		SIT	E INFORM	ATION			
	Re	oort Type: D	eferment R	eport	1RP-4727		
General Site Info	ormation:						
Site:		New Mexico D	L State #1				
Company:		COG Operatin	g LLC				
Section, Townsh	hip and Range	Unit I	Sec. 18	T 23S	R 33E		
Lease Number:		API No. 30-02	5-28223				
County:		Lea County					
GPS:			32.302948° N		10	03.6050491º W	
Surface Owner: State							
Mineral Owner:							
onto lease road a				.8 miles, tur		28 for 1.2 mi, turn northeast illes, turn east for 0.75 miles,	
Release Data:							
Date Released:		6/1117					
Type Release:		Oil & Produced	Water				
Source of Contamination: Tanks							
Fluid Released: 17 bbls Oil & 19		9 bbls Produced	Water				
Fluids Recovered: 15 bbls Oil & 1		5 bbls Produced	Water				
Official Commur	nication:						
Name:	Rebecca Haskell				Ike Tavarez		
Company:	COG Operating, L				Tetra Tech		
Address:	One Concho Cent				4000 N. Big Sprin	2	
AUU/233.						9	
	600 W. Illinois Av				Ste 401		
City:	Midland Texas, 79	9701			Midland, Texas		
Phone number:	<mark>(432) 686-3023</mark>				(432) 687-8110		
Fax:	<mark>(432) 684-7137</mark>						
Email:	rhaskell@conch	oresources.com			Ike.Tavarez@te	tratech.com	
Ranking Criteria							
Depth to Groundw	vator:		Ranking Score	T	Cita	Data	
<50 ft			20		Site	Dald	
50-99 ft			10				
>100 ft.			0		400	'-500'	
WellHead Protection:		Ranking Score		Site Data			
	000 ft., Private <200		20				
Water Source >1,0	000 ft., Private >200	ft.	0			0	
Surface Body of V	Vater:		Ranking Score		Site	Data	
<200 ft.			20				
200 ft - 1,000 ft.			10			0	
>1,000 ft.			0			0	

Total Ranking Score:

Accepta	Acceptable Soil RRAL (mg/kg)						
Benzene	Total BTEX	TPH					
10	50	5,000					

0

APPROVED By Olivia Yu at 3:43 pm, Jul 06, 2018

June 14, 2018

NMOCD approves of the preliminary delineation completed for 1RP-4727 and agree that the area represented by AH-4 will need complete delineation when accessible. Confirmation bottom and sidewall samples required.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Work Plan for the COG Operating LLC., New Mexico DL State #1, Unit I, Section 18, Township 23 South, Range 33 East, Lea County, New Mexico. 1RP-4727.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC., (COG) to assess a release that occurred at New Mexico DL State #1, Unit I, Section 18, Township 23 South, Range 33 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.302948°, W 103.6050491°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release occurred on June 11, 2017, and released approximately 17 barrels of oil and 19 barrels of produced water due to tanks that overflowed. A vacuum truck was used to remove all freestanding fluids, recovering approximately 15 barrels of oil and 15 barrels of produced water. The release was contained inside the bermed facility and impacted an area measuring approximately 45' x 60'. The initial C-141 form is included in Appendix A.

Groundwater

No water wells are listed in Section 18 on the New Mexico Office of the State Engineer (NMOSE) database, USGS National Water Information System, or the Geology and Ground-Water Conditions in Southern Lea County, New Mexico (Report 6). The nearest well is listed on the NMOSE database and is located in Section 19, approximately 0.9 miles southwest of the site, and has a reported depth to groundwater of 400 feet below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is greater than 500 feet below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On February 15, 2018, Tetra Tech personnel were onsite to evaluate and inspect the release area. A total of four (4) auger holes (AH-1, AH-2, AH-3, and AH-4) were installed in the release area to total depths ranging from 1-1.5' to 3-3.5' below surface. Deeper samples could not be collected due to a dense formation in the area. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, the areas of auger holes (AH-1, AH-2, and AH-3) showed benzene and total BTEX concentrations below the RRALs at 0-1' below surface. However, the area of auger hole (AH-4) showed a benzene concentration of 3.79 mg/kg and a total BTEX concentration of 126 mg/kg at 0-1' below surface.

Elevated TPH concentrations were detected at all of the auger hole locations. The areas of auger holes (AH-2 and AH-3) showed a shallow hydrocarbon impact to the soil, with TPH concentrations of 5,970 mg/kg and 7,900 mg/kg at 0-1' below surface, respectively. The TPH concentrations then declined with depth at 1-1.5' below the RRAL to 1,620 mg/kg (AH-2) and 3,270 mg/kg (AH-3). The area of auger hole (AH-1) showed deeper impact to the soils, declining below the RRAL at 3-3.5' below surface to 1,900 mg/kg. The area of auger hole (AH-4) showed TPH concentrations of 11,000 mg/kg (0-1') and 6,660 mg/kg (1.0'-1.5') and the area was not vertically defined.

The areas of auger holes (AH-1 and AH-2) did not detect any significant chloride concentrations in the soils. However, chloride highs of 763 mg/kg (0-1') and 831 mg/kg (1.0'-1.5') were detected in the areas of auger holes (AH-3 and AH-4), respectively.

Work Plan

The release area is inside the bermed facility, which contains numerous above ground and underground lines, as well as equipment. The depth to groundwater at the site is between 400' and 500' below surface. According to COG, the facility is currently in the process of plugging the well and removing all of the tanks, lines and equipment from the area. Once removed from the area, the impacted soils will be accessible for removal.

Based on the laboratory results, COG proposes to remove the impacted material as highlighted (green) in Table 1 and shown on Figure 4. The area of auger hole (AH-1) will be excavated to approximately 2.0'-3.0' below surface and the areas of auger holes (AH-2 and AH-3) will be excavated to approximately 1.0' below surface. In the area of auger hole (AH-4) Tetra Tech will use a backhoe to define the vertical extents and properly remove the impacted soils to the appropriate depth.

Once the areas are excavated to the appropriate depths, the areas will be backfilled with clean material to surface grade. All of the excavated material will be transported offsite for proper disposal.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, COG will excavate the impacted soils to the maximum extent practicable.

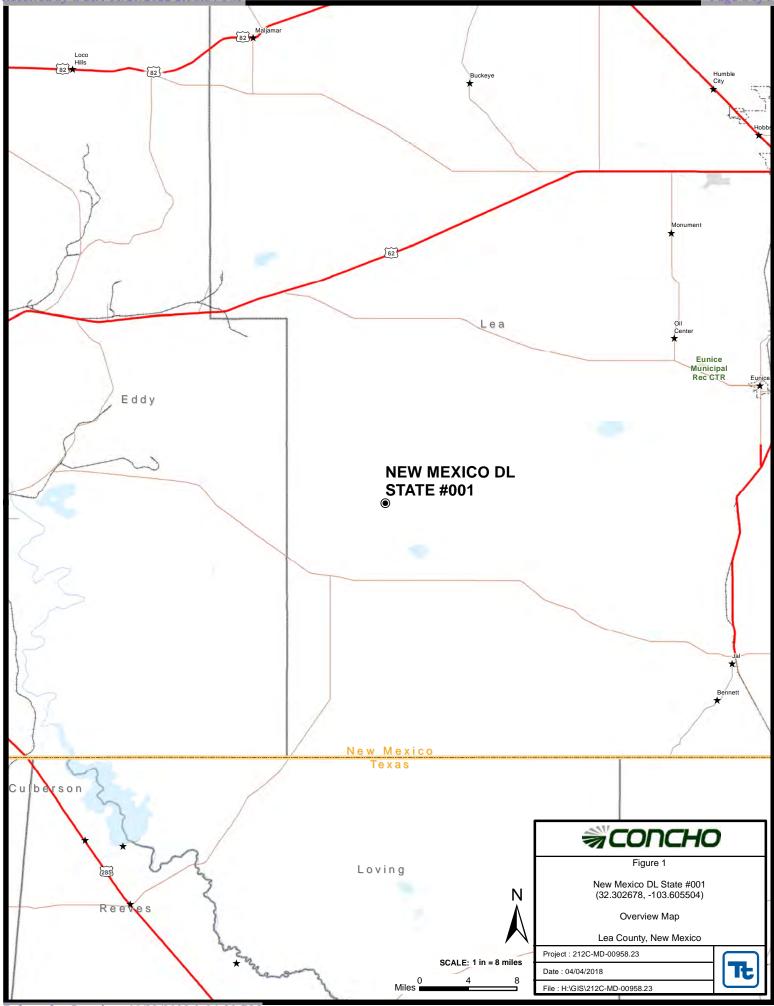
If you have any questions or comments concerning the assessment activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Clair Gonzales, Project Manager

MTS

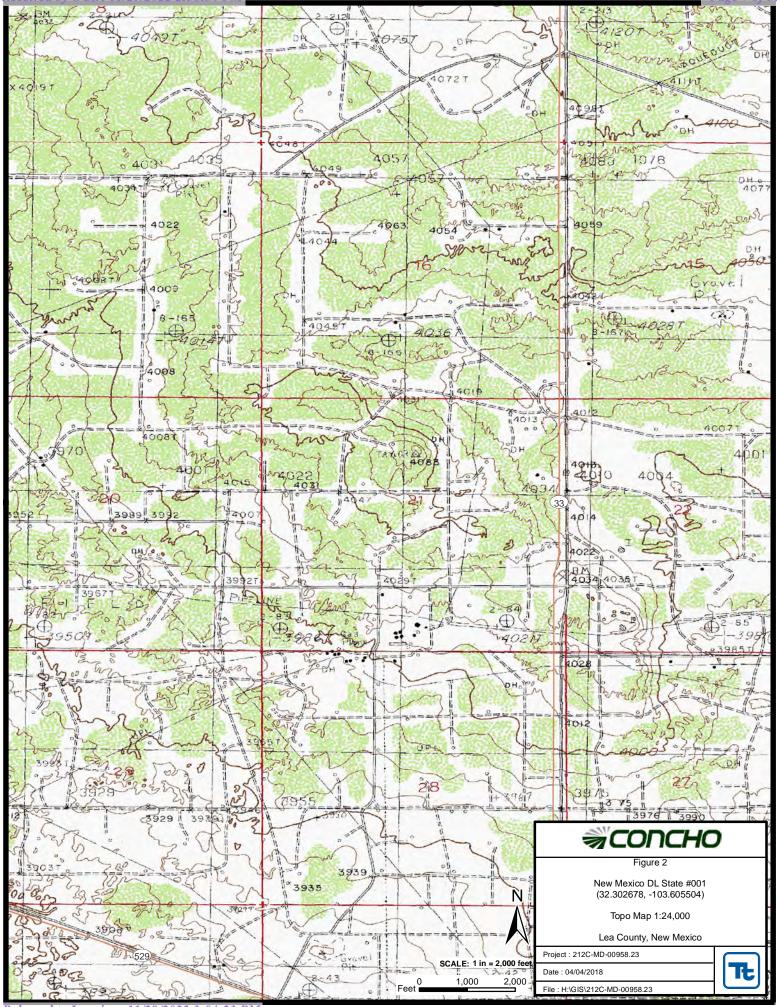
Ike Tavarez, Senior Project Manager, P.G.

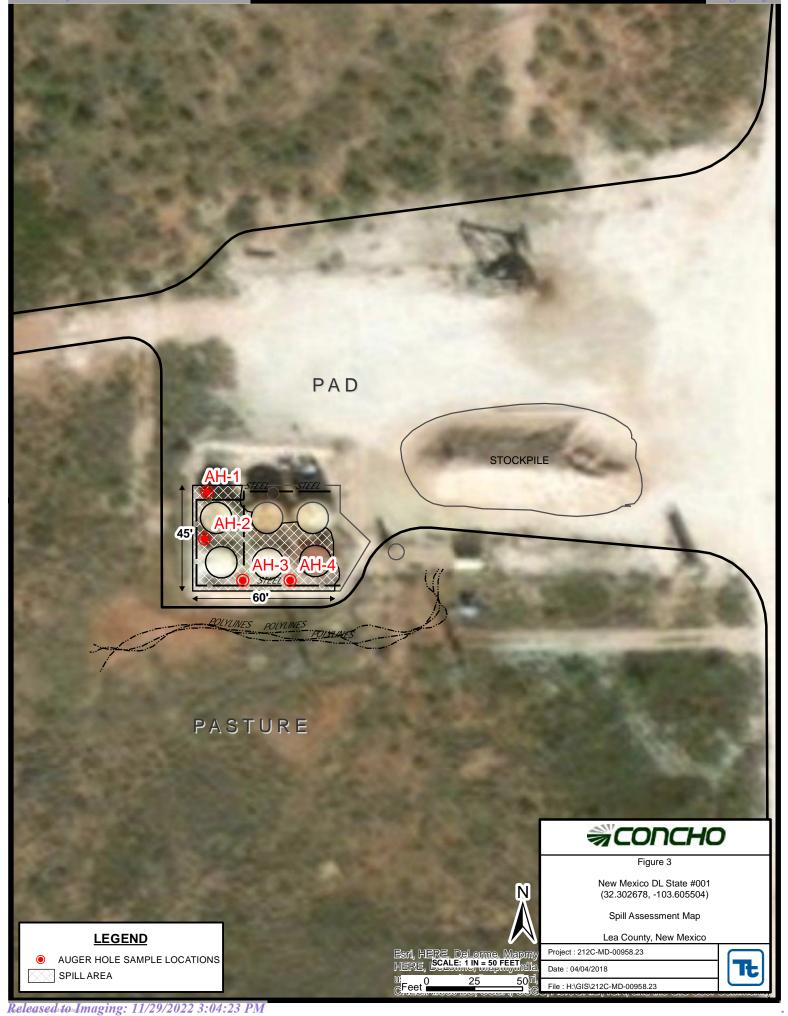

cc: Robert McNeill – COG Dakota Neel – COG Rebecca Haskell – COG Ryan Mann - SLO

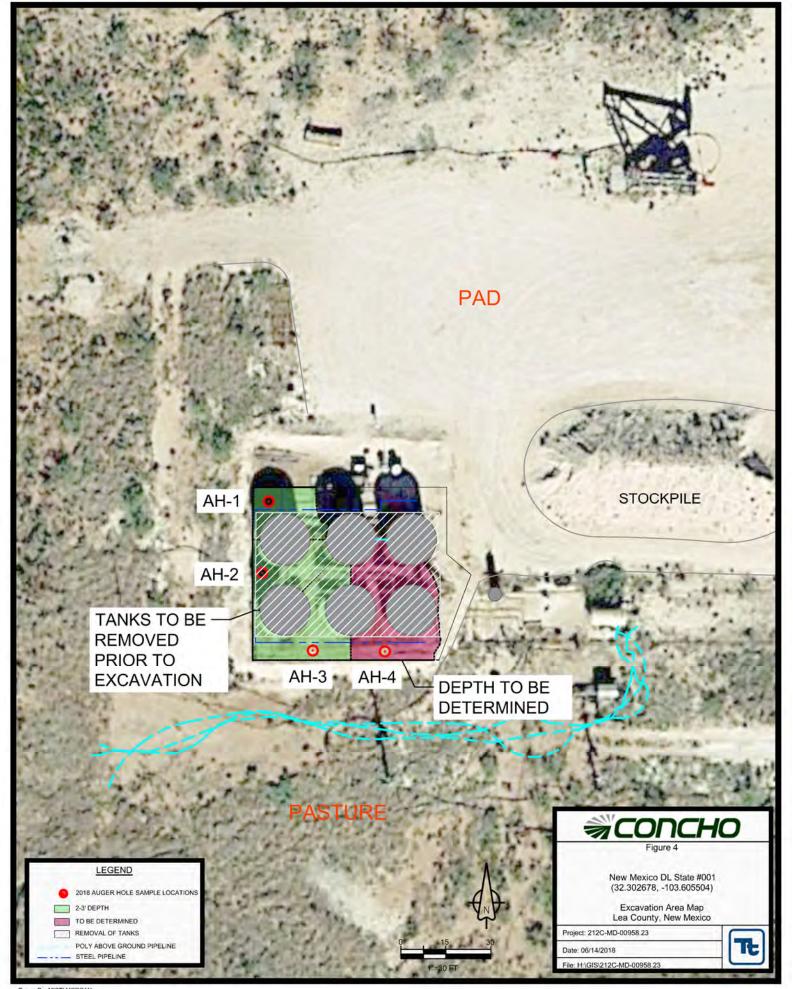
•

Figures

Received by OCD: 11/29/2022 2:58:34 PM


Page 6 of 51




Released to Imaging: 11/29/2022 3:04:23 PM

Received by OCD: 11/29/2022 2:58:34 PM

Page 7 of 51

Drawn By: MISTI MORGAN Released to Imaging: 11/29/2022 3:04:23 PM

•

Tables

Table 1 COG Operating LLC. NM DL State #1 Lea County, New Mexico

	Sample Sample	Soil Status TPH (mg/kg)				Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride				
Sample ID	Date	Depth (ft)	In-Situ	Removed	C6-C10	C10-C28	C28-C35	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	2/15/2018	0-1	Х		1,350	7,130	165	8,650	0.932	13.2	4.39	30.6	49.1	36.1
	"	1-1.5	Х		3,200	7,490	252	10,900	-	-	-	-	-	14.5
	"	2-2.5	Х		4,050	6,860	447	11,400	-	-	-	-	-	10.8
	"	3-3.5	Х		558	1,290	48	1,900	-	-	-	-	-	35.1
AH-2	2/15/2018	0-1	Х		96.6	5,690	186	5,970	0.0937	0.191	0.0235	0.0582	0.366	360
	"	1-1.5	Х		17.4	1,520	86.1	1,620	-	-	-	-	-	78.6
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	119
	"	3-3.5	Х		-	-	-	-	-	-	-	-	-	100
	"	4-4.5	Х		-	-	-	-	-	-	-	-	-	112
AH-3	2/15/2018	0-1	Х		466	7,190	244	7,900	1.56	6.90	0.789	5.06	14.3	763
	"	1-1.5	Х		316	2,840	113	3,270	-	-	-	-	-	90.8
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	429
	"	3-35	Х		-	-	-	-	-	-	-	-	-	109
AH-4	2/15/2018	0-1	Х		1,420	9,320	253	11,000	3.79	47.5	7.20	67.7	126	531
	"	1-1.5	Х		699	5,600	357	6,660	-	-	-	-	-	831

Proposed to Excavate and Remove

(-)

Not Analyzed

•

•

Photos

đ

TETRATECH

COG Operating LLC New Mexico DL State #1 Lea County, New Mexico

View Southwest – Area of AH-1

View South – Area of AH-2

View East – Area of AH-3

View East – Area of AH-4

•

Appendix A

ge 16 of 51 District | 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 **District IV** 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Release

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ase Notific	atio	n and Co	orrective A	ction			
						OPERA	FOR	🛛 Initia	l Report		Final Repor
Name of Co	mpany:	COG Operat	ing LLC	OGRID # 229	137	Contact:		Robert McNe	ill		
Address: 600 West Illinois Avenue, Midland TX 79701					Telephone N	lo.	432-683-7443	3			
Facility Nar	ne: New M	lexico DL S	tate #001			Facility Typ	e: Tank Battery				
Surface Owner: State Mineral Owner:				State		API No.	30-02	5-282	23		
Surree on								1141100	20.02		20
						N OF REI					
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/West Line		Coun	*
1	18	23\$	33E	1980		South	660	East		Lea	l
				Latitude 32.3	02948	Longitude	-103.6050491				
				NAT	URE	OF RELI	EASE				
Type of Rele						Volume of Release: Volume Recovered:					
		Oil and Produ	ced Water						bbls Oil &		
Source of Re	lease:	Test	_				lour of Occurrenc		Date and Hour of Discovery: June 11, 2017 9:45 am		
Was Immedia	4 NL	Tank	5			-	11, 2017 9:45 am		une 11, 201	7 9:45) am
was immedia	ate Notice C		Yes 🔲	No 🗌 Not Re	quired	If YES, To Whom? Ms. Yu – NMOCD / Ms. Groves – SLO					
	B	Whom? Reb	ecca Hask	ell		Date and H	lour: June 12, 201	7 Time of this Ema	il		
Was a Water						If YES, Volume Impacting the Watercourse					
			Yes 🛛	No							
If a Watercou	irse was Im	pacted, Descri	ibe Fully.*			RECEI	VED				
						By Olivi	a Yu at 2.	37 pm, Jun	15.20	17	
Describe Cau	ise of Probl	em and Reme	dial Action	Taken.*	C	_,		, pin, cun	.0, 20)	

The SWD pump failed to start and no high level alarm was received resulting in the tanks overflowing. Called the alarm company to repair the alarm. Describe Area Affected and Cleanup Action Taken.*

The release was within an unlined bern. A vacuum truck was dispatched to remove all freestanding fluids. Concho will have the spill area sampled to delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature: Rebecca	a Hospell	OIL CONSERVATIO	ON DIVISION
Printed Name:	Rebecca Haskell	Approved by Environmental Specialist:	y
Title:	Senior HSE Coordinator	Approval Date: 6/15/2017 Expirat	ion Date:
E-mail Address:	rhaskell@concho.com	Conditions of Approval:	Attached
Date: June 12, 2017	Phone: 432-683-7443	see attached directive	022
Attach Additional Shee	ets If Necessary		29/2
		1RP-4727 nOY1716650629	9
		pOY171665285	ie Bingeing:
			Ima
3			110

.

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - New Mexico DL State #1 Lea County, New Mexico

33 East

22 South

_	22 Sc	outh	32		
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14 382 350	13
19 (S) 280	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	23 Sc	outh	32		
6	5	4	3	2	1
7 <mark>639</mark>	8	9	10	11	12
18	17	16	15	14	13
19	20 713	21 400	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	24 S	outh	32	East	
6	5	4	3	2	1
7	8	9	10 20	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33 290	34	35	36

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13 391
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	23 So	outh	33	East	
6	5	4	3	2	1
7 475	8	9	10	11	12 325
18	17	16	15	14	13
19 400	20 400	21	22	23	24
30	29	28 400	27	26 225	25 225
31	32	33	34	35	36

	24 S	South	3	3 East	
6	5	4	3	2	1
7	8	9	10 24.6	11	12
18	17	16	15	14	13
19	20	21	22	23 208	24 16.9
30	29	28	27	26	25
31	32	33 <mark>93.2</mark>	34	35	36

_	22 8	South		34 East				
6	5	4	3	2	1			
7	8	9	10	11 30	12 50			
18	17	16	15	14	13			
19	20	21	22	23	24			
30	29	28	27	26	25			
31	32	33	34	35	36			

	23 S	outh	3	84 East	
6	5	4	3	2	1
7	8 225	9	10	11	12
18	17	16	15 430	14 318	13
19	20	21	22 295	23 265	24
30	29	28	27	26	25
31	32 130	33	34	35	36

	24 So	outh	34	East	
6	5	4	3	2	1
81		475			
7	8	9	10	11	12
				40	
18	17	16	15	14	13
19	20	21	22	23	24
		431			
30	29	28	27	26	25
31	32	33	34	35	36

88 New Mexico State Engineers Well Reports

- **105** USGS Well Reports
- Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6)
 Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orphan C=the file closed)	ned,	(qu						E 3=SW argest)	,	3 UTM in meter	s)	(In feet)	
		POD		_	_	_								
POD Number	Code	Sub-	County	-	Q 16	-	Sec	Twe	Rna	х	Y	DepthWellDe		Vater
<u>C 02275</u>	Couc	CUB	LE		3		19		33E	630843	3573557* 🌍	650	400	25
<u>C 02276</u>		CUB	LE	3	1	4	19	23S	33E	630848	3573154* 🌍	650	400	25
<u>C 02277</u>		CUB	LE	2	3	4	20	23S	33E	632663	3572970* 🌍	550	400	15
<u>C 02278</u>		CUB	LE	3	4	2	28	23S	33E	634484	3571989* 🌍	650	400	25
<u>C 02279</u>		CUB	LE	3	4	3	28	23S	33E	633691	3571173* 🌍	650	400	25
<u>C 02280</u>		CUB	LE	3	2	4	28	23S	33E	634489	3571586* 🥘	650	400	25
<u>C 02281</u>		CUB	LE	3	4	4	28	23S	33E	634495	3571183* 🌍	545	400	14
<u>C 02282</u>		CUB	LE	3	1	1	25	23S	33E	638098	3572436* 🧉	325	225	10
<u>C 02283</u>		CUB	LE	4	2	2	26	23S	33E	637896	3572431* 🧉	325	225	10
<u>C 02284</u>		CUB	LE	4	2	4	26	23S	33E	637907	3571626* 🧉	325	225	10
C 03582 POD1		С	LE	4	1	1	14	23S	33E	636583	3575666 🌍	590		
											Average Depth t	o Water:	347 fee	et
											Minimu	m Depth:	225 fee	et
											Maximu	m Depth:	400 fee	et

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/27/18 8:39 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

•

Appendix C

Analytical Report 576779

for Tetra Tech- Midland

Project Manager: Ike Tavarez

NM DL State #1

212C-MD-00958 Task #23

05-MAR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176)

05-MAR-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **576779 NM DL State #1** Project Address: Lea County, New Mexico

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 576779. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 576779 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 22 of 51

Sample Id

AH #1 (0-1')
AH #1 (1-1.5')
AH #1 (2-2.5')
AH #1 (3-3.5')
AH #2 (0-1')
AH #2 (1-1.5')
AH #2 (2-2.5')
AH #2 (3-3.5')
AH #2 (4-4.5')
AH #3 (0-1')
AH #3 (1-1.5')
AH #3 (2-2.5')
AH #3 (3-3.5')
AH #4 (0-1')
AH #4 (1-1.5')

Sample Cross Reference 576779

Tetra Tech- Midland, Midland, TX

NM DL State #1

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	02-15-18 00:00		576779-001
S	02-15-18 00:00		576779-002
S	02-15-18 00:00		576779-003
S	02-15-18 00:00		576779-004
S	02-15-18 00:00		576779-005
S	02-15-18 00:00		576779-006
S	02-15-18 00:00		576779-007
S	02-15-18 00:00		576779-008
S	02-15-18 00:00		576779-009
S	02-15-18 00:00		576779-010
S	02-15-18 00:00		576779-011
S	02-15-18 00:00		576779-012
S	02-15-18 00:00		576779-013
S	02-15-18 00:00		576779-014
S	02-15-18 00:00		576779-015

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: NM DL State #1

 Project ID:
 212C-MD-00958 Task #2.

 Work Order Number(s):
 576779

Report Date: 05-MAR-18 Date Received: 02/16/2018

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3041808 BTEX by EPA 8021B

Lab Sample ID 576779-005 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 576779-005.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 576779-005 SD.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3041960 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3041964 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3042388 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 576779

Tetra Tech- Midland, Midland, TX Project Name: NM DL State #1

Project Id:212C-MD-00958 Task #23Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Fri Feb-16-18 12:44 pmReport Date:05-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	576779-	001	576779-0	02	576779-0	03	576779-0	04	576779-(005	576779-0	06
	Field Id:	AH #1 ((AH #1 (1-	-	AH #1 (2-2		AH #1 (3-;		AH #2 (0		AH #2 (1-1	
Analysis Requested		AH #1 (()-1)	АП #1 (1-	1.5)	Ап #1 (2-2	2.3)	АП #1 (3	5.5)	AH #2 (0	-1)	АП #2 (1-1	1.5)
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-15-18	00:00	Feb-15-18 (00:00	Feb-15-18 (00:00	Feb-15-18 (00:00	Feb-15-18	00:00	Feb-15-18 0	00:00
BTEX by EPA 8021B	Extracted:	Feb-20-18	15:00							Feb-20-18	11:00		
	Analyzed:	Feb-22-18	01:20							Feb-20-18	14:59		
	Units/RL:	mg/kg	RL							mg/kg	RL		
Benzene		0.932	0.0994							0.0937	0.00199		
Toluene		13.2	0.0994							0.191	0.00199		
Ethylbenzene		4.39	0.0994							0.0235	0.00199		
m,p-Xylenes		19.5	0.199							0.0411	0.00398		
o-Xylene		11.1	0.0994							0.0171	0.00199		
Total Xylenes		30.6	0.0994							0.0582	0.00199		
Total BTEX		49.1	0.0994							0.366	0.00199		
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-22-18	16:00	Feb-22-18	16:00	Feb-22-18 1	6:00	Feb-22-18 1	6:00	Feb-22-18	16:00	Feb-22-18 1	6:00
	Analyzed:	Feb-22-18	20:48	Feb-22-18 2	20:53	Feb-22-18 2	20:58	Feb-22-18 2	1:03	Feb-22-18	21:09	Feb-22-18 2	21:14
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		36.1	4.97	14.5	4.91	10.8	4.99	35.1	4.95	360	5.00	78.6	4.91
TPH By SW8015 Mod	Extracted:	Feb-20-18	17:00	Feb-28-18 (08:00	Mar-01-18 1	12:00	Mar-02-18	8:00	Feb-20-18	17:00	Feb-28-18 0	08:00
	Analyzed:	Feb-21-18	08:36	Mar-01-18	10:41	Mar-02-18 1	14:23	Mar-03-18	5:22	Feb-21-18	06:14	Mar-01-18 1	1:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		1350	75.0	3200	74.8	4050	74.8	558 K	15.0	96.6	74.9	17.4	15.0
Diesel Range Organics (DRO)		7130	75.0	7490	74.8	6860	74.8	1290 K	15.0	5690	74.9	1520	15.0
Oil Range Hydrocarbons (ORO)		165	75.0	252	74.8	447	74.8	47.7 K	15.0	186	74.9	86.1	15.0
Total TPH		8650	75.0	10900	74.8	11400	74.8	1900 K	15.0	5970	74.9	1620	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 5 of 30

Certificate of Analysis Summary 576779

Tetra Tech- Midland, Midland, TX Project Name: NM DL State #1

Project Id:212C-MD-00958 Task #23Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Fri Feb-16-18 12:44 pmReport Date:05-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	576779-0	007	576779-0	08	576779-0	009	576779-0	010	576779-(011	576779-0)12
	Field Id:	AH #2 (2-2	2.5')	AH #2 (3-3	3.5')	AH #2 (4-	4.5')	AH #3 (0)-1')	AH #3 (1-	1.5')	AH #3 (2-	2.5')
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL	,	SOIL		SOIL	
	Sampled:	Feb-15-18 (00:00	Feb-15-18 (00:00	Feb-15-18 (00:00	Feb-15-18	00:00	Feb-15-18	00:00	Feb-15-18 (00:00
BTEX by EPA 8021B	Extracted:							Feb-20-18	15:00				
	Analyzed:							Feb-22-18	02:17				
	Units/RL:							mg/kg	RL				
Benzene								1.56	0.0998				
Toluene								6.90	0.0998				
Ethylbenzene								0.789	0.0998				
m,p-Xylenes								4.18	0.200				
o-Xylene								0.876	0.0998				
Total Xylenes								5.06	0.0998				
Total BTEX								14.3	0.0998				
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-22-18	16:00	Feb-22-18 1	6:00	Feb-22-18	16:00	Feb-22-18	16:00	Feb-22-18	16:00	Feb-22-18	16:00
	Analyzed:	Feb-22-18	21:30	Feb-22-18 2	21:35	Feb-22-18 2	21:51	Feb-22-18	21:56	Feb-22-18	22:02	Feb-22-18	22:07
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		119	4.92	100	4.95	112	4.95	763	4.90	90.8	4.97	429	4.92
TPH By SW8015 Mod	Extracted:							Feb-20-18	17:00	Feb-28-18	08:00		
	Analyzed:							Feb-21-18	06:42	Mar-01-18	11:33		
	Units/RL:							mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)	'							466	150	316	15.0		
Diesel Range Organics (DRO)								7190	150	2840	15.0		
Oil Range Hydrocarbons (ORO)								244	150	113	15.0		
Total TPH								7900	150	3270	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 30

Certificate of Analysis Summary 576779

Tetra Tech- Midland, Midland, TX Project Name: NM DL State #1

Project Id:212C-MD-00958 Task #23Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Fri Feb-16-18 12:44 pmReport Date:05-MAR-18Project Manager:Kelsey Brooks

		57 (770)	10	57 (770.0	14	57(770)	1.5		
	Lab Id:	576779-0	-	576779-0		576779-0			
Analysis Requested	Field Id:	AH #3 (3-	3.5')	AH #4 (0-	-1')	AH #4 (1-	1.5')		
Thurysis Requested	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Feb-15-18	00:00	Feb-15-18 0	00:00	Feb-15-18 (00:00		
BTEX by EPA 8021B	Extracted:			Feb-22-18 0	8:00	Feb-26-18	17:15		
	Analyzed:			Feb-22-18 1	2:02	Feb-28-18	15:18		
	Units/RL:			mg/kg	RL	mg/kg	RL		
Benzene				3.79	0.499	0.653	0.0996		
Toluene				47.5	0.499	16.9	0.0996		
Ethylbenzene				7.20	0.499	3.65	0.0996		
m,p-Xylenes				51.9	0.998	11.4	0.199		
o-Xylene				15.8	0.499	7.14	0.0996		
Total Xylenes				67.7	0.499	18.5	0.0996		
Total BTEX				126	0.499	39.7	0.0996		
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-22-18	16:00	Feb-22-18 1	6:00	Feb-22-18	16:00		
	Analyzed:	Feb-22-18	22:12	Feb-22-18 2	2:18	Feb-22-18 2	22:23		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		109	4.90	531	5.00	831	4.99		
TPH By SW8015 Mod	Extracted:			Feb-20-18 1	7:00	Feb-28-18 (08:00		
	Analyzed:			Feb-21-18 0	7:07	Feb-28-18 2	21:39		
	Units/RL:			mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)				1420	74.8	699	74.9		
Diesel Range Organics (DRO)				9320	74.8	5600	74.9		
Oil Range Hydrocarbons (ORO)				253	74.8	357	74.9		
Total TPH				11000	74.8	6660	74.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 7 of 30

LABORATORIES

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Tax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Page 28 of 51

Project Name: NM DL State #1

Lab Batch #: 304	41808	Sample: 576779-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units: mg	g/kg	Date Analyzed: 02/20/18 14:59	SU	JRROGATE R	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobenzer	ne		0.0265	0.0300	88	80-120	
4-Bromofluorobenz	zene		0.0338	0.0300	113	80-120	
Lab Batch #: 304	41816	Sample: 576779-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units: mg	g/kg	Date Analyzed: 02/21/18 06:14	st	JRROGATE R	ECOVERY S	STUDY	
		y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane			108	99.8	108	70-135	
o-Terphenyl			51.9	49.9	104	70-135	
Lab Batch #: 304	41816	Sample: 576779-010 / SMP	Batc	h: 1 Matrix	: Soil		
Units: mg	g/kg	Date Analyzed: 02/21/18 06:42	SU	JRROGATE R	ECOVERYS	STUDY	
		y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane			119	99.7	119	70-135	
o-Terphenyl			53.1	49.9	106	70-135	
Lab Batch #: 304	41816	Sample: 576779-014 / SMP	Batc	h: 1 Matrix	: Soil		
Units: mg	g/kg	Date Analyzed: 02/21/18 07:07	SU	JRROGATE R	ECOVERY S	STUDY	
		y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane			116	99.7	116	70-135	
o-Terphenyl			59.6	49.9	119	70-135	
Lab Batch #: 304	41816	Sample: 576779-001 / SMP	Batc	h: 1 Matrix	: Soil	1	
Units: mg	g/kg	Date Analyzed: 02/21/18 08:36	SU	JRROGATE R	ECOVERY S	STUDY	
		y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
[Analytes			[D]		
1-Chlorooctane			127	100	127	70-135	
o-Terphenyl			63.0	50.0	126	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Orders : 576779,

Form 2 - Surrogate Recoveries

Project Name: NM DL State #1

Project ID: 212C-MD-00958 Task #23

: 3041964	Sample: 576779-001 / SMP			-		
mg/kg	Date Analyzed: 02/22/18 01:20	SU	JRROGATE R	ECOVERY S	STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
enzene		0.0247	0.0300	82	80-120	
obenzene		0.0304	0.0300	101	80-120	
: 3041964	Sample: 576779-010 / SMP	Batc	h: 1 Matrix	: Soil	1 1	
mg/kg	Date Analyzed: 02/22/18 02:17	su	RROGATE R	ECOVERY	STUDY	
BTEX	-	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
	Anarytes	0.0255	0.0200		80.120	
	Sample: 576779-014 / SMP				80-120	
	-					
ing ng	Duce 111111/2001. 02/22/10 12:02	50	KKUGAIE K			
BTEX	-	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes					
				81		
					80-120	
	-					
mg/kg	Date Analyzed: 02/28/18 15:18	st	JRROGATE R	ECOVERYS	STUDY	
BTEX	-	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
enzene		0.0218	0.0300	73	70-130	
obenzene		0.0329	0.0300	110	70-130	
: 3042497	Sample: 576779-015 / SMP		h: 1 Matrix	: Soil	I	
mg/kg	Date Analyzed: 02/28/18 21:39	SU	JRROGATE R	ECOVERY S	STUDY	
TPH I		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
ne		120	99.9	120	70-135	
	mg/kg BTEX benzene cobenzene cobenze	mg/kg Date Analyzed: 02/22/18 01:20 BTEX by EPA 8021B Analytes Analytes Penzene robenzene 2 : 3041964 Sample: 576779-010 / SMP mg/kg Date Analyzed: 02/22/18 02:17 BTEX by EPA 8021B Analytes mg/kg Date Analyzed: 02/22/18 02:17 BTEX by EPA 8021B Penzene robenzene Penzene rozyzz/18 15:18 Penzene <	mg/kg Date Analyzed: 02/22/18 01:20 St BTEX by EPA 8021B Amount Found [A] Analytes 0.0247 benzene 0.0304 robenzene 0.0304 is 3041964 Sample: 576779-010 / SMP Bate mg/kg Date Analyzed: 02/22/18 02:17 St BTEX by EPA 8021B Amount Found [A] Amount Found [A] mg/kg Date Analyzed: 02/22/18 02:17 St BTEX by EPA 8021B Amount Found [A] Manount Found [A] mg/kg Date Analyzed: 02/22/18 12:02 St benzene 0.0255 St robenzene 0.0269 St g/kg Date Analyzed: 02/22/18 12:02 St BTEX by EPA 8021B Amount Found [A] Found [A] mg/kg Date Analyzed: 02/28/18 15:18 St mg/kg Date Analyzed: 02/28/18 21:39 St robenzene 0.0329 St robenzene<	mg/kg Date Analyzed: 02/22/18 01:20 SURROGATE R BTEX by EPA 8021B Amount Found [A] True Amount [B] Analytes 0.0247 0.0300 robenzene 0.0247 0.0300 is 3041964 Sample: 576779-010 / SMP Batch: 1 Matrix mg/kg Date Analyzed: 02/22/18 02:17 SURROGATE R BTEX by EPA 8021B Amount Found [A] True Amount [B] Analytes 0.0255 0.0300 renzene 0.0255 0.0300 is 3041960 Sample: 576779-014 / SMP Batch: 1 Matrix mg/kg Date Analyzed: 02/22/18 12:02 SURROGATE R BTEX by EPA 8021B Amount Found [A] True Amount [B] Matrix mg/kg Date Analyzed: 02/22/18 12:02 SURROGATE R BTEX by EPA 8021B Amount Found [A] True Amount [B] Matrix mg/kg Date Analyzed: 02/28/18 15:18 SURROGATE R BTEX by EPA 8021B Amount Found [A] True Amount [B] Matrix SURROGATE R BTEX by EPA 8021B Amount [A] True Amount [B] Matrix Sug2497 Samp	mg/kg Date Analyzed: 02/22/18 01:20 SURROGATE RECOVERY S BTEX by EPA 8021B Amount [B] True Manount [B] Recovery %R [D] enzene 0.0247 0.0300 82 tobenzene 0.0304 0.0300 101 : 3041964 Sample: 576779-010 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 02:17 SURROGATE RECOVERY S Recovery %R [D] BTEX by EPA 8021B Amount [A] True Amount [B] Recovery %R [D] eenzene 0.0255 0.0300 85 robenzene 0.0269 0.0300 90 : 3041960 Sample: 576779-014 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 12:02 SURROGATE RECOVERY S BTEX by EPA 8021B Amount [A] True Amount [B] Recovery %G [D] ordenzene 0.0249 0.0300 83 sold2388 Sample: 576779-015 / SMP Batch: 1 Matrix: Soil merzene 0.0218 0.0300 83 1 sold2388 Sample: 576779-015 / SMP Batch: 1 <t< td=""><td>mg/kg Date Analyzed: 02/22/18 01:20 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount fal True Annount [B] Control Amount [B] Control Mecovery [B] Control Limits %R enzene 0.0247 0.0300 82 80-120 robenzene 0.0304 0.0300 101 80-120 is 041964 Sample: 576779-010 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 02:17 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R Control is 0.0269 sol41960 Sample: 576779-014 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 12:02 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount [A] True Amount [B] Recovery %R Control Limits %R obsenzene 0.0243 0.0300 81 80-120 is 0.04238 Sample: 576779-015 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/28/18 15:18 SURROGATE RECOVERY STUDY Manalytes</td></t<>	mg/kg Date Analyzed: 02/22/18 01:20 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount fal True Annount [B] Control Amount [B] Control Mecovery [B] Control Limits %R enzene 0.0247 0.0300 82 80-120 robenzene 0.0304 0.0300 101 80-120 is 041964 Sample: 576779-010 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 02:17 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R Control is 0.0269 sol41960 Sample: 576779-014 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/22/18 12:02 SURROGATE RECOVERY STUDY BTEX by EPA 8021B Amount [A] True Amount [B] Recovery %R Control Limits %R obsenzene 0.0243 0.0300 81 80-120 is 0.04238 Sample: 576779-015 / SMP Batch: 1 Matrix: Soil mg/kg Date Analyzed: 02/28/18 15:18 SURROGATE RECOVERY STUDY Manalytes

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

Units: n	na/ka	Data Analyzad. 02/01/19 10.41		DDOC	naor		
Units: n	ng/kg	Date Analyzed: 03/01/18 10:41	st	JRROGATE I	RECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			122	99.7	122	70-135	
o-Terphenyl			49.4	49.9	99	70-135	
Lab Batch #: 3	8042497	Sample: 576779-006 / SMP	Batc	h: 1 Matri	x: Soil		
Units: n	ng/kg	Date Analyzed: 03/01/18 11:05	SU	JRROGATE 1	RECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctane		Analytes	112	99.7	112	70-135	
o-Terphenyl			58.9	49.9	112	70-135	
Lab Batch #: 3	3042497	Sample: 576779-011 / SMP	Batc		x: Soil	10-155	
	ng/kg	Date Analyzed: 03/01/18 11:33		JRROGATE I		STUDY	
			Amount	True		Control	
	TPHI	3y SW8015 Mod	Found [A]	Amount [B]	Recovery %R	Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane			113	100	113	70-135	
o-Terphenyl			58.0	50.0	116	70-135	
Lab Batch #: 3	8042633	Sample: 576779-003 / SMP	Batc	h: 1 Matri	x: Soil		
Units: n	ng/kg	Date Analyzed: 03/02/18 14:23	SU	IRROGATE	RECOVERY	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane			120	99.7	120	70-135	
o-Terphenyl			44.5	49.9	89	70-135	
Lab Batch #: 3	8042778	Sample: 576779-004 / SMP	Batc		x: Soil		
U nits: n	ng/kg	Date Analyzed: 03/03/18 15:22	su	RROGATE I	RECOVERYS	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane			124	99.8	124	70-135	
o-Terphenyl							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

Lab Daten #.	3041808	Sample: 7639600-1-BLK /	BLK Batch	: 1 Matrix	: Sona			
Units:	mg/kg	Date Analyzed: 02/20/18 14:41	SU	RROGATE R	ECOVERYS	STUDY		
	втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobe	1,4-Difluorobenzene			0.0300	81	80-120		
4-Bromofluor	obenzene		0.0317	0.0300	106	80-120		
Lab Batch #:	3041816	Sample: 7639520-1-BLK /	BLK Batch	: 1 Matrix	: Solid	I I		
Units:	mg/kg	Date Analyzed: 02/20/18 19:36	SU	RROGATE R	ECOVERY S	STUDY		
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctan	e		121	100	121	70-135		
o-Terphenyl	-		63.2	50.0	121	70-135		
Lab Batch #:	3041964	Sample: 7639673-1-BLK /				10 155		
Units:	-							
BTEX by EPA 8021B Analytes			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[]	[2]	[D]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,4-Difluorobenzene			0.0249	0.0300	83	80-120		
4-Bromofluor	obenzene		0.0298	0.0300	99	80-120		
Lab Batch #:	3041960	Sample: 7639666-1-BLK /	BLK Batch	: 1 Matrix	: Solid			
Units:	mg/kg	Date Analyzed: 02/22/18 08:51	SURROGATE RECOVERY STUDY					
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene			0.0251	0.0300	84	80-120		
4-Bromofluorobenzene			0.0319	0.0300	106	80-120		
Lab Batch #:	3042388	Sample: 7639915-1-BLK /	BLK Batch	: 1 Matrix	: Solid			
Units:	mg/kg	Date Analyzed: 02/28/18 05:35	SUI	RROGATE R	ECOVERY S	STUDY		
BTEX by EPA 8021B Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage	
1,4-Difluorobenzene			0.0239	0.0300	80	70-130		
1,4-Difluorobe	enzene		0.0239	0.0300	00	/0-130		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

Lab Batch	#: 3042497	Sample: 7639972-1-BLK / 1	BLK Batch	: 1 Matrix	: Solid			
Units:	mg/kg	Date Analyzed: 02/28/18 07:55	SUI	RROGATE R	ECOVERY	STUDY		
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane	.	103	100	103	70-135		
o-Terpheny	l		53.0	50.0	106	70-135		
Lab Batch	#: 3042633	Sample: 7640031-1-BLK /	BLK Batch	: 1 Matrix	: Solid	1 1		
Units:	mg/kg	Date Analyzed: 03/01/18 13:16	SURROGATE RECOVERY STUDY					
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane	Analytes	104	100	104	70-135		
o-Terpheny			53.5	50.0	104	70-135		
	#: 3042778	Sample: 7640127-1-BLK /				70-155		
Units:	mg/kg	Date Analyzed: 03/03/18 04:04	r	RROGATE R		STUDY		
		•						
	TPH 1	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane		100	100	100	70-135		
o-Terpheny	l		52.4	50.0	105	70-135		
1 7	#: 3041808	Sample: 7639600-1-BKS / 1						
Units:	mg/kg	Date Analyzed: 02/20/18 12:44	SURROGATE RECOVERY STUDY					
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluor	obenzene		0.0249	0.0300	83	80-120		
4-Bromofluorobenzene			0.0342	0.0300	114	80-120		
Lab Batch	#: 3041816	Sample: 7639520-1-BKS /]	BKS Batch	: 1 Matrix	Solid	<u> </u>		
Units:	mg/kg	Date Analyzed: 02/20/18 20:02	SUI	RROGATE R	ECOVERY	STUDY		
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage	
1-Chlorooct	ane	J	107	100	107	70-135		
	<u> </u>							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

Work Orders Lab Batch #: 30		'9, Sample: 7639673-1-BKS / I	BKS Batc		212C-MD-0)0958 Task	#23	
Units: mg	g/kg	Date Analyzed: 02/21/18 20:15		RROGATE R	ECOVERY S	STUDY		
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluorobenze	ne		0.0260	0.0300	87	80-120		
4-Bromofluoroben			0.0324	0.0300	108	80-120		
Lab Batch #: 30		Sample: 7639666-1-BKS / 1	BKS Batc	h: 1 Matrix	: Solid			
U nits: mg	g/kg	Date Analyzed: 02/22/18 07:15	SU	RROGATE R	ECOVERY S	STUDY		
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenze	ne	1 mary tes	0.0253	0.0300	84	80-120		
4-Bromofluoroben	zene		0.0334	0.0300	111	80-120		
Lab Batch #: 30	42388	Sample: 7639915-1-BKS / 1						
U nits: mg	g/kg	Date Analyzed: 02/28/18 03:42	SURROGATE RECOVERY STUDY					
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
		Analytes						
1,4-Difluorobenze			0.0262	0.0300	87	70-130		
4-Bromofluoroben			0.0338	0.0300	113	70-130		
Lab Batch #: 30		Sample: 7639972-1-BKS / 1	BKS Batc	h: 1 Matrix	: Solid			
U nits: mg	g/kg	Date Analyzed: 02/28/18 08:22	SURROGATE RECOVERY STUDY					
	TPH]	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane			110	100	110	70-135		
o-Terphenyl			53.5	50.0	107	70-135		
Lab Batch #: 30	42633	Sample: 7640031-1-BKS / 1	BKS Bate	h: 1 Matrix	: Solid			
U nits: mg	g/kg	Date Analyzed: 03/01/18 13:41	SU	RROGATE R	ECOVERY S	STUDY		
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane			116	100	116	70-135		
o-Terphenyl			58.0	50.0	110	70-135		
			56.0	50.0	110	/0-133		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

Units:	malia	Data Analyzed 02/02/19 04-22			n a a martine a			
Units:	mg/kg	Date Analyzed: 03/03/18 04:32	SU	RROGATE R	ECOVERY S	STUDY		
	TPH By SW8015 Mod			True Amount [B]	Recovery %R	Control Limits %R	Flag	
		Analytes			[D]			
1-Chlorooc	tane		127	100	127	70-135		
o-Terpheny	1		64.8	50.0	130	70-135		
Lab Batch	#: 3041808	Sample: 7639600-1-BSD /	BSD Bate	h: 1 Matrix	: Solid	·		
Units:	mg/kg	Date Analyzed: 02/20/18 13:04	SU	RROGATE R	ECOVERY S	STUDY		
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluor		Anarytes	0.0254	0.0300	85	80-120		
4-Bromoflu			0.0234	0.0300	116	80-120		
	#: 3041816	Sample: 7639520-1-BSD /				80-120		
Units:	mg/kg	Date Analyzed: 02/20/18 20:27	/ BSD Batch: 1 Matrix: Solid SURROGATE RECOVERY STUDY					
c must		Duce mary2001 02/20/10/2012/	SURROGATE RECOVERT STUDY					
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chlorooc	tane		123	100	123	70-135		
o-Terpheny	1		63.8	50.0	128	70-135		
Lab Batch	#: 3041964	Sample: 7639673-1-BSD /	BSD Bate	h: 1 Matrix	: Solid			
Units:	mg/kg	Date Analyzed: 02/21/18 20:34	SU	ECOVERY S	STUDY			
		(by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage	
140.0		Analytes	0.0250	0.0000		00.100		
1,4-Difluor			0.0258	0.0300	86	80-120		
4-Bromoflu	#: 3041960	Sample: 7639666-1-BSD /	0.0336 BSD Bate	0.0300 h: 1 Matrix	112	80-120		
		-						
Units:	mg/kg	Date Analyzed: 02/22/18 07:35	st	RROGATE R	ECOVERY S	STUDY		
BTEX by EPA 8021B			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage	
		Analytes			[D]			
1,4-Difluorobenzene			0.0264	0.0300	88	80-120		
4-Bromofluorobenzene			0.0328	0.0300	109	80-120		

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM DL State #1

	#: 3042388	Sample: 7639915-1-BSD /	BSD Batcl	h: 1 Matrix	: Solid					
Units:	mg/kg	Date Analyzed: 02/28/18 04:01	RROGATE R	OGATE RECOVERY STUDY						
	втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluor			0.0253	0.0300	84	70-130				
4-Bromoflu			0.0349	0.0300	116	70-130				
Lab Batch	#: 3042497	Sample: 7639972-1-BSD /	BSD Batcl	h: 1 Matrix	: Solid					
Units:	mg/kg	Date Analyzed: 02/28/18 08:48	SU	SURROGATE RECOVERY STUDY						
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	tane		101	100	101	70-135				
o-Terpheny			54.8	50.0	110	70-135				
	#: 3042633	Sample: 7640031-1-BSD /				10 155				
Units:	mg/kg	Date Analyzed: 03/01/18 14:07	SURROGATE RECOVERY STUDY							
						1				
	TPH I	3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooct	tane	Analytes	122	100	122	70-135				
o-Terpheny			60.1	50.0	122	70-135				
	#: 3042778	Sample: 7640127-1-BSD /			-	10 155				
Units:	mg/kg	Date Analyzed: 03/03/18 04:57		RROGATE R		STUDY				
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes	[]	[-]	[D]	,				
1-Chlorooct	tane		116	100	116	70-135				
o-Terpheny	1		59.1	50.0	118	70-135				
Lab Batch	#: 3041808	Sample: 576779-005 S / N	IS Batc	h: 1 Matrix	: Soil	1	1			
Units:	mg/kg	Date Analyzed: 02/20/18 13:23	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluor	obenzene		0.0272	0.0300	91	80-120				
· ·	orobenzene		0.0338	0.0300	113	80-120				
. Bromonu			0.0550	0.0500	115	00-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

Project Name: NM DL State #1

	3041816	Sample: 576780-001 S / MS	Batc				
Units:	mg/kg	Date Analyzed: 02/20/18 21:21	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctan	e		119	99.9	119	70-135	
o-Terphenyl			58.4	50.0	117	70-135	
Lab Batch #:	3041964	Sample: 576848-003 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 02/21/18 20:53	SU	RROGATE R	ECOVERY	STUDY	
	втех	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe	enzene	Analytes	0.0248	0.0300	83	80-120	
4-Bromofluoro	benzene		0.0318	0.0300	106	80-120	
Lab Batch #:	3041960	Sample: 576402-004 S / MS	Batc				
Units:	mg/kg	Date Analyzed: 02/22/18 07:54	SU	RROGATE R	ECOVERY	STUDY	
	втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes			[0]		
1,4-Difluorobe			0.0267	0.0300	89	80-120	
4-Bromofluoro			0.0335	0.0300	112	80-120	
Lab Batch #:		Sample: 577388-008 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 02/28/18 04:21	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe	enzene		0.0266	0.0300	89	70-130	
4-Bromofluoro	benzene		0.0347	0.0300	116	70-130	
Lab Batch #:	3042497	Sample: 577419-021 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 02/28/18 09:38	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes					
1-Chlorooctan o-Terphenyl	e		93.5	99.9 50.0	94	70-135 70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: NM DL State #1

Work Order Lab Batch #: 3		Sample: 577756-001 S / MS	S Bate	Project ID h: 1 Matrix			
Units: n	ng/kg	Date Analyzed: 03/01/18 14:59	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane			118	99.7	118	70-135	
o-Terphenyl			56.8	49.9	114	70-135	
Lab Batch #: 3	042778	Sample: 577595-021 S / MS	S Bate	h: 1 Matrix	: Soil	·	
Units: n	ng/kg	Date Analyzed: 03/03/18 05:49	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctane		1 iiui y tes	117	99.9	117	70-135	
o-Terphenyl			56.6	50.0	113	70-135	
Lab Batch #: 3	041808	Sample: 576779-005 SD / N	ASD Bate	h: 1 Matrix	: Soil		
Units: n	ng/kg	Date Analyzed: 02/20/18 13:42	SU	JRROGATE R	ECOVERY	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobenz	ene		0.0355	0.0300	118	80-120	
4-Bromofluorobe	enzene		0.0399	0.0300	133	80-120	**
Lab Batch #: 3	041816	Sample: 576780-001 SD / M	ASD Bate	h: 1 Matrix	: Soil		
Units: n	ng/kg	Date Analyzed: 02/20/18 21:48	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane			126	100	126	70-135	
o-Terphenyl			59.7	50.0	119	70-135	
Lab Batch #: 3	041964	Sample: 576848-003 SD / M	ASD Bate	h: 1 Matrix	: Soil	·	
Units: n	ng/kg	Date Analyzed: 02/21/18 21:12	SU	JRROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobenz			0.0262	0.0300	87	80-120	
4-Bromofluorobe	enzene		0.0315	0.0300	105	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

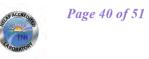
Form 2 - Surrogate Recoveries

Project Name: NM DL State #1

Work Order Lab Batch #: 3		9, Sample: 576402-004 SD / M	ISD Bate		: 212C-MD-0 :: Soil	00958 Task	#23
Units: 1	ng/kg	Date Analyzed: 02/22/18 16:59	SU	JRROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenz	zene		0.0245	0.0300	82	80-120	
4-Bromofluorob	enzene		0.0346	0.0300	115	80-120	
Lab Batch #: 3	3042388	Sample: 577388-008 SD / N	ISD Batc	h: 1 Matrix	: Soil	<u>.</u>	
Units: 1	ng/kg	Date Analyzed: 02/28/18 04:40	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenz		Analytes	0.0247	0.0200		70.120	
4-Bromofluorob			0.0247	0.0300	82	70-130	
Lab Batch #:		Sample: 577419-021 SD / N	0.0337 ISD Batc	0.0300 h: 1 Matrix	112 	/0-130	
	ng/kg	Date Analyzed: 02/28/18 10:05					
	iig/kg	Date Analyzeu: 02/28/18 10.05	st	JRROGATE R	ECOVERY S	STUDY	
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			90.0	99.9	90	70-135	
o-Terphenyl			41.3	50.0	83	70-135	
Lab Batch #: 3	3042633	Sample: 577756-001 SD / M	ISD Bate	h: 1 Matrix	: Soil		
Units: 1	ng/kg	Date Analyzed: 03/01/18 15:24	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		-	107	99.7	107	70-135	
o-Terphenyl			52.2	49.9	105	70-135	
Lab Batch #: 3	3042778	Sample: 577595-021 SD / N	ISD Batc	h: 1 Matrix	: Soil	1	1
Units: 1	ng/kg	Date Analyzed: 03/03/18 06:15	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			114	99.7	114	70-135	
o-Terphenyl			53.8	49.9	108	70-135	

* Surrogate outside of Laboratory QC limits

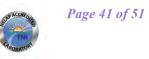
** Surrogates outside limits; data and surrogates confirmed by reanalysis


*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 39 of 51



.

Project Name: NM DL State #1

Work Order #: 576779							Proj	ject ID:	212C-MD-0	00958 Tas	k #23
Analyst: ALJ	D	ate Prepar	ed: 02/20/20	18			Date A	nalyzed: (02/20/2018		
Lab Batch ID: 3041808 Sample: 7639600-1	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00202	0.101	0.0902	89	0.100	0.0890	89	1	70-130	35	
Toluene	< 0.00202	0.101	0.0952	94	0.100	0.0942	94	1	70-130	35	
Ethylbenzene	< 0.00202	0.101	0.106	105	0.100	0.104	104	2	71-129	35	
m,p-Xylenes	< 0.00403	0.202	0.210	104	0.200	0.205	103	2	70-135	35	
o-Xylene	< 0.00202	0.101	0.103	102	0.100	0.102	102	1	71-133	35	
Analyst: ALJ	D	ate Prepar	red: 02/22/202	18			Date A	nalyzed: (02/22/2018		
Lab Batch ID: 3041960 Sample: 7639666-1	-BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0994	0.103	104	0.0998	0.0888	89	15	70-130	35	
Toluene	<0.00199	0.0994	0.111	112	0.0998	0.0928	93	18	70-130	35	
Ethylbenzene	<0.00199	0.0994	0.124	125	0.0998	0.0992	99	22	71-129	35	
m,p-Xylenes	< 0.00398	0.199	0.247	124	0.200	0.196	98	23	70-135	35	
o-Xylene	< 0.00199	0.0994	0.120	121	0.0998	0.0950	95	23	71-133	35	

.

Project Name: NM DL State #1

Work Order #: 576779							Proj	ject ID:	212C-MD-0	00958 Tas	k #23
Analyst: ALJ	D	ate Prepar	ed: 02/20/20	18			Date A	nalyzed: (02/21/2018		
Lab Batch ID: 3041964 Sample: 7639673-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00199	0.0994	0.0823	83	0.100	0.0935	94	13	70-130	35	
Toluene	<0.00199	0.0994	0.0887	89	0.100	0.101	101	13	70-130	35	
Ethylbenzene	< 0.00199	0.0994	0.102	103	0.100	0.117	117	14	71-129	35	
m,p-Xylenes	<0.00398	0.199	0.201	101	0.201	0.229	114	13	70-135	35	
o-Xylene	<0.00199	0.0994	0.0994	100	0.100	0.114	114	14	71-133	35	
Analyst: ALJ	D	ate Prepar	ed: 02/26/20	18	•		Date A	nalyzed: (02/28/2018		
Lab Batch ID: 3042388 Sample: 7639915-1-	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00202	0.101	0.0833	82	0.100	0.0797	80	4	70-130	35	
Toluene	<0.00202	0.101	0.0877	87	0.100	0.0857	86	2	70-130	35	
Ethylbenzene	< 0.00202	0.101	0.0994	98	0.100	0.0970	97	2	70-130	35	
m,p-Xylenes	<0.00403	0.202	0.196	97	0.200	0.192	96	2	70-130	35	
o-Xylene	< 0.00202	0.101	0.0981	97	0.100	0.0976	98	1	70-130	35	

Project Name: NM DL State #1

Work Orde	er #: 576779							Pro	ject ID:	212C-MD-(00958 Tas	k #23
Analyst:	OJS	D	ate Prepar	red: 02/22/202	18			Date A	nalyzed: (02/22/2018		
Lab Batch I	D: 3041902 Sample: 7639624-7	-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	ganic Anions by EPA 300/300.1 lytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	e	<5.00	250	255	102	250	262	105	3	90-110	20	
Analyst:	ARM	D	ate Prepar	red: 02/20/202	18	-		Date A	nalyzed: ()2/20/2018	ł	1
Lab Batch I	D: 3041816 Sample: 7639520-3	-BKS	Bate	h #: 1					Matrix:	Solid		
Units:	mg/kg		BLAN	K/BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Ana	lytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline	e Range Hydrocarbons (GRO)	<15.0	1000	906	91	1000	1050	105	15	70-135	35	
Diesel R	Range Organics (DRO)	<15.0	1000	986	99	1000	1130	113	14	70-135	35	
Analyst:	ARM	D	ate Prepar	red: 02/28/202	18			Date A	nalyzed: (02/28/2018		
Lab Batch I	D: 3042497 Sample: 7639972-	-BKS	Batc	h #: 1					Matrix:	Solid		
Units:	mg/kg		BLAN	K/BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Ana	lytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
	lytes e Range Hydrocarbons (GRO)	<15.0	[B] 1000	[C] 965	[D] 97	[E] 1000	Result [F] 963	[G] 96	0	70-135	35	

Project Name: NM DL State #1

Work Order	r#: 576779								Proj	ject ID:	212C-MD-0	00958 Tasl	k #23
Analyst:	ARM		D	ate Prepar	ed: 03/01/20	18			Date A	nalyzed: (03/01/2018		
Lab Batch ID	: 3042633	Sample: 7640031-1-	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg			BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI)Y	
	TPH By SW8015	Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	ytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline	Range Hydrocarbons (GR	O)	<15.0	1000	974	97	1000	1080	108	10	70-135	35	
Diesel Ra	nge Organics (DRO)		<15.0	1000	1000	100	1000	1110	111	10	70-135	35	
Analyst:	ARM		D	ate Prepar	ed: 03/02/20	18			Date A	nalyzed: (03/03/2018		
Lab Batch ID	: 3042778	Sample: 7640127-1-	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg			BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Analy	TPH By SW8015	Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Range Hydrocarbons (GR))	<15.0	1000	1100	110	1000	1040	104	6	70-135	35	
	nge Organics (DRO)	- ,	<15.0	1000	1140	110	1000	1040	104	7	70-135	35	

Project Name: NM DL State #1

.

Work Order # :	576779						Project II): 212C-1	MD-0095	8 Task #23		
Lab Batch ID:	3041808	QC- Sample ID:	576779	-005 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	02/20/2018	Date Prepared:	02/20/2	018	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene		0.0937	0.100	0.114	20	0.101	0.0984	5	15	70-130	35	X
Toluene		0.191	0.100	0.187	0	0.101	0.182	0	3	70-130	35	X
Ethylbenzene		0.0235	0.100	0.0662	43	0.101	0.0602	36	9	71-129	35	X
m,p-Xylenes		0.0411	0.200	0.125	42	0.201	0.104	31	18	70-135	35	X
o-Xylene		0.0171	0.100	0.0659	49	0.101	0.0544	37	19	71-133	35	X
Lab Batch ID:	3041960	QC- Sample ID:	576402	-004 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	02/22/2018	Date Prepared:	02/22/2	018	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
	BTEX by EPA 8021B	Parent Sample	Snike	Spiked Sample Result	Spiked Sample	Snike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag

BTEX by EPA 8021B	Sample	Spike	Result	Sample	Spike	Spiked Sample		RPD	Limits	Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00201	0.100	0.0805	81	0.0998	0.0808	81	0	70-130	35	
Toluene	< 0.00201	0.100	0.0842	84	0.0998	0.0849	85	1	70-130	35	
Ethylbenzene	< 0.00201	0.100	0.0889	89	0.0998	0.0930	93	5	71-129	35	
m,p-Xylenes	< 0.00402	0.201	0.175	87	0.200	0.184	92	5	70-135	35	
o-Xylene	< 0.00201	0.100	0.0860	86	0.0998	0.0908	91	5	71-133	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 24 of 30

Project Name: NM DL State #1

Work Order # :	576779						Project II): 212C-1	MD-00958	8 Task #23		
Lab Batch ID:	3041964	QC- Sample ID:	576848	-003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/21/2018	Date Prepared:	02/20/2	018	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	%R [D]	Added [E]	Result [F]	56K [G]	70	70K	%KPD	
Benzene		<0.00202	0.101	0.0730	72	0.0994	0.0738	74	1	70-130	35	
Toluene		0.00225	0.101	0.0781	75	0.0994	0.0777	76	1	70-130	35	
Ethylbenzene		<0.00202	0.101	0.0875	87	0.0994	0.0848	85	3	71-129	35	
m,p-Xylenes		< 0.00403	0.202	0.171	85	0.199	0.166	83	3	70-135	35	
o-Xylene		<0.00202	0.101	0.0859	85	0.0994	0.0823	83	4	71-133	35	
Lab Batch ID:	3042388	QC- Sample ID:	577388	-008 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/28/2018	Date Prepared:	02/26/2	018	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	

< 0.00199

< 0.00199

< 0.00199

< 0.00398

< 0.00199

0.0996

0.0996

0.0996

0.199

0.0996

0.0794

0.0844

0.0929

0.183

0.0913

80

85

93

92

92

0.0994

0.0994

0.0994

0.199

0.0994

0.0699

0.0739

0.0819

0.161

0.0793

70

74

82

81

80

13

13

13

13

14

70-130

70-130

70-130

70-130

70-130

35 35

35

35

35

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)|

Benzene

Toluene

Ethylbenzene

m,p-Xylenes

o-Xylene

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 25 of 30

Project Name: NM DL State #1

.

Work Order # :	576779						Project II): 212C-N	MD-0095	8 Task #23		
Lab Batch ID:	3041902	QC- Sample ID:	576746	-010 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/22/2018	Date Prepared:	02/22/2	018	An	alyst: (OJS					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result [C]	Spiked Sample %R	Spike	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]		%K [D]	Added [E]	Kesuit [F]	%K [G]	70	%0K	%KPD	
Chloride		<4.92	246	254	103	246	266	108	5	90-110	20	
Lab Batch ID:	3041902	QC- Sample ID:	576779	-006 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/22/2018	Date Prepared:	02/22/2	018	An	alyst: (OJS					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		⁷ 6K [D]	E]	Kesun [F]	[G]	70	70K	70KPD	
Chloride		78.6	246	338	105	246	339	106	0	90-110	20	
Lab Batch ID:	3041816	QC- Sample ID:	576780	-001 S	Ba	tch #:	1 Matrix	k: Soil	•			-
Date Analyzed:	02/20/2018	Date Prepared:	02/20/2	018	An	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	e Hydrocarbons (GRO)	<15.0	999	987	99	1000	1020	102	3	70-135	35	
Diesel Range O	Organics (DRO)	<15.0	999	1070	107	1000	1100	110	3	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 26 of 30

Project Name: NM DL State #1

.

Work Order #: 576779					Project II): 212C-	MD-0095	8 Task #23		
Lab Batch ID: 3042497	QC- Sample ID:	577419-021 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 02/28/2018	Date Prepared:	02/28/2018	Aı	nalyst:	ARM					
Reporting Units: mg/kg		MATRIX S	PIKE / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spiked Sa Spike Result Added [C]		Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[D]	[E]	incourt [1]	[G]		/011		
Gasoline Range Hydrocarbons (GRO)	<15.0	999 1070	107	999	953	95	12	70-135	35	
Diesel Range Organics (DRO)	<15.0	999 1180	118	999	1060	106	11	70-135	35	
Lab Batch ID: 3042633	QC- Sample ID:	577756-001 S	Ba	ntch #:	1 Matrix	k: Soil				
Date Analyzed: 03/01/2018	Date Prepared:	03/01/2018	Aı	nalyst:	ARM					
Reporting Units: mg/kg		MATRIX S	PIKE / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spiked Sa Spike Result Added [C]		Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[D]	[E]	Kesuit [F]	[G]	/0	701		
Gasoline Range Hydrocarbons (GRO)	<15.0	997 1060	106	997	957	96	10	70-135	35	
Diesel Range Organics (DRO)	<15.0	997 1100	110	997	1010	101	9	70-135	35	
Lab Batch ID: 3042778	QC- Sample ID:	577595-021 S	Ba	tch #:	1 Matrix	k: Soil		1		•
Date Analyzed: 03/03/2018	Date Prepared:	03/02/2018	Aı	nalyst:	ARM					
Reporting Units: mg/kg		MATRIX S	PIKE / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spiked Sa Spike Result Added [C]		Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	Added [C] [B]	[D]	E]	Kesuit [F]	%K [G]	70	-70K	70KFD	
Gasoline Range Hydrocarbons (GRO)	<15.0	999 1060	106	997	1030	103	3	70-135	35	
Diesel Range Organics (DRO)	<15.0	999 1100	110	997	1050	105	5	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 27 of 30

Relinquished by:	elinquished by:	Relinquished by										(LAB USE)	LAB #		Comments:	heccivity Laboratory.	Panaiving Labor	Project Location: state)	Project Name:	Anone Manue.	
Date:	10 2	AH #3 (0-1') Date:	AH #2 (4-4.5')	AH #2 (3-3.5')	AH #2 (2-2.5')	AH #2 (1-1.5')	AH #2 (0-1')	AH #1 (3-3.5')	AH #1 (2-2.5')	AH #1 (1-1.5')	AH #1 (0-1')		SAMPLE IDENTIFICATION		Run deeper samples if TPH exceeds 5,000 mg/kg. Run deeper samples if benzene exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg	Xenco Midland Tx	Bill Direct to COG-Becky Haskell	:: (county, Lea County, New Mexico	NM DL State #1	COG	Tetra Tech, Inc.
Received by	Received by:	2/15/2018 Received hy:	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	DATE	YEAR: 2017	SAMPLING	per samples if be	Sampler Signature:		Project #:		Site Manager:	2
Temp: O.(CF:(0-6: -0.2°C) (6-23: +0.2°C) Corrected Temp:	Martino.	×	×	×	×	×	×	×	×	×	×	TIME WATEF SOIL	3	ING MATRIX	enzene exceeds			N		Ike T	. 40
0	Date: Time:		×	×	X		×	X	×	×	×	HCL HNO ₃ ICE		TRIX PRESERVATIVE METHOD	10 mg/kg or Tot	Mike Carmona		212C-MD-00958		Tavarez	4000 N. Big Spring Street, Ste 401 Mildland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
	17:44	1 N	1 N	1 N	1 N	-1 N	1 N	1 N	1 Z	N L	1 N	None # CONT/	-	RS	al BTEX exceed			3 Task#23			OS STE
San	5	×					×					FILTERE BTEX 80			100	3				_	
Sample Temperature	LAB USE ONLY	×					×			_	_	TPH TX1 TPH 801				RO -	MRO)		-	1	
perature	EON										_	PAH 827 Total Met	2.0	g As Ba	a Cd Cr I	Pb Se	Hg		(Circl		
	LY RE	2			-		-		-	-	-	TCLP Me TCLP Vol		-	Ba Cd Cr	Pb Se	Hg	-	- O	20	5
	REMARKS: STANDARD				-							TCLP Ser RCI	ni Vo	latiles		_			or Specify	ANALYSIS REQUEST	76
HUSH: Same Day 24 r Rush Charges Authorized Special Report Limits or T	ST/										-	GC/MS V								SIS/	L
Same larges Report	INDA									_	-	GC/MS S PCB's 80			2700/625	,				REQU	70
Autho			-		-		-	-	-	-	-	NORM PLM (Asb	estos	s)	_			_	Method	JEST	
24 hr rized s or TR		×	×	×	×	×	×	×	×	×	-	Chloride	0	liete	TDS					1	
HUSH: Same Day 24 hr 48 hr 7 Rush Charges Authorized Special Report Limits or TRRP Report												Chloride General \	Nate		mistry (s	ee atta	ached I	ist)	No.)		
hr 72 eport		-		-	-		+	-	-	-	-	Anion/Ca	tion	Balanc	e			_	-		
72 hr ort	E.						-												2		
aging: 11/29/2	2022 3:	04:	23 1	PM	-	-	-	-	+	+	-	Hold						1 001	_		

OCD: 11/29/202	2.58	elinquished by						(LAB USE)	LAB #		Comments:	neceiving Laboratory:	involce to:	Project Location: state)	Project Name:	Choir Human	
Date:) ~ J-16-18	V5. Date: Time:	M⊔ #4 (1-1.3)	AH #4 (0-1')	AH #3 (3-3.5')	AH #3 (2-2.5')	AH #3 (1-1.5)		SAMPLE IDENTIFICATION		Run deeper samples if TPH exceeds 5,000 mg/kg. Run deeper samples if benzene exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg	avory: Xenco Midland Tx	Bill Direct to COG-Becky Haskell	r: (county, Lea County, New Mexico		COG	Tetra Tech, Inc.
Received by:	JC 1:0)	Beceived by	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	DATE	YEAR: 2017	SAMPLING	per samples if benz	Sampler Signature:		Project #:		Site Manager:	
Temp: 0,6 CF:(0-6: -0,2°C) (6-23: +0.2°C	1.2 tailor		×	×	×	×	×	TIME WATER SOIL HCL	~	MATRIX	ene exceeds 10 mg	Mike Ca		212C-M		Ike Tavarez	4000 N. Big 401 Midia Tel (43 Fax (43
. <u>9</u>	610		×	×	×	×	×	HNO ₃ ICE None		PRESERVATIVE METHOD	/kg or Total BTE>	Carmona		212C-MD-00958 Task#23		Z	4000 N. Big Spring Street, Ste 401 Midland Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
117 ID:R-8			N N	1 N X	1 N	1 N		# CONT FILTERE BTEX 80	ED (Y	7N)				123			
DELIVERDO	LAB USE ONLY			×				TPH TX TPH 801 PAH 827 Total Met	1005 5M (70C tals A	(Ext to GRO - g As Ba Ag As B	C35) DRO - C a Cd Cr F	RO - N Pb Se I	Hg		(Circle		
	STANDARD							TCLP Vo TCLP Se RCI GC/MS V GC/MS S PCB's 80	mi Vo ol. 82 emi. 1	260B / Vol. 82		, I			Circle or Specify Method	ANALYSIS REQUEST	570
24 nr 48 nr orized s or TRRP Repc #:			×	×	×	×	×	NORM PLM (Ast Chloride Chloride General Anion/Ca	Su Wate	s) Ilfate r Chen		ee atta	iched I	ist)	Nethod No.)		6779
Report 72 hr Imaging: 11/29/.																	

Received by OCD: 11/29/2022 2:58:34 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC								
Date/ Time Received: 02/16/2018 12:44:00 PM	Air and Metal samples Acceptable Range: Ambient								
Work Order #: 576779	Temperature Measuring device used : R8								
Sample Rece	eipt Checklist Comments								
#1 *Temperature of cooler(s)?	.4								
#2 *Shipping container in good condition?	Yes								
#3 *Samples received on ice?	Yes								
#4 *Custody Seals intact on shipping container/ cooler?	N/A								
#5 Custody Seals intact on sample bottles?	N/A								
#6*Custody Seals Signed and dated?	N/A								
#7 *Chain of Custody present?	Yes								
#8 Any missing/extra samples?	No								
#9 Chain of Custody signed when relinquished/ received?	Yes								
#10 Chain of Custody agrees with sample labels/matrix?	Yes								
#11 Container label(s) legible and intact?	Yes								
#12 Samples in proper container/ bottle?	Yes								
#13 Samples properly preserved?	Yes								
#14 Sample container(s) intact?	Yes								
#15 Sufficient sample amount for indicated test(s)?	Yes								
#16 All samples received within hold time?	Yes								

#17 Subcontract of sample(s)?

#18 Water VOC samples have zero headspace?

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 02/19/2018

Yes

N/A

Lubbock

Checklist completed by: Connie Hernandez Checklist reviewed by: Kelsey Brooks

Date: 02/19/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	162275
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	See conditions of approval attached to report.	11/29/2022
amaxwell	Conditions of approval NMOCD approves of the preliminary delineation completed for 1RP-4727 and agree that the area represented by AH-4 will need complete delineation when accessible. Confirmation bottom and sidewall samples required.	11/29/2022

Page 51 of 51

.

Action 162275