

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	217	109	90.0-110	

L1482872-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1482872-11 04/16/22 02:29 • (MS) R3781831-5 04/16/22 02:48 • (MSD) R3781831-6 04/16/22 02:58

(03) [1402072-11 04/10/22	` '	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	577	797	1450	1440	114	111	1	80.0-120	<u>E</u>	E	1.03	20

DATE/TIME:

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

Pace Analytical National	12065 Lebanon	Rd Mount Juliet,	TN 37122
--------------------------	---------------	------------------	----------

		<u> </u>	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	2 /:11	1/1	W	Billing Info	rmation:		T	Analysis / Container / Preservative						Chain of Custody Page of				
Arcadis_ConocoPhillips 1004 N. Big Spring St. Suite 121				630 Plaz	counts Payal a Drive, Suite ds Ranch, CO	e 600	Pres Chk							112	1 /	ACC E ADVANCING SCIENCE		
Midland. TX 79701 Report to:				Email To:								E H			MT JI	ULIET, TN		
Justin Nixon					n@arcadis.com	;william.foord@	@arcadi								12065 Lebanon Rd Mo Submitting a sample vi	ount Juliet, TN 37122 ia this chain of custody		
Project Description: Copperhead CTB			City/State Collected:	Eddlycanory NM Please Ci				E							Pace Terms and Condi	gment and acceptance of the tions found at: com/hubfs/pas-standard-		
Phone: 432-214-2972	Client 3013	Project 0426	#		COPARCA-	30130426		402Clr NoPres	4ozClr-NoPres						SDG# 118	1482872		
Collected by (print):	Site/Fa	acility ID)#	P.O. #				THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	CIr-N						Acctnum: COI			
Collected by (signature): Immediately Packed on Ice N Y	X	Same Da	ab MUST Be ay Five I y 5 Day / 10 Day ay	Day (Rad Only)	Quote # Date Res	ults Needed	No. of	BTEXGRO, DRONM	CHLORIDE-300 402							Prelogin: P91594 PM: 526 - Chris McC PB:)6699 .5946
Sample ID	Comp	o/Grab	Matrix *	Depth	Date	Time	Cntrs	**	3HLO		18		- 建二二		Shipped Via:	Sample # (lab only)		
5w-11-2'-041222	160	m	SS	2-	4-13-22	1000	12		X							- 01		
127-4-041322			SS	4	1	1015	1		-			(1) 以图像 (1) 以图像			1	- 92		
B-8-4 - 041322		és.	SS	4		1130								31		7 03		
B-9-4-041322	4.3		SS	4		1/40					78					- OL		
500-13-2-2041322			SS	2-		1200										7.007		
Sw-15-2 047322			SS	2		1400										- 06		
SW-16-2-041322	11		SS	2		1420										-07		
13-10-4-041522			SS	4-		1500	1		1			10.5				-01		
13-11-4-1941322			SS	4	1	1530	1				125	NE TO				-99		
18-12-4-041102	1	1	SS	4-	4-14-2	V 1130	1		V		N. E. V.					-10		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	emarks:	eturned	via:			cking # K7	101	10	70/10	pHFlow	Temp	and service	COC Si Bottle Correc	eal Project of arrest bot	le Receipt Cr esent/Intact Accurate: ive intact: tles used: volume sent: If Applicab	necklist MP Y N N N N N N N		
OT - Other Relinquished by : (Signature)	_UPS X	FedEx	Courier	Time		eived by: (Signa	190 ture)	2/1	1802	Trip Blank F	Received: Ye	es (No)	Preser	rvatio	adspace: n Correct/Che <0.5 mR/hr:	A N		
agen		١	1-14-N	v //~	130			1	-	0	- CHILLIAN	HCL / MeoH TBR			的星星生			
Relinquished by :\(\signature\)		Da	ite:	Time: Received by: (Signature						1.7+8	°C Bott	les Received:	If prese	ervation required by Login: Date/Time				
Relinquished by : (Signature)		Da	ate:	Time	Rec	erved for lab by	(Signat	ure)	An	Data://5	12Z Tim	09W	Hold:			Condition: NCF / Ox		

 $\mathcal{P}_{2}\setminus$

Received by OCD: 10/11/2 Company Name/Address:	2022 7:11:17	AM	Billing Info	rmation:		T			Analys	is / Conta	ainer / Pre	eservativ	P		Cha	ain of Custody	Page 151		
Arcadis_ConocoPhillip	os		Attn: Acc	counts Paya a Drive, Sui		Pres Chk	10年 10年 10日									B	nce		
1004 N. Big Spring St. Suite 121 Midland. TX 79701			Highland	ls Ranch, C	0 80129												ADVANCING SCIENCE		
Report to: Justin Nixon			1	the state of	m;william.foord									Subi	65 Lebanon Rd Mou mitting a sample via	JLIET, TN ant Juliet, TN 37122 Ithis chain of custody ment and acceptance of the			
Project Description: Copperhead CTB		City/State Collected:	Eddyc	Edd of County Nh Please Circle:			res								http	e Terms and Conditions://info.pacelabs.co ms.pdf	ons found at: om/hubfs/pas-standard-		
Phone: 432-214-2972	3013042	30130426 CO			# A-30130426		4ozClr NoPres	4ozClr-NoPres									182872		
Collected by (print):	E45	Edy Carty NA		P.O.#			M 402	ozClr-l							Ac	Table # Acctnum: COPARCA Template:T206699			
Collected by (signature): Immediately Y Y Y Y Y Y Y Y Y		Day10 D	Day by (Rad Only) Date		Day y (Rad Only) Date		Quote # Date Results Needed No. of		BIEXGRO, DROWM	CHLORIDE-300 4							Pre	Prelogin: P915946 PM: 526 - Chris McCord PB:	
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	315%	CHLO			2,00				Shi	ipped Via:	Sample # (lab only)		
B-13-4-041422	Comp	SS	4	1442	1415	2		X									1		
		SS		-							11.1147						自然 医生活		
		SS													-				
		SS	-	-		-									-17				
		SS	-	-	-	+				765				ASTE O	+				
		SS	+			+					10.16 TO	国际			\dashv				
		SS			1,0			4.1	DE COL	35.181.5					_				
The second secon		SS	1									re				4			
		SS																	
* Matrix: Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater							pH Temp Flow Other						Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: N Sufficient volume sent: N If Applicable VOA Zero Headspace: Y N			NP Y N			
DW - Drinking Water Samples ret		ed via: Ex Courier		Tr	racking # 571941778000				ひ							N LeYN			
Relinquished by : (Signature)	Date: Time: Received			eceived by: (Signa	- 16	3	-	Trip E	Slank Reco		HCL / Me TBR		Preservation Correct/Checked: NRAD Screen <0.5 mR/hr: Y N						
Relinquished by : (Signature)					eceived by: (Sign	1.	Jedd °C Bottles Received: If pres					preservation required by Login: Date/Time							
Relinquished by : (Signature) Date:		Time	R	egeived for lab by		Jan	wh	Date	15/2	Tim Z	090	B	Hold:			NCF / Ox			

Pace Analytical® ANALYTICAL REPORT

May 18, 2022

Revised Report

Arcadis_ConocoPhillips

Sample Delivery Group: L1483715

Samples Received: 04/19/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Cn

Ss

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW-18-2-041822 L1483715-01	5
SW-20-2-041822 L1483715-02	6
SW-21-2-041822 L1483715-03	7
B-14-4-041822 L1483715-04	8
B-15-4-041822 L1483715-05	9
SW-24-2-041822 L1483715-06	10
Qc: Quality Control Summary	11
Total Solids by Method 2540 G-2011	11
Volatile Organic Compounds (GC) by Method 8015/8021	12
Semi-Volatile Organic Compounds (GC) by Method 8015M	13
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

SAMPLE SUMMARY

SW-18-2-041822 L1483715-01 Solid			Collected by Justin Nixon	Collected date/time 04/18/22 09:04	Received da 04/19/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1851220	1	04/19/22 15:16	04/21/22 17:03	CAM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1853125	1	04/23/22 16:27	04/24/22 07:27	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-20-2-041822 L1483715-02 Solid			Justin Nixon	04/18/22 09:09	04/19/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1851220	1	04/19/22 15:16	04/21/22 17:24	CAM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1853125	1	04/23/22 16:27	04/24/22 07:40	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-21-2-041822 L1483715-03 Solid			Justin Nixon	04/18/22 10:50	04/19/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1851220	1	04/19/22 15:16	04/21/22 13:35	CAM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1853954	1	04/25/22 20:36	04/26/22 09:26	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
B-14-4-041822 L1483715-04 Solid			Justin Nixon	04/18/22 10:55	04/19/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1851220	1	04/19/22 15:16	04/21/22 13:57	CAM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1853954	1	04/25/22 20:36	04/26/22 09:39	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
B-15-4-041822 L1483715-05 Solid			Justin Nixon	04/18/22 11:00	04/19/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1851220	1	04/19/22 15:16	04/21/22 14:32	CAM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1853954	1	04/25/22 20:36	04/26/22 09:52	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-24-2-041822 L1483715-06 Solid			Justin Nixon	04/18/22 14:09	04/19/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851262	1	04/20/22 12:51	04/20/22 13:02	CMK	Mt. Juliet, TN
	140405:555					

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1851220

WG1853954

1

04/19/22 15:16

04/25/22 20:36

04/21/22 14:54

04/26/22 10:06

 CAM

JAS

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 04/26/22 21:34

Project Narrative

5/18/22: Revised samples IDs.

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 09:04

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00107		0.000122	0.000507	1	04/21/2022 17:03	WG1851220
Toluene	0.00266	J	0.000152	0.00507	1	04/21/2022 17:03	WG1851220
Ethylbenzene	U		0.000112	0.000507	1	04/21/2022 17:03	WG1851220
Total Xylene	0.00131	J	0.000467	0.00152	1	04/21/2022 17:03	WG1851220
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/21/2022 17:03	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/21/2022 17:03	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/21/2022 17:03	WG1851220

Ss

Cn

GI

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/24/2022 07:27	WG1853125
C28-C36 Motor Oil Range	9.22		0.278	4.06	1	04/24/2022 07:27	WG1853125
(S) o-Terphenyl	68.0			18.0-148		04/24/2022 07:27	WG1853125

Total Solids by Method 2540 G-2011

Page 157 of 361

SAMPLE RESULTS - 02

Collected date/time: 04/18/22 09:09

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.3		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000725		0.000123	0.000514	1	04/21/2022 17:24	WG1851220
Toluene	0.00169	<u>J</u>	0.000154	0.00514	1	04/21/2022 17:24	WG1851220
Ethylbenzene	U		0.000113	0.000514	1	04/21/2022 17:24	WG1851220
Total Xylene	0.000658	<u>J</u>	0.000473	0.00154	1	04/21/2022 17:24	WG1851220
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	04/21/2022 17:24	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/21/2022 17:24	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/21/2022 17:24	WG1851220

Ss

Cn

³Sr	

GI

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.11	1	04/24/2022 07:40	WG1853125
C28-C36 Motor Oil Range	7.24		0.282	4.11	1	04/24/2022 07:40	WG1853125
(S) o-Terphenyl	60.1			18.0-148		04/24/2022 07:40	WG1853125

Page 158 of 361

SAMPLE RESULTS - 03

Collected date/time: 04/18/22 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.8		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000141	0.000589	1	04/21/2022 13:35	WG1851220
Toluene	U		0.000177	0.00589	1	04/21/2022 13:35	WG1851220
Ethylbenzene	U		0.000130	0.000589	1	04/21/2022 13:35	WG1851220
Total Xylene	U		0.000542	0.00177	1	04/21/2022 13:35	WG1851220
TPH (GC/FID) Low Fraction	U		0.0256	0.118	1	04/21/2022 13:35	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/21/2022 13:35	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/21/2022 13:35	WG1851220

Ss

Cn

GI

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.90	4.72	1	04/26/2022 09:26	WG1853954
C28-C36 Motor Oil Range	2.32	<u>J</u>	0.323	4.72	1	04/26/2022 09:26	WG1853954
(S) o-Terphenyl	63.2			18.0-148		04/26/2022 09:26	WG1853954

Page 159 of 361

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 10:55

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000129	0.000538	1	04/21/2022 13:57	WG1851220
Toluene	U		0.000162	0.00538	1	04/21/2022 13:57	WG1851220
Ethylbenzene	U		0.000118	0.000538	1	04/21/2022 13:57	WG1851220
Total Xylene	U		0.000495	0.00162	1	04/21/2022 13:57	WG1851220
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	04/21/2022 13:57	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/21/2022 13:57	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/21/2022 13:57	WG1851220

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.31	1	04/26/2022 09:39	WG1853954
C28-C36 Motor Oil Range	3.78	<u>J</u>	0.295	4.31	1	04/26/2022 09:39	WG1853954
(S) o-Terphenyl	55.9			18.0-148		04/26/2022 09:39	WG1853954

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 11:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.6		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000137	0.000571	1	04/21/2022 14:32	WG1851220
Toluene	U		0.000171	0.00571	1	04/21/2022 14:32	WG1851220
Ethylbenzene	U		0.000126	0.000571	1	04/21/2022 14:32	WG1851220
Total Xylene	U		0.000525	0.00171	1	04/21/2022 14:32	WG1851220
TPH (GC/FID) Low Fraction	U		0.0248	0.114	1	04/21/2022 14:32	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/21/2022 14:32	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/21/2022 14:32	WG1851220

Ss

Cn

GI

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.84	4.57	1	04/26/2022 09:52	WG1853954
C28-C36 Motor Oil Range	2.60	<u>J</u>	0.313	4.57	1	04/26/2022 09:52	WG1853954
(S) o-Terphenyl	70.6			18.0-148		04/26/2022 09:52	WG1853954

Page 161 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/18/22 14:09 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.0		1	04/20/2022 13:02	WG1851262

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000133	0.000555	1	04/21/2022 14:54	WG1851220
Toluene	U		0.000167	0.00555	1	04/21/2022 14:54	WG1851220
Ethylbenzene	U		0.000122	0.000555	1	04/21/2022 14:54	WG1851220
Total Xylene	U		0.000511	0.00167	1	04/21/2022 14:54	WG1851220
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	04/21/2022 14:54	WG1851220
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/21/2022 14:54	WG1851220
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/21/2022 14:54	WG1851220

Ss

Cn

GI

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	04/26/2022 10:06	WG1853954
C28-C36 Motor Oil Range	3.71	<u>J</u>	0.304	4.44	1	04/26/2022 10:06	WG1853954
(S) o-Terphenyl	55.0			18.0-148		04/26/2022 10:06	WG1853954

QUALITY CONTROL SUMMARY

Page 162 of 361

Total Solids by Method 2540 G-2011

L1483715-01,02,03,04,05,06

V	letho	od B	lank	(MB))
		· -		()	

(MB) R3783609-1 (04/20/22 13:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1483715-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1483715-01 04/20/22 13:02 • (DUP) R3783609-3 04/20/22 13:02

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
alyte	%	%		%		%
otal Solids	98.6	98.5	1	0.0757		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3783609-2 04/20/22 13:02

(200) 10700000 2 0472	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Page 163 of 361

L1483715-01,02,03,04,05,06

Method Blank (MB)

(MB) R3783576-3 04/21/	22 07:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3783576-1 04/21/	/22 06:48					- ['
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	느
Analyte	mg/kg	mg/kg	%	%		8
Benzene	0.0500	0.0423	84.6	76.0-121		
Toluene	0.0500	0.0441	88.2	80.0-120		9
Ethylbenzene	0.0500	0.0433	86.6	80.0-124		
Total Xylene	0.150	0.132	88.0	37.0-160		_
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120		
(S) a.a.a-Trifluorotoluene(PID)			101	72.0-128		

Laboratory Control Sample (LCS)

(LCS) R3783576-2 04/21	CS) R3783576-2 04/21/22 07:10												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
TPH (GC/FID) Low Fraction	5.50	4.87	88.5	72.0-127									
(S) a,a,a-Trifluorotoluene(FID)			96.7	77.0-120									
(S) a.a.a-Trifluorotoluene(PID)			103	72.0-128									

Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY

Page 164 of 361

L1483715-01,02

Method Blank (MB)

(MB) R3784550-1 04/24/	/22 06:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	0.562	<u>J</u>	0.274	4.00
(S) o-Terphenyl	68.9			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3784550-2 04/24	i) R3784550-2 04/24/22 07:00									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
C10-C28 Diesel Range	50.0	35.7	71.4	50.0-150						
(S) o-Terphenyl			91.1	18.0-148						

L1483503-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1483503-01 04/24/22 10:50 • (MS) R3784550-3 04/24/22 11:03 • (MSD) R3784550-4 04/24/22 11:17

,	, ,			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	48.0	414	304	271	0.000	0.000	5	50.0-150	$\underline{\vee}$	$\underline{\vee}$	11.5	20
(S) o-Terphenyl					32.2	29.3		18.0-148				

QUALITY CONTROL SUMMARY

Page 165 of 361

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1483715-03,04,05,06

Method Blank (MB)

(MB) R3785114-1 04/26/2	2 08:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	80.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3785114-2 04/26/	22 09:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	29.7	59.4	50.0-150	
(S) o-Terphenyl			83.2	18.0-148	

L1483981-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1483981-16 04/26/22 10:27 • (MS) R3785119-1 04/26/22 10:40 • (MSD) R3785119-2 04/26/22 10:53

(03) 21403301 10 04/20	, ,	Original Result (dry)		•	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg				%	%		%			%	%	
C10-C28 Diesel Range	49.0	U	36.6	36.1	60.8	60.9	1	50.0-150			1.35	20	
(S) o-Terphenyl					57.5	62.4		18.0-148					

Arcadis_ConocoPhillips

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Received by OCD: 10/11/202 mpany Name/Address:			Billing Infor	rmation:					Analys	is / Contai	ner / Pres	ervative	Total Part Section	Chain of Custod	Page 1
Arcadis_ConocoPhillips				counts Payable	2	Pres									,
			630 Plaza	a Drive, Suite	500	Chk			# A					- P	ace.
004 N. Big Spring St.			Highland	ls Ranch, CO 8	0129		Row In		125					PEOPL	E ADVANCING SCIENCE
Guite 121 Midland. TX 79701												100 量	10年	L TM	ULIET, TN
eport to:			Email To:	n@arcadis.com;w	illiam foord@	arcadi			erjer.					12065 Lebanon Rd M	ount Juliet, TN 37122
ustin Nixon		City/State	1		Please Cir	rcle:			470						via this chain of custody dgment and acceptance of the itions found at:
roject Description: Copperhead CTB		City/State Collected:	E200	ant, w/	PT MT C	T ET	res	3						https://info.pacelabs. terms.pdf	com/hubfs/pas-standard-
hone: 432-214-2972	Client Project 30130426			COPARCA-30	0130426		4ozClr-NoPres	1	7					SDG#	1483715
	30130420		COT AIRCH SOL			1	5	1						D1	09
Collected by (print):	Site/Facility	ID#	714	P.O. #			100000000	15 de						Acctnum: CO	
Collected by (signature):	Rush?	(Lab MUST Be		Quote #			BTEXGRO, DRONM	4						Template:T20	
	Same Next 0		Day y (Rad Only)	Date Results Needed		To a	DR	8		A PARTY OF				Prelogin: P91 PM: 526 - Chr	
mmediately	Two D	oay10 D	Day (Rad Only)			No.	RO,	9	1				(E-10)	PB:	
Packed on Ice N Y	-	T	Depth	Date	Time	Cntrs	SX.	9				#1		Shipped Via:	
Sample ID	Comp/Grab	Iviatrix	Бери	Date	Time	17	BTI	3						Remarks	Sample # (lab only)
SW-19-2-041822	Guy	SS	20	04/18/22	9:04	21	X								-0/
5. 20 2 2011027	Conf	SS	7'	04/18/22	9:09	2	×			MALE.					702
Sw-20-2-041822 Sw-21-2-041822	Comp	SS	2'	04/18/70		1	· CONTRACTOR								~ O3
SW-21-2-0410CC	CH CA	ss	4'	04/18/2		_	1								-cy
B-14-4-04 1827	Cirab		41	04/18/2			+								- 05
B-15-4-041822		SS	100	04/8/22		12									-06
Sw-24-2 -041822	Comp	SS	1	0-1/10/02	7.701	1									
	-	SS	+		1	1				6/III					
		SS	-			+				No. 10					V-Superior Ex
	3	SS	-	-		+							(原道)		
And the second s	Remarks:	33	200			_					-		Value and	Sample Receipt C	hecklist NP N
SS - Soil AIR - Air F - Filter	Torrior No.								p	н	_ Temp		COC Sig	l Present/Intact ned/Accurate:	NP Y N
GW - Groundwater B - Bioassay WW - WasteWater				Flow Other					Correct	arrive intact: bottles used:	3 _N				
DW - Drinking Water	Samples return			Track	king#		5719 6177 7996						ent volume sent: If Applicat		
OT - Other	_ UPS 🗸 Fed	Ex Courie			THE WASHINGTON	turc'		> /17	O(/	Blank Rece		s (No)	Preserv	o Headspace: ation Correct/Ch	
Relinquished by : (Signature)		Date:	a Tim	e: Rece	ived by: (Signa	ture)			1000000	OLD THE		ICL / MeoH	RAD Scr	een <0.5 mR/hr:	
1/900	-	4-18-2	Tim		ived by: (Signa	ture)	1		Temp	1046		BR es Received:	If preserv	vation required by Lo	gin: Date/Time
Relinquished by: (9 gnature)		Date:	1.00	nece,			/	0	1.5	2-5-15	50	6-402			
Relinquished by : (Signature)		Date:	Tim	ne: Rece	eived for lab by	: (Signa	ture)	110	Date		Time	e de la la	Hold:		Condition
Wellindrighten ph. (albuggare)				330000		The state of	11 1	11/1/		1277		-0	198		NCF / DK

0900

Chris McCord

From: Nixon, Justin Justin Justin Sustin.Nixon@arcadis.com

Sent: Tuesday, May 10, 2022 2:35 PM To: Chris McCord; Foord, Scott

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Categories: Reporting Follow-up

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris,

Thank you for taking the time to discuss earlier along with helping on the costs to finalize the last 2 batches.

Here is a list of what is needed corrected for the nomenclature:

-For L1483715, L1484210 we need to change SW-19 to SW-18 -L1484811, L1484817 please change B-23 to B-30 -L1488507 (waiting on the lab report for the BTEX and TPH) change B-24 to B-32, B-25 to B-34, and B-27 to B-36.

If you have any questions or need clarification, please let us know.

Thanks,

Justin

----Original Message-----

From: Chris McCord < Chris. McCord@pacelabs.com>

Sent: Monday, May 9, 2022 11:46 AM

To: Nixon, Justin Justin.Nixon@arcadis.com; Foord, Scott William.Foord@arcadis.com> Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

I updated the date on that one too after it went out. Sorry for the confusion.

Thanks.

Christopher McCord Project Manager II | National Pace Analytical - National 12065 Lebanon Road | Mt. Juliet, TN 37122 o.615.773.3281 | pacenational.com

MAKE YOUR PAYMENTS ONLINE

Please note that email addresses for staff at the Pace Analytical National Center for Testing & Innovation have changed. My new email address is chris.mccord@pacelabs.com. Please update your records accordingly.

----Original Message-----

From: Nixon, Justin < Justin.Nixon@arcadis.com>

Sent: Monday, May 09, 2022 9:12 AM

To: Chris McCord Chris.McCord@pacelabs.com; Foord, Scott William.Foord@arcadis.com

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Pace Analytical® ANALYTICAL REPORT

April 20, 2022

Ss

Arcadis_ConocoPhillips

Sample Delivery Group: L1483720 Samples Received: 04/19/2022 Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Project Manager

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW-19-2'-041822 L1483720-01	5
SW-20-2'-041822 L1483720-02	6
SW-21-2'-041822 L1483720-03	7
B-14-4'-041822 L1483720-04	8
B-15-4'-041822 L1483720-05	9
SW-24-2'-041822 L1483720-06	10
Qc: Quality Control Summary	11
Total Solids by Method 2540 G-2011	11
Wet Chemistry by Method 300.0	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

SW-19-2'-041822 L1483720-01 Solid			Collected by Justin Nixon	Collected date/time 04/18/22 09:04	Received da 04/19/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1850845	1	04/19/22 16:56	04/19/22 17:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851152	1	04/20/22 01:15	04/20/22 02:56	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-20-2'-041822 L1483720-02 Solid			Justin Nixon	04/18/22 09:09	04/19/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1850845	1	04/19/22 16:56	04/19/22 17:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851152	1	04/20/22 01:15	04/20/22 03:33	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-21-2'-041822 L1483720-03 Solid			Justin Nixon	04/18/22 10:50	04/19/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1850845	1	04/19/22 16:56	04/19/22 17:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851152	1	04/20/22 01:15	04/20/22 03:43	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-14-4'-041822 L1483720-04 Solid			Justin Nixon	04/18/22 10:55	04/19/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1850845	1	04/19/22 16:56	04/19/22 17:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851152	10	04/20/22 01:15	04/20/22 03:52	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-15-4'-041822 L1483720-05 Solid			Justin Nixon	04/18/22 11:00	04/19/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1850845	1	04/19/22 16:56	04/19/22 17:27	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851152	10.3	04/19/22 10:56	04/20/22 04:02	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-24-2'-041822 L1483720-06 Solid			Justin Nixon	04/18/22 14:09	04/19/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

WG1850845

WG1851152

1

04/19/22 16:56

04/20/22 01:15

04/19/22 17:27

04/20/22 04:30

CMK

KEG

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 174 of 361

SAMPLE RESULTS - 01

Collected date/time: 04/18/22 09:04

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.3		1	04/19/2022 17:27	WG1850845

Cp

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	89.4		9.36	20.3	1	04/20/2022 02:56	WG1851152

Ss

SAMPLE RESULTS - 02

Dilution

Analysis

date / time

04/20/2022 03:33

Batch

WG1851152

Page 175 of 361

Collected date/time: 04/18/22 09:09

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

449

Qualifier

MDL (dry)

mg/kg

9.57

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.1		1	04/19/2022 17:27	WG1850845

RDL (dry)

mg/kg

20.8

Ss

Page 176 of 361

SAMPLE RESULTS - 03

L1483720

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 10:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.1		1	04/19/2022 17:27	WG1850845

2_

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	47.9		10.8	23.5	1	04/20/2022 03:43	WG1851152

Page 177 of 361

SAMPLE RESULTS - 04

L1483720

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 10:55

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.6		1	04/19/2022 17:27	WG1850845

2_

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5820		99.4	216	10	04/20/2022 03:52	WG1851152

Page 178 of 361

SAMPLE RESULTS - 05

RDL (dry)

mg/kg

238

Dilution

10.3

Analysis

date / time

04/20/2022 04:02

Batch

WG1851152

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

2620

Qualifier

MDL (dry)

mg/kg

110

Collected date/time: 04/18/22 11:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	86.6		1	04/19/2022 17:27	WG1850845

SAMPLE RESULTS - 06

Page 179 of 361

Collected date/time: 04/18/22 14:09

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	90.2		1	04/19/2022 17:27	WG1850845	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	325		10.2	22.2	1	04/20/2022 04:30	WG1851152

QUALITY CONTROL SUMMARY

Page 180 of 361

Total Solids by Method 2540 G-2011

L1483720-01,02,03,04,05,06

Method Blank (MB)

(MB) R3782983-1 04	4/19/22 17:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1483720-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1483720-02	0.4/10/22.17.27	/חווח/ מסרסדכם (חווח <i>ו</i>	04/10/22 17:27
(US) L1403/20-UZ	04/13/22 17.27 • 1	(DUF) K3/02903-3	04/13/22 17.27

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.1	96.1	1	0.0398		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3782983-2 (04/19/22	17:27
--------------------	----------	-------

(LCS) R3/82983-2 04/19/2	22 17:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 181 of 361

Wet Chemistry by Method 300.0

L1483720-01,02,03,04,05,06

Method Blank (MB)

(MB) R3782945-1 04/20	/22 02:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1483720-01 Original Sample (OS) • Duplicate (DUP)

(OC) 14402720	01 01/20/22 02:50	(DI ID) D270204F 2	04/20/22 02:05
TUSH 1483770-	01 04/20/22 02:56 •	11 JUPI R.5 / 8 / 945-5	U4/7U/77 U3 U5

, ,	Original Result DUP Re (dry) (dry)	sult Dilution DUP RPD	DUP Qualifier DUP RPD Limits
Analyte	mg/kg mg/kg	%	%
Chloride	89.4 89.3	1 0.0999	20

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3782945-2 04/20/22 02:32

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	215	108	90.0-110	

L1483720-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1483720-01 04/20/22 02:56 • (MS) R3782945-4 04/20/22 03:14 • (MSD) R3782945-5 04/20/22 03:24

(00) 200, 20 00 1, 20, 2		Original Result (dry)					Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	509	89.4	618	636	104	107	1	80.0-120			2.76	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

- Toble viations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

Pace Analytical National	12065 Lebanon Rd Mount Juliet, TN 3	7122
--------------------------	-------------------------------------	------

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Pace Analytical® ANALYTICAL REPORT

Arcadis_ConocoPhillips

Sample Delivery Group: L1484208 Samples Received: 04/20/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Project Manager

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
B-22-4-041922 L1484208-01	7
B-23-4-041922 L1484208-02	8
SW-10-2-041922 L1484208-03	9
SW-12-2-041922 L1484208-04	10
SW-14-2-041922 L1484208-05	11
SW-17-2-041922 L1484208-06	12
SW-19-2-041922 L1484208-07	13
B-16-4-041822 L1484208-08	14
B-17-2-041822 L1484208-09	15
B-20-4-041922 L1484208-10	16
B-21-4-041922 L1484208-11	17
SW-16A-041822 L1484208-12	18
SW-26-2-041822 L1484208-13	19
SW-28-2-041822 L1484208-14	20
SW-30-2-041922 L1484208-15	21
SW-32-2-041922 L1484208-16	22
SW-33-2-041922 L1484208-17	23
Qc: Quality Control Summary	24
Total Solids by Method 2540 G-2011	24
Wet Chemistry by Method 300.0	27
GI: Glossary of Terms	28

Al: Accreditations & Locations

Sc: Sample Chain of Custody

29

30

SAMPLE SUMMARY

			Collected by	Collected date/time		
B-22-4-041922 L1484208-01 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851516	1	04/20/22 14:47	04/20/22 15:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1.02	04/20/22 22:25	04/21/22 00:52	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-23-4-041922 L1484208-02 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851516	1	04/20/22 14:47	04/20/22 15:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 01:30	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-10-2-041922 L1484208-03 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851516	1	04/20/22 14:47	04/20/22 15:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 01:40	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-12-2-041922 L1484208-04 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851516	1	04/20/22 14:47	04/20/22 15:05	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 01:49	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SW-14-2-041922 L1484208-05 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851517	1	04/20/22 16:58	04/20/22 17:11	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1.04	04/20/22 22:25	04/21/22 02:18	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-17-2-041922 L1484208-06 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851517	1	04/20/22 16:58	04/20/22 17:11	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 02:27	KEG	Mt. Juliet, TN
			Collected by	Collected date/time		
SW-19-2-041922 L1484208-07 Solid			Justin Nixon	04/19/22 14:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida by Mathad 2540 C 2011	\MC40F4F47	4	date/time	date/time	CNAV	MA LUIS-A TAI
Total Solids by Method 2540 G-2011	WG1851517	1	04/20/22 16:58	04/20/22 17:11	CMK	Mt. Juliet, TN

Wet Chemistry by Method 300.0

WG1851807

1

KEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time		
B-16-4-041822 L1484208-08 Solid			Justin Nixon	04/18/22 15:20	04/20/22 09	00:
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	5	04/20/22 22:25	04/21/22 02:46	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-17-2-041822 L1484208-09 Solid			Justin Nixon	04/18/22 15:30	04/20/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	5	04/20/22 22:25	04/21/22 03:05	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-20-4-041922 L1484208-10 Solid			Justin Nixon	04/19/22 10:25	04/20/22 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	5.15	04/20/22 22:25	04/21/22 03:15	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-21-4-041922 L1484208-11 Solid			Justin Nixon	04/19/22 10:40	04/20/22 09	00:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 03:24	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-16A-041822 L1484208-12 Solid			Justin Nixon	04/18/22 15:45	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida by Mathad 2540 C 2044	WC10F1C40	1	date/time	date/time	CMI/	M4 Indiat TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1851649 WG1851807	1.03	04/20/22 15:37 04/20/22 22:25	04/20/22 15:49 04/21/22 03:34	CMK KEG	Mt. Juliet, TN Mt. Juliet, TN
wet Chemistry by Method 300.0	WG1631607	1.03	04/20/22 22.23	04/21/22 03.34	KEG	Mit. Juliet, TN
			Collected by	Collected date/time	Received da	
SW-26-2-041822 L1484208-13 Solid			Justin Nixon	04/18/22 15:00	04/20/22 09	1:00
Method	Batch	Dilution	Preparation data/time	Analysis dato/timo	Analyst	Location
Tatal Solida by Mothad 2F40 C 2011	WC40F4C40	1	date/time	date/time	CMI	M+ Indiat TNI
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1851649 WG1851807	1 1.03	04/20/22 15:37 04/20/22 22:25	04/20/22 15:49 04/21/22 03:43	CMK KEG	Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-28-2-041822 L1484208-14 Solid			Justin Nixon	04/18/22 15:15	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T + 10 15 1 - 1 M + 1 - 10 F 40 0 20 M	111010510:-		date/time	date/time	01.11/	14. 1 0 . T.
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN

Wet Chemistry by Method 300.0

WG1851807

1.01

04/20/22 22:25

04/21/22 04:12

KEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
SW-30-2-041922 L1484208-15 Solid			Justin Nixon	04/19/22 10:00	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 04:21	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-32-2-041922 L1484208-16 Solid			Justin Nixon	04/19/22 10:10	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1	04/20/22 22:25	04/21/22 04:31	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-33-2-041922 L1484208-17 Solid			Justin Nixon	04/19/22 10:15	04/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851649	1	04/20/22 15:37	04/20/22 15:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1851807	1.01	04/20/22 22:25	04/21/22 04:40	KEG	Mt. Juliet, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

SAMPLE RESULTS - 01

Dilution

1.02

Analysis

date / time

04/21/2022 00:52

Batch

WG1851807

Page 191 of 361

Collected date/time: 04/19/22 14:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

596

Qualifier

MDL (dry)

mg/kg

9.67

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.0		1	04/20/2022 15:05	WG1851516

RDL (dry)

mg/kg

21.0

Page 192 of 361

SAMPLE RESULTS - 02

RDL (dry)

mg/kg

20.6

Dilution

Analysis

date / time

04/21/2022 01:30

Batch

WG1851807

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

633

Qualifier

MDL (dry)

mg/kg

9.47

Collected date/time: 04/19/22 14:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.1		1	04/20/2022 15:05	WG1851516

Page 193 of 361

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

66.5

Qualifier

MDL (dry)

mg/kg

9.66

Collected date/time: 04/19/22 14:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.2		1	04/20/2022 15:05	WG1851516

RDL (dry)

mg/kg

21.0

Dilution

Analysis

date / time

04/21/2022 01:40

Batch

WG1851807

Ss

Page 194 of 361

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 14:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.7		1	04/20/2022 15:05	WG1851516

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	33.9		9.72	21.1	1	04/21/2022 01:49	WG1851807

Page 195 of 361

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

33.5

Qualifier

MDL (dry)

mg/kg

10.1

Collected date/time: 04/19/22 14:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	04/20/2022 17:11	WG1851517

RDL (dry)

mg/kg

22.1

Dilution

1.04

Analysis

date / time

04/21/2022 02:18

Batch

WG1851807

Ss

Page 196 of 361

SAMPLE RESULTS - 06

L148420

Collected date/time: 04/19/22 14:00 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.3		1	04/20/2022 17:11	WG1851517

²--

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	26.3		9.86	21.4	1	04/21/2022 02:27	WG1851807

PAGE:

12 of 31

Page 197 of 361

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 14:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.2		1	04/20/2022 17:11	WG1851517

Wet Chemistry by Method 300.0 Ss

	•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	25.0		9.87	21.5	1	04/21/2022 02:37	WG1851807	

Page 198 of 361

SAMPLE RESULTS - 08

RDL (dry)

mg/kg

120

Dilution

5

Analysis

date / time

04/21/2022 02:46

Batch

WG1851807

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

1330

Qualifier

MDL (dry)

mg/kg

55.0

Collected date/time: 04/18/22 15:20

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.6		1	04/20/2022 15:49	WG1851649

Page 199 of 361

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.8		1	04/20/2022 15:49	WG1851649

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1240		51.8	113	5	04/21/2022 03:05	WG1851807

Page 200 of 361

SAMPLE RESULTS - 10

L1484208

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 10:25

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.6		1	04/20/2022 15:49	WG1851649

²Ta

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1370		51.8	113	5.15	04/21/2022 03:15	WG1851807

Page 201 of 361

SAMPLE RESULTS - 11

RDL (dry)

mg/kg

23.3

Dilution

Analysis

date / time

04/21/2022 03:24

Batch

WG1851807

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

728

Qualifier

MDL (dry)

mg/kg

10.7

Collected date/time: 04/19/22 10:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.8		1	04/20/2022 15:49	WG1851649

Page 202 of 361

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

28.4

Qualifier

MDL (dry)

mg/kg

10.4

Collected date/time: 04/18/22 15:45

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.2		1	04/20/2022 15:49	WG1851649

RDL (dry)

mg/kg

22.6

Dilution

1.03

Analysis

date / time

04/21/2022 03:34

Batch

WG1851807

Page 203 of 361

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.2		1	04/20/2022 15:49	WG1851649

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	22.6		10.3	22.3	1.03	04/21/2022 03:43	WG1851807

Page 204 of 361

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.3		1	04/20/2022 15:49	WG1851649

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	37.3		10.4	22.6	1.01	04/21/2022 04:12	WG1851807

Page 205 of 361

SAMPLE RESULTS - 15

Collected date/time: 04/19/22 10:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

145

Qualifier

MDL (dry)

mg/kg

9.78

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.1		1	04/20/2022 15:49	WG1851649

RDL (dry)

mg/kg

21.3

Dilution

Analysis

date / time

04/21/2022 04:21

Batch

WG1851807

Ss

Page 206 of 361

SAMPLE RESULTS - 16

L1484208

RDL (dry)

mg/kg

21.7

Dilution

Analysis

date / time

04/21/2022 04:31

Batch

WG1851807

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

203

Qualifier

MDL (dry)

mg/kg

9.98

Collected date/time: 04/19/22 10:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.2		1	04/20/2022 15:49	WG1851649

2**T** -

Page 207 of 361

SAMPLE RESULTS - 17

L1484208

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 10:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.9		1	04/20/2022 15:49	WG1851649

²--

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	136		10.0	21.7	1.01	04/21/2022 04:40	WG1851807

Page 208 of 361

Total Solids by Method 2540 G-2011

L1484208-01,02,03,04

Method Blank (MB)

(MB) R3783615-1 04	1/20/22 15:05			
1	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1484198-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1484198-02	04/20/22 15:05 • 1	(DUP) R3783615-3	04/20/22 15:05

(00,000,000,000,000,000,000,000,000,000	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	81.5	82.2	1	0.904		10

Cn

Laboratory Control Sample (LCS)

(LCS)	R3783615-2	04/20/22	15:05
-------	------------	----------	-------

(LCS) R3/83615-2 04/20/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	•	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 209 of 361

Total Solids by Method 2540 G-2011

L1484208-05,06,07

Method Blank (MB)

(MB) R3783655-1 O	4/20/22 17:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00300			

Ss

L1484208-06 Original Sample (OS) • Duplicate (DUP)

(OS) I 148	4208-06	04/20/22 17:11 •	(DUP	R3783655-3	04/20/22 17:11

(00) 1110 1200 00 0 1/20/	22 17.11 (001)	110700000	0 1/20/22	.,		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.3	93.0	1	0.281		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3783655-2	04/20/22	17:11

Page 210 of 361

Total Solids by Method 2540 G-2011

L1484208-08,09,10,11,12,13,14,15,16,17

(MB) R3783629-	-1 04/20/22 15:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1484208-13 Original Sample (OS) • Duplicate (DUP)

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	92.2	92.3	1	0.136		10	

Laboratory Control Sample (LCS)

(LCS) R3783629-2	04/20/22	15:49
------------------	----------	-------

(LCS) R3783629-2 04/20/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 211 of 361

Wet Chemistry by Method 300.0

L1484208-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3783478-1 04/20/2	22 23:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1484208-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1484208-01 04/21/22 00:52 • (DUP) R3783478-3 04/21/22 01:01

(,	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	596	610	1.02	2.27		20

L1484208-08 Original Sample (OS) • Duplicate (DUP)

(OS) I 1484208-08 04/21/22 02:46 • (DLIP) R3783478-6 04/21/22 02:56

(03) 11404200-08 04/21/2	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1330	1350	5	1.32		20

PAGE:

27 of 31

Laboratory Control Sample (LCS)

(LCS) R3783478-2 04/20/22 23:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	214	107	90.0-110	

L1484208-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/8/208 01 04/21/22 00:52 - (MS) P3783478 4 04/21/22 01:11 - (MSD) P3783478 5 04/21/22 01:20

(03) E1404200-01 04/21/22 00:32 • (1013) R3703470-4 04/21/22 01:11 • (10130) R3703470-3 04/21/22 01:20												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	515	596	1170	1180	112	113	1.02	80.0-120	<u>E</u>	<u>E</u>	0.433	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

Arcadis_ConocoPhillips

Dana Analytical Nietienal	1200F Laborate	Del Marriet India	L TNI 07400
Pace Analytical National	12065 Lebanon	Ra Mount Julie	[, IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	Billing Info	rmation:					Analysis / Cor	ntainer / Preser	Chain of Custody Page 18 of 1						
Arcadis_ConocoPhillips			Attn: Ac	counts Payabl		Pres								,	
1004 N. Big Spring St. Suite 121 Midland. TX 79701			Highland										PEOPL	ACE* E ADVANCING SCIENCE	
Report to: Justin Nixon			Email To: justin.nixo	n@arcadis.com;v	om;william.foord@arcadi								12065 Lebanon Rd Me Submitting a sample vi	JLIET, TN ount Juliet, TN 37122 a this chain of custody	
Project Description: Copperhead CTB		City/State Collected:	toda	Candyn	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		res					100	constitutes acknowled Pace Terms and Condi	gment and acceptance of the	
Phone: 432-214-2972	Client Proje			COPARCA-30	A STATE OF THE PARTY OF THE PAR			oPres					SDG# LIL	84208 B216	
Collected by (print):	Site/Facility	ID#		P.O.#			1000000000	zCIr-N					Table Acctnum: COI		
ollected by (signature): Rushi		Day Five	Day	Quote #		RONA							Template: T206699 Prelogin: P915946		
Immediate N Y	Next Two I	City/State Collected: Col				PM: 526 - Chri									
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	STEX	CHLO					Shipped Via:	Sample # (lab only)	
B-22-4041922	Com	SS	147	14-19-22	1400	12	T	7						-01	
D-23-4Un1922		SS			1405	1.								-02	
Sw-10-2-049122		SS	12		1410									-03	
Sw-12-2 641922	Mr.	SS			1430									-04	
5114-2-041922		SS	2		1435									-05	
52,-17-2-041922		SS	2		1450									-06	
52-17-2'-041922 52-17-2'-041922 52-19-2'-041922	V	SS	2	V	1500	1		1			199			-07	
H		SS				1									
- a = 3	4	SS						11						以 於 計畫	
		SS	1			1 3									
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:	+4										COC Seal COC Signe Bottles	mple Receipt Ch Present/Intact: ed/Accurate: arrive intact: pottles used:	ecklist NP Y N N N	
	mples returne			Track	ing#57	19	101	74 1	1985			VOA Zero	of volume sent: If Applicab Headspace:	Y N	
Relinquished by : (Signature)		Date: 4-19-2	1.		ved by: (Signa	ture)			Trip Blank Re	A) HCL	attack to the second		tion Correct/Che en <0.5 mR/hr:	ecked: YNN	
Relinquished by : (Signature)		Date:	Time	e: Recei	ved by: (Signa	ture)			Temp:	, ,		If preserva	tion required by Log	rin: Date/Time	
Relinquished by : (Signature)		Date:	Time	Recei	(Signati	are)	inde	Date: 4 20 2	Time:	900	Hold:	Condition: NCF X OK			

https://kanbanflow.com/board/nfK94xZ/print-task

Log additional samples received for CHLORIDE-300, TS under L1484208 and log for BTEXGRO, DRONM, TS on as separate SDG as R5 due 4/27.	Christophor McCord	Received the attached list of samples not listed on COC.	Hailey Melson	Comments	Client Contact: Justin Nixon	PM initials: CM	Date/Time: 4/20/22 13:14	Client informed by Voicemail	Client informed by Email	Client informed by call	If no COC: Tracking #:	If no COC: Carrier:	If no COC: Temp./Cont.Rec./pH:	If no COC: Date/Time:	If no COC: Received by:	Chain of Custody is missing	Client did not "X" analysis	Sample IDs on containers do not match IDs on COC	Received additional samples not listed on COC	Please specify TCLP requested	Please specify Metals requested	Chain of custody is incomplete	Login Clarification needed	Due on 23 April 2022 5:00 PM for target Done	HM Hailey Melson (responsible) Christopher McCord	Members
L1484208 and log for	20 April 2022 1:15 PM		20 April 2022 11:13 AM																							

Ss

Cn

Sr

[°]Qc

Gl

Αl

Sc

Pace Analytical® ANALYTICAL REPORT

May 18, 2022

Revised Report

Arcadis_ConocoPhillips

Sample Delivery Group: L1484210

Samples Received: 04/20/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
B-22-4-041922 L1484210-01	7
B-23-4-041922 L1484210-02	8
SW-10-2-041922 L1484210-03	9
SW-12-2-041922 L1484210-04	10
SW-14-2-041922 L1484210-05	11
SW-17-2-041922 L1484210-06	12
SW-18-2-041922 L1484210-07	13
B-16-4-041822 L1484210-08	14
B-17-2-041822 L1484210-09	15
B-20-4-041922 L1484210-10	16
B-21-4-041922 L1484210-11	17
SW-16A-2-041822 L1484210-12	18
SW-26-2-041822 L1484210-13	19
SW-28-2-041822 L1484210-14	20
SW-30-2-041922 L1484210-15	21
SW-32-2-041922 L1484210-16	22
SW-33-2-041922 L1484210-17	23
Qc: Quality Control Summary	24
Total Solids by Method 2540 G-2011	24
Volatile Organic Compounds (GC) by Method 8015/8021	26
Semi-Volatile Organic Compounds (GC) by Method 8015M	28
GI: Glossary of Terms	29

Ss

Al: Accreditations & Locations

Sc: Sample Chain of Custody

30

31

,	JAIVIF LL .		MAKI			
B-22-4-041922 L1484210-01 Solid			Collected by	Collected date/time 04/19/22 14:00	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 00:36	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 10:21	JAS	Mt. Juliet, TN
			Collected by	Collected date/time		
B-23-4-041922 L1484210-02 Solid				04/19/22 14:05	04/20/22 09	00:
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 00:58	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 01:06	JAS	Mt. Juliet, TN
SW-10-2-041922 L1484210-03 Solid			Collected by	Collected date/time 04/19/22 14:10	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 02:43	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 01:20	JAS	Mt. Juliet, TN
SW-12-2-041922 L1484210-04 Solid			Collected by	Collected date/time 04/19/22 14:30	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 03:05	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 02:05	JAS	Mt. Juliet, TN
SW-14-2-041922 L1484210-05 Solid			Collected by	Collected date/time 04/19/22 14:35	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 03:26	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 10:34	JAS	Mt. Juliet, TN
SW-17-2-041922 L1484210-06 Solid			Collected by	Collected date/time 04/19/22 14:50	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1852309

WG1854041

1

04/21/22 10:38

04/25/22 17:35

04/22/22 03:48

04/26/22 03:53

JAH

JAS

Mt. Juliet, TN

,	SAMILL	301011	MAKI			
SW-18-2-041922 L1484210-07 Solid			Collected by	Collected date/time 04/19/22 15:00	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 04:09	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 04:06	JAS	Mt. Juliet, TN
B-16-4-041822 L1484210-08 Solid			Collected by	Collected date/time 04/18/22 15:20	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 04:31	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 04:20	JAS	Mt. Juliet, TN
B-17-2-041822 L1484210-09 Solid			Collected by	Collected date/time 04/18/22 15:30	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851748	1	04/21/22 18:48	04/21/22 19:02	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 04:52	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 04:33	JAS	Mt. Juliet, TN
B-20-4-041922 L1484210-10 Solid			Collected by	Collected date/time 04/19/22 10:25	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 05:14	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 04:47	JAS	Mt. Juliet, TN
B-21-4-041922 L1484210-11 Solid			Collected by	Collected date/time 04/19/22 10:40	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 05:35	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 05:00	JAS	Mt. Juliet, TN
SW-16A-2-041822 L1484210-12 Solid			Collected by	Collected date/time 04/18/22 15:45	Received da 04/20/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1852309

WG1854041

1

1

04/21/22 10:38

04/25/22 17:35

04/22/22 05:57

04/26/22 05:14

JAH

JAS

Mt. Juliet, TN

			Calla stad by	Callantad databia	De estre de de	t = /t:
SW-26-2-041822 L1484210-13 Solid			Collected by	Collected date/time 04/18/22 15:00	04/20/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 06:19	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 05:27	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-28-2-041822 L1484210-14 Solid				04/18/22 15:15	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 06:40	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 05:40	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-30-2-041922 L1484210-15 Solid				04/19/22 10:00	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 07:02	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 05:54	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-32-2-041922 L1484210-16 Solid				04/19/22 10:10	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1851749	1	04/21/22 10:40	04/21/22 10:53	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1852309	1	04/21/22 10:38	04/22/22 07:23	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1854041	1	04/25/22 17:35	04/26/22 06:07	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-33-2-041922 L1484210-17 Solid				04/19/22 10:15	04/20/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1851749

WG1852309

WG1854041

1

1

04/21/22 10:40

04/21/22 10:38

04/25/22 17:35

04/21/22 10:53

04/22/22 07:45

04/26/22 06:21

 CMK

JAH

JAS

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 04/26/22 21:30

Project Narrative

5/18/22: Revised samples IDs.

Collected date/time: 04/19/22 14:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.2		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000514	1	04/22/2022 00:36	WG1852309
Toluene	0.000695	J	0.000154	0.00514	1	04/22/2022 00:36	WG1852309
Ethylbenzene	U		0.000113	0.000514	1	04/22/2022 00:36	WG1852309
Total Xylene	U		0.000473	0.00154	1	04/22/2022 00:36	WG1852309
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	04/22/2022 00:36	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 00:36	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	103			72.0-128		04/22/2022 00:36	WG1852309

Cn

Gl

	· · · · · · · · · · · · · · · · · · ·						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.22		1.66	4.11	1	04/26/2022 10:21	WG1854041
C28-C36 Motor Oil Range	11.9		0.282	4.11	1	04/26/2022 10:21	WG1854041
(S) o-Terphenvl	44.9			18.0-148		04/26/2022 10:21	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 14:05

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.4		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000513	1	04/22/2022 00:58	WG1852309
Toluene	0.00147	<u>J</u>	0.000154	0.00513	1	04/22/2022 00:58	WG1852309
Ethylbenzene	U		0.000113	0.000513	1	04/22/2022 00:58	WG1852309
Total Xylene	U		0.000472	0.00154	1	04/22/2022 00:58	WG1852309
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	04/22/2022 00:58	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 00:58	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 00:58	WG1852309

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.41		1.65	4.11	1	04/26/2022 01:06	WG1854041
C28-C36 Motor Oil Range	14.1		0.281	4.11	1	04/26/2022 01:06	WG1854041
(S) o-Terphenyl	67.7			18.0-148		04/26/2022 01:06	WG1854041

Page 224 of 361

SAMPLE RESULTS - 03

Collected date/time: 04/19/22 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.5		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000126	0.000523	1	04/22/2022 02:43	WG1852309
Toluene	U		0.000157	0.00523	1	04/22/2022 02:43	WG1852309
Ethylbenzene	U		0.000115	0.000523	1	04/22/2022 02:43	WG1852309
Total Xylene	U		0.000481	0.00157	1	04/22/2022 02:43	WG1852309
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/22/2022 02:43	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		04/22/2022 02:43	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	100			72.0-128		04/22/2022 02:43	WG1852309

Ss

Cn

Gl

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.50	<u>J J3</u>	1.69	4.19	1	04/26/2022 01:20	WG1854041
C28-C36 Motor Oil Range	15.2		0.287	4.19	1	04/26/2022 01:20	WG1854041
(S) o-Terphenyl	64.2			18.0-148		04/26/2022 01:20	WG1854041

Collected date/time: 04/19/22 14:30 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00116		0.000126	0.000527	1	04/22/2022 03:05	WG1852309
Toluene	0.00180	<u>J</u>	0.000158	0.00527	1	04/22/2022 03:05	WG1852309
Ethylbenzene	U		0.000116	0.000527	1	04/22/2022 03:05	WG1852309
Total Xylene	U		0.000485	0.00158	1	04/22/2022 03:05	WG1852309
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	04/22/2022 03:05	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 03:05	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 03:05	WG1852309

Ss

S	r	

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.84	<u>J</u>	1.70	4.22	1	04/26/2022 02:05	WG1854041
C28-C36 Motor Oil Range	17.4		0.289	4.22	1	04/26/2022 02:05	WG1854041
(S) o-Terphenyl	74.6			18.0-148		04/26/2022 02:05	WG1854041

Page 226 of 361

SAMPLE RESULTS - 05

Collected date/time: 04/19/22 14:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.9		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00112		0.000128	0.000532	1	04/22/2022 03:26	WG1852309
Toluene	0.00130	<u>J</u>	0.000160	0.00532	1	04/22/2022 03:26	WG1852309
Ethylbenzene	U		0.000117	0.000532	1	04/22/2022 03:26	WG1852309
Total Xylene	U		0.000490	0.00160	1	04/22/2022 03:26	WG1852309
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/22/2022 03:26	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 03:26	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 03:26	WG1852309

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.81	<u>J</u>	1.71	4.26	1	04/26/2022 10:34	WG1854041
C28-C36 Motor Oil Range	22.9		0.292	4.26	1	04/26/2022 10:34	WG1854041
(S) o-Terphenyl	72.8			18.0-148		04/26/2022 10:34	WG1854041

Page 227 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/19/22 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.7		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00105		0.000128	0.000534	1	04/22/2022 03:48	WG1852309
Toluene	0.00152	<u>J</u>	0.000160	0.00534	1	04/22/2022 03:48	WG1852309
Ethylbenzene	U		0.000117	0.000534	1	04/22/2022 03:48	WG1852309
Total Xylene	U		0.000491	0.00160	1	04/22/2022 03:48	WG1852309
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	04/22/2022 03:48	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 03:48	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 03:48	WG1852309

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.49	<u>J</u>	1.72	4.27	1	04/26/2022 03:53	WG1854041
C28-C36 Motor Oil Range	13.5		0.293	4.27	1	04/26/2022 03:53	WG1854041
(S) o-Terphenyl	62.3			18.0-148		04/26/2022 03:53	WG1854041

Page 228 of 361

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 15:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.6		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000755		0.000128	0.000534	1	04/22/2022 04:09	WG1852309
Toluene	0.00151	J	0.000160	0.00534	1	04/22/2022 04:09	WG1852309
Ethylbenzene	U		0.000118	0.000534	1	04/22/2022 04:09	WG1852309
Total Xylene	U		0.000491	0.00160	1	04/22/2022 04:09	WG1852309
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	04/22/2022 04:09	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/22/2022 04:09	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 04:09	WG1852309

Cn

[°]Qc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.05	<u>J</u>	1.72	4.27	1	04/26/2022 04:06	WG1854041
C28-C36 Motor Oil Range	12.8		0.293	4.27	1	04/26/2022 04:06	WG1854041
(S) o-Terphenyl	58.5			18.0-148		04/26/2022 04:06	WG1854041

Page 229 of 361

SAMPLE RESULTS - 08

Collected date/time: 04/18/22 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.3		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000142	0.000593	1	04/22/2022 04:31	WG1852309
Toluene	U		0.000178	0.00593	1	04/22/2022 04:31	WG1852309
Ethylbenzene	U		0.000130	0.000593	1	04/22/2022 04:31	WG1852309
Total Xylene	U		0.000546	0.00178	1	04/22/2022 04:31	WG1852309
TPH (GC/FID) Low Fraction	U		0.0257	0.119	1	04/22/2022 04:31	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/22/2022 04:31	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/22/2022 04:31	WG1852309

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.74	1	04/26/2022 04:20	WG1854041
C28-C36 Motor Oil Range	3.02	<u>J</u>	0.325	4.74	1	04/26/2022 04:20	WG1854041
(S) o-Terphenyl	57.7			18.0-148		04/26/2022 04:20	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.8		1	04/21/2022 19:02	WG1851748

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000138	0.000576	1	04/22/2022 04:52	WG1852309
Toluene	U		0.000173	0.00576	1	04/22/2022 04:52	WG1852309
Ethylbenzene	U		0.000127	0.000576	1	04/22/2022 04:52	WG1852309
Total Xylene	U		0.000530	0.00173	1	04/22/2022 04:52	WG1852309
TPH (GC/FID) Low Fraction	U		0.0250	0.115	1	04/22/2022 04:52	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 04:52	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 04:52	WG1852309

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.92	<u>J</u>	1.86	4.61	1	04/26/2022 04:33	WG1854041
C28-C36 Motor Oil Range	6.69		0.316	4.61	1	04/26/2022 04:33	WG1854041
(S) o-Terphenyl	73.8			18.0-148		04/26/2022 04:33	WG1854041

Collected date/time: 04/19/22 10:25

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000131	0.000548	1	04/22/2022 05:14	WG1852309
Toluene	U		0.000164	0.00548	1	04/22/2022 05:14	WG1852309
Ethylbenzene	U		0.000120	0.000548	1	04/22/2022 05:14	WG1852309
Total Xylene	U		0.000504	0.00164	1	04/22/2022 05:14	WG1852309
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	04/22/2022 05:14	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/22/2022 05:14	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 05:14	WG1852309

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	04/26/2022 04:47	WG1854041
C28-C36 Motor Oil Range	6.32		0.300	4.38	1	04/26/2022 04:47	WG1854041
(S) o-Terphenyl	68.9			18.0-148		04/26/2022 04:47	WG1854041

Collected date/time: 04/19/22 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.1		1	04/21/2022 10:53	WG1851749

Page 232 of 361

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000139	0.000580	1	04/22/2022 05:35	WG1852309
Toluene	U		0.000174	0.00580	1	04/22/2022 05:35	WG1852309
Ethylbenzene	U		0.000128	0.000580	1	04/22/2022 05:35	WG1852309
Total Xylene	U		0.000534	0.00174	1	04/22/2022 05:35	WG1852309
TPH (GC/FID) Low Fraction	U		0.0252	0.116	1	04/22/2022 05:35	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 05:35	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 05:35	WG1852309

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.87	4.64	1	04/26/2022 05:00	WG1854041
C28-C36 Motor Oil Range	3.98	<u>J</u>	0.318	4.64	1	04/26/2022 05:00	WG1854041
(S) o-Terphenyl	51.1			18.0-148		04/26/2022 05:00	WG1854041

Collected date/time: 04/18/22 15:45

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000131	0.000548	1	04/22/2022 05:57	WG1852309
Toluene	U		0.000164	0.00548	1	04/22/2022 05:57	WG1852309
Ethylbenzene	U		0.000121	0.000548	1	04/22/2022 05:57	WG1852309
Total Xylene	U		0.000504	0.00164	1	04/22/2022 05:57	WG1852309
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	04/22/2022 05:57	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 05:57	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/22/2022 05:57	WG1852309

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	04/26/2022 05:14	WG1854041
C28-C36 Motor Oil Range	8.56		0.300	4.38	1	04/26/2022 05:14	WG1854041
(S) o-Terphenyl	71.5			18.0-148		04/26/2022 05:14	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.5		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000130	0.000540	1	04/22/2022 06:19	WG1852309
Toluene	U		0.000162	0.00540	1	04/22/2022 06:19	WG1852309
Ethylbenzene	U		0.000119	0.000540	1	04/22/2022 06:19	WG1852309
Total Xylene	U		0.000497	0.00162	1	04/22/2022 06:19	WG1852309
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	04/22/2022 06:19	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 06:19	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 06:19	WG1852309

Cn

Gl

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.32	1	04/26/2022 05:27	WG1854041
C28-C36 Motor Oil Range	8.17		0.296	4.32	1	04/26/2022 05:27	WG1854041
(S) o-Terphenyl	65.5			18.0-148		04/26/2022 05:27	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/18/22 15:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000131	0.000547	1	04/22/2022 06:40	WG1852309
Toluene	U		0.000164	0.00547	1	04/22/2022 06:40	WG1852309
Ethylbenzene	U		0.000120	0.000547	1	04/22/2022 06:40	WG1852309
Total Xylene	U		0.000503	0.00164	1	04/22/2022 06:40	WG1852309
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	04/22/2022 06:40	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 06:40	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 06:40	WG1852309

Ss

[°]Qc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	04/26/2022 05:40	WG1854041
C28-C36 Motor Oil Range	10.9		0.300	4.38	1	04/26/2022 05:40	WG1854041
(S) o-Terphenyl	67.3			18.0-148		04/26/2022 05:40	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 10:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000128	0.000533	1	04/22/2022 07:02	WG1852309
Toluene	U		0.000160	0.00533	1	04/22/2022 07:02	WG1852309
Ethylbenzene	U		0.000117	0.000533	1	04/22/2022 07:02	WG1852309
Total Xylene	U		0.000490	0.00160	1	04/22/2022 07:02	WG1852309
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	04/22/2022 07:02	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/22/2022 07:02	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 07:02	WG1852309

Ss

Cn

[°]Qc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.78	<u>J</u>	1.72	4.26	1	04/26/2022 05:54	WG1854041
C28-C36 Motor Oil Range	11.1		0.292	4.26	1	04/26/2022 05:54	WG1854041
(S) o-Terphenyl	59.7			18.0-148		04/26/2022 05:54	WG1854041

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 10:10

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.7		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000129	0.000539	1	04/22/2022 07:23	WG1852309
Toluene	U		0.000162	0.00539	1	04/22/2022 07:23	WG1852309
Ethylbenzene	U		0.000119	0.000539	1	04/22/2022 07:23	WG1852309
Total Xylene	U		0.000496	0.00162	1	04/22/2022 07:23	WG1852309
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	04/22/2022 07:23	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 07:23	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 07:23	WG1852309

Ss

[°]Qc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.96	<u>J</u>	1.74	4.32	1	04/26/2022 06:07	WG1854041
C28-C36 Motor Oil Range	12.7		0.296	4.32	1	04/26/2022 06:07	WG1854041
(S) o-Terphenyl	71.7			18.0-148		04/26/2022 06:07	WG1854041

L1484210

Total Solids by Method 2540 G-2011

Collected date/time: 04/19/22 10:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	04/21/2022 10:53	WG1851749

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000128	0.000535	1	04/22/2022 07:45	WG1852309
Toluene	U		0.000160	0.00535	1	04/22/2022 07:45	WG1852309
Ethylbenzene	U		0.000118	0.000535	1	04/22/2022 07:45	WG1852309
Total Xylene	U		0.000492	0.00160	1	04/22/2022 07:45	WG1852309
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	04/22/2022 07:45	WG1852309
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/22/2022 07:45	WG1852309
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		04/22/2022 07:45	WG1852309

⁵Sr

Cn

⁷Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.84	<u>J</u>	1.72	4.28	1	04/26/2022 06:21	WG1854041
C28-C36 Motor Oil Range	13.3		0.293	4.28	1	04/26/2022 06:21	WG1854041
(S) o-Terphenyl	69.6			18.0-148		04/26/2022 06:21	WG1854041

QUALITY CONTROL SUMMARY

Page 239 of 361

Total Solids by Method 2540 G-2011

L1484210-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3784143-1 04	1/21/22 19:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1484210-04 Original Sample (OS) • Duplicate (DUP)

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.9	94.7	1	0.191		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3784143-2 04/21/2	22 19:02
--------------------------	----------

(LCS) R3784143-2 04/21/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

QUALITY CONTROL SUMMARY

Page 240 of 361

Total Solids by Method 2540 G-2011

L1484210-10,11,12,13,14,15,16,17

1	(MB) R3783969-1 04/21/2	22 10:53			
		MB Result	MB Qualifier	MB MDL	MB RDL
	Analyte	%		%	%
	Total Solids	0.000			

²Tc

L1484210-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1484210-15	04/21/22 10:53	• (DUP) R3783969-3	04/21/22 10:53
------------------	----------------	--------------------	----------------

(00)=1101010101011		Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%	%		%		%
Total Solids	93.8	93.8	93.8	1	0.0385		10

⁴Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3783969-2 04/21/22 10:53

, ,	Spike Amount LC	Amount LCS Resi	LCS Rec.	Rec. Limits
Analyte	% %	%	%	%
Total Solids	50.0 50	50.0	100	85.0-115

U

112 103 0.0217

0.100

77.0-120

72.0-128

QUALITY CONTROL SUMMARY L1484210-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Page 241 of 361

Volatile Organic Compounds (GC) by Method 8015/8021

Method Blank (MB)

(MB) R3784660-3 04/22/22 00:15 MB RDL MB Result MB Qualifier MB MDL Analyte mg/kg mg/kg mg/kg Benzene U 0.000120 0.000500 U 0.000150 0.00500 Toluene Ethylbenzene U 0.000110 0.000500 Total Xylene U 0.000460 0.00150

GI

(I CS) P3784660-1 04/21/22 21:53

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

a,a,a-Trifluorotoluene(PID)

(LCS) R3/64000-1 04/21/	22 21.55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.05	91.8	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			107	72.0-128	

Laboratory Control Sample (LCS)

(LCS) P3784660-2 04/21/22 23:30

(LCS) R3/84660-2 04/21	/22 23:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0423	84.6	76.0-121	
Toluene	0.0500	0.0437	87.4	80.0-120	
Ethylbenzene	0.0500	0.0432	86.4	80.0-124	
Total Xylene	0.150	0.129	86.0	37.0-160	
(S) a,a,a-Trifluorotoluene(FID)			112	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			102	72.0-128	

Analyte

TPH (GC/FID) Low Fraction

a,a,a-Trifluorotoluene(FID)
(S)
a,a,a-Trifluorotoluene(PID)

QUALITY CONTROL SUMMARY

102

104

Page 242 of 361

Volatile Organic Compounds (GC) by Method 8015/8021 <u>L1484210-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17</u>

L1484210-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1484210-09 04/22/22 04:52 • (MS) R3784660-4 04/22/22 09:11 • (MSD) R3784660-5 04/22/22 09:32

22/2	22 04:52 • (MS) R3/84660-4 04/22/22 09:11 • (MSD) R3/84660-5 04/22/22 09:32 Spike Amount Original Result MS Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
	6.34	U	3.62	3.25	57.1	51.3	1	10.0-151			10.7	28		
					99.3	101		77.0-120						

72.0-128

QUALITY CONTROL SUMMARY

Page 243 of 361

L1484210-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

C28-C36 Motor Oil Range

(S) o-Terphenyl

(MB) R3785115-1 04/25/22 23:52 MB Result MB Qualifier MB MDL Analyte mg/kg mg/kg U C10-C28 Diesel Range 1.61

U

73.7

Semi-Volatile Organic Compounds (GC) by Method 8015M

 Ср
² Tc

Laboratory Control Sample (LCS)

(LCS) R3785115-2 04/26/22 00:05											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
C10-C28 Diesel Range	50.0	38.1	76.2	50.0-150							
(S) o-Terphenyl			103	18.0-148							

L1484210-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.274

MB RDL

mg/kg

4.00

4.00

18.0-148

(OS) L1484210-03 04/26/22 01:20 • (MS) R3785115-3 04/26/22 01:33 • (MSD) R3785115-4 04/26/22 01:51

(03) 11101210 03 04/2	.0/22 01.20 - (11/0)	113703113 3 0	1/20/22 01.55	(1413D) 1(3703	113 + 0+/20/2	2 01.01							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	52.0	2.50	36.3	29.1	65.0	51.1	1	50.0-150		<u>J3</u>	22.1	20	
(S) o-Terphenyl					72.2	66.9		18.0-148					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

Pace Analy	utical National	12065 Lebanon	Rd Mount Julie	t TN 37122
race Allai	yticai Nationai		i Ku Mourit Julie	:L, TIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	. /:11:1/ 2	I /VI	Billing Info	rmation:	100		7.5	1	An	alvsis / Co	ntainer / Pr	eservative	St. Me.		Chain of Custod	y Page 24
Arcadis_ConocoPhillips				counts Pay		Pres Chk				41					1	7
1004 N. Big Spring St. Suite 121 Midland. TX 79701		630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129										2.5	L. The same of the	ACC		
Report to:	1	- 1	Email To:	n@arcadis.c	om;william.foo	d@arcadi									12065 Lebanon Rd Mi	
Justin Nixon		Tritu/State				Circle:	-									ia this chain of custody Igment and acceptance of the
Project Description: Copperhead CTB		City/State Collected:	Eddy	County	pt M	CT ET	res									com/hubfs/pas-standard-
Phone: 432-214-2972	Client Project 30130426			COPARC	t# A-30130426		4ozCir-NoPres	oPres							SDG# LIL	184210
Collected by (print):	Site/Facility I	D#		P.O. #		a fical		4ozCir-NoPres							Table # Acctnum: CO	PARCA
Collected by (signature):		Lab MUST Be		Quote #			NNO	0 40							Template:T20	Colored Colored Colored
Immediately Packed on Ice N Y				- 01	Results Needed	No.	BTEXGRO, DRONM	CHLORIDE-300							Prelogin: P91 PM: 526 - Chri PB:	
Sample ID	Comp/Grab		Depth	Date		Corre	BTEXG	CHLOS							Shipped Via:	Sample # (lab only)
322-47 04922	Con	SS		4-9-	12	12	X			12						-01
17-234 -041922		SS				-3										-02
54-10-2-041922		SS	7.140					1							Jack Committee	-03
50-12-2041922		SS	and the second													-04
5~14-2-04922 5~17-2-04922		SS			(1) (1) (1) (1) (1)	Topo L									778	-05
5~-17-2-041922		SS			52						72.7					-do
5w-19- 2 041922	1	SS		1	51 14 14											-07
		SS								4						
		SS						j.			on the					
		SS						- 1								
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:	- <u> </u>								pH	Tem		COC Bot Cor	Seal P Signed tles ar	ple Receipt C resent/Intact /Accurate: rive intact: ttles used:	: NP V N N N
DW - Drinking Water OT - Other	mples returned UPS FedE	d via: x Courie			Tracking # _F	719	61	77	79	35			VO	A Zero H	volume sent: If Applicate eadspace:	ole Y N
Relinquished by : (Signature)	0	Date: 49-2	7 M	e: l	Received by: (Si	gnature)			Tr	ip Blank R	Company of the compan	es No HCL / MeoH TBR	RAI		on Correct/Ch <0.5 mR/hr:	ecked:N
Relinquished by (Signature)		Date:	Time		Received by: (Si	gnature)			J	emp: AAL		les Received	l: If p	reservatio	on required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	Time	e:	Received for lab	by: (Signat	ture)	The state		ate:	Tim	e: 090	Hol	ld:		NCF / OK

R1/R2

Fime estimate: oh Time	e spent: oh
Members	
HM Hailey Melson (responsible)	Christopher McCord
Due on 23 April 2022 5:00 PM for targe	et Done
Login Clarification needed	
Chain of custody is incomplete	
Please specify Metals requested	
Please specify TCLP requested	
Received additional samples not list	ed on COC
Sample IDs on containers do not ma	
Client did not "X" analysis	
Chain of Custody is missing	
If no COC: Received by:	
If no COC: Date/Time:	
If no COC: Temp./Cont.Rec./pH:	
If no COC: Carrier:	
If no COC: Tracking #:	
Client informed by call	
Client informed by Email	
Client informed by Voicemail	
Date/Time: 4/20/22 13:14	
✔ PM initials: CM	
Client Contact: Justin Nixon	
Comments	
Hailey Melson	20 April 2022 11:13 AM
Received the attached list of sample	s not listed on COC.
Christopher McCord	20 April 2022 1:15 PM
Citi totopitoi assessi	CHLORIDE-300, TS under L1484208 and log for

Chris McCord

From: Nixon, Justin Justin Justin Sustin.Nixon@arcadis.com

Sent: Tuesday, May 10, 2022 2:35 PM To: Chris McCord; Foord, Scott

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Categories: Reporting Follow-up

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris,

Thank you for taking the time to discuss earlier along with helping on the costs to finalize the last 2 batches.

Here is a list of what is needed corrected for the nomenclature:

-For L1483715, L1484210 we need to change SW-19 to SW-18 -L1484811, L1484817 please change B-23 to B-30 -L1488507 (waiting on the lab report for the BTEX and TPH) change B-24 to B-32, B-25 to B-34, and B-27 to B-36.

If you have any questions or need clarification, please let us know.

Thanks,

Justin

----Original Message-----

From: Chris McCord < Chris. McCord@pacelabs.com>

Sent: Monday, May 9, 2022 11:46 AM

To: Nixon, Justin Justin.Nixon@arcadis.com; Foord, Scott William.Foord@arcadis.com> Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

I updated the date on that one too after it went out. Sorry for the confusion.

Thanks.

Christopher McCord Project Manager II | National Pace Analytical - National 12065 Lebanon Road | Mt. Juliet, TN 37122 o.615.773.3281 | pacenational.com

MAKE YOUR PAYMENTS ONLINE

Please note that email addresses for staff at the Pace Analytical National Center for Testing & Innovation have changed. My new email address is chris.mccord@pacelabs.com. Please update your records accordingly.

----Original Message-----

From: Nixon, Justin < Justin.Nixon@arcadis.com>

Sent: Monday, May 09, 2022 9:12 AM

To: Chris McCord Chris.McCord@pacelabs.com; Foord, Scott William.Foord@arcadis.com

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Ss

Cn

Sr

[°]Qc

Gl

ΑI

Sc

Pace Analytical® ANALYTICAL REPORT

May 18, 2022

Revised Report

Arcadis_ConocoPhillips

Sample Delivery Group: L1484811

Samples Received: 04/21/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW-23-2' L1484811-01	5
B-30-4' L1484811-02	6
SW-25-2' L1484811-03	7
B-25-4' L1484811-04	8
SW-27-2' L1484811-05	9
B-27-4' L1484811-06	10
Qc: Quality Control Summary	11
Total Solids by Method 2540 G-2011	11
Wet Chemistry by Method 300.0	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

			Collected by	Collected date/time	Received da	te/time
SW-23-2' L1484811-01 Solid			Jerry S. Longwell	04/20/22 09:40	04/21/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1852412	1	04/21/22 15:33	04/21/22 15:40	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1852562	1	04/21/22 22:40	04/22/22 05:44	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-30-4' L1484811-02 Solid			Jerry S. Longwell	04/20/22 10:05	04/21/22 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852412	1	04/21/22 15:33	04/21/22 15:40	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1852562	1	04/21/22 22:40	04/22/22 06:50	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-25-2' L1484811-03 Solid			Jerry S. Longwell	04/20/22 10:55	04/21/22 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852412	1	04/21/22 15:33	04/21/22 15:40	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1852562	1	04/21/22 22:40	04/22/22 07:06	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-25-4' L1484811-04 Solid			Jerry S. Longwell	04/20/22 10:55	04/21/22 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852412	1	04/21/22 15:33	04/21/22 15:40	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1852562	1	04/21/22 22:40	04/22/22 07:22	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-27-2' L1484811-05 Solid			Jerry S. Longwell	04/20/22 11:40	04/21/22 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1852412	1	04/21/22 15:33	04/21/22 15:40	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1852562	1	04/21/22 22:40	04/22/22 07:39	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-27-4' L1484811-06 Solid			Jerry S. Longwell	04/20/22 12:05	04/21/22 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

WG1852412

WG1852562

1

1.04

04/21/22 15:33

04/21/22 22:40

04/21/22 15:40

04/22/22 07:55

CMK

LBR

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 04/22/22 18:14

Project Narrative

5/18/22: Revised samples IDs.

Page 253 of 361 SAMPLE RESULTS - 01

Batch

WG1852562

Collected date/time: 04/20/22 09:40

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

22.2

Qualifier

J P1

MDL (dry)

mg/kg

11.1

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.2		1	04/21/2022 15:40	WG1852412

RDL (dry)

mg/kg

24.0

Dilution

Analysis

date / time

04/22/2022 05:44

Page 254 of 361

SAMPLE RESULTS - 02

L1484811

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 10:05

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.0		1	04/21/2022 15:40	WG1852412

²TC

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	21.3	J	10.1	22.0	1	04/22/2022 06:50	WG1852562

Page 255 of 361

SAMPLE RESULTS - 03

L1484811

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 10:55

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.4		1	04/21/2022 15:40	WG1852412

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.0	J	10.8	23.4	1	04/22/2022 07:06	WG1852562

Page 256 of 361 SAMPLE RESULTS - 04

Batch

WG1852562

Qualifier

MDL (dry)

mg/kg

9.91

Collected date/time: 04/20/22 10:55

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

34.7

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.8		1	04/21/2022 15:40	WG1852412

RDL (dry)

mg/kg

21.5

Dilution

Analysis

date / time

04/22/2022 07:22

Page 257 of 361

SAMPLE RESULTS - 05

L1484811

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 11:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.9		1	04/21/2022 15:40	WG1852412

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.2	J	10.5	22.8	1	04/22/2022 07:39	WG1852562

Page 258 of 361

SAMPLE RESULTS - 06

L1484811

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 12:05

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.3		1	04/21/2022 15:40	WG1852412

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.2	24.4	1.04	04/22/2022 07:55	WG1852562

Page 259 of 361

Total Solids by Method 2540 G-2011

L1484811-01,02,03,04,05,06

(MB) R3784095-1 0	04/21/22 15:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

[†]Cn

L1484811-01 Original Sample (OS) • Duplicate (DUP)

	()	1 1 1 0 1 0 1 1 0 1	04/21/22 15.40		\ D270400F 2	04/04/00 15.40
- 1	()	111484811-01	04///////15/40	• (I)()P	183/84095-3	04/21/22 15:40

	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.2	83.5	1	0.343		10

Laboratory Control Sample (LCS)

(LCS) R3784095-2	04/21/22	15:40

(LCS) R3784095-2 04/21/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 260 of 361

Wet Chemistry by Method 300.0

L1484811-01,02,03,04,05,06

Method Blank (MB)

Chloride

(MB) R3784153-1 04/21/22 23:56								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	U		9.20	20.0				

[†]Cn

(OS) L1484014-04 04/22/22 01:38 • (DUP) R3784153-3 04/22/22 01:54								
		Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
	Analyte	mg/kg	mg/kg		%		%	

0.000

U

U

(OS) L1484811-01 04/2	(OS) L1484811-01 04/22/22 05:44 • (DUP) R3784153-6 04/22/22 06:00								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/kg	mg/kg		%		%			
Chloride	22.2	16.8	1	27.7	<u>J P1</u>	20			

20

Laboratory Control Sample (LCS)

(LCS) R3784153-2 04/22/22 00:12

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	211	105	90.0-110	

L1484014-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1484014-04 04/22/22 01:38 • (MS) P3784153-4 04/22/22 02:11 • (MSD) P3784153-5 04/22/22 02:27

(00) [14040]4 04 04/22	, ,	Original Result (dry)		,		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	593	U	610	611	103	103	1	80.0-120			0.0964	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Pace Analytical National	12065 Lebanon Rd Mount	Juliet, TN 37122
Δlahama	40660	Nehraska

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Received by OCD: 10/11/20 Company Name/Address:) <u>22 7:11:17 A</u>	<u>M</u>	Billing Infor	rmation:	30	Billing Information:					Analysis / Container / Preservative						
Arcadis_ConocoPhillip 1004 N. Big Spring St. Suite 121	DS .		TACCOUNTS LAYABIC			Pres Chk								PEOPL	O ACC [*] LE ADVANCING SCIENCE		
Midland. TX 79701 Report to: Email To:					5								AND THE PROPERTY OF	ULIET, TN			
Justin Nixon				n@arcadis.co	m;william.foord		li Burn							Submitting a sample	lount Juliet, TN 37122 via this chain of custody dgment and acceptance of the		
Project Description: Copperhead CTB		City/State Collected:			Please C		es							Pace Terms and Cond			
hone: 432-214-2972	Client Project 30130426	#		Lab Project	# A-30130426		4ozCir-NoPres	4ozClr-NoPres						SDG # 1/2	184811		
collected by (print):	Site/Facility II)#		P.O. #			402C	CIr-N									
Jemshouzwell offerted by (signature):	Rush? (I	Lab MUST Be	Notified)	d) Quote #										Acctnum: CO			
mmediately	Same D X Next Da Two Da	ay Five y 5 Day y 10 D	Day (Rad Only)	Date Results Needed No.			BTEXGRO, DRONM	ORIDE-300						Prelogin: P93 PM: 526 - Chr			
Packed on Ice N Y \(\sum_{==}^{\text{Y}} \)	Three D	ay			Of Control		XGR	ORII						PB: Shipped Via:			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Chu	BTE	금						Remarks	Sample # (lab only)		
50-23-21	Corp	SS		0420	72 098	01		X							N		
3-23-4'	1	SS		/	1005	11		X							n		
56-25-21	1	SS			1035		1000	X							w		
B-25-41	5	SS		5	1055	1		X							u		
8W-Z7-Z'		SS		/	1140	9		X							us		
3-27-4'	(oy	SS		0450	120	5 V		X		E Parin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				the		
		SS															
		SS	05	7	1>												
		- 55	上				MARKET STREET	34.55A									
		SS					NO.										
S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:									oH	Temp		COC Sea COC Sig Bottles	Sample Receipt C 1 Present/Intact ned/Accurate: arrive intact:	necklist : _NP N N		
NW - WasteWater DW - Drinking Water DT - Other	Samples returnedUPSFedEx			T/	racking# S	710	76	177		3			Suffici VOA Zer	bottles used: ent volume sent: If Applicat o Headspace:	le Y N		
Relinquished by: (Signature)	0.0	ote:	Time: Received by: (Signature)						Trip	Blank Rece	Ves A HCL/ TBR	MeoH		ation Correct/Ch een <0.5 mR/hr:	ecked: _Y _N		
Relinquished by : (Signature)	Da	ate:		Time: Received by: (Signature)				7		:DEMT	C Bottles Re	eceived (If preserv	vation required by Lo	gin: Date/Time		
Relinquished by : (Signature)	Date: Time: Received for lab by:			V: (Sign:					Hold;		Condition:						

Chris McCord

From: Nixon, Justin <<u>Justin.Nixon@arcadis.com></u>

Sent: Tuesday, May 10, 2022 2:35 PM To: Chris McCord; Foord, Scott

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Categories: Reporting Follow-up

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris,

Thank you for taking the time to discuss earlier along with helping on the costs to finalize the last 2 batches.

Here is a list of what is needed corrected for the nomenclature:

-For L1483715, L1484210 we need to change SW-19 to SW-18 -L1484811, L1484817 please change B-23 to B-30 -L1488507 (waiting on the lab report for the BTEX and TPH) change B-24 to B-32, B-25 to B-34, and B-27 to B-36.

If you have any questions or need clarification, please let us know.

Thanks,

Justin

----Original Message-----

From: Chris McCord < Chris.McCord@pacelabs.com>

Sent: Monday, May 9, 2022 11:46 AM

To: Nixon, Justin Justin.Nixon@arcadis.com; Foord, Scott William.Foord@arcadis.com> Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

I updated the date on that one too after it went out. Sorry for the confusion.

Thanks.

Christopher McCord Project Manager II | National Pace Analytical - National 12065 Lebanon Road | Mt. Juliet, TN 37122 o.615.773.3281 | pacenational.com

MAKE YOUR PAYMENTS ONLINE

Please note that email addresses for staff at the Pace Analytical National Center for Testing & Innovation have changed. My new email address is chris.mccord@pacelabs.com. Please update your records accordingly.

----Original Message-----

From: Nixon, Justin < Justin.Nixon@arcadis.com>

Sent: Monday, May 09, 2022 9:12 AM

To: Chris McCord Chris.McCord@pacelabs.com; Foord, Scott William.Foord@arcadis.com

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Pace Analytical® ANALYTICAL REPORT

May 18, 2022

Revised Report

Arcadis_ConocoPhillips

Sample Delivery Group: L1484817

Samples Received: 04/21/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW-23-2' L1484817-01	5
B-30-4' L1484817-02	6
SW-25-2' L1484817-03	7
B-25-4' L1484817-04	8
SW-27-2' L1484817-05	9
B-27-4' L1484817-06	10
Qc: Quality Control Summary	11
Total Solids by Method 2540 G-2011	11
Volatile Organic Compounds (GC) by Method 8015/8021	12
Semi-Volatile Organic Compounds (GC) by Method 8015M	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SAMPLE SUMMARY

10/11/2022 / 11/11/1	SAMPLES	SOIVIIV	MART			1 1180 2
SW-23-2' L1484817-01 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 09:40	Received da 04/21/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852639	1	04/22/22 12:49	04/22/22 13:05	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1853063	1	04/22/22 08:02	04/24/22 21:14	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1855224	1	04/28/22 08:14	04/28/22 18:54	JDG	Mt. Juliet, TN
B-30-4' L1484817-02 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 10:05	Received da 04/21/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852639	1	04/22/22 12:49	04/22/22 13:05	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1853297	1	04/22/22 08:02	04/24/22 20:51	JHH	Mt. Juliet, TN
SW-25-2' L1484817-03 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 10:35	Received da 04/21/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tabel Callida Iv. Mathead 2540 C 2044	WC40E2C20		date/time	date/time	KDW	MA Lubra TNI
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015/8021	WG1852639 WG1853698	1 1.01	04/22/22 12:49 04/22/22 08:02	04/22/22 13:05 04/25/22 20:08	KDW	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1855224	1.01	04/28/22 08:14	04/28/22 19:33	ACG JDG	Mt. Juliet, TN Mt. Juliet, TN
B-25-4' L1484817-04 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 10:55	Received da 04/21/22 09:	
	Batch	Dilution	Droporation	Amahasia	Amalust	Lagation
Method	DdlCII	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852639	1	04/22/22 12:49	04/22/22 13:05	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1853698	1	04/22/22 08:02	04/25/22 20:29	ACG	Mt. Juliet, TN
SW-27-2' L1484817-05 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 11:40	Received da 04/21/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1852639	1	04/22/22 12:49	04/22/22 13:05	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1853698	1	04/22/22 08:02	04/25/22 20:51	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1855224	1	04/28/22 08:14	04/28/22 19:45	JDG	Mt. Juliet, TN
B-27-4' L1484817-06 Solid			Collected by Jerry S. Longwell	Collected date/time 04/20/22 12:05	Received da 04/21/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC) by Method 8015/8021

WG1852639

WG1853698

1

1.01

04/22/22 12:49

04/22/22 08:02

04/22/22 13:05

04/25/22 21:13

KDW

ACG

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 04/29/22 13:52

Project Narrative

5/18/22: Revised samples IDs.

Page 269 of 361

SAMPLE RESULTS - 01

Collected date/time: 04/20/22 09:40 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.2		1	04/22/2022 13:05	WG1852639

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000440	BJ	0.000144	0.000601	1	04/24/2022 21:14	WG1853063
Toluene	0.000936	BJ	0.000180	0.00601	1	04/24/2022 21:14	WG1853063
Ethylbenzene	0.000453	<u>J</u>	0.000132	0.000601	1	04/24/2022 21:14	WG1853063
Total Xylene	0.000753	BJ	0.000553	0.00180	1	04/24/2022 21:14	WG1853063
TPH (GC/FID) Low Fraction	U		0.0261	0.120	1	04/24/2022 21:14	WG1853063
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/24/2022 21:14	WG1853063
(S) a,a,a-Trifluorotoluene(PID)	106			72.0-128		04/24/2022 21:14	WG1853063

Cn

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.16	<u>J</u>	1.93	4.81	1	04/28/2022 18:54	WG1855224
28-C36 Motor Oil Range	5.73		0.329	4.81	1	04/28/2022 18:54	WG1855224
(S) o-Terphenyl	58.2			18.0-148		04/28/2022 18:54	WG1855224

Page 270 of 361

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 10:05

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.3		1	04/22/2022 13:05	WG1852639

Ss

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000508	ВЈ	0.000139	0.000580	1	04/24/2022 20:51	WG1853297
Toluene	0.000902	BJ	0.000174	0.00580	1	04/24/2022 20:51	WG1853297
Ethylbenzene	0.000357	<u>J</u>	0.000128	0.000580	1	04/24/2022 20:51	WG1853297
Total Xylene	0.00101	BJ	0.000533	0.00174	1	04/24/2022 20:51	WG1853297
TPH (GC/FID) Low Fraction	U		0.0252	0.116	1	04/24/2022 20:51	WG1853297
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/24/2022 20:51	WG1853297
(S) a,a,a-Trifluorotoluene(PID)	105			72.0-128		04/24/2022 20:51	WG1853297

Page 271 of 361

SAMPLE RESULTS - 03

Collected date/time: 04/20/22 10:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	86.4		1	04/22/2022 13:05	WG1852639

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00134	J3 J5	0.000140	0.000585	1.01	04/25/2022 20:08	WG1853698
Toluene	0.00179	J J3 J5	0.000176	0.00585	1.01	04/25/2022 20:08	WG1853698
Ethylbenzene	U	<u>J3</u>	0.000129	0.000585	1.01	04/25/2022 20:08	WG1853698
Total Xylene	U	<u>J3</u>	0.000538	0.00176	1.01	04/25/2022 20:08	WG1853698
TPH (GC/FID) Low Fraction	U		0.0254	0.117	1.01	04/25/2022 20:08	WG1853698
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/25/2022 20:08	WG1853698
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/25/2022 20:08	WG1853698

Ss

Cn

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.09	<u>J</u>	1.86	4.63	1	04/28/2022 19:33	WG1855224
C28-C36 Motor Oil Range	9.73		0.317	4.63	1	04/28/2022 19:33	WG1855224
(S) o-Terphenyl	69.6			18.0-148		04/28/2022 19:33	WG1855224

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 10:55

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	73.3		1	04/22/2022 13:05	WG1852639

Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000164	0.000682	1	04/25/2022 20:29	WG1853698
Toluene	U		0.000205	0.00682	1	04/25/2022 20:29	WG1853698
Ethylbenzene	U		0.000150	0.000682	1	04/25/2022 20:29	WG1853698
Total Xylene	U		0.000628	0.00205	1	04/25/2022 20:29	WG1853698
TPH (GC/FID) Low Fraction	U		0.0296	0.136	1	04/25/2022 20:29	WG1853698
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		04/25/2022 20:29	WG1853698
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		04/25/2022 20:29	WG1853698

Page 273 of 361

SAMPLE RESULTS - 05

11484

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 11:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.4		1	04/22/2022 13:05	WG1852639

²Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00122		0.000139	0.000579	1	04/25/2022 20:51	WG1853698
Toluene	0.00254	<u>J</u>	0.000174	0.00579	1	04/25/2022 20:51	WG1853698
Ethylbenzene	U		0.000127	0.000579	1	04/25/2022 20:51	WG1853698
Total Xylene	U		0.000533	0.00174	1	04/25/2022 20:51	WG1853698
TPH (GC/FID) Low Fraction	U		0.0251	0.116	1	04/25/2022 20:51	WG1853698
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/25/2022 20:51	WG1853698
(S) a,a,a-Trifluorotoluene(PID)	103			72.0-128		04/25/2022 20:51	WG1853698

⁵Sr

Cn

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.77	<u>J</u>	1.86	4.63	1	04/28/2022 19:45	WG1855224
C28-C36 Motor Oil Range	13.3		0.317	4.63	1	04/28/2022 19:45	WG1855224
(S) o-Terphenyl	68.7			18.0-148		04/28/2022 19:45	WG1855224

Page 274 of 361

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/22 12:05

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.6		1	04/22/2022 13:05	WG1852639

Ss

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000147	0.000612	1.01	04/25/2022 21:13	WG1853698
Toluene	U		0.000184	0.00612	1.01	04/25/2022 21:13	WG1853698
Ethylbenzene	U		0.000134	0.000612	1.01	04/25/2022 21:13	WG1853698
Total Xylene	U		0.000563	0.00184	1.01	04/25/2022 21:13	WG1853698
TPH (GC/FID) Low Fraction	U		0.0265	0.122	1.01	04/25/2022 21:13	WG1853698
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		04/25/2022 21:13	WG1853698
(S) a,a,a-Trifluorotoluene(PID)	100			72.0-128		04/25/2022 21:13	WG1853698

Page 275 of 361

Total Solids by Method 2540 G-2011

L1484817-01,02,03,04,05,06

(MB) R3784283-1 C	04/22/22 13:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

²Tc

L1484817-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1484817-04 04/22/22 13:05 • (DUP) R3784283-3 04/22/22 13:05

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	73.3	73.8	1	0.630		10

6

Laboratory Control Sample (LCS)

(LCS) R3784283-2 04/22/22 13:05

(LCS) K3704203-2 04/22/	Spike Amount LO		LCS Result LCS Rec.	Rec. Limits
Analyte	% %	%	% %	%
Total Solids	50.0 50	50.0	50.0 100	85.0-115

Page 276 of 361

L1484817-01

Volatile Organic Compounds (GC) by Method 8015/8021

Method Blank (MB)

(MB) R3785484-3 04/24/	/22 19:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000267	<u>J</u>	0.000120	0.000500
Toluene	0.000260	<u>J</u>	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	0.000530	<u>J</u>	0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	106			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3785484-1 04/24	/22 18:04					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		8
Benzene	0.0500	0.0450	90.0	76.0-121		Ĺ
Toluene	0.0500	0.0497	99.4	80.0-120		9
Ethylbenzene	0.0500	0.0440	88.0	80.0-124		
Total Xylene	0.150	0.142	94.7	37.0-160		-
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120		
(S) a,a,a-Trifluorotoluene(PID)			104	72.0-128		

Laboratory Control Sample (LCS)

(LCS) R3785484-2 04/24	1/22 18:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.22	94.9	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			109	77.0-120	
(S) a.a.a-Trifluorotoluene(PID)			112	72.0-128	

Page 277 of 361

GI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

L1484817-02

Method Blank (MB)

(MB) R3785485-3 04/24	/22 19:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000267	<u>J</u>	0.000120	0.000500
Toluene	0.000260	<u>J</u>	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	0.000530	<u>J</u>	0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	106			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3785485-1 04	1/24/22 18:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0450	90.0	76.0-121	
Toluene	0.0500	0.0497	99.4	80.0-120	
Ethylbenzene	0.0500	0.0440	88.0	80.0-124	
Total Xylene	0.150	0.142	94.7	37.0-160	

Laboratory Control Sample (LCS)

105

104

77.0-120

72.0-128

(I CS) D3795495 2	0.4/0.4/0.0.10:0.7

(S) a,a,a-Trifluorotoluene(FID)

(S) a,a,a-Trifluorotoluene(PID)

(LCS) NS/05405-2 04/24	7/22 10.27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.22	94.9	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			109	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			112	72.0-128	

Page 278 of 361

Volatile Organic Compounds (GC) by Method 8015/8021

L1484817-03,04,05,06

Method Blank (MB)

(MB) R3784968-3 04/25	/22 19:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3784968-1 04/25	5/22 18:20					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	F
Analyte	mg/kg	mg/kg	%	%		8
Benzene	0.0500	0.0435	87.0	76.0-121		L
Toluene	0.0500	0.0462	92.4	80.0-120		9
Ethylbenzene	0.0500	0.0447	89.4	80.0-124		
Total Xylene	0.150	0.136	90.7	37.0-160		_
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120		
(S) a,a,a-Trifluorotoluene(PID)			101	72.0-128		

Laboratory Control Sample (LCS)

(LCS) R3784968-2 04/25	5/22 18:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.94	89.8	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			100	77.0-120	
(S) a.a.a-Trifluorotoluene(PID)			105	72.0-128	

Page 279 of 361

Volatile Organic Compounds (GC) by Method 8015/8021

L1484817-03,04,05,06

L1484817-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1484817-03 04/25/22 20:08 • (MS) R3784968-4 04/26/22 03:41 • (MSD) R3784968-5 04/26/22 04:02

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.0579	0.00134	0.0250	0.101	40.9	173	1	10.0-155		<u>J3 J5</u>	121	32	
Toluene	0.0579	0.00179	0.0267	0.0989	43.1	168	1	10.0-160		<u>J3 J5</u>	115	34	
Ethylbenzene	0.0579	U	0.0242	0.0883	41.8	153	1	10.0-160		<u>J3</u>	114	32	
Total Xylene	0.174	U	0.0719	0.263	41.4	151	1	10.0-160		<u>J3</u>	114	32	
(S) a,a,a-Trifluorotoluene(FID)					111	109		77.0-120					
(S) a,a,a-Trifluorotoluene(PID)					102	98.7		72.0-128					

Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY

Page 280 of 361

L1484817-01,03,05

Method Blank (MB)

(S) o-Terphenyl

(MB) R3786434-1 04/28	/22 18:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	0.475	<u>J</u>	0.274	4.00
(S) o-Terphenvl	78.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3786434-2 04/28	3/22 18:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qua
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.0	70.0	50.0-150	

L1484817-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

77.5

18.0-148

(OS) L1484817-01 04/28/22 18:54 • (MS) R3786434-3 04/28/22 19:07 • (MSD) R3786434-4 04/28/22 19:20

⁹ Sc	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	56.9	2.16	39.5	44.2	65.6	74.3	1	50.0-150			11.2	20
(S) o-Terphenyl					73.3	78.7		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifi△r	\Box	escri)	ntion
Quu	IIICI	$\overline{}$	/C3C11	

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

D AI	Athen Nieutenan	10005	- Dal Marria	11: 44	TNI 27122
Pace Anaiv	yticai Nationai	12065 Lebanor	i ka wount	. Juliet,	111/3/12/

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
	AZ0612	New Hampshire	2975
Arizona			
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Chris McCord

From: Nixon, Justin <<u>Justin.Nixon@arcadis.com></u>

Sent: Tuesday, May 10, 2022 2:35 PM To: Chris McCord; Foord, Scott

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Categories: Reporting Follow-up

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris,

Thank you for taking the time to discuss earlier along with helping on the costs to finalize the last 2 batches.

Here is a list of what is needed corrected for the nomenclature:

-For L1483715, L1484210 we need to change SW-19 to SW-18 -L1484811, L1484817 please change B-23 to B-30 -L1488507 (waiting on the lab report for the BTEX and TPH) change B-24 to B-32, B-25 to B-34, and B-27 to B-36.

If you have any questions or need clarification, please let us know.

Thanks,

Justin

----Original Message-----

From: Chris McCord < Chris.McCord@pacelabs.com>

Sent: Monday, May 9, 2022 11:46 AM

To: Nixon, Justin <u>Justin.Nixon@arcadis.com</u>; Foord, Scott <u>William.Foord@arcadis.com</u>> Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

I updated the date on that one too after it went out. Sorry for the confusion.

Thanks.

Christopher McCord Project Manager II | National Pace Analytical - National 12065 Lebanon Road | Mt. Juliet, TN 37122 o.615.773.3281 | pacenational.com

MAKE YOUR PAYMENTS ONLINE

Please note that email addresses for staff at the Pace Analytical National Center for Testing & Innovation have changed. My new email address is chris.mccord@pacelabs.com. Please update your records accordingly.

----Original Message-----

From: Nixon, Justin < Justin.Nixon@arcadis.com>

Sent: Monday, May 09, 2022 9:12 AM

To: Chris McCord Chris.McCord@pacelabs.com; Foord, Scott William.Foord@arcadis.com

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Pace Analytical® ANALYTICAL REPORT

Ss

Arcadis_ConocoPhillips

L1485949 Sample Delivery Group:

Samples Received: 04/23/2022 Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	•
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SW-29-2' L1485949-01	6
B-29-2.5' L1485949-02	7
SW-31-2' L1485949-03	8
B-31-2.5' L1485949-04	g
B-33-2.5' L1485949-05	10
SW-37-2' L1485949-06	11
SW-39-1' L1485949-07	12
B-35-1' L1485949-08	13
SW-35-2.5' L1485949-09	14
SW-43-1' L1485949-10	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Wet Chemistry by Method 300.0	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19

Sc: Sample Chain of Custody

20

SAMPLE SUMMARY

SW-29-2' L1485949-01 Solid			Collected by Jerry S. Longwell	Collected date/time 04/21/22 08:50	Received da 04/23/22 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 04:05	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3-29-2.5' L1485949-02 Solid			Jerry S. Longwell	04/21/22 09:09	04/23/22 08	:00
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T
/et Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 04:38	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SW-31-2' L1485949-03 Solid			Jerry S. Longwell	04/21/22 09:50	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 04:54	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3-31-2.5' L1485949-04 Solid			Jerry S. Longwell	04/21/22 10:15	04/23/22 08	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Tatal Calida hu Mathad 2F 40 C 2011	WC10F3043	1			CMI/	MA Julias T
otal Solids by Method 2540 G-2011 /et Chemistry by Method 300.0	WG1853843 WG1854105	1 1	04/25/22 10:16 04/25/22 22:17	04/25/22 10:56 04/26/22 05:11	CMK KEG	Mt. Juliet, T Mt. Juliet, T
, ,						
			Collected by	Collected date/time	Received da	te/time
3-33-2.5' L1485949-05 Solid			Jerry S. Longwell	04/21/22 12:10	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T
/et Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 05:27	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SW-37-2' L1485949-06 Solid			Jerry S. Longwell	04/21/22 11:34	04/23/22 08	:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T
et Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 06:16	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SW-39-1' L1485949-07 Solid			Jerry S. Longwell	04/21/22 14:50	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, T

Wet Chemistry by Method 300.0

WG1854105

1.02

04/25/22 22:17

04/26/22 06:33

KEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
B-35-1' L1485949-08 Solid			Jerry S. Longwell	04/21/22 13:00	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1854105	1.03	04/25/22 22:17	04/26/22 06:49	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-35-2.5' L1485949-09 Solid			Jerry S. Longwell	04/21/22 13:25	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 07:06	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-43-1' L1485949-10 Solid			Jerry S. Longwell	04/21/22 14:20	04/23/22 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1853843	1	04/25/22 10:16	04/25/22 10:56	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1854105	1	04/25/22 22:17	04/26/22 07:22	KEG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 290 of 361 SAMPLE RESULTS - 01

Collected date/time: 04/21/22 08:50

Result (dry)

mg/kg

15.3

Qualifier

J

MDL (dry)

mg/kg

11.5

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.8		1	04/25/2022 10:56	WG1853843

RDL (dry)

mg/kg

25.1

Dilution

Analysis

date / time

04/26/2022 04:05

Batch

WG1854105

Ss

Page 291 of 361

SAMPLE RESULTS - 02

L1485949

Total Solids by Method 2540 G-2011

Collected date/time: 04/21/22 09:09

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.0		1	04/25/2022 10:56	WG1853843

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	68.8		12.1	26.3	1	04/26/2022 04:38	WG1854105

Cn

PAGE:

7 of 20

Page 292 of 361

SAMPLE RESULTS - 03

L1485949

Total Solids by Method 2540 G-2011

Collected date/time: 04/21/22 09:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.0		1	04/25/2022 10:56	WG1853843

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.1	24.1	1	04/26/2022 04:54	WG1854105

Page 293 of 361

SAMPLE RESULTS - 04

Collected date/time: 04/21/22 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.3		1	04/25/2022 10:56	WG1853843

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.3		11.0	24.0	1	04/26/2022 05:11	WG1854105

Page 294 of 361

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Collected date/time: 04/21/22 12:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.7		1	04/25/2022 10:56	WG1853843

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	71.1		11.7	25.4	1	04/26/2022 05:27	WG1854105

Page 295 of 361

SAMPLE RESULTS - 06

Collected date/time: 04/21/22 11:34

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.5		1	04/25/2022 10:56	WG1853843

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	204		10.3	22.4	1	04/26/2022 06:16	WG1854105

Page 296 of 361

SAMPLE RESULTS - 07

RDL (dry)

mg/kg

23.8

Dilution

1.02

Analysis

date / time

04/26/2022 06:33

Batch

WG1854105

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

12.4

Qualifier

J

MDL (dry)

mg/kg

10.9

Collected date/time: 04/21/22 14:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.9		1	04/25/2022 10:56	WG1853843

Page 297 of 361

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

268

Qualifier

MDL (dry)

mg/kg

10.8

Collected date/time: 04/21/22 13:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.2		1	04/25/2022 10:56	WG1853843

RDL (dry)

mg/kg

23.4

Dilution

1.03

Analysis

date / time

04/26/2022 06:49

Batch

WG1854105

Page 298 of 361

SAMPLE RESULTS - 09

Collected date/time: 04/21/22 13:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	82.8		1	04/25/2022 10:56	WG1853843	

²тс

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	249		11.1	24.2	1	04/26/2022 07:06	WG1854105

Page 299 of 361

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

Collected date/time: 04/21/22 14:20

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	81.0		1	04/25/2022 10:56	WG1853843

Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.5	J	11.4	24.7	1	04/26/2022 07:22	WG1854105

QUALITY CONTROL SUMMARY

Page 300 of 361

Total Solids by Method 2540 G-2011 L1485949-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

Total Solids

(MB) R3784997-1 04/25/22 10:56 MB Result MB MDL MB RDL MB Qualifier Analyte % % %

L1485949-01 Original Sample (OS) • Duplicate (DUP)

0.00200

(OS) L1485949-01 04/25/22 10:56 • (DUP) R3784997-3 04/25/22 10:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	79.8	78.2	1	2.01		10

[†]Cn

Ss

Laboratory Control Sample (LCS)

(LCS) R3784997-2 04/25/22 10:56

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

GI

Sc

QUALITY CONTROL SUMMARY

Page 301 of 361

Wet Chemistry by Method 300.0

L1485949-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3784977-1 04/25/	22 23:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	П		9.20	20.0

L1484728-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1484728-01 04/26/22 00:16 • (DUP) R3784977-3 04/26/22 00:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	66.9	64.4	1	3.77		20

L1485949-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1485949-01 04/26/2	22 04:05 • (DUF Original Result (dry)	'			DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	15.3	12.6	1.02	19.0	<u>J</u>	20

Laboratory Control Sample (LCS)

(LCS) R3784977-2 04/25/22 23:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	213	106	90.0-110	

L1484728-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1484728-01 04/26/22 00:16 • (MS) P3784977-4 04/26/22 00:48 • (MSD) P3784977-5 04/26/22 01:05

(03) 11404720-01	(O3) E1404720-01 04720122 00.10 · (M3) N3704377-4 04720122 00.40 · (M3D) N3704377-3 04720122 01.03												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	66.9	572	570	101	101	1	80.0-120			0.353	20	

DATE/TIME:

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Dana Analytical Nietienal	1200F Laborate	Del Marriet India	L TNI 07400
Pace Analytical National	12065 Lebanon	Ra Mount Julie	[, IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

cokeseneed by QCD: 10/11/2	022 7:11:17	AM	Billing Info	rmation:					Analys	is / Conta	iner / Pre	servative		Cl	nain of Custody	Page age 304
Arcadis_ConocoPhillip 1004 N. Big Spring St. Suite 121	ps		630 Plaz	Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129									PEOPLE		ACE*	
Midland. TX 79701 Report to:			Email To:												MTJU	JLIET, TN
Justin Nixon			2000	n@arcadis.con	n;william.foord	@arcadi									065 Lebanon Rd Mo	unt Juliet, TN 37122 a this chain of custody
Project Description: Copperhead CTB		City/State Collected:			Please C PT MT		es							cor Pai htt	nstitutes acknowledge ce Terms and Conditi	gment and acceptance of the
Phone: 432-214-2972	30130426			Lab Project #	-30130426		4ozClr-NoPres	oPres						SI	og# 19	85949
Collected by (print):	Site/Facility	ID#		P.O. #			100000000000000000000000000000000000000	zClr-N						Ac	H242	
Collected by (signature): Immediately Packed on Ice N Y	Same Next I	(Lab MUST Be Day Five I Day 5 Day Day 10 Day	Day (Rad Only)	Quote #	sults Needed	No.	BTEXGRO, DRONM	CHLORIDE-300 4ozCir-NoPres						Te Pr	emplate: T20 elogin: P91 M: 526 - Chris	6699 5946
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEXG	CHLOR						Sh	ipped Via:	Sample # (lab only)
Sw-29-2'	Cox	SS		exiziz	2 0850			V								501
8-29-2.5'	7	SS		04212	2 0905		1000	X								-02
50-31-2"		SS		04212	2 0850	3		X								-03
8-31-2,5'		SS			21015			X								-04
8-33-2,5'		SS		08213	2 1210			X								_09
86-37-2		SS		04812	2 1134			X								-06
56-39-11		SS		042127	1450			X								-07
3-35-1'	/	SS		04712	2 1300			X								-08
6w-35-25"		SS		09762	2 1325			X								-09
520-43-11	Con	SS		04212	2/420			X								-0
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:								pl Flo	H	_ Temp _ Other		COC Si		urate: intact:	ecklist NP Y N N N
DW - Drinking Water OT - Other	Samples returned UPS FedE			Trac	cking#								Suffic	cient vol	ume sent: Applicabl	e Y N
Relinquished by : (Signature)		Pate:	Time	: Rec	eived by: (Signa	ture)			Trip Bl	lank Recei	Н	CL/MeoH	Preser		orrect/Che	cked: Y N N
Relinquished by : (Signature)	C	Pate:	Time	: Rec	eived by: (Signa	ture)				JAA? 10=4.	C Bottle	BR s Received:	If prese	rvation rec	quired by Log	in: Date/Time
Relinquished by : (Signature)	C	Pate:	Time	: Rec	eived for lab by	(Signatu	ref		Date:	23/2	Time	800	Hold:			Condition:

Pace Analytical® ANALYTICAL REPORT

May 18, 2022

Revised Report

Arcadis_ConocoPhillips

L1488507 Sample Delivery Group:

Samples Received: 05/02/2022

Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
B-32-2.5-042522 L1488507-01	6
B-34-2.5-042522 L1488507-02	7
B-26-2.5-042522 L1488507-03	8
B-36-2.5-042522 L1488507-04	9
B-28-2.5-042522 L1488507-05	10
B-42-2-042522 L1488507-06	11
B-44-2-042522 L1488507-07	12
B-46-2-042522 L1488507-08	13
SW-38-1-042522 L1488507-09	14
SW-44-1-042522 L1488507-12	15
SW-46-1-042522 L1488507-13	16
B-47-1-042522 L1488507-14	17
SW-48-1-042522 L1488507-16	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 300.0	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	22

Sc: Sample Chain of Custody

24

SAMPLE SUMMARY

B-32-2.5-042522 L1488507-01 Solid			Collected by Justin Nixon	Collected date/time 04/25/22 13:00	Received da 05/02/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, TI
Vet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 03:04	KEG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
B-34-2.5-042522 L1488507-02 Solid			Justin Nixon	04/25/22 13:10	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:01	KEG	Mt. Juliet, T
			Collected by	Collected date/time		
B-26-2.5-042522 L1488507-03 Solid			Justin Nixon	04/25/22 13:15	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:11	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
3-36-2.5-042522 L1488507-04 Solid			Justin Nixon	04/25/22 13:20	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:20	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
B-28-2.5-042522 L1488507-05 Solid			Justin Nixon	04/25/22 13:30	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:30	KEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
B-42-2-042522 L1488507-06 Solid			Justin Nixon	04/25/22 13:40	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:39	KEG	Mt. Juliet, Ti
			Collected by	Collected date/time		
B-44-2-042522 L1488507-07 Solid			Justin Nixon	04/25/22 13:45	05/02/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, T
Wet Cleansiete by Methed 200 0	WC10FC222		05/02/22 22:40	05/04/22 04:42	VEC	NAC Later TO

Wet Chemistry by Method 300.0

WG1858229

05/03/22 23:10

05/04/22 04:49

KEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
B-46-2-042522 L1488507-08 Solid			Justin Nixon	04/25/22 13:50	05/02/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 04:58	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-38-1-042522 L1488507-09 Solid			Justin Nixon	04/25/22 14:00	05/02/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 05:27	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-44-1-042522 L1488507-12 Solid			Justin Nixon	04/25/22 14:20	05/02/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858296	1	05/04/22 07:49	05/04/22 07:54	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 05:37	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-46-1-042522 L1488507-13 Solid			Justin Nixon	04/25/22 14:30	05/02/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858297	1	05/04/22 07:59	05/04/22 08:06	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 05:46	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-47-1-042522 L1488507-14 Solid			Justin Nixon	04/25/22 15:05	05/02/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1858297	1	05/04/22 07:59	05/04/22 08:06	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1858229	1	05/03/22 23:10	05/04/22 06:05	KEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-48-1-042522 L1488507-16 Solid			Justin Nixon	04/25/22 15:10	05/02/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

WG1858297

WG1858229

1

05/04/22 07:59

05/03/22 23:10

05/04/22 08:06

05/04/22 06:15

CMK

KEG

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 05/04/22 17:06

Project Narrative

5/18/22: Revised samples IDs.

SAMPLE RESULTS - 01

Page 310 of 361

Collected date/time: 04/25/22 13:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

222

Qualifier

MDL (dry)

mg/kg

9.63

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	05/04/2022 07:54	WG1858296

RDL (dry)

mg/kg

20.9

Dilution

Analysis

date / time

05/04/2022 03:04

Batch

WG1858229

Page 311 of 361

SAMPLE RESULTS - 02

L1488

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.9		1	05/04/2022 07:54	WG1858296

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.0		9.40	20.4	1	05/04/2022 04:01	WG1858229

Page 312 of 361

SAMPLE RESULTS - 03

RDL (dry)

mg/kg

21.2

Dilution

Analysis

date / time

05/04/2022 04:11

Batch

WG1858229

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

164

Qualifier

MDL (dry)

mg/kg

9.75

Collected date/time: 04/25/22 13:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	05/04/2022 07:54	WG1858296

Page 313 of 361

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:20

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.3		1	05/04/2022 07:54	WG1858296

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	30.0		9.45	20.5	1	05/04/2022 04:20	WG1858229

Page 314 of 361

SAMPLE RESULTS - 05

L148

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.2		1	05/04/2022 07:54	WG1858296

2_

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	101		9.46	20.6	1	05/04/2022 04:30	WG1858229

Page 315 of 361

SAMPLE RESULTS - 06

L1488507

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	05/04/2022 07:54	WG1858296

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16.1	J	9.70	21.1	1	05/04/2022 04:39	WG1858229

Page 316 of 361 SAMPLE RESULTS - 07

Collected date/time: 04/25/22 13:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.7		1	05/04/2022 07:54	WG1858296

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	121		9.42	20.5	1	05/04/2022 04:49	WG1858229

Page 317 of 361

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

138

Qualifier

MDL (dry)

mg/kg

9.46

Collected date/time: 04/25/22 13:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.2		1	05/04/2022 07:54	WG1858296

RDL (dry)

mg/kg

20.6

Dilution

Analysis

date / time

05/04/2022 04:58

Batch

WG1858229

Page 318 of 361

SAMPLE RESULTS - 09

Collected date/time: 04/25/22 14:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

Analyte

Chloride

Result (dry)

mg/kg

165

Qualifier

MDL (dry)

mg/kg

9.61

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	05/04/2022 07:54	WG1858296

RDL (dry)

mg/kg

20.9

Dilution

Analysis

date / time

05/04/2022 05:27

Batch

WG1858229

Total Solids by Method 2540 G-2011

Page 319 of 361

SAMPLE RESULTS - 12

Collected date/time: 04/25/22 14:20

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.9		1	05/04/2022 07:54	WG1858296

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.6	J	10.0	21.8	1	05/04/2022 05:37	WG1858229

Page 320 of 361

SAMPLE RESULTS - 13

L1488507

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 14:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.5		1	05/04/2022 08:06	WG1858297

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.3	<u>P1</u>	10.2	22.1	1	05/04/2022 05:46	WG1858229

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 15:05

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	05/04/2022 08:06	WG1858297

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	84.0		9.85	21.4	1	05/04/2022 06:05	WG1858229

Page 322 of 361

SAMPLE RESULTS - 16

L1488507

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 15:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.8		1	05/04/2022 08:06	WG1858297

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	128		10.1	22.0	1	05/04/2022 06:15	WG1858229

QUALITY CONTROL SUMMARY

Page 323 of 361

Total Solids by Method 2540 G-2011

L1488507-01,02,03,04,05,06,07,08,09,12

Method Blank (MB)

(MB) R3788066-1 O	05/04/22 07:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

³Ss

L1488507-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1488507-02 05/04/22 07:54 • (DUP) R3788066-3 05/04/22 07:54

	Original Resi	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.9	97.7	1	0.162		10

Laboratory Control Sample (LCS)

(LCS) R3788066-2 05/04/22 07:54

(LCS) R3/88066-2 05/04	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Page 324 of 361

Total Solids by Method 2540 G-2011

L1488507-13,14,16

Method Blank	(MB)
Mictilia Dialik	(1410)

(MB) R3788068-1 05/04/2	2 08:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1488691-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1488691-01 05/04/22 08:06 • (DUP) R3788068-3 05/04/22 08:06

(11,	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.2	95.4	1	0.880		10

600

Laboratory Control Sample (LCS)

(LCS) R3788068-2 05/04/22 08:06

(200) 10700000 2 03/04	Spike Amount	nt LCS Re	esult LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 325 of 361

L1488507-01,02,03,04,05,06,07,08,09,12,13,14,16

Wet Chemistry by Method 300.0 Method Blank (MB)

(MB) R3787797-1 05/04/22 00:13

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1488507-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1488507-01 05/04/22 03:04 • (DUP) R3787797-3 05/04/22 03:33

,	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	222	213	1	4.36		20

Cn

L1488507-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1488507-13 05/04/22 05:46 • (DUP) R3787797-6 05/04/22 05:56

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	23.3	34.9	1	39.9	<u>P1</u>	20

Laboratory Control Sample (LCS)

(LCS) R3787797-2 05/04/22 00:22

Analyte		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
	Analyte	mg/kg	mg/kg	%	%	
	Chloride	200	217	108	90.0-110	

L1488507-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1488507-01 05/04/22 03:04 • (MS) R3787797-4 05/04/22 03:42 • (MSD) R3787797-5 05/04/22 03:52

(03) 11400307-01 03	(03) E1400307-01 03/04/22 03.04 · (103) 103/04/24 03.42 · (103D) 103/04/25 03.52													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	523	222	749	744	101	99.8	1	80.0-120			0.588	20		

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Pace Analy	utical National	12065 Lebanon	Rd Mount Julia	t TN 37122
race Allai	yticai Nationai		i Ku Mourit Julie	l, IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Infor	mation:					Analysis	/ Contains	r / Preserva	tive		Chain of Custody	Page of
Arcadis_ConocoPhillips 1004 N. Big Spring St. Suite 121 Midland. TX 79701	N. Big Spring St.		630 Plaza	Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129										, ravisa	RCC®
Report to: Justin Nixon			Email To:	n@arcadis.com;w	villiam.foord@	Darcadi								12065 Lebanon Rd Mor	
Project Description:		City/State	denca		Please C									Pace Terms and Conditi	ment and acceptance of the ons found at:
Copperhead CTB	Client Project		son year	Lab Project #	PT MT (T ET	1							https://info.pacelabs.co terms.pdf	
Phone: 432-214-2972	30130426	. "		COPARCA-30	130426		#	oPres		藍絲				SDG# LY	124
Collected by (print):	Site/Facility II	D#		P.O. #			4026	4o2Clr-NoPres						Acctnum: COP	
Collected by (signature):		Lab MUST Be		Quote #			PINE							Template: T20	6699
Immediately Packed on Ice N Y	Next Da Two Da Three D	y 10 D	y (Rad Only) ay (Rad Only)	Date Result		No.	TEXERO, DR	CHLORIDE-300						Prelogin: P91 : PM: 526 - Chris PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	H	HLOF						Shipped Via:	Sample # (lab only)
B-29-2.5'-0475ZZ	Comp	SS	2.5'	04/25/20	1300	2		X							0
B-25-2.5'-042522		SS	2.5	1	1310			X							•2
B-26-2.5-042522		SS	2.5		1315			X							03
B-27-2.5'-047522		SS	2.5		1326			K							.7
B-28-2.5'-042522		SS	2.5		1330			K							65
B-42-2'-042522		SS	2.		1340			1					510-41		طئ
B-44-2'-042522		SS	2'		1345			K							9
B-46-2-049522		SS	Z'		1350			X							a
5W-38-1'-042522		SS	1.		1400			X							69
SW-40-1'-042522		SS	1'		1405	P		>							(3
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	narks:								pH Flow		Temp		COC Seal COC Signe Bottles	mmple Receipt Chr Present/Intact: ed/Accurate: arrive intact: bottles used:	NP Y N Y N Y N
DW - Drinking Water OT - Other	ples returned JPS X FedEx	via: Courier		Trackii	ng#			5719	6177	8356	1		Sufficien	nt volume sent: If Applicabl Headspace:	YN eYN
Relinquished by : (Signature)		te:	Time: 181	Receiv	ed by: (Signat	ure)				STATE OF THE PERSON NAMED IN	d: Yes / No HCL / N		Preservat	tion Correct/Che en <0.5 mR/hr:	cked: $Y = N$
Relinquished by (signature)		ite:	Time:	Receiv	ed by: (Signat	ure)			Ment 7	°C		eived:	If preserva	tion required by Log	n: Date/Time
Relinquished by: (Signature) sed to Imaging: 10/27/2022 3:50		ite:	Time:	Receiv	ed for led by:	(Signatu	ire)		Date:		Time:)	Hold:		Condition:

Company Name/Address:			Billing Info	ormation:		-	_		Analy	cic / Contai	ner / Preservative		Chair as C	7 .9
Arcadis_ConocoPhillips 1004 N. Big Spring St. Suite 121 Midland. TX 79701			Attn: Ad	counts Payabl za Drive, Suite	unts Payable Pres Chk Ranch, CO 80129				Alaiv	SSZ CONTAI	IPE / Prespivany		Chain of Custoo	Page Z of Z OCC LE ADVANCING SCIENCE
Report to: Justin Nixon				Email To: justin.nixon@arcadis.com;william.foord@arcadi										ULIET, TN
Project Description: Copperhead CTB		City/State Collected:		Contypum	Please C	ircle:	E						Submitting a sample of constitutes acknowled Pace Terms and Cond	fount Juliet, TN 37122 via this chain of custody dgment and acceptance of the litions found at: .com/hubfs/pas-standard-
Phone: 432-214-2972	Client Proje	ect#		Lab Project # COPARCA-30	0130426		NOF	Pres					SDG# US	(88507
Collected by (print):	Site/Facility	y ID #		P.O. #			tozelr	4o2Cir-NoPres					Table #	
Collected by (signature). Immediately Packed on Ice N y	Same		Day	y Date Results Needed T				300					Acctnum: CO Template: T20 Prelogin: P91 PM: 526 - Chr	06699 15946
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	of Cntrs	BTEXGRO, DROWN	CHLORIDE					Shipped Via:	
SW-42-1'-042522	Carro	65		1 -41 -1	11110		4			HUTSE			Remarks	Sample # (lab only)
5W-44-1'-642522	Cemp	SS	1	04/25/2		2		X						
3w-46-1'-042527		SS	11		1420	+		V						n
9W-47-1-042528		SS	1.		1500	-		V						13
B-47-1-042527		SS	1	4025/22		#		X						
SW-52-1-042572	Comp	SS	100	1	1500			Î						
5w-98-1-042522	1	SS	1'		1510	11	REP.	X						
5w-50-1-042522		SS	1'	1	1520	1	Tree leading	X						16
		SS			1300									
		SS												
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay /W - WasteWater								pH Temp			COC Seal COC Signe Bottles a	mple Receipt CP Present/Intact d/Accurate: rrive intact:	necklist : NP XY N Y N
	ples eturned	l via: Courier		Tracking	g#							CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OWNER	ottles used: t volume sent: If Applicab	le Y N
Relinquished by : (Signature)	D	ate:	Time:	Receive	d by: (Signatu	ire)			Trip Bla	ank Receive	d: Yes / No HCL / MeoH	Preservat	Headspace: ion Correct/Che n <0.5 mR/hr:	ecked: _Y _N _N _Y _N
Relinquished by : (Signature)	Date: Time: Rec					ire)	Temp: °C Bottles Received: If preservation required by Login: I				gin: Date/Time			
Relinquished by : (Signature)		ete:	Time:	Receive	Received for lab by: (Signature)			Date:		Time:	Hold:		Condition:	

-	-
	6
	~
	6
	~
	20
	-
	0
	4
	-
	0
	\sim
	-
	-
	9
	/
	_
	_
	13
	6
	12
	N
	-
	N
	-
	-
	V
	1
	1
	-
	-

Time estimate: oh Time spent:	oh
Members	
Matthew Shacklock (responsible) Ch	nristopher McCord
Parameter(s) past holding time	
✓ Temperature not in range	
Improper container type	
pH not in range	
Insufficient sample volume	
Sample is biphasic	
Vials received with headspace	
Broken container	
Sufficient sample remains	
If broken container: Insufficient packing mate	erial around container
If broken container: Insufficient packing mate	erial inside cooler
If broken container: Improper handling by car	rrier:
If broken container: Sample was frozen	
If broken container: Container lid not intact	
Client informed by Call	
✔ Client informed by Email	
Client informed by Voicemail	
✓ Date/Time: 5/3/22 11:33	
✔ PM initials: CM	
Client Contact: Justin Nixon	
Comments	
Matthew Shacklock	2 May 2022 4:05 PM
Received @ 23.1 degrees. All ice melted.	
L1488507 is marked as rush	
Christopher McCord	3 May 2022 2:40 PM
Run as received. Leave L1488507-10, -11, -15, -	-17 and L1488511-10, -11, -15, -17 on hold.
Log CHLORIDE-300, TS on L1488507 as R2 d	
Matthau Chaoldad	3 May 2022 2:51 PM
Matthew Shacklock	3 May 2022 2.51 FM

Chris McCord

From: Nixon, Justin Justin Justin Sustin.Nixon@arcadis.com

Sent: Tuesday, May 10, 2022 2:35 PM To: Chris McCord; Foord, Scott

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Categories: Reporting Follow-up

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris,

Thank you for taking the time to discuss earlier along with helping on the costs to finalize the last 2 batches.

Here is a list of what is needed corrected for the nomenclature:

-For L1483715, L1484210 we need to change SW-19 to SW-18 -L1484811, L1484817 please change B-23 to B-30 -L1488507 (waiting on the lab report for the BTEX and TPH) change B-24 to B-32, B-25 to B-34, and B-27 to B-36.

If you have any questions or need clarification, please let us know.

Thanks,

Justin

----Original Message-----

From: Chris McCord Chris McCord@pacelabs.com

Sent: Monday, May 9, 2022 11:46 AM

To: Nixon, Justin Justin.Nixon@arcadis.com; Foord, Scott William.Foord@arcadis.com> Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

I updated the date on that one too after it went out. Sorry for the confusion.

Thanks.

Christopher McCord Project Manager II | National Pace Analytical - National 12065 Lebanon Road | Mt. Juliet, TN 37122 o.615.773.3281 | pacenational.com

MAKE YOUR PAYMENTS ONLINE

Please note that email addresses for staff at the Pace Analytical National Center for Testing & Innovation have changed. My new email address is chris.mccord@pacelabs.com. Please update your records accordingly.

----Original Message-----

From: Nixon, Justin < Justin.Nixon@arcadis.com>

Sent: Monday, May 09, 2022 9:12 AM

To: Chris McCord Chris.McCord@pacelabs.com; Foord, Scott William.Foord@arcadis.com

Subject: RE: Pace Analytical National Login for 30130426 Copperhead CTB L1490291

Pace Analytical® ANALYTICAL REPORT

May 13, 2022

Ss

Arcadis_ConocoPhillips

Sample Delivery Group: L1488511

Samples Received: 05/02/2022 Project Number: 30130426

Description: Copperhead CTB

Report To: Justin Nixon

1004 N. Big Spring St.

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
B-24-2.5-042522 L1488511-01	7
B-25-2.5-042522 L1488511-02	8
B-26-2.5-042522 L1488511-03	9
B-27-2.5-042522 L1488511-04	10
B-28-2.5-042522 L1488511-05	11
B-42-2-042522 L1488511-06	12
B-44-2-042522 L1488511-07	13
B-46-2-042522 L1488511-08	14
SW-38-1-042522 L1488511-09	15
SW-44-1-042522 L1488511-12	16
SW-46-1-042522 L1488511-13	17
B-47-1-042522 L1488511-14	18
SW-48-1-042522 L1488511-16	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Volatile Organic Compounds (GC) by Method 8015/8021	22
Semi-Volatile Organic Compounds (GC) by Method 8015M	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25

Sc: Sample Chain of Custody

26

SAMPLE SUMMARY

B-24-2.5-042522 L1488511-01 Solid			Collected by Justin Nixon	Collected date/time 04/25/22 13:00	Received da 05/02/22 09	
	Patch	Dilution	Proparation	Analysis	Analyst	Location
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 07:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 12:59	JN	Mt. Juliet, TN
com volume organic compounds (co, s, memou colom		·	00,00,22 10.2.	00/07/22 12:00	5.1	ma danda, m
			Collected by	Collected date/time	Received da	te/time
B-25-2.5-042522 L1488511-02 Solid			Justin Nixon	04/25/22 13:10	05/02/22 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 08:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 12:47	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-26-2.5-042522 L1488511-03 Solid			Justin Nixon	04/25/22 13:15	05/02/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 08:40	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 13:12	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	to/timo
B-27-2.5-042522 L1488511-04 Solid			Justin Nixon	04/25/22 13:20	05/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 10:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 15:58	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-28-2.5-042522 L1488511-05 Solid			Justin Nixon	04/25/22 13:30	05/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Sateri	5	date/time	date/time	, and you	20000011
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 10:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 14:41	JN	Mt. Juliet, TN
			Callagae	Callagae I. I. I. III	Desert 1.1	h = (h):
D 42 2 042E22 14400E44 0C C-134			Collected by Justin Nixon	Collected date/time 04/25/22 13:40	Received da 05/02/22 09	
B-42-2-042522 L1488511-06 Solid						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatila Organia Compounds (CC) by Mothod 2015/2021	WC1053722	1	05/00/22 10.41	05/00/22 10.57	CIVIN	M. J. J. TAI

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1859000

WG1860050

1

05/04/22 15:19

05/06/22 16:21

DWR

JN

05/07/22 11:19

05/07/22 13:25

Mt. Juliet, TN

Mt. Juliet, TN

Volatile Organic Compounds (GC) by Method 8015/8021

Semi-Volatile Organic Compounds (GC) by Method 8015M

SAMPLE SUMMARY

B-44-2-042522 L1488511-07 Solid			Collected by Justin Nixon	Collected date/time 04/25/22 13:45	Received da 05/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
wethod	Batcii	Dilution	date/time	date/time	AllalySt	LUCALIUII
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 11:41	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 14:54	JN	Mt. Juliet, TN
seriii volatile organie compounds (co) sy method co isin	110100000	•	03/03/22 10.21	00/07/22 11.01	311	me sunce, m
			Collected by	Collected date/time	Received da	te/time
B-46-2-042522 L1488511-08 Solid			Justin Nixon	04/25/22 13:50	05/02/22 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 12:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 15:19	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SW-38-1-042522 L1488511-09 Solid			Justin Nixon	04/25/22 14:00	05/02/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 12:24	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 14:29	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SW-44-1-042522 L1488511-12 Solid			Justin Nixon	04/25/22 14:20	05/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method	Dateii	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1859722	1	05/06/22 10:41	05/06/22 10:57	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 12:45	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 15:45	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
SW-46-1-042522 L1488511-13 Solid			Justin Nixon	04/25/22 14:30	05/02/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	\		date/time	date/time	O	
Total Solids by Method 2540 G-2011	WG1859723	1	05/06/22 10:29	05/06/22 10:39	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 13:07	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 13:38	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-47-1-042522 L1488511-14 Solid			Justin Nixon	04/25/22 15:05	05/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859723	1	05/06/22 10:29	05/06/22 10:39	CMK	Mt. Juliet, TN
Valatila Organia Compounds (CC) by Mathad 201E/2001	WC10F0000	4	05/04/22 15:10	05/07/22 12:20	DWD	NAC THE TAIL

DWR

JN

05/07/22 13:28

05/07/22 15:32

Mt. Juliet, TN

Mt. Juliet, TN

PAGE:

4 of 28

WG1859000

WG1860050

1

05/04/22 15:19

05/06/22 16:21

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

SW-48-1-042522 L1488511-16 Solid			Justin Nixon	04/25/22 15:10	05/02/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1859723	1	05/06/22 10:29	05/06/22 10:39	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1859000	1	05/04/22 15:19	05/07/22 13:50	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1860050	1	05/06/22 16:21	05/07/22 15:07	JN	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.8		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000125	0.000522	1	05/07/2022 07:57	WG1859000
Toluene	0.000982	J	0.000157	0.00522	1	05/07/2022 07:57	WG1859000
Ethylbenzene	U		0.000115	0.000522	1	05/07/2022 07:57	WG1859000
Total Xylene	U		0.000480	0.00157	1	05/07/2022 07:57	WG1859000
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	05/07/2022 07:57	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		05/07/2022 07:57	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 07:57	WG1859000

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	05/07/2022 12:59	WG1860050
C28-C36 Motor Oil Range	2.34	J	0.286	4.17	1	05/07/2022 12:59	WG1860050
(S) o-Terphenyl	38.7			18.0-148		05/07/2022 12:59	WG1860050

Page 339 of 361

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.0		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000122	0.000510	1	05/07/2022 08:18	WG1859000
Toluene	0.00105	<u>J</u>	0.000153	0.00510	1	05/07/2022 08:18	WG1859000
Ethylbenzene	U		0.000112	0.000510	1	05/07/2022 08:18	WG1859000
Total Xylene	U		0.000469	0.00153	1	05/07/2022 08:18	WG1859000
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	05/07/2022 08:18	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 08:18	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		05/07/2022 08:18	WG1859000

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.08	1	05/07/2022 12:47	WG1860050
C28-C36 Motor Oil Range	1.25	J	0.280	4.08	1	05/07/2022 12:47	WG1860050
(S) o-Terphenyl	42.4			18.0-148		05/07/2022 12:47	WG1860050

Page 340 of 361

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.7		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000127	0.000528	1	05/07/2022 08:40	WG1859000
Toluene	0.000948	<u>J</u>	0.000158	0.00528	1	05/07/2022 08:40	WG1859000
Ethylbenzene	U		0.000116	0.000528	1	05/07/2022 08:40	WG1859000
Total Xylene	U		0.000486	0.00158	1	05/07/2022 08:40	WG1859000
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/07/2022 08:40	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		05/07/2022 08:40	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 08:40	WG1859000

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	05/07/2022 13:12	WG1860050
C28-C36 Motor Oil Range	2.10	J	0.289	4.23	1	05/07/2022 13:12	WG1860050
(S) o-Terphenyl	43.1			18.0-148		05/07/2022 13:12	WG1860050

Page 341 of 361

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:20

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.5		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000513	1	05/07/2022 10:36	WG1859000
Toluene	U		0.000154	0.00513	1	05/07/2022 10:36	WG1859000
Ethylbenzene	U		0.000113	0.000513	1	05/07/2022 10:36	WG1859000
Total Xylene	U		0.000472	0.00154	1	05/07/2022 10:36	WG1859000
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/07/2022 10:36	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		05/07/2022 10:36	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	103			72.0-128		05/07/2022 10:36	WG1859000

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	05/07/2022 15:58	WG1860050
C28-C36 Motor Oil Range	6.01		0.281	4.10	1	05/07/2022 15:58	WG1860050
(S) o-Terphenyl	41.1			18.0-148		05/07/2022 15:58	WG1860050

SAMPLE RESULTS - 05

L1488511

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.5		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000513	1	05/07/2022 10:57	WG1859000
Toluene	U		0.000154	0.00513	1	05/07/2022 10:57	WG1859000
Ethylbenzene	U		0.000113	0.000513	1	05/07/2022 10:57	WG1859000
Total Xylene	U		0.000472	0.00154	1	05/07/2022 10:57	WG1859000
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/07/2022 10:57	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 10:57	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 10:57	WG1859000

⁵Sr

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	05/07/2022 14:41	WG1860050
C28-C36 Motor Oil Range	2.97	<u>J</u>	0.281	4.10	1	05/07/2022 14:41	WG1860050
(S) o-Terphenyl	47.1			18.0-148		05/07/2022 14:41	WG1860050

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.4		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000126	0.000524	1	05/07/2022 11:19	WG1859000
Toluene	U		0.000157	0.00524	1	05/07/2022 11:19	WG1859000
Ethylbenzene	U		0.000115	0.000524	1	05/07/2022 11:19	WG1859000
Total Xylene	U		0.000482	0.00157	1	05/07/2022 11:19	WG1859000
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	05/07/2022 11:19	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 11:19	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 11:19	WG1859000

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	05/07/2022 13:25	WG1860050
C28-C36 Motor Oil Range	2.32	J	0.287	4.19	1	05/07/2022 13:25	WG1860050
(S) o-Terphenyl	43.8			18.0-148		05/07/2022 13:25	WG1860050

Page 344 of 361

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:45

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.9		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000511	1	05/07/2022 11:41	WG1859000
Toluene	U		0.000153	0.00511	1	05/07/2022 11:41	WG1859000
Ethylbenzene	U		0.000112	0.000511	1	05/07/2022 11:41	WG1859000
Total Xylene	U		0.000470	0.00153	1	05/07/2022 11:41	WG1859000
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	05/07/2022 11:41	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		05/07/2022 11:41	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 11:41	WG1859000

Ss

Cn

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.09	1	05/07/2022 14:54	WG1860050
C28-C36 Motor Oil Range	2.52	<u>J</u>	0.280	4.09	1	05/07/2022 14:54	WG1860050
(S) o-Terphenyl	45.5			18.0-148		05/07/2022 14:54	WG1860050

Page 345 of 361

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 13:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.5		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000123	0.000513	1	05/07/2022 12:02	WG1859000
Toluene	U		0.000154	0.00513	1	05/07/2022 12:02	WG1859000
Ethylbenzene	U		0.000113	0.000513	1	05/07/2022 12:02	WG1859000
Total Xylene	U		0.000472	0.00154	1	05/07/2022 12:02	WG1859000
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/07/2022 12:02	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 12:02	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		05/07/2022 12:02	WG1859000

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	05/07/2022 15:19	WG1860050
C28-C36 Motor Oil Range	2.31	J	0.281	4.10	1	05/07/2022 15:19	WG1860050
(S) o-Terphenyl	44.1			18.0-148		05/07/2022 15:19	WG1860050

Page 346 of 361

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 14:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.9		1	05/06/2022 10:57	WG1859722

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000126	0.000527	1	05/07/2022 12:24	WG1859000
Toluene	U		0.000158	0.00527	1	05/07/2022 12:24	WG1859000
Ethylbenzene	U		0.000116	0.000527	1	05/07/2022 12:24	WG1859000
Total Xylene	U		0.000485	0.00158	1	05/07/2022 12:24	WG1859000
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	05/07/2022 12:24	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 12:24	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 12:24	WG1859000

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.21	1	05/07/2022 14:29	WG1860050
C28-C36 Motor Oil Range	1.45	J	0.289	4.21	1	05/07/2022 14:29	WG1860050
(S) o-Terphenyl	39.3			18.0-148		05/07/2022 14:29	WG1860050

Page 347 of 361

SAMPLE RESULTS - 12

L1488511

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 14:20

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.4		1	05/06/2022 10:57	WG1859722

²Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000126	0.000524	1	05/07/2022 12:45	WG1859000
Toluene	U		0.000157	0.00524	1	05/07/2022 12:45	WG1859000
Ethylbenzene	U		0.000115	0.000524	1	05/07/2022 12:45	WG1859000
Total Xylene	U		0.000482	0.00157	1	05/07/2022 12:45	WG1859000
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/07/2022 12:45	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 12:45	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		05/07/2022 12:45	WG1859000

³Sr

⁷Gl

[°]Qc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	05/07/2022 15:45	WG1860050
C28-C36 Motor Oil Range	3.89	J	0.287	4.19	1	05/07/2022 15:45	WG1860050
(S) o-Terphenyl	45.7			18.0-148		05/07/2022 15:45	WG1860050

Collected date/time: 04/25/22 14:30

SAMPLE RESULTS - 13

L1488511

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.8		1	05/06/2022 10:39	WG1859723

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000131	0.000545	1	05/07/2022 13:07	WG1859000
Toluene	U		0.000163	0.00545	1	05/07/2022 13:07	WG1859000
Ethylbenzene	U		0.000120	0.000545	1	05/07/2022 13:07	WG1859000
Total Xylene	U		0.000501	0.00163	1	05/07/2022 13:07	WG1859000
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	05/07/2022 13:07	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 13:07	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 13:07	WG1859000

Cn

³Sr

⁷Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	<u>J6</u>	1.75	4.36	1	05/07/2022 13:38	WG1860050
C28-C36 Motor Oil Range	1.75	<u>J</u>	0.298	4.36	1	05/07/2022 13:38	WG1860050
(S) o-Terphenyl	38.9			18.0-148		05/07/2022 13:38	WG1860050

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 15:05

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.9		1	05/06/2022 10:39	WG1859723

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000128	0.000532	1	05/07/2022 13:28	WG1859000
Toluene	U		0.000160	0.00532	1	05/07/2022 13:28	WG1859000
Ethylbenzene	U		0.000117	0.000532	1	05/07/2022 13:28	WG1859000
Total Xylene	U		0.000490	0.00160	1	05/07/2022 13:28	WG1859000
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	05/07/2022 13:28	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 13:28	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128		05/07/2022 13:28	WG1859000

Ss

Cn

Gl

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	05/07/2022 15:32	WG1860050
C28-C36 Motor Oil Range	2.86	<u>J</u>	0.292	4.26	1	05/07/2022 15:32	WG1860050
(S) o-Terphenyl	44.8			18.0-148		05/07/2022 15:32	WG1860050

Page 350 of 361

SAMPLE RESULTS - 16

Total Solids by Method 2540 G-2011

Collected date/time: 04/25/22 15:10

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.0		1	05/06/2022 10:39	WG1859723

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000132	0.000549	1	05/07/2022 13:50	WG1859000
Toluene	U		0.000165	0.00549	1	05/07/2022 13:50	WG1859000
Ethylbenzene	U		0.000121	0.000549	1	05/07/2022 13:50	WG1859000
Total Xylene	U		0.000505	0.00165	1	05/07/2022 13:50	WG1859000
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	05/07/2022 13:50	WG1859000
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		05/07/2022 13:50	WG1859000
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128		05/07/2022 13:50	WG1859000

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.40	1	05/07/2022 15:07	WG1860050
C28-C36 Motor Oil Range	1.89	J	0.301	4.40	1	05/07/2022 15:07	WG1860050
(S) o-Terphenyl	42.3			18.0-148		05/07/2022 15:07	WG1860050

Page 351 of 361

Total Solids by Method 2540 G-2011

L1488511-01,02,03,04,05,06,07,08,09,12

Method Blank (MB)

(MB) R3789169-1 05	5/06/22 10:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1488511-03 Original Sample (OS) • Duplicate (DUP)

(0)	S) I 1488511-03	05/06/22 10:57 •	(DLIP) R3789169-3	05/06/22 10:57
, 00	, = 10001100	00/00/22 10.0/	(00.	, 110, 00, 100	00/00/22 10.07

(,						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.7	94.8	1	0.142		10

Laboratory Control Sample (LCS)

(LCS) R3/89169-2 05/06/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie
Analyte	%	%	%	%	200 quamer
Total Solids	50.0	50.0	100	85.0-115	

Page 352 of 361

L1488511-13,14,16

Method Blank (MB)

Total Solids by Method 2540 G-2011

(MB) R3789168-1 05/06/22 10:39							
	MB Result	MB Qualifier	MB MDL	MB RDL			
ınalyte	%		%	%			
Total Solids	0.00200						

Ср

²Tc

³Ss

L1488511-16 Original Sample (OS) • Duplicate (DUP)

100	`\ I 1 1 0 0 F 11 1 C	05/06/22 10:39 •		N DOZOO1CO O	0F/0C/22 10.20
(()	N I 1488511-10	U5/U6/2/ IU 39 •	או זו זו	1 R 3 / 8 9 10 8 - 3	U5/U6/22 IU 39

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	91.0	92.3	1	1.38		10	

⁴Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3789168-2 05/06/22 10:39

(LCS) R3/89168-2 U5/U6/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 353 of 361

L1488511-01,02,03,04,05,06,07,08,09,12,13,14,16 Volatile Organic Compounds (GC) by Method 8015/8021

Method Blank (MB)

(MB) R3789394-2 05/07	7/22 05:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120
(S) a.a.a-Trifluorotoluene(PID)	102			72.0-128

Laboratory Control Sample (LCS)

(LCS) R3789394-1	05/07/22 04:52

(LCS) R3/89394-1 05/07/22 04:52						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
TPH (GC/FID) Low Fraction	5.50	4.91	89.3	72.0-127		
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120		
(S) a,a,a-Trifluorotoluene(PID)			103	72.0-128		

Laboratory Control Sample (LCS)

(LCS	R3789394-3	05/07/22	09:23
---	-----	------------	----------	-------

· /					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0461	92.2	76.0-121	
Toluene	0.0500	0.0469	93.8	80.0-120	
Ethylbenzene	0.0500	0.0457	91.4	80.0-124	
Total Xylene	0.150	0.138	92.0	37.0-160	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			101	72.0-128	

Page 354 of 361

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1488511-01,02,03,04,05,06,07,08,09,12,13,14,16

Method Blank (MB)

(MB) R3789458-1 05/07/	/22 12:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	41.4			18.0-148

²Tc

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3789458-4 05/07/22 14:16						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	25.8	51.6	50.0-150		
(S) o-Terphenyl			53.0	18.0-148		

⁷ CI

L1488511-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1488511-13 05/07/22 13:38 • (MS) R3789458-2 05/07/22 13:50 • (MSD) R3789458-3 05/07/22 14:03

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.5	U	20.3	21.0	37.2	38.6	1	50.0-150	<u>J6</u>	<u>J6</u>	3.69	20
(S) o-Terphenyl					37.1	39.8		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Pace Analy	rtical National	12065	Lebanon	Rd Moun	t Juliet,	TN 37122
Λlahama		40660				Nohraska

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:		-	Billing Infor	rmation:		T			Analysis	/ Contains	er / Preservative		Chain of Custod	y Page 1 of 2
Arcadis_ConocoPhillips 1004 N. Big Spring St. Suite 121 Midland. TX 79701			630 Plaza	counts Paya a Drive, Sui ls Ranch, Co	ite 600	Pres Chk							_ Pa	ACE"
Report to: Justin Nixon			Email To: justin.nixo	n@arcadis.co	m;william.foord	@arcadi							12065 Lebanon Rd Mo	JLIET, TN ount Juliet, TN 37122
Project Description: Copperhead CTB		City/State Collected:	5227	Conhe	Please (Circle:	Si						Submitting a sample vi constitutes acknowled Pace Terms and Condit	a this chain of custody gment and acceptance of the
Phone: 432-214-2972	Client Project	t#		Lab Project	•		4ozClr-NoPres	138					SDG # UY	28511
Collected by (print):	Site/Facility I	D#		P.O. #			102Clr	4ezCir-NoPre					Table #	
Collected by (signature):		Lab MUST Be		Quote #				0 4oze					Acctnum: COF	6699
Immediately Packed on Ice N Y	Next D	ay 5 Day	(Rad Only)	Spate Re	esults Needed	No.	TEXGRO, DRONM	HORIDE 300					Prelogin: P91 PM: 526 - Chris	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		101					Shipped Via:	Sample # (lab only)
3-24-25'-042522	Comp	SS	2.5'	04/23	5/2 130	02	R	9						61
B-25-25-047522	1	SS	25'	1	1310	1	¥.			BUIL				a
B-26-2.5-047527		SS	7.5'		1315		X				- 1000			63
B-27-25-642527		SS	2.5'		1320		L			Best .		18181		Ya
B-28-2.5-042527		SS	7.5'	1	1330		V					18000		05
B-42-2'-042522		SS	2'		1340		X							ob
B-44-2-042522		SS	2'		13.48		X			100				5
B-46-2'-042522		SS	1.21	'	1350		X							a
B-505W-38-1-042522		SS	1.		1400		X							69
SW-40-1: 042522	V	SS	1'	1	1405	$\overline{}$	1				539			63
Ren SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay NW - WasteWater	narks:								pH		Temp	Bottles	ampla Receipt Ch Present/Intact: ed/Accurate: arrive intact: bottles used:	ecklist _NP _Y _N _Y _N _Y _N
	ples returned JPS FedEx	via: Courier		Tra	cking#							Sufficie	nt volume sent: If Applicabl	Y N
Relinquished by : (Signature)	100	te:	Time:		ceived by: (Signat	ture)			Trip Blan	nk Received	d: Yes / No HCL / MeoH TBR	Preserva	Headspace: tion Correct/Che en <0.5 mR/hr:	cked: Y N
Relinquished by : (Signature)	Da	ite:	Time:		ceived by: (Signat			_f	Temp: 23.(4		Bottles Received:	If preserva	tion required by Log	in: Date/Time
Relinquished by : (Signature) sed to Imaging: 10/27/2022 3:5	-	te:	Time:	Rec	ceived for lab by:	(Signatu	ire)		Date: 5/2/	,	Time:	Hold:		Condition:

Company Name/Address:			Billing Info	rmation:					Anal	usis / Cont	ainer / Pres	servative		Chain of Cust	ody Page 2 of 1
Arcadis_ConocoPhillips			Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129												Pace° PLE ADVANCING SCIENCE JULIET, TN
Report to: Justin Nixon			Email To: justin.nixo	n@arcadis.com	;william.foord@	@arcadi								12065 Lebanon Rd Submitting a samp	Mount Juliet, TN 37122 le via this chain of custody
Project Description:		City/State Collected:	tidda	Condo A	Please C		S							Pace Terms and Co https://info.pacela	viedgment and acceptance of the anditions found at: abs.com/hubfs/pas-standard-
Phone: 432-214-2972	Client Proje	ect#	(3-1)	Lab Project #	11		4ozCir-NoPres	oPres						SDG #	1488411
Collected by (print):	Site/Facility	/ ID #		P.O. #				4o2Clr-NoPres						Table #	OPARCA
Collected by (signature): Immediately Packed on Ice N Y	Same	(Lab MUST Be Day Five Day 5 Da Day 10 De e Day	Day		ults Needed	No. of	BTEXGRO, DRONM	EHLORIBE 300 40						Template:T Prelogin: P PM: 526 - C PB: Shipped Via	915946 hris McCord
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	втех	SHE C						Remarks	
560-42-1'-042522	Comp	ss	1,	04/25/	01416	12	Z								
SW-44-1'-042522	1	SS	1,		1420	1	X			110					ſ
300-46-1-042522		SS	1.		1430	5	X	1							(
B-47-1'-642522		SS	1'		1505		X						All months		(
3W-52-1:042572		SS	11'		1500		X								C
Sur48-1-042522		SS	1		1510		K						NAME !		1/2
Ja-50-1 -042577	V	SS	1'	1	1570	, 1	1								17
		SS													
		SS					10 m								
		SS													
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	narks:									pH	Temp		COC Seal COC Sigr Bottles	ample Receipt Present/Inta ed/Accurate: arrive intact bottles used:	ct: _NP {Y Y Y
DW - Drinking Water	nples eturn	ed via: Ex Courier		Trac	king #									nt volume sen If Applic Headspace:	able
Relinquished by : (Signature)	/	Date:	Time	e: Rec	eived by: (Signa	iture)			Trip	Blank Rec	1	HCL / MeoH BR	Preserva RAD Scre	tion Correct/ en <0.5 mR/hr	
Relinquished by : (Signature)		Date:	Time	e: Rec	eived by: (Signa	iture)			Ten	1p:	°C Bottle		: If preserve	ation required by	Login: Date/Time
Relinquished by : (Signature) sed to Imaging: 10/27/2022 3:5		Date:	Time	e: Rec	eived for lab by	: (Signat	ure)		Dat		Time	400	Hold:		Condition:

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042 Phone: 713 953 4800

Fax: 713 977 4620 www.arcadis.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 150020

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	150020
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please note that the dtw boring was installed 1.10 miles away from the site, and not within 0.5 miles as was discussed and agreed upon. You installed the dtw boring within 0.5 miles from the site called Copperhead Fee A 003H, but this current release associated with nAPP2127034861 is the Copperhead Fee 31 E CTB, which was over a mile away from the dtw boring. OCD never received a work plan detailing the proposed dtw boring.	10/27/2022