Received by OCD: 11/14/2022 8:29:52 PM Form C-141 State of New Mexico

Oil Conservation Division

	I uge I oj A
Incident ID	nAPP2116941247
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

 $\overline{\square}$ Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.							
I hereby certify that the information given above is true and complet rules and regulations all operators are required to report and/or file c which may endanger public health or the environment. The acceptar liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	e to the best of my knowledge and understand that pursuant to OCD ertain release notifications and perform corrective actions for releases nee of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of aws and/or regulations.							
Printed Name: Amber Griffin	Title: Rep Safety & Environmental Sr							
Signature: Amber Griffin	Date: 11/14/2022							
email: Amber_Griffin@eogresources.com	Telephone: 575-748-4111							
OCD Only								
Received by: Jocelyn Harimon	Date: 11/15/2022							
Approved with Attached Conditions of Approval Denied Deferral Approved								
Signature: <u>Jennifer Nobui</u> <u>Date:</u> 12/13/2022								

.

Page 5

2135 S. Loop 250 W. Midland, Texas 79703 United States www.ghd.com

Our ref: 11230052-LTR-1

November 14, 2022

New Mexico Oil Conservation Division District 2 811 South First Street Artesia, New Mexico 88210

Updated Site Remediation Work Plan Rodke AOY #1 Release Site EOG Resources Inc. Incident ID: nAPP2116941247 A-21-19S-25E, Eddy County, New Mexico

To Whom It May Concern:

1. Introduction

GHD Services Inc. (GHD), on behalf of EOG Resources (EOG), submits this Updated Site Remediation Work Plan to the New Mexico Oil Conservation Division (NMOCD) District 2 Office. This Report provides documentation of remedial activities, sampling, and analyses in the affected area at the EOG Rodke AOY #1 Release Site (Site). The Site is located in Eddy County, New Mexico. The GPS coordinates for the release site are 32.648371 N latitude and 104.488160 W longitude. The release occurred on private land owned by Ross Ranch. Figure 1 depicts the Site location. The EOG production facility and other site details are depicted on Figure 2, Site Details Map.

2. Background Information

A C-141 initial report for this release was submitted to the NMOCD on June 18, 2021. The C-141 stated that no known volume or date could be assigned to this historical release. The potential release area was discovered during EOG well plugging and site abandonment activities associated with this location. Soils within the former tank battery containment appeared to be discolored and after discussions between field personnel and environmental staff, EOG made the decision to go ahead and file a C-141 for this suspect release location.

The release falls under the jurisdiction of the NMOCD District 2 Office in Artesia, New Mexico. The NMOCD assigned the release with Incident Number NAPP2116941247. The Release Notification, Site Assessment/ Characterization and Remediation Plan portions of Form C-141 are attached to the front of this report. GHD characterized the Site according to Table 1, Closure Criteria for Soils Impacted by a Release, from New Mexico Administrative Code (NMAC) Title 19, Chapter 15, Part 29, Section 12 (NMAC 19.15.29.12).

→ The Power of Commitment

3. Excavation Summary

In April, May, and June 2022 GHD, on behalf of EOG, completed excavation and sampling activities at the Site. During the excavation activities composite excavation samples from the sidewalls and bottom of the excavation were collected and analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300. BTEX and TPH exceedances were noted in bottom hole confirmation samples BH-20 and BH-21 at 20 to 22 feet below ground surface (bgs). At the completion of confirmation sampling and based on results the excavation was backfilled with non-impacted soil prior to the setting of treatment wells to begin bioremediation of the hydrocarbon impacts.

Analytical results are provided in Table 1. Further details regarding all completed excavation activities will be captured in a final closure report.

4. Treatment Summary

As approved by NMOCD on March 18, 2022, drilling oversight and installation of treatment wells was conducted on August 24-25, 2022. A total of two soil treatment wells (IW-1 and IW-2) were installed within the affected area to assist with the bioremediation and venting of the hydrocarbon impacts below 20 feet bgs.

One treatment well was installed for every 100 square feet of impacted area to be remediated. The wells consisted of 2-inch pvc pipe with slotted well screen installed for the last 5-10 feet of the well, well depth was staggered to ensure that the microbial product used to increase bioremediation made contact with all areas that required treatment. The product utilized for treatment was Rigby Taylor (RT) Remediact, which is a concentrated solution of bacteria and microorganisms used to bioremediate hydrocarbons in soils. The RT Remediact was absorbed into the surrounding soils, allowing for the digestion of organics and the breakdown of the hydrocarbons. The RT Remediact was injected into the wells every 2 weeks for approximately 12 weeks, totaling 6 separate treatments. A total of 1,032 gallons of solution and 10,320 gallons of water was injected for the entire treatment period. The first treatment was completed the week of August 22, 2022 and the final treatment was completed the week of October 24, 2022.

5. Confirmation Soil Sampling Summary and Findings

On November 8, 2022, GHD and EOG's contractor HCI Drilling advanced one soil boring for the purpose of collecting confirmation soil samples. Samples were collected at 5-foot increments beginning at 35 feet bgs to a depth of 50 feet bgs. All soil samples were analyzed for BTEX by EPA Method 8021B, TPH by Method 8015B Modified, and chloride by EPA Method 300 by Cardinal Laboratories in Hobbs, New Mexico.

Samples at 45 and 50 feet bgs in the soil boring CB-1 exceeded applicable NMAC Table 1 Closure Criteria for groundwater greater than 100 feet. Figure 2, Site Details Map, depicts the location of the confirmation boring sample. The CB-1 soil boring log is provided as Attachment A. Analytical results are provided in Table 1, on Figure 3, and in the Laboratory Analytical Reports provided in Attachment B.

6. nAPP2116941247 Proposed Work Plan

CB-1 exhibited BTEX and TPH GRO and DRO above Table 1 closure criteria to a depth of 45 and 50 feet bgs. None of the other samples submitted for analysis exhibited exceedances above Table 1 closure criteria. Based

on results from the confirmation soil borings further treatment injections are required to adequately breakdown the hydrocarbon within the impacted soils. Continued injections are proposed to the speed of bioremediation.

The RT Remediact microbial strain will continue to be injected into the wells every 3 weeks for approximately 18 weeks, totaling 6 separate treatments. The amount of treatment solution will be increased for the injection events. Approximately 30 days after the last treatment, a core rig will be brought in to perform sampling of the treated areas. This will consist of performing one sample boring per 200 square feet, with samples collected at 5-foot increments with anticipated sampling to begin at 35 feet bgs to a depth of 50 feet bgs.

Once confirmation samples collected from the soil boring(s) post treatment are below Table 1 closure criteria, treatment wells will be plugged with non-impacted soil material and cut/capped at a depth of 3 feet bgs, or completely removed with the bore hole backfilled with non-impacted soil material. A closure report will be prepared to document remediation activities and submitted to the NMOCD. If the samples exhibit Total TPH concentrations above Table 1 closure criteria an update will be provided to NMOCD with the progress to date with the additional remediation steps that will occur for the site.

Regards,

GHD

Murrey

J.T. Murray Project Director

JTM/MM/mk/LTR-1

elkellar

Moshghan Mansoori Senior Project Manager

Encl. Figure 1 – Site Location Map
Figure 2 – Site Details Map
Figure 3 – Confirmation Soil Analytical
Table 1 – Summary of Soil Analytical Data
Attachment A – CB-1 Soil Boring Log
Attachment B – Laboratory Analytical Reports and Chain-of-Custody Documentation

cc: Chase Settle

EDDY COUNTY, NEW MEXICO RODKE AOY #1

Date November 2022

SITE LOCATION MAP

FIGURE 1

Released 102/11/20052/Digital DesignACADI-Figures/PRE01111230052-GHD-00-00-PRE-EN-D101_DL-001.dwg

Data Source: USGS 7.5 Minute Quad "Dayton, Seven Rivers, Foster Ranch, and Parish Ranch, New Mexico" Lat/Long: 32.6481° North, 104.4880° West

LEGEND CONFIRMATION SOIL BORING LOCATION 0 INJECTION WELL LOCATION

Filename: \\ghdneftghd\US\Midland\Projects\562\11230052\Digital_Design\ACAD\Figures\PRE001\11230052-GHD-00-00-PRE-EN-D101_DL-001.dwg Plot Date: 14 November 2022 3:23 PM

SITE DETAILS MAP

Date November 2022

Data Source: Image © 2021 Google - Imagery Date: December 21, 2019 Lat/Long: 32.6481° North, 104.4880° West

2

DEPTH DEPTH OF SAMPLE (FT) BTEX BENZENE, TOLUENE, ETHYLBENZENE & XYLENES CONCENTRATION (MG/KG) TOTAL PETROLEUM HYDROCARBONS TPH

CONCENTRATION (MG/KG)

NOTES:

- 1. RESULTS IN MILLIGRAMS PER KILOGRAM (MG/KG).
- 2. SEE TABLE 1 FOR FULL ANALYTICAL RESULTS/DETAILS.
- 3. YELLOW SHADED CELLS INDICATE EXCEEDANCE.

EDDY COUNTY, NEW MEXICO RODKE AOY #1

Date November 2022

CONFIRMATION SOIL ANALYTICAL

Data Source: Image © 2021 Google - Imagery Date: December 21, 2019 Lat/Long: 32.6481° North, 104.4880° West

									Total Petroleur	n Hydrocarbons (TPI	1)	
		Denth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6-C10)	DRO (C10-C28)	MRO (C28-C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					Table I (Closure Criteria	for Soils between 5	51 and 100 feet Dep	th to Groundwater	19.15.29 NMAC		
			10 mg/kg				50 mg/kg	1,000	mg/kg		2,500 mg/kg	10,000 mg/kg
		•			Initial Assess	ment Samples						
TP1-8	7/19/2021	8	300	640	260	250	1,450	6,700	9,300	3,600	19,600	8,300
TP1-15	7/19/2021	15	11	160	120	120	411	2,200	5,600	2,300	10,100	5,200
TP1-20	7/19/2021	20	29	210	140	160	539	3,200	7,200	2,900	13,300	4,200
TP2-2	7/19/2021	2	<0.025	<0.050	<0.050	<0.099	<0.099	<5.0	<10	<50	<50	<60
TP2-6	7/19/2021	6	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	<9.9	<50	<50	<60
TP3-2	7/19/2021	2	<0.025	<0.049	<0.049	<0.099	<0.099	<4.9	<8.9	<44	<44	590
TP3-4	7/19/2021	4	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	<8.8	<44	<44	300
TP3-7	7/19/2021	7	<0.024	<0.048	<0.048	<0.095	<0.095	<4.8	<8.5	<43	<43	93
TP4-S	7/20/21	Surface	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<9.4	<47	<47	<60
TP4-2	7/20/21	2	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<9.9	<49	<49	<60
TP5-S	7/20/21	Surface	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	<8.8	<44	<44	<60
TP5-2	7/20/21	2	<0.025	<0.050	<0.050	<0.099	<0.099	<5.0	<9.8	<49	<49	450
TP5-8	7/20/21	8	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<8.8	<44	<44	390
TP5-14	7/20/21	14	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<9.7	<48	<48	66
TP6-S	7/20/21	Surface	<0.025	<0.049	<0.049	<0.098	<0.098	<4.9	<9.9	<49	<49	<60
TP6-2	7/20/21	2	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<9.5	<47	<47	91
TP7-S	8/30/21	Surface	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	<9.7	<48	<48	<61
TP7-2	8/30/21	2	<0.023	<0.046	<0.046	<0.093	<0.093	<4.6	<9.3	<47	<47	<60
TP8-S	8/30/21	Surface	<0.024	<0.048	<0.048	<0.095	<0.095	<1.8	< 9.1	<17	<17	<60
TP8-2	8/30/21	2	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<9.8	<49	<49	<60
TP9-S	8/30/21	Surface	<0.024	<0.048	<0.048	<0.095	<0.095	<4.8	<9.9	<50	<50	<60
TP9-2	8/30/21	2	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	<9.6	<48	<48	110

									Total Petroleur	n Hydrocarbons (TPI	1)	
		Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6-C10)	DRO (C10-C28)	MRO (C28-C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					Table I (Closure Criteria	for Soils between §	1 and 100 feet Dep	th to Groundwater	19.15.29 NMAC		
			10 mg/kg				50 mg/kg	1,000	mg/kg		2,500 mg/kg	10,000 mg/kg
TP10-S	8/30/21	Surface	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<10	<50	<50	<60
TP10-2	8/30/21	2	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<10	<50	<50	<60
TP11-6	8/30/21	6	<0.49	<0.97	<0.97	<1.9	<1.9	240	5,800	2,600	8,640	67
TP11-10	8/30/21	10	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<9.6	<48	<48	87
TP11-12	8/30/21	12	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<9.4	<47	<47	86
TP11-15	8/30/21	15	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	93	63	156	82
TP11-20	8/30/21	20	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<9.9	<50	<50	200
TPX-1-14'	5/11/22	14	<0.100	0.153	11.4	21.9	33.5	397	2,510	341	3,248	32.0
TPX-1-14' SW	5/11/22	14	<0.050	<0.050	5.66	6.97	12.6	495	4060	537	5,092	32.0
TPX-1-23'	5/11/22	23	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	32.0
TPX-1-23' SW	5/11/22	23	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	32.0
					Soil Borin	ng Samples						
SB-1-5'	12/21/2021	5	50	190	110	110	460	3,100	1,600	550	5,250	4,200
SB-1-10'	12/21/2021	10	6	59	51	60	176	1,400	3,600	1,200	6,200	4,900
SB-1-15'	12/21/2021	15	<0.48	10	17	19	46	480	4,200	1,700	6,380	2,900
SB-1-20'	12/21/2021	20	1.6	22	33	40	96.6	790	7,000	2,800	10,590	2,300
SB-1-25'	12/21/2021	25	0.046	0.21	0.54	0.64	1.436	34	130	<45	164	71
SB-1-30'	12/21/2021	30	<0.024	0.15	0.95	1.5	2.6	40	950	350	1,340	120
SB-1-35'	12/21/2021	35	0.16	2.2	3.7	4.1	10.16	96	920	350	1,366	260
SB-1-40'	12/21/2021	40	3.8	21	21	21	66.8	610	380	140	1,130	290
SB-1-45'	12/21/2021	45	53	260	170	170	653	4,400	10,000	3,500	17,900	89
SB-1-50'	12/21/2021	50	0.074	<0.050	<0.050	<0.099	0.074	<5.0	<9.6	<48	<48	<60
					Composite Conf	firmation Sampl	les					
СВН	4/13/2022	23	2.7	5.0	2.9	3.0	13.6	71	67	<49	138	470
SSW	4/13/2022	Sidewall	2.0	21	23	25	71	380	6,200	3,000	9,580	15,000
NSW	4/13/2022	Sidewall	2.9	51	58	63	174.9	880	6,900	2,900	10,680	7,400
WSW	4/13/2022	Sidewall	5.6	66	57	58	186.6	850	3,200	1,300	5,350	2,800
ESW	4/13/2022	Sidewall	0.76	22	47	59	128.76	700	5,400	2,800	8,900	71

									Total Petroleur	n Hydrocarbons (TP	H)	
		Denth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6-C10)	DRO (C10-C28)	MRO (C28-C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			-		Table I (Closure Criteria	for Soils between §	51 and 100 feet Dep	th to Groundwater	19.15.29 NMAC		
			10 mg/kg				50 mg/kg	1,000	mg/kg		2,500 mg/kg	10,000 mg/kg
Bottom Hole Confirmation Samples												
BH-1	6/2/2022	4-8	<0.12	<0.24	<0.24	<0.49	<0.49	<24	36	<47	36	62
BH-2	6/2/2022	4-8	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<14	<46	<46	690
BH-3	6/2/2022	4-8	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<14	<47	<47	740
BH-4	6/2/2022	8-12	<0.024	<0.048	<0.048	<0.097	<0.097	<4.8	<14	<48	<48	370
BH-5	6/2/2022	8-12	<0.025	<0.050	<0.050	<0.099	<0.099	<5.0	<14	<48	<48	870
BH-6	6/2/2022	8-12	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<14	<48	<48	1,200
BH-7	6/2/2022	12-16	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	<14	<47	<47	550
BH-8	6/2/2022	12-16	<0.024	<0.048	<0.048	<0.097	<0.097	<4.8	90	<48	90	540
BH-9	6/2/2022	12-16	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	30	<47	30	550
BH-10	6/10/2022	16-20	<0.023	<0.047	<0.047	<0.094	<0.094	<4.7	190	110	300	470
BH-11	6/10/2022	16-20	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	650	250	900	860
BH-12	6/10/2022	16-20	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	460	200	660	690
BH-13	6/10/2022	20-22	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<14	<46	<46	270
BH-14	6/10/2022	20-22	<0.12	<0.25	<0.25	<0.49	<0.49	<25	320	190	510	710
BH-15	6/10/2022	20-22	<0.024	<0.048	<0.048	<0.097	<0.097	<4.8	28	<50	28	330
BH-16	6/10/2022	22	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<14	<48	<48	<60
BH-17	6/10/2022	22	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<14	<47	<47	<60
BH-18	6/10/2022	ach	<0.12	<0.23	<0.23	<0.47	<0.47	<23	250	90	340	<60
BH-19	6/10/2022	20-22	<0.025	<0.049	<0.049	<0.098	<0.098	<4.9	<15	<49	<49	250
BH-20	6/10/2022	20-22	<0.23	3.6	5.3	15	23.9	290	3,600	1,300	5,190	5,600
BH-21	6/10/2022	22	4.3	39	31	32	106.3	500	2,400	870	3,770	2,800

									Total Petroleur	n Hydrocarbons (TPI	ł)	
		Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	GRO (C6-C10)	DRO (C10-C28)	MRO (C28-C35)	Total GRO/DRO/MRO	Chloride
Sample ID	Sample Date	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
				1	Table I (Closure Criteria	for Soils between 5	51 and 100 feet Dep	th to Groundwater	19.15.29 NMAC		
			10 mg/kg				50 mg/kg	1,000 mg/kg			2,500 mg/kg	10,000 mg/kg
					Sidewall Confin	rmation Sample	s					
SW-1	6/2/2022	Sidewall	<0.025	<0.049	<0.049	<0.099	<0.099	<4.9	<14	<47	<47	200
SW-2	6/2/2022	Sidewall	<0.025	<0.049	<0.049	<0.099	<0.099	<4.9	<15	<50	<50	<60
SW-3	6/2/2022	Sidewall	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	<15	<49	<49	180
SW-4	6/2/2022	Sidewall	<0.023	<0.046	<0.046	<0.093	<0.093	<4.6	<15	<49	<49	<60
SW-5	6/2/2022	Sidewall	<0.025	<0.049	<0.049	<0.099	<0.099	<4.9	<14	<46	<46	100
SW-6	6/10/2022	Sidewall	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<15	<50	<50	<60
SW-7	6/10/2022	Sidewall	<0.025	<0.049	<0.049	<0.098	<0.098	<4.9	<15	<48	<48	510
SW-8	6/10/2022	Sidewall	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	16	<48	16	210
SW-9	6/10/2022	Sidewall	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	130	56	186	420
SW-10	6/10/2022	Sidewall	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	700	510	1,210	610
SW-11	6/10/2022	Sidewall	<0.024	<0.048	<0.048	<0.095	<0.095	<4.8	250	110	360	340
SW-12	6/10/2022	Sidewall	<0.12	<0.24	<0.24	<0.49	<0.49	<24	430	180	610	720
SW-13	6/10/2022	Sidewall	<0.023	<0.047	<0.047	<0.093	<0.093	<4.7	250	110	360	690
SW-14	6/10/2022	Sidewall	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	910	330	1,240	740
SW-15	6/10/2022	Sidewall	<0.12	<0.24	<0.24	<0.49	<0.49	<24	760	360	1,120	1,000
SW-16	6/10/2022	Sidewall	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	560	240	800	1,100
SW-17	6/10/2022	Sidewall	<0.12	<0.25	<0.25	<0.50	<0.50	<25	55	<49	55	830
					Confirmation	Boring Samples						
CB-1	11/8/2022	35'	0.305	0.469	1.51	1.04	3.33	10.1	180	26	216	480
CB-1	11/8/2022	40'	0.678	5.08	8.33	6.97	21.1	20.1	183	29	232	624
CB-1	11/8/2022	45'	2.05	18.5	32.4	31.8	84.8	338	1,870	242	2,450	640
CB-1	11/8/2022	50'	1.46	11.2	18.1	17.3	48.1	202	1,060	138	2,662	896

Notes:

1. Values reported in mg/kg

2. < = Value Less than Reporting Limit (RL)

3. Bold Indicates Analyte Detected

4 BTEX analyses by EPA Method SW 8021B.

5. TPH analyses by EPA Method SW 8015 Mod. B-BH 2 Sample Point Excavated 6. GRO/DRO/MRO = Gasoline/Diesel/Motor Oil

7. Indicates analytical samples that exceed the NMOC 19.15.29.12 Table 1

Closure Criteria for the site.

8. Indicates analytical samples that exceed the NMOC 19.15.29.13 Table 1

Closure Criteria for the site. (Top four feet)

9. --- = not defined

Attachments

Attachment A

CB-1 Soil Boring Log

Г

•

	STRATIGR	APHIC LOG						
GHD	(OVERE	BURDEN)					Page	1 of 2
PROJEC	TNAME Rodke AOY #1		:B-1					
PROJEC	CT NUMBER: 11230052	DATE COMPLETED: 11 Aug	ust 2022					
	ON Eddy County New Marine		.aiy					
LUCAN		FIELD PERSONNEL: L. MUI	ins					
DRILLIN		DRILLER: K. Cooper				SVWE		
ft BGS	STRATIGRAPHIC DESCRIPTION & REM	/ARKS	DEPTH BGS	~	_			
				BEF	AV5	(%)	alue	۵Ê
					III I	REC	> . <u>v</u>	Id dj
	BACKEILI	X		2	_ ∠	<u> </u>		
52	caliche rock with sand, brown, dry							
<u>≩</u> _2 €								
Dat								
9 <u></u> 6								
8 8 8								
12								
8 8 19 14								
စို_ ၇ — 16								
			04.00					
0.5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CL-SILTY CLAY, reddish brown, slightly moist		24.00					
3 – 26 901								
28								
11 - 30 								
32 								
34 HOIL				33-35				926.1
- <u>-</u> 36	SP-SAND, fine to medium grained, light brown, slightly moist		36.00					
86								
SL2				38-40'	-			3551
OB4/C 42								
				43-45'				2231
1H9		41	47.00					
NGH	INCIES. INERSURING FOINT ELEVATIONS WAY CHANGE; REF	LINTO CORRENT ELEVATION I.	NOLE					
File:	CHEMICAL ANALYSIS							

•

GHD		STRATIGRAPHIC LO (OVERBURDEN)	G					Page	2 of 2
PROJEC	CT NAME: Rodke AOY #1	HOLE DESIG	NATION: CB	-1					
PROJEC	CT NUMBER: 11230052	DATE COMP	LETED: 11 Augus	t 2022					
CLIENT:	EOG Resources	DRILLING M	ETHOD: Air Rotary	y					
LOCATI	ON: Eddy County, New Mexico	FIELD PERS	ONNEL: L. Mullins	6					
DRILLIN	IG CONTRACTOR: HCI Drilling	DRILLER: K.	Cooper				0.4145		
DEPTH ft BGS	STRATIGRAPHIC	DESCRIPTION & REMARKS		DEPTH BGS	r	Ļ		'LE	
					MBEF	ERVA	C (%	Value	DIC DIC
					ŊN	INTE	RE	Ż	ਜ ਕੇ
2					48-50'				1288
50	END OF BOREHOLE @ 50.00ft BGS		5	60.00					
÷ _ ;•									
21- 54 Z									
Gr 56									
¥⊒_ 58									
:tuo									
62 19:90,									
2 02 64									
CHC CHC									
07									
۲ <u>ط</u> 19									
10 									
230052									
11/SS/11/									
01 L 80									
11911 HO HO HO HO									
052/TE									
40									
08 11 18									
88									
00									
DLANE									
92 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1									
10H5									
WGHL	<u>INUTES:</u> MEASURING POINT ELEVATION	S MAY CHANGE; KEFER TO CURREN	I ELEVATION TAB	LE					
File:	CHEMICAL ANALYSIS)							

Attachment B

Laboratory Analytical Reports and Chain-of-Custody Documentation

November 09, 2022

JT MURREY GHD SERVICES, INC. 6121 INDIAN SCHOOL RD, NE STE. 200 ALBUQUERQUE, NM 87110

RE: RODKE AOY #1

Enclosed are the results of analyses for samples received by the laboratory on 11/08/22 12:03.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		GHD SERVICES, INC. JT MURREY 6121 INDIAN SCHOOL RD, N ALBUQUERQUE NM, 87110 Fax To:	IE STE. 200	
Received:	11/08/2022		Sampling Date:	11/08/2022
Reported:	11/09/2022		Sampling Type:	Soil
Project Name:	RODKE AOY #1		Sampling Condition:	Cool & Intact
Project Number:	11230052		Sample Received By:	Tamara Oldaker

Sample ID: CB - 1 (35') (H225264-01)

EOG - ARTESIA, NM

Project Location:

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.305	0.050	11/08/2022	ND	1.90	94.9	2.00	2.91	
Toluene*	0.469	0.050	11/08/2022	ND	2.10	105	2.00	2.75	
Ethylbenzene*	1.51	0.050	11/08/2022	ND	1.95	97.3	2.00	3.33	
Total Xylenes*	1.04	0.150	11/08/2022	ND	5.87	97.8	6.00	3.07	
Total BTEX	3.33	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	120 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	11/08/2022	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	10.1	10.0	11/09/2022	ND	181	90.4	200	7.48	
DRO >C10-C28*	180	10.0	11/09/2022	ND	210	105	200	6.11	
EXT DRO >C28-C36	26.4	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	87.9 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.7 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		GHD SERVICES, INC. JT MURREY 6121 INDIAN SCHOOL RD, NE STE. 200 ALBUQUERQUE NM, 87110 Fax To:	
Received:	11/08/2022	Sampling Date:	11/08/2022
Reported:	11/09/2022	Sampling Type:	Soil
Project Name:	RODKE AOY #1	Sampling Condition	on: Cool & Intact
Project Number:	11230052	Sample Received	By: Tamara Oldaker

Sample ID: CB - 1 (40') (H225264-02)

EOG - ARTESIA, NM

Project Location:

BTEX 8021B	mg,	′kg	Analyzed By: JH						S-04
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.678	0.050	11/08/2022	ND	1.90	94.9	2.00	2.91	
Toluene*	5.08	0.050	11/08/2022	ND	2.10	105	2.00	2.75	
Ethylbenzene*	8.33	0.050	11/08/2022	ND	1.95	97.3	2.00	3.33	
Total Xylenes*	6.97	0.150	11/08/2022	ND	5.87	97.8	6.00	3.07	
Total BTEX	21.1	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	171 :	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	624	16.0	11/08/2022	ND	416	104	400	3.92	
TPH 8015M	mg,	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	20.1	10.0	11/09/2022	ND	181	90.4	200	7.48	
DRO >C10-C28*	183	10.0	11/09/2022	ND	210	105	200	6.11	
EXT DRO >C28-C36	29.2	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	91.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		IE STE. 200		
Received:	11/08/2022		Sampling Date:	11/08/2022
Reported:	11/09/2022		Sampling Type:	Soil
Project Name:	RODKE AOY #1		Sampling Condition:	Cool & Intact
Project Number:	11230052		Sample Received By:	Tamara Oldaker

Sample ID: CB - 1 (45') (H225264-03)

Project Location:

EOG - ARTESIA, NM

BTEX 8021B mg/kg Ai			Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	2.05	0.500	11/08/2022	ND	1.90	94.9	2.00	2.91	
Toluene*	18.5	0.500	11/08/2022	ND	2.10	105	2.00	2.75	
Ethylbenzene*	32.4	0.500	11/08/2022	ND	1.95	97.3	2.00	3.33	
Total Xylenes*	31.8	1.50	11/08/2022	ND	5.87	97.8	6.00	3.07	
Total BTEX	84.8	3.00	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	136 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	11/09/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	338	50.0	11/09/2022	ND	181	90.4	200	7.48	
DRO >C10-C28*	1870	50.0	11/09/2022	ND	210	105	200	6.11	
EXT DRO >C28-C36	242	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	123 %	6 45.3-16	1						
Surrogate: 1-Chlorooctadecane	154 %	6 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		IE STE. 200		
Received:	11/08/2022		Sampling Date:	11/08/2022
Reported:	11/09/2022		Sampling Type:	Soil
Project Name:	RODKE AOY #1		Sampling Condition:	Cool & Intact
Project Number:	11230052		Sample Received By:	Tamara Oldaker

Sample ID: CB - 1 (50') (H225264-04)

Project Location:

EOG - ARTESIA, NM

EX 8021B mg/kg Analyzed By: JH			d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	1.46	0.500	11/09/2022	ND	1.90	94.9	2.00	2.91	
Toluene*	11.2	0.500	11/09/2022	ND	2.10	105	2.00	2.75	
Ethylbenzene*	18.1	0.500	11/09/2022	ND	1.95	97.3	2.00	3.33	
Total Xylenes*	17.3	1.50	11/09/2022	ND	5.87	97.8	6.00	3.07	
Total BTEX	48.1	3.00	11/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	123 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	896	16.0	11/09/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	202	50.0	11/09/2022	ND	181	90.4	200	7.48	
DRO >C10-C28*	1060	50.0	11/09/2022	ND	210	105	200	6.11	
EXT DRO >C28-C36	138	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	114 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	132 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.						
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.						
ND	Analyte NOT DETECTED at or above the reporting limit						
RPD	Relative Percent Difference						
**	Samples not received at proper temperature of 6°C or below.						
***	Insufficient time to reach temperature.						
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C						
	Samples reported on an as received basis (wet) unless otherwise noted on report						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

aboratories

Delivered By: (C Sampler - UPS -	Relinquished B	AN NO	Relinquished By	PLEASE NOTE: Liability an analyses. All claims includin service. In no event shall Ca				-	7 43		HIZSONA	Lab I.D.	FOR LAB USE ONLY	Sampler Name:	Project Location:	Project Name: <	Project #: 1/2	Phone #:
ircle One) Bus - Other:			S on of o house to one percent	d Damages. Cardinal's liability a ig those for negligence and any irdinal be liable for incidental or provide for noble for incidental or				CB-1(5	CD-1(-	CB-1 (35	2	Sample		Lee M		Lodke AO	30052	
Observed Temp. °(Corrected Temp. °	Date: Time:	Time	Date: 1 / 2 /2	and client's exclusive remedy for other cause whatsoever shall b consequental damages, includi mance of services hereunder by				(°)	Sil .			e I.D.				(a) (#/	Project Owner	Fax #:
uu	Re		Re	any clair e deeme ng withou Cardinal				<	_	5	(G)RA	B OR (C)ON	ΛP.	1		FOC	G	
00	cei	(cei	n arisir d waiv d limita t limita				<			# CON	TAINERS		1		ME	Ros	
	ved	fr	ved	ng whe ed unle ation, b rdless							GROU	NDWATER				NOX	i	
Sam	By:	C	By:	ther b ess ma ousines							WAST	EWATER	3			Sec	S	4
res		2		ased in ade in as inter ther s				F	-	- X	SOIL					Sec	t	-
		Co		n contr writing rruptio uch cli				_			OIL	0E	5	Ż		NO	E	-
t ditic	(0		and n ns, los aim is					_		OTHE	B.		5	1 1	U U	0	2
5	,	A		s of us based							ACID/	BASE:	1			late	ty:	141
0 0		à	2	d by C d, or l upon	5						ICE / C	COOL	Í	E C		Þ.		00
(FE	1	B	0	ardinal oss of any of	lin in the second secon	+-+-				,	OTHE	R:		R				
itials)		Male	11/0	within 30 days after profits incurred by c the above stated rea	to the amount pair			\in		771/8/1	DATE			SAMPI		Lib.		
Turnaroun Thermomet Correction	REMARK		All Results	r completion of th lient, its subsidiari asons or otherwis	by the client for		10	0840	0830	0820	TIME			LING				
er ID Facto			are	e applic les, e.	he			E	-	->	B	TEX.	-80	2	16)		
-0 #1		1	em_	able		-			-		-	1			~	1 5		-

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 12/13/2022 1:02:51 PM

All Results are emailed. Please provide Email address:

ON D

Add'l Phone #:

Verbal Result:
Verbal Result:

Sampler - UPS - Bus - Other:

Corrected Temp. °C

Cool Intact

Standard

KO

Cool Intact

Vet Yes

Corrected Temp. °C

Bacteria (only) Sample Condition Cool Intact Observed Temp. °C

Rush

Thermometer ID #113 Correction Factor -0.6°C

+

Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

OKIVI-000 N

ARDIN

City:

Company Name:

GHD & EGG

T. Murry (26HD. LOM

P.O. #:

BILL TO

0

ANALYSIS

REQUEST

Griffin @

E Obresouves. Or

Zip:

Attn: Address:

8015 GRO/DRO/MI

lified

hlorid

2

E

Company:

EOG

Fax #: State: 101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476

Project Manager: 5 Address: Ambur_

Page 7 of 7

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	158719
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Remediation Plan Approved with Conditions. Please track and report volumes of microbial strain injected into the subsurface. OCD recommends confirmation sampling occur 60 days after last injection event. Please advance confirmation soil borings adequately between injection points.	12/13/2022

Page 24 of 24

Action 158719