

PARTNERS

October 18, 2022

New Mexico Oil Conservation Division Attn: Mr. Bradford Billings 5200 Oakland Avenue, N.E., Suite 100 Albuquerque, New Mexico 87113

RE: <u>Incident Closure Request</u> NTO1423253772-VACUUM GLORIETTA WEST UNIT 118 1RP-3260- Lea County, New Mexico NTO1423253772 @ 30-025-31129

Dear Mr. Billings:

This letter is to request closure of the Vacuum Glorietta West Unit 118 Incident NTO1423253772. The discovery of the poly flow line failure was initially reported on 4/22/12. A site assessment and remediation plan were received and approved on 11/4/2015 NMOCD representative Kellie Jones.

Upon completion of all remediation activities, a site closure request was prepared in April of 2019 by the former operator's consulting group. The report along with the associated final C-141 records were supplied to MorningStar at the time of acquisition. However, these records are unavailable in the NMOCD portal "Incident Files" and it is unclear if this submission had been received or reviewed. As such, the closure request with all supporting data and records are being submitted at this time for NMOCD confirmation that this facility has been granted closure status as requested, with the understanding that this facility requires not further assessments or additional clean up actions.

If you have any questions regarding this request, please contact Alan Kane with Kane Environmental Engineering Inc. at (281) 370-6580 or email: <u>alanjkane@comcast.net</u> or Russell Hamm at (918) 693-4833 or email: <u>rhammenviro@gmail.com</u>.

Respectfully, Guillotte

Manager Environmental Health and Safety

CC: File, Kane Environmental Engineering Inc. Attachments: Chevron/Arcadis Closure Request Report

Jason Michelson Project Manager Chevron Environmental Management Company 1500 Louisiana Street, #38116 Houston, Texas 77002 Work: 832-854-5601 Cell: 281-660-8564 jmichelson@chevron.com

August 14, 2020

New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Vacuum Glorieta West Unit #118 Site Closure Report NMOCD Case No. 1RP-3260 Lea County, New Mexico

Dear whom it concerns,

Please find enclosed for your files, copies of the following report:

• Vacuum Glorieta West Unit #118 - Site Closure Report

The submittal was prepared by Arcadis U.S., Inc. (Arcadis) on behalf of Chevron Environmental Management Company (CEMC) and is being resubmitted by Arcadis per request of the New Mexico Oil Conservation Division.

Please do not hesitate to call Brett Krehbiel with Arcadis at 916-786-5382 or myself at 832-854-5601, should you have any questions.

Sincerely,

Jann Meh-

Jáson Michelson

Encl. Vacuum Glorietta West Unit #118 - Site Closure Report

C.C. Amy Barnhill, Chevron/MCBU

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nTO1423253772
District RP	1RP-3260
Facility ID	30-025-31129
Application ID	pTO1423253899

Release Notification

Responsible Party

Responsible Party: Chevron USA Inc.	OGRID
Contact Name: Jason Michelson	Contact Telephone: 832-854-5601
Contact email: jmichelson@chevron.com	Incident # (assigned by OCD): nTO1423253772
Contact mailing address: 1500 Louisiana Street Houston, Texas	
77002	

Location of Release Source

Latitude <u>32.782150</u>

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: Vacuum Glorietta West Unit #118	Site Type: Production Well
Date Release Discovered: 4/22/2012	API# (if applicable): 30-025-31129

Unit Letter	Section	Township	Range	County
В	6	18 S	35E	Lea

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

 Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

 Crude Oil
 Volume Released (bbls): 0.746
 Volume Recovered (bbls): 0

 Produced Water
 Volume Released (bbls): 9.61
 Volume Recovered (bbls): 0

Produced Water	Volume Released (bbls): 9.61	Volume Recovered (bbls): 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release: 1-foot	scrape on poly line caused integrity of line to give lead	ing to spill of 9.61 bbls of produced water and 0.746
bbls of oil. Well shut in o	on discovery.	

Page 2

Oil Conservation Division

Incident ID	nTO1423253772
District RP	1RP-3260
Facility ID	30-025-31129
Application ID	pTO1423253899

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Release was less than 25 barrels.
🗌 Yes 🖾 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? See Initial C-
141 Form submitted on	4/23/2012.

Page 3

Oil Conservation Division

Incident ID	nTO1423253772
District RP	1RP-3260
Facility ID	30-025-31129
Application ID	pTO1423253899

Page 5 of 282

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>125</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information Photographic documentation is included as attachment to this Final C-141 Form.
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/5/202	22 12:15:36 PM			Page 6 of 282
Form C-141	State of New Mexico		Incident ID	nTO1423253772
Page 4	Oil Conservation Division	1	District RP	1RP-3260
			Facility ID	30-025-31129
			Application ID	pTO1423253899
I hereby certify that the infor regulations all operators are a public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations. Printed Name:J Signature:J email:jmichelson@ch	mation given above is true and complete to the required to report and/or file certain release no nent. The acceptance of a C-141 report by the ate and remediate contamination that pose a th car C-141 report does not relieve the operator of mason Michelson	e best of my knowledge an otifications and perform co e OCD does not relieve the ureat to groundwater, surfa of responsibility for compl Title:Project Date:8/14/2020 Telephone:83	nd understand that purs prrective actions for rele operator of liability sh- ce water, human health iance with any other fee Manager 2-854-5601	uant to OCD rules and eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist, Each of the following it	tems must be included in the closure report			
<u>Closure Report Attachment Checklist</u> : Each of the following tiems must be included in the closure report.				
A scaled site and sampling diagram as described in 19.15.29.11 NMAC				
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) – Photographic documentation of remediation activities and liner installation is attached to this Final C-141 Form.				
Laboratory analyses of final sampling (Note: appropriate ODC	2 District office must be notified 2 days prior to final sampling)			
Description of remediation activities				
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rem human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the con accordance with 19.15.29.13 NMAC including notification to the O	a C-141 report by the OCD does not relieve the operator of liability nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.			
Printed Name:Jason Michelson	Title:Project Manager			
Signature: 6/ann MUM	Date:8/14/2020			
email:jmichelson@chevron.com	Telephone:832-854-5601			
OCD Only				
Received by:	Date:			
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface v party of compliance with any other federal, state, or local laws and/o	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.			
Closure Approved by:	Date: 12/05/2022			
Printed Name: Jennifer Nobui	Title: Environmental Specialist A			
<u></u>				

New Mexico Oil Conservation Division – District I Environmental Specialist 1625 N French Drive Hobbs, New Mexico 88240

Subject:

Site Closure Report 2018 HES Transfer Site – Vacuum Glorieta West Unit 118 NMOCD Case No. 1RP-3260 Lea County, New Mexico

Dear whom it concerns:

On behalf of Chevron Environmental Management Company (CEMC), Arcadis U.S., Inc. (Arcadis) prepared this Site Closure Report (Report) to document geophysical assessment activities performed at the Vacuum Glorieta West Unit (VGWU) 118, located in Lea County, New Mexico (site; **Figure 1**). The purpose of the Report is summarize the field activities completed and the results of samples collected during soil investigation activities conducted on site in 2012, 2013, 2016 and 2017, present final soil boring locations, results of the samples collected, and the evaluation performed as part of the investigations after the April 22, 2012 release of 9.61 barrels (bbls [42 gallons per bbl]) of produced water and 0.746 bbls of oil.

SITE DESCRIPTION AND BACKGROUND

The following site description and background section provides an overview of the site location and description, as well as the regional setting including geology, hydrogeology, nearby drinking water wells, surface water and climate.

Site Location and Description

The site is located within the Vacuum Glorieta West Unit (VGWU) approximately 14.5 miles southwest of Lovington, New Mexico. New Mexico Highway 238 is located approximately 0.54 mile east of the site. The closest agricultural area is 9 miles east of the site.

The site is located in the western edge of the Permian Basin, a 75,000-squaremile area in west Texas and New Mexico that is populated by numerous oil and Arcadis U.S., Inc. 101 Creekside Ridge Court Suite 200 Roseville California 95678 Tel 916 786 0320 Fax 916 786 0366 www.arcadis.com

ENVIRONMENT

Date: April 8, 2019

Contact: Brett Krehbiel

Phone: 916.786.5382

Email: Brett.Krehbiel@arcadis.com

Our ref: B0048616.0118

ARCADIS U.S., Inc. TX Engineering License # F-533 Geoscientist License # 50158

gas production wells. In New Mexico, the Permian Basin extends to Roosevelt County to the north and Chaves County to the west.

Climate

Monthly average temperatures near the site vary from a minimum of 27.9 degrees Fahrenheit (°F) in January to a maximum of 93.9°F in July (Western Regional Climate Center [WRCC] Hobbs, New Mexico [294026] weather station). Average annual precipitation recorded for the area of the site from the available WRCC period of record between 1912 and 2013 was approximately 15.75 inches per year (WRCC 2014a).

Due to the arid climate, the site experiences low precipitation and high evaporation rates. The average annual evaporation from the available WRCC period of record between 1914 and 2005 was approximately 87.68 inches per year (WRCC 2014b).

Regional Geology and Hydrogeology

The site is located on the Llano Estacado of the Western High Plains, an ecoregion of the Great Plains of North America. The site is positioned immediately east of the Mescalero Ridge, which demarcates the western boundary of the (Miocene to Pliocene) High Plains Ogallala Formation (Reeves 1972). A rapid drop in elevation of 200 to 250 ft occurs west of the northwest-trending Mescalero Ridge. The Ogallala formation is unconfined and is predominantly composed of unconsolidated alluvial fan deposits of sand and gravel near the base, overlain by interbedded sand and clay in the upper portion of the formation (Seni 1980). Repeated depositional events on the High Plains surface beginning approximately 7 million years ago, followed by aerial exposure, generated a thick sequence of caliche horizons that are competent enough to act as a cliff for the expression of Mescalero Ridge. These hard caliche deposits form the upper portion of the stratigraphic sequence. In the site area, the Ogallala Formation is underlain by red beds of the Upper Triassic-age Dockum Group consisting of claystones, sandstones, and siltstones. Aquifers within the Dockum Group are not considered a major fresh groundwater resource in the area due to poor water production rates and elevated natural dissolved solids.

The main source of fresh groundwater in the area comes from the Ogallala aquifer. The Ogallala aquifer has a thickness of approximately 100 ft in the vicinity of the site and is considered the primary source of fresh water in the area. Depth to the groundwater regionally ranges from approximately 120 ft to 135 ft below ground surface (bgs).

Water-supply wells located within the region are completed in the Ogallala aquifer, also known at the High Plains Aquifer (HPA). The HPA consists primarily of the High Plains Ogallala Formation, and in localized areas, alluvial sediment of Quaternary age.

Based on satellite imagery, no surface-water bodies were identified within a radius of approximately 1mile of the site (GoogleEarth 2018). During October 2018, Arcadis reviewed information obtained from the New Mexico Office of the State Engineer (NMOSE) online database (NMOSE 2018). Results of the database inquiry indicated there were no water-supply wells located within a radius of 1,000 feet of the site. In addition, results of the database review indicate average depth to groundwater is 93 ft bgs. Results of the database review are included in **Attachment 1**.

INITIAL RELEASE RESPONSE ACTIVITIES

According to the submitted New Mexico Oil Conservation Division (NMOCD) Notification of Release and Correction Actions (Form C141), a flowline leak resulted in a release of 9.61 bbls of produced water and 0.746 bbls of oil on April 22, 2012. Chevron personnel from the Mid-Continent Business Unit (MCBU) stopped the release and conducted the initial response activities. On July 12, 2012, Chevron MCBU personnel excavated visually affected soil and collected ten discrete confirmation soil samples from the base of the excavation at approximately 2 fet bgs. Information regarding the disposal of the excavated soil was not available for this Report. After collecting the soil samples, the excavated area was reportedly backfilled with imported soil.

Pursuant to NMOCD requirements (NMOCD 1993), a C-141 form (**Attachment 2**) detailing the location, volume of release and initial and planned cleanup efforts were submitted for the site.

2012 AND 2013 SOIL INVESTIGATIONS

Chevron MCBU personnel collected ten soil samples (VGWU #118 SS #1 through VGWU #118 SS #10 on July 12, 2012 to initially assess the impacted area at VGWU-118. Sample locations are presented in **Figure 2**. Soil samples were collected in laboratory provided bottles and submitted to Cardinal Laboratories in Hobbs, NM for the following compounds:

- Benzene, toluene, ethylene, and xylenes (collectively referred to as BTEX) in accordance with United States Environmental Protection Agency (USEPA) Method 8021B
- Chloride in accordance with Standard Method 4500CI-B
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) in accordance with USEPA Method 8015M

In May 2013, Arcadis conducted site assessment activities to characterize the lateral and vertical extent of potentially affected soil at the site. Soil boring locations were selected based on the results of confirmation soil sampling completed at the site in July 2012, locations of pipelines and other equipment at the site, and the extent of the release as documented by Chevron MCBU personnel during the initial response activities. Seven soil samples from four soil borings (VGWU118-01 through VGWU118-03 and VGWU118-07) were collected from each boring location (for a total of 28 soil samples) beginning at a depth of 2 ft bgs and continuing at 5-foot intervals from 5 to 30 ft bgs. Additionally, three soil samples were collected at 2 ft bgs from three soil borings (VGWU118-04 through VGWU118-06). Soil samples were placed in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Cardinal Laboratories for the following analyses:

- BTEX in accordance with USEPA Method 8021B
- Chloride in accordance with USEPA Method 4500CI-B
- TPH GRO and TPH DRO in accordance with USEPA Method 8015M
- Percent moisture by ASTM International Method D2216

Following sampling, boreholes were filled with soil cuttings and grouted to ground surface. The ground surface was restored to match the surrounding conditions. Boring locations are shown on **Figure 2**. Boring logs are presented in **Attachment 3**.

The analytical results for BTEX, TPH-GRO, TPH-DRO and chloride for the 10 discrete confirmation soil samples collected in July 2012 and the 31 soil samples collected during the May 2013 site assessment are provided in **Table 1**. The site assessment activities and results are discussed in detail in the *Site Assessment Report: Vacuum Glorieta West Unit #118*, dated December 2, 2014.

2016 SOIL INVESTIGATIONS

Arcadis conducted additional soil assessment activities in June, September and November 2016. A total of twenty-nine soil samples were collected from ten (VGWU118-08 through VGWU118-19) soil borings at the site. Samples were collected at 2 and 4 ft bgs at each boring location. Additional samples were collected at 7 and 10 ft bgs at VGWU118-15 and VGWU118-18 and at 7 ft bgs at VGWU118-19 (**Figure 3**). Following sampling, boreholes were filled with native material to ground surface. The ground surface was restored to match the surrounding conditions.

Soil samples were placed in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco (Xenco) Laboratories in Midland, TX for the following analysis of chloride by USEPA Method 300/300.1. Analysis of soil samples from VGWU118-10, VGWU118-15 (7 and 10 ft bgs only), VGWU118-16, VGWU118-19 (9 fet bgs only) were put on hold pending analysis results. A total of 22 samples from the 2016 soil were analyzed for chloride.

Chloride was detected in 19 of the 22 soil samples analyzed with concentrations ranging from 11.2 milligrams per kilogram (mg/kg) (VGWU118-19 at 2 ft bgs) to 374 mg/kg (VGWU118-12 at 2 ft bgs). Pursuant to the C141 directive published in 1993 by the NMOCD, 2016 chloride results were initially compared to the soil remediation action level of 600 mg/kg required for vertical delineation, and 250 mg/kg required for lateral delineation. Although vertical delineation had been achieved, chloride was detected at concentrations greater than the soil remediation action level of 250 mg/kg for lateral delineation in all surface soil samples, with the exception of surface soil samples collected from VGWU118-08, VGWU118-09, VGWU118-13, VGWU118-15, VGWU118-17 and VGWU118-19. The cumulative analytical results for chloride are provided in **Table 1**. Laboratory analytical results with chain of custody documentation are provided in **Attachment 4**.

2016 AND 2017 SOIL EXCAVATION

Arcadis completed a limited excavation of the chloride affected soil to a maximum depth of 4 ft bgs beginning on November 1, 2016. Five-point composite sidewall samples were collected every 20 ft of sidewall to confirm removal of affected soil. A total of 13 sidewall composite samples (Composite Sample #1 through #13) were collected in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco (Xenco) Laboratories in Midland, TX for the analysis of chloride by USEPA Method 300/300.1. Analytical results are summarized in **Table 1**.

Chloride was detected in each sidewall sample collected in November 2016 with concentrations ranging from 24.3 mg/kg (Composite Sample #10) to 5,000 mg/kg (Composite Sample #12). Chloride concentrations exceeded 250 mg/kg for lateral delineation in 10 of the 13 samples.

In October 2017, excavation was continued to the north and southeast of the 2016 excavation area to complete removal of the affected soil to the extent possible (**Figure 4**). Aboveground and belowground pipeline and utility corridors transect the spill area and border the site to the north, south, and east. The

presence of aboveground and belowground pipeline and utility corridors pose a health and safety risk and prevent additional drilling and other subsurface work in this area. Delineation activities beyond the pipelines and oilfield equipment surrounding the release would not be representative of release area. The limited excavation up to 4 ft bgs was complete in December of 2017. A total of 30 sidewall samples (VGWU-118-001 through VGWU-118-030) were collected 2 ft bgs throughout the 2017 excavation to confirm impacted soil had been removed. Samples were collected in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco for the analysis of chloride by USEPA Method 300/300.1. Seven samples (VGWU-118-008 and VGWU-118-21 through VGWU-118-26) were put on hold with Xenco pending chloride results. Analytical results are summarized in **Table 1**.

Sidewall sample locations and results from the final excavation area are displayed in **Figure 4**. Chloride concentrations detected in sidewall samples collected from the final excavation range from 9.2 mg/kg (VGWU-118-027) to 544 mg/kg (VGWU-118-002).

Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) concerning natural resources and wildlife, oil and gas, and releases which became effective on August 14, 2018. Closure criteria (CC) for chloride concentrations in the soil remains 600 mg/kg. Shallow soil (up to 4 ft bgs) with chloride concentrations greater than 600 mg/kg was excavated. Soil analytical results presented in this Report support a conclusion that affected soil associated with the release poses no significant threat to groundwater resources.

Following completion of the excavation, a liner was installed within the limits of each excavation footprint and clean fill was used to backfill the excavated areas. Following backfill, the surface was graded, broken up, seeded, and watered to promote revegetation Upon receiving laboratory confirmation, the excavated soil was transported offsite to Sundance Services for disposal in accordance with state and federal regulations.

CONCLUSION

Arcadis completed a limited excavation of chloride affected soil to a maximum depth of 4 ft bgs. Shallow soil (up to 4 ft bgs) with chloride concentrations greater than 600 mg/kg was excavated. The excavated area is presented on **Figure 4**. Sidewall confirmation samples collected from the excavation area and the corresponding soil analytical results confirm removal of affected soil.

Based on the data presented in this Report and concurrence from the NMOCD, no further assessments or additional cleanup actions are required at the site. No Further Action status is being requested for the site.

If you have any questions or comments regarding the information presented in this Report, please contact Brett Krehbiel at 916.786.5382 or at Brett.Krehbiel@arcadis.com.

New Mexico Oil Conservation Division – District I April 8, 2019

Sincerely,

Arcadis U.S., Inc.

at habita

Brett Krehbiel Project Manager

lity Utshall

Greg Cutshall Program Manager

Copies: File

Enclosures:

Tables

- 1 Soil Analytical Results
- Figures
 - 1 Site Location Map
 - 2 Soil Analytical Results

Attachments

- 1 Depth-to-Groundwater Data
- 2 C-141 Form
- 3 Soil Boring Logs
- 4 Laboratory Analytical Results and Chain of Custody

References

- Arcadis U.S., Inc. 2014. Site Assessment Report, Vacuum Glorieta West Unit #118, Lea County New Mexico. December 2.
- Google Earth. 2018. Lovington, New Mexico, 32°47'15.76"N, 103°30'52.71"W, Google Earth Imagery. October 16.
- New Mexico Administrative Code. 2018. Title 19, Chapter 15 of the New Mexico Administrative Code for Natural Resources and Wildlife, Oil and Gas, and Releases, 19.15.29 NMAC. August.
- NMOCD. 1993. Guidelines for Remediation of Leaks, Spills and Releases. August 13.
- NMOSE. 2018a. Water Information, Maps and Data, Geospatial Data, OSE Well Data, http://www.ose.state.nm.us/water_info_data.html, October.
- NMOSE. 2018b. New Mexico Water Rights Reporting System, http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html, October.
- Reeves, C. C. 1972. Tertiary-Quarternary Stratigraphy and Geomorphology of West Texas and Southeastern New Mexico, New Mexico Geological Society, Guidebook 23 pp. 108-117.
- Seni, S. J. 1980. Sand-Body Geometry and Depositional Systems, Ogallala Formation, Texas, University of Texas, Bureau of Economic Geology, Report of Investigations No. 105, pp. 36.

TABLES

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC CI	osure Criteria ^(ɒ)	10				50	10)0	600	
VGWU #118 SS #1	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	487	16	
VGWU #118 SS #2	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	44	272	
VGWU #118 SS #3	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	123	144	
VGWU #118 SS #4	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	295	16	
VGWU #118 SS #5	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	<10.0	96	
VGWU #118 SS #6	7/12/2012	0 to 2	<0.050	0.221	0.385	0.937		37	2,520	384	
VGWU #118 SS #7	7/12/2012	0 to 2	<0.050	0.841	2.27	3.32		108	6,830	112	
VGWU #118 SS #8	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	50	2,320	
VGWU #118 SS #9	7/12/2012	0 to 2	<0.050	<0.050	0.179	0.384		21	3,050	6,240	
VGWU #118 SS #10	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	28	15,800	
	5/14/2013	2	<0.056	0.047	<0.056	<0.169	0.047	<16.9	102	4,800	11.3
	5/14/2013	5	<0.062	0.016	<0.062	<0.186	0.016	<18.6	<18.6	192	19.2
	5/14/2013	10	<0.061	0.020	<0.061	<0.184	0.020	<18.4	<16.0	32	18.4
VGWU118 - 01	5/14/2013	15	<0.061	0.022	<0.061	<0.184	0.022	<18.4	<18.4	32	18.4
	5/14/2013	20	<0.063	0.022	<0.063	<0.188	0.022	<18.8	<18.8	<16	20.2
	5/14/2013	25	<0.052	0.042	<0.052	<0.155	0.042	<15.5	<15.5	32	2.9
	5/14/2013	30	<0.062	0.023	<0.062	<0.187	0.023	<18.7	<18.7	<16	20.0
	5/14/2013	2	<0.057	<0.057	<0.057	<0.172	<0.344	<17.2	<17.2	10,000	12.8
	5/14/2013	5	<0.054	<0.054	<0.054	<0.162	<0.324	<16.2	<16.2	368	7.3
	5/14/2013	10	<0.054	<0.054	<0.054	<0.161	<0.322	<16.1	<16.1	80	6.9
VGWU118 - 02	5/14/2013	15	<0.052	0.036	<0.052	<0.156	0.036	<15.6	<15.6	112	4.1
	5/14/2013	20	<0.054	0.035	<0.054	<0.162	0.035	<16.2	<16.2	384	7.1
	5/14/2013	25	<0.054	0.039	<0.054	<0.162	0.039	<16.2	<16.2	1,090	7.3
	5/14/2013	30	<0.065	0.031	<0.065	<0.195	0.031	<19.5	<19.5	224	23.0
	5/14/2013	2	<0.054	0.034	<0.054	<0.161	0.034	<16.1	<16.1	832	7.0
	5/14/2013	5	<0.052	0.033	<0.052	<0.157	0.033	<15.7	<15.7	96	4.4
	5/14/2013	10	<0.054	0.028	<0.054	<0.161	0.028	<16.1	<16.1	48	6.9
VGWU118 - 03	5/14/2013	15	<0.054	0.031	<0.054	<0.161	0.031	<16.1	<16.1	48	6.7
	5/14/2013	20	<0.052	0.019	<0.052	<0.157	0.019	<15.7	<15.7	48	4.5
	5/14/2013	25	<0.052	0.041	<0.052	<0.156	0.041	<15.6	<15.6	32	3.6
	5/14/2013	30	<0.051	<0.051	<0.051	<0.153	< 0.307	<15.3	<15.3	32	2.2

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC CI	osure Criteria ^(ɒ)	10				50	1	00	600	
VGWU118 - 04	5/14/2013	2								48	
VGWU118 - 05	5/14/2013	2								64	
VGWU118 - 06	5/14/2013	2								128	
	5/14/2013	2	<0.058	0.025	<0.058	<0.175	0.025	<17.5	<17.5	7,200	14.2
	5/14/2013	5	<0.053	0.026	<0.053	<0.158	0.026	<15.8	<15.8	96	4.9
	5/14/2013	10	<0.051	<0.051	<0.051	<0.154	0.009	<15.4	<15.4	80	2.5
VGWU118 - 07	5/14/2013	15	<0.051	<0.051	<0.051	<0.152	< 0.304	<15.2	<15.2	80	1.4
	5/14/2013	20	<0.052	<0.052	<0.052	<0.157	<0.314	<15.7	<15.7	<16	4.4
	5/14/2013	25	<0.052	<0.052	<0.052	<0.157	<0.314	<15.7	<15.7	<16	4.4
	5/14/2013	30	<0.059	<0.059	<0.059	<0.178	<0.357	<17.8	19.7	<16	15.9
	6/23/2016	2								<10	
VGWU118-08	6/23/2016	4								<10	
	6/23/2016	2								42.2	
VGW0118-09	6/23/2016	4								50.9	
	6/23/2016	2								28.7	
0000118-11	6/23/2016	4			-			-		300	
V/GW/U118 12	6/23/2016	2								374	
VGW0110-12	6/23/2016	4								246	
	6/23/2016	2								13.2	
VGVV0110-13	6/23/2016	4								125	
	6/23/2016	2								298	
VGW0110-14	6/23/2016	4								325	
	9/14/2016	2								18.5	
VGW0118-15	9/14/2016	4								<10	
	6/23/2016	2								248	
VGVVUII0-1/	6/23/2016	4								115	
	9/14/2016	2								91.4	
	9/14/2016	4								355	
VGVVU110-10	9/14/2016	7								307	
	9/14/2016	10								41.3	

.

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

					.010	GINC OBSELS
benzene g/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
		50	1(00	600	
					11.2	
					69.9	
					220	
					2370	
					1400	
					403	

VGWU118-19 11/8/2016 4 50 100 600 VGWU118-19 11/8/2016 4 11.2 Composite Sample #1 (0'-4') 11/2/2016 0 to 4 69.9 Composite Sample #2 (0'-4') 11/2/2016 0 to 4 220 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #4 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 3450	
$ VGWU118-19 \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $	
VGW0116-19 11/8/2016 7 69.9 Composite Sample #1 (0'-4') 11/2/2016 0 to 4 220 Composite Sample #2 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #4 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #5 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #7 (0'-4') 11/7/2016 0 to 4 <	
Composite Sample #1 (0'-4') 11/2/2016 0 to 4 220 Composite Sample #2 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 4330 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 433 <	
Composite Sample #2 (0'-4') 11/2/2016 0 to 4 2370 Composite Sample #3 (0'-4') 11/2/2016 0 to 4 1400 Composite Sample #4 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #5 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #7 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 </td <td></td>	
Composite Sample #3 (0'-4') 11/2/2016 0 to 4 1400 Composite Sample #4 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #5 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #7 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3	
Composite Sample #4 (0'-4') 11/7/2016 0 to 4 403 Composite Sample #5 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 423 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 -	
Composite Sample #5 (0'-4') 11/7/2016 0 to 4 88 Composite Sample #6 (0'-4') 11/7/2016 0 to 4 3450 Composite Sample #7 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 5000	
Composite Sample #6 (0'-4') 11/7/2016 0 to 4 3450 Composite Sample #7 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000	
Composite Sample #7 (0'-4') 11/7/2016 0 to 4 4370 Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 1690 <tr< td=""><td></td></tr<>	
Composite Sample #8 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #9 (0'-4') 11/7/2016 0 to 4 433 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 1140 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 1690 VCWUL 118 001 10/5/2017 2 10/5/2017 2 4 <	
Composite Sample #9 (0'-4') 11/7/2016 0 to 4 1140 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 140 Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000 VCWUL1418 001 10/5/2017 2 10/5/2017 2	
Composite Sample #10 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #11 (0'-4') 11/7/2016 0 to 4 24.3 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 1690 VCWUL1418 001 10/5/2017 2 10/5/2017 2	
Composite Sample #11 (0'-4') 11/7/2016 0 to 4 4250 Composite Sample #12 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 5000 VCWUL118 001 10/5/2017 2 10/5/2017 0.4	
Composite Sample #12 (0'-4') 11/7/2016 0 to 4 5000 Composite Sample #13 (0'-4') 11/7/2016 0 to 4 10/5/2017 10/5/2017 10/5/2017 10/5/2017	
Composite Sample #13 (0'-4') 11/7/2016 0 to 4 1690 VCWUL118 001 10/5/2017 2 10/5/2017 2 10/5/2017 0.0 0.	
VGVV0-110-001 10/3/2017 2 8.1	
VGWU-118-002 10/5/2017 2 544	
VGWU-118-003 10/5/2017 2 2760	
VGWU-118-004 10/5/2017 2 41.3	
VGWU-118-005 10/5/2017 2 67.9	
VGWU-118-006 10/5/2017 2 15.0	
VGWU-118-007 10/6/2017 2 2030	
VGWU-118-009 10/17/2017 2 2150	
VGWU-118-010 10/17/2017 2 13.9	
VGWU-118-011 10/17/2017 2 861	
VGWU-118-012 10/17/2017 2 1530	
VGWU-118-013 10/17/2017 2 12.3	
VGWU-118-014 10/17/2017 2 11.1	
VGWU-118-015 10/17/2017 2 7.1	
VGWU-118-016 10/17/2017 2 39.5	
VGWU-118-017 10/17/2017 2 14.4	

Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC Clo	osure Criteria 👳	10				50	1(00	600	
VGWU-118-018	10/17/2017	2								28.5	
VGWU-118-019	10/17/2017	2								<4.96	
VGWU-118-020	12/4/2017	2								38.5	
VGWU-118-027	12/4/2017	2								9.2	
VGWU-118-028	12/4/2017	2								18.1	
VGWU-118-029	12/4/2017	2								615	
VGWU-118-030	12/6/2017	2								10.5	

Analytical value is greater than or equal to NMAC closure criteria
Percent
Miligram(s) per kilogram
Analyte was not detected above the specified method reporting limit
Not Analyzed/Not Listed
Feet below ground surface
Benzene, toluene, ethylbenzene, and total xylenes
New Mexico Administrative Code
Total Petroleum Hydrocarbons as Gasoline Range Organics
Total Petroleum Hydrocarbons as Diesel Range Organics

(a) Title 19, Chapter 15 of the NMAC for Natural Resources and Wildlife, Oil and Gas, and Releases, 19.15.29 NMAC. August.

Page 4 of 4

Received by OCD: 12/5/2022 12:15:36 PM

FIGURES

SITE LOCATION

CITY: MANCHESTER DIV/GROUP: ENVCAD DB: B.SMALL PM: TM C:\Users\chutiab4677\OneDrive - ARCADIS\BIM 360 Docs\CHEVRON CORPORATION\VGWU 118\B0048616.1701\01-DWG\B00486111601-VGWU118-2012 and 2013.dwg LAYOUT: 2 SAVED: 1/18/2019 3:23 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED:

1/21/2019 3:37 PM E	SY: CHUTIA, B	ARAKHA			22		* //	and the second s	The Providence of the				VGWU118	- 07				
			VGWU118	- 03					and the second second	DATE	5/14/2013	5/14/2013	5/14/2013	5/14/2013	3 5/14/201	3 5/14/201	3 5/14/2013	
DATE	5/14/2013	5/14/2013	5/14/2013	5/14/2013	5/14/2013	5/14/2013	5/14/2013	and the second second	-contrain	DEPTH	2	5	10	15	20	25	30	
DEPTH	2	5	10	15	20	25	30	- 1		TOLUENE	0.025	0.025	<0.051	<0.051	< 0.052	< 0.052	<0.059	CONSTRUCT OF
TOLUENE ETHVI BENZENE	0.034	0.033	0.028	0.031	0.019 <0.052	0.041 <0.052	<0.051	-			<0.058	<0.053	<0.051	<0.051	<0.052	<0.052	<0.059	
TOTAL XYLENES	<0.161	<0.052	<0.161	<0.004	<0.052	<0.156	<0.153			TPH-GRO	<17.5	<15.8	<15.4	<15.2	<15.7	<15.7	<17.8	etter for
TPH-GRO	<16.1	<15.7	<16.1	<16.1	<15.7	<15.6	<15.3	2		TPH-DRO	<17.5	<15.8	<15.4	<15.2	<15.7	<15.7	19.7	4
TPH-DRO	<16.1	<15.7	<16.1	<16.1	<15.7	<15.6	<15.3			CHLORIDE	7,200	96	80	80	<16	<16	<16	
CHLORIDE	832	96	48	48	48	32	32		3			大学を見		1.1	2.4	1	The real	N STAT
VGWU118 - 0 DATE 5/14 DEPTH 2 CHLORIDE DATE DEPTH 2 CHLORIDE DATE DATE DEPTH 2 CHLORIDE ETHYLBENZENE TOTAL XYLENES TPH-GRO TPH-GRO CHLORIDE OATE OATE CHLORIDE EEFH CHLORIDE VGWU118 - 0 DATE CHLORIDE CHLORIDE EEGE MAY CHLORIDE AB LOCA JULY OTE NOT IS SURV	6 1/2013 2 0.047 <0.056 <0.169 <16.9 102 4,800 102 4,800 102 4,800 102 2013 DIS TION 2012 DIS ENTIAL UD DETECTH /EYOR	5/14/2013 5 0.016 <0.062 <0.186 <18.6 192 CRETE S SCRETE S SCRETE S SCRETE S	VGWU118 5/14/2013 10 0.020 <0.061 <0.184 <18.4 <16.0 32	-01 5/14/2013 15 0.022 <0.061 <0.184 <18.4 <18.4 <18.4 32	5/14/2013 20 0.022 <0.063 <0.188 <18.8 <18.8 <16 TI TIONS INE N 1. 2	5/14/2013 25 0.042 <0.052 <0.155 <15.5 <15.5 <15.5 32 VGWU1 VGWU1 PH- DRO PH- DRO PH- GRO RAN OTES: AERIAL PH- COORDINA	5/14/2013 30 0.023 <0.062 <0.187 <18.7 <18.7 <18 18-05 VC TOTAL ORGA TOTAL ORGA TOTAL GE ORCE	VGWU118-06 VGWU118-06 VGWU118-04 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	OCARBON ROCARBO	AU118-03 GWU118-07 WU118-02 WU118-02 NS- DIESEL RA NS- GASOLIN	DATE DEPTH TOLUENE ETHYLBENZI TOTAL XYLE TOH-GRO TPH-DRO CHLORIDE	5/14// 2 <0.05 ENE <0.05 NES <0.17.2 <17.2 <17.2 <17.2 <17.2 <10,0	2013 5/14 5 77 <0.0 72 <0.1 2 <16. 2	VGV (2013 5/14 10 54 <0.0.54 2 <16 2 <1	VU118-02 V2013 15 154 0.0 161 - 0.0 1.1 - 112 1.1 - 112 1.1 - 112 V000000000000000000000000000000000000	4/2013 5/1- 36 0.0: 052 <0. 156 <0.0: 2 384 156 <0.0: 2 384	4/2013 5/14/2 25 35 0.039 054 <0.05 162 <0.16 2.2 <16.2 3.2 <17.2 3.2	2013 5/14/2013 30 0.031 4 <0.065 2 <0.195 30 224 30 224 30 0.031 4 <0.065 2 <19.5 30 224 30 22 22 30 22 30 22 30 22 22 30 22 22 20 20 20 20 20 20 20 2
2. COORDINATES FOR J SUB METER TRIMBLE G 3. UTILITIES WERE IDE GROUND UTILITY LINE 3. UTILITIES WERE IDE FREQUENCY SURVEY (NTIFIED USING GROUND P RVISUAL MEANS.		G RADAR, RADIO			2013 AN					_ING IS
IDEN	TIFIED B	URIED LI	NE		4. E						uce)				VGWl	J #118	}	
- w WATER LINE 6. BOLD VALUES DENOTE CONCENTRATIONS ABOVE TH										C CRITERIA	^{igs).} 160'						Denne 194	FIGURE
	ROXIMAT		IT OF SP	ILL								9	AR	C A	DIS	for nature built asse	Land ts	2
		SECIIO	IN						GRAPH	IC SCALE								

Released to Imaging: 12/5/2022 12:16:32 PM

UIT: MANUTESTER DIV/GROUP: ENVOAD DD: D.SMALL PM: IN

C/L/Jsers/chuliab4677/OneDrive - ARCADIS/BIM 360 Docs/CHEVRON CORPORATION/VGWU 118/B0048616.1701/01-DWG\B00486111601-VGWU118-2016.dwg LAYOUT: 2 SAVED: 1/18/2019 3:23 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 1/21/2019 12:56 PM BY: CHUTIA, BARAKHA

Released to Imaging: 12/5/2022 12:16:32 PM

CITY: MANCHESTER DIV/GROUP: ENVCAD DB: B.SMALL PM: TM

C:\Users\chuttab4677\OneDrive - ARCADIS\BIM 360 Docs\CHEVRON CORPORATION\VGWU 118\B0048616.1701\01-DWG\B00486111601-VGWU118-2017.dwg LAYOUT: 2 SAVED: 1/17/2019 5:51 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: --- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 1/18/2019 2:44 PM BY: CHUTIA, BARAKHA

Released to Imaging: 12/5/2022 12:16:32 PM

ATTACHMENT 1

Depth-to-Groundwater Data

Released to Imaging: 12/5/2022 12:16:32 PM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a	(R=POD has been replaced O=orphaned,	1,	aua	rter	sa	re 1:	=NW :	2=NF 3	8=SW 4=	SF)					
water right file.)	closed)	(qua	rter	s a	re sr	nalles	t to lar	gest)	(NA	D83 UTM in n	neters)	(n feet)	
	POD Sub-		0	0	0								Donth	Denth	Wator
POD Number	Code basin C	County	y 64	16	4	Sec	Tws	Rng		x	Y	Distance	Well	Water (Column
L 13392 POD20	L	LE	4	1	2	06	18S	35E	6410	81	3628000 🌍	200	138		
L 13392 POD15	L	LE	4	1	2	06	18S	35E	6411	19	3628041 🌍	204	137		
L 13392 POD19	L	LE	3	2	2	06	18S	35E	6411	55	3628080 🌍	221	138		
L 13392 POD14	L	LE	4	1	2	06	18S	35E	6411	18	3628007 🌍	223	133		
L 13392 POD18	L	LE	4	1	2	06	18S	35E	6411	43	3628014 🌍	239	138		
L 13041 POD1	L	LE		2	2	06	18S	35E	6411	52	3628026 🌍	240	130		
L 13041 POD2	L	LE		2	2	06	18S	35E	6411	52	3628026 🌍	240	140		
L 13041 POD3	L	LE		2	2	06	18S	35E	6411	52	3628026 🌍	240	140		
L 13041 POD4	L	LE		2	2	06	18S	35E	6411	52	3628026 🌍	240	140		
L 13392 POD17	L	LE	4	1	2	06	18S	35E	6411	49	3627992 🌍	257	138		
L 13392 POD16	L	LE	3	2	2	06	18S	35E	6411	71	3627989 🌍	276	138		
L 05523	L	LE	3	3	2	06	18S	35E	6408	55	3627660* 🌍	492	147	85	62
L 07119 S	L	LE	1	2	1	06	18S	35E	6404	45	3628259* 🌍	510	233	95	138
L 10337	L	LE	4	1	1	06	18S	35E	6402	68	3628055* 🌍	679	190	100	90
L 07119	L	LE	1	1	1	06	18S	35E	6400	68	3628255* 🌍	880	233	95	138
											Aver	age Depth to	Water:	93 1	feet
												Minimum	Depth:	85 f	feet
												Maximum	Depth:	100 1	feet
Record Count: 15															
UTMNAD83 Radius So	earch (in mete	rs):													

Easting (X): 640942

Northing (Y): 3628144.44

Radius: 1000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/14/19 1:09 PM

ATTACHMENT 2

C-141 Form

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Page 28 of 282

Oil Conservation Division 1220 South St. Francis Dr.

I220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505														
Release Notification and Corrective Action														
						OPERA	ΓOR	\triangleright	Initia	al Report		Final Report		
Name of Co	ompany CH	IEVRON U	.S.A Inc.			Contact Day	vid Pagano			1		1		
Address :	56 Texas C	Camp Road, I	Lovingto	n, NM 88260		Telephone I	No. Office: 575-	396-4414	ext 275	Cellular: 50)5-787	7-9816		
Facility Nat	ne Vacu	um Gloriett	a West U	nit #118		Facility Typ	e Production V	Well						
Surface Ow	ner Stat	e of New M	exico	Mineral C	Owner	State of N	ew Mexico		API No	. 3002	53112	29		
				LOCA		N OF RELEASE								
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/Wes	st Line	County	T.			
В	6	18.0S	35.0E								Le	a		
		Latitu	de 32.	.782150°		_ Longitude	<u>-103.49615</u>	<u>7°</u>						
				NAT	URE	OF REL	EASE							
Type of Release Produced Water Spill Volume of Release 9.61 bbls of Volume of Release 0.746 bbls of 0 bbls 0 bbls										Recovered				
Source of Re	lease Wa	ter Injection S	Station Pu	np		Date and H 04/22/12 0	Iour of Occurrenc 7:00	ce D 0	Date and 1 4/22/12	Hour of Dis 07:00	cover	4		
Was Immedi	ate Notice C	Given?	Yes] No 🗌 Not Ro	equired	ed If YES, To Whom? Mr. Leking via voicemail								
By Whom?	By Whom? David Pagano Date and Hour 04/223/12 11:00 AM													
Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. Yes No														
If a Watercou	urse was Im	pacted, Descr	ibe Fully. ³	k										
NA														
Describe Cau 1 foot scrape	ise of Proble e on poly lin	em and Reme he caused integ	dial Actio grity of lir	n Taken.* e to give leading	to spill	of 9.61bbls of	pw and 0.746 bb	ls of oil. V	Well shut	in on disco	very.			
Describe Are	a Affected	and Cleanup A	Action Tal	ken.*										
Spill was loc	ated in past	ure												
On discovery to be excavat	vacuum tru ed up to 2 f	ick contacted eet and sent o	and vacuu ff for disp	umed up the stand osal	ing fluic	ds which were	e sent to disposal.	Next step	s are for	the visually	conta	minated soil		
I hereby certi regulations a public health should their o or the enviro federal, state	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.													
							OIL CON	SERVA	TION	DIVISIO	<u>)N</u>			
Signature:														
Printed Name	e: David	Pagano				Approved by	Environmental S	pecialist:						
Title: Heal	th & Enviro	onmental Spec	cialist			Approval Da	e:	Exp	piration l	Date:				
E-mail Addre	ess: david	l.pagano@che	evron.com			Conditions of	Approval:			A 441 1				

Date: 04/23/12 Phone: 505-787-9816 * Attach Additional Sheets If Necessary

Released to Imaging: 12/5/2022 12:16:32 PM

Attached 🗌

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Page 29 of 282

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505															
				36	inta r	$\frac{1}{2}$	03								
			Rele	ease Notific	atio	n and Co	orrective A	ction							
						OPERA	ΓOR	🗍 Initia	l Report	\bowtie	Final Report				
Name of Co	mpany: C	HEVRON U	J.S.A. Inc			Contact: Lu	ke Welch		1		1				
Address: 56	Texas Ca	mp Road, Lo	ovington	NM 88260		Telephone N	No.: Office: (713	3) 372-0292 Mot	oile: (832)	627-9	171				
Facility Nar	ne: Vacuu	m Glorietta	West Uni	it #118		Facility Typ	e: Production V	Vell							
Surface Ow	nor: Stato	of New Mey	rico	Mineral (Junor	r: State of New Mexico API No. 3002531129									
Surface Ow	liel. State		100	Willeral C	Jwner.	1. 5440 61 110W (MOARO) / 11 1110, 500255112)									
				LOCA	TIO	N OF REI	LEASE								
Unit Letter	Section	Township	Range	Feet from the	North	h/South Line Feet from the East/West Line County									
R	6	18.05	35.0E						Lea						
D	0	10.05	55.0E						Lea						
			Latitu	de <u>32.782150°</u>		_ Longitude	<u>-103.496157°</u>	<u>_</u>							
NATURE OF RELEASE															
Type of Relea	ase: Produc	ed Water Spil	1		UKL	Volume of I	Release: 9.61 bbls	of Volume R	ecovered: (bbls					
Type of Itere		eu maier spi	-			Produced W	ater and 0.746 bb	ols of		0015					
						oil									
Source of Re	lease: Wate	r Injection Sta	ation Pum	р		Date and Ho	our of Occurrence	$\therefore \qquad \text{Date and } \\ 04/22/12/12/12/12/12/12/12/12/12/12/12/12/$	Hour of Dis	covery	:				
Was Immedia	ate Notice (Tiven?				16 YES To Y	Whom?	04/22/12	57:00						
Wub Innieun		Niven. 🛛 Y	les 🔲 🛛	No 🔲 Not Requ	uired	Mr. Leking via voicemail									
By Whom? I	David Paga	no				Date and Ho	our: 04/23/12 11:0	00M							
Was a Water	course Read	ched?				If YES, Vol	ume Impacting th	e Watercourse.							
			Yes 🛛 🛛	No											
If a Watercou	irse was Im	pacted, Descr	ibe Fully. ³	*											
N/A															
Describe Cau	se of Probl	em and Reme	dial Actio	n Taken.*											
1 foot scrape	on poly lin	e caused integ	rity of lin	e to give leading t	o spill o	of 9.61 bbls of	pw and 0.746 bb	ls of oil. Well shut	in on discov	erv.					
Describe Are	a Affected	and Cleanup	Action Tal	ken.*	1		1								
Spill was loca	ated in past	ure. web contacted	and yoou	umed up the star	ling flui	de which wa	a sent to disposal	Visually contami	nated soil w		vated up to 2				
feet.	, vacuum n			unice up the stark	ing nu	ius, which we	te sent to disposal	i. Visually containin	lated soll w	is caed	wated up to 2				
Ten discrete s	soil confirm	nation samples	s were col	lected from the ba	se of th	e excavation.	An additional site	e assessment was co	onducted to	confirm	n the extent				
of soil impact	ts.														
Analytical res	sults of the	additional ass	essment a	re attached.											
I hereby certi	fy that the i	information gi	iven above	e is true and comp	lete to t	he best of my	knowledge and u	inderstand that purs	uant to NM	OCD r	ules and				
regulations al	l operators	are required t	o report a	nd/or file certain r	elease r	otifications a	nd perform correct	ctive actions for rele	eases which	may ei	ndanger				
public health	or the envi	ronment. The	acceptan	ce of a C-141 repo	ort by th	e NMOCD m	arked as "Final R	eport" does not reli	eve the oper	ator of	liability				
or the enviror	ment. In a	ddition. NMC	OCD accer	tance of a C-141	report d	loes not reliev	e the operator of	responsibility for co	ompliance w	vith any	/ other				
federal, state,	or local lav	ws and/or regu	ilations.		reporte		e life operator or		, in priance (
							OIL CON	SERVATION	DIVISIO)N					
Signatura															
Signature:						Approved L	Environment-1 9	pagialist							
Printed Name	<u>: Luke W</u> e	lch				Approved by	Environmental S	pecialist:							
T. 1 D															
Title: Project	Manager					Approval Dat	e:	Expiration	Jate:						
E-mail Addre	ess: LWelch	n@chevron.co	m			Conditions of	Approval:								
							**		Attached						

Date: Phone: (713) 372-0292

* Attach Additional Sheets If Necessary

ATTACHMENT 3

Soil Boring Logs

<i>e</i> Dai Dri	væl d lling (by/F0 Comp	GD: pany:	<u>52</u> /4 Wh	ite Dr	32 12 illing/	::15:36 	Well/Boring ID: VGWU118 - 01	31 of 282
Dri Sar	lling l npling	Meth g Me	od: [/] thod:	Air Ro : Sho	otary ovel			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
Bo De	rehol script	e De tions	pth: By:	30' b R Na	gs anny				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
	0						<mark>:/://:</mark> /	SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR8/2), firm, blocky, dry, roots in sample, 50% sand, silt to very fine grained,]
ļ	-		AK	2	6.2			subangular to subrounded, poorly sorted.	
ł	-	1	AK	3	0.2			CALICHE, Pale Yellow (2.5YR8/4), soft, slightly moist, argillaceous, 90% caliche clay, 10% sand, silt to very fine grained, subangular to subrounded, poorly sorted.	
- 5 -	-5 -	-	AR	5	7.1	æ			
- - - - - -	-10 - - - -	2	AR	5	2.8	æ		SANDY CALICHE, Pale Yellow (2.5YR8/3), soft, powdery, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted, loose, dry, trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 cm to 0.5 cm.	
- 15 - - -	-15 — — — —	4	AR	5	4.0			SANDY CALICHE, Pale Yellow (2.5YR8/2), soft, powdery, dry, 80% caliche, 20% sand, very fine to fine grained, subrounded to subangular, poorly sorted, loose, formation contains sandy siliceous caliche, Pale Yellow (7.5YR7/4), fine to very fine grained, subrounded, poorly sorted, silica cemented, nodular, traces throughout formation.	
-	-20 -	5	AR	5	4.7			SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous formation.	
- 25 - - -	-25 - - -	6	AR	5	5.8			Same as above, formation sand becomes fine grained, subrounded, well sorted, contained trace indurated sandstone, Pale Yellow (2.5YR7/4), silica cemented, nodules 0.3 cm to 1 cm throughout formation.	
L					7.4	×		Same as above, nodules become 5% to 10% at 30 feet bgs.	

Remarks: ags = above ground surface; AK = air knife; amsl = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 01 Soil Boring.dat Date: 6/25/2014

<i>ke</i> De Dri	i væl d Iling (by/F(i) Comp	GD: pany:	52/4 Whi	12002 ite Dr	32 12 illing/l	2 :15:36 	M Well/Boring ID: VGWU118 - 02	2 of 282
Dri Sa	lling I mpling	Meth g Me	od: [/] thod:	Air Ro	otary ovel	-		Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
Bo De	orehol scrip	e De tions	pth: By:	30' b R Na	gs annv				
			-		,				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
-0		1							
-	-	1	AK	2	3.4	Ж		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), soft, slightly pliable, moist, roots in sample, 50% clay and 50% sand, silt to very fine grained, subangular to subrounded, poorly sorted, trace caliche, White (5YR8/1), soft to firm, nodular, 0.2 cm to 0.3 cm.	
- 5	-5 -	-	AK AR	3	2.9	×		CALICHE, Pale Yellow (2.5YR8/4), soft, slightly moist, argillaceous, 90% caliche clay, 10% sand, silt to very fine grained, subangular to subrounded, poorly sorted.	
F	-	-							
-	-	2	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/4), soft, powdery, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted, loose, dry. Formation contains trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 cm to 0.5 cm throughout formation.	
- 10	-10 -				4.3	×			
-	-	3	AR	5					
- 15	-15 -				4.8	×		Same as above, formation had a slight color change to Pale Yellow (2.5YR8/3), sand increased, grains turned to subrounded.	
-	-	4	AR	5					
- 20	-20 -				5.4			SAND, Pale Yellow (2.5YR8/2), fine grained, subrounded, moderately sorted, loose, slightly moist. Formation contains traces sandstone, Light Brown (7.5YR6/4). Sand is same as described above, indurated, nodular, silica cemented.	
-	-	5	AR	5					
25	-25 -				5.3	×			
-	-	6	AR	5					
L					7.9	×	·····		

Remarks: ags = above ground surface; AK = air knife; amsI = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 02 Soil Boring.dat Date: 6/25/2014

<i>e</i> Dai Dri	væl d lling (hy/Fû Comp	GD: pany:	<u>52/4</u> Wh	ite Dr	82 12 illing/	:15:36 	Well/Boring ID: VGWU118 - 03	33 of 28
Dri Sar	lling I npling	Metho g Met	od: [/] thod:	Air Ro	otary ovel			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
Bo De	rehol script	e De tions	pth: By:	30' b R Na	gs anny				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
-0							··/··/··	SILTY SANDY CLAY (Topsoil) Dark Gravish Brown (10VR4/2) firm blocky to clightly friable day roots in sample 50% clay 50% sand	
-	-		AK	2	2.7	×		Sill to very fine grained, trace fine grains in samples, subangular to subrounded, poorly sorted, trace caliche, White (5YR8/1), soft to friable, nodular.	
-	_	1	AK	3				SANDY CALICHE, White (2.5YR8/1), very firm to indurated, dry, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted.	
-5	-5 -		AR		2.8	×		CLAYEY SAND, Light Gray (2.5YR/72), very tine to tine grained, subangular, poorly sorted, loose, 70% sand, 40% clay, calcareous clay matrix, powdery, arenaceous, trace caliche as described above, nodular, 0.1 to 0.3 cm, firm to indurated.	
- - -	-	2	AR	5					
— 10 -	-10 -				6.2	×		Same as above, formation had a slight color change to Light Gray (10YR7/2), loose.	
- - - 15	-	3	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/2) firmly cemented, dry, 80% caliche, 20% sand, very fine to fine grained, subangular, poorly sorted, formation contains White (5YR8/1), indurated, sandy caliche nodules, rounded thoughout formation.	
- 15 -	-15 -				6.4		-:-±-:- ⊥:⊥:		
- -	-	4	AR	5					
- 20 - - -	-20 — 	5	AR	5	9.0			SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous.	
- 25	-25 - - -	6	AR	5	5.7	æ		Same as above, formation becomes fine grained, subrounded, well sorted. Formation contains trace indurated sandstone, Pale Yellow (2.5YR7/4), sand is same as above, silica cemented nodules.	
- 30	-30-				5.8	×	•••••	Same as above, nodules become 10% at 30 feet bgs.	

Remarks: ags = above ground surface; AK = air knife; amsl = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 03 Soil Boring.dat Date: 6/25/2014

<i>ke</i> De Dr	ivæl d illing (by/R0 Comj	GD: pany:	<u>52</u> /4 Wh	ite Dr	8 2 12 illing/	::15:36 P R Dallas	M Well/Boring ID: VGWU118 - 04	e 34 of 282
Dr	illing l	Meth	od: /	Air Ro	ovel			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
В	orehol	e De	pth:	30' b	gs				
	escrip	tions	By:	R Na	anny				
					Ê				ī
		Numbe	be	et)	ce (ppi	nple	um		
_	TION	Run	e/Int/Ty	ery (fee	adspa	cal Sa	ic Colt	Stratigraphic Description	
DEPTH	ELEVA	sample	Sample	Recove	PID He	Analytic	Beolog		
	<u> </u>	0				4			
-			AK	2				SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), friable, dry, 50% clay and 50% sand, silt to fine grained, subrounded, poorly sorted, roots in sample. Formation contains trace caliche, White (5YR8/1), very fine to indurated, nodular throughout formation.	
ŀ	-	1			4.3	×			
F	-	-	AK	3				SANDY CALICHE, White (5YR8/1), powdery, arenaceous, dry, 80% caliche, 20% sand, very fine to fine grained, rounded, poorly sorted, formation contains trace indurated, siliceous caliche nodules, rounded throughout formation, Yellow (5YR8/3).	
-5	-5 -		AR		5.9				
F	-	2	AR	5					
F	-	-							
- 10	-10 -				6.7	×		Same as above, formation becomes slightly softer, sand become 30%.	
F	-	3	AR	5					
ŀ	-								
- 15	-15 -				6.1	×		Same as above, formation becomes soft, sand grain content becomes 40%, caliche is powdery within formation.	
F	-	-							
ŀ	-	4	AR	5					
- 20	-20 -				6.1	×		SANDSTONE, Pale Yellow (2.5YR8/2), fine grained, subangular to subrounded, moderately to poorly sorted, calcareous, weakly	_
ļ	-	-						cemented, friable, trace indurated, siliceous concretions, Pale Yellow (2.5YR7/4), rounded, throughout formation, formation is slightly calcareous.	
ŀ	-	5	AR	5					
- 25	-25 -	-			5.9	×		Same as above, formation sand becomes subrounded and well sorted, dry.	
ŀ	-								
$\left \right $	-	6	AR	5				Γ	
L_30	- 				3.6	×	••••••	/ SAND at 30 feet bgs, Pale Yellow (2.5YR8/2), fine grained, subrounded, moderately to well sorted, loose, calcareous, 80% sand, 20% indurated siliceous concretions, Pale Yellow (2.5YR7/4), rounded throughout formation, dry.	

Remarks: ags = above ground surface; AK = air knife; amsl = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 04 Soil Boring.dat Date: 6/25/2014

<i>e</i> Dai Dri	i væl d Iling (by/F(i) Comp	GD: pany:	52 /4 Wh	ite Dr	32 12 illing/	2 :15:36 	M Well/Boring ID: VGWU118 - 05	85 of 282
Dri Sar	lling I noline	Metho a Met	od: [/]	Air Ro	otary ovel			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
Bo	rehol	e De	pth:	30' b	gs				
De	scrip	lions	. Бу.	RNa	anny				
		ber			(md				1
	7	Numt	Type	eet)	ace (p	ample	lumn		
폰	/ATIO	ole Rur	ole/Int/	very (f	leadsp	rtical S	ogic Co	Stratigraphic Description	
DEP	ELEV	Samp	Sam	Reco	H DIA	Analy	Geolo		
	0						· · / · · / · ·	SII TV SANDV CLAV (Topsoil) Dark Gravish Brown (10/PA/2) firm blocky, dry roots in sample, 50% clay and 50% sand silt to year	٦
-	-	-	AK	2		×		fine grained, trace fine grains in sample, subangular to subrounded, poorly sorted.	
-	-	1	AK	3	4.0		<u>//.</u>	CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular, poorly sorted, loose, 60% caliche, 40% sand, calcareous	-
	-5 -		AR		3.4	×		clay matrix, powdery, arenaceous, slight moisture, trace caliche, White (2.5YR8/1), firm to indurated, nodular, formation also contains trace siliceous caliche, Very Pale Brown (10YR7/3), indurated, rounded, nodular throughout formation.	
-	-	-							
-	-	2	AR	5					
- 10	-10 -				4.2	æ			
-	-	-							_
-	-	3	AR	5				SANDSTONE, Very Pale Brown (10YR8/2 to 10YR7/4), fine grained, subangular to subrounded, poorly sorted, indurated, calcite and silica cementation.	
- 15	-15 -				5.9	×		Same as above, formation softens to friable.	
-	-	-						SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous, formation contains trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 to 0.5 cm throughout formation.	-
	-	4	AR	5					
- 20	-20 -				4.1	×			
-	-	-							
	-	5	AR	5					
- 25	-25 -				5.0	×			
	-								
	-	6	AR	5					
L ₃₀	-30-				6.1	×	••••		

Remarks: ags = above ground surface; AK = air knife; amsI = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 05 Soil Boring.dat Date: 6/25/2014

<i>e</i> Dai Dri	e&la iling (ty Rih Comp	GD: bany:	52/4 Wh	ite Dr	82 12 illing/	2 :15:36 	Well/Boring ID: VGWU118 - 06	Page 36 of 28
Dri Sar	lling N nplind	Metho g Met	od: A thod:	Air Ro	otary ovel			Location: Vacuum Glorietta West Unit 118	-
Bo De	rehol	e De tions	pth: Bv:	30' b R Na	gs				
			_,		ann y				
РТН	EVATION	mple Run Number	mple/Int/Type	covery (feet)) Headspace (ppm)	alytical Sample	ologic Column	Stratigraphic Description	
DE	EL	Sai	Sa	Re	ЫЧ	An	9 G		
-			AK	2	3.9	×		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), firm, blocky to slightly friable, dry, roots in sample, 50% clay silt to very fine grained, trace fine grains in sample, subangular to subrounded, poorly sorted.	, 50% sand,
-	-	1	AK	3				SANDY CALICHE, White (2.5YR8/1), very firm to indurated, dry, 75% caliche, 25% sand, very fine to fine grained, subangula sorted.	ar, poorly
-5	-5 -		AR		5.1	×		CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular, poorly sorted, loose, 60% sand, 40% caliche c clay matrix, powdery arenaceous, dry trace caliche described above, nodules 0.1 cm to 0.3 cm.	alcareous
-	-	2	AR	5					
- 10 -	-10 -				5.2	×		Same as above, firm to indurated, slight color change to Light Gray (10YR7/2), loose formation.	
- -	-	3	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/2), firmly cemented, dry, 80% caliche, 20% sand, very fine to fine grained, subangu sorted. Formation contains White (5YR8/1), indurated sandy caliche nodules, rounded.	lar, poorly
- 15	-15 -				4.1	×			
-	_	4	AR	5					
- 20 - -	-20 -	5	AR	5	4.1	×		SANDSTONE, Light Gray (10YR7/2), vrey fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, o	alcareous.
- 25	-25 -				6.0	×		Same as above, formation sand becomes fine grained, subrounded, well sorted.	
-	-	6	AR	5					
L					5.9	×		Same as above, at 30 feet bgs, White (10YR8/1), fine grained, subrounded, well sorted, dry, very calcareous.	

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 06 Soil Boring.dat Date: 6/25/2014

Remarks: ags = above ground surface; AK = air knife; amsI = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;
eDai Drii	ing (by/Rih Comp	GD: pany:	52/4 Wh	ite Dr	32 12 illing/	2 :15:36 	M Well/Boring ID: VGWU118 - 07	37 of 28
Dril San	ling M npling	Metho g Met	od: [/] thod:	Air Ro Sho	otary ovel			Location: Vacuum Glorietta West Unit 118	
Bo De:	rehol script	e De tions	pth: By:	30' b R Na	gs anny				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
-0									
-	_		AK	2	3.4	×		SILTY SANDY CLAY, Light Gray (2.5YR7/2), soft, friable, slight moisture, 70% clay, 30% silt to vrey fine grained sand, subrounded, poorly sorted.	
-	-	1	AK	3				CLAYEY SAND Light Grav (2.5YR7/2) very fine to fine grained subangular to subrounded poorly sorted loose to slightly cemented	
-5	-5 -		AR		4.6	×		80% sand, 20% clay matrix, soft, powdery, dry.	
-	-	2	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/2), very fine to indurated, dry, trace sand, very fine to fine grained, subrounded, poorly sorted, formation contained trace concretionary caliche nodules, indurated, calcite and silica cemented, rounded, throughout formation.	
- 10 - -	-10 — - -	3	AR	5	6.6				
- 15 - - -	-15 — - - -	4	AR	5	2.2	- W		Same as above, formation has a slight color change to Pale Yellow (2.5YR8/3), sand grain content increased to 30%.	
- 20 - - -	-20 — — — —	5	AR	5	0.4			SANDSTONE, Very Pale Brown (10YR8/2), very fine to fine grained, subangular to subrounded, poorly sorted, very loosely cemented, calcareous, formation contains trace caliche, White (2.5YR8/1), indurated, nodular, rounded, 0.2 cm to 0.5 cm throughout formation.	
- 25	-25 -				4.0	×			
-	-	6	AR	5	FO				
L_30_	-30-	1	I		5.3	I KA	• • • •	Same as above, at 30 teet bgs, tormation contains trace concretionary siliceous caliche nodules, 0.2 cm to 0.3 cm, rounded.	

Remarks: ags = above ground surface; AK = air knife; amsl = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 07 Soil Boring.dat Date: 6/25/2014

.

ARC Soil Bo Project Na Project Nu Project Loo	CADIS Dring L me: <u>Cr</u> mber: <u>BC</u> cation: <u>HE</u>	Angenetic Constitutions Angenetic Constitution Angenetic Constitution Angen	18 Sites		Da	Chevron Boring No.: VGW Sheet: 1 1 Date Started: 06/23/2016 Logger: Ken Wicks ate Completed: 06/23/2016 Editor: NA Weather Conditions: NA	/U118-08 of 1
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description Constru Deta	ction ls Well
			SB-08(2')			SAND, fine; some silt; poorly graded; dry; brown. Boreh SAND, fine; some silt; poorly graded; dry; tan. Boreh SAND, fine; some silt; poorly graded; dry; tan. Native m End of boring at 4.0 ft bgs. Image: San	ole d with— aterial
5 Drilling Co. Driller: Drilling Me Drilling Flu Remarks: ppm = parts	: <u>HC</u> Ke thod: Air id: <u>Nc</u> '/ f per million;	CI Drilling mny Cooper Rotary ne t = feet; " / in NA = not avai	= inch; bgs = below g	ground su	face;	Sampling Method: <u>Shovel</u> Sampling Interval: <u>NA</u> Water Level Start (ft. bgs.): <u>NA</u> Water Level Finish (ft. btoc.): <u>NA</u> Converted to Well: <u>Yes</u> X No Surface Elev.: <u>NA</u> North Coor: <u>NA</u>	

Soil Bo Project Na Project Nu Project Lo	CADIS Dring I Ime: <u>Cl</u> Imber: <u>B(</u> cation: HI	Design & Consultancy for insured and Design of the second Design of the	; 18 Sites		D;	Chevron Boring No.: VGWU118-09 Sheet: 1 Date Started: 06/23/2016 Logger: Ken Wicks ate Completed: 06/23/2016 Editor: NA Weather Conditions: NA	
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description Construction V Details	Vell
			SB-09(2') SB-09(4')			SAND, fine; some silt; poorly graded; dry; brown. Borehole Borehole bachfilled with Native material Native material End of boring at 4.0 ft bgs. Image: Content of the state	
5 Drilling Co Driller: Drilling Me Drilling Flu Remarks: ppm = parts	Ke Ke thod: Ai id: <u>Na</u> <u>'/</u> per million;	 CI Drilling enny Coope r Rotary one ft = feet; " / in NA = not ava	r = inch; bgs = below <u>c</u> ilable or not applicable	ground su	rface;	Sampling Method: Shovel Sampling Interval: NA Water Level Start (ft. bgs.): NA Water Level Finish (ft. btoc.): NA Converted to Well: Yes No Surface Elev.: NA North Coor: NA East Coor: NA	

Soil Bo Project Na Project Nu	CADIS Oring I Ime: <u>Cl</u> Imber: <u>B(</u>	Loga & Constitutery built assets Devron EMC 0048616.01	2 18		Da	Chevron Boring No.: VGWU118-10. Sheet: 1 of 1 Date Started: 06/23/2016 Logger: Ken Wicks ate Completed: 06/23/2016 Editor: NA
Depth	Sample	Recovery	Sample ID	PID	USCS	Description Construction W
			SB-10(2') SB-10(4')	(ppm)	Class	SAND, fine; some silt; poorly graded; dry; brown. Borehole bachfiled with Native material SAND, fine; some silt; poorly graded; dry; tan. Borehole bachfiled with Native material
5 Drilling Co Driller: Drilling Me Drilling Flu Remarks: ppm = parts	: <u>H</u> Ke thod: Ai id: <u>Ne</u> <u>'/</u> per million;	CI Drilling enny Coope r Rotary one ft = feet; " / in NA = not ava	r = inch; bgs = below g ilable or not applicable	ground su	face;	Sampling Method: Shovel Sampling Interval: NA Water Level Start (ft. bgs.): NA Water Level Finish (ft. btoc.): NA Converted to Well: Yes X No Surface Elev.: NA North Coor: NA East Coor: NA

ARC Soil Bo	ADIS pring L	Design & Consultancy for natural and built assets					Chevron		Boring I	No. <u>: VGWU118-</u> Sheet: 1 of	11
Project Na Project Nu	me: <u>Cł</u> mber: <u>B(</u>	evron EMC 048616.01	; 18		Da	Date Started: ate Completed:	06/23/2016 06/23/2016	Logger: Editor:	<u>Ken W</u> NA	licks	
Project Loo	cation: <u>HE</u>	<u>ES Transfer</u>	Sites				Weather C	Conditions:	NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-11(2') SB-11(4')			SAND, fine; some	silt; poorly graded; dry; i silt; poorly graded; dry; ; 0 ft bgs.	gray.		Borehole bachfilled with— Native material	
Drilling Co.	: <u>H(</u>	CI Drilling		1	1	Sampli	ng Method: <u>Shovel</u>			1	
Driller:	<u>Ke</u>	nny Coope	r			Sampli	ng Interval: <u>NA</u>				
Drilling Met	thod: <u>Ai</u>	Rotary				Water	Level Start (ft. bgs.)	: <u>NA</u>			
Drilling Flui	a: <u>No</u>	one	- inch, has - balance	round	foco	Water	Level Finish (ft. btoo	0.): <u>NA</u>	I∑	No	
Remarks:	<u>'/1</u>	$\underline{\tau} = \underline{teet}; " / in$	= inch; bgs = below g	round su	nace;	Convei		JTES	<u> </u>		
ppm = parts	per million;	INA - NOT AVA	mable of not applicable			Surface					
						North (Fast C	200Γ: <u>ΝΑ</u> 00Γ:ΝΔ				

ARC Soil Bo Project Na	ADIS oring L	LOG				Date Started:	06/23/2016	_Logger:	Boring S	No. <u>: VGWU118-</u> Sheet: 1 of /icks	121
Project Nu Project Loo	mber: <u>BC</u> cation: <u>HE</u>	<u>1048616.01</u> ES Transfer	Sites		D; 	ate Completed:	Weather C	Editor: onditions:	<u>NA</u> NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-12(2') SB-12(4')			SAND, fine; some	silt; poorly graded; dry; t silt; poorly graded; dry; g	Jray.		Borehole bachfilled with	
5 Drilling Co.	: <u>H</u> (CI Drilling				Sampli	ng Method: <u>Shov</u> el				
Driller:	Ke	nny Coope	r			Sampli	ng Interval: <u>NA</u>				
Drilling Met	thod: Ai	Rotary				Water	Level Start (ft. bgs.)	. <u>NA</u>			
Drilling Flui	d: <u>No</u>	one				Water	Level Finish (ft. btoo	:.): <u>NA</u>		-	
Remarks:	<u>'/</u>	t = feet; " / in	= inch; bgs = below g	round su	rface;	Conver	ted to Well:	Yes	X	No	
ppm = parts	per million;	NA = not ava	ilable or not applicable			Surface	e Elev.: NA				
						North (Coor: NA				
						Fast C	por NA				

Soil Bo Project Na Project Nu Project Loo	ADIS Dring L me: <u>Ch</u> mber: <u>BC</u> cation: <u>HE</u>	LOG Devron EMC 0048616.01 ES Transfer	: 18 Sites		Da	Date Started: ate Completed:	06/23/2016 06/23/2016 Weather C	Logger: Editor: Conditions:	Boring I S <u>Ken W</u> <u>NA</u> <u>NA</u>	No.: <u>VGWU118-</u> heet: <u>1 of</u> /icks	13
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-13(2')			SAND, fine; some	silt; poorly graded; dry; i silt; poorly graded; dry; i 0 ft bgs.	tan.		Borehole bachfilled with— Native material	
Drilling Co.	: <u>H(</u>	CI Drilling	I	1	1	Sampli	ng Method: <u>Shovel</u>			J	
Driller:	<u>Ke</u>	nny Coope	r			Sampli	ng Interval: <u>NA</u>	- NIA			
	iniou: All	ncolary				vvater	Level Start (ft. bgs.) Level Finish (ft. bto)	ρ. <u>INA</u> ∼.)∙ ΝΔ			
Remarks:	u. <u>INC</u> '/'	///:C	= inch: bas = below ar	ound eu	rface [.]	vvaler	Lever Finish (IL DIO)	.). <u>INA</u> Yes	X	No	
nom = parts	<u>_/]</u> ner million:	I = Ieel; / II NA = not avail	<u> </u>	ound sul	iidue,	Conver		103			
ppn – parts	per minion;		парте от пот аррисаріе.								
						North (DOF: NA				

Soil Bo Project Na Project Nu Project Lo	CADIS Dring L me: Ct mber: BC cation: HE	Logate Constance built assets Devron EMC 0048616.01 ES Transfer	2 18 Sites		Da	Chevron Boring No.: VGWU118-14 Sheet: 1 of 1 Date Started: 06/23/2016 Logger: Ken Wicks ate Completed: 06/23/2016 Editor: NA Weather Conditions: NA	1
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description Construction Details	Well
			SB-14(2') SB-14(4')			SAND, fine to coarse; few silt; poorly graded; dry; tan. Borehole bachfilled with-Native material SAND, fine to coarse; few silt; poorly graded; dry; tan. Borehole bachfilled with-Native material End of boring at 4.0 ft bgs. Image: Coarse of the second seco	
Drilling Co. Driller: Drilling Me Drilling Flu Remarks: ppm = parts	: <u>H(</u> Ke thod: Aiı id: <u>Nc</u> <u>'/1</u> per million;	CI Drilling enny Coope r Rotary one ft = feet; " / in NA = not ava	r = inch; bgs = below g ilable or not applicable	ground su	face;	Sampling Method: <u>Shovel</u> Sampling Interval: <u>NA</u> Water Level Start (ft. bgs.): <u>NA</u> Water Level Finish (ft. btoc.): <u>NA</u> Converted to Well: <u>Yes</u> <u>No</u> Surface Elev.: <u>NA</u> North Coor: <u>NA</u> Eact Coor: <u>NA</u>	

ARC	ADIS	Design & Consultancy for natural and built assets				Chevron	Boring N	lo.:_VGWU118-1	5
Soil Bo	oring l	Log					S	heet: 1 of	1
Project Na	me: <u>C</u>	hevron EMC	2			Date Started: 09/14/2016	Logger: <u>Melisa</u>	Phan	
Project Nu	mber: <u>B</u>	0048616.01	18		_ D	ate Completed: <u>09/14/2016</u>	_ Editor: <u>NA</u>		
Project Lo	cation: <u>H</u>		Siles		_	weather C	onditions: <u>NA</u>		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
1						SILT, nonplastic, 10% Caliche nodules, 10 medium grained; dry; moderate reaction to (7.5YR 4/1). Note: Secondary color white(7.5YR 8/1); or (roots).	% Sand, fine to HCl; dark gray ganic material roots		
2 3 4			VGWU118-15(2') @ 1400			SILT, nonplastic, 10% Caliche nodules, 10' medium grained; dry; moderate reaction to 6/1). Note: Secondary color white(7.5YR 8/1); or (roots).	% Sand, fine to HCI; gray (7.5YR ganic material roots		
5 6 7 7 8			VGWU118-15(7') @ 1402					Borehole bachfilled with— Native material	
99			VGWU118-15(9') @ 1401 VGWU118-15(10') @ 1403			End of boring at 10.0 ft bgs.			
11									
Drilling Co.	.: <u>H</u>	CI Drilling	. <u>.</u>			Sampling Method: <u>Shovel</u>			
	thod: A	enny Coope r Potoni	PC			Sampling Interval: <u>NA</u>	ΝΑ		
Drilling Me	id N	ne ne				vvaler Level Start (II. DGS.): Water Level Finish (ft. btoc			
Remarks		ft = feet: " / ir	n = inch: bas = below ar	ound sur	face:	Converted to Well	Yes	No	
ppm = parts	per_million;	NA = not ava	ailable or not applicable.			Surface Elev.: NA			
	,					North Coor: <u>NA</u>			
						East Coor: NA			

	CADIS	Design & Consultancy for natural and built assets	<u>`</u>			Date Started:	06/23/2016	Logger	Boring N	No.: <u>VGWU118-1</u> heet: 1 of	1
Project Nu	mber: <u>B0</u>	048616.01	18		Da	ate Completed:	06/23/2016	Editor:	NA		
Project Lo	cation: <u>HE</u>	<u>ES Transfer</u>	Sites		_		Weather	Conditions:	NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
						SAND, fine; some	silt; dry; tan.			Borehole bachfilled with- Native material	
Drilling Co.	: <u>H</u> (CI Drilling				Samplir	ng Method: Shove	el			
Driller:	Ke	enny Coope	r			Samplir	ng Interval: <u>NA</u>				
Drilling Me	thod: <u>Ai</u> i	Rotary				Water I	_evel Start (ft. bgs	s.): <u>NA</u>			
Drilling Flui	id: <u>No</u>	one				Water I	_evel Finish (ft. bt	oc.): <u>NA</u>			
Remarks:	<u>'/1</u>	ft = feet; " / in	= inch; bgs = below g	ground sur	face;	Conver	ted to Well:	Yes	X	No	
ppm = parts	per million;	NA = not ava	ilable or not applicable	Э.		Surface	e Elev.: <u>NA</u>				
						North C	Coor: <u>NA</u>				
¢ l						East Co	oor NA				

Soil Bo Project Na Project Nu Project Loo	ADIS Dring L me: <u>C</u> mber: <u>B(</u> cation: <u>HI</u>	LOG Devron EMC 0048616.01 ES Transfer	; 18 Sites		D; D;	Date Started: ate Completed:	Chevron 06/23/2016 06/23/2016 Weather 0	Logger: Editor: Conditions:	Boring N S Ken W NA NA	No.: VGWU118-1 heet: 1 of icks	1
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-17(2') SB-17(4')			SAND, fine; some SAND, coarse; so End of boring at 4.	silt; poorly graded; dry; me silt; well graded; dry	brown.		Borehole bachfilled with- Native material	
5 Drillina Co	: H(CI Drilling				Sampli	ng Method: Shove	1			
Driller:	Ke	enny Coope	r			Sampli	ng Interval: <u>NA</u>				
Drilling Me	thod: <u>Ai</u>	Rotary				Water	Level Start (ft. bgs.): <u>NA</u>			
Drilling Flui	a: <u>Na</u>	one ft - feet: " / in	- inch: bas - bolow a	round ou	rface:	Water	Level ⊢inish (ft. bto tod to Well	C.): <u>NA</u> ∫Yes	X	No	
ppm = parts	per million	NA = not ava	ilable or not applicable	i Juna Su	nace,	Conver	ιeu ιο well: = Flev · ΝΔ	_ 103			
ppm – parts		nn - nul ava	able of the applicable	•		Suriace	$= 1 = 1 = v \dots \underline{NA}$				
						NOTULE	001. <u>NA</u>				

ARC	ADIS	Design & Consultancy for natural and built assets				Chevron	Boring N	lo.: VGWU118-1	8
Soil Bo	oring l	_og					s	heet: 1 of	1
Project Na	me: <u>C</u> ł	nevron EMC)			Date Started: 09/14/2016	Logger: <u>Melisa</u>	Phan	
Project Nu	mber: <u>B(</u>	0048616.01	18		_ D	ate Completed: 09/14/2016	_ Editor: <u>NA</u>		
Project Lo	cation: <u>Hi</u>	<u>-S Transfer</u>	Sites			Weather C	onditions: <u>NA</u>		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
1						SILT, nonplastic, 10% Caliche nodules, 10' medium grained; dry; moderate reaction to (7.5YR 4/1). Note: Secondary color white(7.5YR 8/1); or (roots).	% Sand, fine to HCl; dark gray ganic material roots		
2 3 4 5			VGWU118-18(2') @ 1430			SILT, nonplastic, 10% Caliche nodules, 10' medium grained; dry; moderate reaction to 6/1). Note: Secondary color white(7.5YR 8/1); or (roots).	% Sand, fine to HCl; gray (7.5YR ganic material roots	Borehole bachfilled with—	
			VGWU118-18(7') @ 1431					Native material	
9			VGWU118-18(9') @ 1432						
10	/ \		VGWU118-18(10') @						
						End of boring at 10.0 ft bgs.			
11									
Drilling Co.	.: <u>H</u> (CI Drilling				Sampling Method: Shovel	I.		
Driller:	Ke	enny Coope	er			Sampling Interval: <u>NA</u>			
Drilling Me	thod: <u>Ai</u>	r Rotary				Water Level Start (ft. bgs.):	NA		
Drilling Flui	id: <u>N</u> o	one				Water Level Finish (ft. btoc	.): <u>NA</u>		
Remarks:	'/	ft = feet; " / in	n = inch; bgs = below gr	ound su	rface;	Converted to Well:	Yes 🛛 🗙	No	
ppm = parts	per million;	NA = not ava	ailable or not applicable.			Surface Elev.: <u>NA</u>			
						North Coor: <u>NA</u>			
i 📃						East Coor: NA			

ATTACHMENT 4

Laboratory Analytical Results and chain of Custody

July 18, 2012

DAVID PAGANO Chevron - Lovington HCR 60 Box 423 Lovington, NM 88260

RE: SOIL SAMPLES

Enclosed are the results of analyses for samples received by the laboratory on 07/12/12 17:07.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo	Lovington GANO ox 423					
		Fax To:	None					
Received:	07/12/2012			Sampling Date:	07/12/2012			
Reported:	07/18/2012			Sampling Type:	Soil			
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact			
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson			
Project Location:	NOT GIVEN							

Sample ID: VGWU #118 SS #1 (H201602-01)

BTEX 8021B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	105 9	105 % 89.4-126							
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AP							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	487	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	74.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	99.6	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - L DAVID PAG HCR 60 Box	ovington ANO (423							
		Fax To:	None							
Received:	07/12/2012			Sampling Date:	07/12/2012					
Reported:	07/18/2012			Sampling Type:	Soil					
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact					
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson					
Project Location:	NOT GIVEN									

Sample ID: VGWU #118 SS #2 (H201602-02)

BTEX 8021B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AP		d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	43.7	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	81.4	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	105 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo	Lovington GANO ox 423						
		Lovington NM, 88260							
		Fax To:	None						
Received:	07/12/2012			Sampling Date:	07/12/2012				
Reported:	07/18/2012			Sampling Type:	Soil				
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact				
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson				
Project Location:	NOT GIVEN								

Sample ID: VGWU #118 SS #3 (H201602-03)

BTEX 8021B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	105 %	105 % 89.4-126							
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AP							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	123	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	85.0 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	112 %	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - L DAVID PAG HCR 60 Box	ovington ANO (423)		
		Lovington	1141, 00200		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #4 (H201602-04)

BTEX 8021B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AP		d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	295	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	86.1	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	110 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo	Lovington GANO ox 423						
		Lovington NM, 88260							
		Fax To:	None						
Received:	07/12/2012			Sampling Date:	07/12/2012				
Reported:	07/18/2012			Sampling Type:	Soil				
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact				
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson				
Project Location:	NOT GIVEN								

Sample ID: VGWU #118 SS #5 (H201602-05)

BTEX 8021B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	104 %	104 % 89.4-126							
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	<10.0	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	82.7 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	103 %	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo	Lovington GANO ox 423						
		Lovington NM, 88260							
		Fax To:	None						
Received:	07/12/2012			Sampling Date:	07/12/2012				
Reported:	07/18/2012			Sampling Type:	Soil				
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact				
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson				
Project Location:	NOT GIVEN								

Sample ID: VGWU #118 SS #6 (H201602-06)

BTEX 8021B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	0.221	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	0.385	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	0.937 0.150		07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	117 9	6 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	36.8	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	2520	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	91.8	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	154 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	Lovington GANO ox 423 NM, 88260		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #7 (H201602-07)

BTEX 8021B	mg/	kg	Analyze	d By: AP				S-04		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781		
Toluene*	0.841	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18		
Ethylbenzene*	2.27	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91		
Total Xylenes*	3.32	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45		
Surrogate: 4-Bromofluorobenzene (PID	134 %	% 89.4-12	6							
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AP							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	112	16.0	07/17/2012	ND	400	100	400	3.92		
TPH 8015M	mg/	kg	Analyze	d By: AM					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10	108	10.0	07/17/2012	ND	166	83.1	200	6.45		
DRO >C10-C28	6830	10.0	07/17/2012	ND	173	86.6	200	8.21		
Surrogate: 1-Chlorooctane	106 %	65.2-14	0							
Surrogate: 1-Chlorooctadecane	228 %	63.6-15	4							

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - L DAVID PAG HCR 60 Box	ovington ANO 423		
		Lovington	1141, 00200		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #8 (H201602-08)

BTEX 8021B	mg	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	<0.050	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	<0.150	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 89.4-12	6						
Chloride, SM4500Cl-B	mg	′kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2320	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	49.5	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	82.8	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	111 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - L DAVID PAG HCR 60 Box	ovington ANO 423		
		Lovington	1141, 00200		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #9 (H201602-09)

BTEX 8021B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	0.179	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	0.384	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	115 %	6 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6240	16.0	07/18/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: AM					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	20.6	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	3050	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	86.3 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	163 %	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo	Lovington GANO ox 423		
		Lovington	IN™I, 00200		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #10 (H201602-10)

BTEX 8021B	mg/	kg	Analyze	Analyzed By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	<0.050	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	<0.150 0.150		07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15800	16.0	07/18/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	28.4	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	77.3	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	103 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name	(575) 393-2326 FAX (575) 393-24	76		1 4	111 70				ANA	1 1 1 2 1 2	REOU	FST		
Project Manage	6 David Pressure			P.O. #	nam Iw	TT	1	-	Tim	TT	neor	T	T	
Adduest 50	Tener Corro RA			Company	1 hauren	1				1				
City: J	State MA	Zin	HR340	Atter Al.	to Manachash.									
Phone # 5c	- 7.57 96/6 Fay#-	- com		Address	56 Trace Come VI					1			1	
Project #:	Project Owner	er.		City: /	20, renas compilat									
Project Name:	1 Isjoer of the			State Aid	The SELLER		1			1 1			1	
Project Locatio	a			Phone # F	75.196.4914 . 341									
Sampler Name:				Fax #:	1.2.3.1 m f 11 / A 201		1						1	
FOR LAB LISE GNL®	p	T	MATRIX	PRESER	SAMPLING	1		Te						
Lab I.D. H201602 12134567-89	Sample I.D. Volum #118 SS#1 Volum #118 SS#2 Volum #118 SS#3 Volum #118 SS#5 Volum #118 SS#6 Volum #118 SS#6 Volum #118 SS#6 Volum #118 SS#6 Volum #118 SS#6 Volum #118 SS#6		# CONTANIVERS		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HAT TPH	PTEX BTEX	Chler						
JQ.	Voice Hill State	11			4:26	1	100	1-1-					-	
PLEASE NOTE: _ another a	nd Dimmans, Canding's list by protobent's sectorize aroundy for ng there for real-generated and any other source would assure the file	any fun doment	s all rep whether mused a second work of universitionals to embring	art ar text, strall (m é m) ana lectearet (ag a artar	na in tracamantenat in the class fa Id within distribut the trace painter of t	nu canto pro		de sete		dimit.		The second second	-	
Relinquished B Relinquished B Delivered By Sampler - UPS	And the the transmission of the compare and a down more in the compare and and according to the compare and accordin	Reiz Je	Colived By: Colived By: Colived By: Colived By: Sample Cond Cool - Intact Dyes By:	Hon CHE	CIKED BY	en esuit: It: S:	T Yes T Yes	⊡ Nc	Add' Add'	I Phone # I Fax #:	F			

† Gardinol cannot accept verbal changes. Please fax written changes to 505-393-2476 #F 2/6

Page 13 of 13

Received by OCD: 12/5/2022 12:15:36 PM

June 10, 2013

JONATHAN OLSEN ARCADIS U.S., INC. - HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH, CO 80129

RE: CHEVRON BUCKEYE

Enclosed are the results of analyses for samples received by the laboratory on 05/15/13 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYE630 PLAZA DRIVE, SUITE 600Project Number:B004860.0000HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620	Reported: 10-Jun-13 10:43
---	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VGW U118 - 07 (10')	H301174-01	Soil	14-May-13 15:25	15-May-13 17:00
VGW U118 - 07 (15')	H301174-02	Soil	14-May-13 15:30	15-May-13 17:00
VGW U118 - 07 (20')	H301174-03	Soil	14-May-13 15:35	15-May-13 17:00
VGW U118 - 07 (25')	H301174-04	Soil	14-May-13 15:40	15-May-13 17:00
VGW U118 - 07 (30')	H301174-05	Soil	14-May-13 15:50	15-May-13 17:00
VGW U118 - 02 (2')	H301174-06	Soil	14-May-13 16:02	15-May-13 17:00
VGW U118 - 02 (5')	H301174-07	Soil	14-May-13 16:07	15-May-13 17:00
VGW U118 - 02 (10')	H301174-08	Soil	14-May-13 16:14	15-May-13 17:00
VGW U118 - 02 (15')	H301174-09	Soil	14-May-13 16:20	15-May-13 17:00
VGW U118 - 02 (20')	H301174-10	Soil	14-May-13 16:25	15-May-13 17:00
VGW U118 - 02 (25')	H301174-11	Soil	14-May-13 16:28	15-May-13 17:00
VGW U118 - 02 (30')	H301174-12	Soil	14-May-13 16:32	15-May-13 17:00
VGW U118 - 04 (2')	H301174-13	Soil	14-May-13 16:57	15-May-13 17:00
VGW U118 - 06 (2')	H301174-20	Soil	14-May-13 12:32	15-May-13 17:00
VGW U118 - 05 (2')	H301174-27	Soil	14-May-13 13:17	15-May-13 17:00
VGW U118 - 01 (2')	H301174-34	Soil	14-May-13 13:54	15-May-13 17:00
VGW U118 - 01 (5')	H301174-35	Soil	14-May-13 13:57	15-May-13 17:00
VGW U118 - 01 (10')	H301174-36	Soil	14-May-13 14:00	15-May-13 17:00
VGW U118 - 01 (15')	H301174-37	Soil	14-May-13 14:05	15-May-13 17:00
VGW U118 - 01 (20')	H301174-38	Soil	14-May-13 14:12	15-May-13 17:00
VGW U118 - 01 (25')	H301174-39	Soil	14-May-13 14:17	15-May-13 17:00
VGW U118 - 01 (30')	H301174-40	Soil	14-May-13 14:25	15-May-13 17:00
VGW U118 - 03 (2')	H301174-41	Soil	14-May-13 14:32	15-May-13 17:00
VGW U118 - 03 (5')	H301174-42	Soil	14-May-13 14:37	15-May-13 17:00
VGW U118 - 03 (10')	H301174-43	Soil	14-May-13 14:40	15-May-13 17:00
VGW U118 - 03 (15')	H301174-44	Soil	14-May-13 14:45	15-May-13 17:00
VGW U118 - 03 (20')	H301174-45	Soil	14-May-13 14:50	15-May-13 17:00

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

ARCADIS U.S., INC HC 630 PLAZA DRIVE, SUITE HIGHLANDS RANCH CO,	DUSTON E 600 80129	Project Project	Project: CHEVRON BUCKEYE t Number: B004860.0000 t Manager: JONATHAN OLSEN Fax To: (713) 977-4620	Reported: 10-Jun-13 10:43
VGW U118 - 03 (25')	H301174-46	Soil	14-May-13 15:00	15-May-13 17:00
VGW U118 - 03 (30')	H301174-47	Soil	14-May-13 15:03	15-May-13 17:00
VGW U118 - 07 (2')	H301174-48	Soil	14-May-13 15:17	15-May-13 17:00
VGW U118 - 07 (5')	H301174-49	Soil	14-May-13 15:20	15-May-13 17:00

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620						Reported: 10-Jun-13 10:43		
		VCWI	1118 07	(10)						
		Н301	.174-01 (So	(10) il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardin	al Laborato	ories						
Inorganic Compounds										
% Solids	97.6	0.100	%	1	3051612	DW	17-May-13	D2216		
% Moisture	2.45	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	80.0	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	15.4	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	15.4	mg/kg dry	1	3052411	CK	20-May-13	8015M		
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B		
Toluene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B		
Ethylbenzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B		
Total Xylenes*	ND	0.154	mg/kg dry	50	3051601	AP	16-May-13	8021B		
Total BTEX	0.009	0.308	mg/kg dry	50	3051601	AP	16-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	16-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKE630 PLAZA DRIVE, SUITE 600Project Number:B004860.0000HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSEIFax To:(713) 977-4620						EYE Reported: 10-Jun-13 10:43 EN			
		VGW (J 118 - 07	(15')					
		H301	174-02 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	1.39	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	98.6	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	80.0	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.2	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	15.2	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Toluene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Ethylbenzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Total Xylenes*	ND	0.152	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Total BTEX	ND	0.304	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	16-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	OUSTONProject:CHEVRON BUCKEYETE 600Project Number:B004860.0000, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620							Reported: 10-Jun-13 10:43		
		VGW L	J 118 - 07	(20')						
		H301	174-03 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardina	al Laborato	ories						
Inorganic Compounds										
% Moisture	4.35	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	95.6	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	ND	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	15.7	mg/kg dry	1	3052411	CK	20-May-13	8015M		
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Toluene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Ethylbenzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total Xylenes*	ND	0.157	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total BTEX	ND	0.314	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620						Reported: 10-Jun-13 10:43		
		VGW U	J 118 - 07	(25')					
		H301	174-04 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	4.41	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	95.6	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	ND	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.7	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		107 %	70-1	30	3052411	CK	20-May-13	8015M	
Surrogate: o-Terphenyl		99.9 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Toluene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total Xylenes*	ND	0.157	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total BTEX	ND	0.314	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		111 %	89.4-	126	3051601	AP	17-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620						Reported: 10-Jun-13 10:43		
		VGW U	J 118 - 07	(30')					
		H301	174-05 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	15.9	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	84.1	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	ND	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	17.8	mg/kg dry	1	3052411	CK	20-May-13	8015M	
DRO >C10-C28	19.7	17.8	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Toluene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Ethylbenzene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total Xylenes*	ND	0.178	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total BTEX	ND	0.357	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ہر H	ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Nun Project Man Project Man Fa	VRON BUC 4860.0000 Athan Ol 977-462	Reported: 10-Jun-13 10:43						
			VGW	U118 - 02	(2')					
			H301	174-06 (So	il)					
An	alyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardin	al Laborate	ories					
Inor	rganic Compounds									
% S	olids	87.2	0.100	%	1	3051612	DW	17-May-13	D2216	
% N	Ioisture	12.8	0.100	%	1	3051612	DW	17-May-13	D2216	
Chlo	oride	10000	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B	
Org	anic Compounds									SUB-PBE
GRO	D C6-C10	ND	17.2	mg/kg dry	1	3052411	CK	20-May-13	8015M	
DRC	D >C10-C28	ND	17.2	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surro	ogate: 1-Chlorooctane		89.4 %	70-1	30	3052411	СК	20-May-13	8015M	
Surro	ogate: o-Terphenyl		101 %	70-1	30	3052411	CK	20-May-13	8015M	
Vola	atile Organic Compounds by EPA M	ethod 8021								
Benz	zene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Tolu	ene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Ethy	vlbenzene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Tota	l Xylenes*	ND	0.172	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Tota	l BTEX	ND	0.344	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Surro	ogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	17-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYE630 PLAZA DRIVE, SUITE 600Project Number:B004860.0000HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620							Reported: 10-Jun-13 10:43			
		VGW	U118 - 02	(5')						
		H301	174-07 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardin	al Laborato	ories						
Inorganic Compounds										
% Moisture	7.33	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	92.7	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	368	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		96.3 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Toluene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Ethylbenzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total Xylenes*	ND	0.162	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total BTEX	ND	0.324	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	17-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	Reported: 10-Jun-13 10:43						
		VGW (J 118 - 02	(10')					
		H301	174-08 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Moisture	6.93	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	93.1	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	80.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		93.7 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Toluene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total Xylenes*	ND	0.161	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Total BTEX	ND	0.322	mg/kg dry	50	3051601	AP	17-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	Reported: 10-Jun-13 10:43						
		VGW U	J 118 - 02	(15')					
		H301	174-09 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	4.06	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	95.9	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	112	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.6	mg/kg dry	1	3052411	CK	20-May-13	8015M	
DRO >C10-C28	ND	15.6	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.036	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.156	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.036	0.313	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	Reported: 10-Jun-13 10:43						
		VGW U	J 118 - 02	(20')					
		H301	174-10 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Moisture	7.13	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	92.9	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	384	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		104 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.035	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.162	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.035	0.323	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fa:	oject: CHE nber: B004 ager: JON x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 02	(25')					
		H301	174-11 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Moisture	7.33	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	92.7	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	1090	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		102 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA Me	thod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.039	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.162	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.039	0.324	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	1	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 02	(30')					
		H301	174-12 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	23.0	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	77.0	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	224	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	19.5	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	19.5	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		96.7 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.031	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.195	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.031	0.390	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHEVRON BUCKEYE Project Number: B004860.0000 1 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620								43
		VGW U H3011	118 - 04 74-13 (Se	(2') oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardinal	Labora	tories					
Inorganic Compounds									
Chloride	48.0	16.0	mg/kg	4	3060505	DW	05-Jun-13	4500-Cl-B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project:CHEVRON BUCKEYEReProject Number:B004860.000010-JuProject Manager:JONATHAN OLSENFax To:(713) 977-4620								43
		VGW U H3011	118 - 06 74-20 (S	5 (2') oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardinal	l Labora	tories					
Inorganic Compounds									
Chloride	128	16.0	mg/kg	4	3060505	DW	05-Jun-13	4500-Cl-B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Proj Project Num Project Mana Fax	Reported: 10-Jun-13 10:43						
		VGW U H3011) 118 - 05 74-27 (Se	(2') pil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	l Laborat	tories					
Inorganic Compounds									
Chloride	64.0	16.0	mg/kg	4	3060505	DW	05-Jun-13	4500-Cl-B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	oject: CHE nber: B004 ager: JON, x To: (713	1	Reported: 10-Jun-13 10:43				
		VGW	U118 - 01	(2')					
		H301	174-34 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Solids	88.7	0.100	%	1	3051612	DW	17-May-13	D2216	
% Moisture	11.3	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	4800	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.9	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	102	16.9	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		95.7 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.047	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.169	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.047	0.338	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fraz	1	Reported: 10-Jun-13 10:43					
		VGW	U 118 - 01	(5')					
		H301	174-35 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	19.2	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	80.8	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	192	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.6	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	18.6	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.016	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.186	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.016	0.371	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fraz	Reported: 10-Jun-13 10:43						
		VGW U	J 118 - 01	(10')					
		H301	174-36 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Moisture	18.4	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	81.6	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.4	mg/kg dry	1	3052411	CK	20-May-13	8015M	
DRO >C10-C28	ND	18.4	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		102 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.020	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.184	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.020	0.368	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	Reported: 10-Jun-13 10:43						
		VGW U	J 118 - 01	(15')					
		H301	174-37 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	18.4	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	81.6	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.4	mg/kg dry	1	3052411	CK	20-May-13	8015M	
DRO >C10-C28	ND	18.4	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		86.0 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		94.7 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.022	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.184	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.022	0.368	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	oject: CHE nber: B004 ager: JON, x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 01	(20')					
		H301	174-38 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Solids	79.8	0.100	%	1	3051612	DW	17-May-13	D2216	
% Moisture	20.2	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	ND	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.8	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	18.8	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		97.5 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.022	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.188	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.022	0.376	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	oject: CHE nber: B004 ager: JON, x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 01	(25')					
		H301	174-39 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborate	ories					
Inorganic Compounds									
% Solids	97.1	0.100	%	1	3051612	DW	17-May-13	D2216	
% Moisture	2.93	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.5	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	15.5	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		99.8 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.042	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.155	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.042	0.309	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 87 of 282

Analytical Results For:

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	oject: CHE nber: B004 ager: JON/ x To: (713	1	Reported: 10-Jun-13 10:43				
		VGW U	J 118 - 01	(30')					
		H301	174-40 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	20.0	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	80.0	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	ND	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.7	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	18.7	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		99.6 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.023	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.187	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.023	0.375	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-Mav-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fa:	oject: CHE hber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW	U118 - 03	(2')					
		H301	174-41 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	6.98	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	93.0	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	832	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		91.9 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		98.8 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.034	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.034	0.323	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		111 %	89.4-	126	3052011	AP	21-Mav-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fraz	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW	U118 - 03	(5')					
		H301	174-42 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	4.43	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	95.6	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	96.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.7	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	3052412	CK	21-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.033	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.157	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.033	0.314	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Project Mana Fa:	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 03	(10')					
		H301	174-43 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	6.88	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	93.1	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	48.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M	
Surrogate: 1-Chlorooctane		101 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.028	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.028	0.322	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 03	(15')					
		H301	174-44 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Moisture	6.72	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	93.3	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	48.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.1	mg/kg dry	1	3052412	CK	21-May-13	8015M	
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M	
Surrogate: 1-Chlorooctane		106 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.031	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.031	0.322	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-Mav-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fraz	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 03	(20')					
		H301	174-45 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	4.54	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	95.5	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	48.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.7	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.019	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.157	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.019	0.314	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		115 %	89.4-	126	3052011	AP	21-Mav-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW U	J 118 - 03	(25')					
		H301	174-46 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Solids	96.4	0.100	%	1	3051613	DW	17-May-13	D2216	
% Moisture	3.57	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.6	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.6	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.041	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.156	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.041	0.311	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	oject: CHE nber: B004 ager: JON, x To: (713	Reported: 10-Jun-13 10:43					
		VGW (J 118 - 03	(30')					
		H301	174-47 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborate	ories					
Inorganic Compounds									
% Solids	97.8	0.100	%	1	3051613	DW	17-May-13	D2216	
% Moisture	2.20	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.3	mg/kg dry	1	3052412	CK	21-May-13	8015M	
DRO >C10-C28	ND	15.3	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	3052412	CK	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.153	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	ND	0.307	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana Fa	oject: CHE nber: B004 ager: JON/ x To: (713	Reported: 10-Jun-13 10:43					
		VGW	U118 - 07	(2')					
		H301	174-48 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Solids	85.8	0.100	%	1	3051613	DW	17-May-13	D2216	
% Moisture	14.2	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	7200	16.0	mg/kg	4	3051702	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	17.5	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	17.5	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		85.0 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		92.2 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.025	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.175	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.025	0.349	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Man Project Man Fa	oject: CHE nber: B004 ager: JON, x To: (713	Reported: 10-Jun-13 10:43					
		VGW	U118 - 07	(5')					
		H301	174-49 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Solids	95.1	0.100	%	1	3051613	DW	17-May-13	D2216	
% Moisture	4.94	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	96.0	16.0	mg/kg	4	3051702	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.8	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.8	mg/kg dry	1	3052412	СК	21-May-13	8015M	
Surrogate: 1-Chlorooctane		93.9 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.026	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.158	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.026	0.316	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN	Reported: 10-Jun-13 10:43
	Fax To:	(713) 977-4620	

Inorganic Compounds - Quality Control

		Cardir	al Lab	oratories							
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 3051610 - 1:4 DI Water											
Blank (3051610-BLK1)				Prepared &	& Analyzed:	16-May-13	3				
Chloride	ND	16.0	mg/kg								
LCS (3051610-BS1)				Prepared &	k Analyzed:	16-May-13	3				
Chloride	432	16.0	mg/kg	400		108	80-120				
LCS Dup (3051610-BSD1)				Prepared 8	k Analyzed:	16-May-13	3				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20		
Duplicate (3051610-DUP1)	Sour	rce: H301164-	04	Prepared 8	k Analyzed:	16-May-13	3				
Chloride	528	16.0	mg/kg		560			5.88	20		
Matrix Spike (3051610-MS1)	Sour	rce: H301164-	04	Prepared &	Prepared & Analyzed: 16-May-13						
Chloride	944	16.0	mg/kg	400	560	96.0	80-120				
Batch 3051612 - General Prep - Wet Chem											
Blank (3051612-BLK1)				Prepared:	16-May-13	Analyzed: 1	17-May-13				
% Moisture	ND	0.100	%	*	•	•	•				
% Solids	100	0.100	%								
Duplicate (3051612-DUP1)	Sour	rce: H301174-	01	Prepared:	16-May-13	Analyzed: 1	17-May-13				
% Solids	97.8	0.100	%		97.6			0.215	20		
% Moisture	2.24	0.100	%		2.45			8.96	200		
Batch 3051613 - General Prep - Wet Chem											
Blank (3051613-BLK1)				Prepared:	16-May-13	Analyzed: 1	17-May-13				
% Moisture	ND	0.100	%								
% Solids	100	0.100	%								

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		F Project N Project Ma F	Project: umber: anager: Fax To:	CHEVRON B B004860.00 JONATHAN (713) 977-4	BUCKEYE 00 OLSEN 620			F 10-	Reported: Jun-13 10):43
	Inoi	rganic Com	pounds	- Quality	Control					
		Cardiı	1al Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3051613 - General Prep - Wet Chem										
Duplicate (3051613-DUP1)	Sou	rce: H301174-	-42	Prepared: 1	6-May-13	Analyzed: 1	7-May-13			
% Solids	95.5	0.100	%	95.6				0.0837	20	
% Moisture	4.51	0.100	%		4.43			1.79	200	
Batch 3051701 - 1:4 DI Water										
Blank (3051701-BLK1)				Prepared &	Analyzed:	17-May-13				
Chloride	ND	16.0	mg/kg							
LCS (3051701-BS1)				Prepared &	Analyzed:	17-May-13				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3051701-BSD1)				Prepared &	Analyzed:	17-May-13				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	
Duplicate (3051701-DUP1)	Sou	rce: H301174-	-07	Prepared &	Analyzed:	17-May-13				
Chloride	336	16.0	mg/kg		368			9.09	20	
Matrix Spike (3051701-MS1)	Sou	rce: H301174-	-07	Prepared &	Analyzed:	17-May-13				
Chloride	640	16.0	mg/kg	400	368	68.0	80-120			QM-07
Batch 3051702 - 1:4 DI Water										
Blank (3051702-BLK1)				Prepared &	Analyzed:	17-May-13				
Chloride	ND	16.0	mg/kg							
LCS (3051702-BS1)				Prepared &	Prepared & Analyzed: 17-May-13					
Chloride	432	16.0	mg/kg	400		108	80-120			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		F Project Ne Project Ma F	Project: umber: anager: Fax To:	CHEVRON E B004860.00 JONATHAN (713) 977-4	BUCKEYE 00 OLSEN 620			ا 10-	Reported: Jun-13 10):43
	Ino	rganic Com	pound	s - Quality	Control					
		Cardiı	nal La	boratories						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3051702 - 1:4 DI Water										
LCS Dup (3051702-BSD1)				Prepared &	Analyzed:	17-May-13				
Chloride	416	16.0	mg/kg	400		104	80-120	3.77	20	
Duplicate (3051702-DUP1)	Sou	Source: H301174-48 Prepared & Analyzed: 17-May-13								
Chloride	8400	16.0	mg/kg		7200			15.4	20	
Matrix Spike (3051702-MS1)	Sou	ırce: H301174-	-48	Prepared &	Analyzed:	17-May-13				
Chloride	9040	16.0	mg/kg	400	7200	460	80-120			QM-07
Batch 3060505 - 1:4 DI Water										
Blank (3060505-BLK1)				Prepared &	Analyzed:	05-Jun-13				
Chloride	ND	16.0	mg/kg							
LCS (3060505-BS1)				Prepared &	Analyzed:	05-Jun-13				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3060505-BSD1)				Prepared &	Analyzed:	05-Jun-13				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	
Duplicate (3060505-DUP1)	Sou	ırce: H301196-	-44	Prepared &	Analyzed:	05-Jun-13				
Chloride	592	16.0	mg/kg		528			11.4	20	
Matrix Spike (3060505-MS1)	Sou	ırce: H301196-	-44	Prepared &	Prepared & Analyzed: 05-Jun-13					
Chloride	1020	16.0	mg/kg	400	528	124	80-120			QM-07

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON Project 630 PLAZA DRIVE, SUITE 600 Project Number HIGHLANDS RANCH CO, 80129 Project Manage Fax T	t: CHEVRON BUCKEYE r: B004860.0000 r: JONATHAN OLSEN p: (713) 977-4620	Reported: 10-Jun-13 10:43
---	---	------------------------------

Organic Compounds - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052411 - General Prep										
Blank (3052411-BLK1)				Prepared &	Analyzed:	20-May-13	3			
GRO C6-C10	ND	15.0	mg/kg wet							
DRO >C10-C28	ND	15.0	mg/kg wet							
Surrogate: 1-Chlorooctane	116		mg/kg	100		116	70-130			
Surrogate: o-Terphenyl	63.8		mg/kg	50.0		128	70-130			
LCS (3052411-BS1)				Prepared & Analyzed: 20-May-13						
GRO C6-C10	1220	15.0	mg/kg wet	1000		122	75-125			
DRO >C10-C28	1230	15.0	mg/kg wet	1000		123	75-125			
Surrogate: 1-Chlorooctane	112		mg/kg	100		112	70-130			
Surrogate: o-Terphenyl	53.5		mg/kg	50.0		107	70-130			
Matrix Spike (3052411-MS1)	Sou	rce: H301174	-41	Prepared &	Analyzed:	20-May-13	3			
GRO C6-C10	1180	16.1	mg/kg dry	1080	ND	110	75-125			
DRO >C10-C28	1170	16.1	mg/kg dry	1080	ND	109	75-125			
Surrogate: 1-Chlorooctane	113		mg/kg	100		113	70-130			
Surrogate: o-Terphenyl	54.5		mg/kg	50.0		109	70-130			
Matrix Spike Dup (3052411-MSD1)	Sou	rce: H301174	-41	Prepared &	Analyzed:	20-May-13	3			
GRO C6-C10	1130	16.1	mg/kg dry	1080	ND	105	75-125	4.65	20	
DRO >C10-C28	1250	16.1	mg/kg dry	1080	ND	116	75-125	6.22	20	
Surrogate: 1-Chlorooctane	109		mg/kg	100		109	70-130			
Surrogate: o-Terphenyl	55.6		mg/kg	50.0		111	70-130			
Batch 3052412 - General Prep										
Blank (3052412-BLK1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	ND	15.0	mg/kg wet							
DRO >C10-C28	ND	15.0	mg/kg wet							
Surrogate: 1-Chlorooctane	123		mg/kg	100		123	70-130			

Cardinal Laboratories

Surrogate: o-Terphenyl

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal toratories.

mg/kg

50.0

122

70-130

61.2

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: Project Number: Project Manager: Fax To:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620	Reported: 10-Jun-13 10:43
--	--	---	------------------------------

Organic Compounds - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052412 - General Prep										
LCS (3052412-BS1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1160	15.0	mg/kg wet	1000		116	75-125			
DRO >C10-C28	1200	15.0	mg/kg wet	1000		120	75-125			
Surrogate: 1-Chlorooctane	126		mg/kg	100		126	70-130			
Surrogate: o-Terphenyl	59.8		mg/kg	50.0		120	70-130			
LCS Dup (3052412-BSD1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1200	15.0	mg/kg wet	1000		120	75-125	3.39	20	
DRO >C10-C28	1230	15.0	mg/kg wet	1000		123	75-125	2.47	20	
Surrogate: 1-Chlorooctane	125		mg/kg	100		125	70-130			
Surrogate: o-Terphenyl	63.3		mg/kg	50.0		127	70-130			
Matrix Spike (3052412-MS1)	Sou	rce: H301174	-49	Prepared: 20-May-13 Analyzed: 21-May-13						
GRO C6-C10	1120	15.8	mg/kg dry	1050	ND	106	75-125			
DRO >C10-C28	1260	15.8	mg/kg dry	1050	ND	120	75-125			
Surrogate: 1-Chlorooctane	128		mg/kg	100		128	70-130			
Surrogate: o-Terphenyl	57.6		mg/kg	50.0		115	70-130			
Matrix Spike Dup (3052412-MSD1)	Sou	rce: H301174	-49	Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1200	15.8	mg/kg dry	1050	ND	114	75-125	7.27	20	
DRO >C10-C28	1300	15.8	mg/kg dry	1050	ND	124	75-125	3.28	20	
Surrogate: 1-Chlorooctane	126		mg/kg	100		126	70-130			
Surrogate: o-Terphenyl	57.1		mg/kg	50.0		114	70-130			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

A 6 H	RCADIS U.S., INC HOUSTON 30 PLAZA DRIVE, SUITE 600 IIGHLANDS RANCH CO, 80129	Project: Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN	Reported: 10-Jun-13 10:43
		Fax To:	(713) 977-4620	

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laborat	ories
------------------	-------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3051601 - Volatiles										
Blank (3051601-BLK1)				Prepared &	Analyzed:	16-May-13	3			
Benzene	ND	0.050	mg/kg wet							
Toluene	0.011	0.050	mg/kg wet							
Ethylbenzene	ND	0.050	mg/kg wet							
Total Xylenes	ND	0.150	mg/kg wet							
Total BTEX	0.011	0.300	mg/kg wet							
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			
LCS (3051601-BS1)				Prepared &	Analyzed:	16-May-13	3			
Benzene	2.08	0.050	mg/kg wet	2.00		104	76.4-135			
Toluene	1.88	0.050	mg/kg wet	2.00		94.2	80.2-135			
Ethylbenzene	2.01	0.050	mg/kg wet	2.00		101	78.5-133			
Total Xylenes	5.93	0.150	mg/kg wet	6.00		98.8	80.1-135			
Surrogate: 4-Bromofluorobenzene (PID)	0.0538		mg/kg wet	0.0500		108	89.4-126			
LCS Dup (3051601-BSD1)				Prepared &	Analyzed:	16-May-13	3			
Benzene	2.17	0.050	mg/kg wet	2.00		109	76.4-135	4.20	16.4	
Toluene	1.95	0.050	mg/kg wet	2.00		97.7	80.2-135	3.70	16.6	
Ethylbenzene	2.10	0.050	mg/kg wet	2.00		105	78.5-133	4.30	16.1	
Total Xylenes	6.15	0.150	mg/kg wet	6.00		102	80.1-135	3.69	15.8	
Surrogate: 4-Bromofluorobenzene (PID)	0.0538		mg/kg wet	0.0500		108	89.4-126			
Batch 3052011 - Volatiles										
Blank (3052011-BLK1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
Benzene	ND	0.050	mg/kg wet							
Toluene	0.011	0.050	mg/kg wet							
Ethylbenzene	ND	0.050	mg/kg wet							
Total Xylenes	ND	0.150	mg/kg wet							
Total BTEX	0.011	0.300	mg/kg wet							
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO. 80129	Project: Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN	Reported: 10-Jun-13 10:43
HIGHLANDS RANCH CO, 80129	Fax To:	(713) 977-4620	

Volatile Organic Compounds by EPA Method 8021 - Quality Control Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052011 - Volatiles										
LCS (3052011-BS1)				Prepared &	Analyzed:	20-May-13	3			
Benzene	2.37	0.050	mg/kg wet	2.00		119	76.4-135			
Foluene	2.12	0.050	mg/kg wet	2.00		106	80.2-135			
Ethylbenzene	2.29	0.050	mg/kg wet	2.00		115	78.5-133			
fotal Xylenes	6.67	0.150	mg/kg wet	6.00		111	80.1-135			
Surrogate: 4-Bromofluorobenzene (PID)	0.0533		mg/kg wet	0.0500		107	89.4-126			
LCS Dup (3052011-BSD1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
Benzene	2.32	0.050	mg/kg wet	2.00		116	76.4-135	2.27	16.4	
foluene	2.10	0.050	mg/kg wet	2.00		105	80.2-135	1.17	16.6	
Ethylbenzene	2.28	0.050	mg/kg wet	2.00		114	78.5-133	0.595	16.1	
Fotal Xylenes	6.75	0.150	mg/kg wet	6.00		112	80.1-135	1.17	15.8	
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

SUB-PBE	Analysis subcontracted to Permian Basin Environmental Lab, NELAP accreditation # T104704156-12-1.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Delivered By: (C Sampler - UPS - B	CD: 12/5/2022 Tellinguished By:	2:15:36 PM Address: 2929 Project Manager: Project Name: 2929 Project Location: B Sampler Name: Chrs. Project Location: B Sampler Name: Chrs. H301174 H301174 H301174 U6 U6 U6	Company Name:
(Ircle One) us - Other:	Date: 15-1 Time: 200 Time:	Believe facte being for the end of the end	East Marland, Hobbs, NM 8 1) 393-2328 FAX (675) 393-24
30 Gool Intact	Received By: Received By:	1 300 2 ID: 27 10 2 3 977, 420 GROUNDWATER WASTEWATER WASTEWATER WASTEWATER WASTEWATER WASTEWATER SOIL OIL SULIDER	
es United BY:	lenson	P.O. #: Company: Attn: Address: City: State: Zip: Phone #: Fax #: Fax #: Fax #: Fax #: ADD/BASE DATE ADD/BASE City: DATE D	BILL TO
	Phone Result U Yes U P Fex Result U Yes U P REMARKS	TIME Chloridas Booil 11111111111111111111111111111111111	HAIN-OF-CUSTO
	vo Add'i Phone #: vo Add'i Fax #:		DY AND ANALYSIS R ANALYSIS REQUEST
			EQUEST

ARDINA aboratorie

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393-2326 FAX (575) 393-24	10	BILL TO		ANALYSIS REQUEST
roject Manager: JANA FULL OISTO		P.O. #:	1	
udress: 2929 Mara ten P. Soit	+ 300	Company:	20 B	
Sity: Houston State: Typ	Zip: フフリピシ	Attn:	6/A 0 2)	13
phone #: 713.953, 4874 Fax #: 71	35 94 260	Address:	: usi 80	
Project #: Bac 1860, Oce Project Own	er. Church	City:	/2.5 = X	13
Project Name (Land 10+1 Pret traine		State: Zip:	12 TE	5
roject Location: Grichty z O. I. F. zld		Phone #:	Bi	d
ampler Name: Rule Alering		Fax #:	ch t	le
complete many Providence	MATRIX	PRESERV. SAMPLI	NG + 0	le
Lab I.D. Sample I.D.	3)RAB OR (C)OMP CONTAINERS ROUNDWATER VASTEWATER OIL DIL	OTHER CID/BASE DE/COOL DTHER Arra	Me.574.2. TPH 8015 Hold	Clao
N VG= N 118 - 02 (25')	6 2 8	41-41-5 a	1 1 8291	
(2C) 20-811 Mudd 21	6 2 X	1-4-63	1 1 4691	<
13 164418-04 121	0 2 4	KI-M-5 X	1700 1 1 1	>
14 11/2 11/2 - 01 / 1/2/	N N N	× 5-14-13	X 1 1 5021	
1 112. 1112.04(15')	0 2 3	× 5-14-13	1710 1 1 *	
1 11/2 118-04(2)	8 2 9	× 5-4-13	× 1 1 5161 3	
(1 000 11 18 04(25))	X 0 8	65-14-1	4 1 1 02618	
(14740-211 Mm9/ 1-1	82 8	X 5.14-13	1728 1 1 4	
REASE NOTE: bandly not Damages Cantouts having and constructed models appendix the management of supplying and any matching and damagement out the supervisition of a matching to an interaction of a matching and the supervisition of the terms of the supervisition of a matching to the supervisition of	y for any claim arcing whether based in contra al big immunit waveof unless make in writing a fulling without landation, beakings internity	act or loft, shall be Anderd to the account p and account by Causarab wetter 30 days at a fame of two results of profile mean of his	anticy the classifier the her complexisms of the applicable primmt, the unstandarties	
Relinquished By: Bate ()	Received By:	in the state of the state state of the state	Phone Result: Yes BN	o Add'I Phone #: o Add'I Fax #:
Relinquished By: Date: Time:	Received By:	VENSON	Hold VGILL II	6 - 1 fred 40-8
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Cool Intact	Inition CHECKED BY: (hnitials) (rss		

+ Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

Page 44 of 47

HUNDLE, Mill Bezander BILL TO FIGURATIONS Project Owner: Ch. K. Vry - P. Anna View Project Owner: Ch. Vry - P. Anna View Project Owner: Ch. Vry - P. Anna View Project Owner: Ch. Vry - P. Ch. K. Project Owner: Ch. Vry - P. Ch. K. Project Owner: Ch. Vry - P. Ch. K. Project Owner: Ch. K. Ch. K. Project Owner: Ch. Vry - P. Ch. K. Project Owner: Ch. K. Ch. K	Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Relinquished By:	Project Manager: Je no. Hans Address: 2929 City: Hans, ten Project Name: Jan Hans Project Name: Chr. J. 13, 953, 4874 Project Location: Buchtern Chr. 1474 Project Location: Buchters Sampler Name: Chr. J. 18, 953, 4874 Project Location: Buchters Sampler Name: Chr. 118 - 06 21 Ubwell 118 - 06 22 Ubwell 118 - 06 23 Ubwell 118 - 06 24 Ubwell 118 - 06 25 Ubwell 118 - 05 24 Ubwell 118 - 05 25 Ubwell 118 - 05 26 Ubwell 118 - 05 27 Ubwell 118 - 05 28 Ubwell 118 - 05 29 Ubwell 118 - 05 29 Ubwell 118 - 05 21 Ubwell 118 - 05 21 Ubwell 118 - 05 24 Ubwell 118 - 05 <	Labora 101 East Mariand, (576) 393-2326 FA
BILL TO ANALYSIS RED BILL TO ANALYSIS RED <th></th> <th>Tigner : 00 Date: Time:</th> <th>$\frac{\partial f_{4} + \eta}{\partial f_{4} + \eta}$ State: 713 Fax #: 713 Project Owne "yy= fax #: 713 (10) (10) (10) (25</th> <th>10110 1011 Hobbs, NM 88: X (875) 393-247</th>		Tigner : 00 Date: Time:	$\frac{\partial f_{4} + \eta}{\partial f_{4} + \eta}$ State: 713 Fax #: 713 Project Owne "yy= fax #: 713 (10) (10) (10) (25	10110 1011 Hobbs, NM 88: X (875) 393-247
CHAIN-OF-CUSTODY AND ANALYSIS RED Company: Bill TO ANALYSIS RED Company: Address: City: Bill Robert Zip: Phome & Zip: Station & Zip: Station & Zip: Station & Zip: Station & Zip: Zip: Zip: Z	Se Cool Intac Se Pres Pres	Received By:	T Charles MATER MATER MATER WASTEWATER WASTE	
CHAIN-OF-CUSTODY AND ANALY ANALYSIS REQ ANALYSIS REALYSIS ANALYSIS REALYSIS ANALYSIS ANALYSIS REALYSIS AN	dition CHECKED BY:	Genson	P.O. #: Company: Attn: Address: City: State: Phone #: Fax #: Fax #: Fax #: PRESERV State: Zip: Zip: <td>BILL TO</td>	BILL TO
		Hold U GULI 118-06 & U GULU 118	INTER 1233 TIME Chlor: 1-25 1243 - 1 1255 - 1 1243 - 1 1248 -	CHAIN-OF-CUSTODY AND ANALYS

Sampler - UPS - Bus - Other:	felingwished By:	Project Manager: Jon and facts Offer Address: 2729 Beling facts Offer City: Hanstern Sampler Sampler Sampler Project Name: Charles Sampler Project Name: Charles Sampler Project Name: Charles Sampler Name: Charles Project Name: Project Name: Charles Project Name: Projec	101 East Marland, Hobb (576) 393-2326 FAX (67) Company Name: ARCAD15-45	CARDI
nges. Please fax written changes to (\$75) 393-2326	12:151 3 Received By: 12:00 Received By: He: Received By: Received B	Inter The Zip: 7 7 40 2 Attn: Inter Inter Address: Zip: Inter Inter State: Zip: Inter Inter Inter State: Inter Inter Inter Inter	5) 393-2476	NAL
	Hold UGul 11 2-05 5-11-27	112	ANALYSIS REQUEST	
quished By: Ivered By: (Circle One) pler - UPS - Bus - Other:	you of note: summary and many any insurant and any	ojoci Manager: Jan than d idress: 2929 Bring Jack ty: Hanston ojoci Name: Charlen Buck and ojoci Name: Charlen Buck and ample Name: Charlen Buck and Sample I. Lab I.D. Sample I. Lab I.D. Sample I. CDNTH Ubward 18-016 Ubward 18-036 Ubward 18-036 Ubw	101 East Marland, H (576) 393-2328 FAX	CARD
---	---	--	---	------
Time: Repelved B	Bate Street and a large street of the street	D. State: T/P Zip: 77 Fax #: 713, 977. 46 2 Project Owner: Ch. 1 7 Project	obbs, NM 88240 (575) 393-2476	NAL
The Condition CHECKED BY: The Condition CHECKED BY: The Condition CHECKED BY: No CHECKED BY: No CHECKED BY:	tant n wang ted ranned in Oniant attendo attendo attendor and the data in the attendor attendor second for any attendor	P.O. #: Company: I I I I I I I I I I I I I I I I I I I	BILL TO	
	ane Result: L Yes I No Add'I Phone #: Aresult: L Yes I No Add'I Phone #: Aresult: L Yes I No Add'I Fax #:	X Cladded 5/31/13	AIN-OF-CUSTODY AND ANALYSIS REQUI	

Analytical Report 532328

for ARCADIS

Project Manager: Arti Patel

Chevron Sites

713.953.4841

20-JUL-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 12:15:36 PM

20-JUL-16

Project Manager: **Arti Patel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **532328** Chevron Sites Project Address: Hobbs, NM

Arti Patel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 532328. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 532328 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 31

Sample Cross Reference 532328

ARCADIS, Midland, TX

Chevron Sites

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWU61-08B 80'	S	06-22-16 00:00	- 80 ft	532328-001
VGWU61-09B 80'	S	06-22-16 00:00	- 80 ft	532328-008
VGWU118-17 2'	S	06-23-16 00:00	- 2 ft	532328-009
VGWU118-17 4'	S	06-23-16 00:00	- 4 ft	532328-010
VGWU118-13 2'	S	06-23-16 00:00	- 2 ft	532328-013
VGWU118-13 4'	S	06-23-16 00:00	- 4 ft	532328-014
VGWU118-14 2'	S	06-23-16 00:00	- 2 ft	532328-015
VGWU118-14 4'	S	06-23-16 00:00	- 4 ft	532328-016
VGWU118-11 2'	S	06-23-16 00:00	- 2 ft	532328-017
VGWU118-11 4'	S	06-23-16 00:00	- 4 ft	532328-018
VGWU118-12 2'	S	06-23-16 00:00	- 2 ft	532328-019
VGWU118-12 4'	S	06-23-16 00:00	- 4 ft	532328-020
VGWU118-09 2'	S	06-23-16 00:00	- 2 ft	532328-021
VGWU118-09 4'	S	06-23-16 00:00	- 4 ft	532328-022
VGWU85-8 2'	S	06-21-16 00:00	- 2 ft	532328-023
VGWU85-8 4'	S	06-21-16 00:00	- 4 ft	532328-024
VGWU85-7 2'	S	06-21-16 00:00	- 2 ft	532328-025
VGWU85-7 4'	S	06-21-16 00:00	- 4 ft	532328-026
VGWU85-5 2'	S	06-21-16 00:00	- 2 ft	532328-027
VGWU85-5 4'	S	06-21-16 00:00	- 4 ft	532328-028
VGWU85-4B 30'	S	06-21-16 00:00	- 30 ft	532328-029
VGWU85-3B 30'	S	06-21-16 00:00	- 30 ft	532328-031
VGWU85-9 2'	S	06-21-16 00:00	- 2 ft	532328-033
VGWU85-9 4'	S	06-21-16 00:00	- 4 ft	532328-034
VGWU85-10 2'	S	06-21-16 00:00	- 2 ft	532328-035
VGWU85-10 4'	S	06-21-16 00:00	- 4 ft	532328-036
VGWU61-4B 30'	S	06-22-16 00:00	- 30 ft	532328-042
VGWU118-08 2'	S	06-23-16 00:00	- 2 ft	532328-056
VGWU118-08 4'	S	06-23-16 00:00	- 4 ft	532328-058
VGWU040-02B 80'	S	06-23-16 00:00	- 80 ft	532328-062
VGWU61-09B 30'	S	06-22-16 00:00	- 30 ft	Not Analyzed
VGWU61-09B 35'	S	06-22-16 00:00	- 35 ft	Not Analyzed
VGWU61-09B 40'	S	06-22-16 00:00	- 40 ft	Not Analyzed
VGWU61-09B 45'	S	06-22-16 00:00	- 45 ft	Not Analyzed
VGWU61-09B 55'	S	06-22-16 00:00	- 55 ft	Not Analyzed
VGWU61-09B 65'	S	06-22-16 00:00	- 65 ft	Not Analyzed
VGWU118-16 2'	S	06-23-16 00:00	- 2 ft	Not Analyzed
VGWU118-16 4'	S	06-23-16 00:00	- 4 ft	Not Analyzed
VGWU85-4B 35'	S	06-21-16 00:00	- 35 ft	Not Analyzed
VGWU85-3B 35'	S	06-21-16 00:00	- 35 ft	Not Analyzed
VGWU85-3B 40'	S	06-21-16 00:00	- 40 ft	Not Analyzed
VGWU85-3B 45'	S	06-21-16 00:00	- 45 ft	Not Analyzed
VGWU85-4B 40'	S	06-21-16 00:00	- 40 ft	Not Analyzed
				-

VGWU85-4B 45'
Blank
VGWU61-4B 35'
VGWU61-4B 40'
VGWU61-4B 45'
VGWU61-8B 30'
VGWU61-8B 35'
VGWU61-8B 40'
VGWU61-8B 45'
VGWU61-8B 50'
VGWU61-8B 55'
VGWU61-8B 60'
VGWU61-8B 65'
VGWU61-8B 70'
VGWU61-8B 75'
VGWU118-10 2'
VGWU118-10 4'
VGWU040-02B 45'
VGWU040-02B 55'
VGWU040-02B 65'
VGWU040-02B 75'

ARCADIS, Midland, TX

Chevron Sites

S	06-21-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00		Not Analyzed
S	06-22-16 00:00	- 35 ft	Not Analyzed
S	06-22-16 00:00	- 40 ft	Not Analyzed
S	06-22-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00	- 30 ft	Not Analyzed
S	06-22-16 00:00	- 35 ft	Not Analyzed
S	06-22-16 00:00	- 40 ft	Not Analyzed
S	06-22-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00	- 50 ft	Not Analyzed
S	06-22-16 00:00	- 55 ft	Not Analyzed
S	06-22-16 00:00	- 60 ft	Not Analyzed
S	06-22-16 00:00	- 65 ft	Not Analyzed
S	06-22-16 00:00	- 70 ft	Not Analyzed
S	06-22-16 00:00	- 75 ft	Not Analyzed
S	06-23-16 00:00	- 2 ft	Not Analyzed
S	06-23-16 00:00	- 4 ft	Not Analyzed
S	06-23-16 00:00	- 45 ft	Not Analyzed
S	06-23-16 00:00	- 55 ft	Not Analyzed
S	06-23-16 00:00	- 65 ft	Not Analyzed
S	06-23-16 00:00	- 75 ft	Not Analyzed

CASE NARRATIVE

Client Name: ARCADIS Project Name: Chevron Sites

 Project ID:
 713.953.4841

 Work Order Number(s):
 532328

Report Date:20-JUL-16Date Received:06/24/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	01	532328-0	008	532328-0	09	532328-0	10	532328-013		532328-0)14
Analysis Paguastad	Field Id:	VGWU61-08B 80'		VGWU61-09B 80'		VGWU118-17 2'		VGWU118-17 4'		VGWU118-13 2'		VGWU118-	-13 4'
Analysis Kequesiea	Depth:	80 ft		80 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-22-16 0	0:00	Jun-22-16 (00:00	Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:0	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-30-16 1	7:00	Jul-06-16 10:00		Jun-28-16 19:58		Jun-28-16 2	0:05	Jun-28-16 2	20:13	Jun-28-16 2	20:21
	Analyzed:	Jun-30-16 2	1:26	Jul-06-16 1	6:07	Jun-28-16 1	9:58	Jun-28-16 2	0:05	Jun-28-16 2	20:13	Jun-28-16 2	20:21
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		374	10.0	1440	100	248	10.0	115	10.0	13.2	10.0	125	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 6 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	15	532328-0)16	532328-0)17	532328-0	18	532328-019		532328-0)20
Analysis Paguastad	Field Id:	VGWU118-14 2'		VGWU118-14 4'		VGWU118-11 2'		VGWU118-11 4'		VGWU118-12 2'		VGWU118-	-12 4'
Analysis Requested	Depth:	2 ft		4 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-23-16 0	0:00	Jun-23-16 (00:00	Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:0	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-28-16 2	0:44	Jun-28-16 20:52		Jul-18-16 14:00		Jul-18-16 14:00		Jun-28-16 21:00		Jun-28-16 2	21:08
	Analyzed:	Jun-28-16 2	0:44	Jun-28-16 2	20:52	Jul-18-16 2	0:50	Jul-18-16 2	1:13	Jun-28-16 2	21:00	Jun-28-16 2	21:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		298	10.0	325	50.0	28.7	10.0	300	50.0	374	50.0	246	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 7 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-02	21	532328-0	22	532328-0)23	532328-0	24	532328-0	25	532328-0	026
Analysis Paguested	Field Id:	VGWU118-0	VGWU118-09 2'		VGWU118-09 4'		VGWU85-8 2'		VGWU85-8 4'		7 2'	VGWU85	-7 4'
Anaiysis Kequesiea	Depth:	2 ft		4 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	Matrix: SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-23-16 0	0:00	Jun-23-16 (00:00	Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-28-16 2	1:16	Jun-28-16 21:23		Jun-28-16 21:47		Jun-28-16 2	1:55	Jun-28-16 2	2:18	Jun-28-16 2	22:26
	Analyzed:	Jun-28-16 2	1:16	Jun-28-16 2	21:23	Jun-28-16 2	21:47	Jun-28-16 2	1:55	Jun-28-16 2	2:18	Jun-28-16 2	22:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		42.2	10.0	50.9	10.0	100	10.0	53.0	10.0	533	50.0	879	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 8 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	27	532328-0)28	532328-0)29	532328-0	31	532328-033		532328-034	
Analysis Paguastad	Field Id:	VGWU85-5 2'		VGWU85-5 4'		VGWU85-4B 30'		VGWU85-3B 30'		VGWU85-9 2'		VGWU85	-9 4'
Analysis Requested	Depth:	2 ft		4 ft		30 ft		30 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Jun-21-16 0	0:00	Jun-21-16 (00:00	Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:0	
Inorganic Anions by EPA 300/300.1	Extracted:	Jul-18-16 1	4:00	Jul-18-16 14:00		Jun-28-16 22:34		Jun-28-16 22:41		Jun-28-16 22:49		Jun-29-16	11:00
	Analyzed:	Jul-18-16 2	1:21	Jul-18-16 2	21:44	Jun-28-16 2	22:34	Jun-28-16 2	2:41	Jun-28-16 2	2:49	Jun-29-16	14:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		4220	500	1840	100	66.7	10.0	57.5	10.0	279	50.0	523	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 9 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	35	532328-0	36	532328-0)42	532328-0	56	532328-058		532328-0)62
Analysis Paguastad	Field Id:	VGWU85-	VGWU85-10 2'		VGWU85-10 4'		VGWU61-4B 30'		08 2'	VGWU118-08 4'		VGWU040-0	2B 80'
Anaiysis Kequesiea	Depth:	2 ft		4 ft		30 ft		2 ft		4 ft		80 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-21-16 0	0:00	Jun-21-16 (00:00	Jun-22-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		5 00:00 Jun-23-16 00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jul-18-16 1	4:00	Jul-18-16 14:00		Jun-29-16 11:00		Jun-29-16 1	1:00	Jun-29-16 1	1:00	Jun-30-16	17:00
	Analyzed:	Jul-18-16 2	1:52	Jul-18-16 2	2:00	Jun-29-16 1	14:16	Jun-29-16 1	4:39	Jun-29-16 1	4:47	Jun-30-16 2	21:42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		85.1	10.0	495	50.0	50.1	10.0	<10.0	10.0	<10.0	10.0	93.3	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 10 of 31

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	THORE	1 an
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: Chevron Sites

Work Order #: 532328							Pro	ject ID: ´	713.953.484	41	
Analyst: MNR	D	ate Prepar	red: 06/28/20	16			Date A	nalyzed: (06/28/2016		
Lab Batch ID: 997156 Sample: 710442-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<10.0	250	226	90	250	230	92	2	90-110	20	
Analyst: MNR	D	ate Prepar	red: 06/29/20	16			Date A	nalyzed: (6/29/2016		
Lab Batch ID: 997207 Sample: 710482-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Inorganic Anions by EPA 300/300.1 Analytes Chloride	Blank Sample Result [A] <10.0	Spike Added [B] 250	Blank Spike Result [C] 242	Blank Spike %R [D] 97	Spike Added [E] 250	Blank Spike Duplicate Result [F] 248	Blk. Spk Dup. %R [G] 99	RPD %	Control Limits %R 90-110	Control Limits %RPD	Flag
Inorganic Anions by EPA 300/300.1 Analytes Chloride Analyst: MNR	Blank Sample Result [A] <10.0 D	Spike Added [B] 250 ate Prepar	Blank Spike Result [C] 242 red: 06/30/20	Blank Spike %R [D] 97	Spike Added [E] 250	Blank Spike Duplicate Result [F] 248	Blk. Spk Dup. %R [G] 99 Date A	RPD % 2 nalyzed: (Control Limits %R 90-110 06/30/2016	Control Limits %RPD 20	Flag
Inorganic Anions by EPA 300/300.1 Analytes Chloride Analyst: MNR Lab Batch ID: 997412 Sample: 710538-1-	Blank Sample Result [A] <10.0 D BKS	Spike Added [B] 250 ate Prepar Bate	Blank Spike Result [C] 242 red: 06/30/20 h #: 1	Blank Spike %R [D] 97	Spike Added [E] 250	Blank Spike Duplicate Result [F] 248	Blk. Spk Dup. %R [G] 99 Date A	RPD % 2 nalyzed: (Matrix: S	Control Limits %R 90-110 06/30/2016 Solid	Control Limits %RPD 20	Flag
Inorganic Anions by EPA 300/300.1 Analytes Chloride Analyst: MNR Lab Batch ID: 997412 Sample: 710538-1- Units: mg/kg	Blank Sample Result [A] <10.0 D BKS	Spike Added [B] 250 ate Prepar Batcl BLAN	Blank Spike Result [C] 242 red: 06/30/20 h #: 1 K /BLANK	Blank Spike %R [D] 97 16 SPIKE /]	Spike Added [E] 250 BLANK S	Blank Spike Duplicate Result [F] 248 SPIKE DUP	Blk. Spk Dup. %R [G] 99 Date A	RPD % 2 nalyzed: (Matrix: \$ RECOV)	Control Limits %R 90-110 06/30/2016 Solid ERY STUI	Control Limits %RPD 20	Flag
Inorganic Anions by EPA 300/300.1 Analytes Chloride Analyst: MNR Lab Batch ID: 997412 Sample: 710538-1- Units: mg/kg Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A] <10.0 D BKS Blank Sample Result [A]	Spike Added [B] 250 ate Prepar Batcl BLAN Spike Added [B]	Blank Spike Result [C] 242 red: 06/30/20 h #: 1 K /BLANK Blank Spike Result [C]	Blank Spike %R [D] 97 16 SPIKE /] Blank Spike %R [D]	Spike Added [E] 250 BLANK S Spike Added [E]	Blank Spike Duplicate Result [F] 248 SPIKE DUP Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G] 99 Date A LICATE Blk. Spk Dup. %R [G]	RPD % 2 nalyzed: (Matrix: S RECOV	Control Limits %R 90-110 06/30/2016 Solid ERY STUI Control Limits %R	Control Limits %RPD 20 DY Control Limits %RPD	Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Chevron Sites

Work Order #: 532328							Proj	ject ID: ´	713.953.48	41			
Analyst: MNR	D	ate Prepai	red: 07/06/201	16	Date Analyzed: 07/06/2016								
Lab Batch ID: 997589 Sample: 710653-1-1	53-1-BKS Batch #: 1							Matrix: Solid					
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analytes		[2]	[0]	[2]	[12]		[0]			<u> </u>			
Chloride	<10.0	250	236	94	250	232	93	2	90-110	20			
Analyst: MNR	D	ate Prepai	red: 07/18/201	16			Date A	nalyzed: (07/18/2016				
Lab Batch ID: 998310 Sample: 711075-1-1	BKS	Batc	h #: 1			Matrix: Solid							
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI)Y			
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Chloride	<10.0	250	246	98	250	250	100	2	90-110	20			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

ved by OCD: 12/5/2022 12:15:36 PM	Form 3 - MS	Recov	veries			Page
LABORATORIES	Project Name: Chevron S	Sites				
Work Order #: 532328						
Lab Batch #: 997156			Proj	ect ID: 7	713.953.4841	
Date Analyzed: 06/28/2016	Date Prepared: 06/2	28/2016	A	analyst: N	MNR	
QC- Sample ID: 532328-022 S	Batch #: 1		I	Matrix: S	Soil	
Reporting Units: mg/kg	MAT	RIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 3	00 Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	F
Analytes	[A]	[B]				
Chloride	50.9	250	272	88	80-120	
Lab Batch #: 997156						
Date Analyzed: 06/28/2016	Date Prepared: 06/2	28/2016	Α	nalyst: N	MNR	
QC- Sample ID: 532432-001 S	Batch #: 1		I	Matrix: S	Soil	
Reporting Units: mg/kg	MAT	RIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 3 Analytes	00 Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	F
Chloride	5010	12500	16800	94	80-120	
Lab Batch #: 997207		1				
Date Analyzed: 06/29/2016	Date Prepared: 06/2	29/2016	A	nalyst: N	MNR	
QC- Sample ID: 532377-004 S	Batch #: 1		I	Matrix: S	Soil	
Reporting Units: mg/kg	MAT	RIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 3 Analytes	00 Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	F
Chloride	<10.6	266	241	91	80-120	ĺ
Lab Batch #: 997207 Date Analyzed: 06/29/2016	Date Prepared: 06/2	29/2016	A	Analyst: N	MNR	

QC- Sample ID: 532470-001 S	Batch #: 1		1	Matrix: So	bil	
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	108	250	339	92	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Page 123 of 282

Flag

Flag

Flag

ived by OCD: 12	2/5/2022 12:15:36 PM	Form	3 - MS	Recov	eries		1	Page 1
LA	BURATURIES Projec	et Name:	Chevron S	Sites				
Work Order #:	; 532328							
Lab Batch #:	997412				Proj	ect ID: 7	13.953.4841	
Date Analyzed:	06/30/2016	Date P	repared: 06/3	80/2016	А	nalyst: M	INR	
QC- Sample ID:	532336-008 S		Batch #: 1		I	Matrix: S	oil	
Reporting Units:	mg/kg		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
I	norganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes			[2]				
Chloride	007410		1910	2500	4260	94	80-120	
Lab Batch #:	997412			0.001.6				
Date Analyzed:	06/30/2016	Date P	repared: 06/3	30/2016	A	nalyst: M		
QC- Sample ID:	532377-043 S		Batch #: 1		ſ	Matrix: S	011	
Reporting Units:	mg/kg		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
I	norganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride			44.4	305	326	92	80-120	
Lab Batch #:	997589			1				1
Date Analyzed:	07/06/2016	Date P	repared: 07/0	6/2016	А	nalyst: M	INR	
QC- Sample ID:	532769-001 S		Batch #: 1		1	Matrix: S	oil	
Reporting Units:	mg/kg		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
I	norganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes							ļ
Chloride	007580		945	2500	3210	91	80-120	
Lab Batch #:	997389			$\sim 201c$			ND	
Date Analyzed:	522760.011.5	Date P	repared: 07/0	0/2010	А	nalyst: M	-:1	
QU- Sample ID:	552709-011 S mg/kg		Daicn #: 1			viatrix: S		
ceporting Units:	ш _б , к <u>р</u>		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
1	norganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Chloride

1190

2500

3550

94

80-120

124 of 282

VENCO LABORATORIES	Form Project Name:	3 - MS Chevron S	Recov Sites	veries			Page 125 (
Work Order #: 532328				D 1	(ID 7	12 052 4941	
Lab Batch #: 998310				Proj	ect ID: /	15.955.4641	
Date Analyzed: 07/18/2016	Date P	repared: 07/1	8/2016	A	analyst: N	/INR	
QC- Sample ID: 532328-017 S		Batch #: 1		I	Matrix: S	oil	
Reporting Units: mg/kg		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 3	00	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				
Chloride		28.7	250	258	92	80-120	1
Lab Batch #: 998310							
Date Analyzed: 07/18/2016	Date P	repared: 07/1	8/2016	A	analyst: N	4NR	
QC- Sample ID: 533521-001 S		Batch #: 1		I	Matrix: S	oil	
Reporting Units: mg/kg		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 3	00	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		[]	[10]				
Chloride		<10.0	250	274	110	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328						
Lab Batch #: 997156				Project I	D: 713.953.4	4841
Date Analyzed: 06/28/2016 21:31	Date Prepar	ed: 06/28/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532328-022 D	Batch	1 #: 1	Ma	t rix: Soil		
Reporting Units: mg/kg		SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte	/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		50.9	44.2	14	20	
Lab Batch #: 997156					·	<u> </u>
Date Analyzed: 06/28/2016 19:42	Date Prepar	ed: 06/28/2016	6 Ana	lyst:MNR		
QC- Sample ID: 532432-001 D	Batch	1 #: 1	Mat	t rix: Soil		
Reporting Units: mg/kg		SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/	/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
		5010	4040	1	20	
Chloride		5010	4940	1	20	
Lab Batch #: 997207	D (D	- 06/20/2016	-			
Date Analyzed: 06/29/2016 15:26	Date Prepar	ed: 06/29/2010) Ana	lyst: MINK		
QC- Sample ID: 532377-004 D	Bater			TIX: SOIL		OVEDN
Reporting Units: mg/Kg		SAMPLE	/ SAMPLE		ATE REC	OVERY
Inorganic Anions by EPA 300, Analyte	/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		<10.6	<10.6	0	20	U
Lab Batch #: 997207						
Date Analyzed: 06/29/2016 13:37	Date Prepar	ed: 06/29/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532470-001 D	Batch	#: 1	Mat	t rix: Soil		
Reporting Units: mg/kg		SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300, Analyte	/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		108	108	0	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) |

All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328						
Lab Batch #: 997412				Project I	D: 713.953.	4841
Date Analyzed: 06/30/2016 20:08	Date Prepar	ed: 06/30/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532336-008 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units: mg/kg		SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/30 Analyte	00.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		1910	1910	0	20	
Lab Batch #: 997412						
Date Analyzed: 06/30/2016 18:11	Date Prepar	ed: 06/30/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532377-043 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/30	00.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte			լոյ			
Chloride		44.4	37.4	17	20	
Lab Batch #: 997589						
Date Analyzed: 07/06/2016 11:20	Date Prepar	ed: 07/06/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532769-001 D	Batch	1#: 1	Ma	trix: Soil		
Reporting Units: mg/kg		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/3 Analyte	00.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		945	943	0	20	
Lab Batch #: 997589						
Date Analyzed: 07/06/2016 14:03	Date Prepar	ed: 07/06/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532769-011 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units: mg/kg		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/30 Analyte	00.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		1190	1240	4	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) |

All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328

Lab Batch #: 998310			Project I	D: 713.953.	4841
Date Analyzed: 07/18/2016 20:57 Date Prepar	red: 07/18/2010	6 Anal	yst:MNR		
QC- Sample ID: 532328-017 D Batc	h #: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	28.7	25.5	12	20	
Lab Batch #: 998310					
Date Analyzed: 07/18/2016 19:08 Date Prepar	red: 07/18/2010	6 Anal	yst:MNR		
QC- Sample ID: 533521-001 D Batc	h #: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		լոյ			

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS

Work Order #: 532328

Date/ Time Received: 06/24/2016 10:05:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	3.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seal present on shipping container/ cooler?	Yes	
#5 *Custody Seals intact on shipping container/ cooler?	Yes	
#6 Custody Seals intact on sample bottles?	Yes	
#7 *Custody Seals Signed and dated?	Yes	
#8 *Chain of Custody present?	Yes	
#9 Sample instructions complete on Chain of Custody?	Yes	
#10 Any missing/extra samples?	No	
#11 Chain of Custody signed when relinquished/ received?	Yes	
#12 Chain of Custody agrees with sample label(s)?	Yes	
#13 Container label(s) legible and intact?	Yes	
#14 Sample matrix/ properties agree with Chain of Custody?	Yes	
#15 Samples in proper container/ bottle?	Yes	
#16 Samples properly preserved?	Yes	
#17 Sample container(s) intact?	Yes	
#18 Sufficient sample amount for indicated test(s)?	Yes	
#19 All samples received within hold time?	Yes	
#20 Subcontract of sample(s)?	Yes	
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A	
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Negron Checklist reviewed by: Kelsey Brooks

Date: 06/24/2016

Date: 06/24/2016

TER ANALYSIS & METHOD F. Other: 8. 2 cor Glass G. Other: 8. 0 cher: 8. 0 cher: G. Other: 8. 0 cher: 8. 0 cher: H. Other: 9. 0 cher: 9. 0 cher: Matrix Key: 10. 0 cher: 9. 0 cher: Matrix Key: 10. 0 cher: 10. 0 cher: Matrix Key: 10. 0 cher: 10. 0 cher: No. 1 And 10. 1 J 10. 0 cher: H. Other: 10. 0 cher: 10. 0 cher:	Type (r) na Comp Grab Matrix Comp Grab SUL WCHUC - 8 SUL WCHUC - 8 SUL WCHUC - 8 SUL WCHUC - 8	Project NameLocation (Ce); State) Project Name Project Name Sample ID Collection 5.1 S.B - S S.O 5.3 - S 0 0 3.5 - S 0 0 4.0 4.0 4.0
Keys Freservation Key: Contailsr Inform A H,SO, Contailsr Inform A H,SO, Contailsr Inform A H,SO, Contailsr Inform Contailsr Inform C HNO, C	LICALS.Con Information	Send Result Address: Pac Address Stelle Zip E-mail Address

Page 21 of 31

Final 1.001

282

Joint Special Instructions/Comments: Laboratory Information and Received Name: Laboratory Information and Received Name: Cooler Cutors Cooler Cutors Cooler packed with Ice (*) Cooler Cutors Cooler packed with Ice (*) Cooler Cutors	Special Instructions/Comments:	Special Instructions/Comments:	Special Instructions/Comments:	Special Instructions/Comments:	Special Instructions/Comments:	L SR-S L Special Instructions/Comments:	1 28-2 4 J	28-5 2		1 38-7 4	2 1-20 69	- h 2-95 68	12/3 A 7 8-80 28	1 2 L 40- 45 01	10 - 67 6-11	118 SB-12 4 -	118 SR-12 2 V	NS 28-11 H	1 2 11-25 RH	5219 - h h1-215 811	118 513-14 2 1023	Sample ID Colle Date	Sampler's Proted Name: Sampler's St	Project NameLocation (Cliy, State): Project#:	See	nd Res	Address.	Contact & Compagy Name: PHC Telephone:	ARCADIS III
Del " Ai	eceipt:		1 Not Intert	stody Seal (V) Printed h	ipt [e													~ Sor	ection Type (√) Matrix Time Comp Grab	ignalies.				the at	16st 155 51	CHAIN
	Cabs	J	(a mica)	Vame	Relinquished By																	1000	1 int	10/	PARAM	Container Information	Filtered (*)	Preservative	OF CUSTODY
Date/Tufe	Kiron Courter	Horta Rasan	Nerth March	Anyted Name A L	Renaived Bu		□ Special QA/QC Instructions(✓);															/ / /	111	/ / /	ETER ANALYSIS & MET				& LABORATORY JEST FORM
Date/Time:	Firm/Counter-	Signature		Printed Nama	3		Ar au	Files	4313	Test	Test	test	Test	+25+	T25+	Test	Test	tion	holl	Test	Test		Matri	1 / H.O	THOD	15.09	A H		Page 2 of 5
Date/Time:	Firm)	Signature		Laboratory Received By Printed Name																		Nater SL - Sludge SW - Sample Issue A - Air Other MARKS	10 Other:	Other. 8. 8 oz. Glass Other. 9. Other.	Vone 5, Encore Difier 6, 2 oz. Glass 7, 4 oz. Glass	HCL 2 1 LAmber HNO, 3. 250 ml Plastic VaOH 4. 500 ml Plastic	H ₂ SO ₄ Container Information	Keys	Lab Work Order # 532328

aye

Contact & Company Name: Art: Partel	Telephone 713	- 453. 48	Proservative Filtered (*)			Pre
HELL RECEIVERS	Par Par	- 95 3. HX	Freservative Filtered (-/) # of Containers			P P
Dity State Zp	E-mail Address:		Container			mpo
Se			PARA	AMETER ANALYSI	S & METHOD	E
Project NameLocation (City, State)	Project #:		12	/ /	/ /	H.C
Sampler's Piroled Narrer	Sampler's Signature:		-/~~/	111	/	Mati
Sample ID	Collection	Type (v)	the Cont	1 1 1	/ /	
101 . C- 100 0	Date Inne	Comp Grap	1 / /	1	1 1	KE
05 SIL - 80 68	(2-0	~	6			hord
36-40 55						4011
50-38 30						FE
58-38 35						Land L
58-9 2						Test
- 8-85 H						129-1
53 -10 2						Lall
53-10 4						1017
513-313 40						Loui
58-38 45						TRAT
213 -48 40						halt
J 513-43 45	X					1est
		4				
Special Instructions/Comments:				Special QA/QC Ins	tructions(*):	
Laboratory Informatio	on and Receipt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Relinquished By	> Received	By	Relinquished By
AD AMTRE	Cooler Custody Se	al (*)	ICPN WICHS	Mena R	Printed Printed	Name
☐ Coaler packed with ice (*)	Intact	Not Intact	gnature	Lena R	Signatu	re:
pedity Turnaround Requirements:				Firm/Courier, C	FinuCo	Urier.
hipping Trackers #	Sample Receipt:	R-	Alculis	140		

Page 23 of 31

strift Turnamind Part Institute	Cooler packed with ice (v')		Laborator b Name	pecial Instructions/Comments:	4		0	6						8-25	28-4 V	H- 85	h-215	61 SR-4	vanipie in	Comple ID	Sampler's Printed Name	Project Name/Location (City, State)	Sen	d Res	Address	B Guntast & Couroany Name: P 57+CI
Sample Re	M Intac		ry Information and Rece	1	JCV J	70 1	159	201	155	502	451	40%	152	301	15h	404	1.55	300 6.22	Date	Colle	Sampler's Si	Project #	Zip E-mail Addre		Fax	Telephone
eceipt:	t 🗆 Not Inta	stody seal (v)	ipt		4														Time Comp G	action Type (V	gnalure		986		the way	713.75
SimAr	Ict Signature	Printed Name			•				-									Soc	rab Matrix						+	14841
Cadis	¥,	wichs	Relinquished By																0//	10/ 1	121	1 .1	PARAN	Container Information	Filtered (*)	Preservative
Findcaufer	Some 111 hours	Aprila Lesend:	Received By	Special QA/QC Instructions(1 1 1	1 1 1	/ / /	/ / /	METER ANALYSIS & MI			
Firm/Courien	Signature:	Printed Name:	Relinquished B	Di Lore	5	nor	10.	nul	NOIS	1 10	41	101	hal	hol	te	hai	hoi	ł	/ /	/ / /	1 1 1	1 1	ETHOD			
Fim	Signature	Printed Name:	By Laboratory	4		t q		+		- 15		-			+ hold	4	J	F Fest	REMARKS	Matrix Key: SO - Soll SE - Sediment W- Water SL - Sludge T - Tissue A - Air	n, omer 10, oth	G. Other 8.80	F. Other: 5. End 6. 2 of	D. NaOH 2. 11. 2. HNO, 3. 250 4. 500	A. H.SO, 1. 40	Keys

Page 24 of 31

Final 1.001

Page 25 of 31

Im Second (sec
--

Page 27 of 31

Container

	AETER ANALYSIS & METHOD	and Receipt ooler Custody Seal (<) N Intact II Not Intact Impla Receipt: Indition/Cooler Temp: 201 Eastimes	23 V Seit V Swind	11-00 ml 1 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1	Collection Type (V) Date Time Comp Grab Matrix	mail Address:	1001000 713-1757. 1841 Preservative
--	-------------------------	---	-------------------	---	---	---------------	-------------------------------------

Page 30 of 31

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS

Date/ Time Received: 06/24/2016 10:05:00 AM

Work Order #: 532328

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used :

Sa	ample Receipt Checklist	
#1 *Temperature of cooler(s)?		3.2
#2 *Shipping container in good condition?		Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seal present on shipping containe	er/ cooler?	Yes
#5 *Custody Seals intact on shipping container	/ cooler?	Yes
#6 Custody Seals intact on sample bottles?		Yes
#7 *Custody Seals Signed and dated?		Yes
#8 *Chain of Custody present?		Yes
#9 Sample instructions complete on Chain of C	Sustody?	Yes
#10 Any missing/extra samples?		No
#11 Chain of Custody signed when relinquishe	d/ received?	Yes
#12 Chain of Custody agrees with sample labe	l(s)?	Yes
#13 Container label(s) legible and intact?		Yes
#14 Sample matrix/ properties agree with Chain	n of Custody?	Yes
#15 Samples in proper container/ bottle?		Yes
#16 Samples properly preserved?		Yes
#17 Sample container(s) intact?		Yes
#18 Sufficient sample amount for indicated test	t(s)?	Yes
#19 All samples received within hold time?		Yes
#20 Subcontract of sample(s)?		Yes
#21 VOC samples have zero headspace (less	than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,H samples for the analysis of HEM or HEM-SGT v analysts.	CL, H2SO4? Except for which are verified by the	N/A
#23 >10 for all samples preserved with NaAsO	2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Negron Checklist reviewed by: Kelsey Brooks

Date: 06/24/2016

Date: 06/24/2016

Analytical Report 536864

for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer

11-OCT-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	11
LCS / LCSD Recoveries	12
MS / MSD Recoveries	14
Chain of Custody	17
Sample Receipt Conformance Report	21

11-OCT-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): **536864 HES Transfer** Project Address: Lovington NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 536864. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 536864 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 3 of 21

Sample Id

VGWUO40-12 (2')
VGWUO40-12 (4')
VGWUO40-17 (2')
VGWUO40-17 (4')
VGWUO40-16 (2')
VGWUO40-16 (4')
VGWUO40-16 (50')
VGWUO40-19 (2')
VGWUO40-19 (4')
VGWUO40-18 (2')
VGWUO40-18 (4')
VGWUO40-18 (70')
VGWU85-06 (2')
VGWU85-06 (4')
VGWU85-06 (10')
VGWU85-06 (50')
VGWU85-11 (2')
VGWU85-11 (4')
VGWUSAT3-03 (4')
VGWUSAT3-03 (40')
VGWUSAT3-05 (4')
VGWUSAT3-05 (40')
VGWU118-15 (2')
VGWU118-15 (4')
VGWU118-18 (2')
VGWU118-18 (4')
VGWU118-18 (7')
VGWU118-18 (10')
VGWU85-06 (7')
VGWU85-11 (7')
VGWU85-11 (10')
VGWU85-11 (11')
VGWU118-15 (7)

Sample Cross Reference 536864

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	09-13-16 08:50		536864-001
S	09-13-16 08:55		536864-002
S	09-13-16 10:30		536864-003
S	09-13-16 10:34		536864-004
S	09-13-16 09:58		536864-005
S	09-13-16 10:00		536864-006
S	09-13-16 10:48		536864-007
S	09-13-16 11:46		536864-008
S	09-13-16 11:50		536864-009
S	09-13-16 12:14		536864-010
S	09-13-16 12:16		536864-011
S	09-13-16 13:23		536864-012
S	09-13-16 14:41		536864-013
S	09-13-16 14:42		536864-014
S	09-13-16 14:44		536864-016
S	09-13-16 15:27		536864-017
S	09-13-16 16:00		536864-018
S	09-13-16 16:01		536864-019
S	09-14-16 09:49		536864-023
S	09-14-16 10:40		536864-024
S	09-14-16 11:11		536864-025
S	09-14-16 11:55		536864-026
S	09-14-16 14:00		536864-027
S	09-14-16 14:01		536864-028
S	09-14-16 14:30		536864-031
S	09-14-16 14:31		536864-032
S	09-14-16 14:32		536864-033
S	09-14-16 14:33		536864-034
S	09-13-16 14:43		Not Analyzed
S	09-13-16 16:02		Not Analyzed
S	09-13-16 16:05		Not Analyzed
S	09-13-16 16:21		Not Analyzed
S	09-14-16 14:02		Not Analyzed
S	09-14-16 14:03		Not Analyzed

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 536864 Report Date: *11-OCT-16* Date Received: *09/15/2016*

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	01	536864-0	002	536864-0	003	536864-0	04	536864-0	05	536864-	006
Analysis Paguastad	Field Id:	VGWUO40-	12 (2')	VGWUO40-	12 (4')	VGWUO40-	17 (2')	VGWUO40-	17 (4')	VGWUO40-	16 (2')	VGWUO40	-16 (4')
Anaiysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	SOIL Sep-13-16 08:50		Sep-13-16 08:55		Sep-13-16 10:30		Sep-13-16	10:34	Sep-13-16 09:58		Sep-13-16 10:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-20-16 08:00		Sep-20-16 08:00		Sep-20-16 (08:00	Sep-20-16 (08:00	Sep-20-16 (08:00	Sep-20-16	08:00
	Analyzed:	Sep-20-16 1	4:44	Sep-20-16	14:51	Sep-20-16	14:59	Sep-20-16	5:07	Sep-20-16	5:15	Sep-20-16	15:23
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		86.6	10.0	54.0	10.0	52.8	10.0	34.8	10.0	329	10.0	881	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 6 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	07	536864-0	008	536864-0)09	536864-0	10	536864-0)11	536864-0	012
Analysis Paguested	Field Id:	VGWUO40-1	6 (50')	VGWUO40-	-19 (2')	VGWUO40-	19 (4')	VGWUO40-	18 (2')	VGWUO40-	18 (4')	VGWUO40-	18 (70')
Anaiysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-13-16 1	0:48	Sep-13-16	11:46	Sep-13-16	11:50	Sep-13-16 1	2:14	Sep-13-16	12:16	Sep-13-16	13:23
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-30-16 (9:00	Sep-21-16	10:00	Sep-21-16	10:00	Sep-21-16 1	0:00	Sep-21-16	10:00	Sep-30-16	09:00
	Analyzed:	Sep-30-16 1	3:18	Sep-21-16	12:10	Sep-21-16	12:33	Sep-21-16 1	2:41	Sep-21-16	12:49	Sep-30-16	13:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		16.4	5.00	54.2	10.0	59.6	10.0	65.3	10.0	318	10.0	142	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 7 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-01	3	536864-0	014	536864-0)16	536864-0	017	536864-0	018	536864-0)19
Analysis Paguested	Field Id:	VGWU85-06	5 (2')	VGWU85-(06 (4')	VGWU85-0	6 (10')	VGWU85-0	6 (50')	VGWU85-1	1 (2')	VGWU85-	11 (4')
Analysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-13-16 14	4:41	Sep-13-16	14:42	Sep-13-16	14:44	Sep-13-16	15:27	Sep-13-16	16:00	Sep-13-16	16:01
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16 10:00		Sep-21-16	10:00	Sep-30-16 (09:00	Oct-10-16 ()9:35	Sep-21-16	10:00	Sep-21-16	10:00
	Extracted: Sep-21-16 10:00 Analyzed: Sep-21-16 12:57		2:57	Sep-21-16 17:46		Sep-30-16 13:47		Oct-10-16 19:19		Sep-21-16	13:28	Sep-21-16	13:36
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		6120	100	2540	50.0	3760	50.0	37.8	5.00	14.0	10.0	31.1	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 8 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	23	536864-0)24	536864-0)25	536864-0	26	536864-0	27	536864-0	028
Analysis Paguested	Field Id:	VGWUSAT3-	03 (4')	VGWUSAT3-	03 (40')	VGWUSAT3	-05 (4')	VGWUSAT3-0	05 (40')	VGWU118-	15 (2')	VGWU118-	15 (4')
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-14-16 0	9:49	Sep-14-16	10:40	Sep-14-16	11:11	Sep-14-16 1	1:55	Sep-14-16	14:00	Sep-14-16	14:01
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16 1	0:00	Sep-30-16	09:00	Sep-30-16	09:00	Oct-10-16 0	9:35	Sep-21-16	10:00	Sep-21-16	10:00
	Analyzed:	Extractea: Sep-21-16 10 Analyzed: Sep-21-16 13		Sep-30-16 13:54		Sep-30-16 14:01		Oct-10-16 19:26		Sep-21-16	3:51	Sep-21-16	13:59
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		454	10.0	12.0	5.00	943	5.00	ND	5.00	18.5	10.0	ND	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 9 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-03	1	536864-0	32	536864-0	33	536864-0	34	
Analysis Doguested	Field Id:	VGWU118-18	3 (2')	VGWU118-	18 (4')	VGWU118-	18 (7')	VGWU118-1	8 (10')	
Analysis Requested	Depth:									
	Matrix:	SOIL		SOIL		SOIL		SOIL		
	Sampled:	Sep-14-16 14	:30	Sep-14-16	4:31	Sep-14-16	14:32	Sep-14-16 1	4:33	
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16 10	0:00	Sep-21-16	0:00	Sep-30-16 (09:00	Oct-10-160	9:35	
	Analyzed:	Sep-21-16 14	:23	Sep-21-16	4:46	Sep-30-16	4:08	Oct-10-16 1	9:33	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		91.4	10.0	355	10.0	307	5.00	41.3	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 10 of 21

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	THOILE	Гал
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: HES Transfer

Work Order #: 536864	Project ID:											
Analyst: MNR	D	ate Prepar	ed: 09/20/20	16			Date A	nalyzed: (09/20/2016			
Lab Batch ID: 3000344 Sample: 713949-1-	BKS	Batcl	n #: 1					Matrix: S	Solid			
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY		
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Chloride	<10.0	250	250	100	250	257	103	3	90-110	20		
Analyst: MNR	D	ate Prepar	ed: 09/21/20	16			Date A	nalyzed: (09/21/2016			
Lab Batch ID: 3000445 Sample: 713999-1-	BKSBatch #: 1Matrix: Solid											
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Chloride	<10.0	250	246	98	250	250	100	2	90-110	20		
Analyst: MNR	D	ate Prepar	ed: 09/30/20	16		I	Date A	nalvzed: ()9/30/2016		ļ]	
Lab Batch ID: 3001120 Sample: 714399-1-3	BKS	Batcl	n #: 1					Matrix: S	Solid			
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Inorganic Anions by EPA 300/300.1	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag	
Analytes	[A]	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [G]	%	%R	%RPD		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: HES Transfer

Work Order	:#: 536864								Pro	ject ID:			
Analyst:	MNR		D	ate Prepai	red: 10/10/201	6			Date A	nalyzed: 1	0/10/2016		
Lab Batch ID	: 3001741	Sample: 714723-1-E	BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg			BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUE	ΡY	
Inorga	anic Anions by EPA	A 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride			<5.00	250	250	100	250	262	105	5	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: HES Transfer

Work Order # :	536864	Project ID:										
Lab Batch ID:	3000344	QC- Sample ID:	536602	-002 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	09/20/2016	Date Prepared:	09/20/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		2780	1250	4000	98	1250	4030	100	1	90-110	20	
Lab Batch ID:	3000344	QC- Sample ID:	536660	-002 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	09/20/2016	Date Prepared:	09/20/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesute [1]	[G]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloride		1970	1250	3230	101	1250	3210	99	1	90-110	20	
Lab Batch ID:	3000445	QC- Sample ID:	536864	-008 S	Ba	tch #:	1 Matri	x: Soil	•			
Date Analyzed:	09/21/2016	Date Prepared:	09/21/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesunt [1']	[G]	/0			
							1		1	1		1

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 14 of 21

Project Name: HES Transfer

Work Order # :	536864	Project ID:										
Lab Batch ID:	3000445	QC- Sample ID:	536864	-028 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/21/2016	Date Prepared:	09/21/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	ic Anions by EPA 300/300.1	Parent Sample Posult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]		%K [D]	E]	Kesuit [F]	%K [G]	70	%0K	%KPD	
Chloride		<10.0	250	250	100	250	244	98	2	90-110	20	
Lab Batch ID:	3001120	QC- Sample ID:	536657	-006 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/30/2016	Date Prepared:	09/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	ic Anions by EPA 300/300.1	Parent Spiked Sample Spiked Duplicate Spiked Control Sample Spike Result Sample Spiked Spiked Sample Dup. RPD Limits Limits Flag									Flag	
	Analytes	[A]	[B]	[0]	[D]	[E]	Troburo [1]	[G]			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloride		920	250	1160	96	250	1150	92	1	90-110	20	
Lab Batch ID:	3001120	QC- Sample ID:	537439	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/30/2016	Date Prepared:	09/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
Inorgan	ic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]	Kesult [F]	[G]	/0	70K		
Chloride		4120	2500	6760	106	2500	6650	101	2	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 15 of 21

Project Name: HES Transfer

Work Order # :	536864	Project ID:										
Lab Batch ID:	3001741	QC- Sample ID:	538189	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	10/10/2016	Date Prepared:	10/10/2	2016	An	alyst: 1	MNR					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	11050110[1]	[G]		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloride		1720	250	1980	104	250	1970	100	1	90-110	20	
Lab Batch ID:	3001741	QC- Sample ID:	538316	-006 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	10/10/2016	Date Prepared:	10/10/2	2016	An	alyst: 1	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]	[C]	70К [D]	[E]	Kesult [F]	[G]	70	70K	70KPD	
Chloride		258	250	501	97	250	493	94	2	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 16 of 21

l ah Write Create 4	2 5309UH	Keys Preservation Kay: Container Information Key:	C. T. AUMINIA C. HNO, 2. 11 AMDAC C. HNO, 3. 2000 Pleado D. NaCH 4. 500 m Pleado	E. None 5. Encore F. Othen 0. 2 oz. Glass G. Othen 1. 4 oz. Glass	H. Other 8. 802. Glass	Matrix Key: SO-Soli SE - Sediment NL - NAPLOI N MAACO	T-Tissue SL-Sugge SW-Sampe whe T-Tissue A-Air Other												0				by Laboratory Received By	ALL AND ALANON	Signature:	A NON	101.01.2	PINK – Retained by Arcadis
ABORATORY	ST FORM Page of			ER ANALYSIS & METHOD										- tou					Hour				Reinquished By	Der Shint Carlo Carlo Printed Name:	CHONNING OD Segmenter	micquited . Firmicouter.	sterilling / 14/16 4:00 paronines	YELLOW - Lab copy
tes Sperr CHAIN OF CUSTONY & I	ANALYSIS REQUE	374 Preservative E	8 of Containers	GUZZALIS. PARAMETI		eno,	and Matrix / h/	X SO X	X 2 X	X SO X	× SO ×	X 30 X	× SO ×	X SO X	X So X	X & X	X SO X	X So X	× So ×		X I SO I X I I I I	-	Refinduished By	Mertsa Phann	ttact Signature.	C Firm	Parentines 14/14/16 1600	WHITE - Laboratory roturns with results $U = \mathcal{O}$
on PM Fab		dis Telephone. 713.953.48	500 Fee:	2 Jonathan . Olsener	Project #:		Collection / Type (< Date Time Comp G	9/12/16 850 >	9/13/16 855 >	9/14/16 1030	9/13/1034 >	9/13/16958	hlia/14/000 >	P/13/16/1048 >	A112/10/114/0	milia/14/11/50	P113/10/214 >	9/12/14//e//s	< 2221/10/12/16		9/13/10/14/1 X		ormation and Receipt	Cooler Custody Seal (</td <td>D Intact</td> <td>Sample Receipt</td> <td>Condition/Cooler Temp: 10</td> <td>LLLLUNGON</td>	D Intact	Sample Receipt	Condition/Cooler Temp: 10	LLLLUNGON
Chevr Chevr		2 JUNATHAN OISCH Arco	20129 Briar Park Dr.	Service and Servic	Project Name Location (Cityl State): LO VI N A TON, NM (HES	Mehisa Phan	Sample ID	NGWUD40-12(2')	VGWWX40-12(4')	NGWU040-17(2')	VGWM040-17(4)	NGWMOAB-110(2')	VGWM040-16(4')	NGWUO40-16(58)	NGWW048-19(2')	VGWN048-19(4')	NGWM040-18(2')	VGWM040-18(4')	VGWU040-18(70)	YGWND40 851 C	VGWUS5-D/c(2') Special Instructional Comments	Standard Thr	Laboratory fmt		\mathbf{C} Cooler packed with ice (\mathbf{v})	Specify Turnaround Requirements:	Stypping Tracking #:	20730626 CorC AR Form 08.27.2016

Page 17 of 21

Final 1.002

	2 of 2 Lab Work Order #	Preservation Kay: Container Information Key:	B. HCL 2. LAmber C. HNO, 3. 250 millione D. NaOH 4. 500 millionet	E. None 5. Encore F. Other 6. 2 oz Glass G. Other 7. 4 oz Glass	H. Other. 8. 802 Glass	Matrix Key: SO-SOI SE-Sediment NL-MPLOI	T-TISUE A-AIr Other		trat	CAJOH	Hiou?	HOUERRY		Houo	Charlo	HOUD		HULD	Horo	HOLD			Relinquished By , Laboratory Received By	A AM OF	Sighatre:	XINCO	0000-15-16 1138	PINK Retained by Arcadis	
	ODY & LABORATORY REQUEST FORM Page			PARAMETER ANALYSIS & METHOD																		L Special CACC IISTUCDOFS(>);	Byse westered for a second by see the second	Printed Name:	Sometree: Sometree:	FimCourter NG FirmCourte	00 population of 00 provine	16 with results / YELLOW - Lab copy	
- Pro Speer	CHAIN OF CUST ANALYSIS F	TA FINANCIA T	4 of Containers Containers	Barcadis.cm/		/	and Matrix / A	X SO X	X So X	X SO X	X S X	× S X	X SO X	× 8 ×	x S X	× So ×	X So X	× %	× So ×	× So ×	X SO X		Relinguished	Proversion Name	ntact Signaturgi. UM	c Fim. Arcadis	Z [24][14/10 [60	WHITE - Laboratory return	
Merven PM	¥	713.953,48	C Fax:	E-mail Address:		Sampler's Signahira	Collection Type (Date Time Comp	913110142	Phial 1/2 1443	Plial14 1444	9/13/14/527	9/13/16 (600	9/13/16/1001	P(13/16/1602	5091hilei16	Ahaline MeZi) 9/14/14949	9/14/14/040	9/14/16 /111	P/14/16/155	10000111/11/14	0041	tion and Receipt	Cooler Custody Seal (v)	Vintact DI Not I	Sample Receipt	Condition/Cooler Temp:	Distribution	j J
Ĵ	GARCADIS 🖥	Contact & Company Name: AVTadis	Results Burbarton	Send Chy Stern TY 11M7	Polet Numer Construction States	Samply's Printed Vience: Willie Sa PMaM	Sample ID	VGWM85-to(4')	VGW 485-010(7)	NGWU35-06 (10')	VGWURS-00 (50')	VGWU/85-11 (2')	VGWW85-11(4')	<u>VGWU85-11 (7')</u>	VGWN 85- 11 (18')	VGWM85 - 11 (40)	VGWUSAT3-03(4)	VGWUSAT3-03(40)	NGWUSAT3-05(4')	NGWHSAT3-05(40')	NGMUILS-15(2')	Standard TAT	Laboratory Informs	Leb Name:	Cooler packed with ice (*)	Specify Tumaround Requirements:	Shipping Tracking #:	20730826 CofC AR Form 08.27.2016	

sleaved to Imaging: 12/5/2022 12:16:32 PM

Received by OCD: 12/5/2022 12:15:36 PM

Page 18 of 21

Final 1.002

¥

2 of 2 Lab Work Order #	Reservation Key: Keys Preservation Key: Container Information Key: A H.SO: 1.4 cm Vial B H.CL: 2.1 LAmber D NaOH 3: 250 ml Plastic E Other 5. Encore E Other 6: 2 oz Glass H. Other 6: 2 oz Glass H. Other 8. 0 other Netter 8. 0 other Netter 0.0 ther Matrix Key: 8. 0 other N Mater 8. 0 other N Mater 8. 0 other N Mater 8 Stelfment N Mater 8 Stelfment T-Tissue A - Air REMARKS	Houd Houd Houd Houd Houd Houd Houd Houd	Ninquished By Alaboratory Received By Protect Alaboratory Received By Protect Alaboratory Received By Arcad By
Y & LABORATORY QUEST FORM Page ⊇	AMETER ANALYSIS & METHOD		Beeclal QA/QC Instructions(*): Becalved By Real Entrance By Printed Name; Entrance: By By Intervention CB Stantance; Entrance: By By Intervention CB Date Time; Intervention YELLOW - Lab copy
LOU SPELU CHAIN OF CUSTOD ANALYSIS REG	33.4874 Preserventro E Filmontin NA n. Ol Scheartadis. (0)17 PAR		Seal (*) Seal (*) Invot Intaci Seal (*) Interiment Seal (*) Not Intaci Seature: Mile I Sa Seature: Mile I be Seature: Mile I be Mile I be Seature: Mile I be Mile I be Seature: Mile I b
Chevron PM ARCADIS 14	Contact & company Name: I Drad Much Olsch Michaels 713_95 Address: 2929 Briar park Dr 2929 Briar Park 200 Fer: 2929 Briar Address: 2020 Briar Day 200 Mar Address: 2020 Briar Day Allow Collection Sample ID Data Tama	$\frac{2WU118-15(4')}{2WU118-15(7')}$ $\frac{2WU118-15(7')}{114/10}$ $\frac{114/10}{143}$ $\frac{2WU118-18(4')}{2WU118-18(4')}$ $\frac{114/10}{143}$ $\frac{114/10}{143}$ $\frac{118-18(4')}{114/10}$ $\frac{114/10}{143}$ $\frac{118}{12}$ $\frac{18(7')}{114/10}$ $\frac{114/10}{143}$	Instructions/Comments: SFAMAUNATAT SFAMAUNATAT Laboratory information and Receipt mme: cooler packed with ice (v) Yimmround Requirements: Sample Receipt Sample Receipt Sample Receipt Sample Receipt

werd to Imaging: 12/5/2022 12:16:32 PM

Page 19 of 21

Final 1.002

¥

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 09/15/2016 11:30:00 AM Work Order #: 536864

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	6.3
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	Yes
#5 *Custody Seals intact on shipping container/ cooler?	Yes
#6 Custody Seals intact on sample bottles?	Yes
#7 *Custody Seals Signed and dated?	Yes
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 09/15/2016

Checklist reviewed by: Mmg Hoah Kelsey Brooks

Date: 09/16/2016

Analytical Report 539912

for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer Sites

B0048611.1601

09-NOV-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 12:15:36 PM

09-NOV-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): 539912 HES Transfer Sites Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 539912. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 539912 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kurs Ho

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Id

Composite Soil #4 (0'-4')
Composite Soil #5 (0'-4')
Composite Soil #6 (0'-4')
Composite Soil #7 (0'-4')
Composite Soil #8 (0'-4')
Composite Soil #9 (0'-4')
Composite Soil #10 (0'-4')
Composite Soil #11 (0'-4')
Composite Soil #12 (0'-4')
Composite Soil #13 (0'-4')

Sample Cross Reference 539912

Arcadis - Houston, Houston, TX

HES Transfer Sites

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	11-07-16 08:35	0 - 4 ft	539912-001
S	11-07-16 08:48	0 - 4 ft	539912-002
S	11-07-16 08:52	0 - 4 ft	539912-003
S	11-07-16 09:06	0 - 4 ft	539912-004
S	11-07-16 09:08	0 - 4 ft	539912-005
S	11-07-16 09:12	0 - 4 ft	539912-006
S	11-07-16 09:15	0 - 4 ft	539912-007
S	11-07-16 12:17	0 - 4 ft	539912-008
S	11-07-16 12:20	0 - 4 ft	539912-009
S	11-07-16 12:23	0 - 4 ft	539912-010

Page 164 of 282

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer Sites

 Project ID:
 B0048611.1601

 Work Order Number(s):
 539912

Report Date: 09-NOV-16 Date Received: 11/08/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:B0048611.1601Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 539912

Arcadis - Houston, Houston, TX Project Name: HES Transfer Sites

Date Received in Lab:Tue Nov-08-16 10:11 amReport Date:09-NOV-16Project Manager:Kelsey Brooks

	Lab Id:	539912-0	01	539912-0	02	539912-0	003	539912-0	004	539912-0)05	539912-	006
Analysis Paguastad	Field Id:	Composite Soil #	#4 (0'-4')	Composite Soil	#5 (0'-4')	Composite Soil	#6 (0'-4')	Composite Soil	#7 (0'-4')	Composite Soil	#8 (0'-4')	Composite Soil	#9 (0'-4')
Anaiysis Kequesiea	Depth:	0-4 ft		0-4 ft		0-4 ft		0-4 ft		0-4 ft		0-4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-07-16 0	8:35	Nov-07-16	08:48	Nov-07-16	08:52	Nov-07-16	09:06	Nov-07-16	09:08	Nov-07-16	09:12
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-08-16 1	6:05	Nov-08-16	16:27	Nov-08-16	16:34	Nov-08-16	16:55	Nov-08-16	17:02	Nov-08-16	17:09
	Analyzed:	Nov-08-16 1	6:05	Nov-08-16	16:27	Nov-08-16	16:34	Nov-08-16	16:55	Nov-08-16	17:02	Nov-08-16	17:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		403	5.00	87.6	5.00	3450	25.0	4370	50.0	433	5.00	1140	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Hoah

Kelsey Brooks Project Manager

Page 5 of 12

Project Id:B0048611.1601Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 539912

Arcadis - Houston, Houston, TX Project Name: HES Transfer Sites

Date Received in Lab:Tue Nov-08-16 10:11 amReport Date:09-NOV-16Project Manager:Kelsey Brooks

	Lab Id:	539912-0	07	539912-0	08	539912-0	09	539912-0	10		
Analysis Doguested	Field Id:	Composite Soil #	10 (0'-4')	Composite Soil #	#11 (0'-4')	Composite Soil #	#12 (0'-4')	Composite Soil #	#13 (0'-4')		
Analysis Kequesiea	Depth:	0-4 ft		0-4 ft		0-4 ft		0-4 ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Nov-07-16 (9:15	Nov-07-16	12:17	Nov-07-16	12:20	Nov-07-16	12:23		
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-08-16 1	7:30	Nov-08-16 1	17:37	Nov-08-16 1	17:44	Nov-08-16	17:51		
	Analyzed:	Nov-08-16 1	7:30	Nov-08-16 1	17:37	Nov-08-16 1	17:44	Nov-08-16	17:51		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		24.3	5.00	4250	50.0	5000	50.0	1690	25.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Hoah

Kelsey Brooks Project Manager

Page 6 of 12

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

0-4280
1-9139
9-3335
3-1713
)

BS / BSD Recoveries

Project Name: HES Transfer Sites

Work Order #:	539912, 539912							Pro	ject ID: 1	30048611.1	601	
Analyst: MN	NR	Da	ate Prepar	ed: 11/08/201	6			Date A	nalyzed: 1	1/08/2016		
Lab Batch ID: 300	03523 Sample: 715859-1-B	KS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg	/kg		BLAN	K /BLANK S	SPIKE / H	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	Y	
Inorganic Analytes	c Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	237	95	250	246	98	4	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: HES Transfer Sites

Work Order # :	539912						Project II	D: B0048	611.1601			
Lab Batch ID:	3003523	QC- Sample ID:	539906	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	11/08/2016	Date Prepared:	11/08/2	016	Ar	nalyst: 1	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample %B	Spike	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Ktsutt [F]	[G]		/01		
Chloride		1300	250	1550	100	250	1560	104	1	90-110	20	
Lab Batch ID:	3003523	QC- Sample ID:	539912	-003 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	11/08/2016	Date Prepared:	11/08/2	016	Ar	nalyst: 1	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Boggit	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[U]	%R [D]	Added [E]	Kesult [F]	%R [G]	/ [%] 0	%K	%RPD	
Chloride		3450	1250	4610	93	1250	4690	99	2	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 12

Stafford,Texas (281-240-4200)			
Dallas, Texas (214-902-0300)		Odessa, Texas (432-563-1800)	Lakeland, Florida (863-646-8526)
Service Center - San Antonio, Texas (210-509-3334)		Norcross, Georgia (770-449-8800)	Tampa, Florida (813-620-2000)
			29912
Client / Reporting Information	Prolect Information	Analytical Information	Matrix Coc
Company Name / Branch:	Project Name/Number:		
Dompany Address: 10205 Wz 574 c. M. R.	Project Location:		S = Soil/Sed
Heysten, TX 77042	buckeye, MM		GW =Groun DW = Drinki
Drigthan, 015, nOacally (18) 753			P = Product SW = Surfac
Jonsthan Alers			SL = Sludge WW= Waste
amplers's Name:		<u> </u>	W = Wipe
le d	Soliection States		WW= Waste
lo. Field ID / Point of Collection			
	Sample Depth Date Time Matrix bottles HCI VaOHZ Accetate IACOH		
1 (enposit- Soil #4(0'-4')	<u>6-411-7-160835</u> 5 1		Field Comments
2 Composite 50:1#56-41	6-4' 11-2.16 8480 11-9		
3 Confest to: 1 #610'-4')	6-4 11-7-16 0852 5 1		
* (compest to So ! # 7(p-4)	0'-4' 11-218 0806 > 1		
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 < 808091-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	××	
0~10~45.45 11 11 11 0-41	1 5 210 4-2-11 19	XX	
12-01011-1-2-11	0-4, 11-2-160715 > 1		
Comparts to 1 the 11 (0-1)	1 2 2121 22-4		
(an 1-1 + 5-1) # 12 (r m)			
Turneround Time (Business days)	Dita Deliverable Information		
Same Day TAT S Day TAT	Level II Std QC	Pice /raw data)	
Next Day EMERGENCY	Level III Std QC+ Forms TRRP Level IV	+ - 1 - 1 + - + - + - + - + - + - +	
2 Day EMERGENCY	Level 3 (CLP Forms) UST / RG -411		
3 Day EMERGENCY	TRRP Checklist		
TAT Starts Day received by Lab, if received by 3:	100 pm	FED-EX / UPS: Tracking #	
Inquished by Sampler:	Date Time: Received By: Received By:	OURIER DELIVERY	
finquished by:	Date Time: Received By: Relinquished By: Relinquished By:	Date Time: Repeived BY:	91-8-11 Draw
inquished by:	Date Time: Received By: Custody Seal #	Preserved where applicable On /ce	CA TEMP: IR ID:R-8

CHAIN OF CUSTODY

Received by OCD: 12/5/2022 12:15:36 PM

Work Order #: 539912

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 11/08/2016 10:11:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist					
#1 *Temperature of cooler(s)?		3.3			
#2 *Shipping container in good condition?		Yes			
#3 *Samples received on ice?		Yes			
#4 *Custody Seal present on shipping container	/ cooler?	Yes			
#5 *Custody Seals intact on shipping container/	cooler?	Yes			
#6 Custody Seals intact on sample bottles?		No			
#7 *Custody Seals Signed and dated?		No			
#8 *Chain of Custody present?		Yes			
#9 Sample instructions complete on Chain of Cu	ustody?	Yes			
#10 Any missing/extra samples?		No			
#11 Chain of Custody signed when relinquished	/ received?	Yes			
#12 Chain of Custody agrees with sample label((s)?	Yes			
#13 Container label(s) legible and intact?		Yes			
#14 Sample matrix/ properties agree with Chain	of Custody?	Yes			
#15 Samples in proper container/ bottle?		Yes			
#16 Samples properly preserved?		Yes			
#17 Sample container(s) intact?		Yes			
#18 Sufficient sample amount for indicated test(s)?	Yes			
#19 All samples received within hold time?		Yes			
#20 Subcontract of sample(s)?		N/A			
#21 VOC samples have zero headspace (less the	nan 1/4 inch bubble)?	N/A			
#22 <2 for all samples preserved with HNO3,HC samples for the analysis of HEM or HEM-SGT with analysts.	XL, H2SO4? Except for hich are verified by the	N/A			
#23 >10 for all samples preserved with NaAsO2	+NaOH, ZnAc+NaOH?	N/A			

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 11/08/2016

Checklist reviewed by: Mmg Hoah Kelsey Brooks

Date: 11/08/2016

Analytical Report 540193

for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer

17-NOV-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	7
LCS / LCSD Recoveries	8
MS / MSD Recoveries	9
Chain of Custody	10
Sample Receipt Conformance Report	11

Received by OCD: 12/5/2022 12:15:36 PM

17-NOV-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): **540193 HES Transfer** Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 540193. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 540193 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 5	640193
--------------------------	--------

Arcadis - Houston, Houston, TX

HES Transfer

Matri	x I	Date Collected	Sample Dept	h Lab Sample Id
S	1	1-08-16 13:37		540193-001
S	1	1-08-16 13:45		540193-002
S	1	1-08-16 14:02		Not Analyzed

Page 177 of 282

Sample Id

VGWU118-19 (4') VGWU118-19 (7') VGWU118-19 (9')

Version: 1.%

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 540193 Report Date: *17-NOV-16* Date Received: *11/10/2016*

Sample receipt non conformances and comments:

Level II Reporting

Sample receipt non conformances and comments per sample:

None

Project Id:Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 540193

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Nov-10-16 06:50 pmReport Date:17-NOV-16Project Manager:Kelsey Brooks

	Lab Id:	540193-0	01	540193-0	002		
Analysis Requested	Field Id:	VGWU118-1	19 (4')	VGWU118-	19 (7')		
	Depth:						
	Matrix:	SOIL		SOIL			
	Sampled:	Nov-08-16 13:37		Nov-08-16 13:45			
Inorganic Anions by EPA 300/300.1	Extracted:	d: Nov-16-16 12:59		Nov-16-16	12:59	1	
	Analyzed:	Nov-16-16 20:37		Nov-16-16 20:44			
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		11.2	5.00	69.9	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Kuns Moah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

FIIOIIC	Tax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(432) 563-1800	(432) 563-1713
(602) 437-0330	
	(281) 240-4200 (214) 902 0300 (210) 509-3334 (432) 563-1800 (602) 437-0330

BS / BSD Recoveries

Project Name: HES Transfer

Work Order	·#: 540193							Pro	ject ID:			
Analyst:	SLU	D	ate Prepar	red: 11/16/201	16			Date A	nalyzed: 1	1/17/2016		
Lab Batch ID:	: 3004056 Sample: 716177-1	BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUI	PΥ	
Inorga	anic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	265	106	250	259	104	2	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Version: 1.%

Form 3 - MS / MSD Recoveries

Project Name: HES Transfer

Work Order # :	540193						Project II	D:				
Lab Batch ID:	3004056	QC- Sample ID:	540433	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	11/16/2016	Date Prepared:	11/16/2	016	Ar	nalyst: S	SLU					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	'RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		3840	2500	6490	106	2500	6310	99	3	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 11

Spody rumanud Reportments: Spody rumanud Reportments: 5 - John The TAT Shipping Tracking st 2073Biase Cold AR Form U1.12.2807	Laboratory Infermatio	Special Instructions/Comments:		A. 12/V	1 101	VGWUIR JAG (91)	V6WU118-26(4)	Sample ID	Herst Steer TX 77042 Project human come (Dr. Same) HES Train star Budteyn, Mm Sampur Prince Harrey	Send Results to: Send Results to: Send Results of Surst heimer fored Suite 300 Sun 20	ARCADIS
Temp: IR ID:R-8 CF:+ 0.1 X Carrected Tempy: 300	n and Receipt Cooler Clustody Seal (*/)	5-day TAT * X				05 N 2011 31-2-11	11-2-16 1337 V SO	Collection Type (~) Matrix Date Time Comp Grab	Boon 486/1. 160/	(7)3)977-4620	CHAIN C AN
Sand 15 1990 Separation (1) Sand 15 1990 Separation (1) March 15 1990 Separation (1) Separation (1)	Relinquished By Philes type:	Lowal 11 Raperting X						646.	· 2 · 3	Francisco A E Famel(r) E sof Constances Constance Constance Information PARAMETER ANA	OF CUSTODY & LABOR
15:45 Mary (18: 16 15:45 Mary (18: YELLOW-Lab copy	lacentred By Relinquisation B	vQC (nstructions(∕);				I-to la				LYSIS & METHOD	
Supremente: Finn: So Delestrane: PHIK Rotained by ARCADIS	ע Laboratory Received By אוזעס אווייט: און און				ba	*		REMARKS	H. Other:	Preservation Key: A. H.SO, B. HCL C. HNO, C. Storm Plastic E. Norve E. Norve E. Concer F. Other 7. 4 oz. Glass	Lab Work Order# 540193

Page 10 of 11

•

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/10/2016 06:50:00 PM Temperature Measuring device used : R8 Work Order #: 540193 Comments Sample Receipt Checklist

1.3 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? N/A #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace (less than 1/4 inch bubble)? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Veamer Jessica Kramer Checklist reviewed by: Mung Moah Kelsey Brooks

Date: 11/11/2016

Date: 11/11/2016

Analytical Report 540846

for Arcadis - Houston

Project Manager: Jonathan Olsen

Midland Odessa Discounted Fee Schedule

02-DEC-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	7
LCS / LCSD Recoveries	8
MS / MSD Recoveries	9
Chain of Custody	10
Sample Receipt Conformance Report	11

02-DEC-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): 540846 Midland Odessa Discounted Fee Schedule Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 540846. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 540846 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kursho

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 3 of 11

Sample Id

VGWU-118 #1 VGWU-118 #2 VGWU-118 #3

Sample Cross Reference 540846

Arcadis - Houston, Houston, TX

Midland Odessa Discounted Fee Schedule

Μ	atrix	Date Collected	Sample Depth	Lab Sample Id
	S	11-21-16 14:26		540846-001
	S	11-21-16 15:00		540846-002
	S	11-21-16 15:10		540846-003

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: Midland Odessa Discounted Fee Schedule

Project ID: Work Order Number(s): 540846
 Report Date:
 02-DEC-16

 Date Received:
 11/22/2016

Sample receipt non conformances and comments:

Level II Reporting

Sample receipt non conformances and comments per sample:

None

Project Location:

Project Id: Contact: Jonathan Olsen

Buckeye NM

Certificate of Analysis Summary 540846

Arcadis - Houston, Houston, TX

Project Name: Midland Odessa Discounted Fee Schedule

Date Received in Lab:Tue Nov-22-16 03:53 pmReport Date:02-DEC-16Project Manager:Kelsey Brooks

	Lab Id:	540846-0	01	540846-0	02	540846-0	003		
Analysis Paguested	Field Id:	VGWU-11	8 #1	VGWU-11	8 #2	VGWU-11	8 #3		
Analysis Kequesiea	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Nov-21-16 1	4:26	Nov-21-16	15:00	Nov-21-16	15:10		
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-30-16 (09:04	Nov-30-16	09:04	Nov-30-16	09:04		
	Analyzed:	Nov-30-16	4:25	Nov-30-16	14:32	Nov-30-16	14:39		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		220	5.00	2370	25.0	1400	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 6 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order	#: 540846							Pro	ject ID:			
Analyst:	MNR	D	ate Prepai	red: 11/30/201	6			Date A	nalyzed: 1	1/30/2016		
Lab Batch ID:	: 3004723 Sample: 716623-1	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUI	ΟY	
Inorga	anic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	241	96	250	238	95	1	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Work Order # :	540846						Project II):				
Lab Batch ID:	3004723	QC- Sample ID:	540677	-034 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	11/30/2016	Date Prepared:	11/30/2	2016	Ar	nalyst: 1	MNR					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	'RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample Bosult [F]	Spiked Dup. %P	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]		[D]	[E]	Kesult [F]	[G]	70	70K	70KI D	
Chloride		10.9	273	285	100	273	292	103	2	90-110	20	
Lab Batch ID:	3004723	QC- Sample ID:	541018	3-001 S	Ba	tch #:	1 Matri	x: Sludge				
Date Analyzed:	11/30/2016	Date Prepared:	11/30/2	2016	Ar	nalyst: 1	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Besult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	[B]	[C]	-76K [D]	E]	Kesult [F]	-76K [G]	-/0	-⁄0K	70KPD	
Chloride		1130	250	1360	92	250	1380	100	1	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 11

Received by OCD: 12/5/2022 12:15:36 PM

Corrected Temp: 1.70C	erved where applicable	Custody Seal # Pres	Ived By I	A Rece	Date Time	Beinquished by: 5
Temp: IR ID:R-8	Date Time: Received By:	Relinquished By:	(ved By:	Hece	Date Time:	Helinguished by:
	1-22-16 1555 Received By:	Relinguished By:	My Mapage	1553 Rece	Allerty	Relinquished by Sampler:
	FED-EX / UPS: Tracking #	OSSESSION, INCLUDING COURIER DELIVE	OW EACH TIME SAMPLES OF ANGE P	OCUMENTED BEL	If received by 3:00 pm SAMPLE CUSTODY MUST BE D	TAT Starts Day received by Lab,
			TRRP Checklist			3 Day EMERGENCY
		UST/RG-411	Level 3 (CLP Forms)		Contract TAT	2 Day EMERGENCY
		TRRP Level IV	Level III Std QC+ Forms		7 Day TAT	Next Day EMERGENCY
		Level IV (Full Data Pkg /raw data)	Level II Std QC	X	S Day TAT	Same Day TAT
	Notes:	tion	Data Deliverable Informat	-	and the second s	Turnaround Time (Business days)
					\wedge	0(
				1		60
						7
			2			0
						υ
			6	1.012	\	4 11- Dem - 11 - # 2
		<		il-lu		
		< 1	2 00	W12/14 15	1	2 1600 -112 47
		1 ~ 1	EE S I	11/2/15 14	1	1 VGWU-119 #2
Field Comments		HINO3 H2504 Na0H Na0H MEOH NONE C1	R Native 2 HCI NaCIH/2/n Arguate	Date	lection Sample Depth	No. Field ID / Point of Col
and the second of the second se		a of preserved bottles	Numbe	Collection		interest
WW= Waste Water				a station of the		Samphers's Name:
0 = Oil				PO Number:		Project Contact:
SL = Sludge WW= Waste Water					ince D: sicon	jourthon, olsen @ a
GW =Ground Water DW = Drinking Water P = Product SW = Surface water			2 Buckye	Project Location	St STE 300 Phone No:	Looy N. Bisspring Inall:
A= Air S = Sail/Sed/Salid			Number:	Project Name/		A 124-25-5
			Project Intermation			Client / Reporting Information
Matrix Codes	Analytical Information					
HOPLAN	te a qor over Xeuco yop e	Xence Que	νννών χειτος σαπ		(210-509-3334)	Service Center - San Antonio, Texas
Lakeland, Florida (863-646-8526)	Texas (432-563-1800)	Odessa,				Statford, Texas (281-240-4200)
			Page DI			LABORATORIES
		CUSTODY	HAIN OF	0		(VEND)

Final 1.000

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 11/22/2016 03:53:00 PM Work Order #: 540846

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	1.7
#2 *Shipping container in good condition?	N/A
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	N/A
#5 *Custody Seals intact on shipping container/ cooler?	N/A
#6 Custody Seals intact on sample bottles?	N/A
#7 *Custody Seals Signed and dated?	N/A
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer Jessica Kramer

Date: 11/23/2016

Checklist reviewed by: Mmg Moah Kelsey Brooks

Date: 11/23/2016

Brett Krehbiel

Buckeye NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 570197 ARCADIS, Midland, TX

Project Name: HES

Date Received in Lab:Mon Dec-04-17 04:00 pmReport Date:05-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570197-0	001	570197-0	08	570197-0	009	570197-0	010	
Analysis Doguested	Field Id:	VGWu-118	3-020	VGWu-118	-027	VGWu-118	3-028	VGWu-118	3-029	
Analysis Kequesiea	Depth:									
	Matrix:	SOIL		SOIL		SOIL		SOIL		
	Sampled:	Dec-04-17 (09:07	Dec-04-17	1:51	Dec-04-17	11:58	Dec-04-17	13:09	
Chloride by EPA 300	Extracted:	Dec-05-17	16:00	Dec-05-17 1	6:00	Dec-05-17	16:00	Dec-05-17	16:00	
	Analyzed:	Dec-05-17	16:19	Dec-05-17 1	6:25	Dec-05-17	16:31	Dec-05-17	16:36	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		38.5	4.96	9.15	4.96	18.1	4.97	615	4.96	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Page 1 of 13

Analytical Report 570197

for ARCADIS

Project Manager: Brett Krehbiel

HES

05-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 12:15:36 PM

05-DEC-17

Project Manager: **Brett Krehbiel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570197 HES** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570197. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570197 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 13

Sample Cross Reference 570197

Page 199 of 282

ARCADIS, Midland, TX

HES

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWu-118-020	S	12-04-17 09:07		570197-001
VGWu-118-027	S	12-04-17 11:51		570197-008
VGWu-118-028	S	12-04-17 11:58		570197-009
VGWu-118-029	S	12-04-17 13:09		570197-010
VGWu-118-021	S	12-04-17 09:13		Not Analyzed
VGWu-118-022	S	12-04-17 10:02		Not Analyzed
VGWu-118-023	S	12-04-17 10:12		Not Analyzed
VGWu-118-024	S	12-04-17 10:34		Not Analyzed
VGWu-118-025	S	12-04-17 11:12		Not Analyzed
VGWu-118-026	S	12-04-17 11:35		Not Analyzed

.

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES

Project ID: Work Order Number(s): 570197 Report Date: 05-DEC-17 Date Received: 12/04/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-020		Matrix:	Soil		Date Received	1:12.04.	17 16.00	
Lab Sample Id	: 570197-001		Date Collect	ed: 12.04.17 09.07					
Analytical Met	hod: Chloride by EPA 30	00				Prep Method:	E300P		
Tech:	MNV			12.05.17.16.00		% Moisture:	Wet W	aight	
Seq Number:	3035034		Date Prep:	12.03.17 10.00		Dasis.	wet w	eigin	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate I	Flag	Dil

Chloride

16887-00-6 38.5

4.96

12.05.17 16.19

mg/kg

1

.

Released to Imaging: 12/5/2022 12:16:32 PM

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-027		Matrix:	Soil		Date Received	1:12.04.17 16.00	
Lab Sample Id	: 570197-008		Date Collecte	d: 12.04.17 11.51				
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weight	
Seq Number:	3035034							
Parameter		Cas Number	Result I	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **9.15**

4.96

mg/kg 12.05.17 16.25

1

.

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-028		Matrix:	Soil		Date Received	1:12.04.17 16.00)
Lab Sample Id	: 570197-009		Date Collecte	ed: 12.04.17 11.58				
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weight	
Seq Number:	3035034							
Parameter		Cas Number	Result]	RL	Units	Analysis D	ate Flag	Dil

18.1

16887-00-6

4.97

12.05.17 16.31

mg/kg

1

Released to Imaging: 12/5/2022 12:16:32 PM

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-029		Matrix:	Soil		Date Received	1:12.04	.17 16.00	
Lab Sample Id	: 570197-010		Date Collect	ed: 12.04.17 13.09					
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	Р	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet V	Weight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 615

4.96

12.05.17 16.36 mg/kg

1

.

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	
1211 W Florida Ave, Midland, TX 79701 2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(432) 563-1800 (602) 437-0330	(432) 563-171

QC Summary 570197

ARCADIS

HES

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E300)P	
Seq Number:	3035034]	Matrix:	Solid				Date Pre	p: 12.0	5.17	
MB Sample Id:	7635433-1-BLK		LCS San	nple Id:	7635433-1	I-BKS		LCSI	O Sample	Id: 7635	433-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	254	102	249	100	90-110	2	20	mg/kg	12.05.17 14:02	

Analytical Method:	Chloride by	EPA 30	0						Pr	ep Metho	1: E300)P	
Seq Number:	3035034]	Matrix:	Soil				Date Pre	p: 12.0	5.17	
Parent Sample Id:	569375-044			MS San	nple Id:	569375-04	4 S		MSI	O Sample	Id: 5693	375-044 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		623	247	847	91	852	93	90-110	1	20	mg/kg	12.05.17 14:20	

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E30	0P	
Seq Number:	3035034]	Matrix:	Soil				Date Pre	p: 12.0	5.17	
Parent Sample Id:	569375-046		MS San	nple Id:	569375-04	46 S		MSI	O Sample	Id: 5693	375-046 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	967	246	1140	70	1130	66	90-110	1	20	mg/kg	12.05.17 15:43	Х

.

Received by OCD: 12/5/2022 12:15:36 PM

Result Adding Hy Compy	1 432-312-7686	Filtered (+) # of Consumers		A H SO B. HCL B. HCL C. HNO	on Key: Container Information K 1. 40 mi Visi 2. 1. Amber 3. 250 mi braelin
at all colling	E-mail Address	PARAME	ETER ANALYSIS & METH	OD F. Other	5. Encore 5. 2 uz Giese
Project Humer Locales (Lain Stans)	Projec 2		111		8 8 oz. Ginse 0, Othur:
annier annier ware	A Contraction of the second se		1 1 1	Matrix Key:	10.0ther
Sample 10	Collection Type (v)	Mattix / V/	/ / /	W-Water	A-Alt Other
	Date Time Comp Grath	/ / /	1 1 1	REMAR	KS
YEADU-118-070	X EDGO 6/14/21	S			
V6004-111-021	K SIGO MULT	5 4			
1600-118-022	× 2001 41/421	S V			
14-023	WWW LORD X	S J			
A20-118-05A	X KOI CIMP	S V			
VEW4-18-025	What when x	S			
1600- M-022	X JULI COM	SU			
120-811 -118-027	1265/17-1151 X	5 3			
New - 111 - 024	K REM CUSIN	5 0			
16204-115-029	X 602 V/SPA	SV			
		8		112	
				CF:(0-6: -0.2%	P-H:OI HI
	ſ			(6-23; +0.2	ŝ
Special Instructions/Comments:			Special QA/DC Instructions(*):	Corrected Tem	1p: 1,40c
Laboratory Information	ion and Receipt	Solingtite ford D			
Lad Name	Cooler Custody Seai (*)	Printed Manage CA	Printed Name	Ponters luagre D G	Laboratory Received By
Cooler packed with ice (*)	I Interd I Not Interd	Start Annu L	- Therman	Stevender	Signature The Construction of
Spreity Tuniedicrut Requirements	Sample Receipt:	DICUERTE A	All We want	Fundamine Martin	IN UN I
Streaming That long #	Condition/Cooler Temp:	Carl HINE	(Sider U Kal	Dawryna of a law.	Landing ALASC
207304034 Colt: AR Form 08.21.3016	Distribution:	WHTE - Laboratory returns with result		NOD111-31	CI-ELILEST

Released to Imaging: 12/5/2022 12:16:32 PM-

Page 12 of 13

Final 1.000

Page 207 of 282

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 12/04/2017 04:00:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 570197	Temperature Measuring device used : R8
Sample Reco	eipt Checklist Comments
#1 *Temperature of cooler(s)?	1.4
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Νο
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	Νο
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	Νο
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Nu. 12

Analyst:

PH Device/Lot#:

Checklist completed by: Shawnee Smith

Date: 12/05/2017

Checklist reviewed by:

Mike Kimmel

Date: 12/05/2017

Project Id:VGWUContact:Brett KrehbielProject Location:Buckeye NM

Certificate of Analysis Summary 570432

ARCADIS, Midland, TX Project Name: HES Transfer

Date Received in Lab:Thu Dec-07-17 11:15 amReport Date:07-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570432-001				
Analysis Paguested	Field Id:	VGWU-118-030				
Analysis Kequestea	Depth:					
	Matrix:	SOIL				
	Sampled:	Dec-06-17 13:05				
Chloride by EPA 300	Extracted:	Dec-07-17 12:30	ſ	1	1	
	Analyzed:	Dec-07-17 15:18				
	Units/RL:	mg/kg RL				
Chloride		10.5 4.93				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Page 1 of 11

Analytical Report 570432

for ARCADIS

Project Manager: Brett Krehbiel

HES Transfer

VGWU

07-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 12:15:36 PM

07-DEC-17

Project Manager: **Brett Krehbiel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570432 HES Transfer** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570432. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570432 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 11

Sample Cross Reference 570432

ARCADIS, Midland, TX

HES Transfer

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWU-118-030	S	12-06-17 13:05		570432-001

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES Transfer

Project ID: VGWU Work Order Number(s): 570432
 Report Date:
 07-DEC-17

 Date Received:
 12/07/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

ARCADIS, Midland, TX

HES Transfer

Sample Id:	VGWU-118-030		Matrix:	Soil	Date Received:12.07.17 11.15				
Lab Sample I	d: 570432-001		Date Collec	cted: 12.06.17 13.05					
Analytical Me	ethod: Chloride by EPA	300]	Prep Method:	E300P		
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.07.17 12.30]	Basis:	Wet Weight		
Seq Number:	3035238								
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil	
Chloride		16887-00-6	10.5	4.93	mg/kg	12.07.17 15.1	8	1	

Chloride

10.5

4.93

mg/kg

1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

ARCADIS

HES Transfer

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E3	600P	
Seq Number:	3035238		Matrix: Solid				Date Prep: 12.07.17				.07.17	
MB Sample Id:	7635585-1-BLK	LCS Sample Id: 7635585-1-BKS			LCSD Sample Id: 76.				635585-1-BSD			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Chloride	<5.00	250	255	102	258	103	90-110	1	20	mg/kg	12.07.17 09:29	

Analytical Method:	Chloride by	EPA 30	0						P	ep Metho	od: E3	300P	
Seq Number:	3035238]	Matrix:	Soil				Date Pre	ep: 12	2.07.17	
Parent Sample Id:	566199-021			MS San	nple Id:	566199-02	21 S		MS	D Sample	Id: 56	6199-021 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	it Units	Analysis Date	Flag
Chloride		53.4	248	307	102	303	101	90-110	1	20	mg/kg	12.07.17 14:07	

Analytical Method:	Chloride by EPA 300							Prep Method: E300P				
Seq Number:	3035238			Matrix: Soil					Date Prep: 12.07.17			
Parent Sample Id:	569852-001		MS Sample Id: 569852-001 S					MSD Sample Id: 56985			9852-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	484	250	730	98	722	95	90-110	1	20	mg/kg	12.07.17 12:44	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 8 of 11

Page 217 of 282

TANBAR Code AD Born AN 37 SINE	peely Turnaund Requirements $A = A = T A T$	Cooler packed with ice (r)	Laboratory Infon		Special Instructions/Comments:						VGWU-118-030		Ciny Si how well	amber Spinter Name	" Malew TX 7970	nd Ret STC 300 State Zp	Address N.C. & Dill 1112	Contact & Company Name:	
	Condition/Cooler Temp: 22	Intact IN Not Intact	Cooler Custody Seal (*)								X 3081 UM	Date Time Comp Grab	Collection Type (*)	N/M Sampler v Stronger	toret, kechbid pareals	432-687-5401	Far 136-0815400	Telephone:	
6141101912	DALETING 101 - 10	Warry S. Kary wer	Relinquished By						C)		-	1 / XIII	1 10/		PARAMET	Container Informatión	# of Containers	Preservative	ANALY SIS KEWDER
12/6/17/15/5 1	Date/Time, 1 Date/Time, 1 Date/Time, 1 Date/Date/Date/Date/Date/Date/Date/Date/	Signaling Signaling Signaling	Printed Name Pri	En observation restruction to the								111	111	111	ER ANALYSIS & METHOD				SI FORM
1-6-17/160% V	Archiel's Finn	granung Sigle	Relinquished By Pjou	Corrected Temp	(6-23- 10-2°C)	Temp: 4, 3 ¢					24-hr TAT	REMARKS	SO - Soli W- Water T - Tassue	H. Other	G. Other	E None	A HSO, B HCL	Preservation Key	C - 10 - 64
21 11 15	(Timp:	unic Hernan	Laboratory Received By to Name	: 4.10C									SE - Sediment NL - NAPL/OII SL - Sludge SW - Sample Wir A - Air Other:	9. Other: 10. Other:	6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass	 250 ml Plastic 50 ml Plastic Encore 	1. 40 ml Vial 2. 1 L Amber	Keys Container Information Key	7 6401

Page 218 of 282

10 0 age

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 12/07/2017 11:15:00 AM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 570432	Temperature Measuring device used : R8
Sample Re	ceipt Checklist Comments
#1 *Temperature of cooler(s)?	4.1
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Νο
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	Νο
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	Νο
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 12/07/2017

Checklist reviewed by:

Mike Kimmel

Date: 12/07/2017

Project Id: Contact: Brett Krehbiel Project Location:

Certificate of Analysis Summary 564892

Arcadis - Houston, Houston, TX Project Name: HES Transfer VGWU-118

Date Received in Lab:Fri Oct-06-17 10:30 amReport Date:09-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	564892-0	01	564892-0	002	564892-0	003	564892-0	004	564892-0	005	564892-0)06
Analysis Requested	Field Id:	VGWU-118	8-001	VGWU-11	8-002	VGWU-118	3-003	VGWU-118	3-004	VGWU-118	8-005	VGWU-11	8-006
Analysis Requested	Depth:	2- In											
	Matrix:	SOIL											
	Sampled:	Oct-05-17 (07:41	Oct-05-17 (07:42	Oct-05-17 ()7:44	Oct-05-17 (07:45	Oct-05-17 (07:46	Oct-05-17	07:47
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-06-17 1	7:00	Oct-06-17	17:00	Oct-06-17 1	7:00	Oct-06-17 1	17:00	Oct-06-17	17:00	Oct-06-17	17:00
	Analyzed:	Oct-06-17 2	2:55	Oct-06-17 2	23:18	Oct-06-17 2	23:25	Oct-06-17 2	23:33	Oct-06-17 2	23:41	Oct-07-17 (00:04
	Units/RL:	mg/kg	RL										
Chloride		8.11	4.96	544	4.99	2760	24.7	41.3	4.94	67.9	4.92	15.0	4.94

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kunshoah

Kelsey Brooks Project Manager

Analytical Report 564892

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer VGWU-118

09-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

09-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 564892 HES Transfer VGWU-118 Project Address:

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 564892. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 564892 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 15

Sample Id

VGWU-118-001
VGWU-118-002
VGWU-118-003
VGWU-118-004
VGWU-118-005
VGWU-118-006

Sample Cross Reference 564892

Arcadis - Houston, Houston, TX

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-05-17 07:41	2 In	564892-001
S	10-05-17 07:42	2 In	564892-002
S	10-05-17 07:44	2 In	564892-003
S	10-05-17 07:45	2 In	564892-004
S	10-05-17 07:46	2 In	564892-005
S	10-05-17 07:47	2 In	564892-006

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer VGWU-118

Project ID: Work Order Number(s): 564892
 Report Date:
 09-OCT-17

 Date Received:
 10/06/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-001 d: 564892-001		Matrix: Date Collec	Soil cted: 10.05.17 07.41		Date Received Sample Depth:	:10.06.17 10.3 2 In	0
Analytical Me	ethod: Inorganic Anions	by EPA 300/300.1				Prep Method: % Moisture:	E300P	
Analyst:	MNV MNV		Date Prep:	10.06.17 17.00		Basis:	Wet Weight	
Seq Number: Parameter	3029837	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	8.11	4.96	mg/kg	10.06.17 22.5	55	1

Arcadis - Houston, Houston, TX

Sample Id:	VGWU-118-002		Matrix:	Soil		Date Received	:10.06.17 10	0.30
Lab Sample Id	1: 564892-002		Date Collec	cted: 10.05.17 07.42		Sample Depth	:2 In	
Analytical Me	ethod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.06.17 17.00		Basis:	Wet Weight	t
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	544	4.99	mg/kg	10.06.17 23.	18	1

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-003 d: 564892-003		Matrix: Date Colle	Soil cted: 10.05.17 07.44		Date Received Sample Depth:	:10.06.17 10.3 :2 In	0
Analytical Me Tech: Analyst:	ethod: Inorganic Anions MNV MNV	by EPA 300/300.1	Date Prep:	10.06.17 17.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	2760	24.7	mg/kg	10.06.17 23.	25	5

Arcadis - Houston, Houston, TX

Sample Id:	VGWU-118-004		Matrix:	Soil]	Date Received	:10.06.	17 10.30)
Lab Sample Id	d: 564892-004		Date Collec	cted: 10.05.17 07.45	:	Sample Depth	:2 In		
Analytical Me	ethod: Inorganic Anions	by EPA 300/300.1]	Prep Method:	E300F)	
Tech:	MNV				(% Moisture:			
Analyst:	MNV		Date Prep:	10.06.17 17.00]	Basis:	Wet W	/eight	
Seq Number:	3029837								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite	Flag	Dil
Chloride		16887-00-6	41.3	4.94	mg/kg	10.06.17 23.	33		1

Arcadis - Houston, Houston, TX

HES Transfer VGWU-118

Sample Id: Lab Sample Id	VGWU-118-005 d: 564892-005		Matrix: Date Colleg	Soil	1	Date Received Sample Depth:	:10.06.17 1 2 In	0.30
Analytical Me Tech:	ethod: Inorganic Anions	by EPA 300/300.1]	Prep Method: % Moisture:	E300P	
Analyst: Seq Number:	MNV 3029837		Date Prep:	10.06.17 17.00]	Basis:	Wet Weigh	t
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	67.9	4.92	mg/kg	10.06.17 23.4	41	1

Released to Imaging: 12/5/2022 12:16:32 PM

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-006 d: 564892-006		Matrix: Date Collec	Soil cted: 10.05.17 07.47		Date Received Sample Depth	:10.06.17 : 2 In	10.30
Analytical Me Tech: Analyst:	ethod: Inorganic Anions MNV MNV	by EPA 300/300.1	Date Prep:	10.06.17 17.00		Prep Method: % Moisture: Basis:	E300P Wet Weig	ght
Seq Number:	3029837	<i>a</i>	.					
Parameter Chloride		Cas Number 16887-00-6	Result 15.0	RL 4.94	Units mg/kg	Analysis Da 10.07.17 00.	ate Fla	g Dil

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

0-4280
1-9139
9-3335
3-1713
)

QC Summary 564892

Arcadis - Houston

Analytical Method:	Inorganic Anions b	y EPA 300/.	300.1					Pr	ep Metho	d: E300	P	
Seq Number:	3029837]	Matrix:	Solid				Date Pre	p: 10.06	5.17	
MB Sample Id:	7632227-1-BLK	7632227-1	I-BKS		LCSI	O Sample	Id: 7632	227-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	247	99	251	100	90-110	2	20	mg/kg	10.06.17 22:39	

Analytical Method:	Inorganic A	Inorganic Anions by EPA 300/300.1							Pre	ep Metho	1: E300)P	
Seq Number:	3029837			I	Matrix:	Soil				Date Prep	p: 10.00	5.17	
Parent Sample Id:	564892-001			MS Sam	ple Id:	564892-00	1 S		MSE	Sample	Id: 5648	92-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		8.11	248	262	102	269	105	90-110	3	20	mg/kg	10.06.17 23:02	

Analytical Method:	Inorganic A	nions by	y EPA 300/3	800.1					Pr	ep Metho	d: E30	OP	
Seq Number:	3029837]	Matrix:	Soil				Date Pre	p: 10.0	6.17	
Parent Sample Id:	564959-005			nple Id:	564959-005 S MSD Sample Id:					Id: 5649	564959-005 SD		
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		5.15	249	253	100	253	100	90-110	0	20	mg/kg	10.07.17 00:50	

10

CHAIN OF CUSTODY

Relin	Reli	1 Reli		-	6					10	æ	00	7	6	cn	4	3	N	4	No.	Sampler	Project (Email: brett.kr	Hiousto	Arcadi			Sen	SHI	1
nquished by:	riquished by:	we Brook and	Strand in matical inter second inter	TAT Starts Day received by Lab. If rec	Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaround Time (Business days)					VAWLL HE-DOLG	16WW 115-005	VGwu-118-004	YGW4-118-003	VGWIL-118-COL	14426-118-001	Field ID / Point of Callection	s'a Name	Contact: Brett Krehbiel	ehbiel@arcadis.com	vy Address: Aestheimer Rd., Suite 800 on TX 77042	is - Houston	Client / Reporting Information		vice Center - San Antonio, Texas (210-50	Tord,Tessis (281-240-4200)	LABORATORIES
Date T	Date T	Date T	AMPLE CUSTODY MUST E	pived by 5:00 nm		Contract TAT	7 Day TAT	5 Day TAT						K.	4	4	L	2'	19	Samp			Phone No:					19-3334)		
ITTO:	met	17 1C	E DOCUMEN								Ē	-		10/3/	¢		-	1	10/51	Collect ble Date		PO Num	Invoice	Londoru	HES T					
Recei	Racei	Se Regel	VTED BELOV				Π	Ø						102	674	02.	67	07	107	Time		bert	Top	V/V	ransfer					5
ved By:	ved By:	MayBy:	N EACH TIN		TRRP Ch	Level 3 (C	Level III S	Level II St	-					St	16 5	5 5	> H	12 5	S It	Matrix				SW		roject Info				HA
		the	IE SAMPLE		ecklist	LP Form	tid QC+ F	H QC	Data Deliv					-	1	-	+	1	1	r bottles				tt-		ormation		www.xen		Page
		ME	S CHANG			a)	orms		arable Info				-			_				HCI NaOH/Zn				118				co,com		1 or
04	Re	2 Ra	POSSESS						mation						_					HNO3 OF H2504		F								- 2
stody Sea	linquishe	linquishe	ION, INCLU			ST / RG -	RRP Leve	avel IV (Fr										_		NaOH NaHSO4										S I
11 10	d By:	d By:	DING COU			111	IN	ill Data Pi						-	-	~	~	1	X	MEOH										9
			RIER DEL					ıg /raw da						<	×	×	×	X	×	Chlorides			-					Xanco Q	Odess	X
reserved where app	Date Time:	Date Time:	VERV					(a)																			Analytical Inf	uote # 0_14208	a, Texas (432-563-1	
licable	1	Re	-EX / UPS			Corre	0	Lem	ŧ.												_				_		ormation	49-8800) Xer	1800)	
10	colved By	val player	Tracking	- 12		acted 1	6-22-1	b: (.c	-												_				_			ten Job #		
Onlos		AN AN			comp.	emn.	1 2°C)		2																			S(C	Lake	
Cooler		1VV	A		10	T	-	IR							1													W Y	land, Flo	
Temp.		1	2			-		ID:R-												Fiel								a (813-63	rida (863	
Thermo, Con								8												d Comments	WW= Waste	W = Wipe	SW = Surfac	GW =Groun DW = Drinki P = Product	S = Soil/Sed		Matrix Coo	20-2000)	-646-8526)	
r. Factor				1	1	1	1														Water	AA PACH	re wate	ng Water	Solid		165			

Received by OCD: 12/5/2022 12:15:36 PM

R

Page 14 of 15

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/06/2017 10:30:00 AM Temperature Measuring device used : R8 Work Order #: 564892 Comments Sample Receipt Checklist 1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/06/2017

Checklist completed by: Shawnee Smith Checklist reviewed by: Mark Moak Kelsey Brooks

Date: 10/06/2017

Project Id:Contact:Brett KrehbielProject Location:VGWU-118-0

Certificate of Analysis Summary 565002

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Fri Oct-06-17 04:04 pmReport Date:12-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565002-001				
Analysis Paguastad	Field Id:	VGWU-118-007				
Analysis Kequestea	Depth:	2- ft				
	Matrix:	SOIL				
	Sampled:	Oct-06-17 14:34				
Chloride by EPA 300	Extracted:	Oct-10-17 17:50	1		1	
	Analyzed:	Oct-11-17 04:01				
	Units/RL:	mg/kg RL				
Chloride		2030 25.0				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Analytical Report 565002

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer

12-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

12-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 565002 HES Transfer Project Address: VGWU-118-0

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 565002. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 565002 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hor

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 10

Sample Cross Reference 565002

Page 238 of 282

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-06-17 14:34	2 ft	565002-001
S	10-06-17 14:36	2 ft	Not Analyzed

Sample Id	
Sample Id	

VGWU-118-007 VGWU-118-008

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 565002 Report Date: *12-OCT-17* Date Received: *10/06/2017*

Sample receipt non conformances and comments:

VGWU-118-008 Placed on hold Per Melisa Darrow's e-mail 10/09/17-- KB

Sample receipt non conformances and comments per sample:

None

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-007		Matrix:	Soil	Ι	Date Received	1:10.06.	17 16.04	
Lab Sample Id: 565002-001		Date Collecte	ed: 10.06.17 14.34	S	Sample Depth	:2 ft		
Analytical Method: Chloride by EPA 3 Tech: MNV	00			F 9	Prep Method: % Moisture:	E300P	,	
Analyst: MNV		Date Prep:	10.10.17 17.50	E	Basis:	Wet W	eight	
Seq Number: 3030189								
Parameter	Cas Number	Result 1	RL	Units	Analysis D	ate 1	Flag	Dil

Chloride

16887-00-6 2030

25.0

10.11.17 04.01

mg/kg

5

Released to Imaging: 12/5/2022 12:16:32 PM

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

0-4280
1-9139
9-3335
3-1713
)

QC Summary 565002

Arcadis - Houston HES Transfer

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	od: E300)P	
Seq Number:	3030189			Matrix:	Solid				Date Pre	ep: 10.1	0.17	
MB Sample Id:	7632428-1-BLK		LCS Sar	nple Id:	7632428-	1-BKS		LCSI	O Sample	d: 7632	2428-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	245	98	246	98	90-110	0	20	mg/kg	10.11.17 00:26	

Analytical Method:	Chloride by EP	A 300							Pre	ep Method	1: E30	OP	
Seq Number:	3030189			Ν	Matrix:	Soil				Date Prep	p: 10.1	0.17	
Parent Sample Id:	565168-005			MS Sam	ple Id:	565168-00	5 S		MSE	Sample	Id: 565	168-005 SD	
Parameter	Pare Res	ent ult A	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	4	2.2	249	294	101	295	102	90-110	0	20	mg/kg	10.11.17 00:49	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	OP	
Seq Number:	3030189			Matrix:	Ground W	ater			Date Pre	p: 10.1	0.17	
Parent Sample Id:	565207-002		MS San	nple Id:	565207-00	02 S		MSI	O Sample	Id: 5652	207-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<4.99	250	252	101	253	101	90-110	0	20	mg/kg	10.11.17 02:36	

.

6	2
2	<
F	2)
BOI	Π
AT	Z
191	
-	

Page 1 OF CUSTODY

MANALANANA BAR	Relinquished by:	Relificulated by Sampler	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT 50	Turnaround Tims (Business days)	10	Ø	00	7	Ø	5	3 10-11-110 20 0	3 Valut 110 - march	TUD-SIL MANN 1	Free ID / Free Contraction		Semplers's Name	Project Contact: Brott Knohbiel	oreit, kreihbiel@arcadis.com	Company Advances 10205 Westheimer Rd., Suite 000 Hiouston TX 77042	Arcadis - Houston	Cilent / Reporting Information		Service Center - San Antonio, Texas (210-509	The Base Transact 1994 I ANY ADAMAN
Date Time:	Date Time:	E CLASSICO PIN		fract TAT	y TAT	ay TAT			~					194 -	111	1/01/1	Sample Depth Date	Columi	Portino Portin		one No: Invoice To	Project Lo	Project Ne HES Tra			3334)	
3 Received By:	Received By: 1/2/1/2017G (JDN7G/E Received By:	BELOW EACH TIME SAMPLES CHANGE PO	TRRP Checklist	Level 3 (CLP Forms)	Lovel III Std QC+ Forms	Level II Std QC	Data Dellverable Informa					XL		1 5 25.71	1424 2	P 2 T connect sometime	Time Marine bottles ICI IaOH/Zn ucetate	Num				WGWUL-118-	me/Number: nsfer	Project Information	titin manual and a		
4 Custody Seal # Pr	Relinquished By: 2 2 (2010) Corston	3855510N, INCLUDING COURIER DELIVE		UST/RG-411	TRRP Level IV	Level IV (Full Data Pkg /raw data	tion .						/	*	XX	T T Z Z Z Z V	INO3 I2SO4 IAOH IAHSO4 IEOH ONE Chloride	or of passing both				C				Norcro Xanao O	Odess
served where applicable 0	Date Time: Received By Date Time: 4:04 2 Date Time: Received By	FED-EX / UPS: Thacking				9	Notes:																	Analytical Information		ss, Georgia (770-449-8800)	a, Texas (432-563-1800)
n Ice Cooler Tamp. Thermo. Corr. Facto	AMUN 10-71-	*												11 Am 4 toos	West woll	Field Comments		A = Alr		OW =Ocean/Sea	P = Product SW = Surface was SL = Sludae	s = solitsed/sol GW =Ground W/ DW = Drinking V	2	Matrix Codes	P00096	Tampa, Florida (813-620-2000)	Lakeland, Florida (863-646-8526)

Released to Imaging: 12/5/2022 12:16:32 PM

Page 9 of 10

Final 1.000

Page 243 of 282

Received by OCD: 12/5/2022 12:15:36 PM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/06/2017 04:04:00 PM Temperature Measuring device used : R8 Work Order #: 565002 Comments Sample Receipt Checklist 2.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/10/2017

Checklist completed by: Jessica Vramer Jessica Kramer Checklist reviewed by: Mung Moak Kelsey Brooks

Date: 10/10/2017

Brett Krehbiel

VGWU-118

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 565799

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Tue Oct-17-17 06:05 pmReport Date:19-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565799-0	01	565799-0	02	565799-0	03	565799-0	04	565799-0	005	565799-0)06
Analysis Requested	Field Id:	VGWU-118	VGWU-118-009		VGWU-118-010		VGWU-118-011		VGWU-118-012		VGWU-118-013		8-014
	Depth:	2- ft	2- ft		2- ft		2- ft		2- ft		2- ft		
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-17-17 1	1:41	Oct-17-17 1	1:43	Oct-17-17 1	1:46	Oct-17-17 1	1:48	Oct-17-17 1	1:49	Oct-17-17	11:52
Chloride by EPA 300	Extracted:	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	10:20
	Analyzed:	Oct-18-17 1	Oct-18-17 12:25		2:33	Oct-18-17 1	2:41	Oct-18-17 13:04		Oct-18-17 13:11		Oct-18-17 1	13:34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2150	24.7	13.9	4.92	861	5.00	1530	25.0	12.3	4.92	11.1	4.91

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Brett Krehbiel

VGWU-118

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 565799

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Tue Oct-17-17 06:05 pmReport Date:19-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565799-0	07	565799-0	08	565799-0	09	565799-0	010	565799-0	11	
Analysis Prograted	Field Id:	VGWU-118	-015	VGWU-118-016		VGWU-118-017		VGWU-118-018		VGWU-118-019		
Analysis Kequestea	Depth:	2- ft		2- ft		2- ft		2- ft		2- ft		
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Oct-17-17 1	1:53	Oct-17-17 1	1:56	Oct-17-17 1	1:57	Oct-17-17	11:38	Oct-17-17 1	1:39	
Chloride by EPA 300	Extracted:	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17	10:20	Oct-18-17 1	0:20	
	Analyzed:	Oct-18-17 1	Oct-18-17 13:42		Oct-18-17 13:50		Oct-18-17 13:57		Oct-18-17 14:05		4:13	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		7.07	4.95	39.5	4.92	14.4	4.90	28.5	4.90	<4.96	4.96	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Analytical Report 565799

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer

19-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

19-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 565799 HES Transfer Project Address: VGWU-118

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 565799. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 565799 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hor

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

DRIES

Comment	1. 1.1		
Samo	ета		
Samp	ic iu		

VGWU-118-009
VGWU-118-010
VGWU-118-011
VGWU-118-012
VGWU-118-013
VGWU-118-014
VGWU-118-015
VGWU-118-016
VGWU-118-017
VGWU-118-018
VGWU-118-019

Sample Cross Reference 565799

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-17-17 11:41	2 ft	565799-001
S	10-17-17 11:43	2 ft	565799-002
S	10-17-17 11:46	2 ft	565799-003
S	10-17-17 11:48	2 ft	565799-004
S	10-17-17 11:49	2 ft	565799-005
S	10-17-17 11:52	2 ft	565799-006
S	10-17-17 11:53	2 ft	565799-007
S	10-17-17 11:56	2 ft	565799-008
S	10-17-17 11:57	2 ft	565799-009
S	10-17-17 11:38	2 ft	565799-010
S	10-17-17 11:39	2 ft	565799-011

Page 249 of 282

.

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 565799 Report Date: *19-OCT-17* Date Received: *10/17/2017*

Sample receipt non conformances and comments:

VGWU-118-008 Placed on hold Per Melisa Darrow's e-mail 10/09/17-- KB

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3030835 Chloride by EPA 300

Lab Sample ID 565799-003 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 565799-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-009		Matrix:	Soil		Date Received	1:10.17	7.17 18.05	
Lab Sample Id:	565799-001		Date Collect	ed: 10.17.17 11.41		Sample Depth	:2 ft		
Analytical Met Tech: Analyst: Seq Number:	hod: Chloride by EPA 30 MNV MNV 3030835	00	Date Prep:	10.18.17 10.20		Prep Method: % Moisture: Basis:	E300 Wet V	P Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **2150**

24.7

mg/kg 10.18.17 12.25

5

Released to Imaging: 12/5/2022 12:16:32 PM

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-010		Matrix:	Soil		Date Received	1:10.17.17	18.05
Lab Sample Id	: 565799-002		Date Collec	ted: 10.17.17 11.43		Sample Depth	:2 ft	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method: % Moisture:	E300P	
Analyst:	MNV 2020825		Date Prep:	10.18.17 10.20		Basis:	Wet Wei	ight
Parameter	2020822	Cas Number	Result	RL	Units	Analysis D	ate Fla	ag Dil
1 ar ameter		Casitumber	Result	KL	Omts	Analysis Da		ag Di

Chloride

13.9

16887-00-6

4.92

10.18.17 12.33

mg/kg

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-011		Matrix:	Soil		Date Received	1:10.1	7.17 18.05	
Lab Sample Id	: 565799-003		Date Collect	Sample Depth: 2 ft					
Analytical Me Tech: Analyst:	thod: Chloride by EPA 30 MNV MNV	00	Date Prep:	10.18.17 10.20		Prep Method: % Moisture: Basis:	E300 Wet	0P Weight	
Seq Number:	3030835								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **861**

5.00

mg/kg 10.18.17 12.41

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-012		Matrix:	Soil	Date Received:10.17.17 18.05				
Lab Sample Id: 565799-004		Date Collect	ed: 10.17.17 11.48		Sample Depth: 2 ft			
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3030835	00	Date Prep:	10.18.17 10.20		Prep Method: % Moisture: Basis:	E300P Wet We	eight	
Parameter	Cas Number	Result	RL	Units	Analysis D	ate F	lag Dil	

16887-00-6 1530

25.0

10.18.17 13.04 mg/kg

5

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-013		Matrix:	Soil		Date Received	1:10.17.17 18.	05
Lab Sample Id: 565799-005		Date Collecte	ed: 10.17.17 11.49	Sample Depth: 2 ft			
Analytical Method: Chloride by EPA 3	00				Prep Method:	E300P	
Analyst: MNV		Date Prep:	10.18.17 10.20		Basis:	Wet Weight	
Seq Number: 3030835							
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

Chloride

12.3

16887-00-6

4.92

10.18.17 13.11

mg/kg

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-014		Matrix:	Soil		Date Received	1:10.17.	17 18.05	5
Lab Sample I	d: 565799-006		Date Collec	cted: 10.17.17 11.52		Sample Depth: 2 ft			
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P		
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet W	eight	
Seq Number:	3030835								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate I	Flag	Dil
Chloride		16887-00-6	11.1	4.91	mg/kg	10.18.17 13	.34		1

Chloride

11.1

4.91

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-015		Matrix:	Soil		Date Received:10.17.17 18.0				
Lab Sample Id:	565799-007		Date Collect		Sample Depth: 2 ft					
Analytical Meth Tech:	hod: Chloride by EPA 30 MNV	00				Prep Method: % Moisture:	E300	0P		
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet	Weight		
Seq Number:	3030835									
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil	

Chloride

16887-00-6 **7.07**

4.95

mg/kg 10.18.17 13.42

1

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-016		Matrix:	Soil	Ε	Date Received:10.17.17 1				
Lab Sample Id: 565799-008		Date Collect	ed: 10.17.17 11.56	Sample Depth: 2 ft					
Analytical Method: Chloride by EPA 3 Tech: MNV	00			P %	rep Method: 6 Moisture:	E300P			
Analyst: MNV Sea Number: 3030835		Date Prep:	10.18.17 10.20	B	asis:	Wet Weight			
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil		

Chloride

39.5

16887-00-6

4.92

10.18.17 13.50

mg/kg

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-017		Matrix:	Soil		Date Received	1:10.17	.17 18.05	
Lab Sample Id: 565799-009		Date Collect	ed: 10.17.17 11.57		Sample Depth: 2 ft			
Analytical Method: Chloride by EPA 3 Tech: MNV	00				Prep Method: % Moisture:	E3001	Р	
Analyst: MNV		Date Prep:	10.18.17 10.20		Basis:	Wet V	Veight	
Seq Number: 3030835								
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

16887-00-6 **14.4**

4.90

mg/kg

10.18.17 13.57

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-018		Matrix:	Soil]	Date Received	1:10.17	.17 18.05	
Lab Sample Id: 565799-010		Date Collecte	d: 10.17.17 11.38	Sample Depth: 2 ft				
Analytical Method: Chloride by EPA 3 Tech: MNV	00]	Prep Method: % Moisture:	E3001	Р	
Analyst: MNV		Date Prep:	10.18.17 10.20]	Basis:	Wet W	Veight	
Seq Number: 3030835								
Parameter	Cas Number	Result F	L	Units	Analysis D	ate	Flag	Dil

16887-00-6 **28.5**

4.90

mg/kg 10.18.17 14.05

)5

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id:	VGWU-118-019		Matrix:	Soil		Date Received	1:10.17.17 18.05		
Lab Sample Id: 565799-011			Date Collect	ed: 10.17.17 11.39	Sample Depth: 2 ft				
Analytical Meth Tech: M	od: Chloride by EPA 30	0				Prep Method: % Moisture:	E300P		
Analyst: M Seq Number: 3	MNV 3030835		Date Prep:	10.18.17 10.20		Basis:	Wet Weight		
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil	

Chloride

16887-00-6

<4.96 4.96

10.18.17 14.13 mg/kg

U

1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

0-4280
1-9139
9-3335
3-1713
)

Arcadis - Houston HES Transfer

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	od: E300)P	
Seq Number:	3030835			Matrix:	Solid				Date Pre	ep: 10.1	8.17	
MB Sample Id:	7632811-1-BLK		LCS San	nple Id:	7632811-1	I-BKS		LCSI	O Sample	Id: 7632	2811-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	237	95	238	95	90-110	0	20	mg/kg	10.18.17 09:36	

Analytical Method:	Chloride by l	EPA 30	0						Pr	ep Metho	d: E300)P	
Seq Number:	3030835			1	Matrix:	Soil				Date Pre	p: 10.1	8.17	
Parent Sample Id:	565762-002			MS San	ple Id:	565762-00	2 S		MSI	O Sample	Id: 5657	62-002 SD	
Parameter	P F	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		885	249	1100	86	1110	90	90-110	1	20	mg/kg	10.18.17 11:01	Х

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E30	0P	
Seq Number:	3030835			Matrix:	Soil				Date Pre	p: 10.1	8.17	
Parent Sample Id:	565799-003		MS San	nple Id:	565799-00)3 S		MSI	O Sample	Id: 565'	799-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	861	250	1070	84	1060	80	90-110	1	20	mg/kg	10.18.17 12:48	Х

.

ABORATORIES

CHAIN OF CUSTODY

Roline	3	Reline	- 1	Reling		T			X			10	9	8	7	6	57	4	¢.	N	+	No		Project Cu Samplers'	Email: brett.kre	Hiouston	Arcadis	0		Servi	Dallar
vished by:		Juished by:	1 x	uished by Sampler:		AT Starts Day received by Lab,	Day EMERGENCY	Day EMERGENCY	lext Day EMERGENCY	ame Day TAT	Turnaround Time (Business days)	10000 118-019	16WIL - 118-047	VIGUIL - HE-CIL	NEWU 115-015	NGWILL-ITE- OIN	New-118-013	NGWU- 118-012	VEWW-118-011	Visme - 116-010	16wu-118-009	Field ID / Point of Coll		s Name 1 buld THUERS	hbiel@arcadis.com	stheimer Rd., Suite 800 I TX 77042	- Houston Address:	lient / Reporting Information		ce Center - San Antonio, Texas (2	Texas (214-902-0300)
					SAMPLE CUSTOE	if received by 5:0		Contract TAT	7 Day TAT	5 Day TAT		-										ection			Phone No:					210-509-3334)	
Date Time:		Date Time:	1-17-1	Date Time:	W MUST BE DC	0 pm					and the second sec	P)	1	10	N	2	2	N	Ņ	2	N	Sample Depth									
	1	19:05	7/00/5		DOUMENTED						Innal	C.C.AL	-		-					N	5.11.01	Date	Collection	PO Number:	nvoice To;	1	Project Name				
Received E	ω	Received E	1001	Received E	BELOW EAC		TRR	Leve	Leve	Leve	100	11 35	2511	1154	1153	1152	149	1148	1146	1143	1141	Time				GWUL	Number: fer	Projec			
ŝys		Syn	1 -5	SV:	H TIME SAME		P Checklist	13 (CLP For	III Std QC+	I II Std QC	Data De		- 1	5	1 5	~ _	1 5	1 5	1 5	1	1 5	Matrix bottle	-			118		t Informatio		WWW.X	
			1514-		LES CHANG		1	(ms)	Forms		liverable Info											HCI NaOH/Zn	No	1				'n		enco.com	
Cut	4	Ral	P	Rel	EPOSSESSI			U 10		6	rmation											HNO3 H2SO4	mber of pre		0						
stody Seal #		inquished E		inquished E	ON, INCLUDI			T / RG -411	RP Level N	vel IV (Full												NaOH NaHSO4	served bot								
		Y:		y:	VG COURIER			P		Data Pkg /ra	-											MEOH NONE	sei						_	Xe	z
Preser			_	0	DELIVERY					w data)			*	×	×	X	×	×	*	*	X	Chloride	es			_				steo Quiote #	orcross, G
ved where ap		ate Time:		ate Time:		7			-			+			H								_					_	Analytical I	Q_14208	eorgia (770-
plicable	4	Re	N	Re	THE PARTY	DLEY / HDS	3	Co	5	1																	_		nformation	Xer	449-8800)
19		ceived By:		ceived By:	. Hanving w	Tracking #		Tected	:(U-6: -(mp: 2		t		_	_													_		ao Job #	
lice							i enip:	+0.2°C	0.2°C)	3.4	•	+									_	1	_	_			_		-	2	Tampa,
Cooler Temp.							4.6	1		IRI																				PLLS	Florida (813
1. Thermo, Corr, Factor						1				D:R-8												Field Comments	A = Air	W = Wipe O = Oil WW= Waste Water	SW = Surface water SL = Sludge OW =Ocean/Sea Wat	DW = Drinking Water P = Product	S = Soil/Sed/Soild		Matrix Codes	9	3-620-2000)

Page 20 of 21

Final 1.000

Received by OCD: 12/5/2022 12:15:36 PM

Page 264 of 282

Received by OCD: 12/5/2022 12:15:36 PM

#13 Samples properly preserved?

#14 Sample container(s) intact?

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/17/2017 06:05:00 PM Temperature Measuring device used : R8 Work Order #: 565799 Sample Receipt Checklist 4.6 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes

#17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

#15 Sufficient sample amount for indicated test(s)?

#16 All samples received within hold time?

Date: 10/18/2017

Yes

Yes

Yes

Yes

Comments

Checklist completed by: Shawnee Smith Checklist reviewed by: Mark Moak Kelsey Brooks

Date: 10/18/2017

Brett Krehbiel

Buckeye NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 570197 ARCADIS, Midland, TX

Project Name: HES

Date Received in Lab:Mon Dec-04-17 04:00 pmReport Date:05-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570197-0	01	570197-0	08	570197-0	09	570197-0	010		
Analysis Paguastad	Field Id:	VGWu-118	-020	VGWu-118	-027	VGWu-118	-028	VGWu-118	3-029		
Anaiysis Kequesiea	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Dec-04-17 ()9:07	Dec-04-17	1:51	Dec-04-17	11:58	Dec-04-17	13:09		
Chloride by EPA 300	Extracted:	Dec-05-17 1	16:00	Dec-05-17	6:00	Dec-05-17 1	16:00	Dec-05-17	16:00		
	Analyzed:	Dec-05-17 1	16:19	Dec-05-17 1	6:25	Dec-05-17 1	6:31	Dec-05-17	16:36		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		38.5	4.96	9.15	4.96	18.1	4.97	615	4.96		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Analytical Report 570197

for ARCADIS

Project Manager: Brett Krehbiel

HES

05-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 12:15:36 PM

05-DEC-17

Project Manager: **Brett Krehbiel** ARCADIS 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570197 HES** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570197. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570197 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 13

Sample Cross Reference 570197

Page 269 of 282

ARCADIS, Midland, TX

HES

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWu-118-020	S	12-04-17 09:07		570197-001
VGWu-118-027	S	12-04-17 11:51		570197-008
VGWu-118-028	S	12-04-17 11:58		570197-009
VGWu-118-029	S	12-04-17 13:09		570197-010
VGWu-118-021	S	12-04-17 09:13		Not Analyzed
VGWu-118-022	S	12-04-17 10:02		Not Analyzed
VGWu-118-023	S	12-04-17 10:12		Not Analyzed
VGWu-118-024	S	12-04-17 10:34		Not Analyzed
VGWu-118-025	S	12-04-17 11:12		Not Analyzed
VGWu-118-026	S	12-04-17 11:35		Not Analyzed

.

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES

Project ID: Work Order Number(s): 570197 Report Date: 05-DEC-17 Date Received: 12/04/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-020		Matrix:	Soil		Date Received	1:12.04	.17 16.00	
Lab Sample Id:	570197-001		Date Collect	ed: 12.04.17 09.07					
Analytical Met	hod: Chloride by EPA 30)0				Prep Method:	E300	Р	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet V	Weight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 **38.5**

4.96

4.96

12.05.17 16.19

mg/kg

1

.

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-027		Matrix:	Soil		Date Received	1:12.04	4.17 16.00	
Lab Sample Id	: 570197-008		Date Collect	ed: 12.04.17 11.51					
Analytical Met	hod: Chloride by EPA 30)0				Prep Method:	E300)P	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet	Weight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 **9.15**

4.96

mg/kg 12.05.17 16.25

1

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-028		Matrix:	Soil		Date Received	:12.04.17 1	6.00
Lab Sample Id	: 570197-009		Date Collect	ed: 12.04.17 11.58				
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weigh	nt
Seq Number:	3035034							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

Chloride

18.1

16887-00-6

4.97

12.05.17 16.31

1

12.05.17 1

mg/kg

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-029		Matrix:	Soil		Date Received	1:12.04	4.17 16.00	
Lab Sample Id	: 570197-010		Date Collect	ed: 12.04.17 13.09					
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	P	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet V	Weight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 615

4.96

12.05.17 16.36

mg/kg

1

.

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 570197

ARCADIS

HES

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E300)P	
Seq Number:	3035034]	Matrix:	Solid				Date Pre	p: 12.0	5.17	
MB Sample Id:	7635433-1-BLK		LCS San	nple Id:	7635433-1-BKS			LCSI	O Sample	Id: 7635	5433-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	254	102	249	100	90-110	2	20	mg/kg	12.05.17 14:02	

Analytical Method:	Chloride by	EPA 30	0						Pro	ep Metho	d: E300)P	
Seq Number:	3035034			1	Matrix:	Soil				Date Pre	p: 12.0	5.17	
Parent Sample Id:	569375-044			MS San	ple Id:	569375-04	4 S		MSE	O Sample	Id: 5693	375-044 SD	
Parameter	I]	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		623	247	847	91	852	93	90-110	1	20	mg/kg	12.05.17 14:20	

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E30)P	
Seq Number:	3035034]	Matrix:	Soil				Date Pre	p: 12.0	5.17	
Parent Sample Id:	569375-046		MS San	nple Id:	569375-04	46 S		MSI	O Sample	Id: 5693	375-046 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	967	246	1140	70	1130	66	90-110	1	20	mg/kg	12.05.17 15:43	Х

.

Received by OCD: 12/5/2022 12:15:36 PM

Date Transformer	N N N N N			
Functioning A. ICal	Balanne	and a la house	Condition/Cooler Temp:	maning Tradung #
All and a with a	Mas Service	SICHART	Sample Receipt:	24 THO
Busility R. H.	monthe here hat has	Strange	Li Interd II Not Interd	Cooler packed with ice (v)
Steve hater	The bills	aug Schongwes	Conter Custody Seal (*)	Kinco
Ralinquished By	Received By	- Relinquisheri By	ation and Receipt	Laboratory Informa
on connected temp	U special QA/QC Instructions(Haters
Contract Tan				special Instructions/Comments:
(6-23: +0.2°)			-	
CF:(0-6: -0,2°C			1	
Temp: /./		SC V		
		SV	× 6021 V/501	Nevar - 112- 053
		s	1 ROV USAN	Needer - 117 - 024
		5 3	" X 121 1121	420-811-110-027
		S V	V JUST VIDA	16101-111-026
		S	What was	VEW24-18-025
		S V	X KEDI CITAD	A200-118-02A
		V 5	X Diotella	1400-111-023
		A S	X 2001 414/21	16004-118-022
		5 1	X 530 UM	V604-111-021
		S 4	X tess typ	VENU-118-070
REMARKS	1 1 1	1 6 1 size	Date Time Comp Grath	n aidune
Matrix Key: SD- Sol W-Water	11	1 1	Collection Tone (2)	day S. ton guel
H DINE:	1 1		Z violes :	HES Buckiye N
ETHOD F. Other	TER ANALYSIS & ME	TSICON PARAME	of Brut Kuch biele aree 2	Print XI C-16' M
D MaOH E. None		Londsheer ST	Pinal Address	and F UL SILE See Th
B. HOL		# of Containars	Ter transferrer	1004 J. 315 5p-1-5
Preservation K		Filtered (+)	13 432-312-768C	B R. Werton Buch
		Preservative	Tatephonec	Contrart & Concerny Nam

Released to Imaging: 12/5/2022 12:16:32 PM-

Page 12 of 13

Final 1.000

Page 277 of 282

Received by OCD: 12/5/2022 12:15:36 PM

IE B

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC	
Date/ Time Received: 12/04/2017 04:00:00 PM	Air and Metal samples Acceptable Range: Ambient	
Work Order #: 570197	Temperature Measuring device used: R8	
Sample Rece	eipt Checklist Comments	
#1 *Temperature of cooler(s)?	1.4	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Νο	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Νο	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Νο	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Shawnee Smith

Date: 12/05/2017

Checklist reviewed by:

1000-01 Mike Kimmel

Date: 12/05/2017

VGWU 118 / 1RP-3260

Photo 1. View of hydro excavation activities.

Photo 2. View of excavation area.

VGWU 118 / 1RP-3260

Photo 3. Additional view of excavation activities.

Photo. 4 Continued excavation activities.

VGWU 118 / 1RP-3260

Photo 5. View of liner installation.

Photo 6. View of excavation backfill activities.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Page 282 of 282

Action 163837

CONDITIONS

Operator:	OGRID:
MorningStar Operating LLC	330132
400 W 7th St	Action Number:
Fort Worth, TX 76102	163837
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By	Condition	Condition Date
jnobui	uploaded signed and approved C141 for closure	12/5/2022