

November 8, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Deferral Request ConocoPhillips Company Buck Federal Central Tank Battery Unit Letter P, Section 17, Township 26 South, Range 32 East Lea County, New Mexico 1RP-4431 Incident ID nJXK1625144979

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips Company (COP) to evaluate releases that occurred at the Buck Federal Central Tank Battery (CTB), Unit Letter P, Section 17, Township 26 South, Range 32 East, in Lea County, New Mexico (site). The site coordinates are 32.03722°, -103.6967°. The site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report, the release was discovered on September 6, 2016, and released approximately 240 barrels of produced water due to a faulty T-joint. Immediate action was to shut down and replace the T-joint. The release was contained within the earthen berm (firewall) of the tank battery. Vacuum trucks were dispatched to remove the freestanding fluids, recovering approximately 235 barrels of produced water. The interior of the berm area was scraped as a part of the emergency response. The initial C-141 Form is included in Appendix A.

The release was subsequently assigned the Remediation Permit (RP) number 1RP-4431 and the Incident ID nJXK1625144979. The 1RP-4431 release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in a high karst potential area.

According to the New Mexico Office of the State Engineers (NMOSE reporting system, there are no water wells within a $\frac{1}{2}$ mile (800-meter) radius of the site. There are four (4) water wells within 1.1-mile (1900-meter) radius with an average depth to groundwater at 240 feet (ft.) below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and the high karst potential in the Site vicinity, the remediation RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

As this reported contamination is in areas immediately under or around production tanks and pipelines, full remediation would cause a major facility deconstruction. The full final remediation, restoration and reclamation for this release is requested to be deferred until the equipment is removed during other operations, or when the facility is retrofitted or abandoned, whichever comes first.

INITIAL SITE ASSESSMENT

On April 24, 2016, COP personnel were onsite to visually assess a previous release at the Buck Federal CTB. Photographs were taken of the release area inside the berm. Based on the visual assessment, COP was able to prepare a Corrective Action Plan (CAP) for this previous release at the site (1RP-4262), dated April 28, 2016. The CAP provided the C-141, photographs of the release area, and outlined actions to be taken to remediate the release (excavate down six inches bgs). The CAP also detailed that three discrete floor samples would be collected and analyzed for chloride, Gasoline Range Organics (GRO), Diesel Range Organics (DRO) and BTEX and that excavated soils would be taken to an NMOCD approved facility for disposal. The CAP was conditionally approved by the NMOCD, with a stipulation to provide a map of the spill area depicting the confirmation sampling points. The CAP was apparently revised and resubmitted (through available email correspondence) and marked conditionally approved.

A CAP (erroneously dated April 28, 2016) was prepared for this release (1RP-4431) and submitted to NMOCD. The CAP provided the C-141, a photograph of the release source, and again outlined actions to be taken to remediate the release. The CAP also detailed that five discrete samples will be collected in total. Four surface samples would be collected just outside the berm on all four sides and the fifth sample will be from the center of the spill and will go down as deep as the spill penetrated. That CAP was approved October 24, 2016.

The approximate release extent is indicated in Figure 3. The proposed remediation activities were described within the CAPs submitted to NMOCD. From email correspondence, it is apparent that excavation activities were conducted for the 1RP-4262 release, at least in part. Further correspondence between NMOCD and COP indicated that NMOCD had additional questions/comments. COP then drafted and submitted a mitigation deferral request to NMOCD on August 2, 2017. Email correspondence between NMOCD and COP indicated that NMOCD found the deferral request incomplete.

As a result of the additional correspondence, on October 19, 2017, a total of five (5) trenches (SP-1 through SP-5) were installed in the eastern portion of the release area by Stingray Environmental and Construction, LLC to assess and delineate the extent of impacted soil (Figure 4) to a depth of 7 feet bgs. Grab samples were field screened for chlorides and organic vapors with a PID at multiple depths. The samples collected from 7 feet bgs at each location were collected and analyzed for TPH by EPA method 8015 modified, BTEX

by EPA Method 8260B and chlorides by EPA method 300.0. The results of the sampling event are summarized in Table 1. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The analytical results associated with the initial site assessment exceeded the specified RRAL (100 mg/kg) for total TPH (GRO + DRO + ORO) at 7' bgs at SP-1 and SP-2. However, the analytical results associated with all five of these sample locations were below the specified RRAL for chlorides and BTEX and the SP-3, SP-4 and SP-5 analytical results were below the most stringent RRALs for TPH, BTEX and chloride at a depth of 7 feet bgs.

COP submitted a second mitigation deferral request to NMOCD on November 14, 2017. Although the CAPs were approved, following the written remedial scope of work did not result in excavation floor samples below the RRALs. COP evaluated the Site for additional remediation and determined that full remediation would require a complete facility deconstruction.

ADDITIONAL SITE ASSESSMENT

Tetra Tech personnel were onsite to further delineate and sample the release area in 2018. On September 17 and October 4, 2018, a total of nine (9) soil borings (BH-1 through BH-9) ranging in total depth from 1 to 5 feet bgs were installed inside the berm to define the vertical extents of the release and to assess the extent of impacted soil. A total of 23 soil samples were collected from the nine boring locations from within the release area (Figure 4). Selected samples were field screened and submitted to an analytical laboratory to be analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8260B and chlorides by EPA method 300.0. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The analytical results associated with the additional site assessment within the release area were below the RRAL for BTEX at eight of nine locations. BH-1 (1-2') exceeded the RRAL for BTEX. The analytical results associated with the samples within the release area were above the RRALs for total TPH (GRO + DRO + ORO) and/or chloride in all samples except BH-1 (2-3'), BH-1 (3-4'), BH-2 (3-4') and BH-3 (0-1'). The sample locations are shown on Figure 4. The results of both the 2017 and 2018 sampling events are summarized in Table 1.

REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

Because of the high karst potential at the Site, COP expressed a desire to remediate the impacted soil within the berm to the maximum extent practicable in order to reduce the environmental risk. On November 12 through December 10, 2018, Tetra Tech personnel were onsite to supervise the excavation and remediation activities. The excavated areas and depths of excavation are shown on Figure 5. The excavation widths and depths were guided based on the laboratory data to safely remove the impacted soils to the maximum extent practicable.

A total of twenty-nine (29) excavation floor samples were collected at locations AH-1 through AH-23. Additionally, nineteen (19) sidewall samples were collected. The samples were analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8260B and chlorides by EPA method 300.0. Copies of laboratory analytical reports and chain-of-custody documentation are included in Appendix C.

As shown in Figure 5, the areas containing sample locations AH-1 through AH-5 and AH-7; AH-9 through AH-16; and AH-18 through AH-23 were excavated to a total depth of 3.0 feet bgs, either with machinery or via hand digging. The areas containing sample locations AH-6, AH-8 and AH-17 were excavated to a depth of 6 feet bgs. Excavations in the area immediately south of the tank battery were halted after a liner was encountered at 2 feet bgs. Therefore, a floor sample was not collected in this area.

The analytical results for all sidewall samples were below the RRAL for BTEX. Additionally, sidewall samples NSW-3, WSW-2, WSW-3 and ESW-3 were below RRALs for TPH and chlorides. The other fifteen sidewall samples exceeded the RRALs for TPH and/or chloride. However, the sidewalls within the

excavation areas were either in close proximity to production equipment, or extended to the foot of the containment berm, so it was not feasible to expand the excavation areas outward.

Approximately 750 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Once remedial excavation areas were extended to the maximum extents practicable, the excavated areas were backfilled with clean material to surface grade. Copies of the waste manifests are included in Appendix D.

ADDITIONAL SITE DELINEATION

Based on review of analytical results from all previous sampling events, it appears that vertical delineation of contamination was attained as part of the assessment and remedial activities at the Site. In the northern portion of the release area, the sample results from SP-3, SP-4 and SP-5 indicate the TPH, BTEX and chloride levels are below the specified RRALs at a depth of 7 feet bgs. Sample results from AH-17, located in the southern portion of the Site, indicate TPH, BTEX and chloride levels are below the RRALs at a depth of 6 feet bgs.

Based on laboratory analytical results from the previous sampling events, the Site required additional assessment to delineate the horizontal extents of contamination. To define the horizontal extents of the release and to assess soil contamination in this area, if any, Tetra Tech personnel were onsite to investigate the release area perimeter in 2019. On October 8, 2019, a total of four (4) soil borings (BH-19-1 through BH-19-4) were installed to total depths ranging from 10 to 15 feet bgs around the exterior of the battery firewall. A total of 18 soil samples were collected from the four boring locations (Figure 6). Selected samples were field screened and submitted to an analytical laboratory for Total Petroleum Hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX) and chlorides (USEPA method 300.0) analysis. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

The results of the 2019 sampling event are summarized in Table 3. The analytical results associated with the release area perimeter samples were below the RRAL for BTEX, total TPH (GRO + DRO + ORO) and chloride in all samples. The boring locations are shown on Figure 6. Photographic documentation of the assessment and remediation activities is included as Appendix E.

2020 DEFERRAL REQUEST

Following the October 2019 additional site delineation activities, the Deferral Request was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on January 2, 2020 with fee application payment PO Number 4FLOG-200102-C-1410. In addition to the 1RP-4431 release, the January 2020 report requested deferral for two other releases (1RP-4262 and 1RP-4275) that occurred at the Buck Federal CTB within the same general area. The Deferral Request was denied via email by Bradford Billings on Thursday, June 17, 2021 with the following reason for denial:

• "Although deferral can be granted based on data presented, the following: Each individual incident number must be associated/attached to its own report. The offered report has three incident numbers attached. Again, this report can be used for each incident, but they must stand alone by incident. Resubmit each separately and they can be approved."

CONCLUSION

After the remedial activities conducted at the Site, the contamination remaining in place does not cause an imminent risk to human health, the environment, or groundwater. The release was delineated horizontally and vertically, as detailed above.

Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations. ConocoPhillips respectfully requests that NMOCD will consider delaying final remediation activities at the site until the end of life of the battery. At

ConocoPhillips

time of abandonment, retrofit, or inactivity, remediation will be completed in addition to reclamation. In accordance with the NMOCD-stated reasoning for denial of the January 2020 Deferral Request, ConocoPhillips requests deferral for the impacted area associated with the 1RP-4431 (nJXK1625144979) release until site abandonment. The completed C-141 forms are enclosed in Appendix A.

If you have any questions or comments concerning the assessment or remediation activities for this site, please call me at (512) 338-2861.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Program Manager

cc: Ms. Jenni Fortunato, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

List of Attachments

Figures:

- Figure 1 Site Location Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Approximate Release Extents
- Figure 4 Site Assessment Map
- Figure 5 Remediation Extents and Confirmation Sampling Locations
- Figure 6 Additional Horizontal Assessment

Tables:

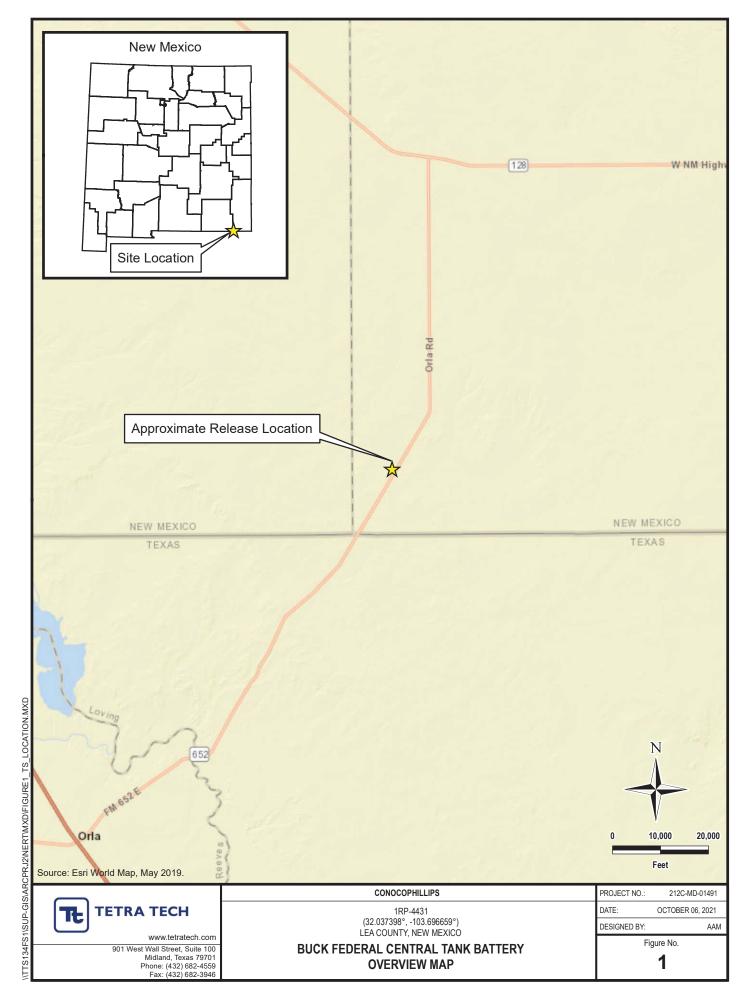
Table 1 – Summary of Analytical Results – Initial Soil Assessment

- Table 2 Summary of Analytical Results Confirmation Soil Sampling
- Table 3 Summary of Analytical Results Horizontal Delineation

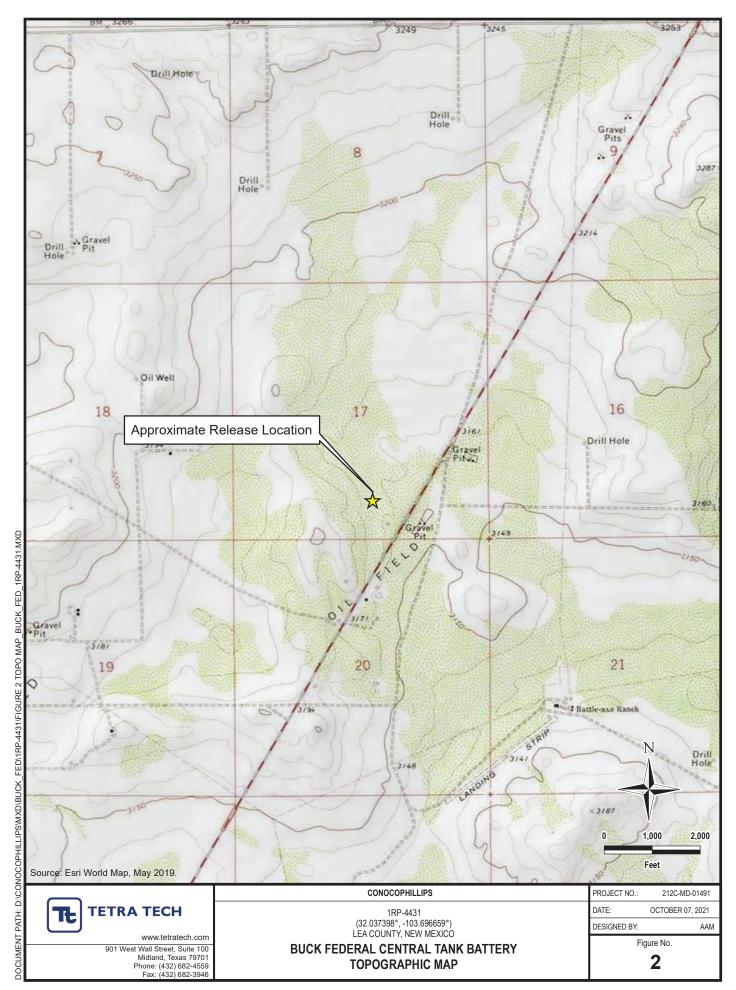
Appendices:

Appendix A - C-141 Form

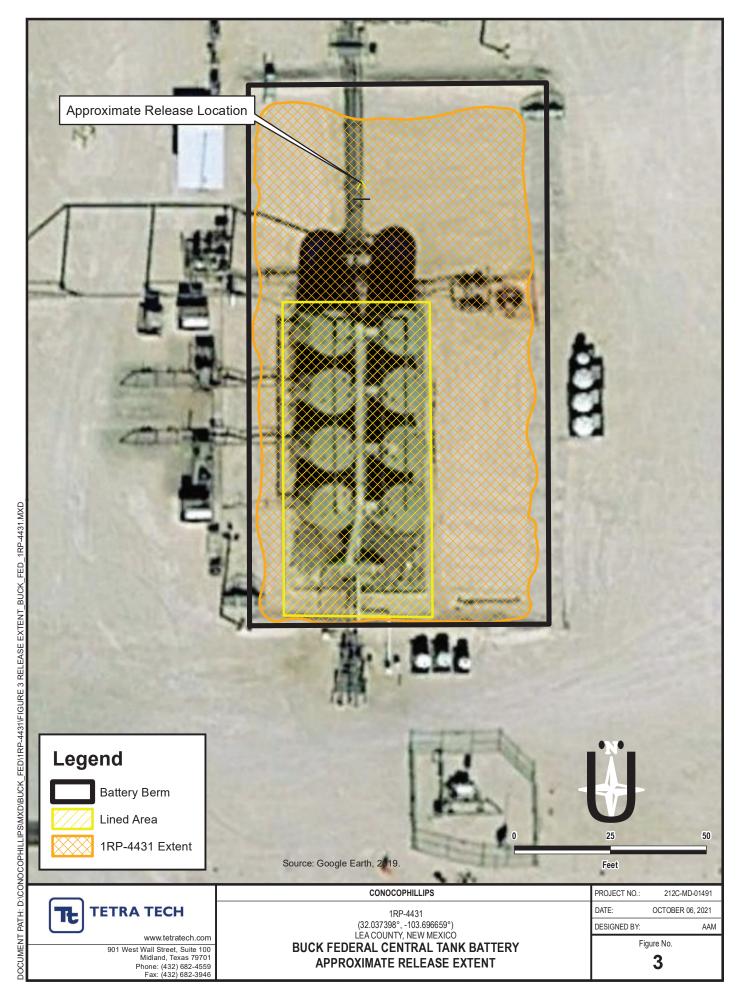
Appendix B – NMOSE Groundwater Data and Karst Potential Map

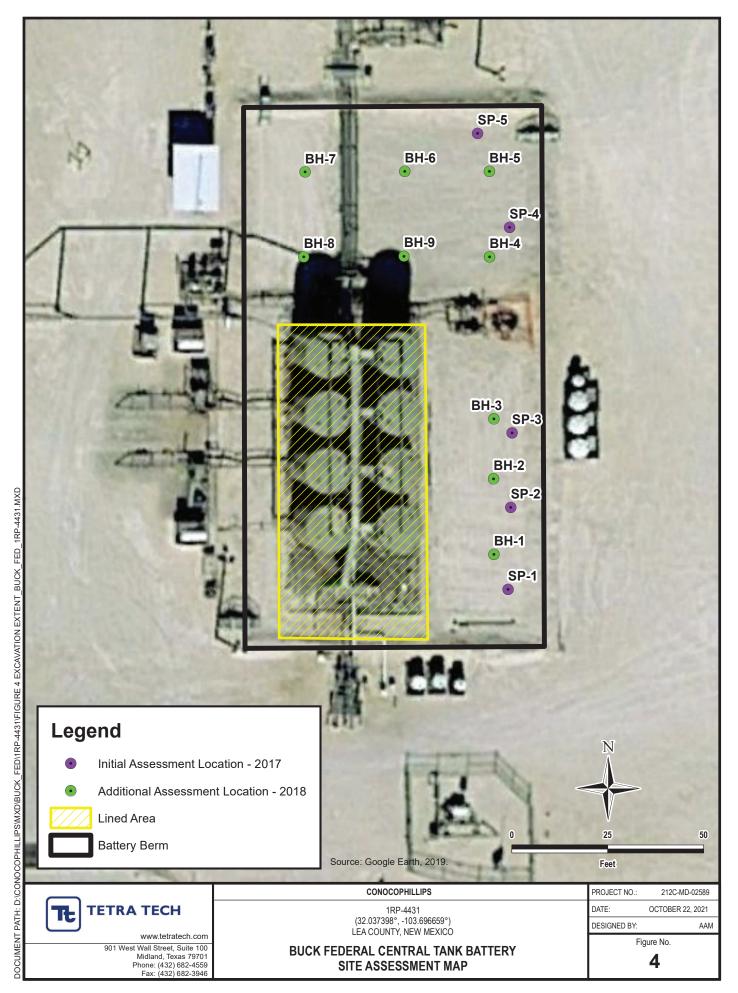

Appendix C – Laboratory Analytical Reports

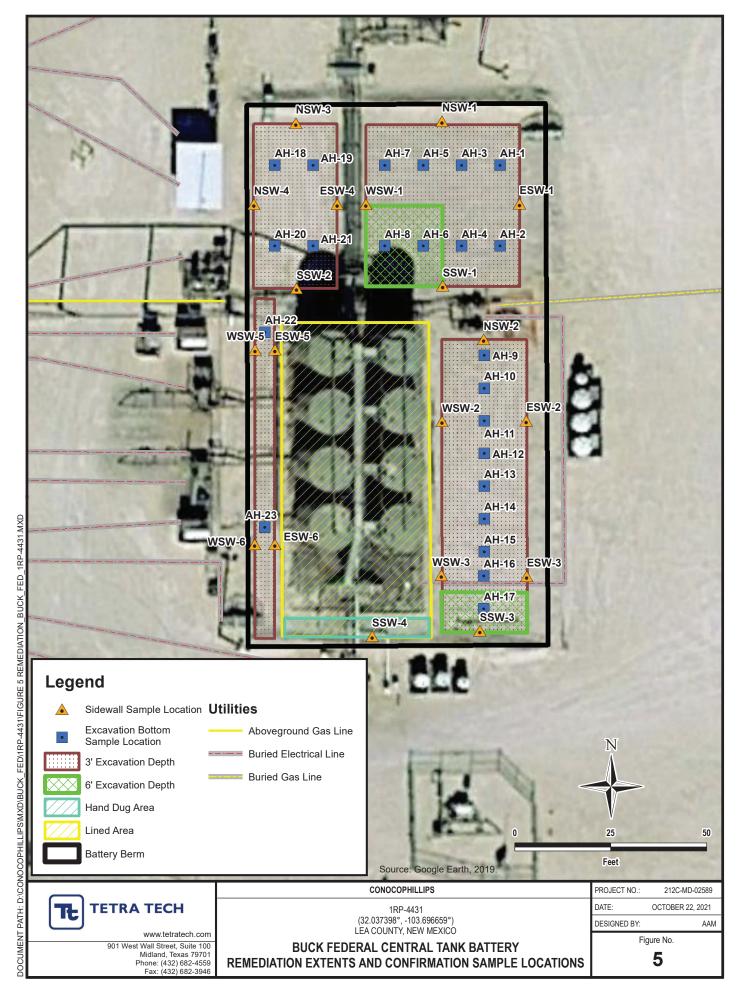
Appendix D – Waste Manifests

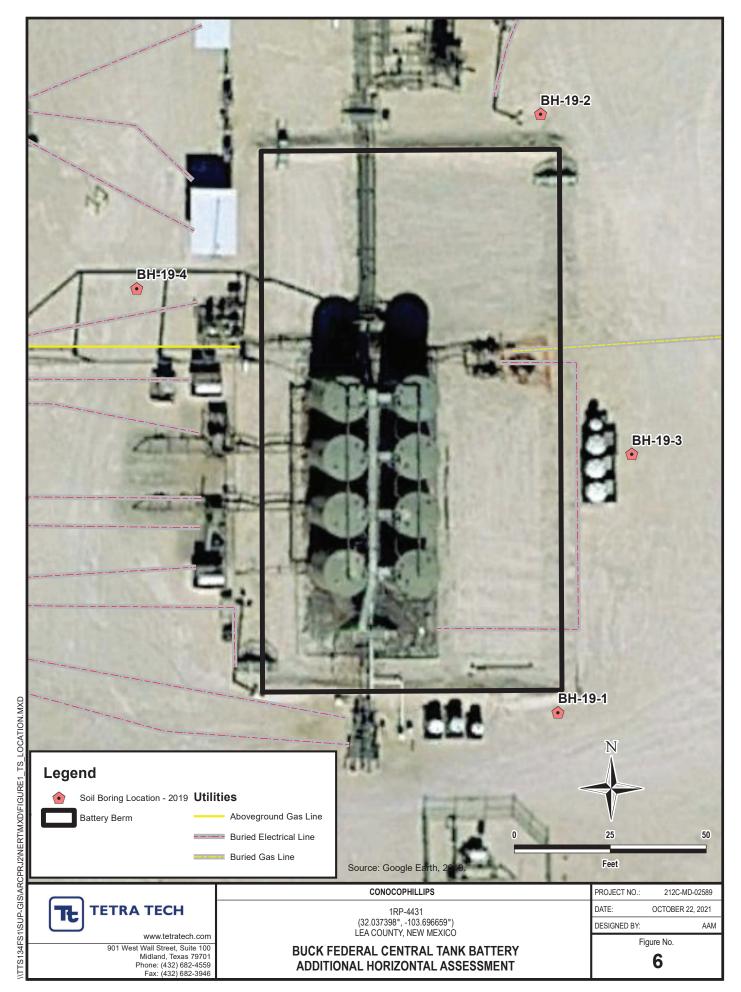

Appendix E – Photographic Documentation

ConocoPhillips


FIGURES


Released to Imaging: 10/31/2022 3:02:08 PM


Released to Imaging: 10/31/2022 3:02:08 PM



Released to Imaging: 10/31/2022 3:02:08 PM

Released to Imaging: 10/31/2022 3:02:08 PM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESMENT	BUCK FEDERAL CTB	LEA COUNTY, NM
--	------------------	----------------

Released to Imaging: 10/31/2022 3:02:08 PM

	Sample	FIELD SCREENING	Chloride ¹			BTEX ²						TPI	TPH ³	
Sample ID Sample Date	Interval	PID*	ma lla	Benzene	Toluene	Ethylbenzene	Xylene	Total BTEX	C ₆ - C ₁₂	C ₁₂	C ₁₂ - C ₂₈	┝	C ₂₈ - C ₃₅	Total TPH (C ₆ - C ₃₅)
	ft. bgs	bpm	111B/ NB	mg/kg Q	t mg/kg Q	λ mg/kg Q	t mg/kg Q	mg/kg Q	Q mg/kg	ď	mg/kg	Q	mg/kg Q	mg/kg
10/19/2017	7	33	277	<0.00114	<0.00227	<0.00114	<0.00114		<28.4		125		186	311
10/19/2017	7	38	199	<0.00109	<0.00217	<0.00109	<0.00109		<27.2		77.1		83.3	160
10/19/2017	7	38	241	<0.00111	<0.00222	<0.00111	<0.00111		<27.8		<27.8	Ĺ	<27.8	
10/19/2017	7	22	32.7	<0.00111	<0.00222	<0.00111	<0.00111		<27.8		<27.8	Ĺ	<27.8	
10/19/2017	7	36	338	<0.00115	<0.00230	<0.00115	<0.00115		<27.8		37.6		33.3	70.8
10/4/2018***	0-1	,	5,850	0.240	7.97	0.924	17.3	26.43	332	\vdash	1,640	┝	294	2,266
10/4/2018***	1-2		1,060	3.24	36.0	7.66	103	149.9	2,150		5,030		1,420	8,600
9/17/2018	2-3	63.0	307	<0.000454	<0.00142	<0.000602	<0.00543	,	0.0696	-	32.6	J5	9.86	42.5
9/17/2018	3-4	60.2	264	<0.000455	<0.00142	<0.000603	<0.00544		0.0567	٦ ٢	30.1		10.9	41.1
10/4/2018***	. 0-1		717	<0.00047	0.00293 J	<0.000623	0.00644 J	600.0	2.57		484	-	137	624
10/4/2018***	• 1-2		581	<0.000466	0.00452 J	<0.000617	0.0112	0.016	0.581		170	_	48.6	219
9/17/2018	2-3	10.9	723	<0.000454	<0.00145	<0.000615	<0.00554	1	0.0268	٦ -	2.95	- -	0.785	3.8
9/17/2018	3-4	20.2	567	<0.000448	<0.00140	<0.000594	<0.00536		0.051	-	73.1		26.7	6.99
10/4/2018***	• 0-1		456	<0.000486	<0.00152	<0.000644	<0.00236		0.0346	ſ	51.2		19.9	71.135
10/4/2018***	1-2	1	3,950	<0.00044	<0.00138	<0.000583	<0.00526	1	0.121		1,610		786	2,396
9/17/2018	2-3	16.3		i		-	-		-				1	
9/17/2018	3-4	37.0	3,850	<0.000421	<0.00132	<0.000558	<0.00504		0.101	-	95.6		57.3	153
9/17/2018	4-5	19.0	754	<0.000468	<0.00146	<0.00062	<0.00559		0.0488	-	2.76	ſ	1.8 J	4.6
10/4/2018***	. 0-1	-	3,780	<0.000477	0.00865	0.0156	0.199	0.22	116		5,060		1,620	6, 796
10/4/2018***	1-2	1	2,540	<0.000449	<0.0014	<0.000595	<0.00537	1	2.51		1,110		466	1,579
9/17/2018	2-3	61.2	1,640	<0.000497	<0.00155	<0.000659	<0.00594		0.0404	-	<2.00	V	<0.341	0.0404
10/4/2018***	0-1	68.9	2,660	0.000833 J	0.00294 J	<0.00062	0.152	0.16	183		6,240		1,770	8,193
10/4/2018***	· 0-1	58.3	248	<0.000473	<0.00148	<0.000626	<0.00565		0.0463	-	1,040	_	442	1,482
10/4/2018***	1-2	425.1	586	0.00336	0.313	0.0505	2.26	2.63	150		3,080		1,070	4,300
10/4/2018***	-0-1	16.0	64.9	0.000495 J	<0.00154	<0.000653	<0.00589	,	0.0507	۲ ,	1,080		557	1,637
10/4/2018***	0-1	83.8	1420	<0.000432	<0.00135	<0.000573	<0.00516		0.731		3,550		1,340	4,891
10/4/2018***	• 0-1	381.0	289	<0.000463	<0.00145	<0.000613	<0.00553	1	147		5,110		1,420	6,677
10/4/2018***	1-2	283.0	1,790	<0.000445	<0.00139	<0.00059	<0.00532		3.28		1,030		362	1,395

*** Samples arrived at laboratory outside temperature range due to shipping error

TABLE 2 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SOIL SAMPLING	BUCK FEDERAL CTB	1RP-4431	LEA COUNTY, NM
--	-------------------------	----------	----------------

										2												ſ
		-	Sample	PID*	Chloride [*]					BTEX ⁻									TPH			
Type	Sample ID	Sample	Interval	2	ma/ka	Benzene		Toluene		Ethylbenzene	e	Xylene		Total BTEX	Ű	C ₆ - C ₁₂	C1	C ₁₂ - C ₂₈	°2	C ₂₈ - C ₃₅	To	Total TPH (C ₆ - C ₃₅)
			ft. bgs	ppm	111B/ NB	mg/kg	σ	mg/kg	ď	mg/kg	σ	mg/kg	ď	mg/kg Q	mg/kg	g Q	. mg/kg	g	. mg/kg	g Q		mg/kg
	AH-1	11/14/18	3	49.1	1,060	<0.000437		<0.00137	V	<0.000579	Ľ	<0.00523	\vdash		0.0503	J3 J	328	_	129			457.05
	AH-2	11/14/18	3	103.9	1,900	<0.000435		<0.00136	V	<0.000576	*	<0.00520			0.538	8	476		159	6		635.54
	AH-3	11/14/18	3	7.8	945	<0.000442		<0.00138	V	<0.000586	~	<0.00528			0.0355	55 BJ	75.4	-	23.7	2		99.14
	AH-4	11/14/18	3	55.9	819	<0.000441		<0.00138	V	<0.000585	v	<0.00527		,	1.08	~	405		127	-		533.08
	AH-5	11/14/18	3	63.1	1,210	<0.000438		<0.00137	V	<0.000580	*	<0.00523			0.573	3	1,000	0	325			1,325.57
	9-HA	11/14/18	3	357.2	912	<0.00369		<0.0115	V	<0.00488		<0.0440		,	134		4,260	0	1,270	0		5,664
	AH-6 (6')*	11/30/18	9	588.0	637	<0.00359		0.00775		0.283		3.46		3.75	225		3,050	0	735			4,010
	AH-7	11/14/18	3	102.0	1,310	<0.000442		<0.00138	V	<0.000586	~	<0.00528			2.53		83.1		224	_		309.63
	AH-8	11/14/18	3	712.1	686	0.03		1.0		0.81		11.7		11.7	582		6,590	0	1380	0		8,552
	AH-8 (6')*	11/30/18	9	1081.0	343	<0.00882		0.159		0.414		3.74		4.31	263	~~	3,680	0	912			4,855
səj	AH-9	11/15/18	3	21.1	1,850	<0.000445		<0.00139	V	<0.000590	*	<0.00532			0.066	6 J	112		44			156.07
dwe	AH-10	11/15/18	3	5.1	719	<0.000450		<0.00141	V	<0.000596	v	<0.00538			0.0261	51 J	15.4	-	14.1	1		29.53
s uo	AH-11	11/15/18	3	3.9	541	<0.000451		<0.00141	V	<0.000597	v	<0.00539		,	<0.0245	45	7.13		2.83	~		9.96
iten	AH-12	11/15/18	3	7	947	<0.000434		<0.00135	V	<0.000575	~	<0.00518			<0.0235	35	29.4	_	10.9	6		40.30
nitno	AH-13	11/15/18	3	2.8	85	<0.000461		<0.00144	V	<0.000610	~	<0.00551		1	0.0296	l 96	45.5		21.4	4		66.93
o) əl	AH-14	11/15/18	3	2.4	424	<0.000433		<0.00135	V	<0.000573	~	<0.00517			0.0243	t3 J	3.38	۲	0.999	l e		4.40
oH n	AH-15	11/15/18	3	3.1	377	<0.000460		<0.00144	V	<0.000609	~	<0.00549			<0.0249	49	3.53	۲ ۲	1.09	۲ و		4.62
notto	AH-16	11/15/18	3	3.5	1,160	<0.000489		<0.00153	V	<0.000648	~	<0.00585		1	0.0324	24 J	<1.97	7	<0.335	35		0.03
рg	AH-17	11/15/18	3	1412	638	<0.00358		1.08		0.852		9.1		9.09	381		2,500	0	768	~		3,649
	AH-17 (4')*	11/16/18	4	714.1	409	<0.00363		0.51		0.10		7.65		7.65	345		1,950	0	366	.0		2,661
	AH-17 (6')*	11/30/18	9	9.7	294	<0.000469		<0.00146	V	<0.000621	~	<0.00560			0.0318	l 1	<1.89	6	<0.321	21		0.03
	AH-18	11/21/18	3	1.8	1,060	<0.000467		<0.00146	V	<0.000618	~	<0.00558			<0.0253	53	2.88	۲	2.30	Г С		5.18
	AH-19	11/19/18	3	4.9	788	<0.000479		<0.00150	V	<0.000634	~	<0.00572			<0.0260	60	44.70	0	23.0	0		67.70
	AH-20	11/19/18	3	475.1	1,650	<0.000470		<0.00147	-	0.00111	ſ	0.0143	_	0.01541	12.2	~	1,100	0	262	0		1,374.20
	AH-21	11/19/18	3	122.0	1,510	<0.000479		<0.00150	V	<0.000635	~	<0.00573			1.29	6	119	_	47.8	8		168.09
	AH-22	11/27/18	2	618	2,340	0.081		3.26		1.85		21.8		26.991	443		6,710	0	2,660	0		9,813
	AH-22 (3')*	12/06/18	3	498	920	<0.00355		0.0280	_	0.0632		1.05		1.141	122		2,240	0	573	~		2,935
	AH-23	11/27/18	2	549	1,730	0.00154		0.235		0.231		2.45		2.9175	126		3,500	0	1,040	0		4,666
	AH-23 (3')*	12/06/18	З	409	825	<0.000450		<0.00141	0	0.000731	_	0.103	-	0.10373	90.5		939	_	211	_	_	1,240.50

TABLE 2	SUMMARY OF ANALYTICAL RESULTS	CONFIRMATION SOIL SAMPLING	BUCK FEDERAL CTB
---------	-------------------------------	----------------------------	------------------

1RP-4431

Released to Imaging: 10/31/2022 3:02:08 PM

									LEA COUNTY, NM	MN										
			Sample	*010	Chloride ¹				BTEX ²	ر²								трн ³		
Type	Sample ID	Sample Date	Interval	2		Benzene	e	Toluene	Ethylbenzene	Jzene	Xylene		Total BTEX	Ū	C ₆ - C ₁₂	C ₁₂	C ₁₂ - C ₂₈	C ₂₈ - C ₃₅	C35	Total TPH (C ₆ - C ₃₅)
			ft. bgs	ppm	III B/ KB	mg/kg	α	mg/kg (Q mg/kg	α	mg/kg	σ	mg/kg C	Q mg/kg	kg Q	t mg/kg	ď	mg/kg	σ	mg/kg
															-	-				
lle noiti	NSW-1	11/14/18	ı	11.3	441	<0.000434		<0.00136	<0.000575		<0.00519		,	0.0574	74 BJ	J 330		142		472.06
ltroV swebi smrit lqms	NSW-2	11/15/18		52.4	2670	<0.000420		0.00166	<0.000557	2	<0.00502			0.206	9	808		349		1,157.21
uoj IS	NSW-3	11/19/18	ı	2.2	202	0.000438	٦	<0.00137	<0.000580		<0.00523		0.000438	<0.0237	37	10.8		8.74		19.54
	SSW-1	11/14/18		221.3	1520	<0.00041		<0.00138	<0.000584		0 00614	-	0 000614	0 916	-	557	H	194	L	747
ewəbi noiten səlq	SSW-2	11/15/18		623.2	3450	0.323		5.1	1.5		15.5	,	15.5	699	-	8440		2760		11,869
	SSW-3	11/20/18	1	50.1	467	<0.000438		<0.00137	<0.000580		<0.00523			0.0907	L 7(104	13,15	55.5		159.59
	SSW-4	11/27/18		325	1320	<0.000426			J 0.00092	_	0.611		0.613712	354		1320		554		2,228
Si	WSW-1	11/14/18		517 Q	35.4	<0.00353		0 134	0.00654		7 53		7 67054	553		8780		2170		11 503
alqmı all	WSW-2	11/16/18		3.9	343	<0.000422		<0.00132	<0.000560	,	<0.00505		-	<0.0229	29	2.25	~	2.61	~	4.86
	WSW-3	11/16/18	ı	9	553	<0.000444	J3	-	J3 <0.000588	8 J3	<0.00531	J3	,	0.0362	52 J	17.1		10.9		28.04
i2 tee Diterr	WSW-4	11/16/18		693.2	1440	<0.00352		2.13	0.92		12.4		15.45	487		13300	>	2800		16,587
	WSW-5	11/27/18		607	723	<0.000435		0.00179	0.00204	٦	0.0174		0.02123	2.97	2	142		59.3		204.27
о <u>э</u>	WSW-6	11/21/18	ı	1.5	114	<0.000412		<0.00129	<0.000546		<0.00492		,	114		9.48		8.87		132.35
	10101	44 14 4 140							-					┝	Ŀ	ŀ	ŀ		L	
səlo	ESW-1	11/14/18	ı	35.1	1990	<0.000442		<0.00138	<0.000585		<0.00528		,	0.0623	23 B,J	J 329		159		488.06
	ESW-2	11/16/18		21.8	1300	<0.000423		<0.00132	0.000771		<0.00506			0.0522	22 J	317		123		440.05
	ESW-3	11/16/18		4.7	252	<0.000433		<0.00135	<0.000574	-	<0.00518			0.0298	l 86	3.7		5.28		9.01
i2 ter iterr	ESW-4	11/16/18		572.9	1360	<0.00354		1.31	1.25		12.9		15.46	439		2830		1130		4,399
63 Mitro	ESW-5	11/27/18	ı	594	1700	0.00565		0.441	0.353		5.78		6.57965	170		4050		1550		5,770
о <u>э</u>	ESW-6	11/21/18	ı	3.4	610	<0.000413		<0.00129	<0.000547	2	<0.00493	_	1	0.0342	12 J	105		54.8		159.83

NOTES: *

These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

159.83

<0.00129

Ĥ.	Feet	Bold and	Bold and italicized values indicate exceedance of proposed RRALs.
bgs	Below ground surface	в	The same analyte is found in the associated blank.
mg/kg	Milligrams per kilogram	-	The identification of the analyte is acceptable; the reported value is an estimate.
ррт	Parts per million	J3	The associated batch QC was outside the established quality control range for precision.
ТРН	Total Petroleum Hydrocarbons	J5	The sample matrix interfered with the ability to make accurate determination; spike value is high.
*	Field screening measurement	JG	The sample matrix interfered with the ability to make accurate determination; spike is low.
1	Method 300.0	>	The sample concentration is too high to evaluate accurate spike recoveries.
2	Method 8260B	D	Not detected at the Sample Detection Limit (SDL).
3	TCEQ Method 1005		

TABLE 3 SUMMARY OF ANALYTICAL RESULTS HORIZONTAL DELINEATION	BUCK FEDERAL CTB	1RP-4431	LEA COUNTY, NM
--	-------------------------	----------	----------------

Released to Imaging: 10/31/2022 3:02:08 PM

		Sample				-			BTEX ²						TPH3	3		
Sample ID	Sample Date	Interval	Field Screening Results	iing Results	Chloride ¹		Benzene	Toluene	Ethvlbenzene	Xvlene	Total BTEX	EX GRO (C C) ⁴	- C) ⁴	DRO (C., - C.,)	- C.»)	ORO (C C)	_	TPH (C ₅ - C ₄₀)
		4 has	Chloride	DID		_		5					010	H	197-	87-1		
		11 1150	bpm	m	mg/kg	σ	mg/kg Q	mg/kg	Q mg/kg C	Q mg/kg	Q mg/kg	g mg/kg	ď	mg/kg	σ	mg/kg	ď	mg/kg
		0-1	220	0.0	143	-	< 0.00106	< 0.00528	< 0.00264	< 0.00686		0.0763	BJ	J 3.02	~	< 4.22	-	3.0963
BH-19-1	10/08/19	2-3	189	0.0	86.7	-	< 0.00109	< 0.00543	< 0.00271	< 0.00705		0.0766	BJ	7.07		16.4		23.5466
		4-5	MN	0.0	126		< 0.00108	< 0.00538	< 0.00269	< 0.00700	'	0.0837	BJ	J < 4.31		0.362	~	0.4457
		0-1	148	2.2	30.0	В	< 0.00108	< 0.00540	< 0.00270	< 0.00702		0.0691	B J	J < 4.32		0.837	-	0.9061
BH-19-2	10/08/19	2-3	127	6.0	77.7		< 0.00108	< 0.00540	< 0.00270	< 0.00702		0.0767	BJ	J < 4.32		0.488	~	0.5647
		4-5	MN	8.0	59.7		< 0.00108	< 0.00539	< 0.00269	< 0.00701		0.0718	BJ	J < 4.31		< 4.31		0.0718
		0-1	158	7.9	80.7	-	< 0.00107	< 0.00534	< 0.00267	< 0.00694		0.0739	B J	J < 4.27		0.903	~	0.9769
		2-3	153	0.6	69.7	_	< 0.00106	< 0.00528	< 0.00264	< 0.00686		0.0690	B J	J < 4.22		4.14	ſ	4.2090
BH 10.3	01/80/01	4-5	124	12.3	74.4		< 0.00106	< 0.00532	< 0.00266	< 0.00692		0.0819	B J	J < 4.26		0.786	~	0.8679
C-6T-UQ	ET /ON/NT	6-7	69.8	8.8	15.5	В	< 0.00103	< 0.00513	< 0.00256	< 0.00667		0.0698	BJ	J < 4.10		< 4.10		0.0698
		9-10	201	10.7	129	_	< 0.00104	< 0.00521	< 0.00261	< 0.00678		0.0811	B J	J < 4.17		< 4.17		0.0811
		14-15	281	9.4	121	Η	< 0.00105	< 0.00526	< 0.00263	< 0.00684	•	0.0780	B J	J < 4.21		< 4.21	-	0.0780
		0-1	NM	7.1	42.9	в	< 0.00110	< 0.00549	< 0.00275	< 0.00714	'	< 0.110		< 4.39		< 4.39		
		2-3	91.4	10.4	47.7	_	< 0.00108	< 0.00541	< 0.00270	< 0.00703		< 0.108	~	< 4.32		< 4.32		
BH-10-4	01/00/01	4-5	NM	0.6	53.2	_	< 0.00112	< 0.00559	< 0.00279	< 0.00726	'	< 0.122	<i>c</i> .	< 4.47		0.562	ſ	0.562
4-CT-110	6T /00 /0T	6-7	240	10.7	66.4		< 0.00105	< 0.00525	< 0.00263	< 0.00683		< 0.105	10	< 4.20		< 4.20		
		9-10	NM	10.9	200	_	< 0.00106	< 0.00528	< 0.00264	< 0.00686	'	0.0323	B J	J < 4.22		0.293	٦	0.3253
		14-15	165	8.5	76.0		< 0.00102	< 0.00509	< 0.00255	< 0.00662		0.0298	BJ	J < 4.07		< 4.07		0.0298
NOTES:																		

Bold and italicized values indicate exceedance of RRALs.

- 1 Method 300.0
- Method 8260B 2
- Method 8015 m
- Method 8015D/GRO 4
- The same analyte is found in the associated blank. в
- The identification of the analyte is acceptable; the reported value is an estimate. _
- Diesel range organics

Total Petroleum Hydrocarbons Gasoline range organics

ТРН GRO

mg/kg Milligrams per kilogram

Not measured

MN

ppm Parts per million

Below ground surface

bgs

Feet

¥

APPENDIX A C-141 Forms

RECEIVED State of New Mexic By JKeyes at 12:33 pm, Sep 07, 2016 Energy Minerals and Natural

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Page 20 of 348

Release Notification and Corrective Action	
---	--

	OPERATOR	Initial Report	Final Report
Name of Company: ConocoPhillips	Contact: Joseph McLaughlin	n	
Address: 3695 Highway 285, Orla TX	Telephone No. 806-567-2790)	
Facility Name: Buck Federal CTB	Facility Type: Central Tank	Battery	
Surface Owner: NMOCD	Mineral Owner: NMOCD	API No.	

Surface Owner: NMOCD

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Р	17	26S	32E		North		West	LEA

Latitude N32°2'14" Longitude W103°41'48"

NATURE OF RELEASE

Type of Release: Produced Water Spill	Volume of Release: 240 BBLS	Volume Recovered: 235 BBLS
Source of Release: Produced Water tank over flow (see Lat/Long	Date and Hour of Occurrence	Date and Hour of Discovery
above).	09/5/2016 10:00 pm	09/6/2016 12:00 am
Was Immediate Notice Given?	If YES, To Whom?	
🛛 Yes 🗌 No 🗌 Not Required	Jamie Keyes, NMOCD Trishia,	, BLM
By Whom? Joseph McLaughlin	Date and Hour: 09/6/2016 08:15 an	
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	tercourse.
🗌 Yes 🖾 No		
If a Watercourse was Impacted, Describe Fully.*	·	
Describe Cause of Problem and Remedial Action Taken.*		
Describe Area Affected and Cleanup Action Taken.*		
A 240 BBL Produced Water release occurred on the Conoc		
MSO was making his rounds when he noticed water inside		
more closely, the water was coming from a broken water lin		
water filtration pumps and closed the line that comes from ta	anks to the pump. MSO called t	o notify supervisor and had a water
truck vacuum out the produced water from the berm.		
I hereby certify that the information given above is true and complete to		
regulations all operators are required to report and/or file certain release r		
public health or the environment. The acceptance of a C-141 report by th should their operations have failed to adequately investigate and remedia		
or the environment. In addition, NMOCD acceptance of a C-141 report of		
federal, state, or local laws and/or regulations.	does not reneve the operator of respons	sionity for compliance with any other
, , ,	OIL CONSERV	VATION DIVISION
Joseph McLaughlin		
Signature:		1 . 64
Signature.	Approved by Environmental Specialis	st: Jamkluge
Printed Name: Joseph McLaughlin		
	09/07/2016	11/07/2016
Title: HSE	Approval Date: 09/07/2016	Expiration Date: 11/07/2016
E 1411 les P Mal susplin@sanssarbilling sam	Conditions of Approval:	
E-mail Address: Joe.P.McLaughlin@conocophillips.com	**	
	Discrete samples only. Delineate and r NMOCD guidelines.	Attacheu
,	NMOCD guidennes.	1RP 4431
Date: 09/6/2016 Phone:806-567-2790		
Attach Additional Sheets If Necessary		nIXK1625144979

tach Additional Sheets If Necessary

Oil Conservation Division

	Page 21 of 34	18
Incident ID	nJXK1625144979	
District RP	1RP-4431	
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

	1
What is the shallowest depth to groundwater beneath the area affected by the release?	$\frac{125}{bgs}$ (ft
Did this release impact groundwater or surface water?	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No ☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖾 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖾 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No ☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	🛛 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	$\Box Yes \boxtimes No$ $\Box Yes \boxtimes No$

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

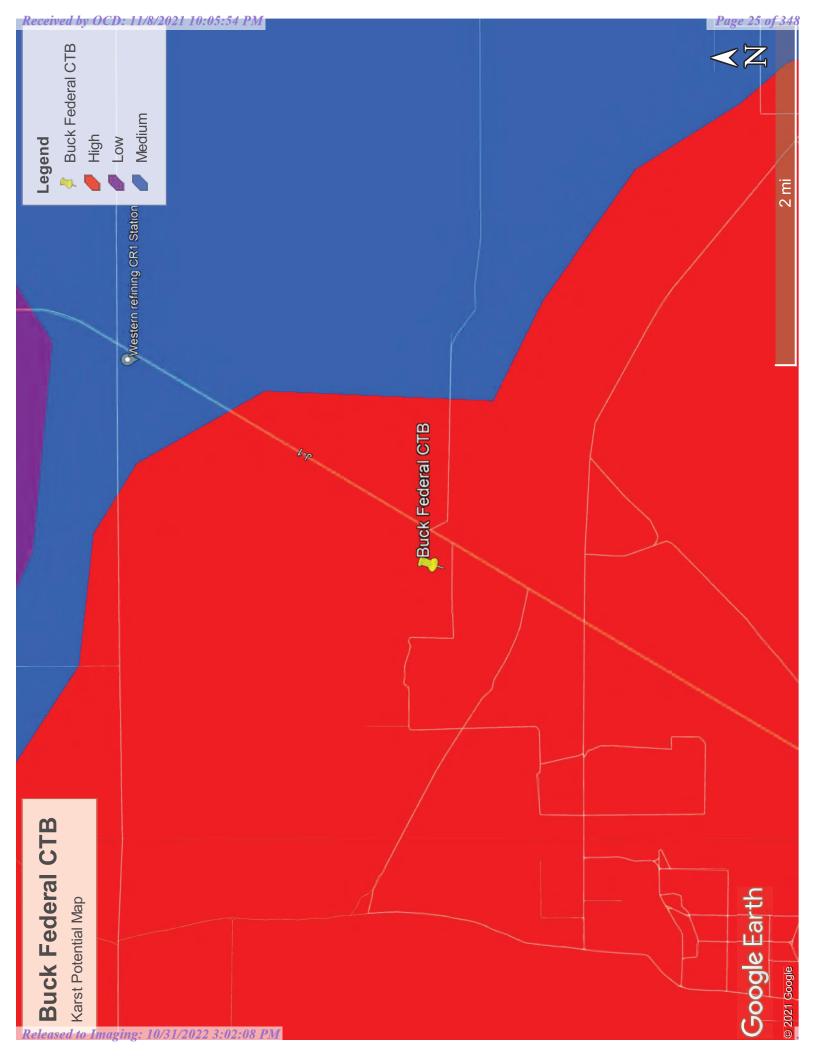
Page 3

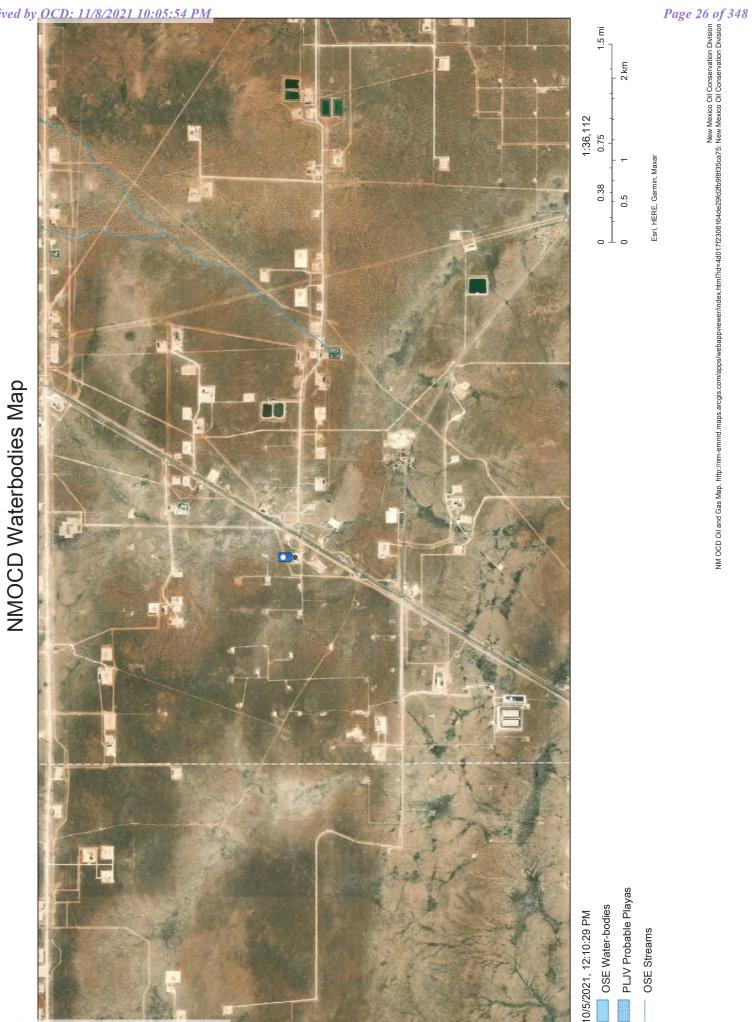
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/	8/2021 10:05:54 PM State of New Mexic	·0	r	Page 22 of
			Incident ID	nJXK1625144979
age 4	Oil Conservation Divi	sion	District RP	1RP-4431
			Facility ID	
			Application ID	
regulations all operator public health or the env failed to adequately inv addition, OCD acceptar and/or regulations. Printed Name: jenn Signature:	information given above is true and complete s are required to report and/or file certain relea vironment. The acceptance of a C-141 report b restigate and remediate contamination that pos- nce of a C-141 report does not relieve the oper i.fortunato@cop.com	ase notifications and perform co by the OCD does not relieve the e a threat to groundwater, surfa ator of responsibility for comp	prrective actions for rele e operator of liability sh uce water, human health liance with any other fe ger, Risk Management &	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
		Date:		

Received by OCD: 11/8/2021 10:05:54 PM State of New Mexico **Oil Conservation Division**


Incident ID	nJXK1625144979
District RP	1RP-4431
Facility ID	
Application ID	


Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. \checkmark Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Jenni Fortunato Title: Program Manager Date: 11.8.21 Signature: email: jenni.fortunato@cop.com Telephone: 832-486-2477 **OCD Only** Received by: Date: Approved with Attached Conditions of Approval Approved Denied Deferral Approved uttan Hall Date: 10/31/2022 Signature:

Page 5

APPENDIX B NMOSE Groundwater Data Karst Potential Map

Released to Imaging: 10/31/2022 3:02:08 PM

<u>_____</u>

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	been i		(2=NE 3 st to lar	3=SW 4=SE gest) (N/	:) AD83 UTM in me	eters)	(1	In feet)	
POD Number	Code	POD Sub- basin	County		Q 16		Sec	Tws	Rng	x	Y	Distance	-	-	Water Column
C 03537 POD1		CUB	LE	3	2	3	21	26S	32E	624250	3543985 🌍	1801	850		
C 02271 POD2		CUB	LE	3	2	3	21	26S	32E	624348	3544010* 🌍	1848	270	250	20
<u>C 02323</u>		С	LE	3	2	3	21	26S	32E	624348	3544010* 🌍	1848	405	405	0
<u>C 02271</u>	R	CUB	LE		2	3	21	26S	32E	624449	3544111* 🌍	1848	150	125	25
C 03595 POD1		CUB	LE	4	2	3	21	26S	32E	624423	3544045 🌍	1874	280	180	100
											Avera	ge Depth to	Water:	240	feet
												Minimum	Depth:	125	feet
												Maximum	Depth:	405	feet
Record Count: 5															

UTMNAD83 Radius Search (in meters):

Easting (X): 623092.15

Northing (Y): 3545365.88

Radius: 2000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX C Laboratory Analytical Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Von Norman Stingray Environmental & Construction 11420 W County Rd 33 Midland, TEXAS 79707

Project: Concho Phillips Buck Federal Project Number: Concho Phillips Buck Federal Location:

Lab Order Number: 7J26001

NELAP/TCEQ # T104704516-16-7

Report Date: 11/03/17

Page 1 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1 7'	7J26001-01	Soil	10/19/17 12:12	10-26-2017 09:00
SP2 7'	7J26001-02	Soil	10/19/17 12:41	10-26-2017 09:00
SP3 7'	7J26001-03	Soil	10/19/17 13:17	10-26-2017 09:00
SP4 7'	7J26001-04	Soil	10/19/17 13:52	10-26-2017 09:00
SP5 7'	7J26001-05	Soil	10/19/17 15:17	10-26-2017 09:00

1400 Rankin HWY Midland. TX 79701 432-686-7235

Page 2 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

SP1 7'

7J26001-01 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin H	Environme	ntal Lab,	L.P.				
Organics by GC					_				
Benzene	ND	0.00114	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00227	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00114	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00227	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00114	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.8%	75-125		P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8%	75-125 75-125		P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	28.4	mg/kg dry			10/27/17	10/31/17	TX 1005	
>C12-C28	125	28.4	mg/kg dry	I	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	186	28.4	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		98.3 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		110 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	311	28.4	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EP	A / Standard Metho	ds			_		-		
Chloride	277	1.14	mg/kg dry	1	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	12.0	0.1	%	I	P7J2701	10/27/17	10/27/17	ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the sampler received in the laboratory. This analytical report must be reproduced in its entirenwith written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 3 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Proj Project Num Project Manaj		Phillips Bu	Fax:				
			SP2 7'						
		7J26	001-02 (Soi	l)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin F	Invironmer	tal Lab. I	L.P.				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00217	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	I	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.3 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.2 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	77.1	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	83.3	27.2	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	÷.
Surrogate: 1-Chlorooctane		100 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		113 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	160	27.2	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	Standard Metho	ds			_		_		
Chloride	199	1.09	mg/kg dry	1	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	8.0	0.1	%	I	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samplerreceived in the laboratory. This analytical report must be reproduced in its entiremwith written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 4 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Proje Project Numb Project Manag		Phillips Bu	Fax:				
			SP3 7'						
		7J260)01-03 (Soi	I)	_				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin F	Invironmen	ntal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	T	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.4 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.8 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		100 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		113 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	ND	27.8	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	Standard Metho	ds			_				
Chloride	241	1.11	mg/kg dry	1.	P7J3001	10/30/17	10/30/17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samplereceived in the laboratory. This analytical report must be reproduced in its entiremwith written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 5 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Fax:							
			SP4 7'						
		7J26	001-04 (Soi	1)	_				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin F	Cnvironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.2 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.3 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	ND	27.8	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		101 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		116 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	ND	27.8	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	tandard Metho	ds					_		
Chloride	32.7	1.11	mg/kg dry	I	P7J3004	10/30/17	10/30/17	EPA 300.0	
% Moisture	10.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety: with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 6 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707			Fax:						
			SP5 7'						
		7 J 260)01-05 (Soi	1)	_				_
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	nian Basin E	Invironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00115	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021E	
Toluene	ND	0.00230	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P7J2703	10/27/17	10/27/17	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	(i	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.4 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
Surrogate: 4-Bromo/luorobenzene		86.5 %	75-1	25	P7J2703	10/27/17	10/27/17	EPA 8021B	
C6-C12	ND	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C12-C28	37.6	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
>C28-C35	33.3	28.7	mg/kg dry	1	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: 1-Chlorooctane		101 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Surrogate: o-Terphenyl		111 %	70-1	30	P7J2713	10/27/17	10/31/17	TX 1005	
Total Hydrocarbon nC6-nC35	70.8	28.7	mg/kg dry	1	[CALC]	10/27/17	10/31/17	[CALC]	
General Chemistry Parameters by EPA / S	Standard Metho	ds				_			
Chloride	338	5.75	mg/kg dry	5	P7J3004	10/30/17	10/30/17	EPA 300.0	
% Moisture	13.0	0.1	%	1	P7J2701	10/27/17	10/27/17	ASTM D2216	

The results in this report apply to the samples analyzed in accordance with the samplerreceived in the laboratory. This analytical report must be reproduced in its entirem with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 7 of 15

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Project: Concho Phillips Buck Federal Project Number: Concho Phillips Buck Federal Project Manager: Von Norman								
	0	rganics by	GC - Q	uality Co	ntrol					
	Perm	nian Basin	Environ	mental I	lab, L.P					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2703 - General Preparation (GC)										
Blank (P7J2703-BLK1)				Prepared &	Analyzed:	10/27/17				
Benzene	ND	0.00100	mg/kg wet							
Coluene	ND	0.00200								
thylbenzene	ND	0.00100								
(ylene (p/m)	ND	0.00200								
(ylene (o)	ND	0.00100	•••				_			
Surrogate: 1,4-Difluorobenzene	0.0566		"	0.0600		94.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.0544		Ϋ́.	0.0600		90.6	75-125			
LCS (P7J2703-BS1)				Prepared &	Analyzed:	10/27/17				
Benzene	0.115	0.00100	mg/kg wet	0.100		115	70-130			
Foluene	0.112	0.00200		0.100		112	70-130			
Ethylbenzene	0.119	0.00100		0.100		119	70-130			
(y/m)	0.225	0.00200					70-130			
Xylene (o)	0.120	0.00100	.H.				70-130-			
Surrogate: 1,4-Difluorobenzene	0.0641		"	0.0600		107	75-125			
Surrogate: 4-Bromofluorobenzene	0.0641		"	0.0600		107	75-125			
LCS Dup (P7J2703-BSD1)			-	Prepared &	Analyzed	: 10/27/17				
Benzene	0.103	0.00100	mg/kg wet	0.100		103	70-130	11.0	20	
Toluene	0.103	0.00200	"	0.100		103	70-130	8.40	20	
Ethylbenzene	0.112	0.00100		0.100		112	70-130	5.72	20	
Xylene (p/m)	0.223	0.00200	n				70-130		20	
Xylene (o)	0.116	0.00100	n				70-130		20	
Surrogate: 4-Bromofluorobenzene	0.0579		"	0.0600		96.5	75-125			
Surrogate: 1.4-Difluorobenzene	0.0533		н	0.0600		88.9	75-125			
Calibration Blank (P7J2703-CCB1)				Prepared &	& Analyzed	: 10/27/17			_	
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00									
Xylene (p/m)	0.00									
Xylene (o)	0.00									
Surrogate: 4-Bromofluorobenzene	0.0519		"	0.0600		86.5	75-125			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 8 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	dia in	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P7J2703 - General Preparation (GC)		_							_	
Calibration Check (P7J2703-CCV1)				Prepared &	Analyzed	10/27/17				
Benzene	0.106	0.00100	mg/kg wet	0.100		106	80-120			
Toluene	0.101	0.00200	н	0.100		101	80-120			
Ethylbenzene	0.107	0.00100	, m	0.100		107	80-120			
Xylene (p/m)	0.236	0.00200	19	0.200		118	80-120			
Xylene (o)	0.118	0.00100		0.100		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.0594		"	0.0600		99.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.0565		"	0.0600		94.2	75-125			
Calibration Check (P7J2703-CCV2)				Prepared &	Analyzed:	: 10/27/17				
Benzene	0.114	0.00100	mg/kg wet	0.100		114	80-120			
Toluene	0.106	0.00200		0.100		106	80-120			
Ethylbenzene	0.107	0.00100	n	0.100		107	80-120			
Xylene (p/m)	0.227	0.00200		0.200		113	80-120			
Xylene (o)	0.111	0.00100		0.100		111	80-120			
Surrogate: 1,4-Difluorobenzene	0.0590		r	0.0600		98.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.0574		"	0.0600		95.7	75-125			
Matrix Spike (P7J2703-MS1)	Sou	urce: 7J26001	-05	Prepared &	2 Analyzed	: 10/27/17				
Benzene	0.0983	0.00115	mg/kg dry	0.115	ND	85.5	80-126			
Toluene	0.0996	0.00230	н	0.115	ND	86.7	80-120			
Ethylbenzene	0.114	0.00115	H.	0.115	ND	99.1	80-120			
Xylene (p/m)	0.200	0.00230			ND		80-120			
Xylene (o)	0.0892	0.00115			ND		80-120			
Surrogate: 4-Bromofluorobenzene	0.0831		"	0.0690		121	75-125			
Surrogate: 1.4-Difluorobenzene	0.0848			0.0690		123	75-125			
Matrix Spike Dup (P7J2703-MSD1)	So	urce: 7J26001	-05	Prepared &	& Analyzed	: 10/27/17				
Benzene	0.0900	0.00115	mg/kg dry	0.115	ND	78.3	80-120	8.83	20	QM-0
Toluene	0.0835	0.00230	n	0.115	ND	72.7	80-120	17.6	20	QM-0
Ethylbenzene	0.103	0.00115		0.115	ND	89.5	80-120	10.2	20	
Xylene (p/m)	0.183	0.00230			ND		80-120		20	
Xylene (o)	0.0883	0.00115	n		ND		80-120		20	
Surrogate: 1,4-Difluorobenzene	0.0700			0.0690		101	75-125			
Surrogate: 4-Bromofluorobenzene	0.0775			0.0690		112	75-125			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 9 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2713 - General Preparation (GC)										_
Blank (P7J2713-BLK1)				Prepared: 1	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	103		())	100		103	70-130			
Surrogate: o-Terphenyl	59.2		n	50.0		118	70-130			
LCS (P7J2713-BS1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	869	25.0	mg/kg wet	1000		86.9	75-125			
>C12-C28	902	25.0	9	1000		90.2	75-125			
Surrogate: 1-Chlorooctane	112		<i>n</i>	100		112	70-130			
Surrogate: o-Terphenyl	54.9			50.0		110	70-130			
LCS Dup (P7J2713-BSD1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	872	25.0	mg/kg wet	1000		87.2	75-125	0.425	20	
>C12-C28	930	25.0	ų	1000		93.0	75-125	3.04	20	
Surrogate: 1-Chlorooctane	114		#	100		114	70-130			
Surrogate: o-Terphenyl	55.4		н	50.0		111	70-130			
Calibration Blank (P7J2713-CCB1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	24.3		mg/kg wet							
>C12-C28	14.8									
Surrogate: 1-Chlorooctane	97.3		n	100		97.3	70-130			
Surrogate: o-Terphenyl	58.0		<i>n</i> .	50.0		116	70-130			
Calibration Blank (P7J2713-CCB2)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	22.0		mg/kg wet							
>C12-C28	20.5		<u>.</u>							
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenvl	56.9		<i>n</i> .	50.0		114	70-130			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Surrogate: 1-Chlorooctane

Stingray Environmental & Construction 11420 W County Rd 33 Midland TEXAS, 79707		Project: Concho Phillips Buck Federal Project Number: Concho Phillips Buck Federal Project Manager: Von Norman								
		rganics by uan Basin								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2713 - General Preparation (C	GC)				_					
Calibration Check (P7J2713-CCV1)				Prepared:	10/27/17 A	nalyzed: 10	/31/17			
C6-C12	492	25.0	mg/kg wet	500		98.5	85-115			
>C12-C28	496	25.0	n	500		99.2	85-115		_	
Surrogate: 1-Chlorooctane	110		.#	100		110	70-130			
Surrogate: o-Terphenyl	57.6			50.0		115	70-130			
							121/17			
				Prepared:	10/27/17 A	nalyzed: 10	//31/17			
Calibration Check (P7J2713-CCV2) C6-C12	477	25.0	mg/kg wet		10/27/17 A	95.4	85-115			

Surrogate: o-Terphenyl	56.4		"	50.0	113	70-130	
Calibration Check (P7J2713-CCV3)				Prepared: 10/27/	17 Analyzed: 10	0/31/17	
C6-C12	479	25.0	mg/kg wet	500	95.8	85-115	
>C12-C28	510	25.0	"	500	102	85-115	
Surrogate: 1-Chlorooctane	116		#	100	116	70-130	
Surrogate: o-Terphenyl	56.9		"	50.0	114	70-130	

.

.

100

115

Matrix Spike (P7J2713-MS1)	Source: 7J26001-04		-04	Prepared: 1	10/27/17 A	0/31/17	
C6-C12	927	27.8	mg/kg dry	1110	25.7	81.1	75-125
>C12-C28	1110	27.8		1110	25.9	97.9	75-125
Surrogate: 1-Chlorooctane	114		<i>w</i> .	111		102	70-130
Surrogate: o-Terphenyl	58.6		н.	55.6		105	70-130

Matrix Spike Dup (P7J2713-MSD1)	Source: 7J26001-04			Prepared: 1						
C6-C12	959	27.8	mg/kg dry	1110	25.7	84.0	75-125	3.54	20	
~C12-C28	1150	27.8		1110	25.9	102	75-125	3.67	20	
Surrogate: 1-Chlorooctane	117		*	111		106	70-130			
Surrogate: o-Terphenyl	60.1		н	55.6		108	70-130			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

70-130

115

1400 Rankin HWY Midland, TX 79701 432-686-7235

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

16.3		Reporting	TT - 54	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Lunit	Notes
Batch P7J2701 - *** DEFAULT PREP ***										
Blank (P7J2701-BLK1)				Prepared &	Analyzed:	10/27/17				
% Moisture	ND	0.1	9/2							
Duplicate (P7J2701-DUP1)	Sou	rce: 7J25003-	-08	Prepared &	Analyzed:	10/27/17			_	
% Moisture	10.0	0.1	%		8.0			22.2	20	
Duplicate (P7J2701-DUP2)	Sou	rce: 7J26001-	-05	Prepared &	z Analyzed:	10/27/17				
% Moisture	13.0	0.1	%	-	13.0			0.00	26	
Batch P7J3001 - *** DEFAULT PREP ***										
Blank (P7J3001-BLK1)				Prepared &	k Analyzed:	10/30/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7J3001-BS1)				Prepared &	Analyzed:	10/30/17				_
Chloride	426	1.00	mg/kg wet	400		106	80-120			
LCS Dup (P7J3001-BSD1)				Prepared &	& Analyzed	10/30/17				
Chloride	426	1.00	mg/kg wet	400		107	80-120	0.141	20	
Duplicate (P7J3001-DUP1)	Sou	urce: 7J24003	-11	Prepared &	& Analyzed	10/30/17				
Chloride	2980	11.6	mg/kg dry		3010			0.765	20	
Duplicate (P7J3001-DUP2)	Sou	irce: 7J24006	-03	Prepared &	& Analyzed	: 10/30/17				
Chloride	3490	27.2	mg/kg dry		3460			0.900	20	
Matrix Spike (P7J3001-MS1)	Sou	urce: 7J24003	-11	Prepared &	& Analyzed	: 10/30/17				
Chloride	4240	11.6	mg/kg dry	1160	3010	107	80-120			

Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 12 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Pagult	Reporting	Unite	Spike	Source	W/DEC	%REC	PPD	RPD Limit	Notes
Kesuii	Linit	Units	Level	Kesun	70KEC	LIIIIIS	KID	Linn	HOICS
			Prepared &	Analyzed:	10/30/17				
ND	1.00	mg/kg wet	21.1.1.1						
		1.1	Prepared &	Analyzed:	10/30/17				
426	1.00	mg/kg wet	400		106	80-120			
			Prepared &	Analyzed:	10/30/17				
421	1.00	mg/kg wet	400		105	80-120	1.21	20	
Sou	rce: 7J26001	-04	Prepared &	Analyzed:	10/30/17				
26.3	1.11	mg/kg dry		32.7			21.7	20	R
Sou	rce: 7J26001	-04	Prepared &	Analyzed:	10/30/17				
1220	1.11	mg/kg dry	1110	32.7	107	80-120			
	426 421 26.3 Sou	Result Limit ND 1.00 426 1.00 421 1.00 5ource: 7J26001 26.3 1.11 Source: 7J26001	Result Limit Units ND 1.00 mg/kg wet 426 1.00 mg/kg wet 421 1.00 mg/kg wet 26.3 1.11 mg/kg dry Source: 7J26001-04	Result Limit Units Level Prepared & ND 1.00 mg/kg we: Prepared & 426 1.00 mg/kg wet 426 1.00 mg/kg wet 421 1.00 mg/kg wet 421 1.00 mg/kg wet 400 Prepared & 26.3 1.11 mg/kg dry Source: 7J26001-04 Prepared &	Result Limit Units Level Result Prepared & Analyzed: Prepared & Analyzed: ND 1.00 mg/kg we: Prepared & Analyzed: 426 1.00 mg/kg wet 426 1.00 mg/kg wet 421 1.00 mg/kg wet 421 1.00 mg/kg wet 423 1.11 mg/kg dry 26.3 1.11 mg/kg dry 300 32.7 Source: 7J26001-04 Prepared & Analyzed:	Result Limit Units Level Result %REC Prepared & Analyzed: 10/30/17 ND 1.00 mg/kg we: Prepared & Analyzed: 10/30/17 MD 1.00 mg/kg we: Prepared & Analyzed: 10/30/17 426 1.00 mg/kg wet 400 106 Prepared & Analyzed: 10/30/17 105 105 Source: 7J26001-04 Prepared & Analyzed: 10/30/17 26.3 1.11 mg/kg dry 32.7 Source: 7J26001-04 Prepared & Analyzed: 10/30/17	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 10/30/17 ND 1.00 mg/kg we: Prepared & Analyzed: 10/30/17 426 1.00 mg/kg wet 400 106 80-120 Prepared & Analyzed: 10/30/17 421 1.00 mg/kg wet 400 105 80-120 Source: 7J26001-04 Prepared & Analyzed: 10/30/17 26.3 1.11 mg/kg dry 32.7 Source: 7J26001-04 Prepared & Analyzed: 10/30/17	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 10/30/17 ND 1.00 mg/kg we: Prepared & Analyzed: 10/30/17 426 1.00 mg/kg wet 400 106 80-120 Prepared & Analyzed: 10/30/17 426 1.00 mg/kg wet 400 105 80-120 1.21 Source: 7J26001-04 Prepared & Analyzed: 10/30/17 26.3 1.11 mg/kg dry 32.7 21.7 Source: 7J26001-04 Prepared & Analyzed: 10/30/17	Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 10/30/17 ND 1.00 mg/kg we:

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Page 13 of 15

Stingray Environmental & Construction	Project:	Concho Phillips Buck Federal	Fax:
11420 W County Rd 33	Project Number:	Concho Phillips Buck Federal	
Midland TEXAS, 79707	Project Manager:	Von Norman	

Notes and Definitions

R2	The RPD exceeded the acceptance limit.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

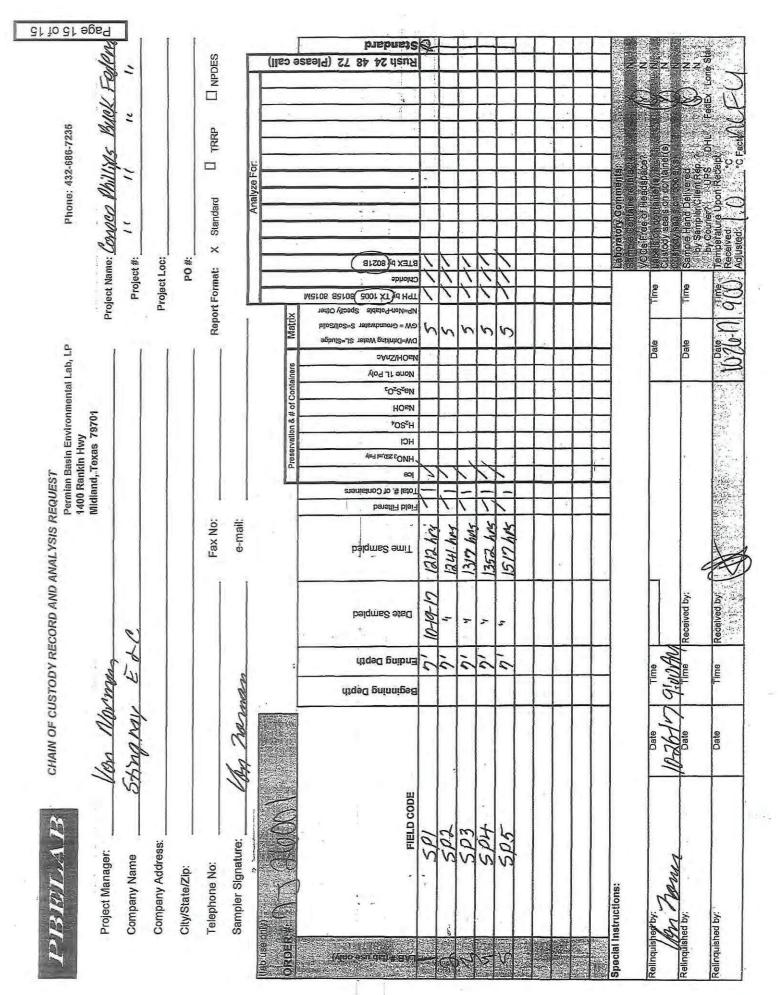
Report Approved By:

Date: 11/3/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.


Permian Basin Environmental Lab. L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

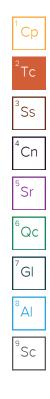
Page 14 of 15

Received by OCD: 11/8/2021 10:05:54 PM

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT September 27, 2018

ConocoPhillips - Tetra Tech


Sample Delivery Group:	L1026990
Samples Received:	09/19/2018
Project Number:	212C-MD-0724
Description:	Buck Fed
Site:	BUCK FED
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
BH-1 (2-3) L1026990-01	6
BH-1 (3-4) L1026990-02	7
BH-2 (2-3) L1026990-03	8
BH-2 (3-4) L1026990-04	9
BH-3 (3-4) L1026990-05	10
BH-3 (4-5) L1026990-06	11
BH-4 (2-3) L1026990-07	12
Qc: Quality Control Summary	13
Total Solids by Method 2540 G-2011	13
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	17
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23
Sc: Sample Chain of Custody	24

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-0724

SDG: L1026990

DATE/TIME: 09/27/18 14:44

PAGE: 2 of 29 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAT Page 46 of 348

BH-1 (2-3) L1026990-01 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 10:40	Received date/time 09/19/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1169499	1	09/21/18 11:40	09/21/18 11:53	KDW
Wet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 17:35	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 06:04	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170148	1	09/20/18 14:50	09/23/18 06:59	JHH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1170732	1	09/20/18 14:50	09/26/18 01:12	LRL
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 09:35	AAT
3H-1 (3-4) L1026990-02 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 10:45	Received date/time 09/19/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1169499	1	09/21/18 11:40	09/21/18 11:53	KDW
Wet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 17:52	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 06:25	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170148	1	09/20/18 14:50	09/23/18 07:23	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170732	1	09/20/18 14:50	09/26/18 01:32	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 10:13	AAT
			Collected by	Collected date/time	Received date/time
3H-2 (2-3) L1026990-03 Solid			Clint Merritt	09/17/18 11:30	09/19/18 08:45
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Eatol Salida by Mathad 2E40 C 2011	WC1160E01	1			KDW
otal Solids by Method 2540 G-2011	WG1169501	1	09/22/18 11:33	09/22/18 11:41	KDW
Vet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 18:01	ELN BMB
'olatile Organic Compounds (GC) by Method 8015D/GRO 'olatile Organic Compounds (GC/MS) by Method 8260B	WG1169146	1	09/20/18 14:50	09/22/18 06:46 09/22/18 20:19	ЛНН
iemi-Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170228 WG1169304	1 1	09/20/18 14:50 09/25/18 09:52	09/26/18 10:26	AAT
			Collected by	Collected date/time	Received date/time
BH-2 (3-4) L1026990-04 Solid			Clint Merritt	09/17/18 11:35	09/19/18 08:45
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD
Vet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 18:10	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:07	BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 20:38	JHH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 10:38	AAT
			Collected by	Collected date/time	Received date/time
BH-3 (3-4) L1026990-05 Solid			Clint Merritt	09/17/18 12:25	09/19/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD
Vet Chemistry by Method 300.0	WG1168638	10	09/20/18 01:07	09/24/18 18:19	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:28	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 20:58	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 10:51	AAT

PROJECT: 212C-MD-0724

SDG: L1026990

PAGE: 3 of 29

Received by OCD: 11/8/2021 10:05:54 PM

Wet Chemistry by Method 300.0

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

SAMPLE SUMMARY

ONE LAB. NAT Rage A. of 348

ELN

BMB

JHH

AAT

GI

ΆI

Sc

BH-3 (4-5) L1026990-06 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 12:30	Received date/time 09/19/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD
Wet Chemistry by Method 300.0	WG1168638	1	09/20/18 01:07	09/24/18 18:45	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1169146	1	09/20/18 14:50	09/22/18 07:49	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1170228	1	09/20/18 14:50	09/22/18 21:17	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169304	1	09/25/18 09:52	09/26/18 11:03	AAT
BH-4 (2-3) L1026990-07 Solid			Collected by Clint Merritt	Collected date/time 09/17/18 13:30	Received date/time 09/19/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1169089	1	09/20/18 15:18	09/20/18 15:28	JD

5

1

1

1

09/20/18 01:07

09/20/18 14:50

09/20/18 14:50

09/25/18 09:52

09/24/18 18:54

09/22/18 08:10

09/22/18 21:37

09/26/18 11:16

WG1168638

WG1169146

WG1170228

WG1169304

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech SDG: L1026990 DATE/TIME: 09/27/18 14:44 PAGE: 4 of 29

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-0724

SDG: L1026990 DATE/TIME: 09/27/18 14:44

PAGE: 5 of 29

SAMPLE RESULTS - 01 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

		-				1 Cm
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	88.0		1	09/21/2018 11:53	WG1169499	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	307		0.903	10.0	11.4	1	09/24/2018 17:35	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	307		0.903	10.0	11.4	1	09/24/2018 17:35	WG1168638
Volatile Organic Com		-			MOL (dr.)	Dilution	Analysis	Datab
Volatile Organic Com	oounds (GC) k Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
Volatile Organic Comp Analyte TPH (GC/FID) Low Fraction	Result (dry)	-	SDL (dry)	Unadj. MQL	· • • •	Dilution 1	,	Batch WG1169146
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution 1	date / time	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Patch
		Qualifier	,	-		Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000454	0.00100	0.00114	1	09/23/2018 06:59	WG1170148
Toluene	U		0.00142	0.00500	0.00568	1	09/23/2018 06:59	WG1170148
Ethylbenzene	U		0.000602	0.00250	0.00284	1	09/26/2018 01:12	WG1170732
Total Xylenes	U		0.00543	0.00650	0.00738	1	09/26/2018 01:12	WG1170732
(S) Toluene-d8	113				75.0-131		09/23/2018 06:59	WG1170148
(S) Toluene-d8	117				75.0-131		09/26/2018 01:12	WG1170732
(S) Dibromofluoromethane	91.3				65.0-129		09/23/2018 06:59	WG1170148
(S) Dibromofluoromethane	86.9				65.0-129		09/26/2018 01:12	WG1170732
(S) a,a,a-Trifluorotoluene	104				80.0-120		09/23/2018 06:59	WG1170148
(S) a,a,a-Trifluorotoluene	107				80.0-120		09/26/2018 01:12	WG1170732
(S) 4-Bromofluorobenzene	101				67.0-138		09/23/2018 06:59	WG1170148
(S) 4-Bromofluorobenzene	87.4				67.0-138		09/26/2018 01:12	WG1170732

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	32.6	<u>J5</u>	1.83	4.00	4.54	1	09/26/2018 09:35	WG1169304
C28-C40 Oil Range	9.86		0.311	4.00	4.54	1	09/26/2018 09:35	WG1169304
(S) o-Terphenyl	50.0				18.0-148		09/26/2018 09:35	WG1169304

SDG: L1026990

SAMPLE RESULTS - 02 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		87.9		1	09/21/2018 11:53	WG1169499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	264		0.905	10.0	11.4	1	09/24/2018 17:52	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	264		0.905	10.0	11.4	1	09/24/2018 17:52	WG1168638	
Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	20					
Volatile Organic Comp	Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Volatile Organic Comp Analyte TPH (GC/FID) Low Fraction	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1169146	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000455	0.00100	0.00114	1	09/23/2018 07:23	WG1170148
Toluene	U		0.00142	0.00500	0.00569	1	09/23/2018 07:23	WG1170148
Ethylbenzene	U		0.000603	0.00250	0.00284	1	09/26/2018 01:32	WG1170732
Total Xylenes	U		0.00544	0.00650	0.00739	1	09/26/2018 01:32	WG1170732
(S) Toluene-d8	113				75.0-131		09/23/2018 07:23	WG1170148
(S) Toluene-d8	117				75.0-131		09/26/2018 01:32	WG1170732
(S) Dibromofluoromethane	90.9				65.0-129		09/23/2018 07:23	WG1170148
(S) Dibromofluoromethane	90.4				65.0-129		09/26/2018 01:32	WG1170732
(S) a,a,a-Trifluorotoluene	105				80.0-120		09/23/2018 07:23	WG1170148
(S) a,a,a-Trifluorotoluene	105				80.0-120		09/26/2018 01:32	WG1170732
(S) 4-Bromofluorobenzene	100				67.0-138		09/23/2018 07:23	WG1170148
(S) 4-Bromofluorobenzene	83.1				67.0-138		09/26/2018 01:32	WG1170732

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.1		1.83	4.00	4.55	1	09/26/2018 10:13	WG1169304
C28-C40 Oil Range	10.9		0.312	4.00	4.55	1	09/26/2018 10:13	WG1169304
(S) o-Terphenyl	61.2				18.0-148		09/26/2018 10:13	WG1169304

SDG: L1026990 DATE/TIME:

SAMPLE RESULTS - 03 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		 2
Total Solids	86.2		1	09/22/2018 11:41	WG1169501	Tc

Wet Chemistry by Method 300.0

Net Chemistry by	Method 300.0								3
nalyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	4
Chloride	723		0.922	10.0	11.6	1	09/24/2018 18:01	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Denvilt (den)	0				Dilution	Aventuate	Datab	_
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	0.0268	J	0.0252	0.100	0.116	1	09/22/2018 06:46	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		09/22/2018 06:46	WG1169146	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000464	0.00100	0.00116	1	09/22/2018 20:19	WG1170228
Toluene	U		0.00145	0.00500	0.00580	1	09/22/2018 20:19	WG1170228
Ethylbenzene	U		0.000615	0.00250	0.00290	1	09/22/2018 20:19	WG1170228
Total Xylenes	U		0.00554	0.00650	0.00754	1	09/22/2018 20:19	WG1170228
(S) Toluene-d8	118				75.0-131		09/22/2018 20:19	WG1170228
(S) Dibromofluoromethane	94.0				65.0-129		09/22/2018 20:19	WG1170228
(S) a,a,a-Trifluorotoluene	99.3				80.0-120		09/22/2018 20:19	WG1170228
(S) 4-Bromofluorobenzene	97.5				67.0-138		09/22/2018 20:19	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.95	J	1.87	4.00	4.64	1	09/26/2018 10:26	WG1169304
C28-C40 Oil Range	0.785	J	0.318	4.00	4.64	1	09/26/2018 10:26	WG1169304
(S) o-Terphenyl	72.7				18.0-148		09/26/2018 10:26	WG1169304

SDG: L1026990

SAMPLE RESULTS - 04 L1026990

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		[2
Total Solids	89.2		1	09/20/2018 15:28	WG1169089		ЪС

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ C
Chloride	567		0.891	10.0	11.2	1	09/24/2018 18:10	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Q(
TPH (GC/FID) Low Fraction	0.0510	J	0.0243	0.100	0.112	1	09/22/2018 07:07	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		09/22/2018 07:07	WG1169146	⁷ GI
									G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000448	0.00100	0.00112	1	09/22/2018 20:38	WG1170228
Toluene	U		0.00140	0.00500	0.00560	1	09/22/2018 20:38	WG1170228
Ethylbenzene	U		0.000594	0.00250	0.00280	1	09/22/2018 20:38	WG1170228
Total Xylenes	U		0.00536	0.00650	0.00729	1	09/22/2018 20:38	WG1170228
(S) Toluene-d8	118				75.0-131		09/22/2018 20:38	WG1170228
(S) Dibromofluoromethane	89.0				65.0-129		09/22/2018 20:38	WG1170228
(S) a,a,a-Trifluorotoluene	103				80.0-120		09/22/2018 20:38	WG1170228
(S) 4-Bromofluorobenzene	83.6				67.0-138		09/22/2018 20:38	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	73.1		1.80	4.00	4.48	1	09/26/2018 10:38	WG1169304
C28-C40 Oil Range	26.7		0.307	4.00	4.48	1	09/26/2018 10:38	WG1169304
(S) o-Terphenyl	73.9				18.0-148		09/26/2018 10:38	WG1169304

SDG: L1026990

SAMPLE RESULTS - 05 L1026990

A

Sc

Total Solids by Method 2540 G-2011

						1 C	20
	Result	Qualifier	Dilution	Analysis	Batch		-h
Analyte	%			date / time		2	
Total Solids	94.9		1	09/20/2018 15:28	<u>WG1169089</u>	T	С

Wet Chemistry by Method 300.0

Wet Chemistry by Met	hod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		– ⁴ Cr
Chloride	3850		8.38	10.0	105	10	09/24/2018 18:19	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q ପ	
TPH (GC/FID) Low Fraction	0.101	J	0.0229	0.100	0.105	1	09/22/2018 07:28	WG1169146		
(S) a,a,a-Trifluorotoluene(FID)	95.8				77.0-120		09/22/2018 07:28	WG1169146	⁷ CI	
									G	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	09/22/2018 20:58	WG1170228
Toluene	U		0.00132	0.00500	0.00527	1	09/22/2018 20:58	WG1170228
Ethylbenzene	U		0.000558	0.00250	0.00263	1	09/22/2018 20:58	WG1170228
Total Xylenes	U		0.00504	0.00650	0.00685	1	09/22/2018 20:58	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 20:58	WG1170228
(S) Dibromofluoromethane	89.0				65.0-129		09/22/2018 20:58	WG1170228
(S) a,a,a-Trifluorotoluene	100				80.0-120		09/22/2018 20:58	WG1170228
(S) 4-Bromofluorobenzene	95.2				67.0-138		09/22/2018 20:58	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	95.6		1.70	4.00	4.21	1	09/26/2018 10:51	WG1169304
C28-C40 Oil Range	57.3		0.289	4.00	4.21	1	09/26/2018 10:51	WG1169304
(S) o-Terphenyl	57.7				18.0-148		09/26/2018 10:51	WG1169304

SDG: L1026990

SAMPLE RESULTS - 06 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	R	esult	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%				date / time		2
Total Solids	8	5.5		1	09/20/2018 15:28	WG1169089	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn	
Chloride	754		0.930	10.0	11.7	1	09/24/2018 18:45	WG1168638		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ິດ	
TPH (GC/FID) Low Fraction	0.0488	J	0.0254	0.100	0.117	1	09/22/2018 07:49	WG1169146		
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		09/22/2018 07:49	WG1169146	7	
									G	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000468	0.00100	0.00117	1	09/22/2018 21:17	WG1170228
Toluene	U		0.00146	0.00500	0.00585	1	09/22/2018 21:17	WG1170228
Ethylbenzene	U		0.000620	0.00250	0.00292	1	09/22/2018 21:17	WG1170228
Total Xylenes	U		0.00559	0.00650	0.00760	1	09/22/2018 21:17	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 21:17	WG1170228
(S) Dibromofluoromethane	89.5				65.0-129		09/22/2018 21:17	WG1170228
(S) a,a,a-Trifluorotoluene	99.0				80.0-120		09/22/2018 21:17	WG1170228
(S) 4-Bromofluorobenzene	101				67.0-138		09/22/2018 21:17	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.76	J	1.88	4.00	4.68	1	09/26/2018 11:03	WG1169304
C28-C40 Oil Range	1.80	J	0.320	4.00	4.68	1	09/26/2018 11:03	WG1169304
(S) o-Terphenyl	79.6				18.0-148		09/26/2018 11:03	WG1169304

SDG: L1026990

SAMPLE RESULTS - 07 L1026990

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	80.5		1	09/20/2018 15:28	<u>WG1169089</u>	ЪС

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	nod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	1640		4.94	10.0	62.1	5	09/24/2018 18:54	WG1168638	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိပ္ရင
TPH (GC/FID) Low Fraction	0.0404	J	0.0270	0.100	0.124	1	09/22/2018 08:10	WG1169146	
(S) a,a,a-Trifluorotoluene(FID)	96.0				77.0-120		09/22/2018 08:10	WG1169146	⁷ GI
									G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00100	0.00124	1	09/22/2018 21:37	WG1170228
Toluene	U		0.00155	0.00500	0.00621	1	09/22/2018 21:37	WG1170228
Ethylbenzene	U		0.000659	0.00250	0.00311	1	09/22/2018 21:37	WG1170228
Total Xylenes	U		0.00594	0.00650	0.00808	1	09/22/2018 21:37	WG1170228
(S) Toluene-d8	119				75.0-131		09/22/2018 21:37	WG1170228
(S) Dibromofluoromethane	91.1				65.0-129		09/22/2018 21:37	WG1170228
(S) a,a,a-Trifluorotoluene	99.6				80.0-120		09/22/2018 21:37	WG1170228
(S) 4-Bromofluorobenzene	86.4				67.0-138		09/22/2018 21:37	WG1170228

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.00	4.00	4.97	1	09/26/2018 11:16	WG1169304
C28-C40 Oil Range	U		0.341	4.00	4.97	1	09/26/2018 11:16	WG1169304
(S) o-Terphenyl	70.9				18.0-148		09/26/2018 11:16	WG1169304

SDG: L1026990

Rece	ived (by O C		11/8 ო	/202 S	4 1 2	0:0	5:54 5	נ ר א ה	ို္ကလိ	۲ ت	ō	Þ		°Sc							Page	56 0	of 34	48
ONE LAB. NATIONWIDE.																									PAGE: 13 of 29
																									DATE/TIME: 09/27/18 14:44
CONTROL SUMMARY 11026990-04.05.06.07																									SDG: L1026990
QUALITY CON								DUP Qualifier Limits	%	10			s LCS Qualifier												PROJECT: 212C-MD-0724
0		MB RDL	%			P)	œ	JP RPD		32			Rec. Limits	70 OF 0 11E	2										21
		MB MDL	%			icate (DU	9/20/18 15:2	Dilution DUP RPD	%	1 4.82			LCS Rec.	%	2										
110		MB Qualifier				e (OS) • Dupl	P) R3343796-3 (It DUP Result	%	87.4	-CS)		t LCS Result	50 O	0.000										ch
) hod 2540 G-20	1B)	20/18 15:28 MB Result	%	0.00100		ginal Sample	20/18 15:28 • (DU	Original Resu	%	83.3	rol Sample (l	/20/18 15:28	Spike Amount	% 200	2										ACCOUNT: ConocoPhillips - Tetra Tech
WG1169089 Total Solids by Method 2540 G-2011	post powerhod Blank (N	0 (MB) R3343796-1 09/20/18 15:28 MB Resu	Analyte	1 Total Solids	0/31.	21-1027078-01 Ori	C(OS) L1027078-01 09/	3:02	Analyte	War Solids	Laboratory Control Sample (LCS)	(LCS) R3343796-2 09/20/18 15:28		Andiyte Total Solide											Conoc

Recei	ived 1		· 11	/ <mark>8/2021</mark>	ч 1 0:	05:5 Մ	4_P ഗ	ိ ပိ	ے ا	5	$\overline{P}_{_{\scriptscriptstyle \mathbb{S}}}$		Page 57 of.	348
ONE LAB. NATIONWIDE.														PAGE: 14 of 29
														DATE/TIME: 09/27/18 14:44
CONTROL SUMMARY						Q								SDG: L1026990
QUALITY CO						DUP Qualifier DUP RPD		10			ts LCS Qualifier			PROJECT: 212C-MD-0724
0		MB MDL MB RDL %			18 11:53	Dilution DUP RPD	%	0.102			LCS Rec. Rec. Limits %			<i>5</i>
		Qualifier			344100-3 09/21/	JP Result Dilu		<u>8</u> .			S Result			
9 thod 2540 G-2011	MB)	21/18 11:53 MB Result <u>M</u> E %	0.00100		2011/02/03/02-03 01/9/1/81 34/10/6 (03) • 04/1/81/53 2001/1026982-03 09/21/811:53 • (DUPP R3344100-3 09/21/811:53	Original Result DUP Result	%	92.9 92.8	Laboratory Control Sample (LCS)	3/21/18 11:53	Amount			ACCOUNT: ConocoPhillips - Tetra Tech
WG116949	post Method Blank (I	0 (MB) R3344100-1 09/21/18 11:53 MB Result MB Result MB Analyte %	Surger Solids	10/317	0 E0-28692011(SO)22	3:0	80:5 80:7	War Solids	Laboratory Con	(LCS) R3344100-2 09/21/18 11:53	Analvte	Alialyte Total Solide		Conc

Rece	ived l	y OCD:	• 11/8 	8/2021 S	1 0: 0)5:54 ه	4_P 1 ກ	g g	ط ط	5	$\overline{\mathtt{P}}_{_{\scriptscriptstyle (S)}}$	0	Page 58 of 348	
ONE LAB. NATIONWIDE.														15 of 29
													DATE/TIME:	09/27/18 14:44
ONTROL SUMMARY 11026990-03						D							Sg	L1026990
QUALITY CONTROL						DUP Qualifier DUP RPD Limits		10			LCS Qualifier		PROJECT:	212C-MD-0724
Ø		MB RDL %		DUP)	1:41	RPD	%	0.292			. Rec. Limits %	85.0-115	<u>č</u> .	2120
		MB MDL %		olicate (09/22/18 1	Dilution		-			LCS Rec. %	6.66		
110		MB Qualifier		(OS) • Dup	R3344382-3 (Original Result DUP Result	%	81.4	-CS)		t LCS Result %	50.0		ch
)1 lethod 2540 G-20	(MB)	9/22/18 11:41 MB Result %	0.00100	Iriginal Sample	9/22/18 11:41 • (DUP)	Original Resu	%	81.2	Laboratory Control Sample (LCS)	09/22/18 11:41	Spike Amount %	50.0	ACCOUNT:	ConocoPhillips - Tetra Tech
WG11695(Method Blank	(MB) R3344382-1 09/22/18 11:41 MB Result MB Result MB Malyte %	: Total Solids	O 10-1669201-01 0/31/20	COS) L1026991-01 09/22/18 11:41 (DUP) R3344382-3 09/22/18 11:41	3:02	Sanalyte	W ^T otal Solids	Laboratory Co	(LCS) R3344382-2 09/22/18 11:41	Analyte	Total Solids		CO

WG1168	WG1168638 Wet Chemistry by Method 300.0			g	QUALITY 100	ΓΥ CONTROL SUI 11026990-01,02,03,04,05,06,07	OL SU 04,05,06,0	SUMMARY	×			ONE LAB. NATIONWIDE.		Recei
pethod Blar	(MB) אר													ived b
(MB) R3344717-1 09/24/18 16:45 MB Res Malyte mg/kg	09/24/18 16:45 MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg										y OCD:
Chloride	2.73	ار	0.795	10.0									m	11/8
0-0669201 ⁻ 0/31/20	1026990-01 Original Sample (OS) • Duplicate (DUP)	Ind • (SO)	olicate (DUF	0										2021 1
2(OS) L1026990-C	1 09/24/18 17:35 • (DUP) R3344717-4	09/24/18 17:44											0: (
3:02	Original Result (dry)	DUP Result (dry)	Dilution DUP RPD	PD	DUP Qualifier L	DUP RPD Limits							ى س	05:54 ۵
Analyte	mg/kg	mg/kg	%		%								,	P
Chloride D	307	256	1 18.2		2	20							ی و	္တိ
L1027074-2;	L1027074-23 Original Sample (OS) • Duplicate (DUP)	(OS) • Dul	olicate (DUF	(c									~	0
(OS) L1027074-2	(OS) L1027074-23 09/24/18 21:32 • (DUP) R3344717-7 09/24/18 21:40) R3344717-7	09/24/18 21:40											
	Original Result DUP Result (dry) (dry)	DUP Result (dry)	Dilution DUP		DUP Qualifier L	DUP RPD Limits							8	Ā
Analyte	mg/kg	mg/kg												1
Chloride	66.7	78.5	1 23.7	EL E		20							, , ,	SC
Laboratory (Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	CS) • Labo	ratory Cont	rol Sampl	e Duplicat	e (LCSD)								
(LCS) R3344717-2	(LCS) R3344717-2 09/24/18 16:54 • (LCSD) R3344717-3 09/24/18 17:03)) R3344717-3	09/24/18 17:03											
04400V	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	er LCSD Qualifier	alifier RPD	RPD Limits				
Andiyte	шуку	шуку	IIIg/kg	9	9/	9			0/	9				
Chloride	Chloride 200 217 217 108 108 90.0-110 1 1006990-03 Oricinal Samula (OS) • Matrix Snika (MS) • Matrix Snika Dunlicata (MSD)	217 217 (OS) • Mē	217 trix Snika (1	108 MSV • Matr	108 iv Sniko Texiro	90.0-110 90.0-110 9110			0.0549	20				
(OS) L1026992-C		R3344717-5 ()9/24/18 19:29 •	(MSD) R3344	1717-6 09/24/	18 19:38								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry) MSD Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD RF	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			% %			
Chloride	613	7080	6160	9400	0.000	378	-	80.0-120	> 	EJ3V	41.7 20			
														Page 59 of
l	ACCOUNT: ConocoPhillips - Tetra Tech	ſ		PR0 212C-	PROJECT: 212C-MD-0724		SI L102	SDG : L1026990		DATE/TIME: 09/27/18 14:44	ME: 14:44	PA 16 c	PAGE: 16 of 29	r 348

ဖ	
4	
91	Organic
Ø	Š
1	
C	/olitelo/
\geq	0
Re	el

QUALITY CONTROL SUMMARY

mi.	
尚	
븓	
~	
5	
5	
\cong	
F.	
⊴	
\leq	
m.	
7	
Ч	
쁫	
\leq	
O	

Received by OCD: 11/8/202

1**0:**05:

54 P

%

%

%

mg/kg 5.85

mg/kg 5.91

mg/kg 5.50

> TPH (GC/FID) Low Fraction (S) a, a, a-Trifluorotoluene(FID)

Analyte

72.0-127 77.0-120

106 110

107 111

20 %

1.10 %

ğ

 $\overline{\mathbb{O}}$

₹

SC

pololatile Organic Compounds (GC) by Method 8015D/GRO	1pounds (GC) t	by Method 80	15D/GRO))			04,05,06,07			
post Method Blank (MB)	3)									
(MB) R3344624-3 09/22/18 02:55	2/18 02:55									
ma	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
🙀 TPH (GC/FID) Low Fraction	n		0.0217	0.100						
701 (S) 2010 (S) 2010 (S)	97.3			77.0-120						
1/202										
2 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ol Sample (L(CS) • Labor	atory Coni	trol Sample	e Duplicate	(LCSD)				
CLCS) R3344624-1 09/22/18 01:52 • (LCSD) R3344624-2 09/22/18 02:13	2/18 01:52 • (LCSI	D) R3344624-2	09/22/18 02:	13						
:08	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCS Qualifier LCSD Qualifier RPD	RPD Limits	

L1026920-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10:36
$\underline{0}$
2
2
5 09/22/18
ഹ
4
1 62
R33446.
8
\sim
(MSD
ž
•
15
ö
ò
27
2
o
\circ
4-4 0
524-4 0
14624-4 0
3344624-4 0
R3344624-4 0
S) R3344624-4 0
AS) R3344
-
-
-
-
2/18 03:37 • (1
2/18 03:37 • (1
2/18 03:37 • (1
2/18 03:37 • (1
2/18 03:37 • (1
120-03 09/22/18 03:37 • (1
0-03 09/22/18 03:37 • (1
120-03 09/22/18 03:37 • (1
120-03 09/22/18 03:37 • (1
1026920-03 09/22/18 03:37 • (1

	()) · () () () () · ()		- 0.0.0.11100		11000110	00.0						
	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.95	0.373	4.81	5.09	63.9	67.9	~	10.0-151			5.60	28
(S) a, a, a-Trifluorotoluene(FID)					101	102		77.0-120				

17 of 29 PAGE

09/27/18 14:44 DATE/TIME:

WG1170148 Molatile Organic Compounds (GC/MS) by Method 8260B	unds (GC/MS	s) by Metho	d 8260B	gL	QUALITY (CONTROL 11026990-01,02	L SUMMARY	АRҮ			ONE LAB. NATIONWIDE.		Rece
post Method Blank (MB)												-	ived (
(MB) R3344568-1 09/22/18	23:32												by O
MB Resul MB Resul MB Resul	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg								N	
Benzene	Π		0.000400	0.00100									11
	N		0.00125	0.00500								m	/8/4
(S) Toluene-d8	109			75.0-131									302
(S) Dibromofluoromethane	97.1			65.0-129								4	
(S) a, a, a-Trifluorotoluene	109			80.0-120									[@:]
(S) 4-Bromofluorobenzene	98.8			67.0-138									05
(S) elumes	Samola (I C	Ģ										<u>ت</u>	54_PM
		10										0	رم
(LCS) R3344568-4 09/23/18 09:34 Snike Ar	8 09:34 Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								ر کر
Analyte		mg/kg	%	%									
Benzene		0660.0	79.2	70.0-123									;
Toluene		0.108	86.2	75.0-121								00	
(S) Toluene-d8			103	75.0-131									Ī
(S) Dibromofluoromethane			89.7	65.0-129								0	
(S) a, a,a-Trifluorotoluene			104	80.0-120								<u>,</u>	SC
(S) 4-Bromofluorobenzene			102	67.0-138]
L1026878-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	ial Sample	(OS) • Ma	trix Spike (N	1S) • Matri	x Spike Du	plicate (MSD)							
(OS) L1026878-04 09/23/18 04:38 • (MS) R3344568-2 09/23/18 07:47 • (MSD) R3344568-3 09/23/18 08:10	8 04:38 • (MS) F	33344568-2	09/23/18 07:47	• (MSD) R334	4568-3 09/23	/18 08:10							
	Spike Amount (dry)	Original Result (dry)	Original Result MS Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec. D	Dilution Rec. Limits	s MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	5	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Benzene		0.312	0.856	0.745	45.8	36.5 8				13.9	37		
Toluene	0.149	13.3	13.3	12.4	0.000	0.000 8		> 	> E E	6.99	38		
(S) Toluene-d8					107	102	75.0-131						
(S) Dibromofluoromethane					91.1	90.9	65.0-129						
(S) a,a,a-Trifluorotoluene					102	103	80.0-120						
(S) 4-Bromofluorobenzene					102	105	67.0-138						
													Pa
													ge 61
													of 3
ACI	ACCOUNT:			PRC	PROJECT:		SDG:		DATE	DATE/TIME:		PAGE:	48
ConocoPhi	ConocoPhillips - Tetra Tech			212C-I	212C-MD-0724		L1026990		09/27/	09/27/18 14:44	5 <u>-</u>	18 of 29	

00	(
2	
\sim	
0	
\sim	,
1	
Ċ	1
\leq	
\leq	,
Re	2

QUALITY CONTROL SUMMARY

WG1170228				UMMARY	ONE LAB. NATIONWIDE.	Re
olding of the second of the second of the second se	ounds (GC/N	IS) by Metho	d 8260B	L1026990-03,04,05,06,07		cei
Method Blank (MB)					-	ved
(MB) R3344766-2 09/22/1	8 19:59					by (
MB Result	MB Result	MB Qualifier	MB MDL	MB RDL		0 <i>C</i>
Analyte	mg/kg		mg/kg	bug/kg	1	D: ⊢
Senzene	П		0.000400	0.00100		11
1 Ethylbenzene	Π		0.000530	0.00250	m	<mark>/8//</mark>
	Π		0.00125	0.00500		302
Xylenes, Total	Π		0.00478	0.00650	4	1
55 (S) Toluene-d8	115			75.0-131		
😯 (S) Dibromofluoromethane	91.7			65.0-129		95:
(S) a, a, a-Trifluorotoluene	101			80.0-120	2	54 س
(S) 4-Bromofluorobenzene	103			67.0-138		PN
PM					Q	ۍ م
Laboratory Control Sample (LCS)	Sample (Lo	CS)))
// CC/ D2344766 1 06/22/48 18:E1	0 10-E1				2	Ū
(L(0) 700441000 - 001441						ס

Laboratory Control Sample (LCS)

8:51
09/22/18 18:51
R3344766-1
LCS) R3
_

10.01 01/77/00 1-00/1++00/ (00)	0.010					D
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Benzene	0.125	0.118	94.4	70.0-123		Ī
Ethylbenzene	0.125	0.104	83.4	74.0-126		σ
Toluene	0.125	0.120	96.0	75.0-121		Ŝ
Xylenes, Total	0.375	0.368	98.1	72.0-127		
(S) Toluene-d8			104	75.0-131		
(S) Dibromofluoromethane			110	65.0-129		
(S) a,a,a-Trifluorotoluene			99.1	80.0-120		
(S) 4-Bromofluorobenzene			89.6	67.0-138		

L1027016-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

102001 1000

0	(OS) L1027016-06 09/22/18 23:34 • (MS) R3344766-3 09/23/18 02:50 • (MSD) R3344766-4 09/23/18 03:09	2/18 23:34 • (MS) I	R3344766-3 0	19/23/18 02:50 •	(MSD) R33447	766-4 09/23/	18 03:09							
		Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
An	Analyte	mg/kg	mg/kg	mg/kg r	mg/kg	%	%		%			%	%	
Be	Benzene	0.144	DN	0.0733 (0.112	50.9	T.TT	-	10.0-149		ег Г	41.7	37	
Eth	Ethylbenzene	0.144	ND	0.0927	0.148	64.3	102	-	10.0-160		ମ <u>୍</u> ଟ	45.8	38	
То	Toluene	0.144	ND	0.0884 ()	0.134	61.3	92.7	-	10.0-156		<u>ور</u>	40.8	38	
Xy.	Xylenes, Total	0.432	ND	0.306 (0.479	70.7	111	-	10.0-160		<u>ور</u>	44.1	38	
-	(S) Toluene-d8					120	119		75.0-131					
-	(S) Dibromofluoromethane					92.1	93.1		65.0-129					
-	(S) a, a, a-Trifluorotoluene					94.2	95.1		80.0-120					
-	(S) 4-Bromofluorobenzene					94.7	97.4		67.0-138					
		ACCOUNT:			PROJECT:	ECT:		0	SDG:		DATE/TIME:	'IME:		PAGE:
	Conoco	ConocoPhillips - Tetra Tech	_		212C-MD-0724	D-0724		L10.	L1026990		09/27/18 14:44	14:44		19 of 29

Page 62 of 348

\sim	
\mathbb{C}	
7	
0	
17	
_	
Ū	
>	
>	
Re	2

QUALITY CONTROL SUMMARY

WG1170732 Molatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	S) by Metho	d 8260B	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
period Blank (MB)						vived
(MB) R3345262-3 09/26/18 00:33	8 00:33					by C
ma	MB Result	MB Qualifier	MB MDL	- MB RDL)C. ∾
Analyte	mg/kg		mg/kg	mg/kg		D: ⊢
Ethylbenzene	П		0.000530	30 0.00250		11
Vylenes, Total			0.00478	3 0.00650		/ <mark>8/</mark> /
(S) Toluene-d8	116			75.0-131		302 ,
(S) Dibromofluoromethane	91.9			65.0-129		4
S) a, a, a-Trifluorotoluene	105			80.0-120		0:0
: (S) 4-Bromofluorobenzene	96.6			67.0-138		95:
02:00						54_P
Zaboratory Control	Sample (L(CS) • Laboi	ratory Con	뉯 aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	-	
(LCS) R3345262-1 09/25/18 23:14 • (LCSD) R3345262-2 09/25/18 23:34	18 23:14 • (LCSI	J) R3345262-2	2 09/25/18 23.	18 23:34		с У

 $\overline{\mathbb{O}}$

₹

SC

(LCS) R3345262-1 09/25/18 23:14 • (LCSD) R3345262-2 09/25/18 23:34	5/18 23:14 • (LCSD) R332)) R3345262-2	2 09/25/18 23:3	4					
	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Ethylbenzene	0.125	0.108	0.0999	86.4	79.9	74.0-126		7.72	20
Xylenes, Total	0.375	0.381	0.355	102	94.7	72.0-127		7.07	20
(S) Toluene-d8				104	104	75.0-131			
(S) Dibromofluoromethane				110	110	65.0-129			
(S) a, a,a-Trifluorotoluene				102	103	80.0-120			
(S) 4-Bromofluorobenzene				86.4	87.6	67.0-138			

20 of 29 PAGE

09/27/18 14:44 DATE/TIME:

	0
04	Organic
693	atile O
VG11	Semi-Volatile
Re	Ĩ

WG1169304		GC) by Math	200 x 100 x 100 x	QU	ALITY (QUALITY CONTROL SUMMARY	DL SUM	MARY			ONE LAB. NATIONWIDE.	Rec
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0			0.000	50 60 60 ft					eiv
Method Blank (MB)												ed (
(MB) R3345188-1 09/26/18 08:58	08:58											by (
	MB Result	MB Qualifier	MB MDL	MB RDL								0C. ∾
Analyte	mg/kg		mg/kg	mg/kg								D : ⊢
C10-C28 Diesel Range	n		1.61	4.00								11
C28-C40 Oil Range	П		0.274	4.00								/ <mark>8///</mark>
(5) o-Terphenyl (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	89.3			18.0-148								8 021 10 :
etcSD) المعتمد المعتمين المعت	Sample (LC	CS) • Labor	atory Contr	ol Sampl∈	e Duplicate	(LCSD)						05.
CLCS) R3345188-2 09/26/18 09:10 • (LCSD) R3345188-3 09/26/18 09:23	18 09:10 • (LCSI	D) R3345188-3	09/26/18 09:2:	m								54 ທ
	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		ک
C10-C28 Diesel Range	50.0	43.7	37.3	87.4	74.6	50.0-150			15.8	20		ン グ
(S) o-Terphenyl				95.0	87.4	18.0-148						~
												Ū

L1026990-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026990-01 09/26/18 09:35 • (MS) R3345188-4 09/26/18 09:48 • (MSD) R3345188-5 09/26/18 10:00	Spike Amount Original Result MS Result (dry) MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits (dry) (dry)	mg/kg mg/kg % % %	119 101 153 121 1 50.0-150 J5 16.4 20	75.7 83.5 18.0-148
	Rec. Limits	%	50.0-150	18.0-148
	Dilution		-	
6/18 10:00	MSD Rec.	%	121	83.5
45188-5 09/2		%	153	75.7
) MSD Result (dry)	mg/kg	101	
09/26/18 09:45	MS Result (dry	mg/kg	119	
R3345188-4 (Original Result (dry)	mg/kg	32.6	
3/18 09:35 • (MS)	Spike Amount (dry)	mg/kg	56.8	
(OS) L1026990-01 09/26		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

SC

₹

PAGE: 21 of 29

•

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1026990

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Ham
Arkansas	88-0469	New Jers
California	2932	New Mex
Colorado	TN00003	New York
Connecticut	PH-0197	North Car
Florida	E87487	North Car
Georgia	NELAP	North Car
Georgia ¹	923	North Dal
Idaho	TN00003	Ohio-VA
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylva
Kansas	E-10277	Rhode Isl
Kentucky 16	90010	South Ca
Kentucky ²	16	South Da
Louisiana	AI30792	Tennesse
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washingt
Mississippi	TN00003	West Virg
Missouri	340	Wisconsir
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-0724

SDG: L1026990 DATE/TIME: 09/27/18 14:44

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

		11/8	Billing Information:	stion:		1		Ana	Analysis / Container / Preservauve	EL VAUVE		CIN	r
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	ţ	Ac M	Accounts Payable 4001 N. Big Spring Midland, TX 79705	ole ing St., 705	Ste. 401	Pres Chk							
Report to: Kayla Taylor	1	5	Email To:	2	lor		5100			18.62	12005 Letunon Ma Mount Juliet, TN 37123 Phone: 615-758-5858 Phone: 800-767-5859		1226
Project Suck Fed			And a state of the	Cirty/State Collected: L	er CONN					4. (A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	Ĕ
687-8137	Client Project #			Lab Project #					-		and the second	A179	-
	+EF0-01-2515	10-0-	34				25		-				T
Collected by (print):	Site/Facility ID #	Frd		P.O.#			1315				Acctnum: Template:	Acctnum: COPTETRA Template:	
oy (signature):	Rush? (Lab	Rush? (Lab MUST Be Notified)		Quote #		-	1				Prelogin:		
Conference N v V	Same Day Next Day Two Day Three Day	5 Day (Rad Only) 10 Day (Rad Only)	d Only) ad Only)	Date Res	Date Results Needed	No.	432				TSR: 526 - Ch PB: Shibbed Via:	TSR: 526 - Chris McCord PB: Shioped Via:	
nple ID	Comp/Grab	Matrix *	Depth	Date	Time	Critrs	18	12				ts Sample # (lath only)	(Aunu)
/ / / / /	A var	22		4/5	10:40	-	××	×				P	
112-11	-				10:45	1	X	×				94	
14					10:50	-					×		
				1	10:55	-							
	-				11:00	-					+		
(2-8)				C. C. C.	11:05	-					x		
	1	-		_	11:10	-					x s		
19-10)				229	11:15	-						C	
1	*			_	11:30	-	X	X X			*	CO V	
5	>	>		>	11135	-	×	X			Consta Bara	int checklest	
F - Filter B - Bioassay	Remarks: # Run o Kayla	Luper Ville	sumple it	top	Samples and	D SCR	RAD SCREEN: <0.5 1	RAD SCREEN: <0.5 mR/hr	PH	Temp	COC Seal Present/Intacts COC Seal Present/Intacts COC Signed/Accurate: Hottles arrive intact! Correct bottles used!	N	JAJA K
5 1	Samples returned via: UPS 02 FedEx	ied via: iExCourier	-		71	4430 3429	129	2189	12190	0	co Reat	t/Checked:	X N X
Relinquished by : (Signature)		Date:	-	Time: (S: 2.3	Receivedov: (Sign	(Signature)	R	1	Trip Blank Received:	HCL/TMeoH		4	1
Relinquished by : (Signature)		Date:		Time:	Received by: (Signature)	ature)		1.2	Temp: °C ¹ 2357.2	Bottles Received:	If preservation required by Login: Date/ Hitte	d by Login: Date/	a
Relinquished by : (Signature)		Date:		Time:	Received for tab by. (Signature)	y. (Signat	(a)		10	Time:	09-0081		NICE / OK

		B	Billing Information:	mation:				An	Analysis / Container / Preservative	ervative	ł		1	(
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	ech	442	Accounts 1001 N. B Midland,	Accounts Payable 4001 N. Big Spring St., Midland, TX 79705	Ste. 401	Pres								C
7 مالالم			Email To: Keyl	City/State City/State Collected: /	- A. HL.		10.110.00				19882	12055 Lebanon Rd Mount Mart, TN 37122 Phone 1815-758-5858 Phone: BDD-707-8859 Fax: 615-758-5859		
Uescription: 2	Client Project #	ent Project # フリン・ビーム・D.AO アフリ	474	1 #	200							14 107 Table#	1000940	
Collected by (print):	Site/Facility ID #	# Ped		P.O.#		-	-	385				Acctnum: (Acctnum: COPTETRA	
ature):	Rush? (Lat	Rush? (Lab MUST Be Notified)	otified) v	Quote #		29405	-	1			150	Prelogin:		
Immediately Packed on Ice N Y	Two Day Three Day		5 Day (Rad Only) 10 Day (Rad Only)	Date Re	Date Results Needed	Na.	Ha	- 1		RIN		the second second	TSR: 526 - Chris McCord PB: Shinned Via:	70
Sample ID 0	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	1000	P				Kemarks	H	Sample # (Jab only)
BH-214-5) (2000)	55		£1/b	11:40	-					+	X		
	1	_			11:45	-						×>		
1				1	11:50	-						X		
(7-8)				Charles -	11:55	-					-	x	-	
1	-			_	00:21	-	200				-	x y	-	
(01-6)				_	12:05	-						<		
BH-3 (3 - 4)	1	-			22:21			×					61	0-
(4-5)				_	02:21		××	×					õ	e
(5-6)	_	_			12:35	-	-					X	-	
(8-2)	7	P		>	06:21	-						X		
F - Filter B - Bioassay	Remarks:				RAD SCREEN: <0.5 mR/hr	REEN:	<0.5 m	R/hr	pHTemp FlowOther	ler	COC Se COC Si Bottle Correc	Sample Receipt Check COC Seal Present/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used: sufficient volume sent:	tact: tact: tract: tr tr dr dr	ANA ANA
DW - Drinking Water OT - Other	- UPS FedEx -	turned via: FedExCourier	ier		Tracking # 4430	12202	3429	72189	1 2190	<	VOA Ze	VGA Zero Headspace: Preservation Correct/Checked:	Lf Applicable Ispace: Correct/Checked	N - X - 2
Refinquished by : (Signature)		7/18		Time: (S:30	Regensived by: Jaien addinge	The second	1		#	Yes (No) HCL/MeoH TBR				an Prince
Relinquished by : (Signature)		Date:		Time:	Received by: (Signature)	ure)		1	7.2847-1 °C Bu	Bottles Received:	If prese	If preservation required by Login, parel lime	DY Login: U	auti /ate
Relinquished by : (Signature)		Date:		Time:	Received for lab by: (Signature)	(Signatur	(a		ate: Ti Gliglig	Time: 0545	Hold:		~~	NCE)/ OK

		8	Billing Information:	lation:				Analy	Analysis / Container / Preservative	Preservative			
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	ech	446	Accounts Payable 4001 N. Big Spring Midland, TX 79705	ole ing St., 705	Ste. 401	Pres Chk						*	
Report to: Kayla Tay lor			Email To:	iolen al	lor	-	100					12065 Lebaron Rd Mount Aulet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859	
Project Build Fred				City/State Collected:	an Co NN-				1.5	N.A.		Fax: 615-758-5859	100
687-8137	Client Project #	YO.	H2Le0	Lab Project #	- Andrews - Andr							с# 10 <u>6</u> Таble #	10000410
acted by (print):	Site/Facility ID #			P.O.#			K					Acctnum: Template:	Acctnum: COPTETRA Template:
signature)	Rush? (Lab	Rush? (Lab MUST Be Notified) Same Dav Five Dav	otified) v	Quote #								Prelogin:	
CARRE Immediately Packed on Ice N_Y 2	Next Day Two Day Three Day		5 Day (Rad Only) 10 Day (Rad Only)	Date Res	Date Results Needed		HA	-1				PB: 526 - Ch PB: 526 - Ch Shipped Via:	TSR: 526 - Chris McCord PB: Shipped Via:
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotrs	2.2	2				-	ks Sample # (lab only)
(1-118-x)	(searly	SS	22.22	£1/6	17:50	-						×.	
		_			72:55	-						× ·	
(10-11)					13:00	-	-					×	
(11-12)				_	13.05	-	-					دير	
(12-13)		-			13:10							< -	
(12-14)	-			-	13:15	_	-					×	
1		+		-	17:20	2-	× : × >	×,					P
11		-			17:75		*	c				×	
4 1		>		>	13:40	-						x	
F-Filter B-Bioassay	Remarks:	>					1.00	18	PH Flow	Temp	COC 1 COC 1 Bott	Samile Receint Check COC Seal Present/intect: _ COC Signed/Accurate: Bottles Artive intert: Correct bottles used:	ntact: MP act: MP ed:
DW - Drinking Water OT - Other	Samples returned via: UPSFedEx	ned via: dExCourier	rier		Tracking # 443.0	HER C	4430 3429 2180	F	2190			Icient volume s If Appl Zero Headapace:	flume sent: <u>If Applicable</u> ispace: Acrist (Charked)
Re linquished by : (Signature)		Date:		Time: 15:30	Received by (Signature	den de	X	-	Trip Blank Received:	ed: Yes (No) HCL/MeoH TBR	-		
Retinquished by : (Signature)		Date:		Time:	Received by: (Sigherure)	ure)	e .	14	7.32.2°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Bottles Received.		ervation require	If preservation required by Login: Date/ Hime
Relinquished by : (Signature)		Date:		Time:	Received for lab by: (Signature)	Interest	-	0	g ig jg	Time: D845	Hold		NOF / OK

		-	Billing Information:	ation:		W	Anarysis / containes / Freservauxe			(
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	ech	446	Accounts Payable 4001 N. Big Spring Midland, TX 79705	Accounts Payable 4001 N. Big Spring St., Midland, TX 79705	Ste. 401	Pres				Service Service
Report to: Kayle Taylor			Email To:	City/s	Tolce Tate			1	12005 Leburon Rd Mourt Jule; TN 37122 Phone: 615-755-565 Phone: 800-707-56556 Fax: 615-758-5859	
Project Description: Buck Fed		2		Collected: Le	collected: Lea Co NA			N.	UN INTERNO	0
0	Client Project #	(Tur	Lab Project #		-			Table #	
Streed by (print): 4	Site/Facility 10#	14	121	P.O.#					Acctnum: COPTETRA	TRA
Collected by (signature):	Rush? (La	P WUS	otified)	Quote #					Prelogin:	
Immediately Packed on Ice N Y	Same Day Next Day Two Day Three Day		5 Day (Rad Only) 10 Day (Rad Only)	Date Re	Date Results Needed	No		2)(TSR: 526 - Chris McCord PB: Shipped Via:	IcCord
nple ID	Comp/Grab	Matrix *	Depth	Date	Time	Centra		74	Remarks	Sample # (Jab only)
RH. 4 15-6)	loab	55		モリト	13:45	-		×		
1	- Anne-	-			13:50	-		× .		
(2-8)			1		12:55	-		×		
1	les -			_	14:00	4		×	Not Not	
(4-10)	and a			1	14:05	_		×		
1					14:10	-		× .		
(21-11)	A STORE			_	14:15	-		×		
(212-13)		A les		_	14:20	-		×		
(12-14)	1	1				-		× -		
(14-15)	7	7		P	14:30	-		×	and the second se	all'flat
F - Filter B - Bioassay	Remarks:				los ave	AD SORTEN: <0.5 mH/hr	pHTemp	000 1000 1001 1001 1001 1001 1001	Sample Keckit Juscom COC Seal Present/Intact: MP COC Signed/Accute: Bottles arrive intact: Correct bottles used: Sufficient volume sent:	
DW - Drinking Water OT - Other	UPS FedEx	FedEx Courier	ier		Tracking # 443.0	40 3429 2189	26127		<u>JL Applicants</u> VOA Zero Headspace: Preservation Correct/Checked:	cked: _Y _N
Relinquished by : (Signature)		Date: 9/18		Time: 15:30	Repeted by (Signature	The C		-	and hu Looin. Data/Time	n-Dsta/Time
Relinquished by : (Signature)		Date:	N.	Time:	Received by: (Signature)	(ture)	Temp: "C Bottles 1	Bottles received. II pr	Service using a more straight and service straight	
Relinquished by ± (Signature)		Date:	19	Time:	Received for lab by: (Signature)	: (Signature)	Date: Time:	DX45 Hold:		NICO / OK

1. St. 1. 1.

			Billine Information:	hation:			Analysis / Container / Preservative		Chain of Custody P	Page S of S
ConocoPhillips - Tetra Tech	Tech		Accounts Payable	Accounts Payable Accounts Payable Acont N Big Suring St. Ste. 401	Ste 401	Pres				C
4001 N. Big Spring St., Ste. 401 Midland, TX 79705			Midland, TX 79705	TX 79705	101				1-2-5 8-V-1	N.C.E.S
Report to: Kayla Try lor			Kny	to Tay	loc				12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 above: 800-757 5858	
Project Project	3			01	en Co MA	1			100	
	Client Project #			Lab Project #					L# 1070440	0
scred by (print):	Site/Facility ID#	"Fed		P.O.4					Acctnum: COPTETRA	RA
Collected by (signature):	Rush? (L	P MUS	lotified)	Quote #					Template: Prelogin:	
Immediately Packed on ice N Y	Same Day Next Day Two Day Three Day	611	5 Day (Rad Only) 10 Day (Rad Only)	Date Re	Results Needed	No,		191	TSR: 526 - Chris McCord PB:	Cord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		개	Shipped Via: Remarks 5	Sample # (Jab only)
BH-4(15-12)	Crab	SS	1	21/2	2 E: H/	-		×		
	1.5.								1.25	
					10 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -					
The second										
	200									
No. No.					1					
								5an	ple Receipt Check	inte
 Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater 	Kemarks:				RAD SCF	RAD SCREEN: <0.5 mR/hr	PH Temp Flow Other	COC Seal 3 COC Signer Bottles an Correct bo	COC Seal Fresent/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used:	-17/-
DW - Drinking Water OT - Other	Samples returned via: UPS X FedEx	rned via: sdExCourier	rler	1	Tracking# 4430	0 3429 24891	0612,		Sufficient volume sent: If Applicable VOA Zero Beadspace:	
Relinquiched by : (Signature)		Date:	-	Time: 15:30'	Redined by JSignard	the f	Trip Blank Received: Yes / 60 HCL Hoen TBR		ion Cortect/Check	7
Re linquished by : (Signature)		Date:		Time:	Received by. (Signature)	ture)	Temp: "C Bottles Received		If preservation required by Login: Date/Time	Date/Time
Refinquished by : (Signature)		Date:		Time:	Received for lab by. (Signature)	(Signature)	Date: Time: 9/19/18 0845	Hold:	,	NCF) / OK
			1		L PROAV	KUN I				

Kathryn L. Cason

Login #:1026990	Client:COPTETRA	Date:9/19/18	Evaluated by:K Cameron	
LOBIII HITOTOSSO				

Non-Conformance (check applicable items)

Sample Integrity		Chain of Custody Clarification	
Parameter(s) past holding time	×	Login Clarification Needed	If Broken Container:
Improper temperature		Chain of custody is incomplete	Insufficient packing material around container
Improper container type		Please specify Metals requested.	Insufficient packing material inside cooler
Improper preservation		Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.	×	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.		Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.		Trip Blank not received.	If no Chain of Custody:
Broken container		Client did not "X" analysis.	Received by:
Broken container:		Chain of Custody is missing	Date/Time:
Sufficient sample remains			Temp./Cont. Rec./pH:
	1		Carrier:
			Tracking#

Login Comments: Did not receive BH-4 (1-2) or BH-4 (8-9). Received additional sample not listed on COC: BH-3 (6-7) 9/17/18 1240 (1 container).

Client informed by:	Call	x	Email	Voice Mail	Date:9/21/18	Time:09:29	
TSR Initials:CM	Client Co	ntact:					

Login Instructions:

Notified client about the missing samples. Place BH-3 (6-7) on hold with the others.

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT October 18, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1033537
Samples Received:	10/09/2018
Project Number:	212C-MD-01358
Description:	Buck Fed
Site:	BUCK FED
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
BH-1(0-1) L1033537-01	7
BH-1(1-2) L1033537-02	8
BH-2(0-1) L1033537-03	9
BH-2(1-2) L1033537-04	10
BH-3(0-1) L1033537-05	11
BH-3(1-2) L1033537-06	12
BH-4(0-1) L1033537-07	13
BH-4(1-2) L1033537-08	14
BH-5(0-1) L1033537-09	15
BH-6(0-1) L1033537-10	16
BH-6(1-2) L1033537-11	17
BH-7(0-1) L1033537-12	18
BH-8(0-1) L1033537-13	19
BH-9(0-1) L1033537-14	20
BH-9(1-2) L1033537-15	21
Qc: Quality Control Summary	22
Total Solids by Method 2540 G-2011	22
Wet Chemistry by Method 300.0	24
Volatile Organic Compounds (GC) by Method 8015D/GRO	25
Volatile Organic Compounds (GC/MS) by Method 8260B	27
Semi-Volatile Organic Compounds (GC) by Method 8015	30
GI: Glossary of Terms	32
Al: Accreditations & Locations	33
Sc: Sample Chain of Custody	34

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43 PAGE: 2 of 36

SAMPLE SUMMARY

ONE LAB. NAT Rage 75 of 348

3H-1(0-1) L1033537-01 Solid			Collected by Clint Merritt	Collected date/time 10/04/18 10:00	Received date/time 10/09/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Net Chemistry by Method 300.0	WG1179230	10	10/12/18 14:21	10/16/18 04:04	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 17:20	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 21:37	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	20	10/11/18 08:56	10/15/18 17:52	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	1	10/14/18 07:45	10/15/18 05:42	SHG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	10	10/14/18 07:45	10/15/18 14:09	DMW
mi-volatile organic compounds (GC) by Method 6015	WG1180710	10	10/14/18 07.45	10/15/16 14:09	DIVIVV
3H-1(1-2) L1033537-02 Solid			Collected by Clint Merritt	Collected date/time 10/04/18 10:05	Received date/time 10/09/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
/et Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:13	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	200	10/11/18 08:56	10/12/18 17:41	DWR
olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	20	10/11/18 08:56	10/15/18 02:14	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	200	10/11/18 08:56	10/15/18 18:12	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	20	10/14/18 07:45	10/15/18 14:22	DMW
			Collected by	Collected date/time	Received date/time
3H-2(0-1) L1033537-03 Solid			Clint Merritt	10/04/18 10:10	10/09/18 08:45
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
et Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:21	ELN
latile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:02	DWR
platile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 21:57	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	1	10/11/18 08:56	10/15/18 16:51	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	5	10/14/18 07:45	10/15/18 13:56	DMW
			Collected by	Collected date/time	Received date/time
3H-2(1-2) L1033537-04 Solid			Clint Merritt	10/04/18 10:15	10/09/18 08:45
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
et Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:48	ELN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:26	DWR
platile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 22:17	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1181245	1	10/11/18 08:56	10/15/18 17:11	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1180710	1	10/14/18 07:45	10/15/18 12:16	DMW
			Collected by	Collected date/time	Received date/time
			Clint Merritt	10/04/18 10:20	10/09/18 08:45
3H-3(0-1) L1033537-05 Solid					
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
/et Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 04:56	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150		10/12/18 14.21	10/12/18 18:43	DWR
		1			BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 22:37	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	1	10/17/18 08:50	10/17/18 19:27	TJD

Released to Imaging: 010/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43 PAGE: 3 of 36

SAMPLE SUMMARY

ONE LAB. NAT Page 76 of 348

BH-3(1-2) L1033537-06 Solid			Collected by Clint Merritt	Collected date/time 10/04/18 10:25	Received date/time 10/09/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Wet Chemistry by Method 300.0	WG1179230	10	10/12/18 14:21	10/16/18 05:05	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	1	10/11/18 08:56	10/12/18 19:04	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 22:56	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 20:35	TJD
			Collected by	Collected date/time	Received date/time
3H-4(0-1) L1033537-07 Solid			Clint Merritt	10/04/18 10:30	10/09/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Vet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:23	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 19:25	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:16	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:29	TJD
			Collected by	Collected date/time	Received date/time
BH-4(1-2) L1033537-08 Solid			Clint Merritt	10/04/18 10:35	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
/et Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:32	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 16:50	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:36	BMB
emi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	5	10/17/18 08:50	10/17/18 20:08	TJD
			Collected by	Collected date/time	Received date/time
BH-5(0-1) L1033537-09 Solid			Clint Merritt	10/04/18 11:00	10/09/18 08:45
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Net Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 05:40	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 20:07	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/14/18 23:55	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:43	TJD
			Collected by	Collected date/time	Received date/time
BH-6(0-1) L1033537-10 Solid			Clint Merritt	10/04/18 11:20	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1179980	1	10/12/18 10:56	10/12/18 11:06	KDW
Net Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 05:49	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 17:14	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:15	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 20:49	TJD

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43 PAGE: 4 of 36

SAMPLE SUMMARY

ONE LAB. NAT Rage 77. of 348

	SAMPLE SU		X I		IL LAD. INFUTOPOPUB
BH-6(1-2) L1033537-11 Solid			Collected by Clint Merritt	Collected date/time 10/04/18 11:25	Received date/time 10/09/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 05:58	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	25	10/11/18 08:56	10/15/18 17:39	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:35	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 21:56	TJD
			10, 11, 10, 02, 22		
DU 7/0 1\ 1 1000E07 10 Calid			Collected by Clint Merritt	Collected date/time 10/04/18 11:35	Received date/time 10/09/18 08:45
BH-7(0-1) L1033537-12 Solid					
Method	Batch	Dilution	Preparation dato/time	Analysis dato/timo	Analyst
	WC4470002	1	date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 06:07	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:03	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180868	1	10/11/18 08:56	10/15/18 00:54	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	5	10/17/18 08:50	10/17/18 20:22	TJD
			Collected by	Collected date/time	Received date/time
BH-8(0-1) L1033537-13 Solid			Clint Merritt	10/04/18 11:50	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 06:33	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:27	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 05:50	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	10	10/17/18 08:50	10/17/18 21:02	TJD
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 22:23	TJD
			Collected by	Collected date/time	Received date/time
BH-9(0-1) L1033537-14 Solid			Clint Merritt	10/04/18 12:05	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	1	10/12/18 14:21	10/16/18 06:50	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180150	25	10/11/18 08:56	10/12/18 21:50	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 10:08	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1182012	20	10/17/18 08:50	10/17/18 22:10	TJD
			Collected by	Collected date/time	Received date/time
BH-9(1-2) L1033537-15 Solid			Clint Merritt	10/04/18 12:10	10/09/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1179982	1	10/12/18 10:43	10/12/18 10:53	KDW
Wet Chemistry by Method 300.0	WG1179230	5	10/12/18 14:21	10/16/18 07:26	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1180849	1	10/11/18 08:56	10/15/18 18:51	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1180941	1	10/11/18 08:56	10/15/18 06:10	BMB
	WG1182012	10	10/17/18 08:50	10/17/18 21:16	TJD

Released to Imaging: 010/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01358

SDG: L1033537

DATE/TIME: 10/18/18 15:43 PAGE: 5 of 36

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01358

SDG: L1033537 D 10

DATE/TIME: 10/18/18 15:43 PAGE: 6 of 36

SAMPLE RESULTS - 01 L1033537

WG1179230

A

Sc

Total Solids by Method 2540 G-2011

Chloride

Total Solids by I	vietnoù 25 4 0 0-20	/11							1 C 2
	Result	Qualifier	Dilution	Analysis	Batch				– Cp
Analyte	%			date / time					2
Total Solids	81.7		1	10/12/2018 11:06	WG1179980				Tc
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (o	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cp

Volatile Organic Compounds (GC) by Method 8015D/GRO

5850

Volatile Organic Compounds (GC) by Method 8015D/GRO									ືSr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	332		0.664	0.100	3.06	25	10/12/2018 17:20	WG1180150	
(S) a,a,a-Trifluorotoluene(FID)	82.1				77.0-120		10/12/2018 17:20	WG1180150	⁷ Gl

10.0

122

10

10/16/2018 04:04

9.74

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.240		0.000490	0.00100	0.00122	1	10/14/2018 21:37	WG1180868
Toluene	7.97		0.0306	0.00500	0.122	20	10/15/2018 17:52	WG1181245
Ethylbenzene	0.924		0.000649	0.00250	0.00306	1	10/14/2018 21:37	WG1180868
Total Xylenes	17.3		0.117	0.00650	0.159	20	10/15/2018 17:52	WG1181245
(S) Toluene-d8	128				75.0-131		10/14/2018 21:37	WG1180868
(S) Toluene-d8	110				75.0-131		10/15/2018 17:52	WG1181245
(S) Dibromofluoromethane	80.5				65.0-129		10/14/2018 21:37	WG1180868
(S) Dibromofluoromethane	103				65.0-129		10/15/2018 17:52	WG1181245
(S) a,a,a-Trifluorotoluene	83.7				80.0-120		10/14/2018 21:37	WG1180868
(S) a,a,a-Trifluorotoluene	101				80.0-120		10/15/2018 17:52	WG1181245
(S) 4-Bromofluorobenzene	88.7				67.0-138		10/14/2018 21:37	WG1180868
(S) 4-Bromofluorobenzene	106				67.0-138		10/15/2018 17:52	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1640		19.7	4.00	49.0	10	10/15/2018 14:09	WG1180710
C28-C40 Oil Range	294		0.335	4.00	4.90	1	10/15/2018 05:42	WG1180710
(S) o-Terphenyl	120				18.0-148		10/15/2018 05:42	WG1180710
(S) o-Terphenyl	128				18.0-148		10/15/2018 14:09	WG1180710

SDG: L1033537

SAMPLE RESULTS - 02 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	80.7		1	10/12/2018 11:06	WG1179980	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Me	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	1060		0.985	10.0	12.4	1	10/16/2018 04:13	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quaimer	ma/ka	mg/kg	mg/kg	Dilution	date / time	Batch	⁶
TPH (GC/FID) Low Fraction	2150		5.38	0.100	24.8	200	10/12/2018 17:41	WG1180150	$ \Box$
(S) a,a,a-Trifluorotoluene(FID)	84.7				77.0-120		10/12/2018 17:41	WG1180150	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	3.24		0.00991	0.00100	0.0248	20	10/15/2018 02:14	WG1180868
Toluene	36.0		0.0310	0.00500	0.124	20	10/15/2018 02:14	WG1180868
Ethylbenzene	7.66		0.0131	0.00250	0.0619	20	10/15/2018 02:14	WG1180868
Total Xylenes	103		1.18	0.00650	1.61	200	10/15/2018 18:12	WG1181245
(S) Toluene-d8	121				75.0-131		10/15/2018 02:14	WG1180868
(S) Toluene-d8	122				75.0-131		10/15/2018 18:12	WG1181245
(S) Dibromofluoromethane	87.2				65.0-129		10/15/2018 02:14	WG1180868
(S) Dibromofluoromethane	104				65.0-129		10/15/2018 18:12	WG1181245
(S) a,a,a-Trifluorotoluene	82.4				80.0-120		10/15/2018 02:14	WG1180868
(S) a,a,a-Trifluorotoluene	101				80.0-120		10/15/2018 18:12	WG1181245
(S) 4-Bromofluorobenzene	103				67.0-138		10/15/2018 02:14	WG1180868
(S) 4-Bromofluorobenzene	107				67.0-138		10/15/2018 18:12	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5030		39.9	4.00	99.1	20	10/15/2018 14:22	WG1180710
C28-C40 Oil Range	1420		6.79	4.00	99.1	20	10/15/2018 14:22	WG1180710
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/15/2018 14:22	WG1180710

SDG: L1033537

SAMPLE RESULTS - 03 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	85.1		1	10/12/2018 11:06	<u>WG1179980</u>	
Wet Chemistry by	Method 300.0	1				

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	- L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	717		0.934	10.0	11.7	1	10/16/2018 04:21	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	717		0.934	10.0	11.7	1	10/16/2018 04:21	WG1179230	
Volatile Organic Comp	ounds (GC) ł	ov Method	8015D/GI	RO					⁵ Sr
		,							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	, ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	ြ ်ပူင
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1180849	⁶ Qc
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution 1	date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00100	0.00117	1	10/14/2018 21:57	WG1180868
Toluene	0.00293	J	0.00147	0.00500	0.00587	1	10/15/2018 16:51	WG1181245
Ethylbenzene	U		0.000623	0.00250	0.00294	1	10/14/2018 21:57	WG1180868
Total Xylenes	0.00644	J	0.00561	0.00650	0.00764	1	10/15/2018 16:51	WG1181245
(S) Toluene-d8	112				75.0-131		10/14/2018 21:57	WG1180868
(S) Toluene-d8	119				75.0-131		10/15/2018 16:51	WG1181245
(S) Dibromofluoromethane	79.4				65.0-129		10/14/2018 21:57	WG1180868
(S) Dibromofluoromethane	98.4				65.0-129		10/15/2018 16:51	WG1181245
(S) a,a,a-Trifluorotoluene	82.3				80.0-120		10/14/2018 21:57	WG1180868
(S) a,a,a-Trifluorotoluene	96.9				80.0-120		10/15/2018 16:51	WG1181245
(S) 4-Bromofluorobenzene	89.3				67.0-138		10/14/2018 21:57	WG1180868
(S) 4-Bromofluorobenzene	97.2				67.0-138		10/15/2018 16:51	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	484		9.46	4.00	23.5	5	10/15/2018 13:56	WG1180710
C28-C40 Oil Range	137		1.61	4.00	23.5	5	10/15/2018 13:56	WG1180710
(S) o-Terphenyl	119				18.0-148		10/15/2018 13:56	WG1180710

SDG: L1033537

SAMPLE RESULTS - 04 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 10/04/18 10:15

						 1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	85.9		1	10/12/2018 11:06	<u>WG1179980</u>	Tc

Wet Chemistry by Method 300.0

									0.
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ C
Chloride	581		0.926	10.0	11.6	1	10/16/2018 04:48	WG1179230	C

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	581		0.926	10.0	11.6	1	10/16/2018 04:48	WG1179230
Volatile Organic Com								
Volatile Organic Com	oounds (GC) b Result (dry)	by Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com Analyte					MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)		SDL (dry)	Unadj. MQL	())	Dilution 1	,	Batch WG1180849

Sample Narrative:

L1033537-04 WG1180849: Previous run also had low IS/SURR recovery. Matrix effect.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000466	0.00100	0.00116	1	10/14/2018 22:17	WG1180868
Toluene	0.00452	J	0.00146	0.00500	0.00582	1	10/15/2018 17:11	WG1181245
Ethylbenzene	U		0.000617	0.00250	0.00291	1	10/14/2018 22:17	WG1180868
Total Xylenes	0.0112		0.00557	0.00650	0.00757	1	10/15/2018 17:11	WG1181245
(S) Toluene-d8	116				75.0-131		10/14/2018 22:17	WG1180868
(S) Toluene-d8	118				75.0-131		10/15/2018 17:11	WG1181245
(S) Dibromofluoromethane	79.1				65.0-129		10/14/2018 22:17	WG1180868
(S) Dibromofluoromethane	94.5				65.0-129		10/15/2018 17:11	WG1181245
(S) a,a,a-Trifluorotoluene	79.8	J2			80.0-120		10/14/2018 22:17	WG1180868
(S) a,a,a-Trifluorotoluene	97.7				80.0-120		10/15/2018 17:11	WG1181245
(S) 4-Bromofluorobenzene	90.7				67.0-138		10/14/2018 22:17	WG1180868
(S) 4-Bromofluorobenzene	102				67.0-138		10/15/2018 17:11	WG1181245

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	170		1.87	4.00	4.66	1	10/15/2018 12:16	WG1180710
C28-C40 Oil Range	48.6		0.319	4.00	4.66	1	10/15/2018 12:16	WG1180710
(S) o-Terphenyl	71.6				18.0-148		10/15/2018 12:16	WG1180710

SDG: L1033537

SAMPLE RESULTS - 05 L1033537

[®]Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				— [C
Analyte	%			date / time					2
Total Solids	82.3		1	10/12/2018 11:06	<u>WG1179980</u>				T
Wat Chamistry	by Method 300.0								3
Wet Chemistry i	by Method 500.0								³ S
Wet Chemistry I	Result (dry)	Qualifier	SDL (c	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	S
Analyte	-	Qualifier	SDL (c mg/kg		MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	S

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	. ,	-			MOL (dire.)	Dilution	Analusia	Datah	_
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	0.0346	J	0.0264	0.100	0.122	1	10/12/2018 18:43	WG1180150	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/12/2018 18:43	WG1180150	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quanner	mg/kg	mg/kg	mg/kg	Bliddoll	date / time	Baten
Benzene	U		0.000486	0.00100	0.00122	1	10/14/2018 22:37	WG1180868
Toluene	U		0.00152	0.00500	0.00608	1	10/14/2018 22:37	WG1180868
Ethylbenzene	U		0.000644	0.00250	0.00304	1	10/14/2018 22:37	WG1180868
Total Xylenes	U		0.00581	0.00650	0.00790	1	10/14/2018 22:37	WG1180868
(S) Toluene-d8	114				75.0-131		10/14/2018 22:37	WG1180868
(S) Dibromofluoromethane	78.6				65.0-129		10/14/2018 22:37	WG1180868
(S) a,a,a-Trifluorotoluene	79.6	<u>J2</u>			80.0-120		10/14/2018 22:37	WG1180868
(S) 4-Bromofluorobenzene	101				67.0-138		10/14/2018 22:37	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	51.2		1.96	4.00	4.86	1	10/17/2018 19:27	WG1182012
C28-C40 Oil Range	19.9		0.333	4.00	4.86	1	10/17/2018 19:27	WG1182012
(S) o-Terphenyl	49.7				18.0-148		10/17/2018 19:27	WG1182012

SAMPLE RESULTS - 06 L1033537

⁸Al

Sc

Total Solids by Method 2540 G-2011

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.9		1	10/12/2018 11:06	<u>WG1179980</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Me	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		^₄ Cn
Chloride	3950		8.75	10.0	110	10	10/16/2018 05:05	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	<u> </u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ီQ
TPH (GC/FID) Low Fraction	0.121		0.0239	0.100	0.110	1	10/12/2018 19:04	WG1180150	
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		10/12/2018 19:04	WG1180150	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000440	0.00100	0.00110	1	10/14/2018 22:56	WG1180868
Toluene	U		0.00138	0.00500	0.00550	1	10/14/2018 22:56	WG1180868
Ethylbenzene	U		0.000583	0.00250	0.00275	1	10/14/2018 22:56	WG1180868
Total Xylenes	U		0.00526	0.00650	0.00715	1	10/14/2018 22:56	WG1180868
(S) Toluene-d8	116				75.0-131		10/14/2018 22:56	WG1180868
(S) Dibromofluoromethane	82.0				65.0-129		10/14/2018 22:56	WG1180868
(S) a,a,a-Trifluorotoluene	79.5	<u>J2</u>			80.0-120		10/14/2018 22:56	WG1180868
(S) 4-Bromofluorobenzene	89.6				67.0-138		10/14/2018 22:56	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1610		17.7	4.00	44.0	10	10/17/2018 20:35	WG1182012
C28-C40 Oil Range	786		3.02	4.00	44.0	10	10/17/2018 20:35	WG1182012
(S) o-Terphenyl	30.6				18.0-148		10/17/2018 20:35	WG1182012

SDG: L1033537

SAMPLE RESULTS - 07 L1033537

Å

Sc

Collected date/time: 10/04/18 10:30 Total Solids by Method 2540 G-2011

Total Solids by I	vietnou 2040 0-2	2011				1
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	83.9		1	10/12/2018 11:06	WG1179980	Tc
Wat Chamistry h	av Method 300 0					3

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	- L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	3780		4.74	10.0	59.6	5	10/16/2018 05:23	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	3780		4.74	10.0	59.6	5	10/16/2018 05:23	WG1179230
Volatile Organic Com					MOL (dra)	Dilution	Analysis	Datab
Volatile Organic Com	pounds (GC) t Result (dry)	oy Method <u>Qualifier</u>	8015D/G SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com					MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)		SDL (dry)	Unadj. MQL		Dilution 25	,	Batch WG1180150

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00100	0.00119	1	10/14/2018 23:16	WG1180868
Toluene	0.00865		0.00149	0.00500	0.00596	1	10/14/2018 23:16	WG1180868
Ethylbenzene	0.0156		0.000632	0.00250	0.00298	1	10/14/2018 23:16	WG1180868
Total Xylenes	0.199		0.00570	0.00650	0.00775	1	10/14/2018 23:16	WG1180868
(S) Toluene-d8	117				75.0-131		10/14/2018 23:16	WG1180868
(S) Dibromofluoromethane	81.0				65.0-129		10/14/2018 23:16	WG1180868
(S) a,a,a-Trifluorotoluene	79.1	<u>J2</u>			80.0-120		10/14/2018 23:16	WG1180868
(S) 4-Bromofluorobenzene	91.4				67.0-138		10/14/2018 23:16	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5060		38.4	4.00	95.4	20	10/17/2018 21:29	WG1182012
C28-C40 Oil Range	1620		6.54	4.00	95.4	20	10/17/2018 21:29	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:29	WG1182012

SAMPLE RESULTS - 08 L1033537

⁸Al

Sc

Total Solids by Method 2540 G-2011

						I'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	89.1		1	10/12/2018 11:06	WG1179980	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	2540		4.46	10.0	56.1	5	10/16/2018 05:32	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	mg/kg	Dilation	date / time	Baten	⁶ Q
TPH (GC/FID) Low Fraction	2.51		0.0244	0.100	0.112	1	10/15/2018 16:50	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	84.4				77.0-120		10/15/2018 16:50	WG1180849	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000449	0.00100	0.00112	1	10/14/2018 23:36	WG1180868	
Toluene	U		0.00140	0.00500	0.00561	1	10/14/2018 23:36	WG1180868	
Ethylbenzene	U		0.000595	0.00250	0.00281	1	10/14/2018 23:36	WG1180868	
Total Xylenes	U		0.00537	0.00650	0.00730	1	10/14/2018 23:36	WG1180868	
(S) Toluene-d8	115				75.0-131		10/14/2018 23:36	WG1180868	
(S) Dibromofluoromethane	78.6				65.0-129		10/14/2018 23:36	WG1180868	
(S) a,a,a-Trifluorotoluene	79.2	<u>J2</u>			80.0-120		10/14/2018 23:36	WG1180868	
(S) 4-Bromofluorobenzene	88.9				67.0-138		10/14/2018 23:36	WG1180868	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1110		9.04	4.00	22.5	5	10/17/2018 20:08	WG1182012
C28-C40 Oil Range	466		1.54	4.00	22.5	5	10/17/2018 20:08	WG1182012
(S) o-Terphenyl	30.8				18.0-148		10/17/2018 20:08	WG1182012

SDG: L1033537

SAMPLE RESULTS - 09 L1033537

Total Solids by Method 2540 G-2011

						10	~n
	Result	Qualifier	Dilution	Analysis	Batch		-h
Analyte	%			date / time		2	
Total Solids	85.5		1	10/12/2018 11:06	<u>WG1179980</u>	T	Гс

Wet Chemistry by Method 300.0

Wet Chemistry by Met	hod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		^₄ Cn
Chloride	2660		4.65	10.0	58.5	5	10/16/2018 05:40	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

		Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
nalyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
PH (GC/FID) Low Fraction	183		0.635	0.100	2.92	25	10/12/2018 20:07	WG1180150
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/12/2018 20:07	WG1180150

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000833	J	0.000468	0.00100	0.00117	1	10/14/2018 23:55	WG1180868
Toluene	0.00294	J	0.00146	0.00500	0.00585	1	10/14/2018 23:55	WG1180868
Ethylbenzene	U		0.000620	0.00250	0.00292	1	10/14/2018 23:55	WG1180868
Total Xylenes	0.152		0.00559	0.00650	0.00760	1	10/14/2018 23:55	WG1180868
(S) Toluene-d8	114				75.0-131		10/14/2018 23:55	WG1180868
(S) Dibromofluoromethane	80.7				65.0-129		10/14/2018 23:55	WG1180868
(S) a,a,a-Trifluorotoluene	78.9	<u>J2</u>			80.0-120		10/14/2018 23:55	WG1180868
(S) 4-Bromofluorobenzene	86.7				67.0-138		10/14/2018 23:55	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6240		37.7	4.00	93.6	20	10/17/2018 21:43	WG1182012
C28-C40 Oil Range	1770		6.41	4.00	93.6	20	10/17/2018 21:43	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:43	WG1182012

SAMPLE RESULTS - 10 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	84.6		1	10/12/2018 11:06	WG1179980	
Wet Chemistry b	by Method 300.0					

Wet Chemistry by Method 300.0

									-
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	248		0.940	10.0	11.8	1	10/16/2018 05:49	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		^₄ Cn
Chloride	248		0.940	10.0	11.8	1	10/16/2018 05:49	WG1179230	
Volatile Organic Comp	ounds (GC) ł	ov Method	8015D/GI	RO					⁵ Sr
		.,							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	· · · ·	·			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ Qc
	Result (dry)	·	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1180849	⁶ Qc
Analyte	Result (dry) mg/kg	·	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution	date / time		⁶ Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00100	0.00118	1	10/15/2018 00:15	WG1180868
Toluene	U		0.00148	0.00500	0.00591	1	10/15/2018 00:15	WG1180868
Ethylbenzene	U		0.000626	0.00250	0.00295	1	10/15/2018 00:15	WG1180868
Total Xylenes	U		0.00565	0.00650	0.00768	1	10/15/2018 00:15	WG1180868
(S) Toluene-d8	114				75.0-131		10/15/2018 00:15	WG1180868
(S) Dibromofluoromethane	77.2				65.0-129		10/15/2018 00:15	WG1180868
(S) a,a,a-Trifluorotoluene	81.8				80.0-120		10/15/2018 00:15	WG1180868
(S) 4-Bromofluorobenzene	95.8				67.0-138		10/15/2018 00:15	WG1180868
(S) 4-Bromonuorobenzene	95.8				67.0-138		10/15/2018 00:15	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1040		19.0	4.00	47.3	10	10/17/2018 20:49	WG1182012
C28-C40 Oil Range	442		3.24	4.00	47.3	10	10/17/2018 20:49	WG1182012
(S) o-Terphenyl	35.7				18.0-148		10/17/2018 20:49	WG1182012

SDG: L1033537

SAMPLE RESULTS - 11 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	86.4		1	10/12/2018 10:53	WG1179982	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Met	thod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ C
Chloride	586		0.921	10.0	11.6	1	10/16/2018 05:58	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	150		0.628	0.100	2.89	25	10/15/2018 17:39	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	90.8				77.0-120		10/15/2018 17:39	WG1180849	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00336		0.000463	0.00100	0.00116	1	10/15/2018 00:35	WG1180868
Toluene	0.313		0.00145	0.00500	0.00579	1	10/15/2018 00:35	WG1180868
Ethylbenzene	0.0505		0.000614	0.00250	0.00289	1	10/15/2018 00:35	WG1180868
Total Xylenes	2.26		0.00553	0.00650	0.00753	1	10/15/2018 00:35	WG1180868
(S) Toluene-d8	114				75.0-131		10/15/2018 00:35	WG1180868
(S) Dibromofluoromethane	75.6				65.0-129		10/15/2018 00:35	WG1180868
(S) a,a,a-Trifluorotoluene	78.7	<u>J2</u>			80.0-120		10/15/2018 00:35	WG1180868
(S) 4-Bromofluorobenzene	89.0				67.0-138		10/15/2018 00:35	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3080		37.3	4.00	92.6	20	10/17/2018 21:56	WG1182012
C28-C40 Oil Range	1070		6.35	4.00	92.6	20	10/17/2018 21:56	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 21:56	WG1182012

SAMPLE RESULTS - 12 L1033537

ONE LAB. NAT Rage 90 of 348

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	'n
	Result	Qualifier	Dilution	Analysis	Batch		μ
Analyte	%			date / time		2	_
Total Solids	81.2		1	10/12/2018 10:53	<u>WG1179982</u>	Τ	С

Wet Chemistry by Method 300.0

Wet Chemistry by Met	hod 300.0								³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ C
Chloride	64.9		0.980	10.0	12.3	1	10/16/2018 06:07	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Q
TPH (GC/FID) Low Fraction	0.0507	J	0.0267	0.100	0.123	1	10/15/2018 18:03	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	86.0				77.0-120		10/15/2018 18:03	WG1180849	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000495	J	0.000493	0.00100	0.00123	1	10/15/2018 00:54	WG1180868
Toluene	U		0.00154	0.00500	0.00616	1	10/15/2018 00:54	WG1180868
Ethylbenzene	U		0.000653	0.00250	0.00308	1	10/15/2018 00:54	WG1180868
Total Xylenes	U		0.00589	0.00650	0.00801	1	10/15/2018 00:54	WG1180868
(S) Toluene-d8	115				75.0-131		10/15/2018 00:54	WG1180868
(S) Dibromofluoromethane	70.5				65.0-129		10/15/2018 00:54	WG1180868
(S) a,a,a-Trifluorotoluene	78.5	<u>J2</u>			80.0-120		10/15/2018 00:54	WG1180868
(S) 4-Bromofluorobenzene	89.9				67.0-138		10/15/2018 00:54	WG1180868

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1080		9.92	4.00	24.6	5	10/17/2018 20:22	WG1182012
C28-C40 Oil Range	557		1.69	4.00	24.6	5	10/17/2018 20:22	WG1182012
(S) o-Terphenyl	44.0				18.0-148		10/17/2018 20:22	WG1182012

SDG: L1033537

SAMPLE RESULTS - 13

WG1179230

Â

Sc

10/16/2018 06:33

Total Solids by Method 2540 G-2011

Chloride

· · · · · · · · · · · · · · · · · · ·									
	Result	Qualifier	Dilution	Analysis	Batch				— [`C
Analyte	%			date / time					2
Total Solids	92.6		1	10/12/2018 10:53	WG1179982				Ťτ
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (c	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4C
Chlarida	1420		4.20	10.0	F4.0	Г	10/10/2010 00:22	WC1170220	

Volatile Organic Compounds (GC) by Method 8015D/GRO

1420

Result (drv)	Qualifier	SDL (drv)	Unadi, MQL	MQL (drv)	Dilution	Analysis	Batch	
mg/kg	quantor	mg/kg	mg/kg	mg/kg	2.0000	date / time	<u>Datan</u>	ی م
0.731		0.0234	0.100	0.108	1	10/15/2018 18:27	WG1180849	
83.3				77.0-120		10/15/2018 18:27	WG1180849	⁷ G
	0.731	mg/kg 0.731	mg/kg mg/kg 0.731 0.0234	mg/kg mg/kg mg/kg 0.731 0.0234 0.100	mg/kg mg/kg mg/kg mg/kg 0.731 0.0234 0.100 0.108	mg/kg mg/kg mg/kg mg/kg 0.731 0.0234 0.100 0.108 1	mg/kg mg/kg mg/kg mg/kg date / time 0.731 0.0234 0.100 0.108 1 10/15/2018 18:27	mg/kg mg/kg mg/kg mg/kg date / time 0.731 0.0234 0.100 0.108 1 10/15/2018 18:27 WG1180849

10.0

54.0

5

4.30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Pocult (dn/)	Qualifier	SDL (dp)	Unadi MOI	MOL (dp)	Dilution	Analycic	Patch
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/15/2018 05:50	WG1180941
Toluene	U		0.00135	0.00500	0.00540	1	10/15/2018 05:50	WG1180941
Ethylbenzene	U		0.000573	0.00250	0.00270	1	10/15/2018 05:50	WG1180941
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/15/2018 05:50	WG1180941
(S) Toluene-d8	119				75.0-131		10/15/2018 05:50	WG1180941
(S) Dibromofluoromethane	79.0				65.0-129		10/15/2018 05:50	WG1180941
(S) a,a,a-Trifluorotoluene	79.0	<u>J2</u>			80.0-120		10/15/2018 05:50	WG1180941
(S) 4-Bromofluorobenzene	89.8				67.0-138		10/15/2018 05:50	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3550		34.8	4.00	86.4	20	10/17/2018 22:23	WG1182012
C28-C40 Oil Range	1340		2.96	4.00	43.2	10	10/17/2018 21:02	WG1182012
(S) o-Terphenyl	23.9				18.0-148		10/17/2018 21:02	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 22:23	WG1182012

SDG: L1033537

SAMPLE RESULTS - 14 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.4		1	10/12/2018 10:53	WG1179982	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	289		0.920	10.0	11.6	1	10/16/2018 06:50	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	289		0.920	10.0	11.6	1	10/16/2018 06:50	WG1179230
Volatile Organic Comp		-						
Volatile Organic Comp	Result (dry)	by Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	· • • •	Dilution 25	,	Batch WG1180150

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000463	0.00100	0.00116	1	10/15/2018 10:08	WG1180941
Toluene	U		0.00145	0.00500	0.00579	1	10/15/2018 10:08	WG1180941
Ethylbenzene	U		0.000613	0.00250	0.00289	1	10/15/2018 10:08	WG1180941
Total Xylenes	U		0.00553	0.00650	0.00752	1	10/15/2018 10:08	WG1180941
(S) Toluene-d8	120				75.0-131		10/15/2018 10:08	WG1180941
(S) Dibromofluoromethane	79.1				65.0-129		10/15/2018 10:08	WG1180941
(S) a,a,a-Trifluorotoluene	76.3	<u>J2</u>			80.0-120		10/15/2018 10:08	WG1180941
(S) 4-Bromofluorobenzene	89.3				67.0-138		10/15/2018 10:08	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5110		37.3	4.00	92.6	20	10/17/2018 22:10	WG1182012
C28-C40 Oil Range	1420		6.34	4.00	92.6	20	10/17/2018 22:10	WG1182012
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		10/17/2018 22:10	WG1182012

SAMPLE RESULTS - 15 L1033537

Â

Sc

Total Solids by Method 2540 G-2011

	Resul	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.9		1	10/12/2018 10:53	WG1179982	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ C
Chloride	1790		4.42	10.0	55.6	5	10/16/2018 07:26	WG1179230	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ľQo
TPH (GC/FID) Low Fraction	3.28		0.0241	0.100	0.111	1	10/15/2018 18:51	WG1180849	
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		10/15/2018 18:51	WG1180849	7 GI
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000445	0.00100	0.00111	1	10/15/2018 06:10	WG1180941
Toluene	U		0.00139	0.00500	0.00556	1	10/15/2018 06:10	WG1180941
Ethylbenzene	U		0.000590	0.00250	0.00278	1	10/15/2018 06:10	WG1180941
Total Xylenes	U		0.00532	0.00650	0.00723	1	10/15/2018 06:10	WG1180941
(S) Toluene-d8	115				75.0-131		10/15/2018 06:10	WG1180941
(S) Dibromofluoromethane	80.7				65.0-129		10/15/2018 06:10	WG1180941
(S) a,a,a-Trifluorotoluene	78.9	<u>J2</u>			80.0-120		10/15/2018 06:10	WG1180941
(S) 4-Bromofluorobenzene	90.9				67.0-138		10/15/2018 06:10	WG1180941

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1030		17.9	4.00	44.5	10	10/17/2018 21:16	WG1182012
C28-C40 Oil Range	362		3.05	4.00	44.5	10	10/17/2018 21:16	WG1182012
(S) o-Terphenyl	53.9				18.0-148		10/17/2018 21:16	WG1182012

SDG: L1033537

Rece	ived (by OCI ∼	<u>)</u> : 1	1/8/202	10	:05	5 4] س	<mark>ک M</mark>		פֿ	$\overline{P}^{_{\scriptscriptstyle (S)}}$		Page 94 of 3	348
ONE LAB. NATIONWIDE.														PAGE: 22 of 36
														DATE/TIME: 10/18/18 15:43
LITY CONTROL SUMMARY 11033537-01.02.03.04.05.06.07.08.09.10														SDG: L1033537
QUALITY CONTROL 1033537-01.02.03.04.05.06.							DUP Qualifier Limits	90			s LCS Qualifier			PROJECT: 212C-MD-01358
0		MB RDL	%	ĺ	(HD)		OUP RPD	% 0.455			Rec. Limits	% ጸና በ-115		212
		MB MDL	%	(- -	iplicate (D	10/12/18 11:06	Dilution DUP RPD	-			LCS Rec.	% 100		
11		MB Qualifier			(OS) • DU	K3350560-3	t DUP Result	% 85.5	CS)		LCS Result	20 U		£
) hod 2540 G-20	1B)	2/18 11:06 MB Result	%	-	iginal Sample	12/18 11:06 • (DUP)	Original Result DUP Result	% 85.1	rol Sample (L	'12/18 11:06	Spike Amount «	50 O		ACCOUNT: ConocoPhillips - Tetra Tech
WG1179980	post Method Blank (N	0 (MB) R3350560-1 10/12/18 11:06	Analyte		201-1033537-03 Original Sample (OS) • Duplicate (DUP)	7(05) L103353/-03 10/	02:0	W otal Solids	Laboratory Control Sample (LCS)	(LCS) R3350560-2 10/12/18 11:06		Andıyte Total Solids		Conoc

Rece	ived l	by OCD	5 11	/ <mark>8/202</mark>	10	:05	:54 Մ	P)	ိုလ္တိ	ے ا	ō	۵ ۵		ိုင်						Po	ige 🤉	95 oj	f 348	
ONE LAB. NATIONWIDE.																							PAGE	23 of 36
																							DATE/TIME:	10/18/18 15:43
CONTROL SUMMARY 1033537-11,12,13,14,15																							SDG:	L1033537
QUALITY CO							DUP Qualifier Limits	%	0			LCS Qualifier											PROJECT:	212C-MD-01358
Ø		MB RDL	9		DUP)		Dilution DUP RPD	%	0.377				%	ଟା।-୦.୯୪									E.	212C
		MB MDL	9		olicate (0/12/18 10	Dilution		.			LCS Rec.	%	001										
11		MB Qualifier			(OS) • Dup	K3350558-3 1	Original Result DUP Result	%	92.2	-CS)			%	0.06										ch
8 2 ethod 2540 G-20	(MB))/12/18 10:53 MB Result %	0.00100		riginal Sample	1/12/18 10:53 • (UUP)	Original Resu	%	92.6	ntrol Sample (L	10/12/18 10:53	Spike Amount	%	0.06									ACCOUNT:	ConocoPhillips - Tetra Tech
WG1179982	Method Blank	0 (MB) R3350558-1 10/12/18 10:53 MB Res	Total Solids	10/31	001/1033537-13 Original Sample (OS) • Duplicate (DUP)	05) L103353/-13 10	:02:	Analyte	W otal Solids	Laboratory Control Sample (LCS)	(LCS) R3350558-2 10/12/18 10:53		Analyte	I OTAI SOIIDS										Cor

WG1179	WG1179230 Wet Chemistry by Method 300.0			Q I	QUALITY L1033537-01,02	UALITY CONTROL SUMMAR L1033537-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15	OL SU	SUMMARY 9,10,11,12,13,14,15	× s			ONE LAB. NATIONWIDE.		Rece
pethod Blau	nk (MB)												-	ived b
(MB) R3350925-1 10/16/18 03:02 MB Resu Malyte mg/kg	-1 10/16/18 03:02 MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg										y OCD: □
Chloride	Э		0.795	10.0									m`	11/8
0-2838801-100 0/31/20	201-1033537-06 Original Sample (OS) • Duplicate (DUP)	Ind • (SO)	olicate (DUF	(4	(2021 1
C(OS) L1033537-C	16 10/16/18 05:05 • (DUP)) R3350925-4	10/16/18 05:14											0:0
3:02:	Original Result (dry)		Dilution DUP RPD		DUP Qualifier DI	DUP RPD Limits							```ى 1	5:54 5
& Analyte	mg/kg	mg/kg			%									РМ
Wachloride	3950	4280	10 8.13		20	0							٥	စ္တိ
L1033537-13	L1033537-13 Original Sample (OS) • Duplicate (DUP)	(OS) • Dup	licate (DUP										~	Ū
(OS) L1033537-1.	(OS) L1033537-13 10/16/18 06:33 • (DUP) R3350925-5 10/16/18 06:42	R3350925-5	10/16/18 06:42											
(+) (*) (*)	Original Result DUP Result (dry) (dry)	(dry)	Dilution DUP RPD		DUP Qualifier DU	DUP RPD Limits «							<u></u>	A
Alidiyle	UIIG/KG	IIIG/KG			2/									Γ
Chloride	1420	1260	5 11.6		20	0							ກັ້	S S
Laboratory (Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	CS) • Labo	ratory Cont	rol Sampl	e Duplicat	e (LCSD)								
(LCS) R3350925	(LCS) R3350925-2 10/16/18 03:11 • (LCSD) R3350925-3 10/16/18 03:20)) R3350925-3	10/16/18 03:20											
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	ier LCSD Qualifier		RPD Limits				
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%				
Chloride	200	198	200	0.99	8.00	90.0-110			0.755	20				
L1033537-15 (OS) L1033537-15	L1033537-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (0S) L1033537-15 10/16/18 06:59 • (MS) R3350925-6 10/16/18 07:08 • (MSD) R3350925-7 10/16/18 07:17	(OS) • Mat	rix Spike (N 2/16/18 07:08 • (S) • Matri MSD) R3350	x Spike Du 925-7 10/16/18	uplicate (MSI 3 07:17	$\widehat{\cap}$							
	Spike Amount (dry)	Original Resul: (dry)	Original Result MS Result (dry) MSD Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier R	RPD RP	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		0~	%			
Chloride	556	1840	2420	2400	104	99.4	~	80.0-120	ш	ш	1.11 20			
														Page 96 of
l	ACCOUNT: ConocoPhillips - Tetra Tech			PR 212C-	PROJECT: 212C-MD-01358		SI	SDG : L1033537		DATE/TIME: 10/18/18 15:43	ME: 5:43	PA 24.	PAGE: 24 of 36	r 348

	nodu
0	Com
15	anic
0	rgar
118	Ō
ບັ	atile
Š	/016
Re	le

WG1180150	pounds (GC)	bv Method 8	015D/GRO	QL		Y CONTROL SUMMARY	DL SUM 06,07,09,14	MARY			ONE LAB. NATIONWIDE.	Reco
period Blank (MB)		·										eived
(MB) R3350493-3 10/12/18 14:45	8 14:45											by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL)C. ∾
Analyte	mg/kg		mg/kg	mg/kg								D: ⊢
🔁 TPH (GC/FID) Low Fraction	n		0.0217	0.100								11
 (S) (S)	107			77.0-120								/ <mark>8/20</mark>
1/20												21 1
22 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	l Sample (L	CS) • Labo	ratory Cont	rol Sample	e Duplicate	e (LCSD)						0 :05
CLCS) R3350493-1 10/12/18 13:42 • (LCSD) R3350493-2 10/12/18 14:03	8 13:42 • (LCSD)) R3350493-2	10/12/18 14:03									54 ن
:08	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD	RPD Limits		_P
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		<mark>ر ا</mark> 9
TPH (GC/FID) Low Fraction	5.50	6.37	6.35	116	115	72.0-127			0.384	20		ğ
(S) a,a,a-Trifluorotoluene(FID)				108	107	77.0-120						7
												פ
L1033537-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	nal Sample	(OS) • Mat	rix Spike (N	1S) • Matri×	spike Du	olicate (MSD	()					م م

SC

(OS) L1033537-01 10/12/18 17:20 • (MS) R3350493-4 10/12/18 23:14 • (MSD) R3350493-5 10/12/18 23:34

	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) (dry) (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.73	332	397	392	38.4	35.7	25	10.0-151	ш	ш	1.14	28
oluene(FID)					84.7	84.4		77.0-120				

PAGE: 25 of 36

Rece	ived (by OCD	: 11	/ <mark>8/2</mark> 0	21 1 0: 0	5.54 ഗ	PM	ğ	7	f 34	8
ONE LAB. NATIONWIDE.										PAGE	
							RPD Limits %	20		DATE/TIME:	10/18/18 15:43
SUMMARY ^{12,13,15}							LCSD Qualifier RPD %	0.0541			7
OL SUM 10,11,12,13,15							LCS Qualifier			SDG:	L1033537
QUALITY CONTROL SUN 11033537-03.04.08.10.11.12.13.15					te (LCSD)		Rec. Limits %	72.0-127	77.0-120		
					ple Duplicat		LCSD Rec. %	110	105	PROJECT:	212C-MD-01358
		MB RDL ma/ka		77.0-120	itrol Sam	•	LCS Rec. %	110	105	L	212
015D/GRO		MB MDL ma/ka	0.0217		oratory Cor	2 10/15/18 14:09	LCSD Result mg/kg	6.05			
oy Method 8		MB Qualifier			CS) • Labo) R3350929-2	LCS Result mg/kg	6.06			ح
pounds (GC) t	(l8 14:57 MB Result ma/ka		100	l Sample (L(18 13:44 • (LCSD	Spike Amount mg/kg	5.50		ACCOUNT:	ConocoPhillips - Tetra Tech
WG1180849	post (MB)	MB) R3350929-3 10/15/18 14:57 MB Result MB Qualifier MB MDL Malvte mo/ka mo/ka	TPH (GC/FID) Low Fraction	(S) 10/01 10/02 10/02	2 ZZ07/1 2 Laboratory Control	SILCS) R3350929-1 10/15/18 13:44 • (LCSD) R3350929-2 10/15/18 14:09	Analyte	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)	4	ConocoPi

∞	
9	
∞	
0	
00	,
1	
Ò	1
\leq	,
\leq	
Re	2

QUALITY CONTROL SUMMARY $\underline{11033537-01,02,03,04,05,06,07,08,09,10,11,12}$

WG1180868 alvolatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	S) by Methoo	4 8260B	QUALITY CONTROL SUMMARY L1033537-01.02.03.04.05.06.07.08.09.10.11.12	ONE LAB. NATIONWIDE.	Rece
powerhod Blank (MB)						vived (
(MB) R3350782-2 10/14/18	3 18:57					by (
MB Res	MB Result	MB Qualifier	MB MDL	MB RDL		0C
Analyte	mg/kg		mg/kg	mg/kg		D:
Senzene	N		0.000400	0.00100		11
$0^{\mathrm{Ethylbenzene}}$	N		0.000530	0.00250		/ <mark>8//</mark>
oluene	N		0.00125	0.00500		302
Xylenes, Total	N		0.00478	0.00650		4
55 (S) Toluene-d8	113			75.0-131		0:0
S) Dibromofluoromethane	80.5			65.0-129		95:
(S) a, a, a-Trifluorotoluene	82.1			80.0-120		54 س
S (S) 4-Bromofluorobenzene	99.0			67.0-138		_P <i>N</i>
PM						ں م
						うう

Laboratory Control Sample (LCS)

(LCS) R3350782-1 10/14/18 17:58	17:58					
	Spike Amount LCS Result		LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		0
Benzene	0.125	0.120	95.8	70.0-123		
Ethylbenzene	0.125	0.106	84.5	74.0-126		
Toluene	0.125	0.115	91.9	75.0-121		SC
Xylenes, Total	0.375	0.311	82.9	72.0-127		
(S) Toluene-d8			107	75.0-131		
(S) Dibromofluoromethane			91.1	65.0-129		
(S) a, a,a-Trifluorotoluene			87.4	80.0-120		
(S) 4-Bromofluorobenzene			103	67.0-138		

L1033103-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MACI D3350782_3 10/15/10 00:01 10-00 1103-2013-01 10/17/18 20-20

(OS) L1033	3103-01 10/14/18	: 20:20 • (MS) R	3350782-3 10	0/15/18 02:34 •	(OS) L1033103-01 10/14/18 20:20 • (MS) R3350782-3 10/15/18 02:34 • (MSD) R3350782-4	32-4 10/15/18 02:53	02:53							
		Spike Amount (dry)	Original Resul (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	y) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene		0.137	ND	0.110	0.0573	79.9	41.8	-	10.0-149		с Г	62.5	37	
Ethylbenzene	Ð	0.137	DN	0.126	0.0625	91.9	45.6	-	10.0-160		сГ СГ	67.3	38	
Toluene		0.137	ND	0.123	0.0636	89.9	46.5	. 	10.0-156		С Г	63.8	38	
Xylenes, Total	al la	0.411	DN	0.364	0.190	88.5	46.1	-	10.0-160		<u>13</u>	63.0	38	
(S) Toluene-d8	'e-d8					113	112		75.0-131					
(S) Dibrom	(S) Dibromofluoromethane					77.6	78.3		65.0-129					
(S) a, a, a-T.	(S) a,a,a-Trifluorotoluene					84.0	82.4		80.0-120					
(S) 4-Brom	(S) 4-Bromofluorobenzene					91.1	98.2		67.0-138					
	A	ACCOUNT:			PRO	PROJECT:			SDG:		DATE/TIME:	rime:		PAGE:
	ConocoP	ConocoPhillips - Tetra Tech	Ч		212C-M	212C-MD-01358		L10	1033537		10/18/18 15:43	15:43		27 of 36

Page 99 of 348

	d m
41	ပိ
Ő	anic
80	Orga
1	e e
2	olat
Re	le

QUALITY CONTROL SUMMARY

aw G1180941				SUMMARY	ONE LAB. NATIONWIDE.
Volatile Organic Comp	ounds (GC/M	S) by Metho	d 8260B	L1033537-13,14,15	cei
Method Blank (MB)					ved (
(MB) R3350783-3 10/15/18 05:10	05:10				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0 C. ∝
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	Л		0.000400	0.00100	11
Ethylbenzene	N		0.000530	0.00250	/8/4 m
I oluene	N		0.00125	0.00500	302
Xylenes, Total	N		0.00478	0.00650	4
(S) Toluene-d8	116			75.0-131	<u>(0:</u>
S) Dibromofluoromethane	78.8			65.0-129	95
S (S) a, a, a-Trifluorotoluene	80.7			80.0-120	54 5
S 4-Bromofluorobenzene	103			67.0-138	PN
P					1 9

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

 $\overline{\mathbb{O}}$

₹

(LCS) R3350783-1 10/15/18 03:52 • (LCSD) R3350783-2 10/15/18 04:11

	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits L	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%			%	%
Benzene	0.125	0.121	0.118	96.6	94.3	70.0-123		2.43	20
Ethylbenzene	0.125	0.104	0.103	83.3	82.4	74.0-126		0.997	20
Toluene	0.125	0.113	0.112	90.4	89.8	75.0-121		0.629	20
Xylenes, Total	0.375	0.308	0.304	82.1	81.1	72.0-127		1.31	20
(S) Toluene-d8				107	108	75.0-131			
(S) Dibromofluoromethane				91.5	89.6	65.0-129			
(S) a,a,a-Trifluorotoluene				87.0	87.0	80.0-120			
(S) 4-Bromofluorobenzene				92.3	90.7	67.0-138			

SC

L1033537-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

30.01 01/31/01 1 COTO3CCU/31/1 (OS) 11033537-13 10/15/18 05:50

0	(OS) L1033537-13 10/15/18 05:50 • (MS) R3350783-4 10/15/18 12:06 • (MSD) R3350783-5 10/15/18 12:26	18 05:50 • (MS) F	33350783-4 10)/15/18 12:06 • (MS	SD) R3350783	3-5 10/15/18 12	2:26							
		Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
An.	Analyte	mg/kg	mg/kg	mg/kg m	mg/kg	%	%		%			%	%	
Be	Benzene	0.135	Л	0.151 0	0.149	112	111	-	10.0-149			1.38	37	
Eth	Ethylbenzene	0.135		0.143 0	0.140	106	104	.	10.0-160			1.74	38	
Tol	Toluene	0.135	n	0.151 0	0.143	112	106	-	10.0-156			5.78	38	
Xyl	Xylenes, Total	0.405		0.416 0	0.399	103	98.4	.	10.0-160			4.24	38	
-	(S) Toluene-d8					110	106		75.0-131					
~	(S) Dibromofluoromethane	0				84.0	87.6		65.0-129					
-	(S) a, a, a-Trifluorotoluene					80.6	82.0		80.0-120					
~	(S) 4-Bromofluorobenzene	0				103	86.6		67.0-138					
		ACCOUNT:			PROJECT:	ECT:		0)	SDG:		DATE/TIME:	IME:		PAGE:
	Conoco	ConocoPhillips - Tetra Tech	ų		212C-MD-01358	0-01358		L10	L1033537		10/18/18 15:43	15:43		28 of 36

Page 100 of 348

വ	,
4	
12	
∞	,
1	
Ū	
\geq	
Re	e

QUALITY CONTROL SUMMARY 11033537-01.02.03.04

WG1181245 Jolatile Organic Compounds (GC/MS) by Method 82608	ounds (GC/M	S) by Metho	od 8260B	QL	QUALITY CONTROL SUMMARY 11033537-01.02.03.04	ONE LAB. NATIONWIDE.	Rece
powerhod Blank (MB)							ived (
(MB) R3350872-2 10/15/18 10:49	10:49						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL) C
Analyte	mg/kg		mg/kg	mg/kg			
Se Toluene	n		0.00125	0.00500			11
Vylenes, Total	N		0.00478	0.00650			/ <mark>8//</mark>
(S) Toluene-d8	121			75.0-131			302
(S) Dibromofluoromethane	94.8			65.0-129			4
(S) a, a, a-Trifluorotoluene	98.7			80.0-120			Ø:
S) 4-Bromofluorobenzene 😯	110			67.0-138			95:
02:0							5 4] ທີ
		í (PM
	Sample (L	(0)					ر ٥
(LCS) R3350872-1 10/15/18 09:48	: 09:48						5
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	_	-
Analyte	mg/kg	mg/kg	%	%			Ū
Toluene	0.125	0.138	110	75.0-121			
Vulonoc Total	0.076	LTC U	101	701 0 CL			0

						ر م
(LCS) R3350872-1 10/15/18 09:48	3 09:48					с У
	Spike Amount LCS Result		LCS Rec.	Rec. Limits	LCS Qualifier	1
Analyte	mg/kg	mg/kg	%	%		Ū
Toluene	0.125	0.138	110	75.0-121		
Xylenes, Total	0.375	0.377	101	72.0-127		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(S) Toluene-d8			108	75.0-131		Ī
(S) Dibromofluoromethane			108	65.0-129		σ
(S) a,a,a-Trifluorotoluene			102	80.0-120		SC
(S) 4-Bromofluorobenzene			103	67.0-138		

PAGE: 29 of 36

DATE/TIME: 10/18/18 15:43

.

	- 5
	- 5
	(
\cap	1
\mathbf{C}	
<u> </u>	
\sim	(
1.1	
\mathbf{O}	
~	-
∞	1
_	-
<u>`</u>	
<u> </u>	>
(D)	
\mathbf{O}	-
>	3
WG1180710	
D	
Ke	l

VUANNIIS ICATINCO VTIINIO

WG1180710 Semi-Volatile Organic Compounds (GC) by Method 8015	c Compounds	(GC) by Me	thod 8015	ğ	QUALITY	CONTROL SUMMARY 11033537-01,02,03,04	DL SUM .03,04	MARY		ONE LAB. NATIONWIDE.	Recei
post Method Blank (MB)	3)										ived (
(MB) R3350595-1 10/15/	18 04:27										by (
MB Resu	MB Result	MB Qualifier	MB MDL	MB RDL							0C
Analyte	mg/kg		mg/kg	mg/kg							
😴 C10-C28 Diesel Range	П		1.61	4.00							11
C28-C40 Oil Range	Π		0.274	4.00							/ <mark>8/</mark> /
(S) o-Terphenyl	83.3			18.0-148							302
/202											1
22 aboratory Control Sample (LCS) - Laboratory Control Sample Dunilicate (LCSD)	Cample				o Dunlicato						9:0 :
	יו סמוווטב ור				e uupiicaie						5.5
CLCS) R3350595-2 10/15/18 04:39 • (LCSD) R3350595-3 10/15/18 04:52	5/18 04:39 • (LC	SD) R3350595	-3 10/15/18 04:5	12							4 ທ
98.	Spike Amount	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		PM
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		کی
C10-C28 Diesel Range	50.0	32.8	34.0	65.6	68.0	50.0-150		3.59	20		っ ろ
(S) o-Terphenyl				77.3	85.9	18.0-148					-
											Ū

SC

 $\overline{P}_{_{\infty}}$

•

012	
2	
00	
11	
Ú V	
R	,

VINITY CONTROL SIMMARY

WG1182012	c Compounds	(GC) by Me	thod 8015	gL	QUALITY (11033537-0	LITY CONTROL SUMMARY L1033537-05,06,07,08,09,10,11,12,13,14,15	DL SUM 10,11,12,13,14	МАRҮ 15		ONE LAB. NATIONWIDE.	Recei
post Post (MB)	3)										ved (
(MB) R3351654-1 10/17/18	: 18:47										by (
MB Re:	MB Result	MB Qualifier	MB MDL	MB RDL							0C.
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	П		1.61	4.00							11
C28-C40 Oil Range	N		0.274	4.00							/ <mark>8//</mark>
(S) o-Terphenyl	010			18.0-148							302
/20											4 1 (
122											Ø :
Substantion Control Sample (LCS) • Laboratory Control Sample Duplicate	I Sample (L	CS) • Labo	ratory Cont	rol Sampl	e Duplicate	te (LCSD)					05:
C(LCS) R3351654-2 10/17/	18 19:01 • (LCSD)	R3351654-3	10/17/18 19:14								5 4
08.	Spike Amount	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		Ű
C10-C28 Diesel Range	50.0	41.8	41.7	83.6	83.4	50.0-150		0.240	20) グ
(S) o-Terphenyl				102	106	18.0-148					-
											Ū

SC

Þ

.

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1033537

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 105 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampsh
Arkansas	88-0469	New Jersey–I
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolin
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolin
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

-			
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01358

SDG: L1033537 DATE/TIME: 10/18/18 15:43 ¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

			Billing Information:	nation:		_		Ana	Analysis / Container / Preservative	
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	Tech		Accounts Payable 4001 N. Big Spring Midland, TX 79705	Accounts Payable 4001 N. Big Spring St., Ste. Midland, TX 79705	Ste. 401	Pres Chk				- 11
Report to: Reviet Koryle Trylor Project Rougle Trylor		19 G 19 G 19 G 19 G 19 G 19 G 19 G 19 G	Email To: Kayle	Tay/25 City/State Collected:			Bast			5 Lebu on Julie ie: 615 ie: 800 615-73
Phone: 432-687-8137	Client Project #	Jient Project # フリアビーヘレD ー ヘ・コ てだ	8	Lab Project #			1995			D195
Collected by (print)	Site/Facility ID #		0	P.O.#			000			Acctnum: COPTETRA Terrolate:
Collected by (signature):	Rush? (L	MUS	(otified)	Quote #						Prelogin:
Immediately Parked on Ice. N Y	Same Day Next Day Two Day	7	10 Day (Rad Only) 10 Day (Rad Only)	Date Results N	ults Needed	No.		-		TSR: 526 - Chris McCord P8: Shinoed Via:
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	21 2	17		Remarks Sample # (lab only)
10-11 10-1V	1	SS	1	10/4	10:00	-	y X	X		-01
RH-111-21	1	-	1		10:05	-	XX	X		-02-
(1-01 2 10	l		1		01:01	-	X	X.		-02
1	1		4		10:15	-	XX	×		51
10	1	101	1		(0: 20	-	X	X		6
m	1		1		10:25	-	×	×		-010
(1.0) 4-110	١		1		10:30	-	2	×		10-
	1		1	70	10:35	-	X	X		
R4-516-D	١		1	1014	11:00	-	X	X		5
13	١	>	1	1	11:20	-	XX	X		
Matrix: 55 - 50 AIR - Air F - Filter GV - Groundwater B - Bioassay	Remarks:				8	RAD SCHEL	-	And And	pH Temp Flow Other	
DW - Drinking Water OT - Other	Samples returned via: 	turned via: FedExCou	Courier	1	Tracking # u	44 30	2	424		VOA Zero Headepade VOA Zero Headepade Verestration Correct/Checked: Y
Relinquished by : (Signature)	1.	Date:	V	Time: /S?cor	Beckined by: (Sign	Signatupi	X	1	Trip Blank Received: Yes / No. HCL / MeoH TBR	
Relinquistied by : (Signature)		Date:	N.	Time:	Received by: (Signature)	sature)			14914,75 15,402	If preservation required by Login:
Relinquished by : (Signature)		Date:		Time:	Received for lab by: (Signature)	w: (Signatu	(e)	1	Date: Time: Intuitien OUC	Hold: Condition

A REAL PROPERTY AND A REAL		1	Billing Information:	hation:			1	UN I	atysis / contain	Analysis / container / rreserventer	
ConocoPhillips - Tetra Tech 4001 N. Big Spring St., Ste. 401 Midland, TX 79705	Tech		Accounts Payable 4001 N. Big Spring Midland, TX 79705	Accounts Payable 4001 N. Big Spring St., Midland, TX 79705	Ste. 401	Pres Chk					
Report to: Karle Tay	Turtar		Email To:	1							Numer Julie, reserventing Numer Julier, TN 37122 Phone: 015-756-080
402	2			City/State Collected:							
Phone: 432-687-8137	Client Project #			Lab Project #	1			-1/ 1		R.	1# L(03553
cted by (print):	Site/Facility ID #	Ħ		P.O.#							Acctnum: COPTETRA Templater
Collected by (signature):	Rush? (La	2	(patified)	Quote #				100	4.		Prelogin:
Immediately v	Same Day Next Day Two Day Three Day	411	5 Day (Rad Only) 10 Day (Rad Only)	Date Re	Date Results Needed	No.	XEX	He			T5R: 526 - Chris McCord PB: chimned Viar
nple ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	-8	12			Remarks Sample # (lab only)
111-7)	1	ss	(10/4	11:25	1	×	××			11-
210-	۱		(11:35	-	×	XX			21-
BIL 6/0-D	1		1		11:50	-	×	××			51-
RH - 710-11	1		1	_	50:21	-	×	XX			41
11	1	7	1	>	01:2)	-	×	XX			5
* Mattix: SS-Soli AIR Air F-Filter GW - Croundwater B - Bioassay Www - WatterWater	Remarks:				- RAU .		- u c	ALC: N	pH Flow	Temp	Sample Receipt Check/fit COC Seal Present/Intacti MP Y COC Signed/Accurate: Bottles arrive intact: Correct bottles uned: Sufficient bottles uned:
DW - Drinking Water OT - Other	Samples returned via: UPSFedEx		Courier	1	Tracking #			0			11 Applicable VOA Zero Headspace: Preservation. Correct/Checked:
Relinquished by : (Signature)		Date:	.4	Time: (5;20	Reading by: (Signa	(Signature)	R	Y	Trip Blank Received:	eived: Yes (NO) HCL/MeoH TBR	
Relinquished by : (Signature)		Date:		Time:	Received by: (Signature)	(nature)			Temp: 0.2.	Sottles Received.	If preservation required by Login:
Relinquished by : (Signature)		Date:	1	Time:	Received for lab by: (Signeture)	by: (Signe	(auto		Date: Lolaliz	Time:	Hold: Condition:

Page 107 of 348

Katie Ingram

Login #: L1033537 Client:COPTETRA	Date:10/09/18	Evaluated by:Myra "Katie" Ingram
Login #: (10 5335) Chemicor 11	The second s	

Non-Conformance (check applicable items)

	Sample Integrity	Chain of Custody Clarification	
	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
×	Improper temperature	Chain of custody is incomplete	Insufficient packing material around container Insufficient packing material inside
2	Improper container	Please specify Metals requested.	cooler
	Improper	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
-	preservation	Received additional samples not listed on coc.	Sample was frozen
	Insufficient sample volume. Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
-	Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
-	100 100 100 100 100 100 100 100 100 100	Client did not "X" analysis.	Received by:
	Broken container	Chain of Custody is missing	Date/Time:
-	Broken container:		Temp./Cont. Rec./pH:
-	Sufficient sample remains		Carrier:
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second se	Tracking#

Login Comments:

Temp: 14.7 All ice melted Saturday Delivery

Client informed by:	Call	Email	Voice Mail	Date: 10/10/18	Time: 1105
TSR Initials: MB	Client Contact: Kayla Taylor				

Login Instructions:

Run as rec'd

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT November 29, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1045249
Samples Received:	11/16/2018
Project Number:	212C-MD-01491
Description:	Buck Fed CTB
Site:	LEA COUNTY, NEW MEXICO
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, form June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH-1 (3') L1045249-01	7
AH-2 (3') L1045249-02	8
AH-3 (3') L1045249-03	9
AH-4 (3') L1045249-04	10
AH-5 (3') L1045249-05	11
AH-6 (3') L1045249-06	12
AH-7 (3') L1045249-07	13
AH-8 (3') L1045249-08	14
NSW-1 L1045249-09	15
SSW-1 L1045249-10	16
ESW-1 L1045249-11	17
WSW-1 L1045249-12	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 300.0	21
Volatile Organic Compounds (GC) by Method 8015D/GRO	23
Volatile Organic Compounds (GC/MS) by Method 8260B	25
Semi-Volatile Organic Compounds (GC) by Method 8015	26
GI: Glossary of Terms	29
Al: Accreditations & Locations	30
Sc: Sample Chain of Custody	31

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME:

11/29/18 11:48

PAGE: 2 of 33

	SAMPLE SU	JMMA	2Y	ON	IE LAB. NA Rogeviji
AH-1 (3') L1045249-01 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 09:30	Received date/time 11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 04:29	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1201380	1	11/25/18 21:39	11/26/18 13:34	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 12:35	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1199763	1	11/20/18 12:40	11/21/18 15:41	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1199763	5	11/20/18 12:40	11/21/18 22:07	KME
			Collected by	Collected date/time	Received date/time
AH-2 (3') L1045249-02 Solid	Detek	Dilution	Devin Dominguez	11/14/18 09:40	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 04:38	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 19:29	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 12:54	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/27/18 00:04	KME
			Collected by	Collected date/time	Received date/time
AH-3 (3') L1045249-03 Solid			Devin Dominguez	11/14/18 09:46	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Vet Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 04:47	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 19:54	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 13:13	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	1	11/25/18 00:51	11/26/18 21:49	KME
			Collected by	Collected date/time	Received date/time
AH-4 (3') L1045249-04 Solid			Devin Dominguez	11/14/18 09:58	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Net Chemistry by Method 300.0	WG1198190	1	11/17/18 15:00	11/20/18 05:13	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 20:18	BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 13:32	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	1	11/25/18 00:51	11/26/18 22:09	KME
emi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	5	11/25/18 00:51	11/27/18 23:09	AAT
			Collected by	Collected date/time	Received date/time
AH-5 (3') L1045249-05 Solid			Devin Dominguez	11/14/18 10:00	11/16/18 07:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1199499	1	11/24/18 09:08	11/24/18 10:10	JD
Wet Chemistry by Method 300.0	WG1198190	5	11/17/18 15:00	11/20/18 05:22	ELN
	WG1199157	1	11/19/18 10:30	11/20/18 20:42	BMB
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1198957	1	11/19/18 10:30	11/19/18 13:51	BMB
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B					

PROJECT: 212C-MD-01491

SDG: L1045249

PAGE: 3 of 33

Dilution 9 1 7 100 7 8 20 Dilution 9 1 0 5 7 1 7 1 2 30 1 0 5 7 1 7 1 2 30 1 0 5 7 2 30 1 0 7 2 5 7 20 7 20 7 20 7 20 7 20	date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez	Analysis date/time 11/24/18 10:10 11/20/18 05:31 11/20/18 21:06 11/19/18 15:26 11/27/18 01:42 Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time	11/16/18 07:30 Analyst JD ELN BMB BMB KME Received date/time 11/16/18 07:30 Analyst JD ELN BMB BMB KME AAT	¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ GI ⁸ AI ⁹ Sc
9 1 1 100 7 8 20 Dilution 9 1 0 5 7 1 7 1 2 1 0 1 7 2 10 11 7 2 10 1 7 2 1 7 2 1 0 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	date/time 11/24/18 10:10 11/20/18 05:31 11/20/18 15:26 11/19/18 15:26 11/27/18 01:42 Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 11/20/18 12:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/19/18 14:10 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 15:45	JD ELN BMB BMB KME Received date/time 11/16/18 07:30 Analyst JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB BMB BMB	² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
0 1 7 8 20 Dilution 9 1 0 5 7 1 20 1 7 1 20 1 7 1 20 1 7 1 20 1 0 1 7 2 1 2 2 1 7 20 7 20 20 20	 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/25/18 00:51 11/25/18 00:51 11/25/18 00:51 11/25/18 00:51 11/25/18 00:51 	11/20/18 05:31 11/20/18 21:06 11/19/18 15:26 11/27/18 01:42 11/14/18 10:35 Analysis date/time 11/20/18 05:39 11/20/18 14:10 11/20/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/19/18 14:10 11/29/18 00:24 11/29/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 15:24 11/20/18 15:45	ELN BMB BMB KME Received date/time 11/16/18 07:30 JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB KME	³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
7 100 7 8 20 Dilution 9 1 0 5 7 1 7 1 2 30 1 Dilution 2 1 7 20 7 20 20	 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by 	11/20/18 21:06 11/19/18 15:26 11/27/18 01:42 Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/19/18 14:10 11/29/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 15:45	BMB BMB KME Received date/time 11/16/18 07:30 JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB BMB	⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
7 8 20 Dilution 9 1 0 5 7 1 7 1 2 30 1 Dilution 2 1 0 1 7 250 7 20 20	 11/19/18 10:30 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/25/18 00:51 11/25/18 00:51 Collected by 	11/19/18 15:26 11/27/18 01:42 Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 12:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 15:45	BMB KME Received date/time 11/16/18 07:30 Analyst LN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB BMB	⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
20 Dilution 9 1 0 5 7 1 7 1 2 80 1 Dilution 2 1 0 1 7 250 7 20 20	 11/25/18 00:51 Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by 	11/27/18 01:42 Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 11:00 11/21/18 10:10 11/29/18 00:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 15:45	KME Received date/time 11/16/18 07:30 Analyst JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB BMB	⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
Dilution 9 1 0 5 7 1 7 1 2 80 1 Dilution 2 1 7 250 7 20 20	Collected by Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	Collected date/time 11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	Received date/time 11/16/18 07:30 JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB BMB	⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al
9 1 0 5 7 1 7 2 30 1 Dilution 2 1 0 1 7 250 7 20 20	 Devin Dominguez Preparation date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by 	11/14/18 10:35 Analysis date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 15:45	11/16/18 07:30 Analyst JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁶ Qc ⁷ Gl ⁸ Al
9 1 0 5 7 1 7 2 30 1 Dilution 2 1 0 1 7 250 7 20 20	date/time 11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51	date/time 11/24/18 10:10 11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	JD ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁷ Gl ⁸ Al
0 5 7 1 7 1 2 1 0 1 2 1 0 1 7 250 7 20 20 20	11/24/18 09:08 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/24/18 10:10 11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁸ Al
0 5 7 1 7 1 2 1 0 1 2 1 0 1 7 250 7 20 20 20	11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 Collected by	11/20/18 05:39 11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	ELN BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁸ Al
7 1 7 1 2 30 1 Dilution 2 1 7 250 7 20 20	11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/20/18 21:30 11/19/18 14:10 11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	BMB BMB KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁸ Al
2 30 1 Dilution 2 1 7 250 7 20 20	 11/19/18 10:30 11/25/18 00:51 11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/25/18 00:51 Collected by 	11/27/18 00:24 11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	KME AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	0
2 1 Dilution 2 1 7 250 7 20 20	11/28/18 14:13 Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/29/18 00:40 Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	AAT Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	0
Dilution 2 1 3 1 7 250 7 20 20	Collected by Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	Collected date/time 11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	Received date/time 11/16/18 07:30 Analyst KBC ELN BMB BMB	⁹ Sc
2 1 0 1 7 250 7 20 20	Devin Dominguez Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/14/18 10:50 Analysis date/time 11/20/18 15:24 11/20/18 21:55 11/19/18 15:45	11/16/18 07:30 Analyst KBC ELN BMB BMB	
2 1 0 1 7 250 7 20 20	Preparation date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	Analysis date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	Analyst KBC ELN BMB BMB	
2 1 0 1 7 250 7 20 20	date/time 11/20/18 15:11 11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	date/time 11/20/18 15:24 11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	KBC ELN BMB BMB	
0 1 7 250 7 20 20	11/17/18 15:00 11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/20/18 05:48 11/20/18 21:55 11/19/18 15:45	ELN BMB BMB	
7 250 7 20 20	11/19/18 10:30 11/19/18 10:30 11/25/18 00:51 Collected by	11/20/18 21:55 11/19/18 15:45	BMB BMB	
7 20 20	11/19/18 10:30 11/25/18 00:51 Collected by	11/19/18 15:45	BMB	
20	11/25/18 00:51 Collected by			
	Collected by	11/27/18 02:02	KME	
Dilutior				
Dilutior		Collected date/time 11/14/18 11:05	Received date/time 11/16/18 07:30	
	•	Analysis	Analyst	
2 4	date/time	date/time	1/00	
2 1	11/20/18 15:11	11/20/18 15:24	KBC	
) 1	11/17/18 15:00	11/20/18 05:57	ELN	
	11/25/18 00:51	11/26/18 23:06	KME	
	Collected by Devin Dominguez	Collected date/time 11/14/18 11:20	Received date/time 11/16/18 07:30	
Dilutior	·	Analysis date/time	Analyst	
2 1			KBC	
	11/17/18 15:00	11/20/18 06:06	ELN	
	11/19/18 10:30	11/20/18 22:43	BMB	
	11/19/18 10:30	11/19/18 14:48	BMB	
	11/25/18 00:51	11/26/18 23:25	KME	
	7 1 57 1 1 2 Dilution 0 5 7 1 57 1	7 1 11/19/18 10:30 57 1 11/19/18 10:30 1 2 11/25/18 00:51 2 11/25/18 00:51 Collected by Devin Dominguez Dilution Preparation date/time 0 5 11/17/18 15:00 7 1 11/19/18 10:30 67 1 11/19/18 10:30	7 1 11/19/18 10:30 11/20/18 22:19 67 1 11/19/18 10:30 11/19/18 14:29 1 2 11/25/18 00:51 11/26/18 23:06 Collected by Devin Dominguez Collected date/time Dilution Preparation date/time Analysis 02 1 11/20/18 15:11 11/20/18 15:24 0 5 11/17/18 15:00 11/20/18 06:06 7 1 11/19/18 10:30 11/20/18 22:43 67 1 11/19/18 10:30 11/19/18 14:48	7 1 11/19/18 10:30 11/20/18 22:19 BMB 57 1 11/19/18 10:30 11/19/18 14:29 BMB 1 2 11/25/18 00:51 11/26/18 23:06 KME Collected by Devin Dominguez Collected date/time 11/14/18 11:20 Received date/time 11/16/18 07:30 Dilution Preparation date/time Analysis Analyst date/time 02 1 11/20/18 15:11 11/20/18 15:24 KBC 0 5 11/17/18 15:00 11/20/18 06:06 ELN 7 1 11/19/18 10:30 11/20/18 14:48 BMB

PROJECT: 212C-MD-01491

SDG: L1045249

DATE/TIME: 11/29/18 11:48 PAGE: 4 of 33 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev113 of 348

Sr

Qc

GI

Â

Sc

ESW-1 L1045249-11 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 11:25	Received date/time 11/16/18 07:30
/lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	KBC
Net Chemistry by Method 300.0	WG1198191	5	11/17/18 15:15	11/19/18 20:05	MAJ
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	1	11/19/18 10:30	11/20/18 23:07	BMB
olatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	1	11/19/18 10:30	11/19/18 15:07	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	2	11/25/18 00:51	11/26/18 23:44	KME
			Collected by	Collected date/time	Received date/time

WSW-1 L1045249-12 Solid			Collected by Devin Dominguez	Collected date/time 11/14/18 12:00	Received date/time 11/16/18 07:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1199502	1	11/20/18 15:11	11/20/18 15:24	KBC
Wet Chemistry by Method 300.0	WG1198191	1	11/17/18 15:15	11/19/18 20:22	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1199157	100	11/19/18 10:30	11/20/18 23:31	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1198957	8	11/19/18 10:30	11/19/18 16:04	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1198511	40	11/25/18 00:51	11/27/18 02:20	KME

Released to	Imaging: 10/31/2022	3:02:08	PM
	ConocoPhillips - Tetra Tech		

PROJECT: 212C-MD-01491

SDG: L1045249 DA 11/2

DATE/TIME: 11/29/18 11:48 PAGE: 5 of 33

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

PROJECT: 212C-MD-01491

SDG: L1045249 D 11,

DATE/TIME: 11/29/18 11:48 PAGE: 6 of 33

SAMPLE RESULTS - 01 L1045249

A

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 09:30

						1 Cm
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	91.5		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1060		0.869	10.0	10.9	1	11/20/2018 04:29	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1060		0.869	10.0	10.9	1	11/20/2018 04:29	WG1198190
Volatile Organic Comp		-			MOL (dp)	Dilution	Analycic	Patch
Volatile Organic Comp	Result (dry)	oy Method <u>Qualifier</u>	SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	())	Dilution 1	,	Batch WG1201380

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000437	0.00100	0.00109	1	11/19/2018 12:35	WG1198957
Toluene	U		0.00137	0.00500	0.00547	1	11/19/2018 12:35	WG1198957
Ethylbenzene	U		0.000579	0.00250	0.00273	1	11/19/2018 12:35	WG1198957
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/19/2018 12:35	WG1198957
(S) Toluene-d8	101				75.0-131		11/19/2018 12:35	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 12:35	WG1198957
(S) a,a,a-Trifluorotoluene	97.4				80.0-120		11/19/2018 12:35	WG1198957
(S) 4-Bromofluorobenzene	114				67.0-138		11/19/2018 12:35	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	328		8.80	4.00	21.9	5	11/21/2018 22:07	WG1199763
C28-C40 Oil Range	129		0.300	4.00	4.37	1	11/21/2018 15:41	WG1199763
(S) o-Terphenyl	106				18.0-148		11/21/2018 15:41	WG1199763
(S) o-Terphenyl	88.6				18.0-148		11/21/2018 22:07	WG1199763

SDG: L1045249

SAMPLE RESULTS - 02 L1045249

[°]Al

Sc

Total Solids by Method 2540 G-2011

						1 Cm
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.0		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ C
Chloride	1900		4.32	10.0	54.4	5	11/20/2018 04:38	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1900		4.32	10.0	54.4	5	11/20/2018 04:38	WG1198190
Volatile Organic Com		-				Dilution	Analysis	Datah
Volatile Organic Com	oounds (GC) k Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution 1	,	Batch WG1199157
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution 1	date / time	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	11/19/2018 12:54	WG1198957
Toluene	U		0.00136	0.00500	0.00544	1	11/19/2018 12:54	WG1198957
Ethylbenzene	U		0.000576	0.00250	0.00272	1	11/19/2018 12:54	WG1198957
Total Xylenes	U		0.00520	0.00650	0.00707	1	11/19/2018 12:54	WG1198957
(S) Toluene-d8	102				75.0-131		11/19/2018 12:54	WG1198957
(S) Dibromofluoromethane	119				65.0-129		11/19/2018 12:54	WG1198957
(S) a,a,a-Trifluorotoluene	93.9				80.0-120		11/19/2018 12:54	WG1198957
(S) 4-Bromofluorobenzene	112				67.0-138		11/19/2018 12:54	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	476		3.50	4.00	8.70	2	11/27/2018 00:04	WG1198511
C28-C40 Oil Range	159		0.596	4.00	8.70	2	11/27/2018 00:04	WG1198511
(S) o-Terphenyl	53.0				18.0-148		11/27/2018 00:04	WG1198511

SDG: L1045249

SAMPLE RESULTS - 03 L1045249

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ch
Analyte	%			date / time		2
Total Solids	90.5		1	11/24/2018 10:10	<u>WG1199499</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
	()		= = (<i>)</i> /						
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	945		0.879	10.0	11.1	1	11/20/2018 04:47	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0355	ВJ	0.0240	0.100	0.111	1	11/20/2018 19:54	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	98.3				77.0-120		11/20/2018 19:54	WG1199157	⁷ GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00111	1	11/19/2018 13:13	WG1198957
Toluene	U		0.00138	0.00500	0.00553	1	11/19/2018 13:13	WG1198957
Ethylbenzene	U		0.000586	0.00250	0.00276	1	11/19/2018 13:13	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 13:13	WG1198957
(S) Toluene-d8	100				75.0-131		11/19/2018 13:13	WG1198957
(S) Dibromofluoromethane	111				65.0-129		11/19/2018 13:13	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 13:13	WG1198957
(S) 4-Bromofluorobenzene	116				67.0-138		11/19/2018 13:13	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	75.4		1.78	4.00	4.42	1	11/26/2018 21:49	WG1198511
C28-C40 Oil Range	23.7		0.303	4.00	4.42	1	11/26/2018 21:49	WG1198511
(S) o-Terphenyl	51.3				18.0-148		11/26/2018 21:49	WG1198511

SDG: L1045249 DATE/TIME: 11/29/18 11:48 ³Ss Cn ⁵Sr ³Qc Gl

⁸Al

Sc

SAMPLE RESULTS - 04 L1045249

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 09:58

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.7		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	819		0.877	10.0	11.0	1	11/20/2018 05:13	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	RO					⁵ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ŭ
TPH (GC/FID) Low Fraction	1.08		0.0239	0.100	0.110	1	11/20/2018 20:18	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	96.0				77.0-120		11/20/2018 20:18	WG1199157	7

Volatile Organic Compounds (GC/MS) by Method 8260B

Posult (dn/)	Qualifior	SDL (dp/)	Unadi MOI	MOL (dp/)	Dilution	Analysis	Batch
	Qualifier	SDL (ury)		MOL (UIY)	Dilution	,	Batch
mg/kg		mg/kg	mg/kg	mg/kg		date / time	
U		0.000441	0.00100	0.00110	1	11/19/2018 13:32	WG1198957
U		0.00138	0.00500	0.00551	1	11/19/2018 13:32	WG1198957
U		0.000585	0.00250	0.00276	1	11/19/2018 13:32	WG1198957
U		0.00527	0.00650	0.00717	1	11/19/2018 13:32	WG1198957
103				75.0-131		11/19/2018 13:32	WG1198957
110				65.0-129		11/19/2018 13:32	WG1198957
97.1				80.0-120		11/19/2018 13:32	WG1198957
121				67.0-138		11/19/2018 13:32	WG1198957
	103 110 97.1	mg/kg U U U U 103 110 97.1	mg/kg mg/kg U 0.000441 U 0.00138 U 0.000585 U 0.000527 103 110 97.1 97.1	mg/kg mg/kg mg/kg U 0.000441 0.00100 U 0.00138 0.00500 U 0.000585 0.00250 U 0.00527 0.00650 103 110 97.1	mg/kg mg/kg mg/kg mg/kg U 0.000441 0.00100 0.00110 U 0.00138 0.00500 0.00551 U 0.000585 0.00250 0.00276 U 0.00527 0.00650 0.00717 103	mg/kg mg/kg mg/kg mg/kg U 0.000441 0.00100 0.00110 1 U 0.00138 0.00500 0.00551 1 U 0.000585 0.00250 0.00276 1 U 0.00527 0.00650 0.00717 1 103	mg/kg mg/kg mg/kg mg/kg date / time U 0.000441 0.00100 0.00110 1 11/19/2018 13:32 U 0.00138 0.00500 0.00551 1 11/19/2018 13:32 U 0.000585 0.00250 0.00276 1 11/19/2018 13:32 U 0.00527 0.00650 0.00717 1 11/19/2018 13:32 103

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	405		8.88	4.00	22.1	5	11/27/2018 23:09	WG1198511
C28-C40 Oil Range	127		0.302	4.00	4.41	1	11/26/2018 22:09	WG1198511
(S) o-Terphenyl	139				18.0-148		11/27/2018 23:09	WG1198511
(S) o-Terphenyl	43.9				18.0-148		11/26/2018 22:09	WG1198511

SDG: L1045249 DATE/TIME:

SAMPLE RESULTS - 05 L1045249

⁸Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.4		1	11/24/2018 10:10	<u>WG1199499</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
	(,)		= = (<i>)</i> /						
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 C
Chloride	1210		4.35	10.0	54.7	5	11/20/2018 05:22	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1210		4.35	10.0	54.7	5	11/20/2018 05:22	WG1198190
Volatile Organic Com		-				Dilution	Anglasia	Detek
Volatile Organic Com	Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com; Analyte		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1199157

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00100	0.00109	1	11/19/2018 13:51	WG1198957
Toluene	U		0.00137	0.00500	0.00547	1	11/19/2018 13:51	WG1198957
Ethylbenzene	U		0.000580	0.00250	0.00274	1	11/19/2018 13:51	WG1198957
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/19/2018 13:51	WG1198957
(S) Toluene-d8	104				75.0-131		11/19/2018 13:51	WG1198957
(S) Dibromofluoromethane	110				65.0-129		11/19/2018 13:51	WG1198957
(S) a,a,a-Trifluorotoluene	95.9				80.0-120		11/19/2018 13:51	WG1198957
(S) 4-Bromofluorobenzene	121				67.0-138		11/19/2018 13:51	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1000		8.81	4.00	21.9	5	11/27/2018 01:22	WG1198511
C28-C40 Oil Range	325		1.50	4.00	21.9	5	11/27/2018 01:22	WG1198511
(S) o-Terphenyl	6.72	<u>J2</u>			18.0-148		11/27/2018 01:22	WG1198511

Sample Narrative:

L1045249-05 WG1198511: Surrogate failure due to matrix interference

SDG: L1045249

SAMPLE RESULTS - 06 L1045249

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	86.8		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	912		0.916	10.0	11.5	1	11/20/2018 05:31	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	134		2.50	0.100	11.5	100	11/20/2018 21:06	WG1199157
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		11/20/2018 21:06	WG1199157
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		11/20/2018 21:06	<u>WG1199157</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00369	0.00100	0.00921	8	11/19/2018 15:26	WG1198957
Toluene	U		0.0115	0.00500	0.0461	8	11/19/2018 15:26	WG1198957
Ethylbenzene	U		0.00488	0.00250	0.0230	8	11/19/2018 15:26	WG1198957
Total Xylenes	0.261		0.0440	0.00650	0.0599	8	11/19/2018 15:26	WG1198957
(S) Toluene-d8	99.6				75.0-131		11/19/2018 15:26	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 15:26	WG1198957
(S) a,a,a-Trifluorotoluene	98.7				80.0-120		11/19/2018 15:26	WG1198957
(S) 4-Bromofluorobenzene	127				67.0-138		11/19/2018 15:26	WG1198957

Sample Narrative:

L1045249-06 WG1198957: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4260		37.1	4.00	92.1	20	11/27/2018 01:42	WG1198511
C28-C40 Oil Range	1270		6.31	4.00	92.1	20	11/27/2018 01:42	WG1198511
(S) o-Terphenyl	4.33	J7			18.0-148		11/27/2018 01:42	WG1198511

SDG: L1045249

SAMPLE RESULTS - 07 L1045249

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 10:35

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.5		1	11/24/2018 10:10	WG1199499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1310		4.40	10.0	55.3	5	11/20/2018 05:39	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1310		4.40	10.0	55.3	5	11/20/2018 05:39	WG1198190
Volatile Organic Com	. ,				MOL (dp)	Dilution	Analycic	Batch
Volatile Organic Com	Dounds (GC) k Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com	. ,				MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)		SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1199157

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00111	1	11/19/2018 14:10	WG1198957
Toluene	U		0.00138	0.00500	0.00553	1	11/19/2018 14:10	WG1198957
Ethylbenzene	U		0.000586	0.00250	0.00276	1	11/19/2018 14:10	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 14:10	WG1198957
(S) Toluene-d8	99.1				75.0-131		11/19/2018 14:10	WG1198957
(S) Dibromofluoromethane	115				65.0-129		11/19/2018 14:10	WG1198957
(S) a,a,a-Trifluorotoluene	96.5				80.0-120		11/19/2018 14:10	WG1198957
(S) 4-Bromofluorobenzene	125				67.0-138		11/19/2018 14:10	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	83.1		1.78	4.00	4.42	1	11/29/2018 00:40	WG1202380
C28-C40 Oil Range	224		0.606	4.00	8.84	2	11/27/2018 00:24	WG1198511
(S) o-Terphenyl	4.90	<u>J2</u>			18.0-148		11/27/2018 00:24	WG1198511
(S) o-Terphenyl	15.2	<u>J2</u>			18.0-148		11/29/2018 00:40	WG1202380

Sample Narrative:

L1045249-07 WG1202380, WG1198511: Low surrogate due to matrix L1045249-07 WG1202380, WG1198511: Surrogate failure due to matrix interference

SDG: L1045249

SAMPLE RESULTS - 08 L1045249

⁸Al

Sc

Total Solids by Method 2540 G-2011

						I Cr	2
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	85.8		1	11/20/2018 15:24	<u>WG1199502</u>	Tc	2

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		– ⁴ Cr
Chloride	686		0.927	10.0	11.7	1	11/20/2018 05:48	<u>WG1198190</u>	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quamer	mg/kg	mg/kg	mg/kg	Blittion	date / time	Baten	°C
TPH (GC/FID) Low Fraction	582		6.33	0.100	29.2	250	11/20/2018 21:55	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	99.4				77.0-120		11/20/2018 21:55	WG1199157	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.0297		0.00933	0.00100	0.0233	20	11/19/2018 15:45	WG1198957
Toluene	0.996		0.0292	0.00500	0.117	20	11/19/2018 15:45	WG1198957
Ethylbenzene	0.805		0.0124	0.00250	0.0583	20	11/19/2018 15:45	WG1198957
Total Xylenes	11.7		0.111	0.00650	0.152	20	11/19/2018 15:45	WG1198957
(S) Toluene-d8	98.3				75.0-131		11/19/2018 15:45	WG1198957
(S) Dibromofluoromethane	116				65.0-129		11/19/2018 15:45	WG1198957
(S) a,a,a-Trifluorotoluene	98.2				80.0-120		11/19/2018 15:45	WG1198957
(S) 4-Bromofluorobenzene	117				67.0-138		11/19/2018 15:45	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6590		37.5	4.00	93.3	20	11/27/2018 02:02	WG1198511
C28-C40 Oil Range	1380		6.39	4.00	93.3	20	11/27/2018 02:02	WG1198511
(S) o-Terphenyl	14.5	<u>J7</u>			18.0-148		11/27/2018 02:02	WG1198511

SAMPLE RESULTS - 09 L1045249

A

Sc

Collected date/time: 11/14/18 11:05 Total Solids by Method 2540 G-2011

Total Solius by I	vietnou 2540 G-20	711							
	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	92.1		1	11/20/2018 15:24	WG1199502				² Tc
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (d	dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		⁴ Cr
Chloride	441		0.863	10.0	10.9	1	11/20/2018 05:57	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	y Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0574	ВJ	0.0236	0.100	0.109	1	11/20/2018 22:19	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	97.9				77.0-120		11/20/2018 22:19	WG1199157	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000434	0.00100	0.00109	1	11/19/2018 14:29	WG1198957	
Toluene	U		0.00136	0.00500	0.00543	1	11/19/2018 14:29	WG1198957	
Ethylbenzene	U		0.000575	0.00250	0.00271	1	11/19/2018 14:29	WG1198957	
Total Xylenes	U		0.00519	0.00650	0.00705	1	11/19/2018 14:29	WG1198957	
(S) Toluene-d8	102				75.0-131		11/19/2018 14:29	WG1198957	
(S) Dibromofluoromethane	114				65.0-129		11/19/2018 14:29	WG1198957	
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		11/19/2018 14:29	WG1198957	
(S) 4-Bromofluorobenzene	116				67.0-138		11/19/2018 14:29	WG1198957	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	330		3.49	4.00	8.68	2	11/26/2018 23:06	WG1198511
C28-C40 Oil Range	142		0.595	4.00	8.68	2	11/26/2018 23:06	WG1198511
(S) o-Terphenyl	35.5				18.0-148		11/26/2018 23:06	WG1198511

SDG: L1045249

SAMPLE RESULTS - 10 L1045249

ONE LAB. NAPagev124 of 348

[°]Al

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 11:20

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		90.8		1	11/20/2018 15:24	WG1199502	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1520		4.38	10.0	55.1	5	11/20/2018 06:06	WG1198190	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	adamoi	mg/kg	mg/kg	mg/kg	2	date / time	
TPH (GC/FID) Low Fraction	0.916		0.0239	0.100	0.110	1	11/20/2018 22:43	WG1199157
(S) a,a,a-Trifluorotoluene(FID)	93.7				77.0-120		11/20/2018 22:43	WG1199157

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00100	0.00110	1	11/19/2018 14:48	WG1198957
Toluene	U		0.00138	0.00500	0.00551	1	11/19/2018 14:48	WG1198957
Ethylbenzene	U		0.000584	0.00250	0.00275	1	11/19/2018 14:48	WG1198957
Total Xylenes	0.00614	J	0.00527	0.00650	0.00716	1	11/19/2018 14:48	WG1198957
(S) Toluene-d8	101				75.0-131		11/19/2018 14:48	WG1198957
(S) Dibromofluoromethane	117				65.0-129		11/19/2018 14:48	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 14:48	WG1198957
(S) 4-Bromofluorobenzene	114				67.0-138		11/19/2018 14:48	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	552		3.55	4.00	8.81	2	11/26/2018 23:25	WG1198511
C28-C40 Oil Range	194		0.604	4.00	8.81	2	11/26/2018 23:25	WG1198511
(S) o-Terphenyl	53.3				18.0-148		11/26/2018 23:25	WG1198511

SDG: L1045249

SAMPLE RESULTS - 11 L1045249

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 11:25

	Result	Qualifier	Dilution	Analysis	Batch	 'Ср
Analyte	%			date / time		2
Total Solids	90.5		1	11/20/2018 15:24	WG1199502	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	1ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1990		4.39	10.0	55.2	5	11/19/2018 20:05	WG1198191	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Decult (dp)	Qualifier		Unadj. MQL	MQL (dry)	Dilution	Analysis	Datab	
	Result (dry)	Quaimer	SDL (dry)	Uliduj. MQL	MOL (UIY)	Dilution	Alidiysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	0.0623	ВJ	0.0240	0.100	0.110	1	11/20/2018 23:07	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	97.0				77.0-120		11/20/2018 23:07	WG1199157	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000442	0.00100	0.00110	1	11/19/2018 15:07	WG1198957
Toluene	U		0.00138	0.00500	0.00552	1	11/19/2018 15:07	WG1198957
Ethylbenzene	U		0.000585	0.00250	0.00276	1	11/19/2018 15:07	WG1198957
Total Xylenes	U		0.00528	0.00650	0.00718	1	11/19/2018 15:07	WG1198957
(S) Toluene-d8	106				75.0-131		11/19/2018 15:07	WG1198957
(S) Dibromofluoromethane	107				65.0-129		11/19/2018 15:07	WG1198957
(S) a,a,a-Trifluorotoluene	97.8				80.0-120		11/19/2018 15:07	WG1198957
(S) 4-Bromofluorobenzene	118				67.0-138		11/19/2018 15:07	WG1198957

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	329		3.56	4.00	8.84	2	11/26/2018 23:44	WG1198511
C28-C40 Oil Range	159		0.605	4.00	8.84	2	11/26/2018 23:44	WG1198511
(S) o-Terphenyl	57.7				18.0-148		11/26/2018 23:44	WG1198511

SDG: L1045249 DATE/TIME: 11/29/18 11:48 PAGE: 17 of 33

⁵Sr ³Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 12 L1045249

ONE LAB. NAPagev126 of 348

[°]Al

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/14/18 12:00

						I Cr	ς.
	Result	Qualifier	Dilution	Analysis	Batch)
Analyte	%			date / time		2	-
Total Solids	90.7		1	11/20/2018 15:24	<u>WG1199502</u>	Tc	

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	354		0.877	10.0	11.0	1	11/19/2018 20:22	WG1198191	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	553		2.39	0.100	11.0	100	11/20/2018 23:31	WG1199157	
(S) a,a,a-Trifluorotoluene(FID)	94.1				77.0-120		11/20/2018 23:31	WG1199157	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.00353	0.00100	0.00882	8	11/19/2018 16:04	WG1198957	
Toluene	0.134		0.0110	0.00500	0.0441	8	11/19/2018 16:04	WG1198957	
Ethylbenzene	0.00654	J	0.00468	0.00250	0.0221	8	11/19/2018 16:04	WG1198957	
Total Xylenes	7.53		0.0422	0.00650	0.0573	8	11/19/2018 16:04	WG1198957	
(S) Toluene-d8	106				75.0-131		11/19/2018 16:04	WG1198957	
(S) Dibromofluoromethane	117				65.0-129		11/19/2018 16:04	WG1198957	
(S) a,a,a-Trifluorotoluene	95.2				80.0-120		11/19/2018 16:04	WG1198957	
(S) 4-Bromofluorobenzene	133				67.0-138		11/19/2018 16:04	WG1198957	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8780		71.0	4.00	176	40	11/27/2018 02:20	WG1198511
C28-C40 Oil Range	2170		12.1	4.00	176	40	11/27/2018 02:20	WG1198511
(S) o-Terphenyl	41.5	<u>J7</u>			18.0-148		11/27/2018 02:20	WG1198511

SDG: L1045249 DATE/TIME:

Rece	ived (by OCI	<u>)</u> : 1	1/8/202	10	:05	5:54 5	• P •	∕ ຊູ ວິ	ب م	ō	۵ ۵		° SC						Pag	e 12	27 of	f 34	8
ONE LAB. NATIONWIDE.																							PAGE	19 of 33
																							DATE/TIME:	11/29/18 11:48
TY CONTROL SUMMARY <u> 11045249-01,02,03,04,05,06,07</u>						ç	0																SDG:	L1045249
QUALITY C(DUP Qualifier DUP RPD Limits	%	10			nits LCS Qualifier											PROJECT:	212C-MD-01491
		MB MDL MB RDL	%		cate (DUP)	1/18 10:10	Dilution DUP RPD	%	1 0.221			S Rec.		cl1-0.c8 001										
2011		MB Qualifier			le (OS) • Dupli) K3362901-3 11/22	sult DUP Result	%	91.3	(LCS)		LCS Result		0.06										ech
99 Aethod 2540 G-2	(MB)	1/24/18 10:10 MB Result	%		Original Samp.	11/24/18 10:10 • (DUF	Original Res	%	91.5	Laboratory Control Sample (LCS)	11/24/18 10:10	Spike Amount	%	0.03									ACCOUNT:	ConocoPhillips - Tetra Tech
WG11994	Method Blank	o [MB) R3362901-1 11	Successful Solids	· 10/31	70 /1045249-01 ((US) L1045249-01	:02	Sealyte	W ^T otal Solids	Laboratory Cc	(LCS) R3362901-2 11/24/18 10:10		Analyte	I otal Solids										

Rece	ived (by OCD :	11/	8 <u>/2021</u>	10: (95:54 10	4_P 1 ഗ	ی م ک	_ D)	"A	° SC				Pag	e 128	of 3.	48
ONE LAB. NATIONWIDE.																			PAGE: 20 of 33
,																			DATE/TIME: 11/29/18 11:48
CONTROL SUMMARY 1045249-08.09.10.11.12						RPD													SDG: L1045249
QUALITY C						DUP Qualifier Limits		10			LCS Qualifier								PROJECT: 212C-MD-01491
Q		MB RDL %				PD	%	0.0589			Rec. Limits %	85.0-115							212C-
		MB MDL %		olicate (D	20/18 15:24	Dilution DUP RPD		~			LCS Rec. %	100							
110		MB Qualifier) R3361871-3 11/	Original Result DUP Result	%	86.1	-CS)		t LCS Result %	50.0							ch
) 2 lethod 2540 G-20	(MB)	20/18 15:24 MB Result %	0.000	Drininal Samole	1/20/18 15:24 • (DUP)	Original Resu	%	86.0	ntrol Sample (I	/20/18 15:24	Spike Amount %	50.0							ACCOUNT: ConocoPhillips - Tetra Tech
WG1199502	Method Blank	0 (MB) R3361871-1 11/20/18 15:24 MB Re Malyte %	Total Solids	0 10-7905701 10/31/2	2002) L1045264-21 11/20/18 15:24 • (DUP) R3361871-3 11/20/18 15:24	3:02	Search Se	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3361871-2 11/20/18 15:24	Analyte	Total Solids							Cor

WG1198190			Ø	QUALITY 1104524	LITY CONTROL SUMM 1045249-01-02-03:04-05-06:07-08:09-10	DL SUMI	SUMMARY 07.08.09.10		ONE LAB. NATIONWIDE.	
person Blank (MB)							1			vived (
0 (MB) R3361486-1 11/20/18 01:28 MB Result Malyte mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg							by OCD:
n		0.795	10.0							11/8. m
20 20-1045236-01 Original Sample (OS) • Duplicate (DUP)	(OS) • Du	plicate (DU	(d							/2021 1 5
20/18 02:18 • (DUP)	R3361486-3	11/20/18 02:26								0 :05
Original Kesult DUP Kesult (dry) (dry)	(dry)	Dilution DUP RPD		DUP Qualifier U	DUP RPD Limits					54] ທ
104	113 113	1 8.65	35	~ 0	20					کي <mark>س</mark> س
L1045249-10 Original Sample (OS) • Duplicate (DUP)	(OS) • Du	plicate (DU	(P)							7
(OS) L1045249-10 11/20/18 06:06 • (DUP) R3361486-6 11/20/18 06:15) R3361486-6	11/20/18 06:15								5
Original Result (dry)	t DUP Result (dry)	Dilution DUP RPD		DUP Qualifier DI	DUP RPD Limits					"Al
mg/kg	mg/kg	%		%	%					
1520	1720	5 12.4	4	2	20					SC
Laboratory Control Sample (LCS)	(2)									
(LCS) R3361486-2 11/20/18 01:37 Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
mg/kg		%	%							
200	202	101	90.0-110							
L1045236-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) • Ma	trix Spike (MS) • Matr	ix Spike Dı	uplicate (MSI	(C				
(OS) L1045236-10 11/20/18 04:03 • (MS) R3361486-4 11/20/18 04:12 • (MSD) R3361486-5 11/20/18 04:21	3361486-4 1	1/20/18 04:12 •	(MSD) R33614	86-5 11/20/18 (04:21					
Spike Amount (dry)	Original Resu (dry)	Original Result MS Result (dry) MSD Result (dry)	y) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution Rec. Limits	imits MS Qualifier	MSD Qualifier RPD	RPD Limits	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
532	84.3	614	601	9. 66	97.0	1 80.0-120	20	2.27	20	Page 129 o
-TINI IOOOV								D ATE/TIME.		
ConocoPhillips - Tetra Tech	£		2120	212C-MD-01491		11045249		UALE/ IIME: 11/29/18 11·48	21 of 33	
			1-1-1-						Ì	0

MB RDL mg/kg
DUP Qualifier
DUP Qualifier
Rec. Limits LCS Qualifier
90 0-110
2
PROJECT:

	Volatilo Organic Compounde
\sim	ĉ
വ	
	2
σ	7
6	č
1	6
ìn	÷
C	č
\geq	0
Re	ĺ

VUNNIN CONTROL VIININ

WG1199157 Molatile Organic Compounds (GC) by Method 8015D/GRO	ounds (GC) b	y Method 8(015D/GRO	QL	QUALITY (L1045249-0	CONTR(<pre>LITY CONTROL SUMMARY 1045249-02.03.04.05.06.07.08.09.10.11.12</pre>	MARY 12		ONE LAB. NATIONWIDE.	Rece
pMethod Blank (MB)											ived (
(MB) R3362662-3 11/20/18 16:09	3 16:09										by O
ma	MB Result	MB Qualifier	MB MDL	MB RDL)C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	0.0266		0.0217	0.100							11
[5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5]	101			77.0-120							/ <mark>8/2</mark> 0
1/20											21 1
22 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicat	Sample (LC	cS) • Laboi	ratory Cont	rol Sample	e Duplicate	te (LCSD)					a :05
CLCS) R3362662-1 11/20/18 14:56 • (LCSD) R3362662-2 11/20/18 15:20	3 14:56 • (LCSD)	R3362662-2	11/20/18 15:20								:54 54
:08	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCS Qualifier LCSD Qualifier RPD	RPD Limits		_P 7
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	6.53	6.50	119	118	72.0-127		0.494	20		ğ
(S)				106	106	77 0-120					

77.0-120 72.0-127

106 118

106 119

(S) a, a, a-Trifluorotoluene(FID)

Ū

₹

SC

Rece	ived [by OCD: □	11	/ <mark>8/20</mark>	2] 10:0 5	54_PM	ğ	7	f 34	8
ONE LAB. NATIONWIDE.									i U V Q	24 of 33
						RPD Limits %	20		DATE/TIME.	11/29/18 11:48
1 MARY						LCSD Qualifier RPD	1.76			49
						LCS Qualifier				L1045249
CONTROL SUMMARY					(LCSD)	Rec. Limits %	72.0-127	77.0-120		
QUALITY (e Duplicate	LCSD Rec. %	109	104		212C-MD-01491
		MB RDL mg/kg		77.0-120	trol Sampl	LCS Rec.	111	105		212C-
015D/GRO		MB MDL mg/kg	0.0217		atory Con	11/26/18 11:20 LCSD Result mg/kg	5.99			
y Method 80		MB Qualifier			CS) • Labo) R3362956-2 LCS Result mg/kg	6.10			Ē
ounds (GC) b		12:08 MB Result mg/kg	n	99.5	Sample (LC	10:56 • (LCSD) Spike Amount mg/kg	5.50		ACCOLINIT.	ConocoPhillips - Tetra Tech
WG1201380	PMethod Blank (MB)	O (MB) R3362956-3 11/26/18 12:08 MB Result MB Qualifier MB MDL MB Analyte mg/kg mg/kg	TPH (GC/FID) Low Fraction	1 (S) 201, a, a-Trifluorotoluene(FID)	22027 2. Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	CLCS) R3362956-1 11/26/18 10:56 • (LCSD) R3362956-2 11/26/18 11:20 Spike Amount LCS Result LCSD Result CAnalyte mg/kg mg/kg mg/kg mg/kg	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)		ConocoPhi

	Compo
57	C
ົດ	U.C.
00	Organic
19	
511	0
G	; + c
\geq	
Re	ele

QUALITY CONTROL SUMMARY ${\tt L1045249-01,02,03,04,05,06,07,08,09,10,11,12}$

8260B	
Method	
þ	
(GC/MS)	
Compounds	
Organic	
Volatile	as
	us

WG1198957 Wolatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	S) bv Methoo	d 8260B	QUALITY CONTROL SUMMARY 11045249-01.02.03.04.05.06.07.08.09.10.11.12	ONE LAB. NATIONWIDE.
period Blank (MB)					eived -
(MB) R3362214-3 11/19/18 10:46	0:46				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	бу/бш	
Senzene	П		0.000400	0.00100	11
0. Ethylbenzene	Π		0.000530	0.00250	/8/4 E
Joluene	N		0.00125	0.00500	302
Xylenes, Total	N		0.00478	0.00650	4
(S) Toluene-d8	99.1			75.0-131	<u>e</u> :
S) Dibromofluoromethane 😯	115			65.0-129	95:
(S) a, a, a-Trifluorotoluene	94.6			80.0-120	54 5
(S) 4-Bromofluorobenzene	115			67.0-138	
PM					<mark>0</mark> ໃ

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

 $\overline{\mathbb{O}}$

₹

(LCS) R3362214-1 11/19/18 09:30 • (LCSD) R3362214-2 11/19/18 09:49

	· ·								
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Benzene	0.125	0.144	0.151	115	121	70.0-123		4.87	20
Ethylbenzene	0.125	0.107	0.114	85.8	90.8	74.0-126		5.64	20
Toluene	0.125	0.113	0.116	90.3	93.1	75.0-121		3.08	20
Xylenes, Total	0.375	0.341	0.351	6.06	93.6	72.0-127		2.89	20
(S) Toluene-d8				96.3	94.6	75.0-131			
(S) Dibromofluoromethane				121	117	65.0-129			
(S) a,a,a-Trifluorotoluene				96.3	96.8	80.0-120			
(S) 4-Bromofluorobenzene				113	118	67.0-138			

Sc

L1045249-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05)11045249-12 11/19/18 16:04 • (MS) R3362214-4 11/19/18 16:23 • (MSD) R3362214-5 11/19/18 16:42

Ő	(US) L1045249-12 11/19/18 16:04 • (MS) K3362214-4 11/19/18 16:23 • (MSU) K3362214-5 11/19/18 16:42	18 16:04 • (MS) RE	3362214-4 11/1	9/18 16:23 • (MSD)	1 K3362214-5	11/19/18 16:42									
		Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Anč	Analyte	mg/kg	mg/kg	mg/kg n	mg/kg	%	%		%			%	%		
Ber	Benzene	0.138	∩	0.362 0	0.331	32.9	30.0	∞	10.0-149			9.07	37		
Eth	Ethylbenzene	0.138	0.00654	0.411 0	0.388	36.6	34.6	∞	10.0-160			5.56	38		
Tol	Toluene	0.138	0.134	0.473 0	0.444	30.7	28.0	∞	10.0-156			6.46	38		
Xylt	Xylenes, Total	0.413	7.53	8.40 8	8.15	26.3	18.7	∞	10.0-160			3.06	38		
~	(S) Toluene-d8					103	108		75.0-131						
2	(S) Dibromofluoromethane					113	011		65.0-129						
~	(S) a, a, a-Trifluorotoluene					98.4	99.8		80.0-120						
2	(S) 4-Bromofluorobenzene					141	135		67.0-138	۲ ا					
														-	· · · ·
															-
		ACCOUNT:			PROJECT:	ECT:		S	SDG:		DATE/TIME:	IME:		PAGE:	
	Conoco	ConocoPhillips - Tetra Tech	4		212C-MD-01491	D-01491		L10	L1045249		11/29/18 11:48	11:48		25 of 33	

Page 133 of 348

	~
1	Organic
<u> </u>	1
വ	
00	Semi-Volatilo
σ	+ 0
_	-
=	 C
	1
Ċ	
. <u> </u>	2
<u> </u>	
<	0
~	0
Re	el

QUALITY CONTROL SUMMARY

WG1198511				QU,	ALITY C	QUALITY CONTROL SUMMARY	SUMN	1ARY		ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organic Compounds (GC) by Method 8015	Compounds	(GC) by Met!	hod 8015		L1045249-02,	L1045249-02,03,04,05,06,07,08,09,10,11,12	08,09,10,11,1	2			ce
polymethod Blank (MB)											ived
(MB) R3363241-1 11/26/18 20:50	20:50										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C °
Analyte	mg/kg		mg/kg	mg/kg							
🔁 C10-C28 Diesel Range	П		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8///</mark>
(S) o-Terphenyl	111			18.0-148							302
/202											10
رال در المعامين المعامي	l Sample (LC	CS) • Labor	atory Contr	ol Sample	Duplicate (L	.CSD)					:05
CLCS) R3363241-2 11/26/18 21:09 • (LCSD) R3363241-3 11/26/18 21:29	8 21:09 • (LCSD)	R3363241-3 1	1/26/18 21:29								54 ഗ
08 F	Spike Amount	Spike Amount LCS Result		LCS Rec.	LCSD Rec. R	Rec. Limits LCS	<u>S Qualifier</u> L(LCS Qualifier LCSD Qualifier RPD	RPD Limits		PM
				٥/	6	~		/0	2		ļ

L1045249-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

ğ

20 %

4.43 %

> 50.0-150 18.0-148

102 113

106 *117* %

%

%

mg/kg 50.8

mg/kg 53.1

mg/kg 50.0

> C10-C28 Diesel Range (S) o-Terphenyl

M M Analyte

Ū

₹

(OS) L1045249-07 11/27/18 00:24 • (MS) R3363241-4 11/27/18 00:43 • (MSD)	/18 00:24 • (MS) F	73363241-4 11/ 2	27/18 00:43 • (M	1SD) R3363241	R3363241-5 11/27/18 01:03	:03						
	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.9	758	783	835	44.3	143	2	50.0-150	► <	ш	6.43	20
(S) o-Terphenyl					3.53	5.20		18.0-148	2 <mark>7</mark>	2 <mark>7</mark>		

SC

Sample Narrative:

OS: Surrogate failure due to matrix interference

.

212C-MD-01491 **PROJECT:**

L1045249 SDG:

11/29/18 11:48 DATE/TIME:

26 of 33 PAGE

ω
Ö
66
5
δ
\leq
Re

VUNNIN CONTROL VINNIN

WG1199763	c Compounds	(GC) by Me	thod 8015	ØL	QUALITY (CONTROL SUMMARY	DL SUM	MARY		ONE LAB. NATIONWIDE.	Recei
post Method Blank (MB)	3)										ved (
(MB) R3362121-1 11/21/18	13:16										by (
H BW	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	Э		1.61	4.00							11
C28-C40 Oil Range			0.274	4.00							/ <mark>8//</mark>
(S) o-Terphenyl	103			18.0-148							302
/20.											1
			((- - (0: 0
S	ol Sample (L	-CS) • Labc	iratory Cont	irol Sampl	e Duplicate	(LCSD)					5::
C(LCS) R3362121-2 11/21/1	18 13:33 • (LCSD)) R3362121-3 11	//21/18 13:48								54 ທ
98.	Spike Amount	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.		LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		° ۵
C10-C28 Diesel Range	50.0	42.0	44.0	84.0	88.0	50.0-150		4.65	20		
(S) o-Terphenyl				140	143	18.0-148					-
											Ū

SC

 \overline{P}_{∞}

Page 135 of 348 **PAGE:** 27 of 33 DATE/TIME: 11/29/18 11:48 **SDG**: L1045249 PROJECT: 212C-MD-01491

.

	(
_	
0	1
00	
$^{\circ}$	(
2	
0	-
Ñ	
	1
Ċ	
>	
\leq	,
Re	

QUALITY CONTROL SUMMARY

-		
)		
5		
2		
1		
'		
L		
•		
)		
)		1
		1
5		
ה		1
		1
'		
1		
		1
1		i
5		
'		
•		
1		
		1
1		1

WG1202380 Semi-Volatile Organic Compounds (GC) by Method 8015	Compounds	(GC) by Met	hod 8015	0 0	QUALITY (CONTROL SUMMARY	DL SUM	MARY	0	ONE LAB. NATIONWIDE.
porthod Blank (MB)	(
(MB) R3363865-1 11/28/18	3 23:25									
MB Resu	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
C10-C28 Diesel Range	П		1.61	4.00						
(S) o-Terphenyl	80.3			18.0-148						
/31/.										
20										
🔂 aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	l Sample (L	CS) • Laboi	atory Cont	rol Sample	Duplicate	(LCSD)				
	18 23:40 • (LCSI	D) R3363865-3	11/28/18 23:55							
)2:(Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
Extractable Petroleum Hydrocarbon	50.0	33.6	35.9	67.2	71.8	50.0-150		6.62	20	

Ū

∢

Sc

PAGE: 28 of 33

DATE/TIME: 11/29/18 11:48

.

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48

PAGE: 29 of 33

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 138 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	1
Alaska	17-026	1
Arizona	AZ0612	1
Arkansas	88-0469	1
California	2932	1
Colorado	TN00003	1
Connecticut	PH-0197	1
Florida	E87487	1
Georgia	NELAP	1
Georgia ¹	923	1
Idaho	TN00003	(
Illinois	200008	(
Indiana	C-TN-01	(
lowa	364	F
Kansas	E-10277	F
Kentucky 16	90010	ç
Kentucky ²	16	
Louisiana	AI30792	1
Louisiana ¹	LA180010	1
Maine	TN0002	1
Maryland	324	ι
Massachusetts	M-TN003	1
Michigan	9958	1
Minnesota	047-999-395	١
Mississippi	TN00003	1
Missouri	340	1
Montana	CERT0086	1

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

-			
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1045249 DATE/TIME: 11/29/18 11:48 PAGE: 30 of 33

Image: Concepting Concepting Image: Concepting Image: Concepting Image: Concepting Image: Concepting Exclusion Exclusion Exclusion Exclusion Exclusion Exclusion Image: Concepting Exclusion Exclusion Exclusion Exclusion Exclusion Exclusion Exclusion Image: Concepting Exclusion E		Tetra Tech. Inc.		1008	900 Wost Wall Street. Sta 100 Middand, Toxas 79701 Tol (422) 882-4559 Fax (422) 882-3645	0						rage	e	-	5
Buck Fed CTB поли исклании поли иск	Client Name:	ConocoPhilips	Site Manager;	Kaula	Toulor		$\left \right $								
Поло Поло <t< td=""><td>Project Name:</td><td>Buck Fed CTB</td><td></td><td>i vajia</td><td>ayini</td><td></td><td>Т</td><td><u> </u></td><td>Circle</td><td>Or Spe</td><td>₹ B</td><td>lethoc</td><td></td><td></td><td></td></t<>	Project Name:	Buck Fed CTB		i vajia	ayini		Т	<u> </u>	Circle	Or Spe	₹ B	lethoc			
Income Control Properties Control Properties Control Properties Image: Proceeding Properties Development Development Development Image: Proceeding Properties Proceeding Properties Development Development Image: Proceeding Properities Proceeding Properities Development Development	t Location:		Project #;				Т		_	_	_	8	_	Ξ	_
Monte Teach March March <th< td=""><td>voice to:</td><td>Accounts Payable and West West Sciences Sciences and</td><td></td><td>212</td><td>C-MD-01491</td><td></td><td>Т</td><td>(</td><td></td><td></td><td></td><td>1</td><td>(19)</td><td></td><td>-</td></th<>	voice to:	Accounts Payable and West West Sciences Sciences and		212	C-MD-01491		Т	(1	(19)		-
OPCHIDULEX Devin Dominguez 1 COPETRA	eceiving Laboratory:	Pace Analytical	- F								_	127	partor		
OP LL MA SAMPLE IDENTIFICATION MATTRIX MATTRIX MATTRIX MATTRIX SAMPLE IDENTIFICATION ANH 1 (3) ANH 1 (3) <t< td=""><td>omments:</td><td>F</td><td></td><td>Dev</td><td>in Dominguez</td><td></td><td>(80</td><td></td><td></td><td></td><td>Ş</td><td></td><td>stis ees</td><td></td><td></td></t<>	omments:	F		Dev	in Dominguez		(80				Ş		stis ees		
SAMPLE IDENTIFICATION AMPLIAN MATTERN INFORMATION AMPLE IDENTIFICATION AMPLIAN AMPLIAN MATTERN INFORMATION AMPLE IDENTIFICATION AMPLIAN INTERNATION AMPLIAN INTERNATION AMPLIA AMPLIAN INTERNATION AMPLIAN INTERNATION AMPLIAN AMPLIA AMPLIAN INTERNATION AMPLIAN INTERNATION INTERNATION AMPLIA AMPLIAN INTERNATION INTERNATION INTERNATION INTERNATION AMPLIA INTERNATION INTERNATION INTERNATION INTERNATION INTERNATION AMPLIA INTERNATION INTERNATION INTERNATION INTERNATION INTERNATION AMPLIA AMPLIAN INTERNATION INTERNATION INTERNATION IN		-											SOI		
Замис венитескион смасста смасста смасста смасста AH-1 (3) AH-1 (3) III.420018 930 XX IX XX	りったろう		SAMPLING		⊢	Sł	KETEX				7SB J	00	ette	eoue	_
AH-1 (3) AH-1 (3) AH-1 (3) AH-1 (3) 11/14/2018 940 X X 1 N X Y	LAB #	SAMPLE IDENTIFICATION	YEAR: 2018	ł		HENIN	815	00	£A sis		oV .im	10.00	shuz	e8 no	
AH-1 (3) 11/14/2018 930 2/0 E/C	CNLY (CNLY		152004	HETAN	SE NO ³		EX 80	1228 H	LP Met	1	808 s.e	edeA) N	ebho	uteo,ut	
AH-2 (3) 11/142018 340 X X X X AH-3 (3) 11/142018 346 X X 1 N X X AH-3 (3) 11/142018 958 X X 1 N X X AH-5 (3) 11/142018 958 X X 1 N X X AH-5 (3) 11/142018 1050 X X X N X X AH-6 (3) 11/142018 1055 X X X X X X AH-6 (3) 11/142018 1055 X X X X X X AH-6 (3) 11/142018 1055 X X X X X X AH-7 (3) 11/142018 1120 X X X X X X AH-8 (3) 11/142018 1120 X X X X X X AH-8 (3) 11/142018 1120 X X X X X X AM AM X X X X X X X AM AM M X X	- 01	AH-1 (3)		^) > H	+	18	Aq	10	ЪС	PCI GC	ЪГИ	CPI	Anic	
AH3 (3) Intrazion 340 X X 1 N X X N N X X N N X X N N X N	03	AH+2 (3')		+	<	+		×	-	-	_	~			
AH-4 (3) AH-4 (3) 11/14/2018 568 X X X X AH-5 (3) 11/14/2018 568 X X X X X AH-5 (3) 11/14/2018 1005 X X X X X AH-5 (3) 11/14/2018 1035 X X X X X AH-8 (3) 11/14/2018 1055 X X X X X AH-8 (3) 11/14/2018 1055 X X X X X NSW-1 11/14/2018 1055 X X X X X NSW-1 11/14/2018 1120 X X X X X MA M M 11/14/2018 1120 X X X X NSW-1 11/14/2018 1120 X X X X X M M M X X X X X X NSW-1 11/14/2018 1120 X X X X X Date: Ime: Ime: Ime: Ime: Ime: Ime: Date: Ime: Ime:	69	AH-3 (3')		+	× >	+	+	×	-			×		1	
AH-5 (3) 11/14/2018 1000 X	ho	AH-4 (3')	1.2		<>	+	+	× 3		+		×	_		
AH-6 (3) 11/14/2018 1015 X	40	AH-5 (3')			< >	+	+	×		+		×			
AH-7 (3) 11/14/2018 1035 X	Olo	AH-6 (3')		-	< >	-	+	×		1		×		-	
AI-B (3') 11/14/2018 1050 X X X X X NSW-1 NSW-1 11/14/2018 1105 X X X X X SSW-1 11/14/2018 1105 X X X X X X SSW-1 11/14/2018 1105 X X X X X X Date: Time: Date: Time: Date: Time: Date: LAB USE ONLY Date: Time: Date: Time: Date: Time: Date: Time:	10	AH-7 (3')		+	< >		×	×		-		×			
NSW-1 II/1A/2018 1105 X </td <td>68</td> <td>AH-8(3')</td> <td></td> <td>+</td> <td>× ></td> <td></td> <td>×</td> <td>×</td> <td></td> <td>-</td> <td></td> <td>×</td> <td></td> <td></td> <td></td>	68	AH-8(3')		+	× >		×	×		-		×			
SSW-1 SSW-1 III/14/2018 1120 X X X X X MA Date: Time: Date: Time: Date: Ime: N X X Date: Time: Date: Time: Date: Time: Date: Time: A Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Date: Date: Time: Date: Time: Date: Time: Date: Date:	09	NSW-1		+	< >		×	×		-		×			
Main Date: Time: Date: Date: Date: Date: Date: Date: Date: Date: <	01	SSW-1		+	× >		×	×		-		×			
Weak Studyen IV/15/18 1330 Multimeter Multimeter Received by: Date: Time: Lab USE ONLY Date: Time: Received by: Date: Time: Sample Temperature Onio: Time: Received by: Date: Time: Sample Temperature	A no N	Date: Time:			Ĩ	-	×	×	100			×			
Date: Time: Baceived by: Date: Time: Sample Temperature lance internation inte	AUNUA quished by:	Date: Time:	Helfulle	let l	to.	S	LAB U	SE ON	7		ANDAF	Pan	35	fro	凶
Date: Time: Received by: Date: Time: Time: Time: Date:							Sample To	Imperature		RUSH	Same D			r 72 hr	
PV T.C.C. 12:402 0.3 to	quished by:	-	Received by:	1	19	770	14			Brush C Special	harges A Report L	uthorized imits or T	RRP Re	port	
T.C. 5 12 = 402 0.3 to.				N			(Circle) H	AND DELJ				inc.a.			
2			UHIGINAL COP	ť.	C 5 12	-ah= 2		0.3	~	1.1	25				
				0	e.					AD SOF	DEEM.	2 2	č		

Relinquished by/ Date: Time: Beceived by: Date: Time: Date: Time: Relinquished by: Date: Time: Date: Date: Time: Date: Date: Time: Date: Date: Time: Date: Date:
116/10 (50

Rel

Pace Analytical National Center for Testing & Innovation	sting & Innov	ation	
Cooler Receipt Form	c		
Client: COPTETRA	SDG#	SDG# L1045249	349
Cooler Received/Opened On: 11/ [6/18	Temperature:	0-4	
Received By: Patrick Nshizirungu	a standard		
Signature:			
	Contraction of the second	Contraction of	
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	/		
COC Signed / Accurate?		/	
Bottles arrive intact?		<	
Correct bottles used?		1	
Sufficient volume sent?		1	
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 11/8/2021 10:05:54 PM

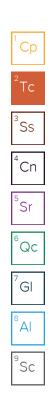
ANALYTICAL REPORT November 30, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1046071 11/20/2018 212C-MD-01491 Buck Fed CTB

Report To:


Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Chi Cover Bana	4
Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
AH-9 L1046071-01	8
AH-10 L1046071-02	9
AH-11 L1046071-03	10
AH-12 L1046071-04	11
AH-13 L1046071-05	12
AH-14 L1046071-06	13
AH-15 L1046071-07	14
AH-16 L1046071-08	15
AH-17 L1046071-09	16
NSW-2 L1046071-10	17
SSW-2 L1046071-11	18
ESW-2 L1046071-12	19
ESW-3 L1046071-13	20
WSW-2 L1046071-14	21
WSW-3 L1046071-15	22
AH-17 L1046071-16	23
WSW-4 L1046071-17	24
ESW-4 L1046071-18	25
Qc: Quality Control Summary	26
Total Solids by Method 2540 G-2011	26
Wet Chemistry by Method 300.0	29
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	32
Semi-Volatile Organic Compounds (GC) by Method 8015	34
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

IME: 16:45 PAGE: 2 of 40 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev144 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-9 L1046071-01 Solid			Collected by	Collected date/time 11/15/18 10:05	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 10:22	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 21:21	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 17:43	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 20:26	KME
			Collected by	Collected date/time 11/15/18 10:10	Received date/tim 11/20/18 07:45
AH-10 L1046071-02 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst
metrou	batch	Dilution	date/time	date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 10:31	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 21:45	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 18:03	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 18:41	KME
AH-11 L1046071-03 Solid			Collected by	Collected date/time 11/15/18 10:20	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201430	1	11/26/18 14:07	11/26/18 14:18	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 10:40	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200088	1	11/21/18 08:32	11/21/18 18:21	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 20:10	KME
AH-12 L1046071-04 Solid			Collected by	Collected date/time 11/15/18 10:30	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1201431 WG1199854	1	11/21/18 17:30	11/27/18 11:06	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:33	ACG
Volatile Organic Compounds (GC/MS) by Method 82/60B	WG1200088	1	11/21/18 08:32	11/21/18 18:41	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200088 WG1200994	1	11/24/18 11:40	11/24/18 18:55	KME
AH-13 L1046071-05 Solid			Collected by	Collected date/time 11/15/18 10:51	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:15	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 22:58	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 21:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:11	KME

PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45 PAGE: 3 of 40 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev145 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-14 L1046071-06 Solid			Collected by	11/15/18 11:05	11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:24	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 23:22	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 22:00	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:27	KME
AH-15 L1046071-07 Solid			Collected by	Collected date/time 11/15/18 11:32	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 11:33	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/21/18 23:46	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 22:20	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:41	KME
AH-16 L1046071-08 Solid			Collected by	Collected date/time 11/15/18 11:50	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 11:59	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 00:10	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 22:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	1	11/24/18 11:40	11/24/18 19:58	KME
			Collected by	Collected date/time 11/15/18 12:00	Received date/tim 11/20/18 07:45
AH-17 L1046071-09 Solid				11/15/16 12.00	11/20/18 07.45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 12:08	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 00:34	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 00:42	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	20	11/24/18 11:40	11/26/18 02:11	MTJ
NSW-2 L1046071-10 Solid			Collected by	Collected date/time 11/15/18 10:00	Received date/tim 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:16	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 00:58	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200320	1	11/21/18 08:32	11/21/18 23:00	ACG

PROJECT: 212C-MD-01491

SDG: L1046071

DATE/TIME: 11/30/18 16:45 PAGE:

4 of 40

Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev146 of 348

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

Received by OCD: 11/8/2021 10:05:54 PM	SAMPLE SU	JMMAH	ΥΎ	UN	E LAB. NA toge v
SSW-2 L1046071-11 Solid			Collected by	Collected date/time 11/15/18 10:30	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:25	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	200	11/21/18 08:32	11/22/18 01:22	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	20	11/21/18 08:32	11/22/18 01:01	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200994	100	11/24/18 11:40	11/26/18 02:25	MTJ
ESW-2 L1046071-12 Solid			Collected by	Collected date/time 11/16/18 11:15	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Wet Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 12:51	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 01:45	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/21/18 23:20	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 05:40	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	5	11/27/18 07:59	11/29/18 16:45	MTJ
ESW-3 L1046071-13 Solid			Collected by	Collected date/time 11/16/18 12:00	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Tatal Salida by Mathed 2540 C 2011	WG1201431	1	11/26/18 13:55	11/26/18 14:06	JD
Total Solids by Method 2540 G-2011		-			
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:00	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320		11/21/18 08:32	11/22/18 02:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200331 WG1201271	1 1	11/21/18 08:32 11/27/18 07:59	11/21/18 23:41 11/30/18 00:19	ACG AAT
WSW-2 L1046071-14 Solid			Collected by	Collected date/time 11/16/18 13:00	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:09	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 02:33	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/22/18 00:01	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 06:12	KME
WSW-3 L1046071-15 Solid			Collected by	Collected date/time 11/16/18 13:30	Received date/time 11/20/18 07:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD
Wet Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:18	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	1	11/21/18 08:32	11/22/18 02:57	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	1	11/21/18 08:32	11/22/18 00:21	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 06:27	KME

Released to Imaging: 010/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

16:45

PAGE: 5 of 40

Received by OCD: 11/8/2021 10:05:54 PM	SAMPLE SU	JMMAF	2Y	ONE LAB. NA Page 14 7			
AH-17 L1046071-16 Solid			Collected by	Collected date/time 11/16/18 13:55	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst		
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Net Chemistry by Method 300.0	WG1199854	1	11/21/18 17:30	11/27/18 13:27	ELN		
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 03:21	ACG		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 01:21	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	1	11/27/18 07:59	11/29/18 06:43	KME		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	20	11/27/18 07:59	11/29/18 17:16	MTJ		
WSW-4 L1046071-17 Solid			Collected by	Collected date/time 11/16/18 15:05	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Net Chemistry by Method 300.0	WG1199854	5	11/21/18 17:30	11/27/18 13:35	ELN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 03:44	ACG		
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 01:41	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	10	11/27/18 07:59	11/29/18 08:47	KME		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	100	11/27/18 07:59	11/29/18 10:09	KME		
ESW-4 L1046071-18 Solid			Collected by	Collected date/time 11/16/18 15:40	Received date/time 11/20/18 07:45		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst		
Total Solids by Method 2540 G-2011	WG1201432	1	11/26/18 13:41	11/26/18 13:52	JD		
Net Chemistry by Method 300.0	WG1200542	5	11/23/18 10:33	11/27/18 18:00	ELN		
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1200320	100	11/21/18 08:32	11/22/18 04:08	ACG		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1200331	8	11/21/18 08:32	11/22/18 02:01	ACG		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	25	11/27/18 07:59	11/29/18 17:32	MTJ		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1201271	5	11/27/18 07:59	11/29/18 17:00	MTJ		

PROJECT: 212C-MD-01491

SDG: L1046071

DATE/TIME: 11/30/18 16:45 PAGE: 6 of 40

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45

PAGE: 7 of 40

SAMPLE RESULTS - 01 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:05

	Result	Qualifier	Dilution	Analysis	Batch	 'Ср
Analyte	%			date / time		2
Total Solids	89.8		1	11/26/2018 14:18	WG1201430	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1850		4.43	10.0	55.7	5	11/27/2018 10:22	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	ounds (GC) t	by Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.0660	J	0.0242	0.100	0.111	1	11/21/2018 21:21	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.7				77.0-120		11/21/2018 21:21	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000445	0.00100	0.00111	1	11/21/2018 17:43	WG1200088
Toluene	U		0.00139	0.00500	0.00557	1	11/21/2018 17:43	WG1200088
Ethylbenzene	U		0.000590	0.00250	0.00278	1	11/21/2018 17:43	WG1200088
Total Xylenes	U		0.00532	0.00650	0.00724	1	11/21/2018 17:43	WG1200088
(S) Toluene-d8	99.7				75.0-131		11/21/2018 17:43	WG1200088
(S) Dibromofluoromethane	90.9				65.0-129		11/21/2018 17:43	WG1200088
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 17:43	WG1200088
(S) 4-Bromofluorobenzene	101				67.0-138		11/21/2018 17:43	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	112		1.79	4.00	4.45	1	11/24/2018 20:26	WG1200994
C28-C40 Oil Range	44.0		0.305	4.00	4.45	1	11/24/2018 20:26	WG1200994
(S) o-Terphenyl	62.0				18.0-148		11/24/2018 20:26	WG1200994

SDG: L1046071 DATE/TIME:

SAMPLE RESULTS - 02 L1046071

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:10

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	88.9		1	11/26/2018 14:18	WG1201430	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
			· · · · · · · · · · · · · · · · · · ·						
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	719		0.895	10.0	11.2	1	11/27/2018 10:31	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	6
TPH (GC/FID) Low Fraction	0.0261	J	0.0244	0.100	0.112	1	11/21/2018 21:45	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.7	-			77.0-120		11/21/2018 21:45	WG1200320	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000450	0.00100	0.00112	1	11/21/2018 18:03	WG1200088
Toluene	U		0.00141	0.00500	0.00562	1	11/21/2018 18:03	WG1200088
Ethylbenzene	U		0.000596	0.00250	0.00281	1	11/21/2018 18:03	WG1200088
Total Xylenes	U		0.00538	0.00650	0.00731	1	11/21/2018 18:03	WG1200088
(S) Toluene-d8	99.0				75.0-131		11/21/2018 18:03	WG1200088
(S) Dibromofluoromethane	96.4				65.0-129		11/21/2018 18:03	WG1200088
(S) a,a,a-Trifluorotoluene	113				80.0-120		11/21/2018 18:03	WG1200088
(S) 4-Bromofluorobenzene	96.8				67.0-138		11/21/2018 18:03	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.4		1.81	4.00	4.50	1	11/24/2018 18:41	WG1200994
C28-C40 Oil Range	14.1		0.308	4.00	4.50	1	11/24/2018 18:41	WG1200994
(S) o-Terphenyl	54.6				18.0-148		11/24/2018 18:41	WG1200994

SDG: L1046071

°Ss Cn [°]Sr [°]Qc

Â

Sc

SAMPLE RESULTS - 03 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:20

Total Solids by N									
	Result	Qualifier	Dilution	Analysis	Batch		Ср		
Analyte	%			date / time			2		
Total Solids	88.8		1	11/26/2018 14:18	WG1201430		Tc		
Mot Chamistry	N/Nothed 2000						3		

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	541		0.896	10.0	11.3	1	11/27/2018 10:40	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိပ္ရင
TPH (GC/FID) Low Fraction	U		0.0245	0.100	0.113	1	11/21/2018 22:09	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/21/2018 22:09	WG1200320	⁷ Gl
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/21/2018 22:09	WG1200320)

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000451	0.00100	0.00113	1	11/21/2018 18:21	WG1200088
Toluene	U		0.00141	0.00500	0.00563	1	11/21/2018 18:21	WG1200088
Ethylbenzene	U		0.000597	0.00250	0.00282	1	11/21/2018 18:21	WG1200088
Total Xylenes	U		0.00539	0.00650	0.00732	1	11/21/2018 18:21	WG1200088
(S) Toluene-d8	99.1				75.0-131		11/21/2018 18:21	WG1200088
(S) Dibromofluoromethane	91.2				65.0-129		11/21/2018 18:21	WG1200088
(S) a,a,a-Trifluorotoluene	110				80.0-120		11/21/2018 18:21	WG1200088
(S) 4-Bromofluorobenzene	96.8				67.0-138		11/21/2018 18:21	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.13		1.81	4.00	4.51	1	11/24/2018 20:10	WG1200994
C28-C40 Oil Range	2.83	J	0.309	4.00	4.51	1	11/24/2018 20:10	WG1200994
(S) o-Terphenyl	73.9				18.0-148		11/24/2018 20:10	WG1200994

SAMPLE RESULTS - 04 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.3		1	11/26/2018 14:06	WG1201431

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	947		0.862	10.0	10.8	1	11/27/2018 11:06	WG1199854
Volatile Organic Comp	. ,	-						
Volatile Organic Comp	Result (dry)	y Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution 1	,	Batch WG1200320
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution 1	date / time	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	6
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	11/21/2018 22:33	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	98.6				77.0-120		11/21/2018 22:33	WG1200320	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quanto	mg/kg	mg/kg	mg/kg	2.100.011	date / time	
Benzene	U		0.000434	0.00100	0.00108	1	11/21/2018 18:41	WG1200088
Toluene	U		0.00135	0.00500	0.00542	1	11/21/2018 18:41	WG1200088
Ethylbenzene	U		0.000575	0.00250	0.00271	1	11/21/2018 18:41	WG1200088
Total Xylenes	U		0.00518	0.00650	0.00705	1	11/21/2018 18:41	WG1200088
(S) Toluene-d8	99.6				75.0-131		11/21/2018 18:41	WG1200088
(S) Dibromofluoromethane	98.1				65.0-129		11/21/2018 18:41	WG1200088
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 18:41	WG1200088
(S) 4-Bromofluorobenzene	99.1				67.0-138		11/21/2018 18:41	WG1200088

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	29.4		1.75	4.00	4.34	1	11/24/2018 18:55	WG1200994
C28-C40 Oil Range	10.9		0.297	4.00	4.34	1	11/24/2018 18:55	WG1200994
(S) o-Terphenyl	60.3				18.0-148		11/24/2018 18:55	WG1200994

SDG: L1046071 DATE/TIME:

SAMPLE RESULTS - 05 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:51

		•				 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	86.8		1	11/26/2018 14:06	WG1201431	⁻Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	84.8		0.916	10.0	11.5	1	11/27/2018 11:15	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	84.8		0.916	10.0	11.5	1	11/27/2018 11:15	WG1199854
Volatile Organic Comp		-						
Volatile Organic Comp	Result (dry)	by Method Qualifier	SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1200320

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000461	0.00100	0.00115	1	11/21/2018 21:40	WG1200331
Toluene	U		0.00144	0.00500	0.00576	1	11/21/2018 21:40	WG1200331
Ethylbenzene	U		0.000610	0.00250	0.00288	1	11/21/2018 21:40	WG1200331
Total Xylenes	U		0.00551	0.00650	0.00749	1	11/21/2018 21:40	WG1200331
(S) Toluene-d8	114				75.0-131		11/21/2018 21:40	WG1200331
(S) Dibromofluoromethane	86.6				65.0-129		11/21/2018 21:40	WG1200331
(S) a,a,a-Trifluorotoluene	113				80.0-120		11/21/2018 21:40	WG1200331
(S) 4-Bromofluorobenzene	108				67.0-138		11/21/2018 21:40	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	45.5		1.85	4.00	4.61	1	11/24/2018 19:11	WG1200994
C28-C40 Oil Range	21.4		0.316	4.00	4.61	1	11/24/2018 19:11	WG1200994
(S) o-Terphenyl	49.1				18.0-148		11/24/2018 19:11	WG1200994

SAMPLE RESULTS - 06

WG1200320

WG1200320

Gl

AI

Sc

Collected date/time: 11/15/18 11:05

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

	Result	Qualifier	Dilution	Analysis	Batch				— ľ (
Analyte	%			date / time					2
Total Solids	92.4		1	11/26/2018 14:06	WG1201431				[1
Wet Chemistry I	by Method 300.0								3
	Result (dry)	Qualifier	SDL (o	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	424		0.860	10.0	10.8	1	11/27/2018 11:24	WG1199854	
Volatile Organio	c Compounds (GC)	by Metho	d 8015	D/GRO					5
	Result (dry)	Qualifier	SDL (o	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6

Volatile Organic Compounds (GC/MS) by Method 8260B

0.0243

97.4

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	11/21/2018 22:00	WG1200331
Toluene	U		0.00135	0.00500	0.00541	1	11/21/2018 22:00	WG1200331
Ethylbenzene	U		0.000573	0.00250	0.00271	1	11/21/2018 22:00	WG1200331
Total Xylenes	U		0.00517	0.00650	0.00703	1	11/21/2018 22:00	WG1200331
(S) Toluene-d8	113				75.0-131		11/21/2018 22:00	WG1200331
(S) Dibromofluoromethane	90.5				65.0-129		11/21/2018 22:00	WG1200331
(S) a,a,a-Trifluorotoluene	112				80.0-120		11/21/2018 22:00	WG1200331
(S) 4-Bromofluorobenzene	107				67.0-138		11/21/2018 22:00	WG1200331

0.100

0.108

77.0-120

1

0.0235

J

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.38	J	1.74	4.00	4.33	1	11/24/2018 19:27	WG1200994
C28-C40 Oil Range	0.999	J	0.296	4.00	4.33	1	11/24/2018 19:27	WG1200994
(S) o-Terphenyl	67.8				18.0-148		11/24/2018 19:27	WG1200994

SDG: L1046071 DA 11/3

11/21/2018 23:22

11/21/2018 23:22

PAGE: 13 of 40

SAMPLE RESULTS - 07

WG1200320

WG1200320

Gl

AI

Sc

Collected date/time: 11/15/18 11:32

TPH (GC/FID) Low Fraction

(S) a,a,a-Trifluorotoluene(FID)

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					i
Total Solids	87.0		1	11/26/2018 14:06	WG1201431				
Wet Chemistry b	by Method 300.0								
	Result (dry)	Qualifier	SDL (o	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	377		0.914	10.0	11.5	1	11/27/2018 11:33	WG1199854	
Volatile Organic	Compounds (GC)	by Metho	d 8015	D/GRO					
	Result (dry)	Qualifier	SDL (o	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	

Volatile Organic Compounds (GC/MS) by Method 8260B

U

98.2

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000460	0.00100	0.00115	1	11/21/2018 22:20	WG1200331
Toluene	U		0.00144	0.00500	0.00574	1	11/21/2018 22:20	WG1200331
Ethylbenzene	U		0.000609	0.00250	0.00287	1	11/21/2018 22:20	WG1200331
Total Xylenes	U		0.00549	0.00650	0.00747	1	11/21/2018 22:20	WG1200331
(S) Toluene-d8	112				75.0-131		11/21/2018 22:20	WG1200331
(S) Dibromofluoromethane	87.5				65.0-129		11/21/2018 22:20	WG1200331
(S) a,a,a-Trifluorotoluene	112				80.0-120		11/21/2018 22:20	WG1200331
(S) 4-Bromofluorobenzene	104				67.0-138		11/21/2018 22:20	WG1200331

0.100

0.115

77.0-120

1

0.0249

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.53	J	1.85	4.00	4.60	1	11/24/2018 19:41	WG1200994
C28-C40 Oil Range	1.09	J	0.315	4.00	4.60	1	11/24/2018 19:41	WG1200994
(S) o-Terphenyl	69.8				18.0-148		11/24/2018 19:41	WG1200994

SDG: L1046071 DATE/TIME: 11/30/18 16:45

11/21/2018 23:46

11/21/2018 23:46

SAMPLE RESULTS - 08 L1046071

Â

Sc

Collected date/time: 11/15/18 11:50

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					
Total Solids	81.8		1	11/26/2018 14:06	WG1201431				
Wet Chemistry I	ov Method 300 0								
Wet Chemistry I	by Method 300.0 Result (dry)	Qualifier	SDL (c	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Wet Chemistry I Analyte	-	Qualifier	SDL (c mg/kg		MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/G	RO					Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0324	J	0.0265	0.100	0.122	1	11/22/2018 00:10	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.7				77.0-120		11/22/2018 00:10	WG1200320	⁷ Gl
									UI UI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00100	0.00122	1	11/21/2018 22:40	WG1200331
Toluene	U		0.00153	0.00500	0.00611	1	11/21/2018 22:40	WG1200331
Ethylbenzene	U		0.000648	0.00250	0.00306	1	11/21/2018 22:40	WG1200331
Total Xylenes	U		0.00585	0.00650	0.00795	1	11/21/2018 22:40	WG1200331
(S) Toluene-d8	110				75.0-131		11/21/2018 22:40	WG1200331
(S) Dibromofluoromethane	88.5				65.0-129		11/21/2018 22:40	WG1200331
(S) a,a,a-Trifluorotoluene	108				80.0-120		11/21/2018 22:40	WG1200331
(S) 4-Bromofluorobenzene	105				67.0-138		11/21/2018 22:40	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.97	4.00	4.89	1	11/24/2018 19:58	WG1200994
C28-C40 Oil Range	U		0.335	4.00	4.89	1	11/24/2018 19:58	WG1200994
(S) o-Terphenyl	59.2				18.0-148		11/24/2018 19:58	WG1200994

SAMPLE RESULTS - 09 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 12:00

	Result	Qualifier	Dilution	Analysis	Batch	 'Ср
Analyte	%			date / time		2
Total Solids	89.3		1	11/26/2018 14:06	WG1201431	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	638		0.890	10.0	11.2	1	11/27/2018 12:08	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q c
TPH (GC/FID) Low Fraction	381		2.43	0.100	11.2	100	11/22/2018 00:34	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	94.8				77.0-120		11/22/2018 00:34	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00358	0.00100	0.00895	8	11/22/2018 00:42	WG1200331
Toluene	1.08		0.0112	0.00500	0.0448	8	11/22/2018 00:42	WG1200331
Ethylbenzene	0.852		0.00475	0.00250	0.0224	8	11/22/2018 00:42	WG1200331
Total Xylenes	9.09		0.0428	0.00650	0.0582	8	11/22/2018 00:42	WG1200331
(S) Toluene-d8	108				75.0-131		11/22/2018 00:42	WG1200331
(S) Dibromofluoromethane	100				65.0-129		11/22/2018 00:42	WG1200331
(S) a,a,a-Trifluorotoluene	105				80.0-120		11/22/2018 00:42	WG1200331
(S) 4-Bromofluorobenzene	131				67.0-138		11/22/2018 00:42	WG1200331

Sample Narrative:

L1046071-09 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2500		36.0	4.00	89.5	20	11/26/2018 02:11	WG1200994
C28-C40 Oil Range	768		6.13	4.00	89.5	20	11/26/2018 02:11	WG1200994
(S) o-Terphenyl	331	<u>J7</u>			18.0-148		11/26/2018 02:11	WG1200994

DATE/TIME: 11/30/18 16:45

Receivedby OCD: 11/8/2021 10:05:54 РМ

SAMPLE RESULTS - 10 L1046071

ONE LAB. NAPagev158 of 348

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:00

						 1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	95.2		1	11/26/2018 14:06	WG1201431	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	2670		4.18	10.0	52.5	5	11/27/2018 12:16	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ຶQc	
TPH (GC/FID) Low Fraction	0.206		0.0228	0.100	0.105	1	11/22/2018 00:58	WG1200320		
(S) a,a,a-Trifluorotoluene(FID)	83.6				77.0-120		11/22/2018 00:58	WG1200320	⁷ Gl	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	11/21/2018 23:00	WG1200331
Toluene	0.00166	J	0.00131	0.00500	0.00525	1	11/21/2018 23:00	WG1200331
Ethylbenzene	U		0.000557	0.00250	0.00263	1	11/21/2018 23:00	WG1200331
Total Xylenes	U		0.00502	0.00650	0.00683	1	11/21/2018 23:00	WG1200331
(S) Toluene-d8	111				75.0-131		11/21/2018 23:00	WG1200331
(S) Dibromofluoromethane	90.4				65.0-129		11/21/2018 23:00	WG1200331
(S) a,a,a-Trifluorotoluene	110				80.0-120		11/21/2018 23:00	WG1200331
(S) 4-Bromofluorobenzene	105				67.0-138		11/21/2018 23:00	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	808		8.45	4.00	21.0	5	11/26/2018 01:58	WG1200994
C28-C40 Oil Range	349		1.44	4.00	21.0	5	11/26/2018 01:58	WG1200994
(S) o-Terphenyl	91.9				18.0-148		11/26/2018 01:58	WG1200994

SAMPLE RESULTS - 11 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/15/18 10:30

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	 Cp
Analyte	%			date / time		2
Total Solids	88.2		1	11/26/2018 14:06	WG1201431	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	3450		4.51	10.0	56.7	5	11/27/2018 12:25	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ຶQc
TPH (GC/FID) Low Fraction	669		4.92	0.100	22.7	200	11/22/2018 01:22	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	96.4				77.0-120		11/22/2018 01:22	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

·									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	0.323		0.00907	0.00100	0.0227	20	11/22/2018 01:01	WG1200331	
Toluene	5.10		0.0284	0.00500	0.113	20	11/22/2018 01:01	WG1200331	
Ethylbenzene	1.50		0.0120	0.00250	0.0567	20	11/22/2018 01:01	WG1200331	
Total Xylenes	15.5		0.108	0.00650	0.147	20	11/22/2018 01:01	WG1200331	
(S) Toluene-d8	105				75.0-131		11/22/2018 01:01	WG1200331	
(S) Dibromofluoromethane	105				65.0-129		11/22/2018 01:01	WG1200331	
(S) a,a,a-Trifluorotoluene	104				80.0-120		11/22/2018 01:01	WG1200331	
(S) 4-Bromofluorobenzene	120				67.0-138		11/22/2018 01:01	WG1200331	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8440		183	4.00	454	100	11/26/2018 02:25	WG1200994
C28-C40 Oil Range	2760		31.1	4.00	454	100	11/26/2018 02:25	WG1200994
(S) o-Terphenyl	1090	<u>J7</u>			18.0-148		11/26/2018 02:25	WG1200994

SDG: L1046071

DATE/TIME: 11/30/18 16:45

SAMPLE RESULTS - 12 L1046071

ONE LAB. NAPage 160 of 348

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 11:15

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.5		1	11/26/2018 14:06	WG1201431	Тс

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ C	
Chloride	1300		4.21	10.0	52.9	5	11/27/2018 12:51	<u>WG1199854</u>		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc
TPH (GC/FID) Low Fraction	0.0522	J	0.0230	0.100	0.106	1	11/22/2018 01:45	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.4				77.0-120		11/22/2018 01:45	WG1200320	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000423	0.00100	0.00106	1	11/21/2018 23:20	WG1200331	
Toluene	U		0.00132	0.00500	0.00529	1	11/21/2018 23:20	WG1200331	
Ethylbenzene	0.000771	J	0.000561	0.00250	0.00264	1	11/21/2018 23:20	WG1200331	
Total Xylenes	U		0.00506	0.00650	0.00687	1	11/21/2018 23:20	WG1200331	
(S) Toluene-d8	113				75.0-131		11/21/2018 23:20	WG1200331	
(S) Dibromofluoromethane	91.1				65.0-129		11/21/2018 23:20	WG1200331	
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/21/2018 23:20	WG1200331	
(S) 4-Bromofluorobenzene	107				67.0-138		11/21/2018 23:20	WG1200331	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	317		8.51	4.00	21.2	5	11/29/2018 16:45	WG1201271
C28-C40 Oil Range	123		0.290	4.00	4.23	1	11/29/2018 05:40	WG1201271
(S) o-Terphenyl	93.6				18.0-148		11/29/2018 05:40	WG1201271
(S) o-Terphenyl	100				18.0-148		11/29/2018 16:45	WG1201271

SDG: L1046071

DATE/TIME: 11/30/18 16:45

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 12:00

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.3		1	11/26/2018 14:06	WG1201431	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
				•···•j····=					
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	252		0.861	10.0	10.8	1	11/27/2018 13:00	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ĴĞ
TPH (GC/FID) Low Fraction	0.0298	J	0.0235	0.100	0.108	1	11/22/2018 02:09	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.8				77.0-120		11/22/2018 02:09	WG1200320	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	11/21/2018 23:41	WG1200331
Toluene	U		0.00135	0.00500	0.00542	1	11/21/2018 23:41	WG1200331
Ethylbenzene	U		0.000574	0.00250	0.00271	1	11/21/2018 23:41	WG1200331
Total Xylenes	U		0.00518	0.00650	0.00704	1	11/21/2018 23:41	WG1200331
(S) Toluene-d8	113				75.0-131		11/21/2018 23:41	WG1200331
(S) Dibromofluoromethane	92.9				65.0-129		11/21/2018 23:41	WG1200331
(S) a,a,a-Trifluorotoluene	107				80.0-120		11/21/2018 23:41	WG1200331
(S) 4-Bromofluorobenzene	109				67.0-138		11/21/2018 23:41	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.70	J	1.74	4.00	4.33	1	11/30/2018 00:19	WG1201271
C28-C40 Oil Range	5.28		0.297	4.00	4.33	1	11/30/2018 00:19	WG1201271
(S) o-Terphenyl	73.6				18.0-148		11/30/2018 00:19	WG1201271

DATE/TIME: 11/30/18 16:45 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 14 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:00

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.7		1	11/26/2018 13:52	WG1201432	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
			= = (<i>)</i> /	•···••j•···•=					
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	343		0.840	10.0	10.6	1	11/27/2018 13:09	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	343		0.840	10.0	10.6	1	11/27/2018 13:09	WG1199854
Volatile Organic Com	, ,	-						
Volatile Organic Com	pounds (GC) b Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte	, ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1200320

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	11/22/2018 00:01	WG1200331
Toluene	U		0.00132	0.00500	0.00528	1	11/22/2018 00:01	WG1200331
Ethylbenzene	U		0.000560	0.00250	0.00264	1	11/22/2018 00:01	WG1200331
Total Xylenes	U		0.00505	0.00650	0.00687	1	11/22/2018 00:01	WG1200331
(S) Toluene-d8	115				75.0-131		11/22/2018 00:01	WG1200331
(S) Dibromofluoromethane	89.9				65.0-129		11/22/2018 00:01	WG1200331
(S) a,a,a-Trifluorotoluene	107				80.0-120		11/22/2018 00:01	WG1200331
(S) 4-Bromofluorobenzene	110				67.0-138		11/22/2018 00:01	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.25	J	1.70	4.00	4.22	1	11/29/2018 06:12	WG1201271
C28-C40 Oil Range	2.61	J	0.289	4.00	4.22	1	11/29/2018 06:12	WG1201271
(S) o-Terphenyl	80.3				18.0-148		11/29/2018 06:12	WG1201271

SAMPLE RESULTS - 15 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:30

	Resul	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.1		1	11/26/2018 13:52	WG1201432	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	Nethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	553		0.883	10.0	11.1	1	11/27/2018 13:18	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	0.0362	J	0.0241	0.100	0.111	1	11/22/2018 02:57	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.8				77.0-120		11/22/2018 02:57	<u>WG1200320</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000444	0.00100	0.00111	1	11/22/2018 00:21	WG1200331
Toluene	U	J3	0.00139	0.00500	0.00555	1	11/22/2018 00:21	WG1200331
Ethylbenzene	U	J3	0.000588	0.00250	0.00277	1	11/22/2018 00:21	WG1200331
Total Xylenes	U	J3	0.00531	0.00650	0.00721	1	11/22/2018 00:21	WG1200331
(S) Toluene-d8	117				75.0-131		11/22/2018 00:21	WG1200331
(S) Dibromofluoromethane	88.5				65.0-129		11/22/2018 00:21	WG1200331
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/22/2018 00:21	WG1200331
(S) 4-Bromofluorobenzene	111				67.0-138		11/22/2018 00:21	WG1200331

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	17.1		1.79	4.00	4.44	1	11/29/2018 06:27	WG1201271
C28-C40 Oil Range	10.9		0.304	4.00	4.44	1	11/29/2018 06:27	WG1201271
(S) o-Terphenyl	69.2				18.0-148		11/29/2018 06:27	WG1201271

SAMPLE RESULTS - 16 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 13:55

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	88.2		1	11/26/2018 13:52	<u>WG1201432</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	ethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	409		0.902	10.0	11.3	1	11/27/2018 13:27	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	345		2.46	0.100	11.3	100	11/22/2018 03:21	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	97.0				77.0-120		11/22/2018 03:21	WG1200320	⁷ Gl
									0

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00363	0.00100	0.00907	8	11/22/2018 01:21	WG1200331
Toluene	0.510		0.0113	0.00500	0.0453	8	11/22/2018 01:21	WG1200331
Ethylbenzene	0.100		0.00481	0.00250	0.0227	8	11/22/2018 01:21	WG1200331
Total Xylenes	7.65		0.0434	0.00650	0.0590	8	11/22/2018 01:21	WG1200331
(S) Toluene-d8	106				75.0-131		11/22/2018 01:21	WG1200331
(S) Dibromofluoromethane	103				65.0-129		11/22/2018 01:21	WG1200331
(S) a,a,a-Trifluorotoluene	106				80.0-120		11/22/2018 01:21	WG1200331
(S) 4-Bromofluorobenzene	121				67.0-138		11/22/2018 01:21	WG1200331

Sample Narrative:

L1046071-16 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1950		36.5	4.00	90.7	20	11/29/2018 17:16	WG1201271
C28-C40 Oil Range	366		0.311	4.00	4.53	1	11/29/2018 06:43	WG1201271
(S) o-Terphenyl	240	<u>J7</u>			18.0-148		11/29/2018 17:16	WG1201271
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		11/29/2018 06:43	WG1201271

DATE/TIME: 11/30/18 16:45

SAMPLE RESULTS - 17 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 15:05

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.9		1	11/26/2018 13:52	WG1201432	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by N	lethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1440		4.37	10.0	55.0	5	11/27/2018 13:35	WG1199854	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1440		4.37	10.0	55.0	5	11/27/2018 13:35	WG1199854	
Volatile Organic Comp	ounds (CC) k	w Mothod							⁵Sr
	Jourius (GC) L	by Method	6015D/GI	RU					
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	· · · ·	÷			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	6Qc
	Result (dry)	÷	SDL (dry)	Unadj. MQL		Dilution 100	,	Batch WG1200320	
Analyte	Result (dry) mg/kg	÷	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg		date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00352	0.00100	0.00880	8	11/22/2018 01:41	WG1200331
Toluene	2.13		0.0110	0.00500	0.0440	8	11/22/2018 01:41	WG1200331
Ethylbenzene	0.920		0.00466	0.00250	0.0220	8	11/22/2018 01:41	WG1200331
Total Xylenes	12.4		0.0421	0.00650	0.0572	8	11/22/2018 01:41	WG1200331
(S) Toluene-d8	106				75.0-131		11/22/2018 01:41	WG1200331
(S) Dibromofluoromethane	102				65.0-129		11/22/2018 01:41	WG1200331
(S) a,a,a-Trifluorotoluene	103				80.0-120		11/22/2018 01:41	WG1200331
(S) 4-Bromofluorobenzene	143	<u>J1</u>			67.0-138		11/22/2018 01:41	WG1200331

Sample Narrative:

L1046071-17 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13300	V	177	4.00	440	100	11/29/2018 10:09	WG1201271
C28-C40 Oil Range	2800		3.01	4.00	44.0	10	11/29/2018 08:47	WG1201271
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		11/29/2018 08:47	WG1201271
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		11/29/2018 10:09	WG1201271

SDG: L1046071

DATE/TIME: 11/30/18 16:45

SAMPLE RESULTS - 18 L1046071

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/16/18 15:40

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	90.4		1	11/26/2018 13:52	WG1201432			
Wet Chemistry by Met	hod 300.0							
	Result (dry)	Qualifier	SDL (dr	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1360		4.40	10.0	55.3	5	11/27/2018 18:00	WG1200542
		In N A matter a .						
Volatile Organic Comp	pounds (GC)	by ivietno	1 8015L	/GRO				
Volatile Organic Comp	Result (dry)	Dy Nethod	3 8015L SDL (dr		MQL (dry)	Dilution	Analysis	Batch
Analyte	· · · ·	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dr	y) Unadj. MQL		Dilution 100		Batch WG1200320

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	1360		4.40	10.0	55.3	5	11/27/2018 18:00	WG1200542	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ືິ
TPH (GC/FID) Low Fraction	439		2.40	0.100	11.1	100	11/22/2018 04:08	WG1200320	
(S) a,a,a-Trifluorotoluene(FID)	96.4				77.0-120		11/22/2018 04:08	WG1200320	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00354	0.00100	0.00885	8	11/22/2018 02:01	WG1200331
Toluene	1.31		0.0111	0.00500	0.0443	8	11/22/2018 02:01	WG1200331
Ethylbenzene	1.25		0.00469	0.00250	0.0221	8	11/22/2018 02:01	WG1200331
Total Xylenes	12.9		0.0423	0.00650	0.0575	8	11/22/2018 02:01	WG1200331
(S) Toluene-d8	105				75.0-131		11/22/2018 02:01	WG1200331
(S) Dibromofluoromethane	106				65.0-129		11/22/2018 02:01	WG1200331
(S) a,a,a-Trifluorotoluene	103				80.0-120		11/22/2018 02:01	WG1200331
(S) 4-Bromofluorobenzene	144	<u>J1</u>			67.0-138		11/22/2018 02:01	WG1200331

Sample Narrative:

L1046071-18 WG1200331: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2830		44.5	4.00	111	25	11/29/2018 17:32	WG1201271
C28-C40 Oil Range	1130		1.52	4.00	22.1	5	11/29/2018 17:00	WG1201271
(S) o-Terphenyl	348	<u>J1</u>			18.0-148		11/29/2018 17:00	WG1201271
(S) o-Terphenyl	265	<u>J7</u>			18.0-148		11/29/2018 17:32	WG1201271

Sample Narrative:

L1046071-18 WG1201271: Surrogate failure due to matrix interference

Rece	ived (by OCI ∾	<u>D:</u> 1	1/8/202	⁴):0 .	5:54 5	נ ר א ר	မို	ر ۲	5	$\overline{P}_{_{\scriptscriptstyle (S)}}$		DATE OF THE Page 167 of 34	18
ONE LAB. NATIONWIDE.															26 of 40
															UALE/ IIME. 11/30/18 16:45
CONTROL SUMMARY															506. L1046071
QUALITY CON							DUP Qualifier Limits	%	10			s LCS Qualifier			212C-MD-01491
0		MB RDL	%		(UD)		DUP RPD	%	0.823			Rec. Limits %	85 0-115		21
			%		plicate (D	1/26/18 14:18	Dilution DUP RPD		-			LCS Rec. %	100		
11		MB Qualifier			e (OS) • Du	R3363176-3 1	Original Result DUP Result	%	89.5	CS)		: LCS Result %	50.0		, L
) thod 2540 G-20	1B)	6/18 14:18 MB Result	%		iginal Sample	6/18 14:18 • (DUP)	Original Resul	%	88.8	rol Sample (L	6/18 14:18	Spike Amount %	200		ConocoPhillips - Tetra Tech
WG1201430	post Method Blank (N	0 (MB) R3363176-1 11/26/18 14:18	Survey Collide	10/31	2011046071-03 Original Sample (OS) • Duplicate (DUP)	C(OS) L1046071-03 11/2	3:02	Analyte	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3363176-2 11/26/18 14:18	Analyte	Total Solids		Conoc

Rece	ived (by OCD:	11	/ <mark>8/2021</mark>	10:0	95:5 ຫ	4_P 1 ഗ	g S	ب ۲	5	ъ В	ီလ				Pa	ge 16	8 of	348
ONE LAB. NATIONWIDE.																			PAGE
_ITY CONTROL SUMMARY L1046071-04.05.06.07.08.09.10.11.12.13																			SDG:
QUALITY CO [1046071-04,0]						DUP Qualifier DUP RPD		10			LCS Qualifier								PROJECT:
		. MB RDL		DUP)	06			0.310			: Rec. Limits %	85.0-115							ш
		MB MDL %		olicate (1/26/18 14:0	Dilution		~			LCS Rec. %	100							
11		MB Qualifier		(OS) • Dur	R3363174-3 1	It DUP Result	%	94.3	-CS)		t LCS Result %	50.0							
hod 2540 G-20	1B)	/18 14:06 MB Result %	0.00100	ainal Sample	;/18 14:06 • (DUP)	Original Resul	%	94.5	rol Sample (L	6/18 14:06	Spike Amount %	50.0							ACCOUNT:
WG1201431	poss Method Blank (N	MB) R3363174-1 11/26/18 14:06 MB Result MB Qualifier MB MDL MB Malyte % % % %	Total Solids	715/01 71-1046071-12 Oric	020 020 1046071-12 11/26	3:0	SAnalyte	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3363174-2 11/26/18 14:06	Analyte	Total Solids							(

Rece	ived (by O		11 /	8 <u>/2</u> 0	21 1	0 :0	5:54 10	נר צר א ה	° G	ل ۲	ō	$\overline{P}_{^{\scriptscriptstyle (0)}}$		တိုက် Page 169 ၀	f 34	8
ONE LAB. NATIONWIDE.																PAGE	28 of 40
																DATE/TIME:	11/30/18 16:45
CONTROL SUMMARY 10046071-14.15.16.17.18																SDG:	L1046071
QUALITY CON								DUP Qualifier DUP RPD Limits	%	10			LCS Qualifier			PROJECT:	212C-MD-01491
Q			MD NUL %			P)				1.18			Rec. Limits	85 0-115		L.	212
			MID MIDL %			licate (DU	26/18 13:52	Dilution DUP RPD	%	-			LCS Rec. %	۰ ۱۰۰			
1						dnd • (SO)	3363173-3 11/	DUP Result	%	89.9	CS)		LCS Result	20 U			£
2 hod 2540 G-201	1B)	/18 13:52 MD Docute	WID Nesul	0.00100		jinal Sample (3/18 13:52 • (DUP) R	Original Result DUP Result	%	6.06	rol Sample (L	6/18 13:52	Spike Amount %	20 0		ACCOUNT:	ConocoPhillips - Tetra Tech
WG1201432	pose Method Blank (N	MB) R3363173-1 11/26/18 13:52	analyte	Solids	10/3	21-1046071-17 Original Sample (OS) • Duplicate (DUP)	20S) L1046071-17 11/26	3:02	Analyte	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3363173-2 11/26/18 13:52	Analyta	Total Solids			Conoc

QUALITY CONTROL SUMMARY L1046071-01.02.03.04.05.06.07.08.09.10.11.12.13.14.15.16.17
MB RDL ma/ka
10.0
2005) L1045558-04 11/27/18 10:05 • (DUP) R3363335-3 11/27/18 10:14
Dilution DUP RPD DUP Qualifier
Rec. Limits
90.0-110
LIO40071-07 UIGIII (1910) 2011 (US) • MARIIX SPIKE (MS) • MARIIX SPIKE UUPILARE (MS) • (MS) • MARIIX SPIKE UUPILARE (MSU) (05) LIO46071-07 11/27/18 11:33 • (MS) R3363335-4 11/27/18 11:41 • (MSD) R3363335-5 11/27/18 11:50
MSD Result (drv)
mg/kg
PROJECT: 212C-MD-01491

WG1200542 Wet Chemistry by Method 300.0	42 Method 300.0			0	QUALITY	Y CONTROL SUMMARY	OL SU	JMMAF	×			ONE LAB. NATIONWIDE.		Recei
Method Blank	(MB)													ived L
0 (MB) R3363485-1 11/27/18 17:15	27/18 17:15 MB Result	MB Qualifier	MB MDL	MB RDL										y O C. ∾
Analyte	mg/kg 		mg/kg	mg/kg										<u>D:</u> 1
	⊃		0./95	0.01										1/8/ m
10 81-1209401 0/31/2	riainal Sample ((OS) • Duc	licate (DL											/2021
			00.01 01/2011											10
	2//اتا العامين من مراسط الحمار المحالم Original Result (drv)	t DUP Result (drv)	Dilution DUP RPD	RPD	DUP Qualifier	DUP RPD Limits								:05:54
Analyte	mg/kg	mg/kg	-	%		%								נר ף גר
MChloride	1360	1530	ы	12.2		20								ပို
L1046466-05 (L1046466-05 Original Sample (OS) • Duplicate (DUP)	ຳ(OS) • Dເ	uplicate (E	(ANC										7 GI
(OS) L1046466-05 11/28/18 01:34 • (DUP) R3363485-8 11/28/18 01:43	1/28/18 01:34 • (DUP)	R3363485-8	11/28/18 01:4	13)
	Original Result (dry)	t DUP Result (dry)	Dilution DUP RPD	JP RPD	DUP Qualifier	DUP RPD Limits								ها کا
Analyte	mg/kg	mg/kg		%		%								
Chloride	3090	3510	с С	12.8		20								Sc
Laboratory Cor	Laboratory Control Sample (LCS)	CS)												
/I CS/ R3363485-3 11/27/18 17-42	1/27/18 17:42													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	s LCS Qualifier	fier								
Analyte	mg/kg	mg/kg	%	%										
Chloride	200	192	96.2	90.0-110										
L1046455-01 C	L1046455-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) • Ma	trix Spike	e (MS) • Ma	trix Spike	Duplicate (MS	SD)							
(OS) L1046455-01 11/27/18 18:17 • (MS) R3363485-5 11/27/18 18:26 • (MSD) R3363485-6 11/27/18 18:35	/27/18 18:17 • (MS) R3	363485-5 11	27/18 18:26 •	· (MSD) R3363	485-6 11/27/18	18:35								
	Spike Amount (dry)		IIt MS Result (Original Result MS Result (dry) (dry) (dry)		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier		RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	610	4320	5170	5020	139	13 5	-	80.0-120	> Ш	ш	2.84	20		Ĺ
														Page 171 oj
-	ACCOUNT:			- ()	PROJECT:		-	SDG:		DATE	DATE/TIME:		PAGE:	° <i>348</i>
COL	ConocoPhillips - Letra Lech			212	212C-MD-01491		L1	L10460 /1		11/30/1	11/30/18 16:45		30 01 40	

	DOL
0	Com
\sim	ŭ
∞	.0
0	Organic
0	L O
\sim	
-	0
C	Volati
Š	0
Re	le

${\tt L1046071-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18}$ QUALITY CONTROL SUMMARY

ш	
\Box	
=	
<	
5	
~	
\odot	
5	
4	
\leq	
m)	
\triangleleft	
ш÷.	
亗	
2	
0	
~	

WG1200320				JQL	ΙΑLΙΤΥ (QUALITY CONTROL SUMMARY	L SUMI	MARY		ONE LAB. NATIONWIDE.	Re
olatile Organic Compounds (GC) by Method 8015D/GRO	ıpounds (GC) b	oy Method 8	015D/GRO	L1046C	71-01,02,03,04	L1046071-01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18	,10,11,12,13,1	4,15,16,17,18			cei
PMethod Blank (MB)	3)										ved
(MB) R3363238-3 11/21/1	8 20:15										by (
MB Res	MB Result	MB Qualifier	MB MDL	MB RDL							0C
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	n		0.0217	0.100							11
701 (S) 20.a.a.Triftuorotoluene(FID)	99.4			77.0-120							/ <mark>8/20</mark>
1/20											21 1
22 22 24 25 25 25 25 25 25 25 25 25 25) Sample (LC	CS) • Labo	ratory Conti	rol Sample	e Duplicate	(LCSD)					@:0
CLCS) R3363238-1 11/21/18 19:03 • (LCSD) R3363238-2 11/21/18 19:27	8 19:03 • (LCSD)	, R3363238-2	11/21/18 19:27			~					5:54
:08	Spike Amount	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits L	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		• P
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		1 س

ğ

20 %

0.928

77.0-120 72.0-127 %

> 104 101

102 104

5.58

5.53

5.50

Malyte TPH (GC/FID) Low Fraction

(S) a, a, a-Trifluorotoluene(FID)

Ū

SC

₹

L1046071-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046071-18 11/22/18 04:08 • (MS) R3363238-4 11/22/18 04:32 • (MSD) R3363238-5 11/22/18 04:56

	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.09	439	829	799	64.2	59.1	100	10.0-151			3.79	28
(S) a, a, a-Trifluorotoluene(FID)					102	101		77.0-120				

31 of 40 PAGE:

11/30/18 16:45 DATE/TIME:

∞	
$\tilde{\infty}$	
0	
0	
20	
-	
G	
\leq	
- Ke	2

QUALITY CONTROL SUMMARY L1046071-01,02,03,04

WG1200088				QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
Volatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	S) by Method	d 8260B	L1046071-01,02,03,04		cei
Method Blank (MB)						ved i
(MB) R3362689-2 11/21/18	13:29					by (
MB Resu	MB Result	MB Qualifier	MB MDL	MB RDL		0 C . ∾
Analyte	mg/kg		mg/kg	mg/kg		D:
Benzene	П		0.000400	0.00100		11
1 Ethylbenzene	N		0.000530	0.00250		/ <mark>8//</mark>
31	N		0.00125	0.00500		302
Xylenes, Total	N		0.00478	0.00650		4
(S) Toluene-d8	100			75.0-131		
S) Dibromofluoromethane	91.5			65.0-129		95:
(S) a, a, a-Trifluorotoluene	011			80.0-120		54
	100			67.0-138		
PM						ို္ပ္ဂ

Laboratory Control Sample (LCS)

11:07
11/21/18 11
R3362689-1
(LCS)

(LCS) R3362689-1 11/21/18 11:07	11:07					Ū Ū
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	s LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.106	84.9	70.0-123		
Ethylbenzene	0.125	0.114	91.1	74.0-126		σ
Toluene	0.125	0.115	92.1	75.0-121		
Xylenes, Total	0.375	0.349	93.1	72.0-127		
(S) Toluene-d8			95.2	75.0-131		
(S) Dibromofluoromethane			94.9	65.0-129		
(S) a,a,a-Trifluorotoluene			112	80.0-120		
(S) 4-Bromofluorobenzene			96.2	67.0-138		

L1045482-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1045482-19 11/21/18 19:00 • (MS) R3362689-3 11/21/18 19:56 • (MSD) R3362689-4 11/21/18 20:15	3 19:00 • (MS) R3	3362689-3 11/2	1/18 19:56 • (M	SD) R3362689	-4 11/21/18 20:	15						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	1.94	7.35	9.57	54.1	76.3	80	10.0-149			26.3	37
Ethylbenzene	0.125	23.4	30.4	34.6	70.1	112	80 1	10.0-160			12.9	38
Toluene	0.125	25.9	32.1	35.7	62.1	98.2	80	10.0-156			10.6	38
Xylenes, Total	0.375	141	166	181	83.7	131	80 1	10.0-160			8.13	38
(S) Toluene-d8					101	99.7		75.0-131				
(S) Dibromofluoromethane					96.7	93.8	-	65.0-129				
(S) a,a,a-Trifluorotoluene					111	112	5	80.0-120				
(S) 4-Bromofluorobenzene					98.3	95.8	1	67.0-138				

32 of 40 PAGE:

11/30/18 16:45 DATE/TIME:

SDG: L1046071

212C-MD-01491 **PROJECT:**

ConocoPhillips - Tetra Tech ACCOUNT:

	- 5
~	
\mathcal{O}	(
∞	0.0000
0	-
\mathbf{O}	
\frown	2
0	-
N	(
<u> </u>	(
()	1140101
$\mathbf{\nabla}$	
\sim	-
\leq	-
Re	ĺ

QUALITY CONTROL SUMMARY ${\tt L1046071-05,06,07,08,09,10,11,12,13,14,15,16,17,18}$

WG1200331 Wolatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/MS	5) by Metho	od 8260B	S S	QUALITY CONTROL SUMMARY L1046071-05.06.07.08.09.10.11.12.13.14.15.16.17.18	ONE LAB. NATIONWIDE.	Recei
portection Blank (MB)							ived
(MB) R3363004-2 11/21/18	19:21						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C
Malyte mg/l	mg/kg		mg/kg	mg/kg			D:
Senzene	П		0.000400	0.00100			11
0 Ethylbenzene	Π		0.000530	0.00250			/ <mark>8/</mark> /
Joluene	Π		0.00125	0.00500			302
Xylenes, Total	Π		0.00478	0.00650			4
(S) Toluene-d8	115			75.0-131			0:0
S) Dibromofluoromethane	85.4			65.0-129			05:
(S) a, a, a-Trifluorotoluene	107			80.0-120			54 ن
(S) 4-Bromofluorobenzene	106			67.0-138			P)
PM							ر م
Laboratory Control Sample (LCS)	Sample (LC	S)))
(LCS) R3363004-1 11/21/18 18:01	18:01						
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			0

Laboratory Control Sample (LCS)

(LCJ) 73303004-1 11/21/10 10.01	10.01					ס
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Benzene	0.125	0.0924	74.0	70.0-123		Ī
Ethylbenzene	0.125	0.129	103	74.0-126		σ
Toluene	0.125	0.101	80.9	75.0-121		လို
Xylenes, Total	0.375	0.383	102	72.0-127		
(S) Toluene-d8			105	75.0-131		
(S) Dibromofluoromethane			99.5	65.0-129		
(S) a,a,a-Trifluorotoluene			107	80.0-120		
(S) 4-Bromofluorobenzene			104	67.0-138		

L1046071-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

CC.CO 01/CC/11 C 100C3 CCU /3/1/ 105/110/6071-15 11/22/18 00:21

SO)	(OS) L1046071-15 11/22/18 00:21 • (MS) R3363004-3 11/22/18 02:22 • (MSD) R3363004-4 11/22/18 02:42	00:21 • (MS) R33	363004-3 11/2	2/18 02:22 • (N	1SD) R3363004	-4 11/22/18 0.	2:42							
		Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	yte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	ene.	0.139	n	0.0481	0.113	34.7	81.5	-	10.0-149		с Г	80.5	37	
Ethyl	Ethylbenzene	0.139	N	0.0714	0.168	51.5	121	.	10.0-160		с Г	80.6	38	
Toluene	ene	0.139	N	0.0584	0.139	42.1	9.99	-	10.0-156		с Г	81.4	38	
Xyler	Xylenes, Total	0.416	N	0.226	0.496	54.3	119	-	10.0-160		<u>در</u>	74.7	38	
(S)	(S) Toluene-d8					110	111		75.0-131					
(S)	(S) Dibromofluoromethane					94.5	90.7		65.0-129					
(S)	(S) a, a, a-Trifluorotoluene					107	107		80.0-120					
(S)	(S) 4-Bromofluorobenzene					111	011		67.0-138					
	A	ACCOUNT:			PROJECT:	ECT:		S	SDG:		DATE/TIME:	TIME:		PAGE
	ConocoPt	ConocoPhillips - Tetra Tech			212C-MD-01491	0-01491		L10	L1046071		11/30/18 16:45	16:45		33 of 40

Page 174 of 348

4	
σ	2
σ	č
0	
0	÷
WG1200	-
5	>
G	2
\geq	0
Re	l

QUALITY CONTROL SUMMARY

Received by OCD: 11/8/202 ONE LAB. NATIONWIDE. L1046071-01,02,03,04,05,06,07,08,09,10,11 MB RDL mg/kg 4.00 Best in the second seco MB MDL mg/kg 1.61 MB Qualifier **MB** Result mg/kg MB) R3362656-1 11/24/18 16:52 MB Res Malyte mg/kg C10-C28 Diesel Range U

10:05:54_P

ğ

 $\overline{\mathbb{O}}$

SC

₹

CSB-C4001 Range U 0.274 400 (5) o-Terphenyl 844 80-488 (5) o-Terphenyl 846 800 (5) o-Terphenyl 500 310 808 (5) o-Terphenyl 500 310 810 (5) o-Terphenyl 50-Terphenyl 12-4 810-488	L	m		4		Ω		w			
0 0.274 4.00 84.4 4.00 84.4 8.0-48 10.148 17.25 Introl Sample (LCS) · Laboratory Control Sample Duplicate (LCSD) 11/24/18 17:25 · (LCSD) R3362656-3 11/24/18 17:37 11/24/18 17:25 · (LCSD) R3362656-3 11/24/18 17:37 11/24/18 17:25 · (LCSD) R3362656-3 11/24/18 17:37 50.0 31.8 0.0 60.0 31.8 36.0 63.6 60.0 31.8 36.0 63.6 72.0 50.0-150 12.4 50.0 31.8 36.0 63.6 72.0 50.0-150 12.4 50.0 31.8 40.9 81.8 80.418 10.0 10.0											
U 0.274 4.00 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 50:0 31.8 9.0 50:0 31.8 36.0 63.6 50:0 31.8 36.0 63.6 72.0 50:0 37.0 40.9 74.0 81.8							RPD Limits	%	20	20	
U 0.274 4.00 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 50:0 31.8 9.0 50:0 31.8 36.0 63.6 50:0 31.8 36.0 63.6 72.0 50:0 37.0 40.9 74.0 81.8							LCSD Qualifier RPD	%	12.4	10.0	
U 0.274 4.00 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 84.4 8.0.148 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 50:0 31.8 9.0 50:0 31.8 36.0 63.6 50:0 31.8 36.0 63.6 72.0 50:0 37.0 40.9 74.0 81.8							LCS Qualifier				
U 0.274 4.00 84.4 4.00 18.0-148 84.4 18.0-148 18.0-148 ntrol Sample (LCS) • Laboratory Control Sample 18.0-148 11/24/18 17:25 • (LCSD) R3362656-3 11/24/18 17:37 Spike Amount LCS Result LCS Result LCS Result mg/kg 10/4g 50.0 31.8 36.0 63.6 50.0 37.0 40.9 74.0 50.0 37.0 40.9 74.0					e (LCSD)		Rec. Limits	%	50.0-150	50.0-150	18.0-148
Construction Display Display <thdisplay< th=""> Display Display<td></td><td></td><td></td><td></td><td></td><td></td><td>LCSD Rec.</td><td>%</td><td>72.0</td><td>81.8</td><td>83.5</td></thdisplay<>							LCSD Rec.	%	72.0	81.8	83.5
Comment 0 0.274 Comment 0 0.274 (S) o-Terphenyl 84.4 0.274 (S) o-Terphenyl 50.0 37.0 40.9		4.00	18.0-148		ntrol Samp	57	LCS Rec.	%	63.6	74.0	87.4
C28-C40 Oil Range U (5) o-Terphenyl 84.4 (1000000000000000000000000000000000000		0.274			oratory Co	-3 11/24/18 17:3		mg/kg	36.0	40.9	
C28-C40 Oil Range U (5) o-Terphenyl 84.4 (5) o-Terphenyl 84.4 (5) o-Terphenyl 84.4 (5) o-Terphenyl 84.4 80:701: 50.0 Manalyte mg/kg Extractable Petroleum 50.0 (S) o-Terphenyl 50.0					(LCS) • Lab	SD) R3362656	nt LCS Result	mg/kg	31.8	37.0	
Contribution (Contribution) (Contrib	I	Π	84.4		ol Sample	:4/18 17:25 • (LC	Spike Amou	mg/kg	50.0	50.0	
		C28-C40 Oil Range	(S) o-Terphenyl	/202	22: 	CLCS) R3362656-2 11/2	08.	Analyte	Extractable Petroleum Hydrocarbon	C10-C28 Diesel Range	(S) o-Terphenyl

L1046080-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS)11046080-0111/24/18 21:27 • (MS) R3362656-4 11/24/18 21:44 • (MSD) R3362656-5 11/24/18 21:58

(00) LI040000-01 11/24/10 21:21 • (140) K0002000-1 11/24/10 21:4+ • (1410) K00020	Y (CINI) • 17.17 OI		4/10 41.44	ניטאטטניה (חנוי		00.1						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec. MS	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
Extractable Petroleum Hydrocarbon	50.0		29.2	35.8	53.0	66.2	~	50.0-150		EL E	20.3	20
C10-C28 Diesel Range	50.0	ND	31.5	38.4	63.0	76.8	.	50.0-150			19.7	20
(S) o-Terphenyl					70.0	64.7		18.0-148				

11/30/18 16:45 DATE/TIME:

34 of 40 PAGE:

	-
271	Organic
Ξ	<u>_</u>
0	iti
\sim	0
<u> </u>	5
()	1
\leq	E
2	Φ
Re	le

CUIDITY CONTROL SUMMARY

WG1201271				QU	QUALITY C	Y CONTROL SUMMARY	DL SUM	MARY		ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organic Compounds (GC) by Method 8015	Compounds	(GC) by Meth	hod 8015		L104	L1046071-12,13,14,15,16,17,18	15,16,17,18				cei
Parthod Blank (MB)	_										ved i
(MB) R3363864-1 11/29/18 04:53	04:53										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∼
Analyte	mg/kg		mg/kg	mg/kg							D: ⊢
😽 C10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8//</mark>
(S) o-Terphenyl	86.8			18.0-148							3 0 2
/202											1 1 1
22											0: (
aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	Sample (LC	SS) • Labor	atory Conti	ol Sample	Duplicate	(LCSD)					95.:
CLCS) R3363864-2 11/29/18 05:09 • (LCSD) R3363864-3 11/29/18 05:24	8 05:09 • (LCSD)) R3363864-3	11/29/18 05:24								54 ທ
08	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ں س
C10-C28 Diesel Range	50.0	38.0	40.8	76.0	81.6	50.0-150		7.11	20		ר ז ל
(S) o-Terphenyl				85.9	90.5	18.0-148					~

L1046071-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20	
	RPD	%	6.06	
	MSD Qualifier		E <	2 <mark>7</mark>
	MS Qualifier		E <	<mark>72</mark>
	Rec. Limits	%	50.0-150	18.0-148
	Dilution		10	
19:37	MSD Rec.	%	200	0.000
64-5 11/29/18 0	MS Rec.	%	0.000	0.000
ASD) R336386	MSD Result (dry)	mg/kg	13100	
9/18 09:23 • (N	MS Result (dry)	mg/kg	12300	
363864-4 11/2	Original Result (dry)	mg/kg	13000	
8 08:47 • (MS) R3:	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	mg/kg	55.0	
(OS) L1046071-17 11/29/18 08:47 • (MS) R3363864-4 11/29/18 09:23 • (MSD) R3363864-5 11/29/18 09:37		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

SC

Ū

₹

PAGE: 35 of 40

DATE/TIME: 11/30/18 16:45

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 178 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1046071 DATE/TIME: 11/30/18 16:45 PAGE: 37 of 40

Concord Phillips C	Concol Pullips Teamset Concol Pullips Annuality Predictions Buck Fed Annuality Child of Taylor Annuality Predictions Buck Fed Annuality Child of Taylor Annuality Research Buck Fed Annuality Child of Taylor Annuality Research Buck Fed Annuality Child of Taylor Annuality Research Buck Fed Annuality Annuality Annuality Research Buck Fed Annuality Annuality Annuality Annuality Research Buck Fed Annuality An	Concorpulsion Concorpulsion Concorpulsion Concorpulsion Anti-Vision Prevenue Buck Fed Anti-Vision Concorpulsion Anti-Vision Anti-Vision <t< th=""><th>F</th><th>Tetra Tech, Inc.</th><th></th><th></th><th>900 West Midia Tai</th><th>West Wall Street, Ste 7 Midland, Texxs 79701 Tel (432) 682-555 Fax (432) 682-354</th><th>00 </th><th>F164</th><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Í</th><th>5</th></t<>	F	Tetra Tech, Inc.			900 West Midia Tai	West Wall Street, Ste 7 Midland, Texxs 79701 Tel (432) 682-555 Fax (432) 682-354	00 	F164	4							Í	5
Поден (Link) Euck Fed Concent (Link)	Плаят выстрания Влак Feed СПС (ССС) во 5 Dec(1) Мендоо Плаят (Порма Mendoo Плавт (Порма Mendoo Плаят (Порма Mendoo Плаат (Порма Mendoo Плаят (Порма Mendoo	Пределание Euch Field Chronic Field	Client Name:	Conoco Phillips	Site Manager:		Kayla Ta	dor					A	VALYS	S REO	JEST			
Полнии, Lead County, New MociOo Tendente 213C-MD-01491 Annon- monto, manine ZitzC-MD-01491 Reverse time to water ford transmission Eag County, New MociOo Tendente 213C-MD-01491 Annon- monto, manine A	Monte Analise Monte Analise Monte Analysis Lea County, New Monoto Monoto Properties and the Stant St	Полнание Солональные Полнан Салональные Полнан Солональные Полнан Полнан<	Project Name;	Buck Fed								Ü.	Φ.	r Spe	2	ethod	No.)		
Mode is: Counter Printing: Counter Prind: Count	Mode is: Count Printing Mode is: Count Printing Mode is: Face Analytical Mode is: Mode is: Mode is: Face Analytical Mod	Monte Francis Monte Francis more Francis Monte more Monte Monte Monte Monte	Project Location: (county, state)	Lea County, New Mexico	Project #;		212C-	MD-01491											
Полование Пособа Laboration Пособа Laboration Пособа Laboration Пособа Laboration COPTETA Accinum CopTETA Accinum CopTETA Accinum Акливски соба соба бы нау состания Акливски соба соба соба бы нау состания Акливски соба соба бы нау соба соба соба бы нау состания Акливски соба соба соба бы нау состания	Полона Полонации	Instruction Too Analytical Anome Elements Too Analytical Too Analytical Anome Elements Anoome Elements Anome Elements	Invoice to:	Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701			hi in in					(0					(tei)		
Operating Confict Accord Confict Accord Confict Accord LU(H) LU(H) Avenue Avenue <td>Openant Conference Annote Internation Annote Annono Annote Annote</td> <td>ОПЕТНА АСПЛИ COTETHA ACIDIM </td>	Openant Conference Annote Internation Annote Annono Annote Annote	ОПЕТНА АСПЛИ COTETHA ACIDIM																	

F	Tetra Tech, Inc.			900 We	900 West Wall Street, Ste 100 Midland, Texas 79701 Tot Mena Jacon Jacon	8		1				rage	14
Client Name:	Concor Builling	Site Manager:		2	x (432) 682-3946					à			
Professed Manada				Kayla Ti	Taylor				-	NALYS	ANALYSIS REQUEST	EST	
	Buck Fed			2.5	2		Τ	-	Circle	or Spe	pecify Me	Method No.	(;
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	212C-MD-01491		Τ				_	1	_
nvoice to:	Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701						Τ	(_	-		(tail
eceiving Laboratory:	Pace Analytical	Sampler Signal	fure:	-			Τ	ORM -	бн ө бн ө	_			perte
Comments: COP1	COPTETRA Acctnum		-		1		85608	(g	a Cr Pb S d Cr Pb S				ans) y
		SAMPI	UND	VINTAL	PRESERVATIVE	IVE		10 C3	0 68 0 68			01	ntaim
LIOULON	CAMPI E INTERNET MALE	YEAR-2018		VILLINU	METHOD	Т	1.1	tx3)	sA QA	elitelo	, lov	atsti	r Che
LAB USE ONLY	SAMPLE IDEN IFICATION	ЭТАС	BML	RATER OIL	oue :E NO ³ CT	INIATNOC) O3A3T. 8f208_X3	H 8520C H 8016W H 1X1006	A sleteM (s sleteM 9. eliteloV 9.	V Ime2 9.	.ime2 2M \ \$608 2'5		eral Water n/Cation E R015R
	SSW-2	11/16/18	1030) > H		-	dI .	10	DFI DFI	COD	СИК СИК	oinA
1	ESW-2	11/16/18	1115	×	< >			X				<	
ĸ	ESW-3	11/16/18	1200	×	< >		X X					X	
14	WSW-2	11/16/18	1300	×	< >		-	X		+		×	
5	E-MSW	11/16/18	1330	< ×	< >		z z	×J	-	+		×	
16	AH-17	11/16/18	1355	×	< >		-		-	-		X	
1	WSW-4	11/16/18	1505	×	< >		2 2		-	-	-	X	
60	ESW-4	11/16/18	1540	< >	< >		-			_		X	_
E		2	2401	<	×	-	z	x				X	
Relinquished by:	Med 1/19-19 8900	Received by:			Time	1		LAB USE		REMARKS:		Ħ	
Relinquished by	Date: Time:	Received by:	d l		Date/ Time:	10:5	Т	ONLY	1	20			
Relinquished by:	LLA SCUMPT 1-19-18 1500 Date: Time:	Received by:	A	P	T.	CP	San	Sample Temperatur			RUSH: Same Day 24 h Ruthorized	5	48 hr 72 hr
		đ	ΠΛ		21/0	SAL				Special	Report Lim	Special Report Limits or TRRP Report	Report
		-					(Circle)		HAND DELIVERED	cenery .	100 * *		

Pace Analytical National Center for Testing & Innovation	ing & Innov	ation	
Cooler Receipt Form			
Client: (OPTETRA	SDG#	1 1 14/1	(2 4)
Cooler Received/Opened On: 11/20/18	Temnerature.	04	1100
Received B. Dettick M. A.	"musdure	04	
received by: Factick INSUIZIFUNGU			Sound .
Signature:			
Receipt Check List	ND		
COC Seal Present / Intact?	-	res	NO
COC Signed / Accurate?			
Bottles arrive intact?		1	
Correct bottles used?	Contraction of the local division of the loc		
Sufficient volume sent?			1111
If Applicable	and the second second		
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT December 04, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1047275 11/27/2018 212C-MD-01491 COP BUCK Federal

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, toph Jn

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling constant hor be performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
NSW-3 L1047275-01	6
SSW-3 L1047275-02	7
ESW-6 L1047275-03	8
WSW-6 L1047275-04	9
AH-18 L1047275-05	10
AH-19 L1047275-06	11
AH-20 L1047275-07	12
AH-21 L1047275-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	15
Volatile Organic Compounds (GC) by Method 8015D/GRO	16
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Semi-Volatile Organic Compounds (GC) by Method 8015	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

PROJECT: 212C-MD-01491

SDG: L1047275

DATE/TIME: 12/04/18 13:43

PAGE: 2 of 22 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev184 of 348

NSW-3 L1047275-01 Solid			Collected by Joe Tyler	Collected date/time 11/19/18 14:10	Received date/time 11/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:18	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 17:57	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 20:36	ACG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 20:18	MTJ
			Collected by Joe Tyler	Collected date/time 11/20/18 11:00	Received date/time 11/27/18 08:45
SSW-3 L1047275-02 Solid			Soc Tyler	1/20/10 11:00	1/2//10/00.13
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Vet Chemistry by Method 300.0	WG1202205	1	11/28/18 10:53	11/29/18 12:27	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1202001	1	11/27/18 16:56	11/28/18 18:21	JAH
/olatile Organic Compounds (GC/MS) by Method 806000	WG1202578	1	11/27/18 16:56	11/28/18 20:55	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 19:33	MTJ
		·			
			Collected by	Collected date/time	Received date/time
ESW-6 L1047275-03 Solid			Joe Tyler	11/21/18 11:35	11/27/18 08:45
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	, ,
otal Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Vet Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 09:40	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 18:45	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 21:15	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 20:33	MTJ
			Collected by	Collected date/time	Received date/time
WSW-6 L1047275-04 Solid			Joe Tyler	11/21/18 11:00	11/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Baten	Bildton	date/time	date/time	, analyse
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Vet Chemistry by Method 300.0	WG1202205	1	11/28/18 10:53	11/29/18 12:35	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1202001	1	11/27/18 16:56	11/28/18 19:09	JAH
/olatile Organic Compounds (GC/MS) by Method 80(32)/01/0	WG1202578	1	11/27/18 16:56	11/28/18 21:34	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 20:46	MTJ
			Collected by	Collected date/time	Received date/time
AH-18 L1047275-05 Solid			Joe Tyler	11/21/18 12:00	11/27/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Vet Chemistry by Method 300.0	WG1202061	5	11/28/18 10:53	11/29/18 12:44	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 19:33	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 21:53	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:02	MTJ

PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

PAGE: 3 of 22 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPagev185 of 348

AH-19 L1047275-06 Solid			Collected by Joe Tyler	Collected date/time 11/19/18 12:30	Received date/time 11/27/18 08:45
thod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
/et Chemistry by Method 300.0	WG1202061	1	11/28/18 10:53	11/29/18 12:53	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1202378	1	11/27/18 16:56	11/28/18 19:57	JAH
olatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 22:13	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:18	MTJ
			Collected by	Collected date/time	Received date/time
AH-20 L1047275-07 Solid			Joe Tyler	11/19/18 13:05	11/27/18 08:45
1ethod	Batch	Dilution	Preparation	Analysis	Analyst
1ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
	Batch WG1202265	Dilution		,	Analyst JD
Total Solids by Method 2540 G-2011			date/time	date/time	
Fotal Solids by Method 2540 G-2011 Net Chemistry by Method 300.0	WG1202265	1	date/time 11/28/18 11:06	date/time 11/28/18 11:15	JD
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202265 WG1202061	1	date/time 11/28/18 11:06 11/28/18 10:53	date/time 11/28/18 11:15 11/29/18 13:28	JD ELN
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202265 WG1202061 WG1202378	1	date/time 11/28/18 11:06 11/28/18 10:53 11/27/18 16:56	date/time 11/28/18 11:15 11/29/18 13:28 11/28/18 20:22	JD ELN JAH
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202265 WG1202061 WG1202378 WG1202609	1	date/time 11/28/18 11:06 11/28/18 10:53 11/27/18 16:56 11/27/18 16:56	date/time 11/28/18 11:15 11/29/18 13:28 11/28/18 20:22 11/28/18 22:32	JD ELN JAH ACG
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202265 WG1202061 WG1202378 WG1202609 WG1202659	1 5 1 1 1	date/time 11/28/18 11:06 11/28/18 10:53 11/27/18 16:56 11/27/18 16:56 11/28/18 15:38	date/time 11/28/18 11:15 11/29/18 13:28 11/28/18 20:22 11/28/18 22:32 11/30/18 21:33	JD ELN JAH ACG MTJ

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1202265	1	11/28/18 11:06	11/28/18 11:15	JD
Wet Chemistry by Method 300.0	WG1202061	5	11/28/18 10:53	11/29/18 13:37	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1202945	1	11/27/18 16:56	11/29/18 09:44	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1202609	1	11/27/18 16:56	11/28/18 22:52	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1202659	1	11/28/18 15:38	11/30/18 21:46	MTJ

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43 **PAGE**: 4 of 22

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1047275

DATE/TIME: 12/04/18 13:43 **PAGE:** 5 of 22

SAMPLE RESULTS - 01 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/19/18 14:10

_	,						l'Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
A	nalyte	%			date / time		2
T	otal Solids	91.5		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ C
Chloride	202		0.870	10.0	10.9	1	11/29/2018 12:18	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q
TPH (GC/FID) Low Fraction	U		0.0237	0.100	0.109	1	11/28/2018 17:57	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	98.3				77.0-120		11/28/2018 17:57	WG1202378	7 CI
									G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.000438	J	0.000437	0.00100	0.00109	1	11/28/2018 20:36	WG1202609
Toluene	U		0.00137	0.00500	0.00547	1	11/28/2018 20:36	WG1202609
Ethylbenzene	U		0.000580	0.00250	0.00273	1	11/28/2018 20:36	WG1202609
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/28/2018 20:36	WG1202609
(S) Toluene-d8	114				75.0-131		11/28/2018 20:36	WG1202609
(S) Dibromofluoromethane	101				65.0-129		11/28/2018 20:36	WG1202609
(S) a,a,a-Trifluorotoluene	97.1				80.0-120		11/28/2018 20:36	WG1202609
(S) 4-Bromofluorobenzene	97.8				67.0-138		11/28/2018 20:36	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.8		1.76	4.00	4.37	1	11/30/2018 20:18	WG1202659
C28-C40 Oil Range	8.74		0.300	4.00	4.37	1	11/30/2018 20:18	WG1202659
(S) o-Terphenyl	88.6				18.0-148		11/30/2018 20:18	WG1202659

SAMPLE RESULTS - 02 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/20/18 11:00

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.4		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		– ⁴ Cr
Chloride	467		0.870	10.0	10.9	1	11/29/2018 12:27	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	0.0907	J	0.0237	0.100	0.109	1	11/28/2018 18:21	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	98.2				77.0-120		11/28/2018 18:21	WG1202378	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00100	0.00109	1	11/28/2018 20:55	WG1202609
Toluene	U		0.00137	0.00500	0.00547	1	11/28/2018 20:55	WG1202609
Ethylbenzene	U		0.000580	0.00250	0.00274	1	11/28/2018 20:55	WG1202609
Total Xylenes	U		0.00523	0.00650	0.00711	1	11/28/2018 20:55	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 20:55	WG1202609
(S) Dibromofluoromethane	95.3				65.0-129		11/28/2018 20:55	WG1202609
(S) a,a,a-Trifluorotoluene	99.7				80.0-120		11/28/2018 20:55	WG1202609
(S) 4-Bromofluorobenzene	93.0				67.0-138		11/28/2018 20:55	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	104	<u>J3 J5</u>	1.76	4.00	4.38	1	11/30/2018 19:33	WG1202659
C28-C40 Oil Range	55.5		0.300	4.00	4.38	1	11/30/2018 19:33	WG1202659
(S) o-Terphenyl	100				18.0-148		11/30/2018 19:33	WG1202659

SDG: L1047275

DATE/TIME: 12/04/18 13:43

SAMPLE RESULTS - 03 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/21/18 11:35

		-				 1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	96.9		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	610		0.820	10.0	10.3	1	11/29/2018 09:40	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	610		0.820	10.0	10.3	1	11/29/2018 09:40	WG1202061
Volatile Organic Comp	. ,	-						
Volatile Organic Comp	oounds (GC) b Result (dry)	by Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	())	Dilution 1	,	Batch WG1202378

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	Guainier	mg/kg	mg/kg	mg/kg	Blidtoll	date / time	baten
Benzene	U		0.000413	0.00100	0.00103	1	11/28/2018 21:15	WG1202609
Toluene	U		0.00129	0.00500	0.00516	1	11/28/2018 21:15	WG1202609
Ethylbenzene	U		0.000547	0.00250	0.00258	1	11/28/2018 21:15	WG1202609
Total Xylenes	U		0.00493	0.00650	0.00671	1	11/28/2018 21:15	WG1202609
(S) Toluene-d8	118				75.0-131		11/28/2018 21:15	WG1202609
(S) Dibromofluoromethane	93.8				65.0-129		11/28/2018 21:15	WG1202609
(S) a,a,a-Trifluorotoluene	101				80.0-120		11/28/2018 21:15	WG1202609
(S) 4-Bromofluorobenzene	95.1				67.0-138		11/28/2018 21:15	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	105		1.66	4.00	4.13	1	11/30/2018 20:33	WG1202659
C28-C40 Oil Range	54.8		0.283	4.00	4.13	1	11/30/2018 20:33	WG1202659
(S) o-Terphenyl	92.1				18.0-148		11/30/2018 20:33	WG1202659

SDG: L1047275

DATE/TIME: 12/04/18 13:43

SAMPLE RESULTS - 04 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/21/18 11:00

Total Solids by I		.011				1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	97.1		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	114		0.819	10.0	10.3	1	11/29/2018 12:35	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	mg/kg	Dilation	date / time	Batch	⁶ G
TPH (GC/FID) Low Fraction	U		0.0224	0.100	0.103	1	11/28/2018 19:09	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	97.6				77.0-120		11/28/2018 19:09	WG1202378	7 G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	11/28/2018 21:34	WG1202609
Toluene	U		0.00129	0.00500	0.00515	1	11/28/2018 21:34	WG1202609
Ethylbenzene	U		0.000546	0.00250	0.00258	1	11/28/2018 21:34	WG1202609
Total Xylenes	U		0.00492	0.00650	0.00670	1	11/28/2018 21:34	WG1202609
(S) Toluene-d8	118				75.0-131		11/28/2018 21:34	WG1202609
(S) Dibromofluoromethane	95.5				65.0-129		11/28/2018 21:34	WG1202609
(S) a,a,a-Trifluorotoluene	97.4				80.0-120		11/28/2018 21:34	WG1202609
(S) 4-Bromofluorobenzene	100				67.0-138		11/28/2018 21:34	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.48		1.66	4.00	4.12	1	11/30/2018 20:46	WG1202659
C28-C40 Oil Range	8.87		0.282	4.00	4.12	1	11/30/2018 20:46	WG1202659
(S) o-Terphenyl	90.5				18.0-148		11/30/2018 20:46	WG1202659

SDG: L1047275

SAMPLE RESULTS - 05 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/21/18 12:00

	-						l'Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte		%			date / time		2
Total Solids		85.7		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Methe	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	1060		4.64	10.0	58.3	5	11/29/2018 12:44	WG1202061	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ G
TPH (GC/FID) Low Fraction	U		0.0253	0.100	0.117	1	11/28/2018 19:33	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/28/2018 19:33	WG1202378	7 G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quannet	mg/kg	mg/kg	mg/kg	Dilution	date / time	batch
Benzene	U		0.000467	0.00100	0.00117	1	11/28/2018 21:53	WG1202609
Toluene	U		0.00146	0.00500	0.00583	1	11/28/2018 21:53	WG1202609
Ethylbenzene	U		0.000618	0.00250	0.00292	1	11/28/2018 21:53	WG1202609
Total Xylenes	U		0.00558	0.00650	0.00758	1	11/28/2018 21:53	WG1202609
(S) Toluene-d8	115				75.0-131		11/28/2018 21:53	WG1202609
(S) Dibromofluoromethane	95.1				65.0-129		11/28/2018 21:53	WG1202609
(S) a,a,a-Trifluorotoluene	98.0				80.0-120		11/28/2018 21:53	WG1202609
(S) 4-Bromofluorobenzene	95.2				67.0-138		11/28/2018 21:53	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.88	J	1.88	4.00	4.67	1	11/30/2018 21:02	WG1202659
C28-C40 Oil Range	2.30	J	0.320	4.00	4.67	1	11/30/2018 21:02	WG1202659
(S) o-Terphenyl	72.7				18.0-148		11/30/2018 21:02	WG1202659

SDG: L1047275

SAMPLE RESULTS - 06 L1047275

Â

Sc

Collected date/time: 11/19/18 12:30 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					ſ
Total Solids	83.5		1	11/28/2018 11:15	WG1202265				
Wet Chemistry b	by Method 300.0								[
Wet Chemistry b	by Method 300.0 Result (dry)	Qualifier	SDL (d	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	[
Wet Chemistry b	5	Qualifier	SDL (d mg/kg		MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	[

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					ືSr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0260	0.100	0.120	1	11/28/2018 19:57	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	98.1				77.0-120		11/28/2018 19:57	WG1202378	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00100	0.00120	1	11/28/2018 22:13	WG1202609
Toluene	U		0.00150	0.00500	0.00599	1	11/28/2018 22:13	WG1202609
Ethylbenzene	U		0.000634	0.00250	0.00299	1	11/28/2018 22:13	WG1202609
Total Xylenes	U		0.00572	0.00650	0.00778	1	11/28/2018 22:13	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 22:13	WG1202609
(S) Dibromofluoromethane	96.7				65.0-129		11/28/2018 22:13	WG1202609
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		11/28/2018 22:13	WG1202609
(S) 4-Bromofluorobenzene	113				67.0-138		11/28/2018 22:13	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	44.7		1.93	4.00	4.79	1	11/30/2018 21:18	WG1202659
C28-C40 Oil Range	23.0		0.328	4.00	4.79	1	11/30/2018 21:18	WG1202659
(S) o-Terphenyl	152	<u>J1</u>			18.0-148		11/30/2018 21:18	WG1202659

SDG: L1047275

DATE/TIME: 12/04/18 13:43

SAMPLE RESULTS - 07

Â

Sc

Collected date/time: 11/19/18 13:05

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	85.1		1	11/28/2018 11:15	WG1202265			
	y Method 300.0							
		Qualifier	SDL (c		MQL (dry)	Dilution	Analysis	Batch
	y Method 300.0	Qualifier	SDL (o mg/kg	iry) Unadj. MQL		Dilution	Analysis date / time	Batch

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	12.2		0.0255	0.100	0.118	1	11/28/2018 20:22	WG1202378	
(S) a,a,a-Trifluorotoluene(FID)	97.4				77.0-120		11/28/2018 20:22	WG1202378	⁷ Gl
									0

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00100	0.00118	1	11/28/2018 22:32	WG1202609
Toluene	U		0.00147	0.00500	0.00588	1	11/28/2018 22:32	WG1202609
Ethylbenzene	0.00111	J	0.000623	0.00250	0.00294	1	11/28/2018 22:32	WG1202609
Total Xylenes	0.0143		0.00562	0.00650	0.00764	1	11/28/2018 22:32	WG1202609
(S) Toluene-d8	119				75.0-131		11/28/2018 22:32	WG1202609
(S) Dibromofluoromethane	101				65.0-129		11/28/2018 22:32	WG1202609
(S) a,a,a-Trifluorotoluene	96.5				80.0-120		11/28/2018 22:32	WG1202609
(S) 4-Bromofluorobenzene	117				67.0-138		11/28/2018 22:32	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1100		18.9	4.00	47.0	10	11/30/2018 22:01	WG1202659
C28-C40 Oil Range	262		0.322	4.00	4.70	1	11/30/2018 21:33	WG1202659
(S) o-Terphenyl	155	<u>J1</u>			18.0-148		11/30/2018 21:33	WG1202659
(S) o-Terphenyl	225	<u>J1</u>			18.0-148		11/30/2018 22:01	WG1202659

SDG: L1047275 DATE/TIME: 12/04/18 13:43

SAMPLE RESULTS - 08 L1047275

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/19/18 13:30

,						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	83.4		1	11/28/2018 11:15	WG1202265	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Met	hod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	1510		4.77	10.0	59.9	5	11/29/2018 13:37	WG1202061	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	mg/kg	2	date / time		⁶ Q
TPH (GC/FID) Low Fraction	1.29		0.0260	0.100	0.120	1	11/29/2018 09:44	WG1202945	
(S) a,a,a-Trifluorotoluene(FID)	95.3				77.0-120		11/29/2018 09:44	WG1202945	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000479	0.00100	0.00120	1	11/28/2018 22:52	WG1202609
Toluene	U	<u>J3</u>	0.00150	0.00500	0.00599	1	11/28/2018 22:52	WG1202609
Ethylbenzene	U	<u>J3</u>	0.000635	0.00250	0.00300	1	11/28/2018 22:52	WG1202609
Total Xylenes	U	<u>J3</u>	0.00573	0.00650	0.00779	1	11/28/2018 22:52	WG1202609
(S) Toluene-d8	115				75.0-131		11/28/2018 22:52	WG1202609
(S) Dibromofluoromethane	95.5				65.0-129		11/28/2018 22:52	WG1202609
(S) a,a,a-Trifluorotoluene	97.5				80.0-120		11/28/2018 22:52	WG1202609
(S) 4-Bromofluorobenzene	110				67.0-138		11/28/2018 22:52	WG1202609

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	119		1.93	4.00	4.79	1	11/30/2018 21:46	WG1202659
C28-C40 Oil Range	47.8		0.328	4.00	4.79	1	11/30/2018 21:46	WG1202659
(S) o-Terphenyl	83.3				18.0-148		11/30/2018 21:46	WG1202659

SDG: L1047275

DATE/TIME: 12/04/18 13:43

PAGE: 13 of 22

WG1202061			Ø	QUALITY L104	TY CONTROL SUM 1047275-01,02,03,04,05,06,07,08	ROL SI 04,05,06,0	SUMMARY 06.07.08	۲۲			ONE LAB. D	ONE LAB. NATIONWIDE.	Rece
													ived (
9:08 MB Result <u>M</u>	MB Qualifier	MB MDL	MB RDL										by OC. ∾
		mg/kg 0.795	mg/kg 10.0										D: 11
													/ <mark>8/2</mark> 0
<u>p</u>	1047275-03 Original Sample (OS) • Duplicate (DUP)	olicate (I	DUP))21 1
I (AUC	3364019-3 1	11/29/18 05	;48										0:0
Original Result (dry)	DUP Result (dry)	Dilution	D	DUP Qualifier	DUP RPD Limits								05:54
	mg/kg		%		%								
	546	-	1.1		20								္လိုင္ရ
ple	L1047275-06 Original Sample (OS) • Duplicate (DUP)	olicate (DUP)										ے ا
Ę	(OS) L1047275-06 11/29/18 12:53 • (DUP) R3364019-6 11/29/18 13:19	1/29/18 13:1	6										
esu	Original Result DUP Result (dry) (dry)	Dilution	Dilution DUP RPD	DUP Qualifier	DUP RPD Limits								° A
	mg/kg		%		%								
	751	-	4.78		20								Sc
	Laboratory Control Sample (LCS)]
л	Spike Amount LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	fier								
	mg/kg	%	%										
	206	103	90.0-110										
S Hole	(OS) • Mati 3364019-4 11/2	rix Spike	L1047221-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Dup (05) L1047221-24 11/29/18 10:32 • (MS) R3364019-4 11/29/18 11:34 • (MSD) R3364019-5 11/29/18 11:43	rix Spike I 19-5 11/29/18	L1047221-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) los) L1047221-24 11/29/18 10:32 • (MS) R3364019-4 11/29/18 11:34 • (MSD) R3364019-5 11/29/18 11:43	SD)							
, n	Spike Amount Original Result (drv) (drv)	t MS Result	Original Result MS Result (dry) MSD Result (drv)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	r RPD	RPD Limits		
	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
	51200	44700	43800	0.000	0.000	~	80.0-120	> 	> 	1.97	20		
													Page 196 o
ŀ			đ (PROJECT:		-	SDG:		DAT	DATE/TIME:		PAGE:	f 348
ConocoPhillips - Tetra Tech	£		2120	212C-MD-01491		L10	L1047275		12/04	12/04/18 13:43		15 of 22	

78	in o
\mathcal{O}	
02	Organic
12	0
S	;+ a 0
Re	-

QUALITY CONTROL SUMMARY 1047275-01.02.03.04.05.06.02

ш	
\Box	
=	
2	
\leq	
\leq	
\cap	
≚.	
⊢.	
\triangleleft	
->	
~	
<i>~</i>	
Щ	
<	
щ.	
\leq	
$\overline{\frown}$	
\circ	

0d 8015D/GRO	
GC) by Method	
bу	
\sim	
ganic Compounds	
le Organic	
/olatile	

WG1202378				В	QUALITY (CONTROL SUMMARY	DL SUM	IMARY		ONE LAB. NATIONWIDE.	Re
of Volatile Organic Con	npounds (GC)	by Method 8	3015D/GRO		L1047	47275-01,02,03,04,05,06,07	04,05,06,07				cei
PM Method Blank (MB)	3)										ved g
(MB) R3363879-3 11/28/	18 11:35										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C °
Malyte mg/kg	mg/kg		mg/kg	mg/kg							D:
🛐 TPH (GC/FID) Low Fraction	Л		0.0217	0.100							11
701 (S) 20.a.a.Trifluorotoluene(FID)	99.8			77.0-120							/ <mark>8/20</mark>
1/20											21 1
22 24 25 25 25 25 25 25 25 25 25 25	ol Sample (L	-CS) • Labo	oratory Con	trol Sample	e Duplicate	(LCSD)					0:0 5
C(LCS) R3363879-1 11/28/	/18 10:23 • (LCSD) R3363879-2	11/28/18 10:46								:54 ம
Spike Amount LCS Result LCSD Result	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCS Qualifier LCSD Qualifier RPD	RPD Limits		.P <i>N</i>
	ma/ka	ma/ka	ma/ka	~	%	~		8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1

ğ

20 %

3.18 %

> 77.0-120 72.0-127

> > 107

105 111 %

115 %

mg/kg 6.32

mg/kg 6.13

mg/kg 5.50

Analyte TPH (GC/FID) Low Fraction

(S) a, a, a-Trifluorotoluene(FID)

Ū

	L1046908-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L1046908-05 11/28/18 17:09 • (MS) R363879-4 11/29/18 00:59 • (MSD) R3363879-5 11/29/18 01:22 Spike Amount Original Result MS Result MS Result MS Result MS Rec. MSD Result MS Result MS Rec. Analyte mg/kg mg/kg % % TPH (GC/FID) Low Fraction 5.50 ND 81.6 84.4 58.9 61.0 25	e (OS) • M R3363879-4 Original Rest mg/kg ND	at Sattiple (US) • Mattix Spike (US) 17:09 • (MS) R3363879-4 17:09 • (MS) R3363879-4 Spike Amount Original Result Mg/kg mg/kg mg/kg 5.50	(MISD) • MIBTI/IX S/DIK((MISD) R3363879-5 11/2 MSD Result MS Rec. mg/kg % 84.4 58.9	MIATIX SPIKE DUPIIC R3363879-5 11/29/18 01:22 Result MS Rec. MS	Uplicate (IVI: 01:22 MSD Rec. 61.0 61.0	Dilution 25	0) Dilution Rec. Limits 25 10.0-151	MS Qualifier	MSD Qualifier	RPD % 3.36	RPD Limits % 28	
--	--	--	--	--	---	---	----------------	---	--------------	---------------	------------------	-----------------------	--

SC

4

16 of 22 PAGE

Rece	ived i		11	/ <mark>8/20</mark>	21 10: 0	5:5 "	54_PM	ő	, L	D ∽ ∽ Page 198 of
ONE LAB: NATIONWIDE.										
							RPD Limits %	20		
1MARY							LCSD Qualifier RPD %	1.33		
OL SUM							LCS Qualifier			
CONTR ^{L1047275-}							Rec. Limits %	72.0-127	77.0-120	
QUALITY CONTROL SUMMARY					a Dunlicate		LCSD Rec. %	101	105	
		MB RDL mg/kg	0.100	77.0-120	ame Ame Ame		2 LCS Rec. %	102	104	
015D/GRO		MB MDL mg/kg	0.0217				11/29/18 03:22 LCSD Result mg/kg	5.53		
by Method 8		MB Qualifier					0) R3364106-2 LCS Result mg/kg	5.60		
ounds (GC)		04:09 MB Result mg/kg	Л	99.4			02:58 • (LCSL Spike Amount mg/kg	5.50		
WG1202945	post Method Blank (MB)	MB R3364106-3 11/29/18 04:09 MB Result MB Qualifier MB MDL MB Analyte mg/kg mg/kg	TPH (GC/FID) Low Fraction	(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	zaboratory Control Samola // CS) - Laboratory Control Samola // CS)		6 (LCS) R3364106-1 11/29/18 80: Analyte	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)	

PAGE: 17 of 22

DATE/TIME: 12/04/18 13:43

SDG: L1047275

PROJECT: 212C-MD-01491

•

~
σ
0
Q
\sim
0
\sim
<u>_</u>
U
5
5
Re

QUALITY CONTROL SUMMARY 1047275-01.02.03.04.05.06.07.08

WG1202609 Molatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	S) by Methoo	d 8260B	QUALITY CONTROL SUMMARY L1047275-01,02,03,04,05,06,07,08	ONE LAB. NATIONWIDE.	Rece
pethod Blank (MB)						vived (
(MB) R3363876-2 11/28/18	15:05					by (
MB Resu	MB Result	MB Qualifier	MB MDL	MB RDL		0C
Analyte	mg/kg		mg/kg	mg/kg		D:
Benzene	n		0.000400	0.00100		11
Ethylbenzene	Π		0.000530	0.00250		/ <mark>8//</mark>
oluene	Π		0.00125	0.00500		302
Xylenes, Total	Π		0.00478	0.00650		4
(S) Toluene-d8	114			75.0-131		
S) Dibromofluoromethane	95.6			65.0-129		95:
S) a, a, a-Trifluorotoluene	97.5			80.0-120		54 س
S (S) 4-Bromofluorobenzene	94.1			67.0-138		
PM						ိုလ္တ

Laboratory Control Sample (LCS)

0	
11/28/18 14:06	
s) R3363876-1	
(LCS)	

(LCS) R3363876-1 11/28/18 14:06	3 14:06					ق ا
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	is LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		~ ~
Benzene	0.125	0.128	102	70.0-123		₹
Ethylbenzene	0.125	0.101	80.9	74.0-126		σ
Toluene	0.125	0.118	94.0	75.0-121		လို
Xylenes, Total	0.375	0.327	87.2	72.0-127		
(S) Toluene-d8			103	75.0-131		
(S) Dibromofluoromethane			105	65.0-129		
(S) a, a,a-Trifluorotoluene			93.7	80.0-120		
(S) 4-Bromofluorobenzene			95.0	67.0-138		

L1047275-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

1047275

ő	(OS) L1047275-08 11/28/18 22:52 • (MS) R3363876-3 11/28/18 23:50 • (MSD) R3363876-4 11/29/18 00:09	18 22:52 • (MS) F	3363876-3 11	1/28/18 23:50 • (1	MSD) R336387	6-4 11/29/18 (60:0C							
		Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Anĉ	Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Ber	Benzene	0.150	⊐	0.129	0.0683	86.4	45.6	-	10.0-149		ег Г	61.8	37	
Eth	Ethylbenzene	0.150		0.149	0.0729	99.4	48.7	-	10.0-160		ମ ଅ	68.5	38	
Tolt	Toluene	0.150	N	0.143	0.0740	95.5	49.4	. 	10.0-156		<u>ور</u>	63.7	38	
Xyle	Xylenes, Total	0.450		0.430	0.223	95.7	49.5	-	10.0-160		<u>ور</u>	63.6	38	
~	(S) Toluene-d8					112	112		75.0-131					
2	(S) Dibromofluoromethane					90.7	96.0		65.0-129					
~	(S) a,a,a-Trifluorotoluene					92.0	93.7		80.0-120					
2	(S) 4-Bromofluorobenzene					117	106		67.0-138					
	F	ACCOUNT:			PROJ	PROJECT:		S	SDG:		DATE/TIME:	rime:		PAGE:
	ConocoF	ConocoPhillips - Tetra Tech			212C-MD-01491	D-01491		L10	L1047275		12/04/18 13:43	: 13:43		18 of 22

	,
	(
ດ	
വ	
Q	
_	(
2	
WG1202	÷
$\widetilde{\mathbf{a}}$	
12	
$\sum_{i=1}^{n}$	2
Ù	
\leq	
\geq	
D	.)
Ле	l

CHALITY CONTROL SHMMARY

WG1202659				В	ΙΑΓΙΤΥ (QUALITY CONTROL SUMMARY	DL SUM	MARY		ONE LAB. NATIONWIDE.	Re
Semi-Volatile Organic Compounds (GC) by Method 8015	Compounds	(GC) by Met	thod 8015		L10472	L1047275-01,02,03,04,05,06,07,08	1,05,06,07,08				ecei
p Method Blank (MB)	(ived (
(MB) R3364371-1 11/30/18 17:05	17:05										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
Analyte	mg/kg		mg/kg	mg/kg							D: ⊢
C10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range	n		0.274	4.00							/ <mark>8/</mark> /
(S) o-Terphenyl	100			18.0-148							3 0 2
/20.											
22											0 :
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	l Sample (L(CS) • Labo	ratory Cont	rol Sampl	e Duplicate	(LCSD)					05::
CLCS) R3364371-2 11/30/18 17:19 • (LCSD) R3364371-3 11/30/18 17:35	3 17:19 • (LCSD)	R3364371-3 11	1/30/18 17:35								54 ທ
98 .	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ې ۵
C10-C28 Diesel Range	50.0	39.7	42.3	79.4	84.6	50.0-150		6.34	20) グ
(S) o-Terphenyl				84.2	94.0	18.0-148					1

L1047275-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(S) o-Terphenyl

	RPD Limits	%	20	
	RPD	%	33.7	
	MSD Qualifier		ମ୍ <mark>ଚ</mark>	
	MS Qualifier		<u> 15</u>	
	Dilution Rec. Limits	%	50.0-150	18.0-148
	Dilution		-	
0:03	MSD Rec.	%	73.9	104
-5 11/30/18 20	MS Rec.	%	182	108
SD) R3364371	MSD Result (dry)	mg/kg	143	
)/18 19:47 • (M	MS Result (dry)	mg/kg	201	
364371-4 11/30	Original Result (dry)	mg/kg	104	
3 19:33 • (MS) R3	Spike Amount Original Result MS Result (dry) M (dry) (dry)	mg/kg	53.5	
(OS) L1047275-02 11/30/18 19:33 • (MS) R3364371-4 11/30/18 19:47 • (MSD) R3364371-5 11/30/18 20:03		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

SC

∢

Ū

PAGE: 19 of 22

•

12/04/18 13:43 DATE/TIME:

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). J The identification of the analyte is acceptable; the reported value is an estimate. J1 Surrogate recovery limits have been exceeded; values are outside upper control limits. J3 The associated batch QC was outside the established quality control range for precision. J5 The sample matrix interfered with the ability to make any accurate determination; spike value is high. V The sample concentration is too high to evaluate accurate spike recoveries.	Qualifier	Description
J1Surrogate recovery limits have been exceeded; values are outside upper control limits.J3The associated batch QC was outside the established quality control range for precision.J5The sample matrix interfered with the ability to make any accurate determination; spike value is high.	E	
J3The associated batch QC was outside the established quality control range for precision.J5The sample matrix interfered with the ability to make any accurate determination; spike value is high.	J	The identification of the analyte is acceptable; the reported value is an estimate.
J5 The sample matrix interfered with the ability to make any accurate determination; spike value is high.	J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
	J3	The associated batch QC was outside the established quality control range for precision.
V The sample concentration is too high to evaluate accurate spike recoveries.	J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
	V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

PAGE: 20 of 22

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 202 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NEL
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nehraska	NE-0S-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1047275 DATE/TIME: 12/04/18 13:43

Tetra lech		0	CONTENIN	e li	ŧź				Pace Analytical*
						1.1.			futurente Connect An Teaching & Innovem
Report to: Voula Faylor		Email To.	oveletaulo	Email To: Kayla. Lovely taylor @ tetratech.	E.	-			12065 Lebenon Bd
Project COP BUCK	Buck Federal		City/State Collected: LOA	ea Co., NM	1		Q		Phone: 615-756-8859 22-22-22 Phone: 800-767-5859 22-22-22 Fax: 615-756-5859
Phone: Fax: 432.210-5443	Client Project #	141	Lab Project #			0	1.008		LI647275
Collected by (print): Joe Tyler	Site/Facility ID #		P.O.#			908	E :		Acctnum: AATETO
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day Serve Day	Notified)	Quote #	1000	000	SIS	-		Template:
Packed on Ice N Y		5 Day (Rad Only) 10 Day (Rad Only)		Date Results Needed	No.		1201		Preilogin: TSR: da.
Sample ID	Comp/Grab Matrix *	Depth	Date	Time	10	118	MD		ped Via:
NSW-3	8	1	11/19	01:41	-	×	×		Remarks Sangle # (lab only)
5540-3		1	1/20	00:11	-	X	×		0
ESW-6		1	11/11	11:35	X I	1	×		02
4J61-6		1	12/H	11:00	X 1	< ×	X		ho
3H-18		1	11/11/11	00:21	-	XX	×		90
AH-19		11/19		(2:30)	I X	X	×		06
AH - 20		1	11/11	50:01	XI	X	X		01
<u> 44-21</u>		1	11/14	13:30	× -	×	×		80
F - Filter B - Bloassay	Remarks:						5		Sample Receipt Checklight COC Seal Present/Intact: APN COC Signed/Accurate:
	Samples returned via: UPSFedExCourier	" SW		Tracking #				Flow Other	Sufficient volume sent:
Relinquished by : (Signature)	Date: 11/26	-	00:	Received by: (Signature)	(internet		Trip	Trip Blank Received: Yes / No HCLY MeoH	VOA Zero Headap Preservation Co RAD SCR
I'm t Merri H	Date: 11/26	-	55	Received by: (Signature)	e A	9	a temp:	2.12	ived: If preservation required by Login: Date/Time
Keiinquished by : (Signature)	Date:		Time: Re	Received for lab by: (Signature)	Signature)		Date:	: Time:	Hold: Condition:

ì

Released to Imaging: 10/31/2022 3:02:08 PM

Page 203 of 348

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT December 07, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1048605 11/30/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
ESW-5 L1048605-01	5
WSW-5 L1048605-02	6
AH-22 L1048605-03	7
AH-23 L1048605-04	8
SSW-4 L1048605-05	9
Qc: Quality Control Summary	10
Total Solids by Method 2540 G-2011	10
Wet Chemistry by Method 300.0	12
Volatile Organic Compounds (GC) by Method 8015D/GRO	13
Volatile Organic Compounds (GC/MS) by Method 8260B	15
Semi-Volatile Organic Compounds (GC) by Method 8015	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53

PAGE: 2 of 20

SAMPLE SUMMARY

ONE LAB. NAPage 206 of 348

ESW-5 L1048605-01 Solid			Collected by	Collected date/time 11/27/18 10:00	Received date/time 11/30/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
Wet Chemistry by Method 300.0	WG1203989	5	12/01/18 15:00	12/04/18 02:12	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	200	12/01/18 13:52	12/05/18 02:33	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	4	12/01/18 13:52	12/05/18 23:24	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	5	12/01/18 10:12	12/02/18 13:56	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	50	12/01/18 10:12	12/03/18 03:31	KME
WSW-5 L1048605-02 Solid			Collected by	Collected date/time 11/27/18 10:30	Received date/time 11/30/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
Wet Chemistry by Method 300.0	WG1203989	1	12/01/18 15:00	12/04/18 02:20	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205847	25	12/01/18 13:52	12/05/18 14:39	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	1	12/01/18 13:52	12/05/18 23:44	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	1	12/01/18 10:12	12/02/18 10:33	KME
			Collected by	Collected date/time	Received date/time
AH-22 L1048605-03 Solid				11/27/18 11:05	11/30/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
Vet Chemistry by Method 300.0	WG1203989	5	12/01/18 15:00	12/04/18 02:29	ELN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:15	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	8	12/01/18 13:52	12/06/18 00:04	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1204169	50	12/01/18 10:12	12/03/18 03:43	KME
AH-23 L1048605-04 Solid			Collected by	Collected date/time 11/27/18 11:30	Received date/time 11/30/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1204080	1	12/01/18 10:49	12/01/18 11:02	KDW
Wet Chemistry by Method 300.0	WG1204080	5	12/02/18 07:26	12/04/18 02:38	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:36	DWR
Volatile Organic Compounds (GC/MS) by Method 80(3D/0KO	WG1205303	100	12/01/18 13:52	12/06/18 00:24	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1200001 WG1204169	20	12/01/18 10:12	12/07/18 14:10	AAT
SSW-4 L1048605-05 Solid			Collected by	Collected date/time 11/27/18 12:10	Received date/time 11/30/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1204712	1	12/04/18 14:26	12/04/18 14:38	KBC
Wet Chemistry by Method 300.0	WG1203989	5	12/02/18 07:26	12/04/18 02:47	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/01/18 13:52	12/05/18 03:58	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1206061	1	12/01/18 13:52	12/06/18 00:43	JHH
	WG1204169	10	12/01/18 10:12	12/03/18 03:07	KME

PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53

PAGE: 3 of 20

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53 PAGE: 4 of 20

SAMPLE RESULTS - 01 L1048605

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 10:00

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.1		1	12/01/2018 11:02	WG1204080	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1700		4.27	10.0	53.7	5	12/04/2018 02:12	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) ma/ka	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	6
TPH (GC/FID) Low Fraction	170		4.66	0.100	21.5	200	12/05/2018 02:33	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	91.4		1.00	0.100	77.0-120	200	12/05/2018 02:33	WG1205563	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00565		0.00172	0.00100	0.00429	4	12/05/2018 23:24	WG1206061
Toluene	0.441		0.00537	0.00500	0.0215	4	12/05/2018 23:24	WG1206061
Ethylbenzene	0.353		0.00228	0.00250	0.0107	4	12/05/2018 23:24	WG1206061
Total Xylenes	5.78		0.0205	0.00650	0.0279	4	12/05/2018 23:24	WG1206061
(S) Toluene-d8	116				75.0-131		12/05/2018 23:24	WG1206061
(S) Dibromofluoromethane	91.4				65.0-129		12/05/2018 23:24	WG1206061
(S) a,a,a-Trifluorotoluene	97.0				80.0-120		12/05/2018 23:24	WG1206061
(S) 4-Bromofluorobenzene	111				67.0-138		12/05/2018 23:24	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4050		86.4	4.00	215	50	12/03/2018 03:31	WG1204169
C28-C40 Oil Range	1550		1.47	4.00	21.5	5	12/02/2018 13:56	WG1204169
(S) o-Terphenyl	20.8				18.0-148		12/02/2018 13:56	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/03/2018 03:31	WG1204169

SDG: L1048605

DATE/TIME: 12/07/18 16:53 ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 02 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 10:30

	Result	Qualifier	Dilution	Analysis	Batch	 'Ср
Analyte	%			date / time		2
Total Solids	92.0		1	12/01/2018 11:02	WG1204080	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	723		0.864	10.0	10.9	1	12/04/2018 02:20	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	2.97		0.589	0.100	2.72	25	12/05/2018 14:39	WG1205847	
(S) a,a,a-Trifluorotoluene(FID)	96.1				77.0-120		12/05/2018 14:39	WG1205847	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	12/05/2018 23:44	WG1206061
Toluene	0.00179	J	0.00136	0.00500	0.00543	1	12/05/2018 23:44	WG1206061
Ethylbenzene	0.00204	J	0.000576	0.00250	0.00272	1	12/05/2018 23:44	WG1206061
Total Xylenes	0.0174		0.00519	0.00650	0.00706	1	12/05/2018 23:44	WG1206061
(S) Toluene-d8	118				75.0-131		12/05/2018 23:44	WG1206061
(S) Dibromofluoromethane	85.1				65.0-129		12/05/2018 23:44	WG1206061
(S) a,a,a-Trifluorotoluene	98.6				80.0-120		12/05/2018 23:44	WG1206061
(S) 4-Bromofluorobenzene	97.8				67.0-138		12/05/2018 23:44	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	142		1.75	4.00	4.35	1	12/02/2018 10:33	WG1204169
C28-C40 Oil Range	59.3		0.298	4.00	4.35	1	12/02/2018 10:33	WG1204169
(S) o-Terphenyl	66.2				18.0-148		12/02/2018 10:33	WG1204169

SDG: L1048605

SAMPLE RESULTS - 03 L1048605

Â

Sc

Collected date/time: 11/27/18 11:05 Total Solids by Method 2540 G-2011

Total Solius by I	vietnou 2540 G-20	/11							
	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	88.0		1	12/01/2018 11:02	WG1204080				Ťc
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		4 Cr
Chloride	2340		4.52	10.0	56.8	5	12/04/2018 02:29	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Com	/olatile Organic Compounds (GC) by Method 8015D/GRO								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	443		2.47	0.100	11.4	100	12/05/2018 03:15	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	87.5				77.0-120		12/05/2018 03:15	WG1205563	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.0810		0.00364	0.00100	0.00909	8	12/06/2018 00:04	WG1206061
Toluene	3.26		0.0114	0.00500	0.0455	8	12/06/2018 00:04	WG1206061
Ethylbenzene	1.85		0.00482	0.00250	0.0227	8	12/06/2018 00:04	WG1206061
Total Xylenes	21.8		0.0435	0.00650	0.0591	8	12/06/2018 00:04	WG1206061
(S) Toluene-d8	115				75.0-131		12/06/2018 00:04	WG1206061
(S) Dibromofluoromethane	95.8				65.0-129		12/06/2018 00:04	WG1206061
(S) a,a,a-Trifluorotoluene	97.9				80.0-120		12/06/2018 00:04	WG1206061
(S) 4-Bromofluorobenzene	94.6				67.0-138		12/06/2018 00:04	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6710		91.5	4.00	227	50	12/03/2018 03:43	WG1204169
C28-C40 Oil Range	2660		15.6	4.00	227	50	12/03/2018 03:43	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/03/2018 03:43	WG1204169

DATE/TIME: 12/07/18 16:53

SAMPLE RESULTS - 04 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 11/27/18 11:30

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					
Total Solids	92.8		1	12/01/2018 11:02	WG1204080				
Wet Chemistry by		Qualifian				Dilution	Anglusis	Datab	
Analyte	Result (dry) mg/kg	Qualifier	SDL (o mg/kg	•	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Chloride	1730		4.29	10.0	53.9	5	12/04/2018 02:38	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	olatile Organic Compounds (GC) by Method 8015D/GRO								ຶSr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		[°] Qc
TPH (GC/FID) Low Fraction	126		2.34	0.100	10.8	100	12/05/2018 03:36	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	93.0				77.0-120		12/05/2018 03:36	WG1205563	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	0.00154		0.000431	0.00100	0.00108	1	12/06/2018 00:24	WG1206061
Toluene	0.235		0.00135	0.00500	0.00539	1	12/06/2018 00:24	WG1206061
Ethylbenzene	0.231		0.000571	0.00250	0.00269	1	12/06/2018 00:24	WG1206061
Total Xylenes	2.45		0.00515	0.00650	0.00701	1	12/06/2018 00:24	WG1206061
(S) Toluene-d8	118				75.0-131		12/06/2018 00:24	WG1206061
(S) Dibromofluoromethane	87.7				65.0-129		12/06/2018 00:24	WG1206061
(S) a,a,a-Trifluorotoluene	97.6				80.0-120		12/06/2018 00:24	WG1206061
(S) 4-Bromofluorobenzene	115				67.0-138		12/06/2018 00:24	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3500		34.7	4.00	86.2	20	12/07/2018 14:10	WG1204169
C28-C40 Oil Range	1040		5.91	4.00	86.2	20	12/07/2018 14:10	WG1204169
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/07/2018 14:10	WG1204169

SDG: L1048605

SAMPLE RESULTS - 05 L1048605

Â

Sc

Total Solids by Method 2540 G-2011

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.9		1	12/04/2018 14:38	WG1204712	Tc

Wet Chemistry by Method 300.0

	thod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		– ⁴ Cr
Chloride	1320		4.23	10.0	53.2	5	12/04/2018 02:47	WG1203989	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	bounds (GC) b	by Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Qc
TPH (GC/FID) Low Fraction	354		2.31	0.100	10.6	100	12/05/2018 03:58	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	94.8				77.0-120		12/05/2018 03:58	WG1205563	⁷ Gl
									01

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00106	1	12/06/2018 00:43	WG1206061
Toluene	0.00172	J	0.00133	0.00500	0.00532	1	12/06/2018 00:43	WG1206061
Ethylbenzene	0.000992	J	0.000564	0.00250	0.00266	1	12/06/2018 00:43	WG1206061
Total Xylenes	0.611		0.00509	0.00650	0.00692	1	12/06/2018 00:43	WG1206061
(S) Toluene-d8	123				75.0-131		12/06/2018 00:43	WG1206061
(S) Dibromofluoromethane	87.2				65.0-129		12/06/2018 00:43	WG1206061
(S) a,a,a-Trifluorotoluene	98.5				80.0-120		12/06/2018 00:43	WG1206061
(S) 4-Bromofluorobenzene	99.8				67.0-138		12/06/2018 00:43	WG1206061

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1320		17.1	4.00	42.6	10	12/03/2018 03:07	WG1204169
C28-C40 Oil Range	554		2.92	4.00	42.6	10	12/03/2018 03:07	WG1204169
(S) o-Terphenyl	0.000	<u>J2</u>			18.0-148		12/03/2018 03:07	WG1204169

DATE/TIME: 12/07/18 16:53

Motonifie Motonifie 8 Motonifie 8 Motonifie 8 Motoni 9 Loss 1 0.00 29 1 1 0.00 29 1 1 0.00 20 1 20 1 20 1 20 20	1204080 Solids by Method 2540 G-201	1		ž			Rece
601 D DEDOMINE UN FOR 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Blank (MB)						eived g
0 0 0 0 0 0 0 0 0 0 0 0 0 0	H657-1 12/01/18 11:02	<u>:</u>					by O
D ULO MARTINE UN POPULATION OF A COMPANY OF	WB Result %	Qualifier	MB MUL %	MB RUL %			
D DIO Conditie	0.00400						11/0
D DUDURT UNPERTORING S. DID DUDURT UNPERTORING S. DID DUDURT S. DID DU	05-04 Original Sample		icate (DU)	ົດ			8/2021
D Durbuating University 8 0 0 9 0 0 4 10 0 0.015 1 1 0.015 1 1	605-04 12/01/18 11:02 • (DUP)	R3364657-3 12/	01/18 11:02				10: (
Total Total 10 10 11 10 12 10 13 10 14 10	Original Result	DUP Result	Dilution DUP	D			75:5 ינט
1 1 1 1 1 1 1 1 1 1 1 1	%	%	%				4_P 1 ഗ
AVACATORISAINTIE (LCS) 453-72 102018102 353-72 102018102 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	92.8	92.9	1 0.115	~	10		ő
4657.2 120001102 CS Re. Re. Imls LCS Outlier Sea Anomu III CS Re. Re. Imls LCS Outlier So 0 So 0 Ro B.0.15 L So 0 So 0 B.0.15 L L Account Ro B.0.15 L L Account B.0.15 L L L Account B.0.15 L L L L Account B.0.15 L	ory Control Sample (L	CS)					ر ۲
Amount CCS Res. Res. Linits CCS Qualities x	4657-2 12/01/18 11:02						5
0.0 0.0 6.015 0.1 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Spike Amount %	LCS Result %	LCS Rec. %	Rec. Limits %	LCS Qualifier		"A
DADECT: DOG			100	85.0-115			ດ
PROJECT: SDG: DATE/TIME: PAGE:							Page 213 of
							3

Total Solids by Method 2540 G	-2011		L1048605-05	15-05			C
Method Blank (MB)							eived a
(MB) R3365353-1 12/04/18 14:38							by O
MB Resu. Analyte %	Qualifier	MB MDL MB RDL %	DL				
Total Solids 0.00200							11
							(8 <u>/2</u> 021
	nupie (OS) • Dupii						10:
							05
Original F	Result DUP Result D	Dilution DUP RPD	DUP Qualifier UUP RPD Limits				54 ه
Analyte %	%	%	%				(_P)
W otal Solids 83.2	83.1 1	0.134	10				ပ္တိ
Laboratory Control Sample (LCS)	e (LCS)						ل م
(LCS) R3365353-2 12/04/18 14:38							5
	LCS Result	S Rec.	Rec. Limits LCS Qualifier				8
							Ī
Total Solids 50.0	50.0 10	100 85.0-115	115				SC
							Pa
							ige 2
							214 0
							of.
							3
			PROJECT:	SDG:	DATE/TIME:	PAGE:	348

WG1203989 Wet Chemistry by Method 300.0 U1048605-01,02,03,04,05						0 L 03,0	- SU	IMMAR	~			ONE LAB. NATIONWIDE.		Receive
Method Blank (I	VIB)													ed by
(MB) K3364927-1 12/03/18 22:28 MB Re	03/18 22:28 MB Result	MB Qualifier	MB MDL	MB RDL										v OCL
Analyte	mg/kg		mg/kg	mg/kg										<u>)</u> : 1
Chloride			0./95	10.0										1/8 m
0/31														<mark>/20</mark> 2
2-1047821-04 Original Sample (OS) • Duplicate (DUP)	iginal Sample	dnQ • (SO)	licate (D	UP)										21 <u>1</u>
C(OS) L1047821-04 12/(33/18 22:59 • (DUP)	R3364927-3	12/03/18 23.	07										0: 0
3:02	Original Result DUP Result (drv) (drv)	DUP Result (drv)	Dilution [ZPD	DUP Qualifier	DUP RPD Limits) 5:5 4
Se Analyte	mg/kg	mg/kg	0.	%		%								4_P X גר
W Chloride	403	413	-	2.60		20								Sc [°]
L1048605-05 Original Sample (OS) • Duplicate (DUP)	riginal Sample	(OS) • Du	olicate (E	(AUt										G
(OS) L1048605-05 12/04/18 02:47 • (DUP) R3364927-6 12/04/18 02:55	/04/18 02:47 • (DUP) R3364927-6	12/04/18 02	2:55										5
	Original Result (drv)	DUP Result (drv)	Dilution DUP RPD	RD	DUP Qualifier	DUP RPD Limits								م م
Analyte	mg/kg	mg/kg	0.	%		%								
Chloride	1320	1280	5	2.87		20								ہ د ک
Laboratory Control Sample (LCS)	trol Sample (LC	(S)												
	TC.CC 01/CU													
(LCJ) KJJJJJJJJJJJJJJJ	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	er								
Analyte	mg/kg	mg/kg	%	%		I								
Chloride	200	198	99.1	90.0-110										
L1048467-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	ginal Sample ((DS) • Matri	× Spike ('MS) • Matrix	x Spike Dı	uplicate (MSD	(
(OS) L1048467-11 12/04/18 01:10 • (MS) R3364927-4 12/04/18 01:19 • (MSD) R3364927-5 12/04/18	14/18 01:10 . (MS) R3:	364927-4 12/0	04/18 01:19 •	(MSD) R33649.	27-5 12/04/15	3 01:28								
	Spike Amount (dry)	Original Result MS Result (dry) (dry)	MS Result (dry) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	<u> </u>	%			%	%		
Chloride	533	3240	3860	3690	117	83.6	-	80.0-120	ш	ш	4.70	20		
														Page 215 oj
Cono	ACCOUNT: ConocoPhillips - Tetra Tech			PF 212C	PROJECT: 212C-MD-01491		St L104	SDG : L1048605		DATE 12/07/1	DATE/TIME: 12/07/18 16:53		PAGE : 12 of 20	f 348

m	5
Ø	ĉ
വ	
വ	2
0	Organic
12	
Ù	
\leq	i+a o
$\geq \frac{R}{Re}$	1

VUNNIS ICANTON VINNOV

WG1205563				g	JALITY	QUALITY CONTROL SUMMARY	OL SUM	MARY		ONE LAB. NATIONWIDE.	Re
Volatile Organic Compounds (GC) by Method 8015D/GRO	pounds (GC)	by Method 8	015D/GRO			L1048605-01,03,04,05	3,04,05				ece
PMethod Blank (MB)	3)										ived (
(MB) R3365357-3 12/04/18 22:38	18 22:38										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C. ∾
Analyte	mg/kg		mg/kg	mg/kg							
TPH (GC/FID) Low Fraction	П		0.0217	0.100							11
1) 2/01, a, a-Trifluorotoluene(FID)	94.6			77.0-120							/ <mark>8/2</mark> 0
1/20											21 1
272 Value of the second second of the sec	I Sample (L	-CS) • Labo	ratory Cont	trol Sampl	e Duplicate	e (LCSD)					0:0 5
CLCS) R3365357-1 12/04/18 21:34 • (LCSD) R3365357-2 12/04/18 21:55	'18 21:34 • (LCSI	D) R3365357-2	12/04/18 21:55								54 ه
:08	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits		_P 0
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		<mark>⁄ا</mark> ه
TPH (GC/FID) Low Fraction	5.50	5.17	5.55	93.9	101	72.0-127		7.14	20		ğ
(S) a, a. a-Trifluorotoluene(FID)				107	108	77.0-120					7

L1049339-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1049339-03 12/05/18 05:23 • (MS) R3365357-4 12/05/18 05:44 • (MSD) R3365357-5 12/05/18 06:05

	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.06	263	651	684	32.0	34.7	200	10.0-151			4.92	28
(S) a, a, a-Trifluorotoluene(FID)					95.9	95.9		77.0-120				

SC

 $\overline{\mathbb{O}}$

₹

PAGE: 13 of 20

DATE/TIME: 12/07/18 16:53

_	Ordanic Compounde
	2
4	Ċ
00	¢
Ω.	2
	6
0	ç
12	C
<u> </u>	¢
Ù	-
U	÷
>	-
>	-
Re	

VUNNIN LOUTION VIIVIN

WG1205847				QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.
Volatile Organic Comp	oounds (GC) b	y Method 80	15D/GRO	L1048605-02	
powerhod Blank (MB)	(
(MB) R3365710-3 12/05/18	3 11:03				
ma	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	balkg	
🙀 TPH (GC/FID) Low Fraction	Л		0.0217	0.100	

Received by OCD: 11/8/202

10:05:54_PM

ğ

Ū

∢

Sc

				RPD Limits	%	20	
				LCSD Qualifier RPD	%	7.56	
				LCS Qualifier			
		(LCSD)		Rec. Limits	%	72.0-127	77.0-120
		e Duplicate		LCSD Rec.	%	101	108
77.0-120		trol Sampl		LCS Rec.	%	109	109
		ratory Con	12/05/18 10:21	LCSD Result LCS Rec.	mg/kg	5.54	
		CS) • Labo) R3365710-2	Spike Amount LCS Result	mg/kg	5.98	
93.7		Sample (L	3 10:00 • (LCSE	Spike Amount	mg/kg	5.50	
(5) (5) (5/01, a, a-Trifluorotoluene(FID)	1/202	2. Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	CLCS) R3365710-1 12/05/18 10:00 • (LCSD) R3365710-2 12/05/18 10:21	:08	Analyte	TPH (GC/FID) Low Fraction	(S) a,a,a-Trifluorotoluene(FID)

.

PAGE: 14 of 20

~	
Ó	,
0	
9	
0	
2	
~	
Ċ	
-	1
<	
-	
Re	2

QUALITY CONTROL SUMMARY 1048605-01,02,03,04,05

WG1206061	ounds (GC/MS) by	/ Method 82	60B	QUALITY CONTROL SUMMARY [1048605-01,02,03,04,05]	ONE LAB. NATIONWIDE.	Rece
post Post						ived a
(MB) R3365742-2 12/05/1	8 22:25					by (
MB Result		MB Qualifier MB	MB MDL	MB RDL		0C
Analyte	mg/kg	Вш	mg/kg	mg/kg		
Benzene	П	0.0	0.000400	0.00100		11
CEthylbenzene	П	0.0	0.000530	0.00250		/ <mark>8//</mark>
Induced Strength Stre	П	0.0	0.00125	0.00500		302
Xylenes, Total	П	0.0	0.00478	0.00650		4 1
(S) Toluene-d8	112			75.0-131		
S) Dibromofluoromethane	91.2			65.0-129		05:
(S) a,a,a-Trifluorotoluene	98.2		-	80.0-120		54 ഗ
(S) 4-Bromofluorobenzene	108		-	67.0-138		P)
PM						ိုင္လ

Laboratory Control Sample (LCS)

(LCS) R3365742-1 12/05/18 21:18	5/18 21:18					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.0994	79.5	70.0-123		
Ethylbenzene	0.125	0.153	123	74.0-126		
Toluene	0.125	0.0991	79.3	75.0-121		
Xylenes, Total	0.375	0.424	113	72.0-127		

65.0-129 80.0-120 67.0-138

96.0 98.5 107

(S) a, a, a - Trifluorotoluene(S) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8

75.0-131

106

SC

 $\overline{\mathbb{O}}$

₹

Page 218 oj	f 348	}
	PAGE:	15 of 20
	DATE/TIME:	12/07/18 16:53
	SDG:	L1048605
	PROJECT:	212C-MD-01491

σ
9
41
0
Ν
Ū
\geq
Re

WG1204169	Compounds	(GC) by Met	:hod 8015	QL	QUALITY (CONTROL SUMMARY L1048605-01,02,03,04,05	0L SUM	MARY		ONE LAB. NATIONWIDE.	Recei
particular (MB)	()										ived (
(MB) R3364516-1 12/02/18 09:21	3 09:21										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C °
Analyte	mg/kg		mg/kg	mg/kg							
G C10-C28 Diesel Range	n		1.61	4.00							11
C28-C40 Oil Range	Π		0.274	4.00							/ <mark>8//</mark>
/S) o-Terphenyl /21/20	99.8			18.0-148							3021
22 	I Sample (LC	SS) • Labo	ratory Conti	rol Sample	e Duplicate	(LCSD)					@:0 5:
CILCS) R3364516-2 12/02/18 09:33 • (LCSD) R3364516-3 12/02/18 09:45	18 09:33 • (LCSD)) R3364516-3	12/02/18 09:45	10							54 ഗ
08.	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ں م
Extractable Petroleum Hydrocarbon	50.0	33.8	39.9	67.6	79.8	50.0-150		16.6	20		ר פ
C10-C28 Diesel Range	50.0	35.5	41.6	71.0	83.2	50.0-150		15.8	20		ل ک
(S) o-Terphenyl				122	133	18.0-148					ō

SC

Þ

•

PAGE: 16 of 20

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1048605

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01491

SDG: L1048605

DATE/TIME: 12/07/18 16:53

PAGE: 18 of 20

Conoco Philips Buck Fed Buck Fed Buck Fed Buck Fed Iourny. Lea County, New Mexico (ourny. Lea County, New Mexico Joor Eaconal Street Suite 100 Midland, Texas 79701 Accounts Payable 900 west Wall Street Suite 100 Midland, Texas 79701 Accounts Payable Box Mexico Accounts Payable Accounts Payable		F	Tetra Tach Inc			900 We	900 West Wall Street, Ste	100				1		1	Page	ef	-	đ	
Controo Dhillios Contoo Dhillios Annortistis Reduest Buck Fed	Concord Prilling Concord Prilling Concord Prilling Buck Fed Indiv Fed Indiv Fed Indiv Fed Indiv Fed Indit <	Name:				Mid Te Fa	land, Texas 79701 1 (432) 682-4568 4 (432) 682-3946												
Buck Fed Concert Specify Methodo Property Methodo Method (Concert Specify Methodo) Concert Leacontry, New Meano Provents Manual Screene 212C-MD-01431 Annoness Meano Annone	Buck Fed Control for an international internatinternational internat	COLUMN 1	Conoco Phillips	Site Manager:		Kayla Te	tylor	in de la composition de la com		L		AI	IALYSI	S REQ	UEST				
Total Lat County, New Motion Total Lat County, New Motion Total Lat County, New Motion Marcan Engine Account Prime Account Prime <td>Image: Lange of the state of the state</td> <td>2</td> <td>Buck Fed</td> <td>1</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>0-</td> <td></td> <td></td> <td></td> <td>ethod</td> <td></td> <td></td> <td></td>	Image: Lange of the state	2	Buck Fed	1			-	-		-	0-				ethod				
Волоти Вариански славно составите	Montantial interviewed	t Location:	unty. Lea County, New Mexico	Project #:		212C	-MD-0149	-		_	1		- /	1		261			
Total Total Allocial Server algoritical Pace Analytical Server algoritical Server algoritical Allocid algoritical COPTETRA Acctinum Allocid algoritical Server algoritical Allocid algoritical Contraine Allocid algoritical Server algoritical Allocid algoritical Allocid algoritical Contraine Allocid algoritical Allocid algoritical Allocid algoritical Allocid algoritical Allocid algoritical Allocid algoritical Allocid algorital	Tipe for handling Tipe for handling Prochading Server for handling Server for handling COPTETA Accium American American American CopteTa Accium American American American American CopteTa Accium American American American American American CopteTa Accium American	e to:	Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701			1		ŝ	-	_			-		×.	theil ber	how now	1	
COPTETRA Accinum Contraction Autorition SameLe DestriteCATION sameLine Autorition sameLine SameLe DestriteCATION sameLine andretino andretino SameLe DestriteCATION sameLine andretino andretino NSW-5 11/27/10 X	OPTETRA Acctuant COPTETRA Acctuant Americ IDENTRACATION Sameric IDENTRACATION Americ IDENTRACATION America IDENTRACATION <th cols<="" td=""><td>ving Laboratory:</td><td>Pace Analytical</td><td>200</td><td>ture:</td><td>R</td><td></td><td>ľ</td><td></td><td>(</td><td></td><td></td><td>_</td><td>_</td><td></td><td>44646</td><td>ineuro</td><td>-</td></th>	<td>ving Laboratory:</td> <td>Pace Analytical</td> <td>200</td> <td>ture:</td> <td>R</td> <td></td> <td>ľ</td> <td></td> <td>(</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>44646</td> <td>ineuro</td> <td>-</td>	ving Laboratory:	Pace Analytical	200	ture:	R		ľ		(_	_		44646	ineuro	-
SAMPLING ANTERT MIDIO Clained Bearron SAMPLE IDENTIFICATION SAMPLING ANTERT MIDIO Clained Bearron SAMPLE IDENTIFICATION Constrained MIDIO Clained Bearron MIDIO Clained Bearron SAMPLE IDENTIFICATION Constrained MIDIO Clained Bearron MIDIO Clained Bearron SAMPLE IDENTIFICATION Constrained MIDIO Clained Bearron MIDIO Clained Bearron SAMPLE IDENTIFICATION Constrained State MIDIO Clained Bearron MIDIO Clained Bearron SAMPLE IDENTIFICATION Constrained State MIDIO Clained Bearron MIDIO Clained Bearron MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained Bearron MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State MIDIO Clained State<	AMPLING AMPLING SAMPLING AMPLING	200	ETRA Acctnum			12.55	16			(98)		the second s	. 12			and the second data where the second data		100	
SAMPLE IDENTIFICATION Total Annon Care ESW-5 11	SMPLE IDENTIFICATION Concession Concession <thconcession< th=""> Concession <t< td=""><td>1-4866</td><td></td><td>SAMPI</td><td>DNID</td><td>MATRIX</td><td>PRESERV</td><td></td><td></td><td>O of tx</td><td></td><td>e8 eA l</td><td></td><td>7S8 .k</td><td></td><td></td><td></td><td></td></t<></thconcession<>	1-4866		SAMPI	DNID	MATRIX	PRESERV			O of tx		e8 eA l		7S8 .k					
ESW-5 I1/27/16 I000 X IV/C IV/C IV/C IV/C ESW-5 11/27/16 1000 X IV/C IV/C IV/C IV/C IV/C WSW-5 11/27/16 1000 X IV/C IV/C IV/C IV/C IV/C WSW-5 11/27/16 1105 X X I I X X IV/C IV/C MH-23 11/27/16 1100 X X I I X X IV/C IV/C MH-23 11/27/16 11/10 X X I I X X IV/C IV/C SSW-4 11/27/16 12/10 X X I I X X IV/C IV/C SSW-4 11/27/16 12/10 X X I I X X IV/C IV/C SSW-4 11/27/16 12/10 X X I I X X IV/C IV/C SSW-4 11/27/16 12/10 X X I IV/C X IV/C IV/C IV/C SSW-4 11/27/16 IV/C IV/C IV/C IV/C	ESN-5 TEX ESN-5 TEX TE	AB#	SAMPLE IDENTIFICATION	YEAR: 2018		E		Т		3) 90C	C	gA ale eeid		oV .im	-	sins.	eg up	-	
ESW-5 11/27/18 1000 X X I N X I N X I N X I N X N <td>ESW-5 112710 1000 X <thx< th=""> X X X <t< td=""><td>U USE)</td><td></td><td>3TAO</td><td>TIME</td><td></td><td>^EONH</td><td>1</td><td></td><td>DIXT H9</td><td>0758 HA</td><td>CLP Vola</td><td>10</td><td>c/W2 2⁶¹</td><td>edsA) M.</td><td>ebhoir</td><td>ilon/Catio</td><td>NAPEL.</td></t<></thx<></td>	ESW-5 112710 1000 X <thx< th=""> X X X <t< td=""><td>U USE)</td><td></td><td>3TAO</td><td>TIME</td><td></td><td>^EONH</td><td>1</td><td></td><td>DIXT H9</td><td>0758 HA</td><td>CLP Vola</td><td>10</td><td>c/W2 2⁶¹</td><td>edsA) M.</td><td>ebhoir</td><td>ilon/Catio</td><td>NAPEL.</td></t<></thx<>	U USE)		3TAO	TIME		^E ONH	1		DIXT H9	0758 HA	CLP Vola	10	c/W2 2 ⁶¹	edsA) M.	ebhoir	ilon/Catio	NAPEL.	
WSW-5 11/27/18 1030 X X 1 N X X N X N X N N X N N X N	WSW-5 112718 1030 X X I X X I X X I X X I X X I X X I X X I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X X I I X I I X I <thi< th=""> I I <t< td=""><td>- 01</td><td>ESW-5</td><td>11/27/18</td><td>1000</td><td>-</td><td></td><td>t</td><td>+</td><td>1</td><td>а</td><td>1</td><td>ы</td><td>0</td><td>ld</td><td>ю</td><td>IA</td><td>-</td></t<></thi<>	- 01	ESW-5	11/27/18	1000	-		t	+	1	а	1	ы	0	ld	ю	IA	-	
AH-22 11/27/18 1105 X X 1 N X X I N X X N N X N N X N	AH-22 1127118 1105 X 11 X X I X X X I X	03	WSW-5	11/27/18	1030	×	×		+			-	+		×	+			
AH-23 11/27/18 1130 X X 1 X	AH-23 11/2/16 130 X 1 N X 1 N X N <	63	AH-22	11/27/18	1105	×	×		+				-		× .	-			
SSW-4 11/2/1/18 1210 X X 1 N X X N Date: Ime: Date: Ime: Ime: Ime: Ime: Ime: X X X X Multi Ime: Date: Ime: Ime: Date: Ime: Ime: X X X X X X Multi Ime: Ime: Ime: Ime: Date: Ime: Ime: Ime: X X X X X X X Date: Ime: Ime: Ime: Ime: Ime: Ime: Ime: Ime: X <td< td=""><td>SSW44 11/27/18 1210 X X 1 N X N Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image</td></td<> <td>04</td> <td>AH-23</td> <td>11/27/18</td> <td>1130</td> <td>×</td> <td>×</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>×.,</td> <td></td> <td>-</td> <td>-</td>	SSW44 11/27/18 1210 X X 1 N X N Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	04	AH-23	11/27/18	1130	×	×		+				+		×.,		-	-	
Material Date: Time: Date: Time:	Multiple Date: Time: Date: Time: Date: Time: Date: Time: Date:	60		11/27/18	1210	×	×	Ħ	+			\square			××			9	
Multiple Date: Time: Date: Time: Date: Time: Ravelved by: Date: Time: Date: Time: Remarks: LAB USE ONLY Remarks: Date: Time: Date: Time: Date:	Image: Time: Date: Time: Page/word by: Date: Time: Image: Time: Regenerative Page: Time: Page: Time: Date: Time: Time: Regenerative Page: Time: Date: Time: Date: Time: Page: Time: Page: Time: Date: Time: Page: Time: Page: Time: Page: Time: Date: Time: Page: Time: Page: Time: Page: Time:							-	-		_		+	-					
Date: Time: Date: Time: Image: Time: Date: I me: Remarks: Remarks: Date: Time: Date: Time:	International of the first internation of the first in																		
Image: Time: I	Mathematical It-26-18 15.30 Mathematical Late: Time:	ished by:		Received hu-			Ľ							H			-		
Date: Time: Date: Time: Date: Time: Sample Temperature PUSH: Same Day 24 hr 48 hr Date: Time: 0	Date: Time: Received by: Date: Time: Initial of angle temperature Partial temperature Date: Time: Ime: Time: Ime: Time: Ime: Ime: Ime: Partial temperature Date: Time: Ime: Time: Ime: Time: Ime:	Ø		Called on	R	(fra	(So	12.3°		LAB U	SE ONI		ARKS: Z	ANDA		E 12.1	G		
Date: Time: Received by: Date: Time: Lot - 1 of Control	Date: Time: Received by: Date: Time: Date: Date: <td>usned by:</td> <td>-</td> <td>Received by:</td> <td>Л</td> <td></td> <td>1 B</td> <td>900</td> <td></td> <td>Sample To</td> <td>mperature 1.d.40</td> <td></td> <td>BUSH:</td> <td>Same I</td> <td>Jay 24</td> <td>-</td> <td>1.1.1</td> <td></td>	usned by:	-	Received by:	Л		1 B	900		Sample To	mperature 1.d.40		BUSH:	Same I	Jay 24	-	1.1.1		
(Crew) HAND DELIVERED FEDEX UPS	Circle) HAND DELIVERED FEDEX UPS Tracking #	ished by:		Received by:			1	3		1.01.4	18		Bush C	harges / Report I	uthorize imits or	d TRRP P	Port		
	RAD SCREEN: <0.5 mR/hr			ININICIAL	name	-			Γ	(Circle) HA	ND DELN				king #:				

Pace Analytical National Center for Testing & Innovation	g & Innov	ation	
Cooler Receipt Form			
Client: COPTETRA	SDG#	50984917	602
Cooler Received/Opened On: 11/ 30 /18	Temperature:	1.4	
Received By: Alexandra Murtaugh			
Signature: Cherry			
		AL LEBIS	
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	1		
COC Signed / Accurate?		1	
Bottles arrive intact?		1	
Correct bottles used?	「「「「「「」」」	1	14
Sufficient volume sent?		1	
If Applicable			
VOA Zero headspace?			
Preservation Correct / Checked?			ALC: NO.

Received by OCD: 11/8/2021 10:05:54 PM

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT December 06, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1049339 12/04/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-17 (6') L1049339-01	5
AH-6 (6') L1049339-02	6
AH-8 (6') L1049339-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 300.0	9
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ср

PROJECT: 212C-MD-01491

SDG: L1049339 DATE/TIME: 12/06/18 16:33

E: 33 PAGE: 2 of 16

SAMPLE SUMMARY

ONE LAB. NAPage 226 of 348

Â

Sc

		Collected by	Collected date/time	Received date/time
			11/30/18 10:35	12/04/18 08:00
Batch	Dilution	Preparation	Analysis	Analyst
		date/time	date/time	
WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
WG1205791	1	12/05/18 12:41	12/06/18 11:45	ELN
WG1205563	1	12/04/18 16:44	12/05/18 04:40	DWR
WG1205525	1	12/04/18 16:44	12/04/18 22:06	DWR
WG1205367	1	12/04/18 21:33	12/06/18 12:09	KME
		Collected by	Collected date/time	Received date/time
			11/30/18 13:00	12/04/18 08:00
Batch	Dilution	Preparation	Analysis	Analyst
		date/time	date/time	
WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
-	WG1205617 WG1205791 WG1205563 WG1205525 WG1205367 Batch	WG1205617 1 WG1205791 1 WG1205563 1 WG1205525 1 WG1205367 1 Batch Dilution	Batch Dilution Preparation date/time WG1205617 1 12/05/18 09:26 WG1205791 1 12/05/18 12:41 WG1205563 1 12/04/18 16:44 WG1205525 1 12/04/18 16:44 WG1205367 1 12/04/18 16:44 WG1205367 1 Collected by Batch Dilution Preparation date/time	Batch Dilution Preparation date/time Analysis date/time WG1205617 1 12/05/18 09:26 12/05/18 09:35 WG12055791 1 12/05/18 12:41 12/06/18 11:45 WG1205563 1 12/04/18 16:44 12/05/18 04:40 WG1205525 1 12/04/18 16:44 12/04/18 22:06 WG1205367 1 12/04/18 21:33 12/06/18 11:209 Collected by Collected date/time 11/30/18 13:00 Collected date/time date/time

Wet Chemistry by Method 300.0	WG1205791	1	12/05/18 12:41	12/06/18 11:54	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	100	12/04/18 16:44	12/05/18 05:01	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1205525	8	12/04/18 16:44	12/04/18 22:27	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	25	12/04/18 21:33	12/06/18 13:14	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	5	12/04/18 21:33	12/06/18 12:25	KME

AH-8 (6') L1049339-03 Solid			Collected by	Collected date/time 11/30/18 13:15	Received date/time 12/04/18 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1205617	1	12/05/18 09:26	12/05/18 09:35	KDW
Wet Chemistry by Method 300.0	WG1205791	1	12/05/18 12:41	12/06/18 12:03	ELN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1205563	200	12/04/18 16:44	12/05/18 05:23	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1205525	20	12/04/18 16:44	12/04/18 22:47	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	25	12/04/18 21:33	12/06/18 13:29	KME
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1205367	5	12/04/18 21:33	12/06/18 12:41	KME

SDG: L1049339

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1049339

DATE/TIME: 12/06/18 16:33 PAGE: 4 of 16

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	R	esult	Qualifier	Dilution	Analysis	Batch	Ср	l
Analyte	%	,)			date / time		2	ì
Total Solids	8	5.3		1	12/05/2018 09:35	WG1205617	Tc	l

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ C
Chloride	294		0.932	10.0	11.7	1	12/06/2018 11:45	WG1205791	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Č
TPH (GC/FID) Low Fraction	0.0318	J	0.0254	0.100	0.117	1	12/05/2018 04:40	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	92.1				77.0-120		12/05/2018 04:40	WG1205563	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	0.00117	1	12/04/2018 22:06	WG1205525
Toluene	U		0.00146	0.00500	0.00586	1	12/04/2018 22:06	WG1205525
Ethylbenzene	U		0.000621	0.00250	0.00293	1	12/04/2018 22:06	WG1205525
Total Xylenes	U		0.00560	0.00650	0.00762	1	12/04/2018 22:06	WG1205525
(S) Toluene-d8	116				75.0-131		12/04/2018 22:06	WG1205525
(S) Dibromofluoromethane	92.9				65.0-129		12/04/2018 22:06	WG1205525
(S) a,a,a-Trifluorotoluene	107				80.0-120		12/04/2018 22:06	WG1205525
(S) 4-Bromofluorobenzene	108				67.0-138		12/04/2018 22:06	WG1205525

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.89	4.00	4.69	1	12/06/2018 12:09	WG1205367
C28-C40 Oil Range	U		0.321	4.00	4.69	1	12/06/2018 12:09	WG1205367
(S) o-Terphenyl	62.3				18.0-148		12/06/2018 12:09	WG1205367

SDG: L1049339 DATE/TIME: 12/06/18 16:33

³Ss ⁴Cn ⁵Sr ⁷Gl

Â

Sc

SAMPLE RESULTS - 02 L1049339

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	- Cp
Analyte	%			date / time		2
Total Solids	89.1		1	12/05/2018 09:35	WG1205617	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	od 300.0								³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴
Chloride	637		0.893	10.0	11.2	1	12/06/2018 11:54	WG1205791	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	ounas (GC) t	by Method	8015D/G	20					
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQC
TPH (GC/FID) Low Fraction	225		2.44	0.100	11.2	100	12/05/2018 05:01	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	91.9				77.0-120		12/05/2018 05:01	WG1205563	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
		Qualifier	,	3		Dilution	,	Baten
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00359	0.00100	0.00898	8	12/04/2018 22:27	WG1205525
Toluene	0.0775		0.0112	0.00500	0.0449	8	12/04/2018 22:27	WG1205525
Ethylbenzene	0.283		0.00476	0.00250	0.0225	8	12/04/2018 22:27	WG1205525
Total Xylenes	3.46		0.0429	0.00650	0.0584	8	12/04/2018 22:27	WG1205525
(S) Toluene-d8	106				75.0-131		12/04/2018 22:27	WG1205525
(S) Dibromofluoromethane	106				65.0-129		12/04/2018 22:27	WG1205525
(S) a,a,a-Trifluorotoluene	104				80.0-120		12/04/2018 22:27	WG1205525
(S) 4-Bromofluorobenzene	123				67.0-138		12/04/2018 22:27	WG1205525

Sample Narrative:

L1049339-02 WG1205525: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3050		45.2	4.00	112	25	12/06/2018 13:14	WG1205367
C28-C40 Oil Range	735		1.54	4.00	22.5	5	12/06/2018 12:25	WG1205367
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/06/2018 13:14	WG1205367
(S) o-Terphenyl	367	<u>J1</u>			18.0-148		12/06/2018 12:25	WG1205367

Sample Narrative:

L1049339-02 WG1205367: Surrogate failure due to matrix interference

SDG: L1049339

DATE/TIME: 12/06/18 16:33

SAMPLE RESULTS - 03 L1049339

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	- C	Ĵр
Analyte		%			date / time		2	
Total Solids		90.7		1	12/05/2018 09:35	WG1205617	" ² T	Ċ

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	343		0.877	10.0	11.0	1	12/06/2018 12:03	WG1205791	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) b	by Method	8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ି Q c
TPH (GC/FID) Low Fraction	263		4.79	0.100	22.1	200	12/05/2018 05:23	WG1205563	
(S) a,a,a-Trifluorotoluene(FID)	91.5				77.0-120		12/05/2018 05:23	WG1205563	7 GI
									G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00882	0.00100	0.0221	20	12/04/2018 22:47	WG1205525
Toluene	0.159		0.0276	0.00500	0.110	20	12/04/2018 22:47	WG1205525
Ethylbenzene	0.414		0.0117	0.00250	0.0551	20	12/04/2018 22:47	WG1205525
Total Xylenes	3.74		0.105	0.00650	0.143	20	12/04/2018 22:47	WG1205525
(S) Toluene-d8	101				75.0-131		12/04/2018 22:47	WG1205525
(S) Dibromofluoromethane	109				65.0-129		12/04/2018 22:47	WG1205525
(S) a,a,a-Trifluorotoluene	105				80.0-120		12/04/2018 22:47	WG1205525
(S) 4-Bromofluorobenzene	111				67.0-138		12/04/2018 22:47	WG1205525

Sample Narrative:

L1049339-03 WG1205525: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3680		44.4	4.00	110	25	12/06/2018 13:29	WG1205367
C28-C40 Oil Range	912		1.51	4.00	22.1	5	12/06/2018 12:41	WG1205367
(S) o-Terphenyl	471	<u>J1</u>			18.0-148		12/06/2018 12:41	WG1205367
(S) o-Terphenyl	0.000	<u>J7</u>			18.0-148		12/06/2018 13:29	WG1205367

Sample Narrative:

L1049339-03 WG1205367: Surrogate failure due to matrix interference

SDG: L1049339

Rece	ived (<u>):</u> 1	1 <mark>/8/20</mark>	21 1 t	0 :0	5:54 10	ו P א ה	ی م	۲ ک	5	۳ ۵		°Sc						ŀ	Page 2	231	of 3-	48
ONE LAB. NATIONWIDE.																								PAGE: 8 of 16
																								DATE/TIME: 12/06/18 16:33
CONTROL SUMMARY																								SDG: L1049339
QUALITY CC		RDL					DUP Qualifier DUP RPD Limits	%	10			Rec. Limits LCS Qualifier		2										PROJECT: 212C-MD-01491
		MB MDL MB RDL			uplicate (DUP)	-3 12/05/18 09:35	Dilution DUP RPD	%	1 0.112			S Rec.	% % % % % % % % % % % % % % % % % % %											
-2011		t MB Qualifier			IDIe (OS) • DI	(DUP) R3365705	esult DUP Result	%	89.2	e (LCS)			%	0.00										a Tech
617 Method 2540 G	k (MB)	12/05/18 09:35 MB Result	0 00100		? Original Sam	2 12/05/18 09:35 •	Original R	%	89.1	Laboratory Control Sample (LCS)	2 12/05/18 09:35	Spike Amount	% L	0.000										ACCOUNT: ConocoPhillips - Tetra Tech
WG1205617	n Method Blan	0 (MB) R3365705-1 12/05/18 09:35 MB Resul	Total Solids	: 10/3	211049339-02 Original Sample (OS) • Duplicate (DUP)	20S) L1049339-02	3:02	Analyte	W ^T otal Solids	Laboratory C	(LCS) R3365705-2 12/05/18 09:35		Analyte											

	-				/8/202 	21 10 4	2:05	5.54 ທີ່	<u>PM</u> و «C		ō	β		S SC						Page 232 oj	f.
ONE LAB. NATIONWIDE.																					
SUMMARY																					
CONTROL S 1049339-01,02,03							C	۵									nits <u>MS Qualifier</u>				
QUALITY CO								DUP Qualifier DUP RPD Limits	20			LCS Qualifier					Dilution Rec. Limits		80.0-120		
Ø			L MB KUL mg/kg	10.0		(DUP)			% 2.85				80.0.10	01-0.00	ike (MS)		(dry) MS Result (dry) MS Rec.	%	00000		
			er MB MDL mg/kg	0.795		Duplicate	-3 12/06/18	t Dilutior	£				% 101	0	Matrix Sp	4 12/06/18 1.	MS Res	mg/kg	13300		
			MB Qualifier			e (OS) • [) R3365887	t DUP Resul (dry)	тд/кд 1970	CS)			by/gm	000	e (OS) • N	X30588/ Original Re	(dry)	mg/kg	16300		
)1 Method 300.0	MB)	06/18 10:36	MB Result mg/kg	n		Iriginal Sample	2/06/18 11:28 • (DUP	Original Resul (dry)	mg/kg 2020	itrol Sample (L	2/06/18 10:44	Spike Amount	mg/kg	0	Iriginal Sample	2/06/18 12:12 • (IVIS) Spike Amount	(dry)	mg/kg	99 90		
WG1205791	1ethod Blank (AB) R3365887-1 12/1	MB Results MB Res	iloride	10/31	1048923-02 C)S) L1048923-02 1 2		WChloride	Laboratory Control Sample (LCS)	(LCS) R3365887-2 12/06/18 10:44	. :	Chlorido		L1048923-08 Original Sample (OS) • Matrix Spike (MS)	(US) LIU48923-US 12/U6/18 12:12 • (IMS) K336588/-4 12/U6/18 12:21 Snike Amount — Original Result		Analyte	Chloride		

∞	5
Q	Ċ
വ	Ċ
വ	Organic
0	Č
-	0
C	i t e l o
\leq	-
<	0
Re	ĺ

FROL SUMMARY 9-01-02.03 ONE LAB. NATIONWIDE.		QUALITY CONTROL SUMMARY	QUALITY CONTROL SUMMARY LI049339-01.02.03 MB RDL mg/kg 0.100 77.0120	QUALITY CONTROL SUMMARY LI049339-01.02.03 MB RDL mg/kg 0.100 77.020	B015D/GRO B015D/GRO MB MDL Mg Mg mg/kg 0.0217 0.00 X7.020
FROL SUMMARY	TY CONTROL SUMMARY		MB RDL mg/kg 0.100 77.0-12(MB RDL mg/kg 0.100 77.0-12(pounds (GC) by Method 8015D/GRO 13 22:38 18 22:38 MB Result mg/kg U 0.0217 0.100 94.6 77.0-12
	TY CONTROL SUN 11049339-01.02.03		MB RDL mg/kg 0.100 77.0-12(MB RDL mg/kg 0.100 77.0-12(pounds (GC) by Method 8015D/GRO 1 B 22:38 18 22:38 MB Result mg/kg U 0.0077 0.100 94.6 77.0-12
	TY CON ⁻		MB RDL mg/kg 0.100 77.0-120	MB RDL mg/kg 0.100 77.0-12(pounds (GC) by Method 8015D/GRO 18 22:38 MB Result mg/kg U 0.0217 0.100 94.6 77.0-12

L1049339-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

77.0-120

108

107

(S) a, a, a-Trifluorotoluene(FID)

(OS) L1049339-03 12/05/18 05:23 • (MS) R3365357-4 12/05/18 05:44 • (MSD) R3365357-5 12/05/18 06:05

	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.06	263	651	684	32.0	34.7	200	10.0-151			4.92	28
(S) a, a, a-Trifluorotoluene(FID)					95.9	95.9		77.0-120				

Sc

Ū

∢

212C-MD-01491 **PROJECT:**

SDG: L1049339

10 of 16 PAGE

വ
\sim
വ
വ
0
N
~
വ
~
\leq
Re

WG1205525 Molatile Organic Compo	ounds (GC/MS	3) by Methoc	18260B	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.
Pase Method Blank (MB)					eived
(MB) R3365315-2 12/04/18 21:46	21:46				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0 ¢
Analyte	mg/kg		mg/kg	by/bu	
Senzene	П		0.000400	0.00100	11
0 Ethylbenzene	N		0.000530	0.00250	/ <mark>8/4</mark>
Joluene	П		0.00125	0.00500	302
Xylenes, Total	N		0.00478	0.00650	4
55 (S) Toluene-d8	113			75.0-131	@ :(
S) Dibromofluoromethane	88.5			65.0-129	05
(S) a, a, a-Trifluorotoluene	110			80.0-120	54 5
(5) 4-Bromofluorobenzene	106			67.0-138	
PM					ې مې

Laboratory Control Sample (LCS)

(LCS) R3365315-1 12/04/18 20:21	3 20:21					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.103	82.5	70.0-123		
Ethylbenzene	0.125	0.141	113	74.0-126		
Toluene	0.125	0.113	90.7	75.0-121		
Xylenes, Total	0.375	0.422	113	72.0-127		
(S) Toluene-d8			107	75.0-131		
(S) Dibromofluoromethane			103	65.0-129		
(S) a,a,a-Trifluorotoluene			103	80.0-120		
(S) 4-Bromofluorobenzene			105	67.0-138		

L1048899-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

12.5 16.4 19.6 79.4 14.3 40 10.0-149 72.5 16.4 19.6 79.4 14.3 40 10.0-160 56.6 64.2 73.0 152 328 40 10.0-160 $\underline{\vee}$ 160 180 202 389 823 40 10.0-160 $\underline{\vee}$ 298 329 378 207 533 40 10.0-160 $\underline{\vee}$ 99.6 104 75.0-131 75.0-131 75.0-131 93.8 105 65.0-129		ma/ka	Spike Amount Original Kesult MS Result ma/ka ma/ka	MS Result mg/kg	MSD Result ma/ka	MS Rec. %	MSD Rec. %	Dilution	Dilution Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	RPD Limits %
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.12		12.5	16.4	19.6	79.4	143		10.0-149			17.7	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			56.6	64.2	73.0	152	328		10.0-160		>	12.9	38
0.375 298 329 378 207 533 40 $10.0-160$ \underline{EV} 13.9 18 9.6 104 $75.0-131$ $7.0-131$ $10.0-160$	0.12	25	160	180	202	389	823		10.0-156	Е <	E <	11.4	38
99.6 104 99.8 105		:75	298	329	378	207	533		10.0-160	Е <	E <	13.9	38
99.8 105	-48					99.6	104		75.0-131				
	ofluoromethane					99.8	105		65.0-129				
(S) a, a, a-Trifiluorotoluene 80.0-120 99.1 80.0-120	ifluorotoluene					100	99.1		80.0-120				
(5) 4-Bromofluorobenzene 105 106 67.0-138	ofluorobenzene					105	106		67.0-138				

Page 234 of 348

PAGE 11 of 16

12/06/18 16:33 DATE/TIME:

L1049339 SDG:

\sim
9
\mathbf{c}
വ
0
\sim
ň
2
\leq
Re

WG1205367	Compounds	(GC) by Met	hod 8015	0 L	QUALITY (CONTROL SUMMARY	DL SUM	MARY		ONE LAB. NATIONWIDE.	Recei
powerhod Blank (MB)											ived (
MB) R3365823-1 12/06/1.	8 11:23										by O
MB Resi Malyte mg/kg	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg							
G C10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range			0.274	4.00							/ <mark>8/</mark> /
/X1/202	73.3			18.0-148							3 021 10
د. در المالين المالية الم	l Sample (LC	SS) • Laboi	ratory Conti	rol Sample	e Duplicate	(LCSD)					:05
CLCS) R3365823-2 12/06/18 11:40 • (LCSD) R3365823-3 12/06/18 11:54	/18 11:40 • (LCSD)) R3365823-3	12/06/18 11:54								4 ທ
98.	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ک
Extractable Petroleum Hydrocarbon	50.0	31.8	32.7	63.6	65.4	50.0-150		2.79	20		ر ک
C10-C28 Diesel Range	50.0	33.7	34.7	67.4	69.4	50.0-150		2.92	20		ت ۲
(S) o-Terphenyl				67.7	68.0	18.0-148					5

SC

 $\overline{P}_{_{\infty}}$

•

PAGE: 12 of 16

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1049339

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 237 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NEL
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1049339 DATE/TIME: 12/06/18 16:33

PAGE: 14 of 16

(Burld same the rate	Others Charlen											
F	Tetra Tech. Inc.			Midland, Te Tel (432) Fax (432)	U W WALL FOR SUPPL, 200 LU Middand, Texas, 79701 Tel (432) 682-4559 Fax (432) 882-3546											
Client Name:	Conoco Phillips	Site Manager:	Kay	Kayla Taylor	1655		\vdash				ALYSI		JEST			
roject Name:	Buck Fed	12					Г		(Circle		Specify		Method	No.	-	-
roject Location:	(county, Lea County, New Mexico	Project #:	C.	212C-MD-01491	-01491		Г	_			_				(ts	1
02.0	Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701						Г	(OH)		64	-				Il peup	
Receiving Laboratory:		Sampler Signature:	6	1 Tail	10			N- 0H		LD 26					ette ee	
comments:	COPTETRA Acctnum		V	A			x 85606			10 00 8	624	329/202/	1	S01		100
		SAMPLING		MATRIX	PRESERVATIVE METHOD	Sł	T						(eteti		-
	CAMPLE INCUTION	YEAH: 2018				I		_	6Å sb	seides			-	ns	a not	Н
	SAMTLE IVEN IFICATION	Этаа	AMIT A TAW	HCL	None ICE HNO ³	* CONTA	ILTERE	101 TX10	etal Meta	TCLP Voli TCLP Met	DCIWE AN ICLP Seu	oce,a en s sw/de	MFION MARA) MJ9	Chloride Chloride	V Isnene2 ts:3/noinA	2108 HGT
Constant of the local data	AH-6 (4')	11/29/18	1200		×	-	-				-	-			1000	-
	AH-8 (4')	11/29/18	1220	~	×	-	z		F				-			
	AH-17 (4')	11/29/18	1305	×	×	1	z		F	F			-	-		
	AH-17 (5')	11/29/18	1400	×	×	-	z	-								
10-1979-01	AH-17 (6')	11/30/18	1035 2	×	×	-	X N	×						×		_
Contraction of the second	AH-6 (5')	11/30/18	1120	×	×	-	z				_					
10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	AH-8 (S')	11/30/18	1200 3	×	×	-	z				_					
03	AH-6 (6')	11/30/18	1300	×	×	-	X z	×						×		
20	(,) AH-B ((,)	11/30/18	1315	×	×	-	× z			2		1		×		-
Relinquished by:	CALL Date: Time: SOC)	Received by:	Ą	Date:	Time:		13	LAB USE ONLY	ONL	_	REMARKS:	STANDARD		1		7
Relinquished by:	Time:	Received by:		Date:	Time:	0	Sar	Sample Temperature	erature	7	A Super-	REALSH: Same Day		24 h	48 hr	72 hr
Relinquished by:	Date: Time:	Received by		Date	Time:		8	0.4 0.12	02 8.19.20		Bush	Rush Charges Authorized	Authori. Limits c	zed or TRRF	Bepor	
		+	5	2	2/14	202	+		1							
							j.	(Circle) HAND DELIVERED	D DELIW		FEDEX	UPS Tr	icking #:			

Released to Imaging: 10/31/2022 3:02:08 PM

Pace Analytical National Center for Testing & Innovation	esting & Innov	ation	
Cooler Receipt Form	E		
Climet	SDG#	11049337	334
Received/Opened On: 12/ 2//18	Temperature:	63	
Received By: Patrick Nshizirungu			
Simultures the second sec			
olguature:	Contraction of the second		
	NP	Yes	No
Receipt Check List			
COC Seal Present / Intact?		1	
COC Signed / Accurate?		,	
Bottles arrive intact?	distribution of the second	,	
Correct bottles used?		1	
Sufficient volume sent?	Contraction of the second second		
If Applicable			Ì
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT December 19, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1051879 12/11/2018 212C-MD-01491 Buck Fed CTB

Report To:

Kayla Taylor 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

Entire Report Reviewed By: Chu, foph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-22 (3') L1051879-01	5
AH-23 (3') L1051879-02	6
Qc: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8015D/GRO	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
Semi-Volatile Organic Compounds (GC) by Method 8015	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SDG: L1051879

DATE/TIME: 12/19/18 15:08 PAGE: 2 of 15

SAMPLE SUMMARY

ONE LAB. NAPage 242 of 348

AH-22 (3') L1051879-01 Solid			Collected by	Collected date/time 12/06/18 12:00	Received date/time 12/11/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1210272	1	12/13/18 13:55	12/13/18 14:05	KBC
Wet Chemistry by Method 300.0	WG1210216	2.09205	12/13/18 10:17	12/13/18 16:47	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1211483	100	12/12/18 11:42	12/15/18 22:41	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1211544	8	12/12/18 11:42	12/16/18 04:01	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1210000	20	12/13/18 06:18	12/13/18 16:00	TJD
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1210000	5	12/13/18 06:18	12/13/18 14:52	TJD
AH-23 (3') L1051879-02 Solid			Collected by	Collected date/time 12/06/18 14:30	Received date/time 12/11/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
	Batch WG1210272	Dilution		5	Analyst KBC
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0		Dilution 1 1.519757	date/time	date/time	
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1210272	1	date/time 12/13/18 13:55	date/time 12/13/18 14:05	KBC
Total Solids by Method 2540 G-2011	WG1210272 WG1210216	1 1.519757	date/time 12/13/18 13:55 12/13/18 10:17	date/time 12/13/18 14:05 12/13/18 17:03	KBC MAJ

SDG: L1051879 DATE/TIME:

PAGE: 3 of 15

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1051879 DATE/TIME: 12/19/18 15:08

IME: 15:08 PAGE: 4 of 15

SAMPLE RESULTS - 01 L1051879

Total Solids by Method 2540 G-2011

		Result	Qualifier	Dilution	Analysis	Batch	Ср
An	alyte	%			date / time		2
То	al Solids	90.2		1	12/13/2018 14:05	<u>WG1210272</u>	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	920		1.85	10.0	23.2	2.09205	12/13/2018 16:47	WG1210216	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	920		1.85	10.0	23.2	2.09205	12/13/2018 16:47	WG1210216
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
,				0.400		100	12/15/2010 22.41	10/01/211/10/2
TPH (GC/FID) Low Fraction	122		2.41	0.100	11.1	100	12/15/2018 22:41	WG1211483
	122 <i>91.3</i>		2.41	0.100	11.1 77.0-120	100	12/15/2018 22:41	WG1211483 WG1211483
TPH (GC/FID) Low Fraction			2.41	0.100		100		
TPH (GC/FID) Low Fraction	91.3	1S) by Met				100		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.00355	0.00100	0.00887	8	12/16/2018 04:01	WG1211544
Toluene	0.0280	J	0.0111	0.00500	0.0444	8	12/16/2018 04:01	WG1211544
Ethylbenzene	0.0632		0.00470	0.00250	0.0222	8	12/16/2018 04:01	WG1211544
Total Xylenes	1.05		0.0424	0.00650	0.0577	8	12/16/2018 04:01	WG1211544
(S) Toluene-d8	105				75.0-131		12/16/2018 04:01	WG1211544
(S) Dibromofluoromethane	104				65.0-129		12/16/2018 04:01	WG1211544
(S) a,a,a-Trifluorotoluene	104				80.0-120		12/16/2018 04:01	WG1211544
(S) 4-Bromofluorobenzene	117				67.0-138		12/16/2018 04:01	WG1211544

Sample Narrative:

L1051879-01 WG1211544: Nontarget compounds are too large to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2240		35.7	4.00	88.7	20	12/13/2018 16:00	WG1210000
C28-C40 Oil Range	578		1.52	4.00	22.2	5	12/13/2018 14:52	WG1210000
(S) o-Terphenyl	177	<u>J1</u>			18.0-148		12/13/2018 14:52	WG1210000
(S) o-Terphenyl	194	<u>J7</u>			18.0-148		12/13/2018 16:00	WG1210000

SAMPLE RESULTS - 02 L1051879

A

Sc

Total Solids by Method 2540 G-2011

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	88.9		1	12/13/2018 14:05	<u>WG1210272</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	825		1.36	10.0	17.1	1.519757	12/13/2018 17:03	WG1210216	C

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	825		1.36	10.0	17.1	1.519757	12/13/2018 17:03	WG1210216
Volatile Organic Comp	. ,	y Method	8015D/GF	20				
Volatile Organic Comp	Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	())	Dilution 25	,	Batch WG1211483

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) Analyte mg/kg Benzene U Toluene U	<u>Qualifier</u>	SDL (dry) mg/kg 0.000450	Unadj. MQL mg/kg 0.00100	MQL (dry) mg/kg 0.00112	Dilution	Analysis date / time 12/16/2018 00:57	Batch WG1211544
Benzene U		0.000450			1		WC1211544
			0.00100	0.00112	1	12/16/2018 00.57	WC1211544
Toluene		0.00141				12/10/2010 00.07	W01211344
0		0.00141	0.00500	0.00562	1	12/16/2018 00:57	WG1211544
Ethylbenzene 0.000731	J	0.000596	0.00250	0.00281	1	12/16/2018 00:57	WG1211544
Total Xylenes 0.103		0.00537	0.00650	0.00731	1	12/16/2018 00:57	WG1211544
(S) Toluene-d8 111				75.0-131		12/16/2018 00:57	WG1211544
(S) Dibromofluoromethane 92.4				65.0-129		12/16/2018 00:57	WG1211544
(S) a,a,a-Trifluorotoluene 107				80.0-120		12/16/2018 00:57	WG1211544
(S) 4-Bromofluorobenzene 135				67.0-138		12/16/2018 00:57	WG1211544

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	939		9.05	4.00	22.5	5	12/13/2018 14:38	WG1210000
C28-C40 Oil Range	211		1.54	4.00	22.5	5	12/13/2018 14:38	WG1210000
(S) o-Terphenyl	92.8				18.0-148		12/13/2018 14:38	WG1210000

SDG: L1051879 DATE/TIME:

WG1210272	2011		QUALITY	-ITY CONTROL 11051879-01,02	SUMMARY		ONE LAB. NATIONWIDE.	Rece
period Blank (MB)								vived (
MB) R3368174-1 12/13/18 14:05								by O
MB Result Analyte %	MB Qualifier	MB MDL %	MB RDL %					
Total Solids 0.00300								11/
10/3								<mark>8/2</mark> 0
211051893-01 Original Sample (OS) • Duplicate (DUP)	le (OS) • Dupl	icate (DUP)						21 1 4
COS) L1051893-01 12/13/18 14:05 • (DU	P) R3368174-3 12/	13/18 14:05						0 :0
Original Re	sult DUP Result	Dilution DUP RPD	DUP Qualifier	lifier DUP RPD Limits				5:54 10
Sanalyte %	%	%		%				נ ר א ר
Total Solids 83.4	81.7	1 2.03		10				္မွိတို
Laboratory Control Sample (LCS)	(LCS)						_	۲ ت
(LCS) R3368174-2 12/13/18 14:05								5
Spike Amount	unt LCS Result	LCS Rec. Re	c. Limits	LCS Qualifier				P
	۹ ۲	0	0.41E					
	0.00		GII-0.CQ					° SC
								Page
								e 24
								6 of
ACCOUNT			PRO JECT		SDG.	DATE/TIME.	PAGF	f 34
					200.	72.5	i) [8

Rece	ived (<i>by ОС</i>	D : 1	1/0	8/202	21 <u>1</u>	0 :0	05:54 10	(P)	ိုင္လ	۲ ط	;	٣		ر س 6)										Page 247 oj	f 348
ONE LAB. NATIONWIDE.																							ts				PAGE
ō																							RPD Limits	%	20		
																								%	2.86		DATE/TIME:
																							MSD Qualifier				
۲۲																							MS Qualifier				
SUMMARY																							Rec. Limits	%	80.0-120		SDG:
																					ASD)		Dilution		-		-
Υ CONTROL 11051879-01,02								DUP RPD Limits	. 0	20			DUP RPD Limits	.0	20			-			Duplicate (MSD)	18:26	MSD Rec.	%	87.0		
QUALITY								DUP Qualifier L	%	2			DUP Qualifier L	%	2			LCS Qualifier			x Spike D	93-6 12/13/18	MS Rec.	%	83.0		PROJECT:
ğ		MB RDL	mg/kg	10.0				PD										Rec. Limits	%	90.0-110	L1052197-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike	(OS) L1052197-02 12/13/18 17:53 • (MS) R3368093-5 12/13/18 18:09 • (MSD) R3368093-6 12/13/18 18:26	MSD Result	mg/kg	710		PRC
		MB MDL	mg/kg	0./95		icate (DUI	/13/18 14:03	Dilution DUF	%	1 11.4	cate (DUP	13/18 17:36	Dilution DUP RPD	%	1 14.0			LCS Rec.	%	97.0	ix Spike (N	3/18 18:09 • (N	MS Result	mg/kg	690		
		MB Qualifier				IdnG • (SC	368093-3 12	JUP Result dry)	mg/kg	449	S) • Dupli	368093-4 12/	OUP Result	mg/kg	81.2	(0)		LCS Result	mg/kg	194	DS) • Matr	58093-5 12/1	Original Result MS Result	mg/kg	275		
300.0		sult	mg/kg			Sample ((46 • (DUP) R3	Original Result DUP Result (dry) (dry)	mg/kg r		ample (C	0 • (DUP) R33	Original Result DUP Result	mg/kg r		mple (LCS	37	Amount	mg/kg r		Sample (C	3 • (MS) R33	Spike Amount 0	Ð			JNT:
16 by Method	k (MB)	12/13/18 12:2 ⁻ MB	ſġm :			Original 3	12/13/18 13:4	Oriç (dr)	mg,	401	Original S	12/13/18 17:20	Ori	шg	93.4	ontrol Sai	2 12/13/18 12:2	Spil	mg,	200	Original 3	12/13/18 17:5	Spil	mg	500		ACCOUNT:
WG1210216	thod Blan	0 (MB) R3368093-1 12/13/18 12:21 MB Re:	te	ide		1048960-01 Original Sample (OS) • Duplicate (DUP)	L1048960-01		te	ide	L1052197-01 Original Sample (OS) • Duplicate (DUP)	(OS) L1052197-01 12/13/18 17:20 • (DUP) R3368093-4 12/13/18 17:36		te	ide	Laboratory Control Sample (LCS)	(LCS) R3368093-2 12/13/18 12:37		te	ide	52197-02	L1052197-02		te	ide		
× [™] <i>Rele</i>	ĕ ∑ ased t	(BW) o Ima	Analy	Chlor	10/31	Q 1/20	(SO) 22	<i>3:02</i>	S Analyte	W Chloride	L10	(SO)		Analyte	Chloride	Lab	(LCS)	-	Analyte	Chloride	L10	(SO)		Analyte	Chloride		

ന	
$\overline{0}$	
114	Organic
5	
ບັ	- il
Š	
Re	l

3. NATIONWIDE.	
ONE LAB	

WG1211483				QU	QUALITY C	CONTROL SUMMARY	- SUMN	1 ARY		ONE LAB. NATIONWIDE.	Re
olatile Organic Compounds (GC) by Method 8015D/GRO	ounds (GC) by	y Method 81	015D/GRO			L1051879-01,02					cei
Method Blank (MB)											ved
(MB) R3368594-3 12/15/18 14:54	8 14:54										by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL							0C
Analyte	mg/kg		mg/kg	mg/kg							
C TPH (GC/FID) Low Fraction	П		0.0217	0.100							11
(S) 70,a,a-Trifluorotoluene(FID)	91.3			77.0-120							/ <mark>8/2</mark> 0
1/20											21 j
022											
(UCSU) • Laboratory Control Sample (LCS) • Laboratory Control Sample Unplicate (LCSU)	Sample (LC	v) • Labo	ratory Coni	trol sample	i) and incate (i						05:
CLCS) R3368594-1 12/15/18 13:50 • (LCSD) R3368594-2 12/15/18 14:12	3 13:50 • (LCSD) I	R3368594-2	12/15/18 14:12								54 ن
:08	Spike Amount	LCS Result	Spike Amount LCS Result LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits LC.	S Qualifier L	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits		P <i>N</i>
Analyto	malla	ma/l/n	malla	70	70	76		%	20		1

L1051879-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

ğ

LCSD Result mg/kg 5.69

mg/kg 5.73

mg/kg 5.50

> TPH (GC/FID) Low Fraction (S) a, a, a-Trifluorotoluene(FID)

Analyte

%

77.0-120 72.0-127 %

106

103 %

> 104 106

20 %

0.688

%

Ū

SC

₹

(OS) L1051879-01 12/15/18 22:41 • (MS) R3368594-4 12/15/18 23:02 • (MSD) R3368594-5 12/15/18 23:23

- -	Spike Amount	Original Result	Spike Amount Original Result MS Result (drv) MSD Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	(ary) mg/kg	(ary) mg/kg	mg/kg	(ary) mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.10	122	711	652	96.6	86.9	100	10.0-151			8.72	28
(S) a, a, a-Trifluorotoluene(FID)					102	104		77.0-120				

9 of 15 PAGE:

12/19/18 15:08 DATE/TIME:

4	200
4	
വ	
1	ç
\sim	
5	-
C	:+ e 0
\leq	0
Re	eĺ

WG1211544				QUALITY CONTROL SUMMARY	
Volatile Organic Comp	ounds (GC/	MS) by Metho	d 8260B	L1051879-01,02	ecei
period Blank (MB)					ived (
(MB) R3368600-3 12/15/18	3 21:34				by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL	0 ~
analyte mg/kg	mg/kg		mg/kg	mg/kg	
Benzene	П		0.000400	0.00100	11
Ethylbenzene	Π		0.000530	0.00250	/ <mark>8/4</mark>
	Π		0.00125	0.00500	302
Xylenes, Total	Π		0.00478	0.00650	4
(S) Toluene-d8	110			75.0-131	0.0
S) Dibromofluoromethane	93.5			65.0-129	05:
(S) a,a,a-Trifluorotoluene	109			80.0-120	54
(S) 4-Bromofluorobenzene	104			67.0-138	
PA					g

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

Ū

₹

(LCS) R3368600-1 12/15/18 20:13 • (LCSD) R3368600-2 12/15/18 20:34

-	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	-CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%			%	%
Benzene	0.125	0.101	0.0996	80.5	79.7	70.0-123		0.993	20
Ethylbenzene	0.125	0.126	0.126	101	101	74.0-126		0.422	20
Toluene	0.125	0.109	0.109	87.0	87.3	75.0-121		0.400	20
Xylenes, Total	0.375	0.379	0.375	101	100	72.0-127		1.06	20
(S) Toluene-d8				106	108	75.0-131			
(S) Dibromofluoromethane				105	104	65.0-129			
(S) a, a,a-Trifluorotoluene				105	103	80.0-120			
(S) 4-Bromofluorobenzene				103	106	67.0-138			

SC

L1051783-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1051783-02 12/15/18 23:16 • (MS) R3368600-4 12/16/18 04:41 • (MSD) R3368600-5 12/16/18 05:01	8 23:16 • (MS) R3	• (MS) R3368600-4 12/1	6/18 04:41 • (N	ASD) R336860(D-5 12/16/18 0!	5:01						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%					%	%
Benzene	0.125	ND	0.0816	0.0646	65.3	51.7	-	10.0-149			23.3	37
Ethylbenzene	0.125	ND	0.123	0.0919	98.4	73.5	-	10.0-160			28.9	38
Toluene	0.125	ND	0.103	0.0819	82.6	65.5	-	10.0-156			23.0	38
Xylenes, Total	0.375	ND	0.358	0.285	95.5	76.0	-	10.0-160			22.7	38
(S) Toluene-d8					116	116		75.0-131				
(S) Dibromofluoromethane					89.0	88.4		65.0-129				
(S) a, a,a-Trifluorotoluene					110	106		80.0-120				
(S) 4-Bromofluorobenzene					106	106		67.0-138				

Page 249 of 348

10 of 15 PAGE

12/19/18 15:08 DATE/TIME:

L1051879 SDG:

212C-MD-01491 **PROJECT:**

	しら
	Semi-Volatile Organic Compounds
000	Organic
WG1210000	mi-Volatile
$\leq_{R_{\rho}}$	d Y

WG1210000	Compounds	(GC) by Met	hod 8015	gr	QUALITY (CONTROL SUMMARY	DL SUM	MARY		ONE LAB. NATIONWIDE.	Recei
period Blank (MB)	_										ived (
(MB) R3368012-1 12/13/18	11:28 MB Docuit										by O
MB Ke Mg/kg mg/kg	mg/kg		mg/kg	mg/kg							
😽 c10-C28 Diesel Range	Л		1.61	4.00							11
C28-C40 Oil Range	П		0.274	4.00							/ <mark>8//</mark>
(S) o-Terphenyl (S) 21/202	89.6			18.0-148							8021 10 •
2. 	l Sample (LC	CS) • Labo	ratory Conti	ol Sample		e (LCSD)					:05
CLCS) R3368012-2 12/13/18 11:41 • (LCSD) R3368012-3 12/13/18 11:55	8 11:41 • (LCSD) F	3368012-3 1	2/13/18 11:55								54 ທ
98.	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		РМ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%		ۍ ک
Extractable Petroleum Hydrocarbon	50.0	35.4	33.4	70.8	66.8	50.0-150		5.81	20		ر رو
C10-C28 Diesel Range	50.0	39.2	37.0	78.4	74.0	50.0-150		5.77	20		۲ ال
(S) o-Terphenyl				84.7	78.2	18.0-148)

L1052100-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) 11052100-02 12/13/18 15:06 . (MC) D3368012-4 12/13/18 15:19 . (MCD) D3368012-5 12/13/18 15:33

U291210102010-0212/12/12/12/12/12/12/12/12/12/12/12/12/	7 (SIM) • 90:GL 81	3368012-4 12/1	N) • 61:01 81/21		".GI 81/21/71 G-7	33						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec. N	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Extractable Petroleum Hydrocarbon	48.5	63.3	35.7	29.5	0.000	0.000	10	50.0-150	<u> 9</u>	<u> 16</u>	19.0	20
C10-C28 Diesel Range	48.5	ND	33.8	33.9	69.7	67.8	10	50.0-150			0.295	20
(S) o-Terphenyl					132	111		18.0-148				

SC

∢

11 of 15 PAGE:

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
AQL	Method Quantitation Limit.
1D	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
J	Not detected at the Sample Detection Limit.
Jnadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
imits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Driginal Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Jncertainty Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-01491

SDG: L1051879 DATE/TIME: 12/19/18 15:08

PAGE: 12 of 15

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 252 of 348 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico 1
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming
		, , ,

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1051879 DATE/TIME: 12/19/18 15:08

PAGE: 13 of 15

Conoco Phillips Stere M Buck Fad Project Buck Fad Project Buck Fad Project Pace County, New Mexico Project 900 West Wall Street Suite 100 Midland, Texas 79701 Sample Pace Analytical Sample Pace Analytical Sample PTETRA Acctnum Sample Ah-22(3) 128 AH-23(3) 128	ignature:	Fax (432) BB2 3B46 Kayla Taylor 212C-MD-01491	2-3846							
Int Name: Conoco Phillips Ste Mi ject Name: Buck Fed Fed ject Location: Buck Fed Fede ject Location: Buck Fed Fede ject Location: County, New Mexico Fede ject Location: Gounty, Lea County New Mexico Fede ject Location: Gounty, Lea County New Mexico Fede alo Ject Location Accounts Payable alo Ject Location Fede alo Ject Location Ject Location alo Ject Location<	gnature:	yla Taylor 212C-MD-0						1		
Buck Fed Buck Fed arr (country, Lea County, New Mexico Accounts Payable 900 west Wall Street Suite 100 Midland, Texas 79701 900 west Wall Street Suite 100 Midland, Texas 79701 Pace Analytical Sample Project Accounts Payable 900 west Wall Street Suite 100 Midland, Texas 79701 900 west Wall Street Suite 100 Widland, Texas 79701 900 west Wall Street Suite 100 Widland, Texas 79701 900 west Wa	Bunture:	212C-MD-0	lost fi			ANI	ANALYSIS REQUEST	EQUEST		
country. Lea County, New Mexico Project Accounts Payable Accounts Payable Project 900 west Wall Street Suits 100 Midland, Texas 79701 Sample Pace Analytical Sample PTETRA Acctnum Sample Sample Acctnum Acctnum Acctnum PTETRA Acctnum Sample Ant-22(3') 126 Ant-23(3') 128	Bunture:	212C-MD-0					specify		CON C	520
Accounts Payable 900 West Wall Street Suite 100 Midland, Texas 79701 aboratory: Pace Analytical Sample COPTETRA Acctnum COPTETRA Acctnum COPTETRA Acctnum AH-22(3) 126	a g	they a	1491							
Pace Analytical Sample PTETRA Acchnum Sample SamPLE IDENTIFICATION 12/0 AH-22(3') 12/0 AH-23(3') 12/0	a g	ta					1	103	peyse	
COPTETRA Accthum samPLe IDENTIFICATION AH-22(3') AH-23(3') 126					N- OH		9	140	dis ee	Ser.
SAMPLE IDENTIFICATION EARLS AH-22(3') AH-23(3') AH-	6				D - OHO	IF CO CL	530C\65 65¢		sOT TDS SOT	111
SAMPLE IDENTIFICATION AH-22(3') AH-23(3')	H	MATRIX PRI	PRESERVATIVE METHOD	1.14	GHO - (Ext to	8 sy 6y 's	Vol. 8: 2606 /		etejin	
AH-22(3') AH-23(3')		Notes of	115		520C 012W X1002 80518	, alisteliv elitalov	9 70A 9	\ \$808 0129de/	s eb teW le	Rat0
	amit ataw	HINO ³ HCL SOIL	None ICE	FILTER CON	хэтв т нчт в нчт 8 ндт 8 ндч	TCLP /	GC/W2 HCI	NUDIN		8 HdT
	3 1200	×	×		X	- 17	1		X	10+
	3 1430	×	×	Z F	XX				×	0
						-				
	12									
										5
			2						-	
						-				
Reinquistred by: Although 13-45 Received by	ar and	Date:	Time: +B 12:5	K	LAB USE ONLY		REMARKS:	\sim	been a	K.
Received by: Date: Time: Received by	NYL-YES	Male Date:	// A.C.	8	Sample Temperature	anterd	RUSH: Same Day Rush Charges Auth	0	24 hr 48 hr rized	72 hr
Received by: Date: Time: Received by	by:	Date:	Time:	1	2	42	Special R	eport Limits	Special Report Limits or TRRP Report	ort
				ľ	(Circle) HAND D	HAND DELIVERED	FEDEX UPS	Tracking #		

Pace Analytical National Center for Testing & Innovation	sting & Innov	ration	
Cooler Receipt Form			
lient MOPTETTER	SDG#	SDG# LIOSI 879	879
Cooler Received/Opened On: 12/ M /18	Temperature:	0.3	
keceived By: malik Tisdale			
Signature: Mc 1967.			
and a second and a second with a second			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			
COC Signed / Accurate?	「日本でのない」		
3ottles arrive intact?			
Correct bottles used?			
Sufficient volume sent?	a service of the		
if Applicable			
VOA Zero headspace?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Preservation Correct / Checked?			

Released to Imaging: 10/31/2022 3:02:08 PM

Received by OCD: 11/8/2021 10:05:54 PM

ANALYTICAL REPORT October 24, 2019

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1150137 10/15/2019 212C-MD-01491 COP Buck Fed CTB

Report To:

Christian Llull 4001 N. Big Spring St., Ste. 401 Midland, TX 79705

AI

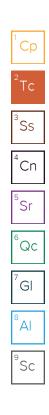
Sc

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 040/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech


PROJECT: 212C-MD-01491

SDG: L1150137

DATE/TIME: 10/24/19 21:42

PAGE: 1 of 46

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
BH-19-1 (0'-1') L1150137-01	8
BH-19-1 (2'-3') L1150137-02	9
BH-19-1 (4'-5') L1150137-03	10
BH-19-2 (0'-1') L1150137-04	11
BH-19-2 (2'-3') L1150137-05	12
BH-19-2 (4'-5') L1150137-06	13
BH-19-3 (0'-1') L1150137-07	14
BH-19-3 (2'-3') L1150137-08	15
BH-19-3 (4'-5') L1150137-09	16
BH-19-3 (6'-7') L1150137-10	17
BH-19-3 (9'-10') L1150137-11	18
BH-19-3 (14'-15') L1150137-12	19
BH-19-4 (0'-1') L1150137-13	20
BH-19-4 (2'-3') L1150137-14	21
BH-19-4 (4'-5') L1150137-15	22
BH-19-4 (6'-7') L1150137-16	23
BH-19-4 (9'-10') L1150137-17	24
BH-19-4 (14'-15') L1150137-18	25
Qc: Quality Control Summary	26
Total Solids by Method 2540 G-2011	26
Wet Chemistry by Method 300.0	28
Volatile Organic Compounds (GC) by Method 8015D/GRO	30
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 8015	38
GI: Glossary of Terms	41
Al: Accreditations & Locations	43
Sc: Sample Chain of Custody	44

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

9 21:42

PAGE: 2 of 46 Received by OCD: 11/8/2021 10:05:54 PM

SAMPLE SUMMARY

ONE LAB. NAPage 257 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-19-1 (0'-1') L1150137-01 Solid			Collected by JT	Collected date/time 10/08/19 11:00	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	·	
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:03	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 18:32	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:06	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:17	KME	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
BH-19-1 (2'-3') L1150137-02 Solid			JT	10/08/19 11:10	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:13	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 18:54	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:25	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:30	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-1 (4'-5') L1150137-03 Solid			JT	10/08/19 11:20	10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:22	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 19:17	DWR	Mt. Juliet, Th
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366257	1	10/16/19 10:24	10/20/19 22:44	ACG	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/19/19 06:42	KME	Mt. Juliet, Tl
			Collected by	Collected date/time	Received da	te/time
BH-19-2 (0'-1') L1150137-04 Solid			JT	10/08/19 11:50	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:32	ST	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366698	1	10/16/19 10:24	10/21/19 14:40	JHH	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 22:56	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-19-2 (2'-3') L1150137-05 Solid			JT	10/08/19 12:00	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:41	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366698	1	10/16/19 10:24	10/21/19 14:59	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365094	1	10/18/19 06:39	10/18/19 23:08	KME	Mt. Juliet, TN

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 3 of 46

SAMPLE SUMMARY

ONE LAB. NAPage 258 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-19-2 (4'-5') L1150137-06 Solid			Collected by JT	Collected date/time 10/08/19 12:10	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/17/19 23:51	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 20:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/21/19 23:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 11:50	FM	Mt. Juliet, TN
BH-19-3 (0'-1') L1150137-07 Solid			Collected by JT	Collected date/time 10/08/19 12:40	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 00:00	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 21:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/21/19 23:50	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:03	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-19-3 (2'-3') L1150137-08 Solid			JT	10/08/19 12:50	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 00:29	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 21:33	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 00:08	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:15	FM	Mt. Juliet, Th
			Collected by	Collected date/time		
BH-19-3 (4'-5') L1150137-09 Solid			JT	10/08/19 13:00	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 00:57	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 21:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 00:27	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:28	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-19-3 (6'-7') L1150137-10 Solid			JT	10/08/19 13:10	10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367017	1	10/23/19 14:02	10/23/19 14:13	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:07	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 22:17	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 00:46	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:41	FM	Mt. Juliet, TN

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 4 of 46

SAMPLE SUMMARY

ONE LAB. NAPage 259 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-19-3 (9'-10') L1150137-11 Solid			Collected by JT	Collected date/time 10/08/19 13:20	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:16	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 22:39	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 01:05	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 12:54	FM	Mt. Juliet, TN
BH-19-3 (14'-15') L1150137-12 Solid			Collected by JT	Collected date/time 10/08/19 13:30	Received da 10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664	1	10/17/19 19:10	10/18/19 01:26	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365550	1	10/16/19 10:24	10/20/19 23:02	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1366783	1	10/16/19 10:24	10/22/19 01:23	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:06	FM	Mt. Juliet, TN
BH-19-4 (0'-1') L1150137-13 Solid			Collected by JT	Collected date/time 10/10/19 14:00	Received da 10/15/19 09:1	
		Dil ii	D	A 1 -		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	WC12C7010	4	date/time	date/time	KDW/	MAL LUISA TA
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1364664 WG1365589	1 1	10/17/19 19:10	10/18/19 01:35	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24 10/16/19 10:24	10/20/19 04:09 10/24/19 13:38	ACG DWR	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:32	FM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-19-4 (2'-3') L1150137-14 Solid			JT	10/10/19 14:10	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:09	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 04:30	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 13:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:19	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-19-4 (4'-5') L1150137-15 Solid			JT	10/10/19 14:15	10/15/19 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 04:52	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365515	1	10/19/19 04:32	10/19/19 13:45	FM	Mt. Juliet, TN

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

2

PAGE: 5 of 46

SAMPLE SUMMARY

ONE LAB. NAPage 260 of 348

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time	e Received dat	te/time
BH-19-4 (6'-7') L1150137-16 Solid			JT	10/10/19 14:20	10/15/19 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365589	1	10/16/19 10:24	10/20/19 05:13	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:35	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 16:53	KME	Mt. Juliet, TN

			Collected by	Collected date/time		
BH-19-4 (9'-10') L1150137-17 Solid			JT	10/10/19 14:40	10/15/19 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365978	1	10/16/19 10:24	10/20/19 13:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368147	1	10/16/19 10:24	10/24/19 14:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 17:06	KME	Mt. Juliet, TN

BH-19-4 (14'-15') L1150137-18 Solid			Collected by JT	Collected date/time 10/10/19 15:00	Received dat 10/15/19 09:1	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1367018	1	10/23/19 13:49	10/23/19 14:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1365616	1	10/20/19 15:10	10/20/19 18:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1365978	1	10/16/19 10:24	10/20/19 14:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1368190	1	10/16/19 10:24	10/23/19 23:09	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1365703	1	10/19/19 07:36	10/19/19 17:19	KME	Mt. Juliet, TN

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 6 of 46

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1150137

DATE/TIME: 10/24/19 21:42

PAGE: 7 of 46

SAMPLE RESULTS - 01 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

						I Cr	5
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	-
Total Solids	94.8		1	10/23/2019 14:13	<u>WG1367017</u>	Tc	-

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	143		0.839	10.0	10.6	1	10/17/2019 23:03	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ G
TPH (GC/FID) Low Fraction	0.0763	ВJ	0.0229	0.100	0.106	1	10/20/2019 18:32	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 18:32	WG1365550	7 G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quantor	mg/kg	mg/kg	mg/kg	2.1000	date / time	
Benzene	U		0.000422	0.00100	0.00106	1	10/20/2019 22:06	WG1366257
Toluene	U		0.00132	0.00500	0.00528	1	10/20/2019 22:06	WG1366257
Ethylbenzene	U		0.000559	0.00250	0.00264	1	10/20/2019 22:06	WG1366257
Total Xylenes	U		0.00504	0.00650	0.00686	1	10/20/2019 22:06	WG1366257
(S) Toluene-d8	112				75.0-131		10/20/2019 22:06	WG1366257
(S) 4-Bromofluorobenzene	103				67.0-138		10/20/2019 22:06	WG1366257
(S) 1,2-Dichloroethane-d4	84.6				70.0-130		10/20/2019 22:06	WG1366257

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.02	J	1.70	4.00	4.22	1	10/18/2019 22:17	WG1365094
C28-C40 Oil Range	6.14		0.289	4.00	4.22	1	10/18/2019 22:17	WG1365094
(S) o-Terphenyl	83.1				18.0-148		10/18/2019 22:17	WG1365094

SAMPLE RESULTS - 02 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	R	lesult	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%	0			date / time		2
Total Solids	9	2.2		1	10/23/2019 14:13	WG1367017	¯Тс

Wet Chemistry by Method 300.0

Wet Chemistry by I	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	86.7		0.863	10.0	10.9	1	10/17/2019 23:13	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		6
TPH (GC/FID) Low Fraction	0.0766	ВJ	0.0235	0.100	0.109	1	10/20/2019 18:54	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 18:54	WG1365550	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00100	0.00109	1	10/20/2019 22:25	WG1366257
Toluene	U		0.00136	0.00500	0.00543	1	10/20/2019 22:25	WG1366257
Ethylbenzene	U		0.000575	0.00250	0.00271	1	10/20/2019 22:25	WG1366257
Total Xylenes	U		0.00519	0.00650	0.00705	1	10/20/2019 22:25	WG1366257
(S) Toluene-d8	108				75.0-131		10/20/2019 22:25	WG1366257
(S) 4-Bromofluorobenzene	98.3				67.0-138		10/20/2019 22:25	WG1366257
(S) 1,2-Dichloroethane-d4	90.7				70.0-130		10/20/2019 22:25	WG1366257

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.07		1.75	4.00	4.34	1	10/18/2019 22:30	WG1365094
C28-C40 Oil Range	16.4		0.297	4.00	4.34	1	10/18/2019 22:30	WG1365094
(S) o-Terphenyl	89.1				18.0-148		10/18/2019 22:30	WG1365094

SAMPLE RESULTS - 03 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.9		1	10/23/2019 14:13	WG1367017	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	126		0.856	10.0	10.8	1	10/17/2019 23:22	WG1364664	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°C
TPH (GC/FID) Low Fraction	0.0837	ВJ	0.0234	0.100	0.108	1	10/20/2019 19:17	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 19:17	WG1365550	7 G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	10/20/2019 22:44	WG1366257
Toluene	U		0.00135	0.00500	0.00538	1	10/20/2019 22:44	WG1366257
Ethylbenzene	U		0.000571	0.00250	0.00269	1	10/20/2019 22:44	WG1366257
Total Xylenes	U		0.00515	0.00650	0.00700	1	10/20/2019 22:44	WG1366257
(S) Toluene-d8	109				75.0-131		10/20/2019 22:44	WG1366257
(S) 4-Bromofluorobenzene	100				67.0-138		10/20/2019 22:44	WG1366257
(S) 1,2-Dichloroethane-d4	90.2				70.0-130		10/20/2019 22:44	WG1366257

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.00	4.31	1	10/19/2019 06:42	WG1365094
C28-C40 Oil Range	0.362	J	0.295	4.00	4.31	1	10/19/2019 06:42	WG1365094
(S) o-Terphenyl	79.9				18.0-148		10/19/2019 06:42	WG1365094

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

						1°Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	92.6		1	10/23/2019 14:13	WG1367017	Tc

Wet Chemistry by Method 300.0

										00
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4	4 Cr
Chloride	30.0	В	0.859	10.0	10.8	1	10/17/2019 23:32	WG1364664		CI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°Q
TPH (GC/FID) Low Fraction	0.0691	<u>B J</u>	0.0234	0.100	0.108	1	10/20/2019 20:04	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 20:04	WG1365550	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/21/2019 14:40	WG1366698
Toluene	U		0.00135	0.00500	0.00540	1	10/21/2019 14:40	WG1366698
Ethylbenzene	U		0.000572	0.00250	0.00270	1	10/21/2019 14:40	WG1366698
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/21/2019 14:40	WG1366698
(S) Toluene-d8	107				75.0-131		10/21/2019 14:40	WG1366698
(S) 4-Bromofluorobenzene	107				67.0-138		10/21/2019 14:40	WG1366698
(S) 1,2-Dichloroethane-d4	94.3				70.0-130		10/21/2019 14:40	WG1366698

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/18/2019 22:56	WG1365094
C28-C40 Oil Range	0.837	J	0.296	4.00	4.32	1	10/18/2019 22:56	WG1365094
(S) o-Terphenyl	84.9				18.0-148		10/18/2019 22:56	WG1365094

DATE/TIME: 10/24/19 21:42

Sc

SAMPLE RESULTS - 05 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.7		1	10/23/2019 14:13	WG1367017	ЪС

Wet Chemistry by Method 300.0

Wet Chemistry by	Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn		
Chloride	77.7		0.858	10.0	10.8	1	10/17/2019 23:41	WG1364664			

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0767	ВJ	0.0234	0.100	0.108	1	10/20/2019 20:27	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 20:27	WG1365550

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	10/21/2019 14:59	WG1366698
Toluene	U		0.00135	0.00500	0.00540	1	10/21/2019 14:59	WG1366698
Ethylbenzene	U		0.000572	0.00250	0.00270	1	10/21/2019 14:59	WG1366698
Total Xylenes	U		0.00516	0.00650	0.00702	1	10/21/2019 14:59	WG1366698
(S) Toluene-d8	110				75.0-131		10/21/2019 14:59	WG1366698
(S) 4-Bromofluorobenzene	101				67.0-138		10/21/2019 14:59	WG1366698
(S) 1,2-Dichloroethane-d4	83.5				70.0-130		10/21/2019 14:59	WG1366698

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/18/2019 23:08	WG1365094
C28-C40 Oil Range	0.488	J	0.296	4.00	4.32	1	10/18/2019 23:08	WG1365094
(S) o-Terphenyl	71.1				18.0-148		10/18/2019 23:08	WG1365094

SAMPLE RESULTS - 06 L1150137

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.8		1	10/23/2019 14:13	WG1367017	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
	(ary)	quanner	SDE (ury)	ondaj. mar	more (ary)	Dilution	Analysis	Baten	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cr
Chloride	59.7		0.857	10.0	10.8	1	10/17/2019 23:51	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyta	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis date / time	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg	1		WC12GEEEO	$ $ \bigcirc
TPH (GC/FID) Low Fraction	0.0718	<u>B J</u>	0.0234	0.100	0.108	I	10/20/2019 20:49	WG1365550	7
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 20:49	WG1365550	ľ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	10/21/2019 23:31	WG1366783
Toluene	U		0.00135	0.00500	0.00539	1	10/21/2019 23:31	WG1366783
Ethylbenzene	U		0.000571	0.00250	0.00269	1	10/21/2019 23:31	WG1366783
Total Xylenes	U		0.00515	0.00650	0.00701	1	10/21/2019 23:31	WG1366783
(S) Toluene-d8	109				75.0-131		10/21/2019 23:31	WG1366783
(S) 4-Bromofluorobenzene	110				67.0-138		10/21/2019 23:31	WG1366783
(S) 1,2-Dichloroethane-d4	83.9				70.0-130		10/21/2019 23:31	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.31	1	10/19/2019 11:50	WG1365515
C28-C40 Oil Range	U		0.295	4.00	4.31	1	10/19/2019 11:50	WG1365515
(S) o-Terphenyl	56.5				18.0-148		10/19/2019 11:50	WG1365515

SDG: L1150137

DATE/TIME: 10/24/19 21:42 °Ss Cn ⁵Sr [°]Qc

Â

Sc

SAMPLE RESULTS - 07 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	R	esult	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%				date / time		2
Total Solids	9	3.6		1	10/23/2019 14:13	<u>WG1367017</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	80.7		0.849	10.0	10.7	1	10/18/2019 00:00	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0739	ВJ	0.0232	0.100	0.107	1	10/20/2019 21:11	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		10/20/2019 21:11	WG1365550

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quanter	mg/kg	mg/kg	mg/kg	Diration	date / time	Baten
Benzene	U		0.000427	0.00100	0.00107	1	10/21/2019 23:50	WG1366783
Toluene	U		0.00134	0.00500	0.00534	1	10/21/2019 23:50	WG1366783
Ethylbenzene	U		0.000566	0.00250	0.00267	1	10/21/2019 23:50	WG1366783
Total Xylenes	U		0.00511	0.00650	0.00694	1	10/21/2019 23:50	WG1366783
(S) Toluene-d8	112				75.0-131		10/21/2019 23:50	WG1366783
(S) 4-Bromofluorobenzene	100				67.0-138		10/21/2019 23:50	WG1366783
(S) 1,2-Dichloroethane-d4	85.8				70.0-130		10/21/2019 23:50	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.00	4.27	1	10/19/2019 12:03	WG1365515
C28-C40 Oil Range	0.903	J	0.293	4.00	4.27	1	10/19/2019 12:03	WG1365515
(S) o-Terphenyl	68.7				18.0-148		10/19/2019 12:03	WG1365515

SAMPLE RESULTS - 08 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	Re	sult Qualifie	r Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94	.7	1	10/23/2019 14:13	WG1367017	ЪС

Wet Chemistry by Method 300.0

Wet Chemistry by I	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	69.7		0.840	10.0	10.6	1	10/18/2019 00:29	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadi. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0690	ВJ	0.0229	0.100	0.106	1	10/20/2019 21:33	WG1365550
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 21:33	WG1365550

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	10/22/2019 00:08	WG1366783
Toluene	U		0.00132	0.00500	0.00528	1	10/22/2019 00:08	WG1366783
Ethylbenzene	U		0.000560	0.00250	0.00264	1	10/22/2019 00:08	WG1366783
Total Xylenes	U		0.00505	0.00650	0.00686	1	10/22/2019 00:08	WG1366783
(S) Toluene-d8	97.5				75.0-131		10/22/2019 00:08	WG1366783
(S) 4-Bromofluorobenzene	91.8				67.0-138		10/22/2019 00:08	WG1366783
(S) 1,2-Dichloroethane-d4	81.0				70.0-130		10/22/2019 00:08	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.22	1	10/19/2019 12:15	WG1365515
C28-C40 Oil Range	4.14	J	0.289	4.00	4.22	1	10/19/2019 12:15	WG1365515
(S) o-Terphenyl	75.5				18.0-148		10/19/2019 12:15	WG1365515

SAMPLE RESULTS - 09 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.0		1	10/23/2019 14:13	WG1367017	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by M	lethod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	74.4		0.846	10.0	10.6	1	10/18/2019 00:57	WG1364664	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0819	ВJ	0.0231	0.100	0.106	1	10/20/2019 21:55	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 21:55	WG1365550	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00100	0.00106	1	10/22/2019 00:27	WG1366783
Toluene	U		0.00133	0.00500	0.00532	1	10/22/2019 00:27	WG1366783
Ethylbenzene	U		0.000564	0.00250	0.00266	1	10/22/2019 00:27	WG1366783
Total Xylenes	U		0.00509	0.00650	0.00692	1	10/22/2019 00:27	WG1366783
(S) Toluene-d8	111				75.0-131		10/22/2019 00:27	WG1366783
(S) 4-Bromofluorobenzene	103				67.0-138		10/22/2019 00:27	WG1366783
(S) 1,2-Dichloroethane-d4	85.1				70.0-130		10/22/2019 00:27	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.00	4.26	1	10/19/2019 12:28	WG1365515
C28-C40 Oil Range	0.786	J	0.292	4.00	4.26	1	10/19/2019 12:28	WG1365515
(S) o-Terphenyl	68.3				18.0-148		10/19/2019 12:28	WG1365515

SAMPLE RESULTS - 10 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.5		1	10/23/2019 14:13	<u>WG1367017</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	15.5	B	0.815	10.0	10.3	1	10/18/2019 01:07	WG1364664	
Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	20					
Volatile Organic Comp	Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— !
Volatile Organic Comp Analyte	, ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	[
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution		Batch WG1365550	— !

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		۵
TPH (GC/FID) Low Fraction	0.0698	<u>B J</u>	0.0223	0.100	0.103	1	10/20/2019 22:17	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 22:17	WG1365550	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000410	0.00100	0.00103	1	10/22/2019 00:46	WG1366783
Toluene	U		0.00128	0.00500	0.00513	1	10/22/2019 00:46	WG1366783
Ethylbenzene	U		0.000543	0.00250	0.00256	1	10/22/2019 00:46	WG1366783
Total Xylenes	U		0.00490	0.00650	0.00667	1	10/22/2019 00:46	WG1366783
(S) Toluene-d8	102				75.0-131		10/22/2019 00:46	WG1366783
(S) 4-Bromofluorobenzene	103				67.0-138		10/22/2019 00:46	WG1366783
(S) 1,2-Dichloroethane-d4	88.3				70.0-130		10/22/2019 00:46	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.00	4.10	1	10/19/2019 12:41	WG1365515
C28-C40 Oil Range	U		0.281	4.00	4.10	1	10/19/2019 12:41	WG1365515
(S) o-Terphenyl	71.1				18.0-148		10/19/2019 12:41	WG1365515

SAMPLE RESULTS - 11 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

·						1 Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	95.9		1	10/23/2019 14:00	WG1367018	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	129		0.829	10.0	10.4	1	10/18/2019 01:16	WG1364664	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		6
TPH (GC/FID) Low Fraction	0.0811	ВJ	0.0226	0.100	0.104	1	10/20/2019 22:39	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 22:39	WG1365550	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000417	0.00100	0.00104	1	10/22/2019 01:05	WG1366783
Toluene	U		0.00130	0.00500	0.00521	1	10/22/2019 01:05	WG1366783
Ethylbenzene	U		0.000553	0.00250	0.00261	1	10/22/2019 01:05	WG1366783
Total Xylenes	U		0.00498	0.00650	0.00678	1	10/22/2019 01:05	WG1366783
(S) Toluene-d8	109				75.0-131		10/22/2019 01:05	WG1366783
(S) 4-Bromofluorobenzene	102				67.0-138		10/22/2019 01:05	WG1366783
(S) 1,2-Dichloroethane-d4	88.3				70.0-130		10/22/2019 01:05	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.00	4.17	1	10/19/2019 12:54	WG1365515
C28-C40 Oil Range	U		0.286	4.00	4.17	1	10/19/2019 12:54	WG1365515
(S) o-Terphenyl	73.5				18.0-148		10/19/2019 12:54	WG1365515

SDG: L1150137

SAMPLE RESULTS - 12 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.0		1	10/23/2019 14:00	WG1367018	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by N	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	121		0.837	10.0	10.5	1	10/18/2019 01:26	WG1364664	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°C
TPH (GC/FID) Low Fraction	0.0780	ВJ	0.0228	0.100	0.105	1	10/20/2019 23:02	WG1365550	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		10/20/2019 23:02	WG1365550	7 G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	J3	0.000421	0.00100	0.00105	1	10/22/2019 01:23	WG1366783
Toluene	U	<u>J3</u>	0.00132	0.00500	0.00526	1	10/22/2019 01:23	WG1366783
Ethylbenzene	U	<u>J3</u>	0.000558	0.00250	0.00263	1	10/22/2019 01:23	WG1366783
Total Xylenes	U	<u>J3</u>	0.00503	0.00650	0.00684	1	10/22/2019 01:23	WG1366783
(S) Toluene-d8	107				75.0-131		10/22/2019 01:23	WG1366783
(S) 4-Bromofluorobenzene	99.4				67.0-138		10/22/2019 01:23	WG1366783
(S) 1,2-Dichloroethane-d4	88.5				70.0-130		10/22/2019 01:23	WG1366783

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.21	1	10/19/2019 13:06	WG1365515
C28-C40 Oil Range	U		0.289	4.00	4.21	1	10/19/2019 13:06	WG1365515
(S) o-Terphenyl	69.3				18.0-148		10/19/2019 13:06	WG1365515

SDG: L1150137

SAMPLE RESULTS - 13 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

	-						Cn	Т
	Res	ult <u>Q</u> i	ualifier Dil	lution	Analysis	Batch	Cp	l
Analyte	%				date / time		2	i
Total Solids	91.0		1		10/23/2019 14:00	WG1367018	⁻Tc	l

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	42.9	В	0.874	10.0	11.0	1	10/18/2019 01:35	WG1364664
Volatile Organic Com		-			MOL (dra)	Dilution	Analysis	Datab
Volatile Organic Com	Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1365589

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry)	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry)	Dilution	Analysis date / time	Batch	6
TPH (GC/FID) Low Fraction	mg/kg		0.0238	0.100	mg/kg 0.110	1	10/20/2019 04:09	WG1365589	Q
(S) a,a,a-Trifluorotoluene(FID)	99.0		0.0230	0.100	77.0-120	I	10/20/2019 04:09	WG1365589	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000439	0.00100	0.00110	1	10/24/2019 13:38	WG1368147
Toluene	U		0.00137	0.00500	0.00549	1	10/24/2019 13:38	WG1368147
Ethylbenzene	U		0.000582	0.00250	0.00275	1	10/24/2019 13:38	WG1368147
Total Xylenes	U		0.00525	0.00650	0.00714	1	10/24/2019 13:38	WG1368147
(S) Toluene-d8	96.7				75.0-131		10/24/2019 13:38	WG1368147
(S) 4-Bromofluorobenzene	95.5				67.0-138		10/24/2019 13:38	WG1368147
(S) 1,2-Dichloroethane-d4	131	<u>J1</u>			70.0-130		10/24/2019 13:38	WG1368147

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.00	4.39	1	10/19/2019 13:32	WG1365515
C28-C40 Oil Range	U		0.301	4.00	4.39	1	10/19/2019 13:32	WG1365515
(S) o-Terphenyl	76.2				18.0-148		10/19/2019 13:32	WG1365515

SDG: L1150137

SAMPLE RESULTS - 14 L1150137

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.5		1	10/23/2019 14:00	WG1367018	Тс

Wet Chemistry by Method 300.0

Wet Chemistry by Metho	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	47.7		0.860	10.0	10.8	1	10/20/2019 18:09	WG1365616	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	10/20/2019 04:30	WG1365589	
(S) a,a,a-Trifluorotoluene(FID)	99.3				77.0-120		10/20/2019 04:30	WG1365589	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch Analyte mg/kg mg/kg mg/kg mg/kg date / time date / time date / time date / time MGL (dry) Dilution Analysis Batch MGL (dry) Malysis Mal									
Benzene U 0.000432 0.00100 0.00108 1 10/24/2019 13:57 WG1368147 Toluene U 0.00135 0.00500 0.00541 1 10/24/2019 13:57 WG1368147 Ethylbenzene U 0.000573 0.00250 0.00270 1 10/24/2019 13:57 WG1368147 Total Xylenes U 0.00517 0.00650 0.00703 1 10/24/2019 13:57 WG1368147 (S) Toluene-d8 95.1 F 75.0-131 10/24/2019 13:57 WG1368147 (S) 4-Bromofluorobenzene 95.3 F 67.0-138 10/24/2019 13:57 WG1368147		Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Toluene U 0.00135 0.00500 0.00541 1 10/24/2019 13:57 WG1368147 Ethylbenzene U 0.000573 0.00250 0.00270 1 10/24/2019 13:57 WG1368147 Total Xylenes U 0.00517 0.00650 0.00703 1 10/24/2019 13:57 WG1368147 (S) Toluene-d8 95.1 75.0-131 10/24/2019 13:57 WG1368147 (S) 4-Bromofluorobenzene 95.3 67.0-138 10/24/2019 13:57 WG1368147	Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Ethylbenzene U 0.000573 0.00250 0.00270 1 10/24/2019 13:57 WG1368147 Total Xylenes U 0.00517 0.00650 0.00703 1 10/24/2019 13:57 WG1368147 (S) Toluene-d8 95.1 F 75.0-131 10/24/2019 13:57 WG1368147 (S) 4-Bromofluorobenzene 95.3 F 67.0-138 10/24/2019 13:57 WG1368147	Benzene	U		0.000432	0.00100	0.00108	1	10/24/2019 13:57	WG1368147
Total Xylenes U 0.00517 0.00650 0.00703 1 10/24/2019 13:57 WG1368147 (S) Toluene-d8 95.1 75.0-131 10/24/2019 13:57 WG1368147 (S) 4-Bromofluorobenzene 95.3 67.0-138 10/24/2019 13:57 WG1368147	Toluene	U		0.00135	0.00500	0.00541	1	10/24/2019 13:57	WG1368147
(S) Toluene-d8 95.1 75.0-131 10/24/2019 13:57 WG1368147 (S) 4-Bromofluorobenzene 95.3 67.0-138 10/24/2019 13:57 WG1368147	Ethylbenzene	U		0.000573	0.00250	0.00270	1	10/24/2019 13:57	WG1368147
(S) 4-Bromofluorobenzene 95.3 67.0-138 10/24/2019 13:57 WG1368147	Total Xylenes	U		0.00517	0.00650	0.00703	1	10/24/2019 13:57	WG1368147
	(S) Toluene-d8	95.1				75.0-131		10/24/2019 13:57	WG1368147
(S) 1,2-Dichloroethane-d4 132 J1 70.0-130 10/24/2019 13:57 WG1368147	(S) 4-Bromofluorobenzene	95.3				67.0-138		10/24/2019 13:57	WG1368147
	(S) 1,2-Dichloroethane-d4	132	<u>J1</u>			70.0-130		10/24/2019 13:57	WG1368147

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.00	4.32	1	10/19/2019 13:19	WG1365515
C28-C40 Oil Range	U		0.296	4.00	4.32	1	10/19/2019 13:19	WG1365515
(S) o-Terphenyl	66.7				18.0-148		10/19/2019 13:19	WG1365515

SAMPLE RESULTS - 15 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	ìn
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	_
Total Solids	89.5		1	10/23/2019 14:00	WG1367018	T	Ċ

Wet Chemistry by Method 300.0

Wet Chemistry by Meth	od 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	53.2		0.889	10.0	11.2	1	10/20/2019 18:18	WG1365616	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ G
TPH (GC/FID) Low Fraction	U		0.0243	0.100	0.112	1	10/20/2019 04:52	WG1365589	
(S) a,a,a-Trifluorotoluene(FID)	98.9				77.0-120		10/20/2019 04:52	WG1365589	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000447	0.00100	0.00112	1	10/24/2019 14:16	WG1368147
Toluene	U		0.00140	0.00500	0.00559	1	10/24/2019 14:16	WG1368147
Ethylbenzene	U		0.000592	0.00250	0.00279	1	10/24/2019 14:16	WG1368147
Total Xylenes	U		0.00534	0.00650	0.00726	1	10/24/2019 14:16	WG1368147
(S) Toluene-d8	95.4				75.0-131		10/24/2019 14:16	WG1368147
(S) 4-Bromofluorobenzene	94.9				67.0-138		10/24/2019 14:16	WG1368147
(S) 1,2-Dichloroethane-d4	134	<u>J1</u>			70.0-130		10/24/2019 14:16	WG1368147

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.00	4.47	1	10/19/2019 13:45	WG1365515
C28-C40 Oil Range	0.562	J	0.306	4.00	4.47	1	10/19/2019 13:45	WG1365515
(S) o-Terphenyl	79.9				18.0-148		10/19/2019 13:45	WG1365515

SDG: L1150137

DATE/TIME: 10/24/19 21:42

PAGE: 22 of 46

SAMPLE RESULTS - 16 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	ⁿ
	Result	Qualifier	Dilution	Analysis	Batch		-h
Analyte	%			date / time		2	_
Total Solids	95.2		1	10/23/2019 14:00	WG1367018	T	C

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	66.4		0.835	10.0	10.5	1	10/20/2019 18:27	WG1365616	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	U		0.0228	0.100	0.105	1	10/20/2019 05:13	WG1365589	
(S) a,a,a-Trifluorotoluene(FID)	99.7				77.0-120		10/20/2019 05:13	WG1365589	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	10/24/2019 14:35	WG1368147
Toluene	U		0.00131	0.00500	0.00525	1	10/24/2019 14:35	WG1368147
Ethylbenzene	U		0.000557	0.00250	0.00263	1	10/24/2019 14:35	WG1368147
Total Xylenes	U		0.00502	0.00650	0.00683	1	10/24/2019 14:35	WG1368147
(S) Toluene-d8	97.5				75.0-131		10/24/2019 14:35	WG1368147
(S) 4-Bromofluorobenzene	97.5				67.0-138		10/24/2019 14:35	WG1368147
(S) 1,2-Dichloroethane-d4	134	<u>J1</u>			70.0-130		10/24/2019 14:35	WG1368147

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.00	4.20	1	10/19/2019 16:53	WG1365703
C28-C40 Oil Range	U		0.288	4.00	4.20	1	10/19/2019 16:53	WG1365703
(S) o-Terphenyl	65.2				18.0-148		10/19/2019 16:53	WG1365703

SDG: L1150137

SAMPLE RESULTS - 17 L1150137

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	ìn
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	
Total Solids	94.8		1	10/23/2019 14:00	WG1367018	T	Ċ

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		- ⁴ Cn
Chloride	200		0.839	10.0	10.6	1	10/20/2019 18:37	WG1365616	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		°C
TPH (GC/FID) Low Fraction	0.0323	ВJ	0.0229	0.100	0.106	1	10/20/2019 13:47	WG1365978	
(S) a,a,a-Trifluorotoluene(FID)	94.5				77.0-120		10/20/2019 13:47	WG1365978	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quamer	mg/kg	mg/kg	mg/kg	2.10101	date / time	<u></u>
Benzene	U		0.000422	0.00100	0.00106	1	10/24/2019 14:54	WG1368147
Toluene	U		0.00132	0.00500	0.00528	1	10/24/2019 14:54	WG1368147
Ethylbenzene	U		0.000559	0.00250	0.00264	1	10/24/2019 14:54	WG1368147
Total Xylenes	U		0.00504	0.00650	0.00686	1	10/24/2019 14:54	WG1368147
(S) Toluene-d8	95.8				75.0-131		10/24/2019 14:54	WG1368147
(S) 4-Bromofluorobenzene	94.3				67.0-138		10/24/2019 14:54	WG1368147
(S) 1,2-Dichloroethane-d4	135	<u>J1</u>			70.0-130		10/24/2019 14:54	WG1368147

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.22	1	10/19/2019 17:06	WG1365703
C28-C40 Oil Range	0.293	J	0.289	4.00	4.22	1	10/19/2019 17:06	WG1365703
(S) o-Terphenyl	66.9				18.0-148		10/19/2019 17:06	WG1365703

SDG: L1150137

SAMPLE RESULTS - 18 L1150137

°Sc

Total Solids by Method 2540 G-2011

						I'C	ìn
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	_
Total Solids	98.2		1	10/23/2019 14:00	WG1367018	T	Ċ

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cn
Chloride	76.0		0.810	10.0	10.2	1	10/20/2019 18:46	WG1365616	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0298	ВJ	0.0221	0.100	0.102	1	10/20/2019 14:07	WG1365978
(S) a,a,a-Trifluorotoluene(FID)	94.0				77.0-120		10/20/2019 14:07	WG1365978

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000407	0.00100	0.00102	1	10/23/2019 23:09	WG1368190
Toluene	U		0.00127	0.00500	0.00509	1	10/23/2019 23:09	WG1368190
Ethylbenzene	U		0.000540	0.00250	0.00255	1	10/23/2019 23:09	WG1368190
Total Xylenes	U		0.00487	0.00650	0.00662	1	10/23/2019 23:09	WG1368190
(S) Toluene-d8	106				75.0-131		10/23/2019 23:09	WG1368190
(S) 4-Bromofluorobenzene	98.2				67.0-138		10/23/2019 23:09	WG1368190
(S) 1,2-Dichloroethane-d4	97.6				70.0-130		10/23/2019 23:09	WG1368190

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.00	4.07	1	10/19/2019 17:19	WG1365703
C28-C40 Oil Range	U		0.279	4.00	4.07	1	10/19/2019 17:19	WG1365703
(S) o-Terphenyl	64.8				18.0-148		10/19/2019 17:19	WG1365703

SDG: L1150137

Rece	ived (by OCD	: 11	/ <mark>8/202</mark> .	10	:05	54 ن	P 0	ိုင္လ	ر م	5	$\overline{\mathtt{P}}_{_{\scriptscriptstyle (S)}}$		Page 280 of 348	8
ONE LAB. NATIONWIDE.										_				PAGE:	26 of 46
														DATE/TIME:	10/24/19 21:42
LITY CONTROL SUMMARY 1150137-01.02.03.04.05.06.07.08.09.10							DUP RPD Limits							So	L1150137
QUALITY CONTROL 11150137-01.02.03.04.05.06.							DUP Qualifier UUP Limit	%	10			ts LCS Qualifier		PROJECT:	212C-MD-01491
)L MB RDL			DUP)	51.13	n DUP RPD	%	0.126			ec. Rec. Limits %	85.0-115		21
		MB MC %			licate (1/23/19	Dilutio		-			LCS Rec. %	100		
110		MB Qualifier		((OS) • Dup	K3464628-3 1	It DUP Result	%	94.7	-CS)		t LCS Result %	50.0		ch
17 lethod 2540 G-20	(MB)	0/23/19 14:13 MB Result %	0.000		riginal Sample	1/23/19 14:13 • (DUP)	Original Resu	%	94.8	ntrol Sample (I	10/23/19 14:13	Spike Amount %	50.0	ACCOUNT:	ConocoPhillips - Tetra Tech
WG13670	Method Blank	0 MB R3464628-1 10/23/19 14:13 MB Result MB Qualifier MB MDL MB Malvte % %	Total Solids	10/31	2011150137-01 Or	01. 10-/2104117 (SO)2	:02	S. Analyte	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3464628-2 10/23/19 14:13	Analyte	Total Solids		CO

Rece	ived (by OC		11/8/	/2021	10:	95:5 נה	4_P ഗ	° G		ō	P		ိ လ လ						P	age 2	281 (of 3	48
ONE LAB. NATIONWIDE.																								PAGE: 27 of 46
																								DATE/TIME: 10/24/19 21:42
ΓΥ CONTROL SUMMARΥ <u> 1150137-11,12,13,14,15,16,17,18</u>																								SDG: 11150137
QUALITY CONTROL 11150137-11.12.13.14.15.1							DUP Qualifier DUP RPD		10			s LCS Qualifier												PROJECT: 212C-MD-01491
0		MB MDL MB RDL	%			9 14:00	Dilution DUP RPD	%	0.349			LCS Rec. Rec. Limits		611-0.05 611-0.05										- 110
11		Qualifier			OS) - Dunlicat	R3464621-3 10/23/1	t DUP Result Dil	%	94.6 1	CS)		LCS Result		0.00										
8 sthod 2540 G-20	(MB)	23/19 14:00 MB Result	%	0.00100	oloal Samolo (23/19 14:00 • (DUP)	Original Resul	%	95.0	L) aldmble (L	1/23/19 14:00	Spike Amount	% 200	0.06										ACCOUNT: ConocoPhillips - Tetra Tech
WG1367018	pMethod Blank ((MB) R3464621-1 10/:	Analyte	Total Solids	2/11/2/20137-12 Original Samula (OS) • Dunlicata (DHD)	COS) L1150137-12 10/2	3:0	2005 2005	W ^T otal Solids	Laboratory Control Sample (LCS)	(LCS) R3464621-2 10/23/19 14:00		Andiyte	1 01d1 501105										Con

WG1364664			ğ	QUALITY 11150137-01	ALITY CONTROL SUMMA 11150137-01.02.03.04.05.06.07.08.09.10.11.12.13	DL SUMMARY	ARY 13		ONE LAB. NATIONWIDE.		Reco
:thod Blank (MB)							l			-	vived (
0 (MB) R3462290-1 10/17/19 20:49 MB Result Manalyte mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg							1	by OCD:
ride 4.71	-1	0.795	10.0								11/
1150129-40 Original Sample (OS) • Duplicate (DUP)	e (OS) • Du	plicate (DUF	(ν 4	8/2021
11 1150129-40 10/17/19 21·56 • (DI I	5-002290-3	10/17/19 22:06									10:
O.:00:23-40 IOUINE 21.00 (UV) Original Re (dry) Malakte	Dury Not 2000 Original Result DUP Result (dry) (dry) (dry)	Dilution DUP RPD	RPD	DUP Qualifier	DUP RPD Limits %					۵ ا	05:54_P
	43.5	1 31.6	۳ ۳		50					U	M C W
L1150137-13 Original Sample (OS) • Duplicate (DUP)	e (OS) • Dup	licate (DUP)									0
(OS) L1150137-13 10/18/19 01:35 • (DUP) R3462290-6 10/18/19 01:45) R3462290-6	10/18/19 01:45									;
Original Re (dry)	Original Result DUP Result (dry) (dry)	Dilution DUP RPD		DUP Qualifier	DUP RPD Limits					0	A
Analyte mg/kg	mg/kg	%		6	%						
Chloride 42.9	41.9	1 2.37	7	(7	20					o	°SC
Laboratory Control Sample (LCS)	(LCS)										
(LCS) R3462290-2 10/17/19 20:58											
		LCS Rec.	Rec. Limits	LCS Qualifier	ы.						
Analyte mg/kg	mg/kg	%	%								
Chloride 200 212 106 90.0-110 1 11E.0127 07 Original Samula (OSV - Matrix Sailo, 106) - Matrix Sailo Dualicato (MSD)	212	106 105 100	90.0-110								
L1130137-07 01191141 Заптріє (ОЗ) • Мації Зрікє (МЗ) • Мації Зрікє Паріїса (05) L1150137-07 10/18/19 00:00 • (МЗ) R3462290-4 10/18/19 00:10 • (МЗD) R3462290-5 10/18/19 00:19) R3462290-4	10/18/19 00:10 • (I	(MSD) R3462	290-5 10/18/19	00:19						
Spike Amount (dry)	Int Original Resi (dry)	Original Result MS Result (dry) (dry)) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution Rec. Limits	ts MS Qualifier	MSD Qualifier RPD	RPD Limits		
Analyte mg/kg	mg/kg	mg/kg	mg/kg	%	%	%		%	%		
Chloride 534	80.7	629	606	103	98 86	1 80.0-120		3.76	20		1
											Page 282 oj
ACCOUNT: ConocoPhillips - Tetra Tech	ech		PR 212C	PROJECT: 212C-MD-01491		SDG : L1150137		DATE/TIME: 10/24/19 21:42	2 2	PAGE: 28 of 46	f 348

WG1365616			Ø	QUALITY		CONTROL SUMMARY L1150137-14,15,16,17,18	MARY			ONE LAB. N	ONE LAB. NATIONWIDE.
o (MB) R3463039-1 10/20/19 16:50 MB Result	MB Qualifier	MB MDL	MB RDL								
пу/кд 3.42	ا ر	0.795	тту/кд 10.0								
nple	20 201150393-01 Original Sample (OS) • Duplicate (DUP)	ilicate (DUF	(c								
(DUP)) R3463039-3	10/20/19 19:53									<u>ø:0</u>
al Result	Original Result DUP Result (dry) (dry)	Dilution DUP RPD		DUP Qualifier L	DUP RPD Limits						
mg/kg	mg/kg	%		05	%						
	1180	5 2.83	ŝ		20						°
nple (L1151537-01 Original Sample (OS) • Duplicate (DUP)	icate (DUP									
(UUP)	(OS) L1151537-01 10/20/19 22:25 • (DUP) R3463039-6 10/20/19 22:35	10/20/19 22:35	10								
inal Result	Original Result DUP Result	Dilution DUP RPD		DUP Qualifier L	DUP RPD Limits						
mg/kg	mg/kg	%		~	%						
	913	1 10.2	.2	(7	20						SC
l aboratory Control Samula (LCC)											_
1 CS D3463036 2 10/20/16 12:00	(~~-										
Spike Amount	t LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
mg/kg	mg/kg	%	%								
	207	104	90.0-110								
imple	L1150393-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike	trix Spike (I	MS) • Mat	:rix Spike D	Duplicate (MSD)	SD)					
03 • (MS)) R3463039-4	10/20/19 20:12	· • (MSD) R34	(OS) L1150393-05 10/20/19 20:03 • (MS) R3463039-4 10/20/19 20:12 • (MSD) R3463039-5 10/20/19 20:22	0/19 20:22						
Spike Amount (dry)		Original Result MS Result (dry) MSD Result (dry) (dry)	y) MSD Result (dry)	t MS Rec.	MSD Rec.	Dilution Rec.	Rec. Limits MS Qualifier	er MSD Qualifier	ier RPD	RPD Limits	
mg/kg		mg/kg	mg/kg	%	%	%			%	%	
	6270	6260	6550	0000	47.9	1 80.0-120	120 <u>E V</u>	≥]	4.51	20	
ACCOUNT:			۵.	PROJECT:		SDG:		7Q	DATE/TIME:		PAGE:
ConocoPhillips - Tetra Tech	ch		2120	212C-MD-01491		L1150137		10/2	10/24/19 21:42		29 of 46

	-
	Volatilo Organic Compounde
0	5
ũ	Ċ
വ	
D	2
Ö	2
∞	C
_	2
Ù	:- + 0
\geq	0
Re	ĺ

Method Blank (MB) Method Blank (MB) <thmethod (mb)<="" blank="" th=""> Method Blank (MB)</thmethod>	WG1365550	ds (GC) by Metho	od 8015D/GRO	gr	QUALITY CONTROL SUMMARY 11150137-01.02.03.04.05.06.07.08.09.10.11.12	ONE LAB. NATIONWIDE.
It MB Qualifier MB MDL MB RDL J 0.0217 0.0217 0.100 J 0.0217 0.100 T7.0-120 77.0-120 cut ICS f 10 f 2.45 g 12.0-121 i 10.12	MB)					
It MBOundinities mg/kg MB RDL J 0.0217 0.100 J 0.0217 0.100 J 0.0217 0.100 Result 77.0-120 77.0-120 Nount LCSS LCS Loss Y.7.0-120 Y.7.0-120 Nount LCSResult LCSResult 5.45 991 7.0-120 103 7.0-120 103	10/20/19 14:10	0				
mg/kg mg/kg J 0.0217 0.0017 0.0217 0.001 0.001 77.0-120 77.0-120 77.0-120 nount LCS Result Rec. Limits mg/kg % % 5.45 99:1 72.0-120 5.45 99:1 72.0-120	MB	Ŧ		MB RDL		
J 0.0017 0.100 77.0-120 77.0-120 ce (LCS) e (LCS) ount LCS Result LCS Result LCS Result S-45 99.1 5.45 99.1 7.0-120	//gm	٢ġ	mg/kg	mg/kg		
e (LCS) 77.0-120 ount LCS Result LCS Result nont LCS Result LCS Coulifier mg/kg % % 5.45 99.1 72.0-127 13 77.0-120 77.0-120	iction 0.07		0.0217	0.100		
Sample (LCS) 913:09 Spike Amount LCS Result LCS Res. Res. Limits LCS Qualifier mg/kg mg/kg 5.0 5.45 9.1 72.0-127 103 77.0-120	∋(FID) 106			77.0-120		
Result LCS Rec. Rec. Limits LCS Qualifier kg % % % 5 99.1 72.0-127 6 703 77.0-120 77.0-120 7						
 c Result LCS Rec. Rec. Limits LCS Qualifier kg % % 99.1 72.0-127 103 77.0-120 	ontrol San	nple (LCS)				
mount LCS Result LCS Qualifier mg/kg % % 5.45 99.1 72.0-127 103 77.0-120 77	1 10/20/19 13:0	60				
mg/kg mg/kg % % 5.50 5.45 99.1 72.0-127 103 77.0-120	Spik	e Amount LCS Resu		Rec. Limits	LCS Qualifier	
5.50 5.45 99.1 72.0-127 103 77.0-120	mg/ł		%	%		
103 77.0-120			99.1	72.0-127		
	e(FID)		103	77.0-120		

L1150129-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150129-29 10/20/19 17:25 • (MS) R3463029-3 10/20/19 23:24 • (MSD) R3463029-4 10/20/19 23:46

				000.001000	0.010.01	001						
	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.69	0.0784	1.22	2.19	20.1	37.2	-	10.0-151		С Г	57.0	28
(S) a,a,a-Trifluorotoluene(FID)					101	90.9		77.0-120				

Sc

∢

•

DATE/TIME: 10/24/19 21:42

30 of 46 PAGE

	τ
	-
σ	5
∞	
വ	
വ	Organic
Q	2
∞	C
	_
Ċ	/ atila
2	-
	2
Re	el

((

WG1365589				QU	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
Olatile Organic Compounds (GC) by Method 8015D/GRO	ounds (GC) b	y Method 80	15D/GRO		L1150137-13,14,15,16		ce
possi Method Blank (MB)							ived (
(MB) R3463765-2 10/19/19 20:48) 20:48						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C
Analyte	mg/kg		mg/kg	mg/kg			
🙀 TPH (GC/FID) Low Fraction	n		0.0217	0.100			11
(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	100			77.0-120			/ <mark>8/2</mark> 0
1/202							21 <u>16</u>
Claboratory Control Sample (LCS)	Sample (LC	CS)					2:05 :
CLCS) R3463765-1 10/19/19 19:38	9 19:38						54 ن
:08	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		_P 7
Analyte	mg/kg	mg/kg	%	%			<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	5.14	93.5	72.0-127			ğ
(S) a, a, a-Trifluorotoluene(FID)			102	77.0-120			
							ס

L1150129-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150129-07 10/19/19 23:42 • (MS) R3463765-3 10/20/19 05:33 • (MSD) R3463765-4 10/20/19 05:54

	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	575	46.3	589	602	94.3	96.5	100	10.0-151			2.11	28
(S) a, a, a-Trifluorotoluene(FID)					108	109		77.0-120				

SC

₹

PAGE: 31 of 46

	(C) (C)
00	:ompounds
597	Janic C
3136	tile Org
$\mathbb{R}^{\mathbb{R}}$	Volat

WG1365978				ОØ	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
alvolatile Organic Com	pounds (GC) b	y Method 8(015D/GRO		L1150137-17,18		cei
period Blank (MB)	3)						ved
(MB) R3463260-3 10/20	/19 10:59						by (
MB Result	MB Result	MB Qualifier	MB MDL	MB RDL			0 <i>C</i>
Analyte	mg/kg		mg/kg	mg/kg			D: ⊢
TPH (GC/FID) Low Fraction	0.0244	⊐ 1	0.0217	0.100			11
701 (S) 20.a.a.Trifluorotoluene(FID)	95.2			77.0-120			/ <mark>8/20</mark>
1/20.							21 1
22 22 22 22 22 22 22 22 22 22 22 22 22	ol Sample (LC	CS)					0:0 5
C(LCS) R3463260-2 10/20/19 09:56	0/19 09:56						54
:08	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		_P
Analyte	mg/kg	mg/kg	%	%			1
TPH (GC/FID) Low Fraction	5.50	4.76	86.5	72.0-127			ğ
101							

SC

Ū

77.0-120

106

(S) a, a, a-Trifluorotoluene(FID)

<u>ک</u>

PAGE: 32 of 46

DATE/TIME: 10/24/19 21:42

•

О	(
N	
Q	
Q	
$^{\circ}$	(
Ċ	
\leq	
\leq	,
Re	2

QUALITY CONTROL SUMMARY

d 8260B	
Metho	
by	
(GC/MS)	
nic Compounds	
Organic	
Volatile	as

WG1366257				QUALITY CONTROL SUMMARY	
alvolatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/MS) by Method	d 8260B	L1150137-01,02,03	cei
pMethod Blank (MB)					ved (
(MB) R3463366-3 10/20/19 21:29	0.21:29				by (
ma	÷	MB Qualifier	MB MDL	MB RDL	0 C .
Analyte	mg/kg		mg/kg	mg/kg	
Senzene	П		0.000400	0.00100	11
Ethylbenzene	N		0.000530	0.00250	/ <mark>8//4</mark>
oluene	N		0.00125	0.00500	302
Xylenes, Total	П		0.00478	0.00650	4
C (S) Toluene-d8	108			75.0-131	0:0
😯 (S) 4-Bromofluorobenzene	100			67.0-138	95:
(5) 1,2-Dichloroethane-d4	86.1			70.0-130	54_PM
Laboratory Control	Sample (LC	S) • Labor	atory Cont	🔾 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ိုင္လ

11 CSI R3463366-1 10/20/19 20:14 • (LCSD) R3463366-2 10/20/19 20:32

(LCS) K3463366-1 10/20/19 20:14 • (LCSU) K3463366-2 10/20/19 20:32	18 20:14 · (LCSD) K3463366-2	10/20/19 20:3.	7					
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Benzene	0.00500	0.00431	0.00434	86.2	86.8	70.0-123		0.694	20
Ethylbenzene	0.00500	0.00511	0.00549	102	110	74.0-126		7.17	20
Toluene	0.00500	0.00477	0.00505	95.4	101	75.0-121		5.70	20
Xylenes, Total	0.0150	0.0167	0.0171	111	114	72.0-127		2.37	20
(S) Toluene-d8				107	108	75.0-131			
(S) 4-Bromofluorobenzene				99.8	98.8	67.0-138			
(S) 1,2-Dichloroethane-d4				92.6	87.5	70.0-130			

Sc

Ū

∢

33 of 46 PAGE

∞
S
0
9
000
10
(ŋ
ž
2
- <u>n</u> e

QUALITY CONTROL SUMMARY

WG1366698	unds (GC/N	S) by Metho	d 8260B	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
per Method Blank (MB)						vived
(MB) R3463541-2 10/21/19 10:44	0:44					by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL		0C
Analyte	mg/kg		mg/kg	Dy/bu		
Senzene	П		0.000400	0.00100		11
0Ethylbenzene	П		0.000530	0.00250		/ <mark>8//</mark>
Joluene	П		0.00125	0.00500		302
Xylenes, Total	Π		0.00478	0.00650		4
55 (S) Toluene-d8	109			75.0-131		
😯 (S) 4-Bromofluorobenzene	101			67.0-138		95:
(5) 1,2-Dichloroethane-d4	83.6			70.0-130		54_PM

W Laboratory Control Sample (LCS)

ğ

(LCS) R3463541-1 10/21/19 09:48

ŗ	, D		~ 8	Ī	σ	SC			
	LCS Qualifier								
	Rec. Limits	%	70.0-123	74.0-126	75.0-121	72.0-127	75.0-131	67.0-138	70.0-130
	LCS Rec.	%	91.2	105	102	116	108	100	87.9
	LCS Result	mg/kg	0.114	0.131	0.127	0.435			
9 09:48	Spike Amount LCS Result	mg/kg	0.125	0.125	0.125	0.375			
(LCS) R3463541-1 10/21/19 09:48		Analyte	Benzene	Ethylbenzene	Toluene	Xylenes, Total	(S) Toluene-d8	(S) 4-Bromofluorobenzene	(S) 1,2-Dichloroethane-d4

L1149584-67 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1149584-67 10/21/19 19:58 • (MS) R3463541-3 10/21/19 17:48 • (MSD) R3463541-4 10/21/19 18:07

	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	25.0	ND	21.2	12.4	84.8	49.6	200	10.0-149		ЕГ	52.4	37
Ethylbenzene	25.0	35.8	61.8	55.1	104	77.2		10.0-160			11.5	38
Toluene	25.0	ND	24.9	15.5	9.66	62.0		10.0-156		ег С	46.5	38
Xylenes, Total	75.0	210	299	283	119	97.3		10.0-160			5.50	38
(S) Toluene-d8					100	112		75.0-131				
(S) 4-Bromofluorobenzene					103	011		67.0-138				
(S) 1,2-Dichloroethane-d4					90.1	88.9		70.0-130				

Sample Narrative:

OS: Target compounds too high to run at a lower dilution.

	PAGE:	34 of 46
	DATE/TIME:	10/24/19 21:42
	SDG:	L1150137
	PROJECT:	212C-MD-01491
	ACCOUNT:	ConocoPhillips - Tetra Tech

$^{\circ}$	
00	1
Q	
6	
$\overline{\mathbf{\omega}}$	
G	
\geq	
>	
Re	2

QUALITY CONTROL SUMMARY L1150137-06,07,08,09,10,11,12

WG1366783 Molatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/MS) b	y Method	8260B	QUALITY CONTROL SUMMARY	Rece
pose (MB)					eived (
(MB) R3463542-3 10/21/19	:	1			by O
MB Res MB Res mg/kg	sult	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg	
Benzene	Л		0.000400	0.00100	11
Ethylbenzene	П		0.000530	0.00250	/ <mark>8/</mark> /
I oluene	П		0.00125	0.00500	302
Vylenes, Total	П		0.00478	0.00650	4
S) Toluene-d8	108			75.0-131	0 :0
: (S) 4-Bromofluorobenzene	99.1			67.0-138	95:
(5) 1,2-Dichloroethane-d4	83.6			70.0-130	54_PM س
Laboratory Control	Sample (LCS)	• Labora	atory Cont	🔾 aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	စို

Ū

10/21/19 21:12	
R3463542-2	
0:54 • (LCSD)	
10/21/19 20:54	•
(LCS) R3463542-1 10/21/19 20:54 • (LCSD) R3463542-2 10/21/19 21:12	

		1 1 0 0 0 0 0								
	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
Benzene	0.125	0.104	0.106	83.2	84.8	70.0-123		1.90	20	
Ethylbenzene	0.125	0.129	0.128	103	102	74.0-126		0.778	20	
Toluene	0.125	0.121	0.122	96.8	97.6	75.0-121		0.823	20	
Xylenes, Total	0.375	0.413	0.437	110	117	72.0-127		5.65	20	
(S) Toluene-d8				107	108	75.0-131				
(S) 4-Bromofluorobenzene				101	110	67.0-138				
(S) 1, 2-Dichloroethane-d4				89.1	90.5	70.0-130				

SC

₹

L1150137-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150137-12 10/22/19 01:23 • (MS) R3463542-4 10/22/19 06:23 • (MSD) R3463542-5 10/22/19 06:42

	01/011/202100	10				1						
	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	N	0.0923	0.0566	70.2	43.0	.	10.0-149		<u>ول</u>	47.9	37
Ethylbenzene	0.132	N	0.111	0.0655	84.0	49.8	-	10.0-160		<u>ور</u>	51.2	38
Toluene	0.132	N	0.107	0.0645	81.6	49.0	, -	10.0-156		<u>ول</u>	49.8	38
Xylenes, Total	0.395	N	0.362	0.231	91.7	58.4	-	10.0-160		<u>ور</u>	44.4	38
(S) Toluene-d8					108	011		75.0-131				
(S) 4-Bromofluorobenzene					100	102		67.0-138				
(S) 1,2-Dichloroethane-d4					90.4	89.6		70.0-130				

35 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

	(
4	(
-	
∞	
$\mathbf{\omega}$	
10	
Q	
	(
$\mathbf{\omega}$	`
_	
Ċ	•
<u> </u>	
>	
\geq	
	1
Re	,]
- 10	

QUALITY CONTROL SUMMARY

Received by OCD: 11/8/202

1**0:**05:

54_P

ğ

 $\overline{\mathbb{O}}$

₹

Method Blank (MB)

				m		4			۵
	MB RDL	mg/kg	0.00100	0.00250	0.00500	0.00650	75.0-131	67.0-138	70.0-130
	MB MDL	mg/kg	0.000400	0.000530	0.00125	0.00478			
	MB Qualifier								
9 08:00	MB Result	mg/kg	Л	N	0.00165	N	95.3	95.6	121
(MB) R3464753-3 10/24/19	ma	Analyte mg/kg	Senzene	Ethylbenzene	Joluene	Xylenes, Total	(S) Toluene-d8	S) 4-Bromofluorobenzene	(5) 1,2-Dichloroethane-d4

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

07:03
10/24/19
R3464753-2
(LCSD)
06:45 •
10/24/19
R3464753-1
(LCS)

		1 00101010							
	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits L	CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%			%	%
Benzene	0.125	0.107	0.108	85.6	86.4	70.0-123		0.930	20
Ethylbenzene	0.125	0.113	0.105	90.4	84.0	74.0-126		7.34	20
Toluene	0.125	0.108	0.106	86.4	84.8	75.0-121		1.87	20
Xylenes, Total	0.375	0.352	0.350	93.9	93.3	72.0-127		0.570	20
(S) Toluene-d8				95.6	94.0	75.0-131			
(S) 4-Bromofluorobenzene				96.9	97.5	67.0-138			
(S) 1,2-Dichloroethane-d4				119	124	70.0-130			

SC

L1149492-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1149492-03 10/24/19 08:18 • (MS) R3464753-4 10/24/19 16:09 • (MSD) R34647	4/19 08:18 • (MS) R3464753-4	3464753-4 10/2	24/19 16:09 • (MSD) R3	ASD) R346475	753-5 10/24/19 16:28	6:28						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	ND	0.103	0.109	82.4	87.2	÷	10.0-149			5.66	37
Ethylbenzene	0.125	ND	0.0963	0.108	77.0	86.4	-	10.0-160			11.5	38
Toluene	0.125	ND	0.104	0.109	83.2	87.2	Ļ	10.0-156			4.69	38
Xylenes, Total	0.375	ND	0.327	0.354	87.2	94.4	-	10.0-160			7.93	38
(S) Toluene-d8					94.4	95.3		75.0-131				
(S) 4-Bromofluorobenzene					93.9	96.6		67.0-138				
(S) 1,2-Dichloroethane-d4					126	128		70.0-130				

36 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

0	
σ	1
$\sum_{i=1}^{n}$	
00	
ဖ	
$^{\circ}$	1
C	
>	
>	
Re	2

QUALITY CONTROL SUMMARY

WG1368190 Wolatile Organic Compounds (GC/MS) by Method 8260B	ounds (GC/M	IS) by Metho	d 8260B	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
pose (MB)						vived
MB) R3464397-2 10/23/19) 18:40					by O
MB Resu Banalyte mg/kg	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg		
Benzene			0.000400	0 0.00100		11
Ethylbenzene	П		0.000530	0 0.00250		/ <mark>8/</mark>
Induce of the second se	Π		0.00125	0.00500		302
Xylenes, Total			0.00478	0.00650	7	4
C (S) Toluene-d8	107			75.0-131		(@:)
😯 (S) 4-Bromofluorobenzene	97.6			67.0-138		95:
(5) 1,2-Dichloroethane-d4	91.6			70.0-130		54_PM
Laboratory Control Sample (LCS)	Sample (L(CS)				ိုလိ

	Rec. Limits
	LCS Rec.
	LCS Result
(LCS) R3464397-1 10/23/19 17:38	Spike Amount

						1
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Ū
Analyte	mg/kg mg/kg	mg/kg	%	%		
Benzene	0.125	0.125	100	70.0-123		~
Ethylbenzene	0.125	0.116	92.8	74.0-126		Ī
Toluene	0.125	0.110	88.0	75.0-121		σ
Xylenes, Total	0.375	0.305	81.3	72.0-127		လို
(S) Toluene-d8			103	75.0-131		
(S) 4-Bromofluorobenzene			99.2	67.0-138		
(S) 1, 2-Dichloroethane-d4			110	70.0-130		

L1150137-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1150137-18 10/23/19 23:09 • (MS) R3464397-3 10/24/19 02:16 • (MSD) R3464397-4 10/24/19 02:36

	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.127	Л	0.112	0.120	88.0	94.4	~	10.0-149			7.02	37
Ethylbenzene	0.127	N	0.107	0.117	84.0	92.0	~	10.0-160			9.09	38
Toluene	0.127	N	0.102	0.111	79.9	87.2	—	10.0-156			8.71	38
Xylenes, Total	0.382	N	0.275	0.303	72.0	79.5	~	10.0-160			9.86	38
(S) Toluene-d8					105	103		75.0-131				
(S) 4-Bromofluorobenzene					97.6	96.6		67.0-138				
(S) 1,2-Dichloroethane-d4					<i>99.9</i>	97.8		70.0-130				

37 of 46 PAGE:

10/24/19 21:42 DATE/TIME:

SDG: L1150137

	(
4	
õ	-
0	0
65	
130	-
$\overline{\Sigma}$	-
МG	
Re	Ì

WG1365094 Semi-Volatile Organic Compounds (GC) by Method 8015	Compounds	(GC) by Meth	hod 8015	QU	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
pMethod Blank (MB)	()						ived
(MB) R3462663-1 10/18/19 13:36	9 13:36						by o
	MB Result	MB Qualifier	MB MDL	MB RDL			0 C
Analyte	mg/kg		mg/kg	mg/kg			D:
C10-C28 Diesel Range	Э		1.61	4.00			11
C28-C40 Oil Range			0.274	4.00			/ <mark>8/</mark>
(S) o-Terphenyl	84.5			18.0-148			302
/201							1
							0: (
	I Sample (L(CS))5 ::
CLCS) R3462663-2 10/18/19 13:49	19 13:49						54 ທ
0.8	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		РМ
Analyte	mg/kg	mg/kg	%	%			ي م
C10-C28 Diesel Range	50.0	43.1	86.2	50.0-150			っ グ
(S) o-Terphenyl			105	18.0-148			
							Ū

L1150103-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1150103-20 10/18/19 21:39 • (MS) R3462663-3 10/18/19 21:52 • (MSD) R3462663-4 10/18/19 22:05	/19 21:39 • (MS) RE	3462663-3 10/18	3/19 21:52 • (MS	3D) R3462663	-4 10/18/19 22	:05						
	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		0	%	%
C10-C28 Diesel Range	50.1	n	44.5	44.6	88.9	88.0	-	50.0-150		0	0.231	20
(S) o-Terphenyl					108	105		18.0-148				

Sc

∢

•

38 of 46 PAGE

	(
	`
വ	
വ	(
വ	
Q	1
∞	
<u> </u>	,
G	
~	
\leq	,
Re	2

WG1365515 Semi-Volatile Organic Compounds (GC) by Method 8015	spunodwo	(GC) by Metl	hod 8015	QU	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Rece
period Blank (MB)							vived (
(MB) R3462800-1 10/19/19 09:30	09:30						by O
analyte	MB Result ma/ka	MB Qualifier	MB MUL ma/ka	MB RUL ma/ka			
C10-C28 Diesel Range	n n		1.61	4.00			11
C28-C40 Oil Range	n		0.274	4.00			/ 8/ /
(S) o-Terphenyl	88.3			18.0-148			302
/202							10
23: Laboratory Control Sample (LCS)	Sample (LC	CS)				[:05:
CLCS) R3462800-2 10/19/19 09:43	9 09:43						5 <u>4</u> م
98 .	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		РМ
Analyte	mg/kg	mg/kg	%	%			٢
C10-C28 Diesel Range	50.0	43.1	86.2	50.0-150			

9:05	5 <u>4</u>	PM	Lo Contraction of the second s		L	Ū
		LCS Qualifier				
		Rec. Limits	%	50.0-150	18.0-148	
		LCS Rec.	%	86.2	107	
CS)		Spike Amount LCS Result LCS Rec.	mg/kg	43.1		
I Sample (L	/19 09:43	Spike Amount	mg/kg	50.0		
22 S.L.aboratory Control Sample (LCS)	CLCS) R3462800-2 10/19/19 09:43	98.	Analyte	C10-C28 Diesel Range	(S) o-Terphenyl	

L1150129-35 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20	
	alifier RPD	%	5.87	
	er MSD Qualifier			
	MS Qualifier			
	n Rec. Limits	%	50.0-150	18.0-148
	Dilution		-	
9 10:21	MSD Rec.	%	83.2	91.7
800-4 10/19/	MS Rec.	%	88.1	96.7
(MSD) R3462	(dry) MSD Result	mg/kg	44.2	
0/19/19 10:08 ·	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	mg/kg	46.9	
3462800-3 1	Original Resul (dry)	mg/kg	П	
/19 09:56 • (MS) R	Spike Amount (dry)	mg/kg	53.2	
(OS) L1150129-35 10/19/19 09:56 • (MS) R3462800-3 10/19/19 10:08 • (MSD) R3462800-4 10/19/19 10:21		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

SC

∢

.

PAGE: 39 of 46

m
0
Ň
Ω
Q
\mathbf{O}
C
>
Re

CULALITY CONTROL SUMMARY

00/00019 MR				
Semi-Volatile Organic	Compounds	(GC) by Meth	10d 8015	L1150137-16,17,18
as				
Method Blank (MB)	()			
(MB) R3462886-1 10/19/19 16:27	9 16:27			
ma	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	n		1.61	4.00
C28-C40 Oil Range	Π		0.274	4.00
/202./201/202./202./202./202./202./202./	64.9			18.0-148
2		10		

_	
S	
Ц	
ر س	
ā	
E	
ŝ	
$\overline{0}$	
Itro	
Б	
()	
~	
2	
atory (
rato	
aboratory (

WG1365703	c Compounds	(GC) by Met	hod 8015	QU	QUALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Recei
powerhod Blank (MB)	3)						ived
(MB) R3462886-1 10/19/1	9 16:27						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0 C
analyte mg/kg	mg/kg		mg/kg	mg/kg			
👸 C10-C28 Diesel Range	Л		1.61	4.00			11
C28-C40 Oil Range	N		0.274	4.00			<mark>/8/</mark>
(S) o-Terphenyl	64.9			18.0-148			3021
202.							10 10
2: Laboratory Control Sample (LCS)	ol Sample (LC	S)					:05:
C(LCS) R3462886-2 10/19	/19 16:40						5 <u>4</u> ഗ
08.	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		РМ
Analyte	mg/kg	mg/kg	%	%			° م
C10-C28 Diesel Range	50.0	34.7	69.4	50.0-150) グ
(S) o-Terphenyl			61.9	18.0-148			-
							Ū

SC

,∞

•

PAGE: 40 of 46

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

PAGE: 41 of 46

GLOSSARY OF TERMS

Qualifier	Description
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

TIME: 9 21:42 PAGE: 42 of 46

Received by OCD: 11/8/2021 10:05:54 PACCREDITATIONS & LOCATIONS

Page 297 of 348 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

	10000	
Alabama	40660	Neb
Alaska	17-026	Nev
Arizona	AZ0612	Nev
Arkansas	88-0469	Nev
California	2932	Nev
Colorado	TN00003	Nev
Connecticut	PH-0197	Nor
Florida	E87487	Nor
Georgia	NELAP	Nor
Georgia ¹	923	Nor
Idaho	TN00003	Ohio
Illinois	200008	Okla
Indiana	C-TN-01	Ore
lowa	364	Pen
Kansas	E-10277	Rho
Kentucky 16	90010	Sou
Kentucky ²	16	Sou
Louisiana	AI30792	Ten
Louisiana 1	LA180010	Tex
Maine	TN0002	Tex
Maryland	324	Utal
Massachusetts	M-TN003	Veri
Michigan	9958	Virg
Minnesota	047-999-395	Was
Mississippi	TN00003	Wes
Missouri	340	Wise
Montana	CERT0086	Wyo

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

-			
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 10/31/2022 3:02:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01491

SDG: L1150137 DATE/TIME: 10/24/19 21:42

43 (

901 West Wall Street, Suite 100 901 West Wall Street, Suite 100 901 West Wall Street, Suite 100 Middand Texas 75701 Tai (4322) 682-3946 Fax (432) 682-3946 Fax (44) Fax (44) Fax (44) Fax (44) Fax (47) F

Tetra Tech. Inc. Tetra Tech. Inc. Tetra menuncular and the manager. Concoo Phillips Concoo Phillips Concertain and the manager. Concertain and the manager. Concoo Phillips Concoo Phillips Concertain and the manager. Concertain and the manager. Concoo Phillips Concoo Phillips Concertain and the manager. Concertain and the manager. Concoo Phillips Concoo Phillips Properts Concertain and the manager. Concertain and the manager. Meanuager. Lea County, New Mexico Properts Concertain and the meanuager. Concertain and the meanuager. Meanuager. Meanuager. Concertain and the meanuager. Concertain and the meanuager. Meanuager. Meanuager. Concertain and the meanuager. Concertain and the meanuager. Meanuager. Meanuager. Sampelle planter. Concertain and the meanuager. Meanuager. Meanuager. Sampelle planter. Concertain and the meanuager. Meanuager. Meanuager. Concertain and the meanuager. Concertain and the meanuager. Meanuager. Meanuager. Sampelle planter. Concertain and the meanuager. <						1 ILAN TON	Threat C.	10 100							- ಇನಿಂ -	4		
Coroo Prilips Control Prilips Christian Ludi COP Buck Fad CTB Lea County, New Moxico Private State Correlation Antractor Specify Method No. Unit Lea County, New Moxico Private State Correlation	F	Tetra Tech. Inc.			V 106	Nest Wall Midland, T Tel (432) Fax (432)	street, Su exas 7970 682-4559 682-3946	ite 100 1										相关的
COP Buck Fed CTB Lad County, New Mixtion Monter 212C-MID-01451 Lad County, New Mixtion Lad County, New Mixtion Uncounty New Mixtion Biol Lad County, New Mixtion Dial Lad County, New Mixtion Dion County, New Mixtion Dion Count	Client Name:	Conoco Phillips	Site Manager:		Christiar	1 Llull							ALYSI	HE :	DUEST	1.25日ウエンパク		
Lead County, New Moxico Poreta 2:2C-MD-O1491	Project Name:	COP Buck Fed CTB								-		d)		>	letho			
Macronal Stratelies	Project Location: (county, state)	Lea County, New Mexico	Project #:		212C	-MD-014	191					i Ansani Katalari Katalari		1				
Pace Analytical Sampler Signature Accord Analytical Sampler Signature Rece Analytical Gener samples if GRO-DPIO exceedes 100 mg/kg or if choroides exceeds 100 mg/kg or if choroides exce	Invoice to:									(O)						(tsil b	(1000 0	
Run deeper samples if GFO-LPFO exceeds 100 mg/kg or if chordes exceeds 50 mg/kg or if chordes exc	Receiving Laboratory:	Pace Analytical	Sampler Signa	ture:		X			_	- MF		iu an c	19 1. 19			edactie		-
SampLuci SampLuci Martini, Pression/Inter Restrontion Martini Pression/Inter Restrontion Martinter Restrontister Restrontion Martini Pressinte	Comments: Run de mg/kg	eeper samples if GRO+DRO exceeds 100 mg/kg or if b or if total BTEX exceeds 50 mg/kg or if chlorides excee	enzene excee ed 600 mg/kg.	ds 10	20	PTETR	4 Acctn.	mm				110.00		20C/625				1.000
SAMPLE IDENTIFICATION Constrained in the interview of the i			SAMP	LING	MATRIX	PRESER	VATIVE		(3T8)									
DATE TWE TWE <td>LAB #</td> <td>SAMPLE IDENTIFICATION</td> <td>YEAR: 2019</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8120</td> <td>D) MB</td> <td>pA slat</td> <td>selits</td> <td></td> <td></td> <td></td> <td>sting</td> <td>s8 noit</td> <td>110</td>	LAB #	SAMPLE IDENTIFICATION	YEAR: 2019						8120	D) MB	pA slat	selits				sting	s8 noit	110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LAB USE)		DATE	TIME		^E ONH			8 X3T8	108 H9T	teM listoT	TCLP Vo	A SW/DD	PCB's 80	leA) MJ9	Chloride	s: S)noinA	1091111
BH-19-3 (14' 15) 108/2019 1330 X	1/	BH-19-3 (9'- 10')	10/8/2019	1320	×	×		1	-	×	Sile Sile							
BH-19-4 (0'-1) 10/10/2019 140 X <thx< th=""> X <thx< th=""> X X X<td>12</td><td>BH-19-3 (14'- 15')</td><td>10/8/2019</td><td>1330</td><td>×</td><td>~</td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thx<></thx<>	12	BH-19-3 (14'- 15')	10/8/2019	1330	×	~				×								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	BH-19-4 (0'- 1')	10/10/2019	1400	×	~				×			N. Thy				1.53	
BH-19-4 (4-5) 10/10/2019 1415 X I N X X I I X X I I X <thx< th=""> X <thx< th=""> X X X<td>14</td><td>BH-19-4 (2'- 3')</td><td>10/10/2019</td><td>1410</td><td>×</td><td>×</td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td></thx<></thx<>	14	BH-19-4 (2'- 3')	10/10/2019	1410	×	×				×					~			
BH-19-4 (6'-7) 10/10/2019 1420 X	15	BH-19-4 (4'- 5')	10/10/2019	1415	×	×				×					~			
BH-19-4 (14 ⁻ 15) 10/10/2019 1440 X <	16	BH-19-4 (6'- 7')	10/10/2019	1420	×					×					<u> </u>			1212
BH-19-4 (14 ⁺ 15) 10/10/2019 1500	12	BH-19-4 (9'- 10')	10/10/2019	1440	×	<	C	1211		×					×			1000
Method Date: Time: Date: Time: Date: Time: Pageived by: Date: Time: Date: Time: Pageived by: Date: Time: Date: Time: Pageived by: Date: Time: Date: Time: Date: Time: Labude by: Date: Time: Date: Time: NUV Date: Time: Date: Time: Anthorized Date: Time: Date: Time: Pageived by: Date: Date: Time: Date: Time: Pageived by: Date: Pageived by: Date: Time: Date: Time: Date: Time: Pageived by: Pageived by: Date: Time: Time: Pageived by: Date: Time: Pageived by: Pageived by: Pageived by: Date: Time: Time: Date: Time: Pageived by: Pageived by: Pageived by: Pageived by: Date: Time: Time: Date: Time: Pageived by: Pageived by: Pageived by: Pageived by:	18	BH-19-4 (14'- 15')	10/10/2019	1500	×		~			×								
Date: Time: Bapeliyed by: Date: Time: LaB USE REMARKS: Dryl/pq Ut:a Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Date: Time: Sample Temperature																		-
Date: Time: Received by: Date: Time: Rush: Sample Temperature RUSH: Same Day 24 hr 48 hr Image: Date: Time: Image: Date: Time: Image:	Relinquished by:	Time:	Received by:	K		Date:	Time:	20%	-	LAB L	JSE	REMA	RKS: STANE	DARD			1	-
Date: Time: Received by: Date: Time: Date: Time:	Relinquished by:		Received by:			Date:	Time:		Sam	ple Temp	erature		RUSH:	Same Do	ay 24 hr		72 hr	
(Circle) HAND DELIVERED FEDEX UPS	Relinquished by:		Received by	W/ III	T	Date:	Time:	N.					Rush Ch Special F	arges Aut Report Lim	thorized hits or TRI	Repor	Ŧ	
					1				(Circ	cle) HAN	ID DELIV				racking #.			

Pace Analytical National Center for Testing & Innovation	ng & Innova	ation	
Cooler Receipt Form			
Client: CoptéTRA		1150137	1
Cooler Received/Opened On: 10/ 15/19 Temperature:	ature:	2.0	
Received By: Hailey Melson			
Signature: Nauluy UL			
	のないのないの		
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	L		
COC Signed / Accurate?		/	
Bottles arrive intact?		/	
Correct bottles used?	のないのないのである	6	
Sufficient volume sent?		(
If Applicable	「「「「「「「「」」」」	ないの	No. of Concession, Name
VOA Zero headspace?			
Preservation Correct / Checked?	のないのないのないのである	ないのである	Statistical States

Received by OCD: 11/8/2021 10:05:54 PM

.

APPENDIX D Waste Manifests

R360			Custor Custor Ordere AFE # PO #: Manife	mer #: CF ed by: JC est #: 1 Date: 11 	DE TYLER		E C C V V F F F F	Ficket #: Bid #: Date: Generator: Generator #: Vell Ser. #: Vell Name: Vell #: Field #: Rig: County	999908	58 009Z1 8 PHILLIPS PHILLIPS PHILLIPS PHILLIPS TERY	
Facility: CRI											
Product / Ser	vice	ier and	12 yet	1		Q	uantity Un	lits			
Contaminated	d Soil (R	CRA Exem	pt)				18.00 ya	ards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Ce	rtificatio	n Stateme	nt of Wa	ste Statu	S		1.33	Rectifier?	N.S.War		
I hereby certify 1988 regulatory X RCRA Exer RCRA Non characteristics e amended. The MSDS Info	determina mpt: Oil F n-Exempt: established following	tion, the ab ield wastes Oil field wa in RCRA r documentat	ove descr generated ste which egulations ion is atta	ibed waste from oil a is non-haz , 40 CFR 2 ched to der	is: nd gas explora ardous that do 261.21-261.24 monstrate the a	ntion and poes not exposed or listed habove-des	production o ceed the min azardous wa cribed waste	perations and himum standa aste as define e is non-hazar	l are not mix rds for waste d in 40 CFR dous. (Chec	ed with nor e hazardous , part 261, s k the appro	n-exempt wast by ubpart D, as priate items):
Driver/ Agent	Signatu	re		1.5	R360	Represe	ntative Sig	nature			
Customer Ap		(S) (regard		THIS	IS NOT	AN II	NVOIC	E! (4)		-	

Approved By: _____

Date: _____

.

Received by OCD: 11/8/2021 10:05	:54 PM						1	Page 303 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JENNI FORTU 2	ΝΑΤΟ		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-95155 06UJ9A00 11/13/201 CONOCO 999908 BUCK CE TANK BAT	009Z1 8 PHILLIPS Qdera NTRAL NTRAL ITERY	
Facility: CRI								
Product / Service			Q	uantity U	nits	100	-	
Contaminated Soil (RCRA Exem	ot)			20.00	yards			
Cell pH	CI Con	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval		5/1
	THIS IS NOT AN INVOICE	
Approved By:	Date:	

Lab Analysis: 50/51

Received by OCD: 11/8/2021 10:05	:54 PM			Page 3	04 of 348
R360	Customer: Customer #: Ordered by: AFE #: PO #:	CONOCOPHILLIPS CRI2190 JOE TYLER	Ticket #: Bid #: Date: Generator: Generator #:	700-951602 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS	
ENVIRONMENTAL SOLUTIONS	Manifest #: Manif. Date:	3 11/13/2018	Well Ser. #: Well Name:	999908 BUCK FEDERAL CENTRA	
Permian Basin	Hauler: Driver Truck #	MCNABB PARTNERS JR M82	Well #: Field: Field #:	4. 	STB
	Card # Job Ref #		Rig: County	NON-DRILLING LEA (NM)	
Facility: CRI					
Product / Service		Qu	antity Units	and a start of	

Product / Ser	vice					Q	uantity Uni	ts			
Contaminated	CRA Exe	mpt)									
	Cell	рН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis.	50/51	0.00	0.00	0.00	0						

1 hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information RCRA Hazardous Waste Analysis Process Knowledge Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
	NA
Customer Approval	
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by O	CD: 11/8/	/2021 10:0:	5:54 PM								Page 305 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin		Customer: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JOE TY,LER AFE #: PO #: Manifest #: 4 Manif. Date: 11/13/2018 Hauler: MCNABB PARTNERS Driver GUMBER Truck # M32 Card # Job Ref #					Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-951601 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 4: 999908			
Facility: CRI			00011								
Product / Serv	/ice					Q	uantity U	nits			
Contaminated			(tai				18.00				
Containinator	Cell	pН	CI	Cond	%Solids	TDS	PCI/GM		H2S	% Oil	Weight
Lab Analysis.		0.00	0.00	0.00		100				tra Service	
Generator Ce	rtificatio	n Stateme	nt of Wa	aste Stat	us	1000			ar dans	2 Per	
_ RCRA Non characteristics e amended. The f	determina mpt: Oil F -Exempt: stablished following	ation, the ab field wastes Oil field wa in RCRA r documentat	ove descr generated aste which egulation ion is atta	ibed was from oil is non-h s, 40 CFR iched to d	te is: and gas explora azardous that do 261.21-261.24	ation and p bes not exe or listed h above-des	production ceed the mi azardous w cribed was	operations an inimum standa vaste as define te is non-haza	d are not min ards for wast ed in 40 CFR rdous. (Cheo	xed with no e hazardou , part 261, s ck the appro	n-exempt wast s by subpart D, as opriate items):
Driver/ Agent	Signatu	re			R360 I	Represe	ntative Si	gnature	31.00		

THIS IS NOT AN INVOICE!

Approved By: _____

Customer Approval

Date: _____

Ce

.

Received by OCD: 11/8/2021 10:05		Customer: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JOE TYLER AFE #: PO #: Manifest #: 5 Manif. Date: 11/13/2018 Hauler: MCNABB PARTNERS Driver JR Truck # M82 Card # Job Ref #			B G G V V V F F F F	Ticket #: Bid #: Date: Generator: Generator #: Vell Ser. #: Vell Name: Vell Name: Tield #: Tield #: Rig: County	700-951680 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 999908				
Facility: CRI											
Product / Serv	vice				-	Q	uantity Un	its		-	
Contaminated	Soil (R	CRA Exem	pt)				20.00 ya	ards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:		0.00	0.00	0.00	0						
Generator Ce	rtificatio	n Stateme	nt of Wa	ste Stat	us		1.5.15		. 10	1. 1. A.	anarda Irdan
_ RCRA Non characteristics e amended. The	determina mpt: Oil F -Exempt: established following	ation, the ab field wastes Oil field wa l in RCRA r documentat	ove descri generated ste which egulations ion is atta	ibed wast from oil is non-ha , 40 CFR ched to d	te is: and gas explora azardous that de 2 261.21-261.24	ation and poes not ex or listed h above-des	production o ceed the min azardous wa cribed waste	perations and imum standa ste as define is non-haza	d are not mix rds for waste d in 40 CFR, rdous. (Chec	ed with not e hazardous , part 26 l, s k the appro	n-exempt wast s by subpart D, as opriate items):
Driver/ Agent	Signatu	re		-	R360	Represe	ntative Sig	nature			
Customer Ap	proval		2014	THIS		ANI	NVOIC	E!	Λ	/	

Approved By: _____

Date:

•

Received by O	CD: 11 /	8/2021 10:	05:54 PM								Page 307 of 3
R360 ENVIRONMENTAL SOLUTIONS		Custo Order AFE # PO #: Manife Manife Haule Driver Truck Card	Customer: CONOCOPHILLI Customer #: CRI2190 Ordered by: JOE TYLER AFE #: PO #: Manifest #: 6 Manif. Date: 11/13/2018 Hauler: MCNABB PARTI Driver GUMER Truck # M32 Card # Job Ref #			Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:			700-951681 O6UJ9A0009Z1 11/13/2018 CONOCOPHILLIPS 999908		
Facility: CRI											
Product / Serv	ice					Q	uantity Ur	nits			
Contaminated	Soil (R	CRA Exen	npt)				18.00 y	vards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis.		0.00	0.00	0.00	0						
Generator Cer	tificatio	on Statem	ent of Wa	aste Statu	IS	1. T	00.2	North Hard	in a line	terting An	anarda July

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	0
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by (DCD: 11/	8/2021 10:0	5:54 PM								Page 308 of 348
R360 ENVIRONMENTAL SOLUTIONS		Customer Customer Ordered b AFE #: PO #: Manifest # Manif. Da Hauler: Driver Truck # Card # Job Ref #	mer #: CRI2190 ed by: JOE TYLER : est #: 7 Date: 11/14/2018 r: MCNABB PARTNERS JR # M82 #				Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Field: Field #: Rig: County		24 209Z1 8 PHILLIPS DERAL CE	ENTRAL T/	
Facility: CRI											
Product / Ser	vice					Q	uantity U	nits			
Contaminated	d Soil (R	CRA Exem	ipt)				20.00	yards			
	Cell	pН	CI C	cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis		0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster

_ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	. ()
	THIS IS NOT AN INVOICE!

Approved E	3y:
------------	-----

Received by OCD: 11/8/2021 10:05	:54 PM			Page 309 of 348
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOE TYLER -	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	999908
Facility: CRI				
Product / Service		Qu	antity Units	
Contaminated Soil (RCRA Exemp	at)		20.00 yards	

Contaminated	Soil (R	CRA Exe	mpt)				20.00 ya	rds			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	22	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature	
Customer Approval		
	THIS IS NOT AN INVOICE!	
Approved By:	Date:	

Received by OCD: 11/8/2021 10:05		Custon Custon Ordere AFE #: PO #: Manife	ner #: CI d by: JC st #: N/ Date: 11 : M JC # M	DE TYLER			Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	03 009Z1 8 PHILLIPS	<i>Page 310 of 348</i> ENTRAL T <i>F</i>		
Facility: CRI											
Product / Serv	lice				Stall Sta	Q	uantity U	Inits	1		
Contaminated	Soil (R	CRA Exem	pt)				20.00	yards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cen I hereby certify to 1988 regulatory X RCRA Exer RCRA Non- characteristics en amended. The f MSDS Infor	that accor determina npt: Oil F -Exempt: stablished following	rding to the I ation, the ab Field wastes Oil field wa I in RCRA r documentati	Resource (ove descri generated ste which egulations on is attac	Conservat bed waste from oil a is non-ha , 40 CFR ched to de	on and Recov is: nd gas explora zardous that do 261.21-261.24 monstrate the	ation and poes not ex- or listed h above-des	production ceed the m azardous v cribed was	operations and inimum standa vaste as define te is non-haza	d are not mix urds for waste d in 40 CFR, rdous. (Chec	ted with not e hazardous , part 261, s k the appro	n-exempt wast s by subpart D, as opriate items):
Driver/ Agent	Signatu	re			R360	Represe	ntative Si	gnature	3200		
Customer Ap	proval				IS NOT	ANI	NVOIC) CEI	\langle	/	

THIS IS NOT AN INVOICE!

Approved By: _____

Date: _____

.

Received by OC	C D: 11/8 /	2021 10:0	5:54 PM								Page 311 of 348
R360		Custon Custon Ordere AFE #: PO #: Manife Manife Manif. Hauler Driver Truck is Card # Job Re	st #: 10 Date: 1 J J J J J J W	OE TYLER		Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:			700-952308 O6UJ9A0009Z1 11/14/2018 CONOCOPHILLIPS 999908		
Facility: CRI											
Product / Serv	ice	1-2-			2	Q	uantity U	nits			
Contaminated	Soil (RC	RA Exen	npt)				20.00	yards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GN	1 MR/HR	H2S	% Oil	Weight
Generator Cer	tificatio	n Stateme	ent of Wa	ste Stat	us		1 60 -		-		
I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fe MSDS Infor	hat accord determina npt: Oil F Exempt: stablished ollowing o	ding to the tion, the ab ield wastes Oil field wa in RCRA n documentat	Resource C ove descri generated aste which regulations ion is attac	Conservat bed waste from oil a is non-ha , 40 CFR ched to de	ion and Recove e is: and gas explora zardous that do 261.21-261.24 c emonstrate the a	tion and p es not exc or listed has bove-des	production ceed the mi azardous w cribed was	operations and inimum standa vaste as defined te is non-hazar	l are not mix rds for waste d in 40 CFR, dous. (Chec	ed with nor hazardous part 261, s k the appro	n-exempt waste by ubpart D, as priate items):
Driver/ Agent	Signatur	е			R360 F	Represer	ntative Si	gnature	N. WY AND		

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Date:

.

Received by O	CD: 11/8/	2021 10:0:	5:54 PM									Page 312 of 348
RS	36	6	Custon Custon Ordere AFE #: PO #:	ner #: d by:	CRI2	OCOPHIL 190 TYLER	LIPS		Ticket #: Bid #: Date: Generator: Generator #:		0009Z1	
ENVIRONMENT SOLUTIOI			Manife Manif.		11	6/2018			Well Ser. #: Well Name:	999908 BUCK CI	ENTRAL	
Permian Basin			Hauler		MCN	ABB PAR	TNERS		Well #: Field:	TANK BA		
			Driver Truck Card Job Re		JOSH M79	1			Field #: Rig: County	NON-DR	ILLING	
Facility: CRI												
Product / Serv	vice						Qu	antity U	nits			
Contaminated	Soil (RC	RA Exem	pt)					20.00	yards			
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Con 0.0	19.2	%Solids 0	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The f MSDS Infor	that accord determina npt: Oil Fi -Exempt: 0 stablished ollowing c	ling to the I tion, the ab- eld wastes Dil field wa in RCRA re locumentati	Resource C ove descri generated ste which egulations on is attac	Conser bed wa from c is non- is non- thed to	vation iste is: il and hazard R 261 demor	gas explorations that do .21-261.24 astrate the	ation and p oes not exc or listed ha above-desc	roduction eed the mi zardous w ribed was	operations and inimum standa vaste as defined te is non-hazar	l are not mi rds for was d in 40 CFF dous. (Che	xed with no te hazardous R, part 261, s ck the appro	n-exempt wast s by ubpart D, as priate items):

Driver/ Agent Signature	R360 Representative Signature
	Appe
Customer Approval	

THIS IS NOT AN INVOICE!

Approved By: _____

Date:

•

Received by OCD: 11/8/2021 10:	05:54 PM			Page 313 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #:	CONOCOPHILLIPS CRI2190 JUSTIN WRIGHT NA 11/15/2018 MCNABB PARTNERS JR M82	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-952627 O6UJ9A0009Z1 11/15/2018 CONOCOPHILLIPS
Facility: CRI				
Product / Service		Q	uantity Units	
Contaminated Soil (RCRA Exe	npt)		20.00 yards	
Cell pH	CI Cor	d. %Solids TDS	PCI/GM MR/HR	H2S % Oil Weight

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

0.00

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MCDS Information = DCDA III and Waste Analysis = Droses Kanwild documentation above)

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/	Agent	Signature	

R360 Representative Signature

Customer Approval

Lab Analysis: 50/51

THIS IS NOT AN INVOICE!

Approved By:

Received by O	CD: 11/8	<i>8/2021 10:0</i>	05:54 PM								Page 314 of 348
RS	RE	6	AFE #:	er #: C	ONOCOPHIL RI2190 OE TYLER	LIPS		Ticket #: Bid #: Date: Generator:	700-95270 O6UJ9A00 11/15/2010 CONOCO	009Z1 8	
ENVIRONMENT, SOLUTIOI	and the second		PO #: Manifest Manif. D	ate: 1	1/15/2018	THERE		Generator #: Well Ser. #: Well Name: Well #:	999908	DERAL CI	ENTRAL T/
Permian Basin	1		Hauler: Driver Truck # Card # Job Ref	J N	ICNABB PAR R 182	INERS		Field: Field #: Rig: County	NON-DRI		
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits	1.11		
Contaminated	Soil (R	CRA Exen	npt)				20.00	yards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:03	5:54 PM						Page 315 of
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-952698 O6UJ9A000 11/15/2018 CONOCOP 999908 BUCK CEN TANK BATT)9Z1 HILLIPS TRAL TERY	
Facility: CRI							
Product / Service			Quantity	Jnits			
Contaminated Soil (RCRA Exemp	ot)		20.00	yards			
Cell pH	CI Con	id. %Solids 1	DS PCI/GI	MR/HR	H2S	% Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

R360 Representative Signature Driver/ Agent Signature **Customer Approval**

THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Date:

Released to Imaging: 10/31/2022 3:02:08 PM

Received by O	CD: 11/	8/2021 10:	05:54 PM								Page 316 of 34
Received by OCD: 11/8/2021 10:05		Custor Custor Ordere AFE # PO #: Manife Manif. Hauler Driver Truck Card # Job R	mer #: C ed by: J est #: 1 Date: 1 	ONOCOPHIL RI2190 OE TAYLOR 5 1/15/2018 ICNABB PAR OSH I/79			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field #: Field #: Rig: County	700-95277 O6UJ9A00 11/15/201 CONOCO 999908 BUCK CE TANK BA	009Z1 8 PHILLIPS NTRAL TTERY		
Facility: CRI							a management of the second				
Product / Serv	lice	Sec. 1				Q	uantity U	nits			
Contaminated	Soil (R	CRA Exer	npt)				20.00 y	vards			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cel	rtificatio	on Statem	ent of Wa	i ste Stat Conserva	tion and Recover	ery Act (R	CRA) and	the US Envir	onmental Pr	otection Ag	gency's July

1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-

_ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
	All
Customer Approval	~ 0

THIS IS NOT AN INVOICE!

Approved By:

Received by OC	CD: 11/8/	2021 10:05	:54 PM								1	Page 317 of 348
RG ENVIRONMENT SOLUTIO		3	Order AFE # PO #: Manife	mer #: ed by: t; est #;	CRI21	YLER	LLIPS		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:	999908	009Z1 18 DPHILLIPS	
Permian Basir			Haule Driver Truck Card # Job R	r: # #			RTNERS		Well #: Field: Field #: Rig: County	NON-DRI	TTERY	
Facility: CRI												
Product / Serv	vice						Q	uantity U	nits			
Contaminated	I Soil (R	CRA Exem	pt)					20.00	yards			
	Cell	рН	CI	Cond	d. %	Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis	50/51	0.00	0.00	0.0	0	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): _____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:05:5	4 PM			Page 318 of 348
R360	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date:	CONOCOPHILLIPS CRI2190 JOE TYLER 17 11/16/2018	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:	700-953014 O6UJ9A0009Z1 11/16/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/
Permian Basin	Hauler: Driver Truck # Card # Job Ref #	MCNABB PARTNERS JR M82	Well #: Field: Field #: Rig: County	NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		Quai	ntity Units	
Contantinated Call (DODA F	43		00.00	

Product / Ser	vice	and the second				Q	uantity Uni	(S			
Contaminated	mpt)		20.00 yards								
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waste RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):
 MSDS Information _____ RCRA Hazardous Waste Analysis _____ Process Knowledge _____ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:05.	:54 PM				Page 319 of 348		
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver	JOE TYLER 18 11/16/2018 MCNABB PARTNE GUMER		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field:	999908		
	Truck # Card # Job Ref #	M32		Field #: Rig: County	NON-DRILLING LEA (NM)		
Facility: CRI							
Product / Service			Quantity I	Units			
Contaminated Soil (RCRA Exem	pt)		18.00) yards			
Cell pH	CI Con	d. %Solids T	DS PCI/GI	M MR/HR	H2S % Oil Weight		

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

 <u>X</u> RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast- RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information _____ RCRA Hazardous Waste Analysis _____ Process Knowledge _____ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

Lab Analysis: 50/51

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:05:	54 PM			Page 320 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	and simplified to a	Ticket #: Bid #: Date: Generator Generator Well Ser. ; Well Nam Well #: Field: Field #: Rig: County	700-953110 O6UJ9A0009Z1 11/16/2018 : CONOCOPHILLIPS #: #:
Facility: CRI				
Product / Service	1.00		Quantity Units	
Contaminated Soil (RCRA Exem	pt)		20.00 yards	
Cell pH	CI Con	d. %Solids TD	S PCI/GM MR/HF	R H2S % Oil Weight

0.00

0.00

0.00

Lab Analysis: 50/51

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ____MSDS Information ____RCRA Hazardous Waste Analysis ____ Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	Y.
	THIS IS NOT AN INVOICE!
Approved By:	Date:

Received by OCD: 11/8/2021	10:05:54 PM							i i i i i i i i i i i i i i i i i i i	Page 321 of 34
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Cust Orde AFE PO # Man Haul Drive Truc Card	tomer #: ered by: #: ifest #: if. Date: er: er k #	CONOCOPHI CRI2190 JOE TYLER 20 11/16/2018 MCNABB PAF GUMER M32			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908	0009Z1 18 OPHILLIP EDERAL C	S ENTRAL T/
Facility: CRI									
Product / Service				Q	uantity U	nits			
Contaminated Soil (RCRA	Exempt)				18.00				
Cell pH	CI	Cond.	reeenad	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	q
	THIS IS NOT AN INVOICE!
A start of the sta	

Approved By:

Lab Analysis: 50/51

Date:

Released to Imaging: 10/31/2022 3:02:08 PM

Received by OC	C D: 11 /8	/2021 10:05	:54 PM							i i	Page 322 of 348
RC ENVIRONMENT SOLUTIO Permian Basin	NS b	50		ner #: ed by: st #: Date: ; #	CONOCOPH CRI2190 JOE TYLER 21 11/19/2018 MCNABB PA JOSH M79			Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	999908	0009Z1 18 OPHILLIPS EDERAL C	S ENTRAL 17
Facility: CRI											
Product / Serv	/ice					Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	pt)				20.00	yards			
	Cell	рН	CI	Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00) 0					70 011	rugin

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:05::	54 PM							Page 323 of 3 48
R360 ENVIRONMENTAL SOLUTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOE TYLER 22		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908			
Facility: CRI								
Product / Service			Q	uantity U	nits			
Contaminated Soil (RCRA Exemp	t)		1.44	18.00)				
Cell pH	CI Conc	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis: 50/51 0.00 (0.00 0.00	0 0						rugin
Generator Certification Statement	of Wasto Sta	tue						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Facility: CRI Quantity Units Contaminated Soil (RCRA Exempt) 20.00 yards Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0.00 0 Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as	Received by O Received by O C R C N VIRONMEN SOLUTIO Permian Basi	Be TAL NS		Customer: Customer # Ordered by: AFE #: PO #: Manifest #:	CONOCOPHI CRI2190 JOE TYLER 23 11/19/2018 MCNABB PAF JR M82			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908	740 0009Z1 18 OPHILLIPS EDERAL C	<i>Page 324 of 348</i> S CENTRAL T7
Contaminated Soil (RCRA Exempt) 20.00 yards Lab Analysis: Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0.00 0.00 0 Generator Certification Statement of Waste Status 1 hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as	Facility: CRI										
Cell pH Cl Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0.00 0 0 Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as	Product / Serv	vice				Q	uantity Ur	nits			
Lab Analysis: 50/51 0.00 0.00 0.00 0 Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as	Contaminated	Soil (RC	RA Exemp	ot)			20.00 y	ards			
Lab Analysis: 50/51 0.00 0.00 0 Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as		Cell	pН	CI Cor	id. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as	Lab Analysis:	50/51	0.00	0.00 0.0	0 0						
amended. The following documentation is attached to demonstrate the above-described waste is non-bazardous. (Check the appropriate items): MSDS InformationRCRA Hazardous Waste AnalysisProcess KnowledgeOther (Provide description above) Driver/ Agent Signature Customer Approval	I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fo MSDS Infor Driver/ Agent	hat accord determinat npt: Oil Fi Exempt: (stablished ollowing d mation Signatur	ling to the Ro tion, the abovel eld wastes go Dil field wast in RCRA reg ocumentatio RCRA H	esource Conser ve described wa enerated from o te which is non- gulations, 40 CF n is attached to	vation and Recover aste is: iil and gas explorate hazardous that do FR 261.21-261.24 of demonstrate the a e AnalysisP	ntion and p bes not exc or listed ha bove-desc rocess Kno	roduction o eed the min azardous wa oribed waste owledge	perations and imum standard ste as defined is non-bazard Other Prov	are not mix ds for waste in 40 CFR, lous. (Chec	ted with nor e hazardous , part 261, s k the appro	n-exempt wast s by subpart D, as opriate items):

THIS IS NOT AN INVOICE!

Approved By:

Date:

.

Received by OCD: 11/8/2021 10:05:5	54 PM			Pag	ge 325 of 348
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOE TAYLOR	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	700-953869 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK CENTRAL TANK BATTERY NON-DRILLING	
Facility: CRI					
Product / Service		Qu	antity Units		
Contaminated Soil (RCRA Exempt	t)		20.00 yards		

	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight	
Lab Analysis.	50/51	0.00	0.00	0.00	0							

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OCD: 11/8/2021 10:05	:54 PM			ŀ	Page 326 of	
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver	JOE TAYLOR 25		999908		
	Truck # Card # Job Ref #	M32	Field #: Rig: County	NON-DRILLING		
Facility: CRI						
Product / Service		Qu	antity Units			
Contaminated Soil (RCRA Exem	pt)		18.00 yards			
Cell pH	CI Con	d. %Solids TDS	PCI/GM MR/HR	H2S % Oil	Weight	

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ____ Other (Provide description above)

0

Driver/ Agent Signature	R360 Representative Signature
	All
Customer Approval	

THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by OCD: 11/8/2021 10:05:5	54 PM			Page 327 of 348
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOE TAYLOR	Well Name:	700-953875 O6UJ9A0009Z1 11/19/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/ NON-DRILLING LEA (NM)
Facility: CRI				
Product / Service		0	wantity Units	

Product / Ser	vice					Q	uantity Uni	ts			
Contaminated	d Soil (R	CRA Exe	mpt)				20.00 ya	rds			
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis	50/51	0.00	0.00	0.00	0						

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

THIS IS NOT AN INVOICE!

Approved By:

Customer Approval

Received by OCD: 11	/8/2021 10:03	5:54 PM							Page 328 of 348		
RB ENVIRONMENTAL SOLUTIONS	50	Customer: Customer # Ordered by: AFE #: PO #: Manifest #: Manif. Date:	JOE TAYLOR			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name:	999908				
Permian Basin		Hauler: Driver Truck # Card # Job Ref #	uler: MCNABB PARTNERS ver JOSH ick # M79 rd #				BUCK FEDERAL CENTRAL T/ NON-DRILLING LEA (NM)				
Facility: CRI											
Product / Service		1. 227		Q	uantity U	nits					
Contaminated Soil (RCRA Exem	pt)			20.00	yards					
Cell	pН	CI Con	d. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight		

0.00

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast-RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

0

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	

THIS IS NOT AN INVOICE!

Approved By:

Lab Analysis: 50/51

Received by O	CD: 11 /8	8/2021 10:05	5:54 PM								Page 329 of 348
RB360 ENVIRONMENTAL SOLUTIONS			and the second se	mer #: ed by: st #: Date: : #	CONOCOPH CRI2190 JUSTIN WRIG SOCY 28 11/27/2018 MCNABB PAI JOSH M79	SHI lei		Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908	0009Z1 18 DPHILLIPS DERAL C	S ENTRAL 1/
Facility: CRI											
Product / Serv	vice	and the second				Q	uantity U	nits			
Contaminated	I Soil (R	CRA Exem	pt)				20.00	yards			
	Cell	рН	CI	Cond	. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0	1000 C			1.010.00		11 212111

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

_____MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge _____Other (Provide description above)

Driver/ Agent Signature

	1
1	R360 Representative Signature
	X
10	
	// 0

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by O	CD: 11/8	2021 10:05	5:54 PM								i.	Page 330 of 348
R360 ENVIRANMENTAL SOLUTIONS		Ordere AFE # PO #: Manife	omer #: CRI2190 ered by: JU STIN WRIGHT #: Joc Tyle fest #: NA f. Date: 11/27/2018 er: MCNABB PARTNERS er JR k # M82 #					Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	700-956351 O6UJ9A0009Z1 11/27/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL 1/			
Facility: CRI												
Product / Serv	/ice						Q	uantity U	nits			
Contaminated	Soil (R	CRA Exem	ipt)					20.00	/ards			
	Cell	рН	CI	Cond	l. %S	olids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00)	0			and the second			

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By:

Received by OC	C D: 11/8/ 2	2021 10:05:	54 PM							ŀ	Page 331 of 348
R360 ENVIRONMENTAL SOLUTIONS Permian Basin			Customer: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JUSTIN WRIGHT AFE #: Joe Tyler PO #: Manifest #: NA Manif. Date: 11/27/2018 Hauler: MCNABB PARTNERS Driver JOSH Truck # M79 Card # Job Ref #			Ticket #: 700-956467 Bid #: 06UJ9A0009Z1 Date: 11/27/2018 Generator: CONOCOPHILLIPS Generator #: Well Ser. #: 999908 Well Name: BUCK CENTRAL Well #: TANK BATTERY Field: Field #: Rig: NON-DRILLING County					
Facility: CRI											
Product / Serv	vice					Q	uantity U	nits			
Contaminated	Soil (RC	RA Exem	ot)	20.00 yards							
	Cell	pН	CI	Cond.	%Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00	0.00	0.00	0						
Generator Cel I hereby certify 1988 regulatory X RCRA Exer RCRA Non characteristics e amended. The f MSDS Info	that accord determina mpt: Oil Fi -Exempt: 0 stablished following c	ling to the R tion, the abo eld wastes g Oil field was in RCRA re locumentati	esource C ove describ generated f ate which i gulations, on is attac	Conservation bed waste from oil and s non-haz 40 CFR 2 hed to den	on and Recove is: nd gas explora ardous that do 261.21-261.24 c nonstrate the a	tion and p es not exc or listed h bove-des	production ceed the mi azardous w cribed wast	operations and nimum standa vaste as defined te is non-hazar	l are not mixe rds for waste d in 40 CFR, dous. (Check	ed with nor hazardous part 261, si c the appro	n-exempt wast by ubpart D, as priate items):
Driver/ Agent	Signatur	e			R360 F	lepreser	ntative Sig	gnature			
							-	14			
Customer App	proval						-				
				THIS	IS NOT	AN II	VOIC	E!			

Approved By: _____

Date: _____

-

Received by OCD: 11/8/2021 10:05:	54 PM	Page 332 of 348
R360	Customer: CONOCOPHILLIPS Customer #: CRI2190 Ordered by: JOE TYLER AFE #: PO #: Manifest #: 31	Ticket #: 700-956487 Bid #: O6UJ9A0009Z1 Date: 11/27/2018 Generator: CONOCOPHILLIPS Generator #: Well Ser. #:
Permian Basin	Manif. Date: 11/27/2018 Hauler: MCNABB PARTNERS Driver JR Truck # M82 Card # Job Ref #	Well Name: BUCK CENTRAL Well #: TANK BATTERY Field: Field #: Rig: NON-DRILLING County
Facility: CRI		
Product / Service	Quan	tity Units
Contaminated Soil (RCRA Exempt	;)	20.00 yards
	CI Cond. %Solids TDS P 0.00 0.00 0	CI/GM MR/HR H2S % Oil Weight
X RCRA Exempt: Oil Field wastes ges RCRA Non-Exempt: Oil field wastes	source Conservation and Recovery Act (RCR/ e described waste is: nerated from oil and gas exploration and produ- which is non-hazardous that does not exceed	A) and the US Environmental Protection Agency's July action operations and are not mixed with non-exempt wast the minimum standards for waste hazardous by dous waste as defined in 40 CFR, part 261, subpart D, as ed waste is non-hazardous. (Check the appropriate items):

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!

THIS IS NOT AN INVOICE!

Approved By:

Date:

•

Customer: CONOCOPHILLIPS Ticket #: 700-957186 Customer #: CRI2190 Bid #: O6UJ9A0009Z1 Ordered by: JUSTIN WRIGHT Date: 11/29/2018 AFE #: JOE TOPE Generator: CONOCOPHILLIPS PO #: Manifest #: 32 Well Ser. #: 999908 Manif. Date: 11/29/2018 Well Name: BUCK FEDERAL CENTRAL I/ Hauler: MCNABB PARTNERS Well %: Field: Driver HOWARD Field #: Field #: Truck # M78 Field #: Rig: NON-DRILLING Job Ref # Job Ref # County LEA (NM)	Received by OCD: 11/8/2021 10:0	5:54 PM			Page 333	of 348	
Facility: CRI	SOLUTIONS	Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card #	CRI2190 JUSTIN WRIGHT JOE TY LER 32 11/29/2018 MCNABB PARTNERS HOWARD	Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well #: Field: Field #: Rig:	O6UJ9A0009Z1 11/29/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL 1/		
	Facility: CRI						
Product / Service Quantity Units	Product / Service		Qu	antity Units			
Contaminated Soil (RCRA Exempt) 20.00 yards	Contaminated Soil (RCRA Exen	npt)					
Cell pH CI Cond. %Solids TDS PCI/GM MR/HR H2S % Oil Weight Lab Analysis: 50/51 0.00 0.00 0				PCI/GM MR/HR	H2S % Oil Weigh	t.	

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt waster _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!

THIS IS NUT AN INVOICE:

Approved By:

Received by OC			Customer: Customer: Ordered by AFE #: PO #: Manifest #: Manif. Date Hauler: Driver Truck # Card # Job Ref #	#: CRI2 7: JOE 33 8: 11/29	TYLER 2018 ABB PAR			Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County	999908	01 809Z1 PHILLIPS NTRAL TTERY	Page 334 of 348
Facility: CRI											
Product / Service Quantity Units											
Contaminated	Soil (RC	RA Exemp	t)				20.00 y				
	Cell	рН	CI Co	nd. %	6Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight
Lab Analysis:	50/51	0.00 (0.00 0.	00	0						
Generator Certification Statement of Waste Status I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wass _ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items) _ MSDS Information _ RCRA Hazardous Waste Analysis _ Process Knowledge _ Other (Provide description above) Driver/ Agent Signature											
Customer App	roval				-	1	~		0.0		
THIS IS NOT AN INVOICE!											

Approved By:

Date: _____

.

Received by O	C D: 11 /8	<i>3/2021 10:0</i> .	5:54 PM									Page 335 of 348	
ENVIRONMEN SOLUTIO Permian Basi	INS S	50	Cust Orde AFE PO # Mani	ered by: #: fest #: f. Date: er: < # #	CONOCOPHILLIPS CRI2190 JOE TYLER 34 11/30/2018 MCNABB PARTNERS HOWARD M78				Well #: Field: Field #: Rig:	700-957569 O6UJ9A0009Z1 11/30/2018 CONOCOPHILLIPS 999908 BUCK FEDERAL CENTRAL T/			
Facility: CRI													
Product / Serv	ice						Q	uantity U	nits				
Contaminated	Soil (R	CRA Exem	npt)					20.00					
a de la companya de l	Cell	рН	CI	Cond	d. %s	Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight	
Lab Analysis:	50/51	0.00	0.00	0.00	0	0						roight	

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items):

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ___Other (Provide description above)

Driver/ Agent Signature

R360 Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Approved By: _____

Received by OCD: 11/8/2021 10:05:5	4 PM			Page 336 of 348		
R360 ENVIRONMENTAL SOLUTIONS	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	JOE TYLER 35	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field #: Field #: Rig: County	999908		
Facility: CRI						
Product / Service		Quantity	Units			
Contaminated Soil (RCRA Exempt)	18.00 yards				

pH

0.00

CI

0.00

Cond.

0.00

Cell

Lab Analysis: 50/51

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by

TDS

PCI/GM

MR/HR

H2S

characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)

____MSDS Information ____RCRA Hazardous Waste Analysis ____Process Knowledge ____Other (Provide description above)

%Solids

0

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	
	THIS IS NOT AN INVOICE!

Approved By:

Date:

% Oil

Weight

Received by O	C D: 11/8	/2021 10:0			001100000	-				i.	Page 337 of 348
R	Custo Orde AFE	omer #: red by: #:	CONOCOPHILLIPS CRI2190 JOE TYLER			Ticket #: Bid #: Date: Generator:	700-958342 O6UJ9A0009Z1 12/3/2018 CONOCOPHILLIPS				
ENVIRONMEN SOLUTIO		fest #:	36			Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig:	# :				
Permian Basi	-	Manif. Date: Hauler: Driver Truck # Card # Job Ref #			12/3/2018 MCNABB PAR HOWARD M78		TNERS		BUCK FEDERAL CENTRAL T# NON-DRILLING LEA (NM)		
Facility: CRI											
Product / Serv	lice					Q	uantity U	nits	1.00-		
Contaminated	Soil (R	CRA Exen	npt)		20.00 yards						
Lab Analysis:	Cell 50/51	рН 0.00	CI 0.00	Cond. 0.00	%Solids 0	TDS	PCI/GN		H2S	% Oil	Weight
Generator Cer I hereby certify t 1988 regulatory X RCRA Exen RCRA Non- characteristics es amended. The fe MSDS Infor	hat accor determina npt: Oil F Exempt: stablished ollowing o	ding to the attion, the ab ield wastes Oil field wa in RCRA r documentat	Resource (oove descri- generated aste which regulations ion is attac	Conservat ibed waste from oil a is non-ha a, 40 CFR ched to de	tion and Recove e is: and gas explora zardous that do 261.21-261.24 c emonstrate the a	tion and p es not exc or listed has bove-desc	production seed the mi azardous w cribed wast	operations and nimum standard aste as defined te is non-hazard	are not mix ls for waste in 40 CFR, ous. (Checl	ed with nor hazardous part 261, so	n-exempt wast by ubpart D, as
Driver/ Agent :	Signatu	е	Same Supe		R360 F	epreser	tative Si	gnature	-		

Customer Approval

THIS IS NOT AN INVOICE!

Approved By: _____

Date:

.

Received by OCD): 11/8/	2021 10:03	5:54 PM								P	age 338 of 348
PR3		50		ner #: ed by: st #: Date: : #	CONOCO CRI2190 JOE TYL 37 11/30/20 MCNABE CLEO M31	ER 18			Ticket #: Bid #: Date: Generator: Generator # Well Ser. #: Well Name: Well Name: Well #: Field: Field #: Rig: County	: 999908	0009Z1 3 DPHILLIPS DERAL C LLING	S ENTRAL TÆ
Facility: CRI												
Product / Servio	ce		150,	1.0	S 27	-	Q	uantity U	nits			
Contaminated S	Soil (R	CRA Exer	npt)					18.00	yards			
	Cell	рH	CI	Cond	d. %So	lids	TDS	PCI/GN	MR/HR	H2S	% Oil	Weight

0.00

0.00

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

0

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as

amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): ______MSDS Information _____RCRA Hazardous Waste Analysis _____Process Knowledge ____Other (Provide description above)

Driver/ Agent Signature R360 Representative Signature

0.00

Customer Approval

Lab Analysis: 50/51

THIS IS NOT AN INVOICE!

w

Approved By:

Received by OCD: 11/8/2021 10:0	5:54 PM							Page 339 of 348	
0360	Customer: Customer #: Ordered by: AFE #:			B		700-960105 O6UJ9A0009Z1 12/7/2018 CONOCOPHILLIPS			
ENVIRONMENTAL SOLUTIONS	PO #: Manifest #: Manif. Date: Hauler:	38 12/7/2018 MCNABB PA	RTNERS		Generator #: Nell Ser. #: Nell Name: Nell #:	999908			
Permian Basin	Driver Truck # Card # Job Ref #	ver HOWARD ick# M78 rd#		F	Field: Field #: Rig: County	NON-DRILLING LEA (NM)			
Facility: CRI									
Product / Service			Q	uantity Ur	nits				
Contaminated Soil (RCRA Exem	pt)			20.00 y	ards				
Cell pH		nd. %Solids	TDS	PCI/GM	MR/HR	H2S	% Oil	Weight	
Lab Analysis: 50/51 0.00		.00 0							

I hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is:

X RCRA Exempt: Oil Field wastes generated from oil and gas exploration and production operations and are not mixed with non-exempt wast

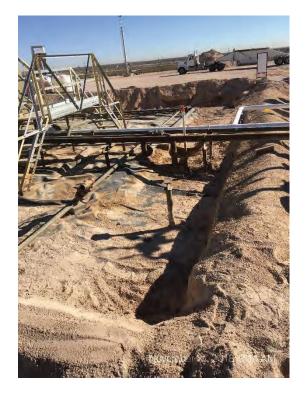
RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24 or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items): MSDS Information _____ RCRA Hazardous Waste Analysis ____ Process Knowledge ___ Other (Provide description above)

Driver/ Agent Signature	R360 Representative Signature
Customer Approval	

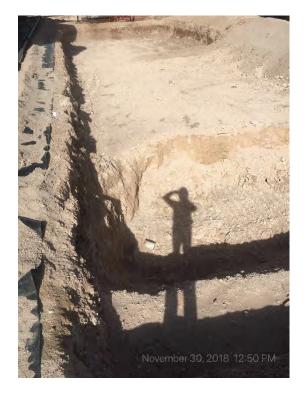
THIS IS NOT AN INVOICE!

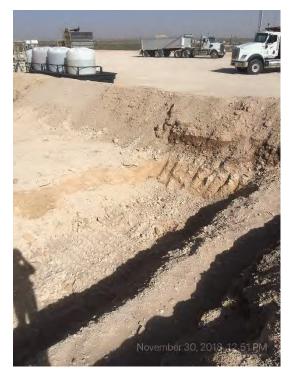
Approved By:

Date: _____


APPENDIX E Photographic Documentation

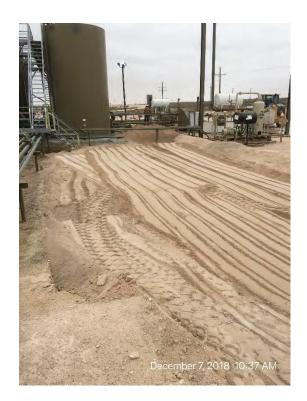
TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Assessment activities at southeastern corner of tank battery containment.	1
	SITE NAME	Buck Federal CTB (1RP-4431)	10/19/2017


TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View southeast. Assessment activities at northeastern corner of tank battery containment.	2
	SITE NAME	Buck Federal CTB (1RP-4431)	10/19/2017

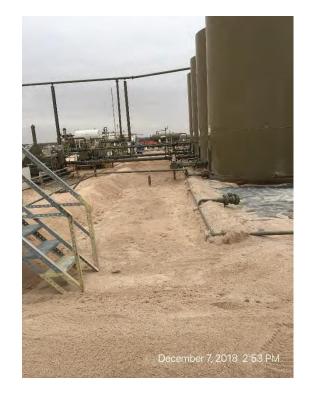

TETRA TECH, INC.	DESCRIPTION	View east. Lined area in southern portion of the containment.	3
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	11/27/2018

TETRA TECH, INC.	DESCRIPTION	View northwest. Excavated area in the northern portion of the containment.	4
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	11/30/2018

TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Excavated area in eastern portion the of containment.	5
	SITE NAME	Buck Federal CTB (1RP-4431)	11/30/2018


TETRA TECH, INC.	DESCRIPTION	View northeast. Excavated area at the southeastern corner of the containment.	6
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	11/30/2018

TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Excavated area in western portion of containment.	7
	SITE NAME	Buck Federal CTB (1RP-4431)	12/6/2018


TETRA TECH, INC.	DESCRIPTION	View north. Excavated area in western portion of containment.	8
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	12/6/2018

TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View south. Backfilled area in the northwestern portion of the containment.	9
	SITE NAME	Buck Federal CTB (1RP-4431)	12/7/2018


TETRA TECH, INC.	DESCRIPTION	View north. Backfilled area in the eastern portion of the containment.	10
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	12/7/2018

TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View north. Backfilled area in western portion of containment.	11
	SITE NAME	Buck Federal CTB (1RP-4431)	12/7/2018

TETRA TECH, INC.	DESCRIPTION	View west. Backfilled area in the southern portion of the containment.	12
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	12/7/2018

TETRA TECH, INC.	DESCRIPTION	View southeast. Excavated area in northeastern portion of containment.	13
PROJECT NO. 212C-MD-02589	SITE NAME	Buck Federal CTB (1RP-4431)	1/7/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02589	DESCRIPTION	View southeast. Backfilled area in northeastern portion of containment.	14
	SITE NAME	Buck Federal CTB (1RP-4431)	1/7/2019

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	60910
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

C B	reated ⁄	Condition	Condition Date
I	ohall	Deferral approved. Incident will remain open until the remediation is completed when the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first. 1RP-4431 closed. Please refer to incident #nJXK1625144979 in all future correspondence.	10/31/2022

Action 60910