

June 17, 2020

Bradford Billings Hydrologist District 2 Artesia Oil Conservation Division Santa Fe, NM 87505

Re: Deferral Request ConocoPhillips VGEU East Battery Unit Letter N, Section 27, Township 17 South, Range 35 East Lea County, New Mexico 1RP-4441

Mr. Billings:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to evaluate a release that occurred at the Vacuum Glorieta East Unit (VGEU) East Battery located within Unit Letter N, Section 27, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The site coordinates are 32.800087°, - 103.445958°. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Attachment A), on September 8, 2016, at 1800 hrs. MDT, a spill occurred at the VGEU East Battery. While making rounds following power failure, the multi-skill operator (MSO) arrived at the VGEU East Battery and identified a spill originating from a failed valve, resulting in 88 bbls of water & 3 bbls of oil with 68 bbls water & 2 bbls of oil recovered. Immediate action was to isolate all wells entering the facility. The release extent is shown on Figure 3. The New Mexico Oil Conservation Division (NMOCD) was notified of the release on the same day, September 8, 2016, and subsequently assigned the release the Remediation Permit (RP) number 1RP-4441 and the Incident ID nKL1625827670.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in a low karst potential area.

Four water wells are listed in Section 27 on the New Mexico Office of the State Engineer's (NMOSE) website, with an average depth to groundwater of 76 feet below ground surface (bgs). The groundwater data and karst potential map are shown in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Deferral Request June 17, 2020

Based upon the Site characterization, the proposed RRALs for soil are:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Total BTEX (sum of benzene, toluene, ethylbenzene, and xylene): 50 mg/kg;
- TPH (GRO + DRO + ORO): 2,500 mg/kg;
- TPH (GRO + DRO): 1,000 mg/kg;
- Chloride: 10,000 mg/kg (600 mg/kg in the top four feet in the pasture).

As this reported contamination is in areas immediately under or around production tanks and pipelines, remediation would cause a major facility deconstruction. Per 19.15.29.12(2) NMAC, a deferral for the remediation, restoration, and reclamation for this release is requested until the equipment is removed during other operations, or when the facility is retrofitted or abandoned, whichever comes first.

INITIAL SITE ASSESSMENT

To define the horizontal extents of the release, and to delineate release impact, Tetra Tech personnel were onsite to conduct a subsurface investigation in May 2020. On May 27, 2020, a total of six (6) soil borings (AH-1 through AH-6) were completed with a hand auger. Two boreholes (AH-1 and AH-2) were completed within in the release area. The remainder of the borings were completed outside the reported release footprint for horizontal delineation. The VGEU East Battery has numerous underground utilities and aboveground lines, in addition to piping and production equipment inside and outside the battery. The soil boring locations were chosen to avoid safety and access issues due to the subsurface infrastructure. Total depth of the borings was 2 feet bgs.

A total of 12 soil samples were collected from the six boring locations from in and around the release area (Figure 3). Selected samples were field screened and submitted to an analytical laboratory to be analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8260B and chlorides by EPA method 300.0 at Pace Analytical National Center for Testing and Innovation in Mt. Juliet, Tennessee. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

AH-1 and AH-2 were installed within the release footprint to clarify the vertical extents in the reported release footprint. Deeper samples could not be collected as hand auger refusal was encountered due to the shallow caliche cap rock in the subsurface. Borings AH-3 through AH-6 were completed to achieve horizontal delineation per 19.15.29.11(A)(5)(b) NMAC.

The analytical results associated with the site assessment and delineation were below the RRALs for BTEX at the locations both inside and outside of the release footprint. The analytical results associated with AH-1 were below the RRAL for total TPH (GRO + DRO + ORO) and chloride. Results associated with AH-2 (0-1' and 1-2'), exceeded the most stringent RRAL for chloride (600 mg/kg). However, given that the release occurred at a production tank battery, to meet the standards of Table I of 19.15.29.12 NMAC, chlorides are far below the limit of 10,000 mg/kg.

The analytical results associated with the AH-6 samples exceeded the most stringent RRAL for total TPH (100 mg/kg). However, the chloride analytical results associated with AH-6 were below the most stringent RRALs. Thus AH-6 does provide horizontal delineation for the 1RP-4441 release. The analytical results associated with all other samples collected around the release area were below the most stringent RRALs for total TPH (GRO + DRO + ORO), BTEX and/or chloride in all samples. The boring locations are shown on Figure 3. The analytical results of the May 2020 sampling event are summarized in Table 1.

Given that AH-6 is outside of the reported release footprint (in the pasture), yet downgradient of the release extent, the detections in AH-6 for TPH (0-1' and 1'-2') are likely unrelated to the release event addressed in this report. However, as a proactive response, based on the soil sample results, COP proposes to remove the impacted material as depicted in Figure 4. Excavation in the area will be performed using heavy equipment (backhoes and track hoes) to a depth of 2 feet below ground surface within the indicated area

Deferral Request June 17, 2020

ConocoPhillips

on Figure 4. Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility.

Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 225 cubic yards. COP proposes to excavate the indicated area in Figure 4 within 90 days of approval of this Deferral Request.

CONCLUSION

The release (1RP-4441) was delineated horizontally and vertically, as detailed above, and does not cause an imminent risk to human health, the environment, or groundwater. Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the Site is no longer being used for oil and gas operations.

ConocoPhillips respectfully requests that NMOCD will consider delaying remediation activities at the Site until the end of life of the battery. At time of abandonment, retrofit, or inactivity, remediation will be completed in addition to reclamation. Based on the above, ConocoPhillips requests deferral for this impacted area. The completed C-141 forms are enclosed in Appendix A.

If you have any questions or comments concerning the assessment or remediation activities for this site, please call me at (512) 338-2861.

Sincerely, **Tetra Tech, Inc.**

Christian M. Llull, P.G. Project Manager

cc: Mr. Charles Beauvais, GPBU - ConocoPhillips

Deferral Request June 17, 2020

List of Attachments

Figures:

Figure 1 – Site Location Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Release Assessment Map

Figure 4 – Proposed Remediation Extent

Tables:

Table 1 – Summary of Analytical Results – Soil Assessment

Appendices:

Appendix A – C-141 Form

Appendix B - Groundwater Data

Appendix C – Laboratory Analytical Report

Page 4 of 56

FIGURES

Released to Imaging: 12/12/2022 7:37:14 AM

Released to Imaging: 12/12/2022 7:37:14 AM

TABLES

TABLE 1 SLIMMARY OF ANALYTICAL RESULTS	SOIL ASSESSMENT - 1RP-4441	CONOCOPHILLIPS	VGEU EAST BATTERY RELEASE	LEA COUNTY, NM
---	----------------------------	----------------	---------------------------	----------------

BTEX²

Released to Imaging: 12/12/2022 7:37:14 AM

		Council Parate Internal	Contraction 1					F						⁴		Gaz		Cac		
Sample ID	Sample Date		CIIIOLIGE		Benzene		Toluene		Ethvlbenzene	_	Total Xvlenes		Total BTEX	OND I		DVD		ONO		IOTAI IPH
										_				C ₃ - C ₁₀		C ₁₀ - C ₂₈	_	C ₂₈ - C ₄₀	<u>s</u>	RO+DRO+ORO)
		ft. bgs	mg/kg	σ	mg/kg	σ	mg/kg	ď	mg/kg	ď	mg/kg G	~	mg/kg	mg/kg	σ	mg/kg	σ	mg/kg	ď	mg/kg
1	E /27 / 2020	0-1	27.3		< 0.00104		< 0.00520	-	< 0.00260	-	0.00133 J		0.00133	< 0.105		11.9	BJ	71.4	8	83.3
T-UW	0707/17/c	1-2	57.3		< 0.00107		< 0.00534	\vdash	< 0.00267	\vdash	0.00119 J		0.00119	< 0.108		5.03	в	8.07	в	13.1
C H 4	000072673	0-1	775		< 0.00101		< 0.00507		< 0.00253		< 0.00659		,	< 0.102		6.89	в	6.77	В	13.7
7-114	0707/17/0	1-2	946		0.000540	~	< 0.00569	\vdash	< 0.00284	\vdash	< 0.00740		0.000540	< 0.114		5.78	в	10.1	в	15.9
6-HV	0000/26/3	0-1	12.7	_	< 0.00101		< 0.00506	\vdash	< 0.00253	\vdash	< 0.00657			< 0.101		13.3	в	24.6		37.9
C-11W	0707/17/c	1-2	< 21.1		< 0.00106		< 0.00528	\vdash	< 0.00264	\vdash	< 0.00687			0.0549	ВJ	8.95	в	15.0	в	24.0
0-HA	0000/20/2	0-1	24.6		< 0.00104		< 0.00522	\vdash	< 0.00261	\vdash	< 0.00678			< 0.104		4.40	в	6.46	в	10.9
+-11W	0707/17/0	1-2	13.4	_	< 0.00101		< 0.00504	\vdash	< 0.00252	\vdash	< 0.00656			< 0.102		11.3	в	18.9	в	30.2
AH F	E /27/2030	0-1	< 20.3		< 0.00102		< 0.00508	\vdash	< 0.00254	\vdash	< 0.00661			0.0845	-	10.3	в	28.4		38.8
C-114	0202/12/0	1-2	59.5		< 0.00108		< 0.00538	_	< 0.00269		< 0.00700			< 0.108		4.04	-	10.7	в	14.7
																	•			
AH-6	5/27/2020	0-1	10.1	J P1	< 0.00108		< 0.00540	_	< 0.00270	-	< 0.00701	_		0.232		107		320	_	427
	01-11-0-0	1-2	12.2	~	< 0.00109		< 0.00547	_	< 0.00273	_	< 0.00711			0.201		37.1		81.0		118
NOTES:																				
ft. Feet		Bold and italicized value	es indicate exceed	ance o	f proposed RRALs															

nce of proposed
 Bold and italicized values

 1
 EPA Method 300.0

EPA Method 8260B EPA Method 8015 EPA Method 8015D/GRO ~ Below ground surface

Parts per million

mdd bgs

mg/kg Milligrams per kilogram TPH Total Petroleum Hydrocarb GRO Gasoline range organics DRO Diesel range organics ORO Oil range organics

m 4

Total Petroleum Hydrocarbons Gasoline range organics

QUALIFIERS:

The same analyte is found in the associated blank. в

The identification of the analyte is acceptable; the reported value is an estimate. _

Oil range organics

RPD value not applicable for sample concentrations less than 5 times the reporting limit. P1

TPH

APPENDIX A C-141 Forms

AUCEIVEU DY OCD. 12/12/2022 /.31.4/ A	1 <i>M</i>	<u>[</u>
--	------------	----------

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u>

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr.

REVIEWED By Kristen Lynch at 7:58 am, Sep 14, 2016 Page 13 of 56

Form C-141

Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

220 S. St. Fran	cis Dr., Santa	1 Fe, NM 87505	5	Sa	nta Fe	e, NM 875	05				
			Rele	ease Notific	atio	and Co	orrective A	ction			
Name of Co	ompany: Co	onocoPhillij	ps			OPERA Contact: Jos	FOR se A Zepeda	🛛 Initia	al Report		Final Repo
Address: 29 Facility Nat	Vacuum ne: VGEU	Complex La East Batte	ane ry			Telephone M Facility Typ	No. 575-391-310 e: Valve	65			
Surface Ow	ner: State			Mineral O	wner:	N/A		API No			
				LOCA	TIO	N OF RE	LEASE				
Unit Letter	Section 27	Township 17S	Range 35E	Feet from the	North	South Line	Feet from the	East/West Line	County Lea		
			Lat	titude		Longituo	le				
				NAT	URE	OF REL	EASE				
<u>Fype of Rele</u> Source of Re	ase: 88 Pro lease: Valvo	duce Water & e	& 3 Oil			Volume of Date and H 09/08/2010	Release: 91 Iour of Occurrenc 5 1800	Volume F ce Date and SAME	Recovered: ' Hour of Dis	70 scovery	
Was Immedi	ate Notice C	diven?	Yes 🗵] No 🗌 Not Re	quired	If YES, To Jamie Key	Whom? es				
By Whom? J Was a Water	ose A Zepe course Reac	da hed?	Yes 🗵	No		Date and H If YES, Vo	Iour: 09/09/16 10 Iume Impacting t	15 via email the Watercourse.			
f a Watercou	ırse was Imj	pacted, Descr	ibe Fully.'	k							
N/A											
Describe Cau On Septembe VGEU East l recovered. In Describe Are Pasture area	tse of Proble er 8th, 2016, Battery and <u>nmediate ac</u> a Affected a 150' X 150'	em and Remee , at 1800 hrs. 1 identified a sp tion was to iso and Cleanup A X 1" deep.	dial Actio MDT, a sp bill origina blate all w Action Tal	n Taken. * bill occurred at the ating from a failed ells entering the fa ken. *	VGEU valve, 1 icility. S	East Battery resulting in 88 Spill site will	While making ro bbls of water & be remediated ac	ounds following po 3 bbls of oil with 6 cording to COPC a	wer failure, 8 bbls wate nd NMOCI	MSO a r & 2 b) guide	arrived at the bls of oil lines.
I hereby certi regulations a public health should their o or the enviro federal, state	fy that the i ll operators or the envir operations h nment. In a or local law	nformation gi are required t conment. The ave failed to a ddition, NMC vs and/or regu	ven above o report an acceptane adequately OCD accep ilations.	e is true and compl nd/or file certain re- ce of a C-141 repo v investigate and re- tance of a C-141 r	ete to the elease n rt by the emediat report d	he best of my otifications at e NMOCD m e contaminati oes not reliev	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of	nderstand that purs tive actions for rele eport" does not reli eat to ground water responsibility for co	eases which eases which eve the ope c, surface wa ompliance v	OCD r may er rator of ater, hu with an	ules and ndanger f liability man health y other
							<u>OIL CON</u>	SERVATION	DIVISIO	DN	
Signature: 90	9 <i>5E A 3EA</i> e: Jose A 7e	PEDA				Approved by	Environmental S	pecialist:	ter dynch		
Title: LEAD	HSE	1				Approval Da	e: 9/14/2016	Expiration	Date: 11/1	4/2016	
E-mail Addro	ess: Jose. .	A. Zepeda	@conod	cophillips.com	,	Conditions of Please not allow for y	Take di f Approval Submi no late ify NMOCD prio vitnessing.	iscrete samples onl t Remediation Plar er than 10/14/2016. r to all sampling to	y Attached		
Date: 09/09/2	2016		I	Phone:575-391-310	55				1RP 44	41	
Attach Addi	tional Shee	ets If Necess	ary						nKL1	62582	7670

.

Received by OCD: 12/12/2022 7:31:47 AM Form C-141 State of New Mexico

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	nKL1625827670
District RP	1RP-4441
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Charles R Beauvais II Title: Environmental Coordinator Signature: Charles R. Beauvais 99 Date: 06/17/2020 email: charles.r.beauvais@conocophillips.com Telephone: 5759882043 **OCD Only** Received by: Date: Approved with Attached Conditions of Approval Approved Denied Deferral Approved uttan Hall Date: 12/12/2022 Signature:

APPENDIX B Groundwater Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	l, (quar (quar	ters a	are s	1=N\ smal	N 2=N lest to	IE 3=SW largest)	7 4=SE) (NAD8	3 UTM in meters)		(In feet)
POD Number	POD Sub- Code basin (County	Q 0 64 1	Q Q 6 4	Sec	Tws	Rng	х	Y	Depth Well	Depth Water	Water Column
L 04829 S2	L	LE	4	3	27	17S	35E	645352	3630227* 🌍	220	90	130
L 04859	L	LE	44	4	27	17S	35E	646258	3630135* 🌍	145	85	60
L 05207	L	LE			27	17S	35E	645552	3630825* 🌍	140	60	80
L 13479 POD3	L	LE	44	3	27	17S	35E	645448	3630066 🌍	76	70	6
									Average Depth to	Water:	76 fe	eet
									Minimum	n Depth:	60 fe	eet
									Maximum	Depth:	90 fe	eet
Record Count: 4												
PLSS Search:												

Section(s): 27

Township: 17S

Range: 35E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX C Laboratory Analytical Reports

ANALYTICAL REPORT June 10, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1223768 05/30/2020 212C-MD-01796-20 Cat 2 Batch - VGEU East Battery

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Τс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By: Chu, form

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 12/12/2022 7:37:14 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01796-20

SDG: L1223768

DATE/TIME: 06/10/20 08:33

PAGE: 1 of 36

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH-1 (0-1') L1223768-01	7
AH-1 (1-2') L1223768-02	8
AH-2 (0-1') L1223768-03	9
AH-2 (1-2') L1223768-04	10
AH-3 (0-1') L1223768-05	11
AH-3 (1-2') L1223768-06	12
AH-4 (0-1') L1223768-07	13
AH-4 (1-2') L1223768-08	14
AH-5 (0-1') L1223768-09	15
AH-5 (1-2') L1223768-10	16
AH-6 (0-1') L1223768-11	17
AH-6 (1-2') L1223768-12	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 9056A	21
Volatile Organic Compounds (GC) by Method 8015D/GRO	25
Volatile Organic Compounds (GC/MS) by Method 8260B	29
Semi-Volatile Organic Compounds (GC) by Method 8015	31
GI: Glossary of Terms	33
Al: Accreditations & Locations	34
Sc: Sample Chain of Custody	35

PROJECT: 212C-MD-01796-20

SDG: L1223768 DATE/TIME:

06/10/20 08:33

PAGE: 2 of 36

SAMPLE SUMMARY

ONE LAB. NATI Rage 22 0556

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

AH-1 (0-1') L1223768-01 Solid			Adrian	05/27/20 11:00	05/30/20 09	1:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1487086	1	06/05/20 12:55	06/05/20 13:04	MT	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1486010	1	06/02/20 22:30	06/03/20 09:43	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1487005	1.01	06/02/20 15:50	06/05/20 02:52	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486432	1	06/02/20 15:50	06/03/20 13:59	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	5	06/04/20 16:25	06/09/20 16:56	TJD	Mt. Juliet, T
AH 1 (1 21) 1 1223768 02 Solid			Collected by Adrian	Collected date/time 05/27/20 11:10	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	batch	Dilution	date/time	date/time	Analyst	Elecation
Fotal Solids by Method 2540 G-2011	WG1487086	1	06/05/20 12:55	06/05/20 13:04	MT	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1486010	1	06/02/20 22:30	06/03/20 10:00	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1487005	1.01	06/02/20 15:50	06/05/20 03:17	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486432	1	06/02/20 15:50	06/03/20 14:56	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 12:44	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
AH-2 (0-1') L1223768-03 Solid			Adrian	05/27/20 11:20	05/30/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Iotal Solids by Method 2540 G-2011	WG148/086	1	06/05/20 12:55	06/05/20 13:04	MI	Mt. Juliet, I
Net Chemistry by Method 9056A	WG1486503	1	06/03/20 23:00	06/04/20 01:12	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG148/005	1.01	06/02/20 15:50	06/05/20 03:41	DWR	Mt. Juliet, I
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486432	1	06/02/20 15:50	06/03/20 15:15	JHH	Mt. Juliet, I
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 15:49	IJD	Mt. Juliet, I
			Collected by	Collected date/time	Received da	te/time
AH-2 (1-2') L1223768-04 Solid			Adrian	05/27/20 11:30	05/30/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
[otal Solids by Mathod 2540 G-2011	WG1/187086	1	06/05/20 12:55	06/05/20 13:04	MT	Mt Iuliot T
Net Chemistry by Method 90564	WG1/126502	1	06/03/20 12:33	06/04/20 01.21	FLN	Mt Juliat T
/olatile Organic Compounds (GC) by Method 8015D/GPO	WG1487005	1	06/02/20 15.50	06/05/20 04:05	DWR	Mt Iuliet T
Volatile Organic Compounds (GC/MS) by Method 8260R	WG1487003	1	06/02/20 15:50	06/03/20 04.00	RMR	Mt Juliat T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 16:03	TJD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
AH-3 (0-1') L1223768-05 Solid			Adrian	05/27/20 11:50	05/30/20 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1487086	1	06/05/20 12:55	06/05/20 13:04	MT	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1486503	1	06/03/20 23:00	06/04/20 01:40	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1488711	1	06/02/20 15:50	06/08/20 16:18	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1	06/02/20 15:50	06/03/20 21:20	BMB	Mt. Juliet, T
Semi-Valatile Organic Compounds (GC) by Method 8015	WG1/188233	1	06/04/20 16:25	06/09/20 16:16	TID	Mt Juliot T

PROJECT: 212C-MD-01796-20

SDG: L1223768 DATE/TIME: 06/10/20 08:33

3

PAGE: 3 of 36

SAMPLE SUMMARY

ONE LAB. NATI Rage 23 0156

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-3 (1-2') L1223768-06 Solid			Adrian	05/27/20 12:00	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1487086	1	06/05/20 12:55	06/05/20 13:04	MT	Mt. Juliet, Tl
Net Chemistry by Method 9056A	WG1486503	1	06/03/20 23:00	06/04/20 01:50	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1487708	1	06/02/20 15:50	06/05/20 20:06	ADM	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1	06/02/20 15:50	06/03/20 21:40	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 16:29	TJD	Mt. Juliet, T
AH-4 (0-1') L1223768-07 Solid			Collected by Adrian	Collected date/time 05/27/20 12:10	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Fotal Solids by Mothod 2510 C 2011	WC1497096	1			МТ	Mt Juliot T
Wet Chemistry by Method 90560	WG1407000	ı 1	06/03/20 12:00	06/02/20 13.04	FLN	Mt Juliet T
Act chemistry by Method 3030A	WG1400303	ı 1	06/02/20 23:00	06/05/20 01:39	ACG	Mt Juliet T
Volatile Organic Compounds (GC/MS) by Method 82608	WG1407243	ı 1	06/02/20 15:50	06/03/20 02.42	RMR	Mt Iuliat T
Semi-Volatile Organic Compounds (GC) by Method 82008	WG1488233	1	06/04/20 16:25	06/09/20 16:43	TJD	Mt. Juliet, T
AH-4 (1-2') L1223768-08 Solid			Collected by Adrian	Collected date/time 05/27/20 12:20	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Fotal Solids by Method 2540 G-2011	WG1487091	1	06/05/20 12:43	06/05/20 12:53	MT	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1486503	1	06/03/20 23:00	06/04/20 02:09	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1487243	1.01	06/02/20 15:50	06/05/20 03:02	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1	06/02/20 15:50	06/03/20 22:20	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 17:09	TJD	Mt. Juliet, T
AH-5 (0-1') L1223768-09 Solid			Collected by Adrian	Collected date/time 05/27/20 13:00	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1487091	1	06/05/20 12:43	06/05/20 12:53	MT	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1486503	1	06/03/20 23:00	06/04/20 02:56	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1487243	1.01	06/02/20 15:50	06/05/20 03:23	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1	06/02/20 15:50	06/03/20 22:40	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488233	1	06/04/20 16:25	06/09/20 17:36	TJD	Mt. Juliet, T
AH-5 (1-2') L1223768-10 Solid			Collected by Adrian	Collected date/time 05/27/20 13:10	Received da 05/30/20 09	te/time):00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1487091	1	06/05/20 12:43	06/05/20 12:53	MT	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1487388	1	06/04/20 19:00	06/04/20 21:55	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1487243	1	06/02/20 15:50	06/05/20 03:44	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1	06/02/20 15:50	06/03/20 23:00	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1487207	1	06/05/20 10:28	06/07/20 17:22	JN	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1487207	1	06/05/20 10:28	06/08/20 19:32	DMG	Mt. Juliet, T

PROJECT: 212C-MD-01796-20

SDG: L1223768 DATE/TIME: 06/10/20 08:33

: 33 PAGE: 4 of 36

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

Semi-Volatile Organic Compounds (GC) by Method 8015

Wet Chemistry by Method 9056A

SAMPLE SUMMARY

ONE LAB. NATI Rage 24 0156

Mt. Juliet, TN

ΜT

ELN

ACG

BMB

JN

DMG

Тс

Cn

Sr

*Q*c

Gl

AI

Sc

			Collected by	Collected date/time	Received da	ite/time
AH-6 (0-1') L1223768-11 Solid			Adrian	05/27/20 14:00	05/30/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1487091	1	06/05/20 12:43	06/05/20 12:53	MT	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1487774	1	06/08/20 10:00	06/08/20 11:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1487243	1	06/02/20 15:50	06/05/20 04:04	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486581	1.01	06/02/20 15:50	06/03/20 23:20	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1487207	10	06/05/20 10:28	06/07/20 18:32	JN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1487207	10	06/05/20 10:28	06/08/20 20:38	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6 (1-2') L1223768-12 Solid			Adrian	05/27/20 14:10	05/30/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG1487091

WG1487774

WG1487243

WG1486581

WG1487207

WG1487207

date/time

1

1

1.01

1

1

1

06/05/20 12:43

06/08/20 10:00

06/02/20 15:50

06/02/20 15:50

06/05/20 10:28

06/05/20 10:28

date/time

06/05/20 12:53

06/08/20 12:38

06/05/20 04:25

06/03/20 23:39

06/07/20 19:40

06/08/20 21:45

Released to Imaging: 92/12/2022 7:37:14 AM	Ρ
ConocoPhillips - Tetra Tech	212C-

PROJECT: 212C-MD-01796-20

SDG: L1223768

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

PROJECT: 212C-MD-01796-20

SDG: L1223768

DATE/TIME: 06/10/20 08:33 PAGE: 6 of 36 Recreined by 10 CD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 11:00

SAMPLE RESULTS - 01

ONE LAB. NATI Rage 26 0 56

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	96.2		1	06/05/2020 13:04	WG1487086	T

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.3		9.56	20.8	1	06/03/2020 09:43	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Denville (also a)	0			Dilution	A	B -t-h	
	Result (dry)	Qualifier	MDL (dry)	RDL (ary)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		 Q
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1.01	06/05/2020 02:52	WG1487005	
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		06/05/2020 02:52	WG1487005	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	06/03/2020 13:59	WG1486432
Toluene	U		0.00135	0.00520	1	06/03/2020 13:59	WG1486432
Ethylbenzene	U		0.000766	0.00260	1	06/03/2020 13:59	WG1486432
Total Xylenes	0.00133	J	0.000915	0.00676	1	06/03/2020 13:59	WG1486432
(S) Toluene-d8	105			75.0-131		06/03/2020 13:59	WG1486432
(S) 4-Bromofluorobenzene	92.8			67.0-138		06/03/2020 13:59	WG1486432
(S) 1,2-Dichloroethane-d4	105			70.0-130		06/03/2020 13:59	WG1486432

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.9	<u>B J</u>	8.37	20.8	5	06/09/2020 16:56	WG1488233
C28-C40 Oil Range	71.4	B	1.42	20.8	5	06/09/2020 16:56	WG1488233
(S) o-Terphenyl	82.1			18.0-148		06/09/2020 16:56	WG1488233

SDG: L1223768 DA 06/10 Received by OCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 11:10

SAMPLE RESULTS - 02 L1223768

ONE LAB. NATI Rage 27 0156

Â

Sc

Total Solids by Method 2540 G-2011

	Decult	Qualifier	Dilution	Analusia	Datab	1	С
	Result	Qualifier	Dilution	Analysis	Batch	L	
Analyte	%			date / time		2	-
Total Solids	93.6		1	06/05/2020 13:04	WG1487086	 ⁻	To

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³Ss	
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis <u>Batch</u>										
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	57.3		9.83	21.4	1	06/03/2020 10:00	WG1486010			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Pocult (dn)	Qualifier	MDL (dp)	PDL (drai)	Dilution	Analycic	Patch	
	Result (uly)	Quaimer	WDL (ury)	KDL (uly)	Dilution	Alidiysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		 Q
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1.01	06/05/2020 03:17	WG1487005	
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120		06/05/2020 03:17	WG1487005	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00107	1	06/03/2020 14:56	WG1486432
Toluene	U		0.00139	0.00534	1	06/03/2020 14:56	WG1486432
Ethylbenzene	U		0.000788	0.00267	1	06/03/2020 14:56	WG1486432
Total Xylenes	0.00119	J	0.000940	0.00695	1	06/03/2020 14:56	WG1486432
(S) Toluene-d8	107			75.0-131		06/03/2020 14:56	WG1486432
(S) 4-Bromofluorobenzene	93.8			67.0-138		06/03/2020 14:56	WG1486432
(S) 1,2-Dichloroethane-d4	106			70.0-130		06/03/2020 14:56	WG1486432

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.03	B	1.72	4.27	1	06/09/2020 12:44	WG1488233
C28-C40 Oil Range	8.07	B	0.293	4.27	1	06/09/2020 12:44	WG1488233
(S) o-Terphenyl	80.9			18.0-148		06/09/2020 12:44	WG1488233

SDG: L1223768

Recreived by OCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 11:20 SAMPLE RESULTS - 03

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	98.7		1	06/05/2020 13:04	WG1487086	2	Т

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	775		9.33	20.3	1	06/04/2020 01:12	WG1486503

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1.01	06/05/2020 03:41	WG1487005	
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		06/05/2020 03:41	WG1487005	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	06/03/2020 15:15	WG1486432
Toluene	U		0.00132	0.00507	1	06/03/2020 15:15	WG1486432
Ethylbenzene	U		0.000747	0.00253	1	06/03/2020 15:15	WG1486432
Total Xylenes	U		0.000892	0.00659	1	06/03/2020 15:15	WG1486432
(S) Toluene-d8	104			75.0-131		06/03/2020 15:15	WG1486432
(S) 4-Bromofluorobenzene	93.6			67.0-138		06/03/2020 15:15	WG1486432
(S) 1,2-Dichloroethane-d4	106			70.0-130		06/03/2020 15:15	WG1486432

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.89	B	1.63	4.05	1	06/09/2020 15:49	WG1488233
C28-C40 Oil Range	6.77	B	0.278	4.05	1	06/09/2020 15:49	WG1488233
(S) o-Terphenyl	92.7			18.0-148		06/09/2020 15:49	WG1488233

SDG: L1223768 DA⁻ 06/10 Received by DCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 11:30

SAMPLE RESULTS - 04 L1223768

ONE LAB. NATI Rage 29 0556

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		-
Analyte	%			date / time		2	_
Total Solids	87.9		1	06/05/2020 13:04	WG1487086	1-	Γc

Wet Chemistry by Method 9056A

Wet Chemistry	y by Method 90	56A						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	946		10.5	22.8	1	06/04/2020 01:31	WG1486503	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0247	0.114	1	06/05/2020 04:05	WG1487005	
(S) a,a,a-Trifluorotoluene(FID)	95.6			77.0-120		06/05/2020 04:05	WG1487005	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000540	J	0.000531	0.00114	1	06/03/2020 16:31	WG1486432
Toluene	U		0.00148	0.00569	1	06/03/2020 16:31	WG1486432
Ethylbenzene	U		0.000839	0.00284	1	06/03/2020 16:31	WG1486432
Total Xylenes	U		0.00100	0.00740	1	06/03/2020 16:31	WG1486432
(S) Toluene-d8	100			75.0-131		06/03/2020 16:31	WG1486432
(S) 4-Bromofluorobenzene	97.1			67.0-138		06/03/2020 16:31	WG1486432
(S) 1,2-Dichloroethane-d4	103			70.0-130		06/03/2020 16:31	WG1486432

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.78	B	1.83	4.55	1	06/09/2020 16:03	WG1488233
C28-C40 Oil Range	10.1	B	0.312	4.55	1	06/09/2020 16:03	WG1488233
(S) o-Terphenyl	70.7			18.0-148		06/09/2020 16:03	WG1488233

SDG: L1223768

SAMPLE RESULTS - 05 L1223768

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		2	_
Total Solids	98.9		1	06/05/2020 13:04	WG1487086	-	Т

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.7	J	9.30	20.2	1	06/04/2020 01:40	WG1486503

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	06/08/2020 16:18	WG1488711	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/08/2020 16:18	WG1488711	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000472	0.00101	1	06/03/2020 21:20	WG1486581
Toluene	U		0.00131	0.00506	1	06/03/2020 21:20	WG1486581
Ethylbenzene	U		0.000745	0.00253	1	06/03/2020 21:20	WG1486581
Total Xylenes	U		0.000890	0.00657	1	06/03/2020 21:20	WG1486581
(S) Toluene-d8	111			75.0-131		06/03/2020 21:20	WG1486581
(S) 4-Bromofluorobenzene	104			67.0-138		06/03/2020 21:20	WG1486581
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		06/03/2020 21:20	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.3	B	1.63	4.05	1	06/09/2020 16:16	WG1488233
C28-C40 Oil Range	24.6		0.277	4.05	1	06/09/2020 16:16	WG1488233
(S) o-Terphenyl	97.9			18.0-148		06/09/2020 16:16	WG1488233

SDG: L1223768

Received by DCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 12:00 SAMPLE RESULTS - 06

ONE LAB. NATI Rage 31 0156

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

-							\sim
	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		5	<u>,</u>
Total Solids	94.6		1	06/05/2020 13:04	WG1487086	-	T

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.72	21.1	1	06/04/2020 01:50	WG1486503

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0549	ВJ	0.0229	0.106	1	06/05/2020 20:06	WG1487708	
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		06/05/2020 20:06	<u>WG1487708</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	06/03/2020 21:40	WG1486581
Toluene	U		0.00137	0.00528	1	06/03/2020 21:40	WG1486581
Ethylbenzene	U		0.000779	0.00264	1	06/03/2020 21:40	WG1486581
Total Xylenes	U		0.000930	0.00687	1	06/03/2020 21:40	WG1486581
(S) Toluene-d8	109			75.0-131		06/03/2020 21:40	WG1486581
(S) 4-Bromofluorobenzene	103			67.0-138		06/03/2020 21:40	WG1486581
(S) 1,2-Dichloroethane-d4	100			70.0-130		06/03/2020 21:40	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.95	B	1.70	4.23	1	06/09/2020 16:29	WG1488233
C28-C40 Oil Range	15.0	B	0.290	4.23	1	06/09/2020 16:29	WG1488233
(S) o-Terphenyl	74.7			18.0-148		06/09/2020 16:29	WG1488233

SDG: L1223768

SAMPLE RESULTS - 07 L1223768

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		5	_
Total Solids	95.8		1	06/05/2020 13:04	WG1487086	-	Т

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	24.6		9.60	20.9	1	06/04/2020 01:59	WG1486503

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (drv)	Qualifier	MDL (drv)	RDI (drv)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanto	mg/kg	mg/kg	2.0000	date / time	<u></u>	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	06/05/2020 02:42	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	87.9			77.0-120		06/05/2020 02:42	WG1487243	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/03/2020 22:00	WG1486581
Toluene	U		0.00136	0.00522	1	06/03/2020 22:00	WG1486581
Ethylbenzene	U		0.000769	0.00261	1	06/03/2020 22:00	WG1486581
Total Xylenes	U		0.000918	0.00678	1	06/03/2020 22:00	WG1486581
(S) Toluene-d8	111			75.0-131		06/03/2020 22:00	WG1486581
(S) 4-Bromofluorobenzene	102			67.0-138		06/03/2020 22:00	WG1486581
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		06/03/2020 22:00	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.40	B	1.68	4.17	1	06/09/2020 16:43	WG1488233
C28-C40 Oil Range	6.46	B	0.286	4.17	1	06/09/2020 16:43	WG1488233
(S) o-Terphenyl	87.5			18.0-148		06/09/2020 16:43	WG1488233

SDG: L1223768

Received by DCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 12:20

SAMPLE RESULTS - 08 L1223768

ONE LAB. NATI Rage 33 0156

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	99.1		1	06/05/2020 12:53	WG1487091	2	To

Wet Chemistry by Method 9056A

Wet Chemist	try by Method 905	56A						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cp
Chloride	13.4	J	9.28	20.2	1	06/04/2020 02:09	WG1486503	
Volatile Orga	anic Compounds ((GC) by M	ethod 801	5D/GRO				⁵ Sr

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1.01	06/05/2020 03:02	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	87.6			77.0-120		06/05/2020 03:02	WG1487243	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	06/03/2020 22:20	WG1486581
Toluene	U		0.00131	0.00504	1	06/03/2020 22:20	WG1486581
Ethylbenzene	U		0.000744	0.00252	1	06/03/2020 22:20	WG1486581
Total Xylenes	U		0.000888	0.00656	1	06/03/2020 22:20	WG1486581
(S) Toluene-d8	110			75.0-131		06/03/2020 22:20	WG1486581
(S) 4-Bromofluorobenzene	103			67.0-138		06/03/2020 22:20	WG1486581
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		06/03/2020 22:20	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.3	B	1.62	4.04	1	06/09/2020 17:09	WG1488233
C28-C40 Oil Range	18.9	B	0.276	4.04	1	06/09/2020 17:09	WG1488233
(S) o-Terphenyl	88.2			18.0-148		06/09/2020 17:09	WG1488233

SDG: L1223768

Received by_0 CD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 13:00

SAMPLE RESULTS - 09 L1223768

ONE LAB. NATI Rage 34 0556

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	98.4		1	06/05/2020 12:53	WG1487091	T

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.35	20.3	1	06/04/2020 02:56	WG1486503

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Ů
TPH (GC/FID) Low Fraction	0.0845	J	0.0223	0.103	1.01	06/05/2020 03:23	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	83.9			77.0-120		06/05/2020 03:23	WG1487243	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	06/03/2020 22:40	WG1486581
Toluene	U		0.00132	0.00508	1	06/03/2020 22:40	WG1486581
Ethylbenzene	U		0.000749	0.00254	1	06/03/2020 22:40	WG1486581
Total Xylenes	U		0.000894	0.00661	1	06/03/2020 22:40	WG1486581
(S) Toluene-d8	113			75.0-131		06/03/2020 22:40	WG1486581
(S) 4-Bromofluorobenzene	106			67.0-138		06/03/2020 22:40	WG1486581
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		06/03/2020 22:40	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.3	B	1.64	4.07	1	06/09/2020 17:36	WG1488233
C28-C40 Oil Range	28.4		0.278	4.07	1	06/09/2020 17:36	WG1488233
(S) o-Terphenyl	85.8			18.0-148		06/09/2020 17:36	WG1488233

SDG: L1223768

Received by DCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 13:10

SAMPLE RESULTS - 10

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	92.9		1	06/05/2020 12:53	WG1487091	T

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	59.5		9.90	21.5	1	06/04/2020 21:55	WG1487388

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (drv)	Qualifier	MDL (drv)	RDI (drv)	Dilution	Δnalysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Bhation	date / time	batch	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	06/05/2020 03:44	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	87.4			77.0-120		06/05/2020 03:44	WG1487243	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	06/03/2020 23:00	WG1486581
Toluene	U		0.00140	0.00538	1	06/03/2020 23:00	WG1486581
Ethylbenzene	U		0.000793	0.00269	1	06/03/2020 23:00	WG1486581
Total Xylenes	U		0.000947	0.00700	1	06/03/2020 23:00	WG1486581
(S) Toluene-d8	111			75.0-131		06/03/2020 23:00	WG1486581
(S) 4-Bromofluorobenzene	105			67.0-138		06/03/2020 23:00	WG1486581
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		06/03/2020 23:00	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.04	J	1.73	4.31	1	06/08/2020 19:32	<u>WG1487207</u>
C28-C40 Oil Range	10.7	B	0.295	4.31	1	06/07/2020 17:22	WG1487207
(S) o-Terphenyl	83.0			18.0-148		06/08/2020 19:32	WG1487207
(S) o-Terphenyl	97.6			18.0-148		06/07/2020 17:22	WG1487207

SDG: L1223768

Received by_0 CD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 14:00

SAMPLE RESULTS - 11 L1223768

ONE LAB. NATI Rage 36 0556

⁵Sr

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	93.6		1	06/05/2020 12:53	WG1487091	T

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A											
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn		
Chloride	10.1	<u>J P1</u>	9.83	21.4	1	06/08/2020 11:32	WG1487774		CIT		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.232		0.0232	0.107	1	06/05/2020 04:04	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	79.0			77.0-120		06/05/2020 04:04	WG1487243	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

-							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1.01	06/03/2020 23:20	<u>WG1486581</u>
Toluene	U		0.00140	0.00540	1.01	06/03/2020 23:20	WG1486581
Ethylbenzene	U		0.000795	0.00270	1.01	06/03/2020 23:20	WG1486581
Total Xylenes	U		0.000950	0.00701	1.01	06/03/2020 23:20	WG1486581
(S) Toluene-d8	111			75.0-131		06/03/2020 23:20	WG1486581
(S) 4-Bromofluorobenzene	105			67.0-138		06/03/2020 23:20	WG1486581
(S) 1,2-Dichloroethane-d4	100			70.0-130		06/03/2020 23:20	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	107		17.2	42.8	10	06/08/2020 20:38	WG1487207
C28-C40 Oil Range	320		2.93	42.8	10	06/07/2020 18:32	WG1487207
(S) o-Terphenyl	139			18.0-148		06/07/2020 18:32	WG1487207
(S) o-Terphenyl	129			18.0-148		06/08/2020 20:38	WG1487207

SDG: L1223768

Received by DCD: 12/12/2022 7:31:47 AM Collected date/time: 05/27/20 14:10

SAMPLE RESULTS - 12 L1223768

ONE LAB. NATI Rage 37 0156

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	91.5		1	06/05/2020 12:53	WG1487091	T

Wet Chemistry by Method 9056A

Wet Chemistry by	Wet Chemistry by Method 9056A										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn		
Chloride	12.2	J	10.1	21.9	1	06/08/2020 12:38	WG1487774				

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľG
TPH (GC/FID) Low Fraction	0.201		0.0239	0.110	1.01	06/05/2020 04:25	WG1487243	
(S) a,a,a-Trifluorotoluene(FID)	81.3			77.0-120		06/05/2020 04:25	WG1487243	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	06/03/2020 23:39	WG1486581
Toluene	U		0.00142	0.00547	1	06/03/2020 23:39	WG1486581
Ethylbenzene	U		0.000806	0.00273	1	06/03/2020 23:39	WG1486581
Total Xylenes	U		0.000962	0.00711	1	06/03/2020 23:39	WG1486581
(S) Toluene-d8	113			75.0-131		06/03/2020 23:39	WG1486581
(S) 4-Bromofluorobenzene	102			67.0-138		06/03/2020 23:39	WG1486581
(S) 1,2-Dichloroethane-d4	87.5			70.0-130		06/03/2020 23:39	WG1486581

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	37.1		1.76	4.37	1	06/08/2020 21:45	WG1487207
C28-C40 Oil Range	81.0		0.300	4.37	1	06/07/2020 19:40	WG1487207
(S) o-Terphenyl	87.2			18.0-148		06/07/2020 19:40	WG1487207
(S) o-Terphenyl	85.8			18.0-148		06/08/2020 21:45	WG1487207

SDG: L1223768 DATE/TIME:

Rece	ived b	y OCD: ∼	12/12/2 "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2022 (₹:3	1:47 10	לא ה	မ္လီ	_ G	5	۶. ۳		Page 38 of 5	6
ONE LAB. NATIONWIDE.													BAGE	19 of 36
													DATE/TIME:	06/10/20 08:33
ONTROL SUMMARY 58-01.02.03.04.05.05.02						Dd							ŝ	L1223768
JALITY C						P Qualifier DUP R	%	10			LCS Qualifier			01796-20
gr		MB RDL %		UP)	3:04	DUP RPD DU	%	0.254			Rec. Limits	% 85.0-115	U U U U U U U U U U U U U U U U U U U	212C-ME
		MB MDL %		plicate (D	3 06/05/20 1	Dilution		-			LCS Rec.	% 100		
11		MB Qualifier		(OS) • Du	IP) R3535747-3	It DUP Result	%	96.4	-CS)		t LCS Result	ко О В 0		ch
36 ethod 2540 G-20	(MB)	5/05/20 13:04 MB Result %	0.000	vriginal Sample	6/05/20 13:04 • (DU	Original Resul	%	96.2	ntrol Sample (L	16/05/20 13:04	Spike Amouni	۶0 D	ACCOUNT:	locoPhillips - Tetra Teo
WG148708	part Method Blank ((MB) R3535747-1 06 Information (MB) R3535747-1 06 Information (MB) R3535747-1 06	Total Solids	0103768-01 0	2(OS) L1223768-01 0	7:37	Analyte	WTotal Solids	Laboratory Cor	(LCS) R3535747-2 0	041000	Analyte Total Solide		Con

Rece	ived (by OCD:	12/12/20	022₫ 	·31:4	7. A 1 ഗ	မ္လီ	ے ا	;		Ī	Son Page 35	of 56
ONE LAB. NATIONWIDE.													PAGE: 20 of 36
													DATE/TIME: 06/10/20 08:33
NTROL SUMMARY ^{68-08,09,10,11,12}													SDG: L1223768
QUALITY CO		MB RDL			PD DUP Qualifier DUP RPD	%	10			Rec. Limits LCS Qualifier	%	5.0-115	PROJECT: 212C-MD-01796-20
		~ MB MDL %		icate (DUP)	Dilution DUP R	%	1 0.157			LCS Rec. F	%	00 	
11		MB Qualifier		e (OS) • Dupl	It DUP Result	%	99.3	-CS)		t LCS Result	%	20.0	÷
1 thod 2540 G-20	AB)	05/20 12:53 MB Result %	0.000	riginal Sampl	Original Resul	%	99.1	trol Sample (I	3/05/20 12:53	Spike Amount	%	20.00	ACCOUNT: coPhillips - Tetra Ter
WG148709	post Method Blank (N	0 (MB) R3535745-1 06/ 2 Mailyte	Total Solids	080-823768-08 0	70 00-00(077) (00) 2 7:30	Analyte	WT otal Solids	Laboratory Con	(LCS) R3535745-2 06		Analyte	Total Solids	Cono

.86010 histry by Method 90562			Q	UALIT	Y CONTR 11223768-	ROL SU	IMMAR	≻			ONE LAB. NATI	ONWIDE.
AB)												-
(03/20 01:30 MB Result	MB Qualifier	MB MDL	MB RDL									
Бу/бш П		9.20	1119/Kg									
Driginal Samp	ole (OS) • Du	plicate (DL	(P)									0 4
06/03/20 02:24 •	(DUP) R3534486	-3 06/03/20 C	02:40									
Original Re. (dry)	sult DUP Result (dry)	Dilution DL		UP Qualifier	DUP RPD Limits							U.
mg/kg	mg/kg	%			%							
1320 Tricinol Com		5 2.4			15							0
111911a1 Ja111	DU - (CU) - DU	שורפוב (הר 9 טפיטשישט זנ	17									
Original Rei (dry)	sult DUP Result (dry)	Dilution DL		UP Qualifier	DUP RPD Limits							0
mg/kg	mg/kg	%			%]
57.3	54.7	1 4.4	81		15							<u></u>
ntrol Sample	(LCS)											
06/03/20 01:47												
Spike Amor	Int LCS Result	LCS Rec.	Rec. Limits	LCS Quali	lier							
mg/kg	mg/kg	%	%									
200	205	103	80.0-120			Ĺ						
6/03/20 04:22 • (1	MS) R3534486-4	06/03/20 05:	13 • (MSD) R3	534486-5 0	5/03/20 05:30	(70						
Spike Amor	unt Original Resul	t MS Result (dr	y) MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
516	1850	2410	2300	110	88.1	~	80.0-120	ш	ш	4.81	Ъ.	
ACCOUNT:	ec.		PF 2120-0	ROJECT:		SI 1122	DG: 23768		DATE/ 06/10/20	'TIME: 0.08:33		PAGE: 21 of 36
						i			1	11111		

WG1486503 Wet Chemistry by Method 90	56A		0		CONTF 223768-03,04,0	20L SU 5,06,07,08,0	¹ MMAR	~		ONE LA	AB. NATIONWIDE.	Rece
pomethod Blank (MB)												ived (
0(MB) R3534873-1 06/04/20 00:25 MB Res	ult MB Qualifie	r MB MDL	MB RDL									by OC
Analyte mg/kg		mg/kg	mg/kg									
Chloride		9.20	20.0									12/12/2
2/1 2/1223768-03 Original Sa	mple (OS) • D	uplicate (DUP)									2022
C(OS) L1223768-03 06/04/20 01:12	• (DUP) R3534873	3-3 06/04/20	01:21									7:3
Origina (dry)	Result DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							1:47 ن
mg/kg	mg/kg		%		%							
775	746	F	3.86		15							လို
L1224474-03 Original Sa	nple (OS) • D	uplicate (I	(anc									ط ط
(OS) L1224474-03 06/04/20 03:2.	5 • (DUP) R353487	3-6 06/04/2	0 03:34									
Origina	Result DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte mg/kg	mg/kg		%		%							
Chloride 12.1	9.65	-	22.8	J P1	15							ر س
(LCS) R3534873-2 06/04/20 00:3 Snite A	3 mount I CS Bacult	I CS Bac	Pac Limit	o I CS Oualifi	Dr							
Analyte mg/kg	mount roo hooun	%	%		5							
Chloride 200	191	95.5	80.0-120									
L1223768-08 Original Sa	mple (OS) • M	latrix Spik	ie (MS) • Ma	atrix Spike [Duplicate (M	SD)						
(OS) L1223768-08 06/04/20 02:0	9 • (MS) R3534873	3-4 06/04/20	02:18 • (MSD)	R3534873-5 06	5/04/20 02:47							
Spike A (drv)	nount Original Res (drv)	sult MS Result	t (dry) MSD Resu (drv)	ilt MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier RPD	RPD Limits		
Analyte mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		%	%		
Chloride 504	13.4	511	507	98.7	8.76	-	80.0-120		0.86	ξ		
												Page 41
ACCOUNT.	ra Tech		0010	PROJECT: -MD-01796-20		S I	DG: 23768		DATE/TIME: 06/10/20.08:33		PAGE: 22 of 36	of 56

G1487388 t Chemistry by M	S ethod 9056A			Ø	UALITY		ROL SI 8-10	JMMAR	×۲			ONE LAB. 1	VATIONWIDE.	Rece
od Blank (N	IB)													ived (
3535355-1 06/C	14/20 20:57 MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg										by OCD:
	-		9.20	20.0										12/12/2
3768-10 Ori	ginal Sample	(OS) • Dup	olicate (Dl	(AL										2 022 (
223768-10 06/()4/20 21:55 • (DUI Original Result	P) R3535355-3 + DUP Result	3 06/04/20 2	2:04										7:31 :
	(dry) ma/kq	(dry) ma/kg	Dilution D	UP RPD	DUP Qualifier	Limits «								47_A س
	59.5	56.8	1	.62		15								M og
5244-19 Orių	ginal Sample	(OS) • Dup	olicate (DI	(AL										ط ط
225244-19 06/0)5/20 02:11 • (DUF	P) R3535355-6	06/05/20 0	2:20										
	Original Result (dry)	t DUP Result (dry)	Dilution		DUP Qualifier	DUP RPD Limits								۳ ۵
	mg/kg	mg/kg	~			%								
ratory Contr	550 Tol Sample (L	480 CS)	£	3.6		15								SC
3535355-2 06/	04/20 21:06													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualif	ier								
	mg/kg	mg/kg	%	%										
	200 Zimal Samalo	196 	98.2 triv Coilco	80.0-120			Ć							
225244-03 06/		s) R3535355-4	. 06/04/20 2	2:42 • (MSD) F	11X 20146 0	06/04/20 22:52	lac							
	Spike Amount (drv)	Original Resul (drv)	t MS Result (c	Iry) MSD Result (drv)	t MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
	619	3430	5420	5020	322	256	~	80.0-120	2 I) E	7.75	τ		
														Page 42 a
	ACCOUNT:			6	ROJECT:			SDG:		DATE	E/TIME:		PAGE:	of 56
Conoc	oPhillips - Tetra Tec	ų		212C-	-MD-01796-20		L1	223768		06/10/2	20 08:33		23 of 36	5

WG14877	774 by Method 9056A			ğ	JALITY	CONTR 11223768-	OL SU	JMMAR	≻			ONE LAB. N	ATIONWIDE.	Rece
post Method Blan	k (MB)												-	ived l
o (MB) R3536238-1	06/08/20 10:54 MB Result	MB Qualifier	MB MDL	MB RDL										y OCL
Chloride	U N		9.20	1119/Kg 20.0										: 12
12/12/2	Drininal Samolo (licato (DLID)										m	/12/202
11-00/0771-2022 11-00/0771-2022	011911101 00111010 1		06/08/20 11-11										4	2 7
11-00/07/11/00/07/11-00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/00/07/11/0	סטיסט ווישב • (שטרי) Original Result (dry)	DUP Result	Dilution DUP	RPD DI	JP Qualifier L	JUP RPD imits								31:47
Analyte	mg/kg	mg/kg	* *		0^ E	²⁰ Ц								
		D	-	-1	_	D							U	ပ္တိ
L1224346-01	Original Sample	(OS) • Dup	olicate (DUF	(c									4	Ū
(OS) L1224346-01	06/08/20 15:30 • (DUF	P) R3536238-6	3 06/08/20 15:3	39										
	Original Result (dry)	DUP Result (dry)	Dilution DUP	RPD DI	<u>JP Qualifier L</u>	JUP RPD .imits							ω	P
Analyte			%		0~	<i>\$</i>								
Chloride		D	1 0.00	00	F	5							0)	SC
Laboratory C	ontrol Sample (L(CS)												
(LCS) R3536238-2	06/08/20 11:03													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie									
Analyte	mg/kg	mg/kg	%	%										
Chloride	200	194	96.8	80.0-120										
L1223771-06	Original Sample	(OS) • Mat	rix Spike (N	1S) • Matri	X Spike D	uplicate (MS	(D)							
		Original Resul	t MS Decut (dru)			MSD Par	Dilution	Dor Limite	MS Oualifier	MSD Oualifier	Uad	2 I mite		
Analyte	(dry) ma/ka	(dry) ma/ka	ma/ka	(dry) ma/ka	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) 2 %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Chloride	505	97.3	611	609	102	101	-	80.0-120			0.378	15		
														Page
														43 oj
·	ACCOUNT: ConocoPhillips - Tetra Tech	-		PR 212C-M	OJECT: D-01796-20		SI L122	DG: 23768		DATE/1 06/10/20	FIME: 08:33		PAGE: 24 of 36	f 56

	pullo
വ	u m o
00	U U U
87	rdar
14	0
2	
Re	l

WG1487005				QU	ALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
Volatile Organic Com	ounds (GC) by	/ Method 8(015D/GRO		L1223768-01,02,03,04		ecei
position Blank (MB							ived g
(MB) R3535973-2 06/04/	20 17:24						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C ^
Analyte	mg/kg		mg/kg	mg/kg			
🙀 TPH (GC/FID) Low Fraction	Π		0.0217	0.100			12
(S) 17,1,a,a-Trifluorotoluene(FID)	95.2			77.0-120			(12/2
2/202							022 ¢
Laboratory Contro	Sample (LC	(S)					z:31
CLCS) R3535973-1 06/04/	20 16:37						47 ن
:14	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		A 1
Analyte	mg/kg	mg/kg	%	%			И о
TPH (GC/FID) Low Fraction	5.50	6.26	114	72.0-127			ğ
(S) a, a, a-Trifluorotoluene(FID)			104	77.0-120			7 <u> </u>

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	28	
	RPD	%	6.01	
	MSD Qualifier			
	MS Qualifier			
	Rec. Limits	%	10.0-151	77.0-120
	Dilution		250	
	MSD Rec.	%	95.4	105
	MS Rec.	%	102	106
05/20 05:18	MSD Result	mg/kg	1130	
3 • (MSD) R3535973-4 06/	Original Result MS Result	mg/kg	12 00	
06/05/20 04:53	Spike Amount	mg/kg	1190	
(OS) • (MS) R3535973-3		Analyte	TPH (GC/FID) Low Fraction	(S) a, a, a-Trifluorotoluene(FID)

Sc

Ū

∢

•

25 of 36 PAGE:

	_
m	a panoa m
(1)	C
4	C
~	¢
()	1
	5
-	č
ω	1
4	C
-	c
<u> </u>	-
()	+
~	_
2	C
2	2
Re	l

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

))))					
Volatile Organic Com	ounds (GC) t	by Method 80	015D/GRO		L1223768-07,08,09,10,11,12
PMethod Blank (MB)	(
(MB) R3535359-3 06/05/	/20 00:38				
ma	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
G TPH (GC/FID) Low Fraction	Л		0.0217	0.100	
(S) 77 a a -Trifluoratoluene/FID)	92.1			77.0-120	

			LCSD Qualifier RPD	%
			LCS Qualifier	
	e (LCSD)		Rec. Limits	%
	ole Duplicat		LCSD Rec.	%
	trol Samp	23:42	LCS Rec.	%
	oratory Con	9-2 06/04/20 2	LCSD Result	mg/kg
	CS) • Labo	SD) R353535	LCS Result	mg/kg
ne(FIU)	Control Sample (L	-1 06/04/20 23:22 • (LC	Spike Amount	mg/kg
$\frac{1}{2}$	22 ⁻ Laboratory (37 R3535359	:14	Analyte

212C-MD-01796-20

PROJECT:

SDG: L1223768

26 of 36 PAGE

ConocoPhillips - Tetra Tech ACCOUNT:

Received by OCD: 12/12/2022 7:3 ğ 47_AM س Sc $\overline{\mathbb{O}}$ ₹

RPD Limits

20 %

6.65

72.0-127 77.0-120

89.8

96.0 106

4.94

5.28

5.50

(S) a, a, a-Trifluorotoluene(FID)

105

)
	spunou
∞	5
0	C
	. <u> </u>
	u e
∞	Č
4	С
~	٩
C	+
5	-
5	>
Re	ele

WG1487708				JQ	JALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.
Volatile Organic Com	pounds (GC) b	y Method 81	015D/GRO		L1223768-06	
period Blank (ME	3)					
(MB) R3535691-3 06/05	/20 12:38					
ma	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
TPH (GC/FID) Low Fraction	0.0470	ا ر	0.0217	0.100		
(S) 2.a, a, a-Trifluorotoluene(FID)	92.8			77.0-120		
2/202						
	ol Sample (L(CS)				
CLCS) R3535691-2 06/05	5/20 11:53					
-14	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
TPH (GC/FID) Low Fraction	5.50	4.90	89.1	72.0-127		

ğ

Ū

77.0-120 72.0-127

98.6 89.1

(S) a, a, a-Trifluorotoluene(FID)

<u>ک</u>

SC

27 of 36 PAGE

•

	pundu
1	Con
4887	Organic
NG1 ²	olatile
Re	ele

QUALITY CONTROL SUMMARY

L1223768-05			MB RDL	mg/kg	0.100	77.0-120
015D/GRO			MB MDL	mg/kg	0.0217	
by Method 80			MB Qualifier			
oounds (GC)	(/20 14:46	MB Result	mg/kg	П	102
olatile Organic Com	Method Blank (MB	(MB) R3536286-3 06/08	ma	Analyte	🙀 TPH (GC/FID) Low Fraction	7. (S) 7.a.aTriffuorototuene(FID)

WG1488711				QU	ALITY CONTROL SUMMARY	ONE LAB. NATIONWIDE.	Re
olatile Organic Comp	ounds (GC) b	y Method 80	015D/GRO		L1223768-05		cei
Method Blank (MB)							ved i
(MB) R3536286-3 06/08/2	20 14:46						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C. ∾
Analyte	mg/kg		mg/kg	mg/kg			
🛐 TPH (GC/FID) Low Fraction	Л		0.0217	0.100			12
77 (S) 7.a., a. a-Trifluorotoluene(FID)	102			77.0-120			/ <u>12/2</u>
2/202							022 g
22 Laboratory Control	Sample (LC	CS)					7:31
C(LCS) R3536286-2 06/08/	/20 14:04						47 ل
:14	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		A 1
Analyte	mg/kg	mg/kg	%	%			<u>и</u> 9
TPH (GC/FID) Low Fraction	5.50	5.72	104	72.0-127			ğ
(S) a, a, a-Trifluorotoluene(FID)			99.5	77.0-120			_ ۲
							פ

Sc

4

PAGE: 28 of 36

•

\sim	
\mathcal{O}	
4	
Q	
00	
4	
വ	
-	
<	
-	
RA	,

QUALITY CONTROL SUMMARY

8260B	
Method	
bу	
(GC/MS)	
Compounds	
Organic	
Volatile	

Method Blank (MB)

Re	ece	ive	d <u>1</u>	by (0C.		12	/ 12 	(20	22 *	7	31:	47_AM ن
ONE LAB. NATIONWIDE.													
QUALITY CONTROL SUMMARY	L1223768-01,02,03,04				MB RDL	bw/kg	0.00100	0.00250	0.00500	0.00650	75.0-131	67.0-138	70.0-130
	d 8260B				MB MDL	mg/kg	0.000467	0.000737	0.00130	0.000880			
	AS) by Metho				MB Qualifier								
	ounds (GC/N			20 12:13	MB Result	mg/kg			N	Π	106	96.8	110
WG1486432	Volatile Organic Comp			(MB) R3534655-3 06/03/2	ma	Analyte	Benzene	Ethylbenzene	I oluene	Vylenes, Total	(S) Toluene-d8	(S) 4-Bromofluorobenzene	(5) 1,2-Dichloroethane-d4

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

Ū

Sc

₹

(LCS) R3534655-1 06/03	3/20 10:57 • (LCSI	C) R3534655-2	2 06/03/20 11:1(Q						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
Benzene	0.125	0.118	0.117	94.4	93.6	70.0-123		0.851	20	
Ethylbenzene	0.125	0.110	0.110	88.0	88.0	74.0-126		0.000	20	
Toluene	0.125	0.122	0.127	97.6	102	75.0-121		4.02	20	
Xylenes, Total	0.375	0.333	0.343	88.8	91.5	72.0-127		2.96	20	
(S) Toluene-d8				98.0	100	75.0-131				
(S) 4-Bromofluorobenzene				98.7	97.5	67.0-138				
(S) 1.2-Dichloroethane-d4				117	121	70.0-130				

29 of 36 PAGE

-	2
∞	Ċ
വ	
ဖ	6
∞	č
4	C
7	0
C	;+ (
\geq	0
Re	el.

QUALITY CONTROL SUMMARY 11223768-05,06,07,08,09,10,11,12

Received by OCD: 12/12/20

22 • **5**:3

Method Blank (MB) by Method 82608

(MB) K3534740-3 06/03/20	0 16:36			
	MB Result	MB Qualifier	MB MDL	L MB RDL
Analyte	mg/kg		mg/kg	ug/kg
Benzene	n		0.000467	67 0.00100
Ethylbenzene	П		0.000737	37 0.00250
oluene	П		0.00130	0 0.00500
Xylenes, Total	N		0.000880	80 0.00650
S) Toluene-d8	109			75.0-131
(S) 4-Bromofluorobenzene	105			67.0-138
(S) 1,2-Dichloroethane-d4	100			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

Ū

47.A

	:
37	0
0 15:	2
06/03/2(
R3534740-2	
(LCSD)	
17.	
15	
06/03/20	
(LCS) R3534740-1	

	-									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
Benzene	0.125	0.111	0.113	88.8	90.4	70.0-123		1.79	20	
Ethylbenzene	0.125	0.141	0.150	113	120	74.0-126		6.19	20	
Toluene	0.125	0.112	0.112	89.6	89.6	75.0-121		0.000	20	
Xylenes, Total	0.375	0.370	0.379	98.7	101	72.0-127		2.40	20	
(S) Toluene-d8				108	108	75.0-131				
(S) 4-Bromofluorobenzene				104	104	67.0-138				
(S) 1, 2-Dichloroethane-d4				103	102	70.0-130				

Sc

₹

L1223768-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223768-05 06/03/20 21:20 • (MS) R3534740-4 06/04/20 00:40 • (MSD) R3534740-5 06/04/20 01:00

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125		0.0818	0.0886	65.2	70.6	-	10.0-149			7.95	37
Ethylbenzene	0.125		0.106	0.118	84.7	94.4	-	10.0-160			10.8	38
Toluene	0.125	n	0.0823	0.0908	65.6	72.4	-	10.0-156			9.81	38
Xylenes, Total	0.376	Π	0.282	0.304	75.0	80.9	-	10.0-160			7.59	38
(S) Toluene-d8					111	111		75.0-131				
(S) 4-Bromofluorobenzene					106	106		67.0-138				
(S) 1,2-Dichloroethane-d4					103	101		70.0-130				

30 of 36 PAGE:

06/10/20 08:33 DATE/TIME:

SDG: L1223768

\sim	
0	
\sim	
\sim	
00	
4	
G	
>	
~	
Re	2

WG1487207				0 0 0	ALITY CONTROL SUMMARY
Semi-Volatile Organ	ic Compounds	(GC) by Met	hod 8015		L1223768-10,11,12
as					
Method Blank (M	B)				
(MB) R3535956-1 06/07	7/20 16:55				
ma	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
🙀 C10-C28 Diesel Range	Э		1.61	4.00	
C28-C40 Oil Range	1.02	ا ر	0.274	4.00	
(5) o-Terphenyl	103			18.0-148	
22 2	ol Sample (LC	CS)			
CCS) R3535956-2 06/(07/20 17:08				
14.	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	

 $\underset{\sim}{\overset{\text{Received by OCD: } 12/12/2022 \ \text{\mathcal{F}:31:47.AM}}_{\sim}}$

ONE LAB. NATIONWIDE.

ğ

Ū

<u>ک</u>

SC

50.0-150 *18.0-148* 121 114 60.7 50.0 C10-C28 Diesel Range (S) o-Terphenyl

•

PAGE: 31 of 36

ω
∞
\sim
00
00
4
C
>
Re

QUALITY CONTROL SUMMARY [1223768-01,02,03,04,05,06,07,08,09]

(GC) by Method 8015	
Semi-Volatile Organic Compounds	Method Blank (MB)

WG1488233	Compounds	(GC) by Met	hod 8015	ОQ	ALITY CONTROL SUMMARY 11223768-01,02,03,04,05,06,07,08,09	JE LAB. NATIONWIDE.	Reco
per Method Blank (MB	(eived
(MB) R3536000-2 06/08	/20 18:45						by (
ma	MB Result	MB Qualifier	MB MDL	MB RDL			0C. ∾
Analyte	mg/kg		mg/kg	mg/kg			D: ⊢
C10-C28 Diesel Range	2.04	⊐ 1	1.61	4.00			12
C28-C40 Oil Range	1.96		0.274	4.00			/ 12
(S) o-Terphenyl	79.0			18.0-148			/20
/20							22 (
222							5
	l Sample (LC	CS)					31:4
LCS) R3536000-3 06/08	3/20 18:58						47
14.	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		4 <i>M</i>
Analyte	mg/kg	mg/kg	%	%			کی
C10-C28 Diesel Range	50.0	51.4	103	50.0-150			ر ک
(S) o-Terphenyl			91.1	18.0-148			~

SC

₹

Ū

PAGE: 32 of 36

•

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-01796-20

SDG: L1223768 DATE/TIME: 06/10/20 08:33

PAGE: 33 of 36

Received by OCD: 12/12/2022 7:31:47 ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 12/12/2022 7:37:14 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01796-20

SDG: L1223768

DATE/TIME: 06/10/20 08:33

PAGE: 34 of 36

Tetra Tech, Inc.	ent Name: Conoco Phillips Site Manager: Christian Llull	iject Name: Cat 2 Batch - VGEU East Battery Contact Info: Email: christian.IluII@tetratech.com COITC	jiect Location: Lea County, New Mexico Project #: 212C-MD-01796-20 Task 136 unty, state)	oice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	ceiving Laboratory: Pace Analytical Sampler Signature: Adrian Ref 14 20 56 56 56 56 56 56 56 56 56 56 56 56 56	с d ct в с d ct в в seoв з s coPTETRA Acctnum соРТЕТRA Acctnum	SAMPLING MATRIX PRESERVATIVE RIEVO REVAIL		LCLP Meta ICLP Meta MATER PAH 8270 ICLE Meta HCL HUO ₃ FILTERE BEEX 802 IPH 8015 HOUE HUO ₃ COUL HOUE HOUE IPH 8015 HOUE IPH 8015 HOUE	-0) AH-1 (0-1) 5/27/2020 1100 X X 1 X X X X	o2 AH-1 (1-2') 5/27/2020 1110 X X 1 N X	0.3 AH-2 (0-1') 5/27/2020 1120 X X X 1 N X X X	<i>o</i> ∀ AH-2 (1-2') 5/27/2020 1130 X X X 1 N X X X X	05 AH-3 (0-1') 5/27/2020 1150 X X X X X X X	06 AH-3 (1-2') 5/27/2020 1200 X X X X X X X		O\$ AH-4 (1-2') 5/27/2020 1220 X X 1 N X <th>09 AH-5 (0-1') 5/27/2020 1300 X X 1 N X X X</th> <th>10 AH-5 (1-2') 5/27/2020 1310 X X X X X</th> <th>Colus Dave Starts 14:35 Repérind by Starts Time: LAB USE</th> <th>Alfondishearby: Date: Time: Date: Time: Sample Temperature</th> <th>staduished by: Date: Time: Received by: Date: Time:</th>	09 AH-5 (0-1') 5/27/2020 1300 X X 1 N X X X	10 AH-5 (1-2') 5/27/2020 1310 X X X X X	Colus Dave Starts 14:35 Repérind by Starts Time: LAB USE	Alfondishearby: Date: Time: Date: Time: Sample Temperature	staduished by: Date: Time: Received by: Date: Time:
J155	ANALYSIS REQUEST	Curcie or specify method No.)		(C	ЯМ - C gH 92 gH 92 s	µλ (гее з D2 D2 S4 CC(852 S4 Cq CL bP Cq CL bP S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2	BTEX 5x1 to C (A b 2 B 3 A b 3 B 3 A b	118 005 (Ef (Ef (2000)) 005 (Ef (2000)) 000 (2000) 000 (2000) 0000 (2000) 00000	ВТЕХ 802 ТРН ТХ10 ТРН 8015 РАН 8270 ТСLP Vola ТСLP Vola ТСLP Vola СС/МS Vo СС/МS Vo СС/MS Vo СС/МS Vo СС/MS VO СС		x x x	x x x	x x x	x x x	x x x	x	x x x		x x x	LAB USE REMARKS: ONLY X Standard	Sample Temperature RUSH: Same Day 24 hr. 48 hr. 72 hr. Rush Charges Authorized	Special Report Limits or TRRP Report

LAB# SAMPLE IDENTIFICATION CUCO SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION
(Ud. U.S. ONLY DATE TIME TIME<
Udd UE Date Time
Udd Use DATE Time
ULUB UE DATE TIME
Ubble Date Time
Image: Log bit integration of the control of the c
Lube DATE Time Antorical DATE Time Antorical Conty Conty DATE Time Antorical Conty Conty Conty Conty Antorical Antorical Conty Conty Conty Conty Conty Antorical Antorical Conty Conty Conty Conty Conty Antorical Antorical Conty Conty Conty Conty Conty Contract Conty Conty Conty Conty Conty Conty Conty Conty Conty
1 1
Lunch Mathematical structure
AHE
Image: constraint of the section of the secting the section of the section of the section of the sectin
Image: constraint of the state of the s
Image: constraint of the constratent of the constraint of the constraint of the constraint of the
Image: Control of the contro
Image: constraint of the constraint
Image: constraint of the constraint
Image: design of the set
1 5/27/2020 Anion/Call 1 5/27/2020 Choindie 1 1 1 1 1
AH-6 (0-1) Anion/Cat AH-6 (0-1) Chloride AH-6 (0-1)
AH-6 (0-1) 5/27/2020 1400 5/27/2020 1400 5/27/2020 1400 5/27/2020 1400 1 PCLP 2 Chloride 3 SOIL 1 PCLP 2 Chloride 3 SOIL 1 PCLP 2 Chloride 3 SOIL 3 PCLP 4 PCLP 5 PCLP 4 5 <
(Lab USE) DATE TIME EFE SOIL PONUTE TIME EFE SOIL
(LAB USE) DATE TIME TIME TIME NOT CONT OF CONT
LI33% METHIX PHESERVATIVE SAMPLING MATRIX PHESERVATIVE SAMPLING MATRIX METHOD SC 000 0000000000000000000000000000000
L 1233W RESERVATIVE SAMPLING MATRIX RESERVATIVE SAMPLING MATRIX METHOD SAMPLING MATRIX METHOD SAMPLING S
Comments: CDPENIERCO CONTETRA ACCTINING CONTENTIVE
Adrian Comments: COPTETRA Acctinum Sampler Signature: Adrian Adrian METHOD Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Comments: COPTETRA Acctinum Sampler Signature: Sampler Signa
33 ample Sample 1 Chemistry (see attached) 1 Adrian 1 A
Linvoice to: Comments: COPTETRA Acctinum BETEX 8260B Comments: COPTETRA Acctinum Comments: COPTETRA
Salance Introjee to: Sampler Signature: Accounts Payable Introjee to: Accounts Payable
Colored tion: Lea County, New Mexico Instein TOS Instein Top Instein Top </td
Carl 2 Batton Carl 2 Batton r Chemistry (see attached list) Phone: (512) 338-1667 r Chemistry (see attached list) Phone: (512) 338-1667 r Carl 2 Batton Vol. 8270C/625 r Carl 2 Batton Lea County, New Mexico r Carl 2 Batton Project Location: r Carl 2 Batton Lea County, New Mexico r Carl 2 Batton Lea County, New Mexico r Carl 2 Batton Lea County, state) r Carl 2 Batton Lea County, state) r Carl 2 Batton Lea County, state) r Carl 2 Batton Li 2 22 CMD-01796-20 Task 136 r County, state) Project #: r Carl 2 Batton Center Pace r County, state) Battery r Carl 2 Batton Contact Into: r Carl 2 Batton Project #: r County, state) Sampler Signature: r Contact into Laboratory: Pace Analytical r Contact into Laboratory: Pace Analytical r Comments: COPTETRA Accin me r Comments: COPTETRA Accin me r Comments: COPTETRA Accin me r Contact inth Pace Analytical
Designation Cat 2 Batch - VGEU East Battery Contract Info: Email: christian.Iluli@terratech.com Project Name: Cat 2 Batch - VGEU East Battery Contract Info: Phone: (5,12) 338-1667 Project Location: Lea Country, New Mexico Project Info: Phone: (5,12) 338-1667 Project Location: Lea Country, New Mexico Project Info: Phone: (5,12) 338-1667 Vol. 8270C/625 Project #: 212C-MD-01796-20 Task 136 Phone: (5,12) 338-1667 Notice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Notice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Project to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Project to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Project to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Project to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 212C-MD-01796-20 Task 136 Project to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Project #: 21
Client Name: Concoo Philips Client Name: Concoo Philips Concoo Philips Site Manager: Christian Luli Project Name: Cat 2 Batch - VGEU East Battery ANALYSIS REQUEST Project Name: Cat 2 Batch - VGEU East Battery Contact Info: Fmail: christian.llul@tetratech.com Project Name: Cat 2 Batch - VGEU East Battery Contact Info: Prone: (512) 338-1667 Anal.YSIS REQUEST Project Name: Cat 2 Batch - VGEU East Battery Contact Info: Prone: (512) 338-1667 Anal.YSIS REQUEST Project Location: Lea County, New Mexico Project #: 212.C-MD-01796-20 Task 136 Anal.YSIS REQUEST Onlines Project #: 212.C-MD-01796-20 Task 136 Project #: 212.C-MD-01796-20 Task 136 Anal.YICE Onlines Done: (512) 338-1667 Project #: 212.C-MD-01796-20 Task 136 Anal.YICE Anal.YICE Notice to: 301 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Adrian Anal.YICE Anal.YICE Ontone to: 301 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Adrian Anal.YICE Anal.YICE Anal.YICE Ontone to:
Tel (420) 682-4559 Fax (420) 682-4559 Client Name: Concoo Philips Project Name: Concoo Philips Site Manager: Christian Lul Project Name: Cat 2 Batch - VGEU East Battery Project Location: Lea County, state) Make: Concord Philips Make: Constraint Lul Project Location: Lea County, state) Make: Operation: Lea County, state) Make: Make: Connents: Contract Into: Project Location: Last County, state) Markix Markix Markix Marking Laboratory: Pace Analytical Connents: COPTETRA Acchuan Connents: Coptert Location: Lul 33 Markix Markix Pace Analytical Sampler Signature: Adrian Concenting Laboratory: Pace Analytical <t< td=""></t<>

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	165913
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created	Condition	Condition Date
Ву		
bhall	1RP-4441 closed. Please refer to incident #NKL1625827670 in all future correspondence.	12/12/2022
bhall	Deferral approval until the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first. Incident will stay in "Closure Not Approved" status until final closure report is received and approved.	12/12/2022

Page 56 of 56

Action 165913